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Foreword

Early Husserl, Mathematics and Logic

Edmund Husserl’s historically inalienable role as “the father of phenomenology”

and the attitudes this description arouses in his friends and foes alike have led to a

persistent and systematic disregard of his early work. Where notice is taken of it at

all, it is generally considered as a product of apprenticeship, while he was learning

his trade, before the breakthrough work of the Logical Investigations and the

methodological turn to phenomenology with its attendant reductions and transcen-

dental idealism. Husserl began his career as a mathematician, so the line tends to be

that it was natural for him to start there but at least as natural for him to move on to

the bigger (one might say, “more grown-up”) issues of the foundations of logic and

methodology in general. Certainly those admirers and detractors of Husserl who see

his main role as a progenitor of so-called Continental philosophy are likely to be

both less attuned to the interests of a philosopher who had more in common with

Frege and Hilbert than with Heidegger and Derrida, and less inclined to accord that

background a role in appraising Husserl’s contribution to thought.

Stefania Centrone’s thorough and painstaking exposition of Husserl’s early work

is a timely reminder that he was a philosopher of insight and stature well before he

burst onto the general philosophical scene. One would hope this realisation could

become universal, but given entrenched interests and attitudes it is unlikely to be

heeded as widely as it should. So why should we take note of the early Husserl?

What relevance does it have for his own development, and what significance for

philosophy at the turn of the twentieth century and beyond?

The history of the philosophy of mathematics during the golden years of 1879–

1939 hardly ever mentions Husserl. One reads about Dedekind, Cantor, Frege,

Peano, Russell, Poincaré, Hilbert, Brouwer, Weyl, Gödel, Church and Turing.

Husserl is effectively written out of the picture because his Philosophie
der Arithmetik was criticised as psychologistic by Frege, and majority opinion is

on Frege’s side. Husserl, goes the story, saw the light, realised Frege was right,

rounded on the psychologism of his earlier self and his teacher Brentano, did his
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penance, and then swiftly moved on to other things, turning to the more exciting and

ultimately more popular forms of essentialism and idealism that stimulated two

generations of students in Göttingen and Freiburg. The fourteen “lost years” in

Halle are consigned to prehistory. It is my contention, based in part on the

compelling evidence presented in Stefania Centrone’s book, that Husserl would

deserve an honourable mention in the history of the philosophy of mathematics and

logic alongside the others, and that this would indeed have been more apparent had

he not gone on to become the philosophical colossus with whom we are familiar.

Firstly, and for the record, Husserl was the first person outside Jena to take Frege

seriously. This is despite the fact that Husserl’s Halle colleague and friend Georg

Cantor knew a little about Frege from an early and very sketchy review of Frege’s

Begriffsschrift. In later life, Husserl rather cruelly described Frege to Heinrich

Scholz as an oddball (Sonderling), which was at the time an accurate reflection of

the general perception of Frege’s role and status. Nevertheless, unlike anyone

before Russell, Husserl early on paid Frege the compliment of reading Die
Grundlagen der Arithmetik, thinking about its theory, and criticising it in his own

first book Philosophie der Arithmetik. And in two respects at least, Husserl’s

criticisms are right on the money. The first is that Frege’s choice of the extension

of the concept “equinumerous with the concept F” to be the number of the Fs, is
clearly artificial, and not what we understand by number. Secondly, Husserl’s

analysis and ontology of number are preferable to Frege’s. We take number to be

neither a property of concepts nor an abstract object but a non-distributive formal

property of collections. ‘Four’ is not a property of the concept “evangelist”, nor is it

an object which is the extension of a second-order concept, but a property of the

group or collection of the evangelists, the four of them. Husserl does go too far in

criticising Frege in that he sees no role whatsoever for the idea of abstraction under

an equivalence relation of equinumerosity. That most useful insight of Frege can

and should be coupled to Husserl’s multitude theory of numbers. So he is not an

infallible guide to Frege. But Frege is a worse guide to Husserl. Having spotted in

Husserl a number of statements that are construable psychologistically, Frege took

the opportunity in a review of Philosophie der Arithmetik to pay Husserl back with

compound interest for the temerity of having criticised him. Some of Frege’s

barbed and ill-tempered criticism is accurate, but a lot of it is not. So the legend

was born that Husserl was converted by the strength and cogency of Frege’s

criticisms into being a crusading anti-psychologist himself. Certainly Husserl

recognised that Frege had made some valid points, and was grateful for the

criticism, but it is one-sided to suppose he was not already becoming dissatisfied

with aspects of his early philosophy of arithmetic, aspects which stopped him from

completing the planned second volume. On the other hand Husserl’s over-zealous

defenders have insisted that Frege had nothing whatsoever to teach him and that his

changes of mind were wholly intrinsic and independent of the criticism. The truth

lies somewhere in between. But the fact remains that Husserl never changed his

view as to the nature of natural numbers as properties of collections or multitudes,

so on the substantial issue of the correct ontology of arithmetic, he was unmoved,

and I think rightly so.
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The formative influence on Husserl’s development as a philosopher was of

course Franz Brentano, as Husserl was happy to acknowledge, and as he demon-

strates in the dedication of Philosophie der Arithmetik, a dedication incidentally,

which Brentano only belatedly and grudgingly acknowledged. But the Brentano

who influenced Husserl was the Brentano of the lecture theatre, not the Brentano of

the published works. So the impression could easily arise that all the mathematical

ideas in Philosophie der Arithmetik were Husserl’s. In fact the idea of collective

combination is already present in rudimentary form in the 1884/5 Vienna lectures

on logic that Husserl attended, though no acknowledgement finds its way into

Husserl’s text, perhaps because the source was unpublished. A balanced and

objective judgement of the extent to which Husserl’s ideas at this stage are indebted

to those of Brentano must await a proper publication of Brentano’s chaotic

Nachlass. Husserl’s work on the philosophy of mathematics from the 1890s was

also largely unpublished at the time, but his literary remains have received a much

more complete and favourable treatment than those of Brentano, so it is possible to

examine in print the many manuscripts, notes and lecture notes from this period.

They show him to have been interested in a wide variety of topics in the philosophy

of mathematics and logic, and to have anticipated a number of topics that later

became common currency in ensuing years. Stefania Centrone shows that some of

these ideas, in particular those connected with one concept of completness, and the

use of ideal or “imaginary” elements in formal mathematics, became key concepts

in the Hilbertian formalism programme, without receiving from Hilbert the due

they deserved. There may have been personal reasons for this: Hilbert was in favour

of Husserl’s appointment at Göttingen, hoping to find a philosopher to whom he

could talk philosophy of mathematics, but Husserl was already broadening his

interests in other directions, and they fell out over university matters, in particular

the promotion of Leonard Nelson.

The most important influence on Husserl the logician was undoubtedly that of

Bernard Bolzano, whose mighty Wissenschaftslehre (1837) Husserl chanced upon

in a second-hand book shop. The Wissenschaftslehre anticipated or indeed forged

many ideas still now widely regarded as achievements of later logicians such as

Frege, Tarski, and Quine. But for Husserl’s serendipitous find, Bolzano’s genius

might well have lain undiscovered for much longer, as Husserl is lavish with his

praise in the Logical Investigations. Bolzano’s semantic platonism was congenial to

Husserl, and was turned to use as the objectivistic alternative to psychologism in

logic, while being modified by Husserl to conform with Brentano’s intentionality

theory of the mental. Husserl was also pleased to adopt and adapt technical concepts

from Bolzano’s logic, explained in semantic terms, which he had not taken from

Frege, whose philosophical outlook precluded any idea of semantics as a proper

logical discipline. Husserl, having absorbed his formal logic initially from the

logical algebraist Ernst Schröder, was no stranger to semantic matters, indeed he

proposed an intensionalistic reading of Schröder’s inclusion and defended this

against the extensionalist logician Voigt. Husserl was never one interested in

investigating logical calculi for their own sake: he was interested neither in proving

theorems nor in seeing how axiomatic systems could be refined, manipulated, and
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simplified. Most of his remarks are metalogical rather than logical, and this goes for

his remarks on mathematics as well. It is possible to see in Husserl’s instinctive

practice the seeds of the later concept of metamathematics of Hilbert. At the same

time Husserl’s lack of interest in formal manipulation stood him in poor stead when

it came to gaining the respect and citation of mathematicians. Nevertheless, while

he did not venture into such areas in his published writings, Husserl was quite

prepared in lectures to work through logical proofs in the modern manner, as

Stefania Centrone shows with regard to the logic lectures of 1896. In her chapter

on Husserl the logician, Stefania Centrone steers us through the complications of

Husserl’s attitude to logic, his borrowings, modifications and influences.

It has long been known that during Hilbert’s first phase of encounter with the

foundations of mathematics, around the turn of the twentieth century, he was

interested in the question whether all mathematical questions have a definite yes

or no answer, and whether mathematicians can in principle show what the answer

is. It has also been noted that Husserl also thought about such matters, though much

of the evidence about this came from his later work Formal and Transcendental
Logic of 1929, which represents his last published writings on the foundations of

mathematics and logic. In her final chapter Stefania Centrone shows that Husserl’s

thinking originated much earlier, in a lecture of 1901 delivered shortly after his

arrival in Göttingen, and likely to have resonated strongly with Hilbert. This lecture

shows Husserl to be fully aware of and indeed himself advancing cutting-edge

developments in the philosophy of mathematics: issues of formalization, algebrai-

cization, decidability, completeness, models, and the consistent extension of math-

ematical concepts into new mathematical systems. If Husserl’s ideas seem inchoate

and unfocussed by today’s standards, it is instructive to compare them with

Hilbert’s own writings, of this time and indeed later. To those accustomed to the

limpid clarities of Frege and Russell, Hilbert’s writings, despite their evident

suggestiveness, and their origin in a mathematician of world ranking, are at times

alarmingly unclear, and were not decisively sharpened until much later with the

help of Paul Bernays and others. By those standards, Husserl’s writing is equally

suggestive and no less clear. A comparison with the 1929 work shows little

subsequent advance. This is unsurprising, since Husserl, unlike Hilbert and others

who returned again and again to the problems of logic and the foundation of

mathematics, was preoccupied with many other philosophical matters after 1901,

leaving it to others to gain the laurels for work on the foundations of mathematics.

Stefania Centrone’s book presents us with an aspect of Husserl that, under

counterfactual circumstances, might have been the familiar one: Husserl the inno-

vative and thoughtful philosopher of mathematics and logic. It is instructive to

engage in a little epoché: bracket the familiar Husserl of intentionality, phenome-

nology and transcendental idealism, and consider the colleague and contemporary

of Cantor and Hilbert, writing about sets, numbers, consistency, formalization and

the domains of theories. There is still much to learn about this phase and aspect of

Husserl’s thought, but thanks to Dr Centrone, it is now a good deal easier to engage

with that enterprise.

Peter Simons

Trinity College Dublin
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Preface

This book has been long in making. It partially originates from my doctoral

dissertation that I wrote under the supervision of Professor Ettore Casari at the

Scuola Normale Superiore in Pisa and defended in 2004. Further research on the

main topics of the present book at the SNS in Pisa was supported by a 2 year post-

doc grant for research on Themes and problems of logical objectivism, again under

the supervision of Casari, followed by a 18 months research grant on Logic and
Philosophy in Husserl, supervised by Professor Massimo Mugnai. I could finally

complete this book in the hospitable environment of the Philosophy Department of

Hamburg University, since Professor Wolfgang Künne, my present supervisor,

kindly allowed me to use for this purpose the first 2 months of a 2 years

Alexander-von-Humboldt fellowship for research on Logical Objectivism, Infer-
ence and Foundational Proof in Bernard Bolzano’s ‘Wissenschaftslehre’.

I am particularly indebted to my first teacher, Ettore Casari, who aroused my

interest in logic, in mathematics and in Husserl’s early writings and who made me

realize that, as he used to put it, “il mondo è vasto”, i.e. that restriction to one single
field of research can be more of a hindrance than a help for original work. Very

special thanks must go to Professor Kevin Mulligan of the University of Geneva.

We first met on the occasion of the defense of my PhD thesis. From then on he

encouraged me more than anyone else in broadening and deepening the research I

had begun in my thesis. We continued talking on many of the topics of this book

over the years, and hopefully a trace of these discussions will be visible in many

pages of my work. Many thanks go to Massimo Mugnai, who strongly supported

my work and instilled in me an admiration for Leibniz that is bound to last, and to

Burt Hopkins who very much encouraged the realization of my project. I would also

like to thank Claudio Cesa and Francesco del Punta for many hours of enlightening

discussions about the history of ideas. I am especially indebted to Wolfgang Künne.

He commented incisively on every chapter, insisted on many clarifications and saw

to it that I became more aware than ever of the importance of many issues in

Bolzano’s still sadly neglected Logic and in what Wittgenstein praised as “die
großartigen Werke Freges”.

ix



Much feedback I had over the years from many scholars, in particular: Sergio

Bernini, Arianna Betti, Riccardo Bruni, Andrea Cantini, Laura Crosilla, Carlo Ierna

and Francesca Poggiolesi. The criticisms and suggestions made by an anonymous

referee for Synthese Library who read the penultimate draft of this book were very

helpful. The encouragement at a decisive moment and the friendly advice I received

fromWillemijn Arts, the Senior Publishing Editor, and from Ingrid van Laarhoven,

the Senior Publishing Assistant of Springer Science and Business Media, were truly

invaluable. Very special thanks must also go to Maja de Keijzer, Publishing Editor.

I am very grateful to my mother Nicoletta who made me love hard work and to

my father Mario who aroused in me the love for philosophy. – With gratitude and

affection I dedicate this book to my husband and best friend Piero.
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Introduction

This book takes into account the first ten years of Edmund Husserl’s work, from

the publication of the Philosophy of Arithmetic (1891) to that of the Logical
Investigations (1900/01), with the aim of precisely locating his early work in the

field of logic and the philosophy of mathematics. This goal does seem to be worth

pursuing especially in the light of the developments in formal logic during the

past century. Surveying the vast growth of studies on this topic since the second

world war, a tendency can be seen to emerge among the interpreters of Husserl’s

thought to remain within the methodological and even terminological bounds of

Husserl’s later phenomenology while, conversely, professional logicians fail to

consider Husserl’s contributions to the field of formal logic as significant for their

discipline.

Our decision to focus upon Husserl’s early reflections on logic and the philoso-

phy of mathematics and to consider only selectively their elaboration in his mature

work is motivated by the fact that these ideas were definitely original and surpris-

ingly innovative at the moment of their first conception, i.e., in the years 1896–1901

when Husserl worked on the Prolegomena, while they no longer appear as fresh

(though they are sometimes better articulated and corroborated) when they are

taken up again in Formal and Transcendental Logic (1929). These ideas include, to
mention some significant examples, the articulation of formal logic in logical levels

according to a structure that is very close to what, today, is effectively used in

standard logical textbooks, the unification of formal logic and mathematics in a

most general mathematico-formal science that purports to be the concrete realiza-

tion of the Leibnizian ideal of a mathesis universalis, and the explicit conception of
abstract mathematics as a theory of structures.

The goal of our work is to restore the level of the real discussion between Husserl

and his important early interlocutors, some of whom made definitive contributions

to the development of formal logic as an autonomous discipline in the last two

centuries. To this end we will consider Husserl’s relationship to the algebraists of

logic, in particular George Boole, as well as to Bernard Bolzano’s, Gottlob Frege’s

and David Hilbert’s contributions to logic.
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With respect to the two main possibilities for textual research, philological and

erudite commentary on the one hand, and comprehensive interpretative stances, on

the other hand, this book opts for the second. Its contributions are almost exclu-

sively analytical and, on the basis of a close reading of selected texts written in the

indicated decade, it aims to bring to light the unity and depth of an original and

comprehensive design of both a theoretical systematization of logic and its philo-
sophical foundation.

The distinctive trait of Husserl’s work during the period in question is the

simultaneous presence in his logical and mathematical reflections of two different

directions of research, (1) the project of a substantial mathematization of logic and

(2) a conception of logic as the study of objective relations occurring among certain

abstract logical entities. As regards (1), we find Husserl’s interest in specifically

logico-formal issues: he succeeds in grasping with great clarity and insight the

implications of the formal-abstract trend in mathematics and, in particular, of its

tendency toward algebrization, which he is able to transfer to and elaborate at the

logico-theoretical level. As regards (2), we find Husserl’s project to develop a

philosophy of logic and mathematics focused on the systematic investigation of

the properties and relations that occur among certain abstract semantical entities: a

source of inspiration for this project is the theory of Notions (Vorstellungen an sich)
and Propositions (Sätze an sich) in Bolzano’s Wissenschaftslehre, and one of its

more remote ancestors is the Stoic doctrine of Sayables (lektá). In this book we

shall mainly focus on the research direction (1).

In Chapter 1 we take Husserl’s first major work, the Philosophy of Arithmetic
(1891), as the starting point of our study. Dagfinn Føllesdal’s conjectured in 1958

that Frege was an important factor in Husserl’s conversion from the psychologism

of this book to the anti-psychologism of the Prolegomena. This claim has been

contested by Mohanty and others, but Føllesdal’s defense is very convincing.1

However, we will approach Husserl’s first book from a perspective that is ortho-

gonal to the psychologism issue. Rudolf Bernet has written that the Philosophy of
Arithmetic “represents, not a mere youthful transgression stemming from Husserl’s

psychologistic period, but a highly valuable work of intrinsic and enduring impor-

tance”. According to Bernet its value lies in the fact that “the Philosophy of
Arithmetic . . . anticipates certain decisive results not only of the Logical Investiga-
tions but also of Husserl’s later work.”2 On our view, however, the value of this text
exceeds that of anticipating some claims that came to be consolidated in Husserl’s

phenomenology. The specific solutions that Husserl advances in his first book

possess an intrinsic interest for logic and mathematics, and they are independent

of the psychologistic context in which they originate.

In his Philosophy of Arithmetic Husserl enters into a very lively and stimulating

debate about the foundational issues regarding the concepts of number and set.
Moreover, this work contains many interesting insights regarding the formal and

1D. Føllesdal 1958 (1994) and 1982, a reply to one of his critics.
2Bernet & Kern & Marbach 1989, 14.
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computational aspect of theories. For instance, we find the elaboration of the

concept of “number system” and investigations aiming at circumscribing the

totality of all ‘conceivable arithmetical operations’, which bring to light how

Husserl had arrived at a first delimitation of the class of number functions that

today are called “partial recursive functions.” In this context we discuss a part of

Husserl’s Nachlass text “On the Concept of Operation” (also from 1891) which

develops a specifically logico-formal problem raised in the Philosophy of Arith-
metic concerning the question of the formal irreducibility of the operation of

multiplication to that of addition. We shall also discuss Husserl’s relationship to

Boole as regards the conception of the more properly formal and calculatorial

aspect of theories and his relationship to Frege as regards the definition of the

series of natural numbers. With respect to the latter problem we also take into

consideration a Nachlass text “On the Theory of Sets” which is centered on the

distinction between finite and infinite cardinals: according to Husserl himself, it

was a grave “defect” of the Philosophy of Arithmetic not to have provided a

theoretical account of this distinction. The heart of the issue is this: Husserl had

defined natural numbers as the collection of all those objects that can be obtained

starting from zero using a finite number of steps to successors, but he had not

registered the fact that the crucial point of such a definition is precisely to

reformulate successfully the reference to a “finite number of successor-steps”

without using the concept of a finite number (since to use the latter concept is to

fall into a vicious circle). Husserl’s account is therefore at variance with what

Frege had already done informally in his Grundlagen (1884) and then formally in

the Grundgesetze (1893).

Chapter 2 on “the idea of a pure logic” examines selected themes belonging

to the philosophy of mathematics and logic frequently raised and discussed by

Husserl in the years between 1896 and 1900. The discussion pivots on various

issues connected to the surprisingly innovative idea of a stratification of formal
logic in logical levels. Roughly, (1) he outlines what was to become the modern

conception of a formal language (logical morphology), (2) he provides a sketch

of a propositional logic and a quantified logic (later in Formal and Transcenden-
tal Logic called “logic of consequences”), and (3) he largely anticipates the

modern concept of a formal system (theory of theories). In this context, his

attempt to unfold a concept of semi-formal enthymematic derivability and to

characterize a notion of “dependency among truths,” i.e. of a one-way entailment

(between true propositions) of a reason-giving kind, plays a prominent role.

Hence we have to consider the relation between Bolzano’s notions of derivability

(Ableitbarkeit) and consecutivity (Abfolge) and Husserl’s notions of ‘following

from certain premises through correct inferences’ and of ‘grounding’ or ‘founda-

tion’ (Begründung).
At this point, a few words are in order about the importance of Bolzano’s

monumental Wissenschaftslehre for Husserl’s early work, say from 1893–94

onwards. Husserl himself finds it important to stress in an appendix to Chapter 10
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of the Prolegomena3 that his investigations are not “in any sense mere commentar-

ies upon, or critically improved expositions of, Bolzano’s thought patterns”, but

that they “have been crucially stimulated by Bolzano . . .”. In Husserl’s eyes,

Bolzano’s great merit lies in his characterizing pure logic as a discipline that is

concerned “with the most general conditions of truth itself”4 and deals with the

relations among the contents of our thoughts. So the emphasis is on Bolzanos’

logical objectivism. He praises Bolzano’s opus magnum as “a work which . . .. far
surpasses everything that world-literature has to offer in the way of a systematic

contribution to logic”5:

Bolzano did not, of course, expressly discuss or support any independent demarcation of

pure logic in our sense, but he provided one de facto in the first two volumes of his work, in

his discussions of what underlay a Wissenschaftslehre or theory of science in the sense of

his conception; he did so with such purity and scientific strictness, and with such a rich store

of original, scientifically confirmed and ever fruitful thoughts, that we must count him as

one of the greatest logicians of all time. . . Logic as a science must . . . be built upon

Bolzano’s work, and must learn from him its need for mathematical acuteness in distinc-

tions, for mathematical exactness in theories. It will then reach a new standpoint for judging

the mathematizing theories of logic, which mathematicians, quite unperturbed by philo-

sophic scorn, are so successfully constructing.

However, Husserl directs at Bolzano two sorts of criticism6 which are worth to

be mentioned already in this Introduction. Firstly, though having circumscribed the

domain of pure logic as “a closed field of independent and a priori abstract truths”,
Bolzano sees his investigations in the service of a science which sets up “the rules

according to which we must proceed in the business of dividing the entire realm of

truth into single sciences and in the exposition thereof in special textbooks”.7

3PR 224–227 (Hinweise auf F.A. Lange und B. Bolzano), Pre 222–224. The quotations that follow
are all taken from this passage. Henceforth: PR ¼ Husserl, Logische Untersuchungen I, Prolego-
mena zur reinen Logik, Tübingen 1993; PRe ¼ English translation thereof, in: Logical Investiga-
tions, London 1970, Vol. I, 51–247. Responsibility for translations from German is mine, even

when I refer to, benefit from, or simply echo published translations.
4Bolzano, Wissenschaftslehre (Sulzbach 1837), I, }16, 65. Henceforth: WL.
5In 1911 the key is a bit lower: these volumes, he now says, occupy “the highest rank in the logical

world-literature of the 19th century” (quoted in Künne 2009, note 1, and commented upon in his

2008, 358).
6“Much as Bolzano’s achievement is ‘cast in one piece’, it cannot be regarded (as such a deeply

honest thinker would be the first to admit) as in any way final.”
7Bolzano, WL I, }1, 7. In a note to Chapter 1 of the Prolegomena Husserl writes “The fourth

volume of the Wissenschaftslehre is indeed especially devoted to the task which the definition

expresses [The theory of science (or logic) is “the science which shows us how to present the

sciences in convenient textbooks”]. But it strikes one as strange that the incomparably more

important disciplines which the first three volumes treat of, should be represented merely as aids to

a technology of scientific textbooks. Naturally, too, the values of this by no means as yet

sufficiently valued work, which is, in fact, almost unused, rests on the researches of these earlier

volumes” (PR 29, PRe 73).
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According to Husserl, this relation should be inverted: pure logic should ground

logic as a practical discipline. Secondly, Bolzano “did not quite exhaust the rich

inspiration of Leibniz’s logical intuitions, especially not in regard to mathematical

syllogistics and to mathesis universalis”. This is a criticism that Husserl resumes in

more detail in his Formale und transzendentale Logik.8 One may very well wonder

whether it really hits its target, but it is of great significance because it highlights

Husserl’s attitude towards Bolzano’s project of a unification of logic and mathe-

matics in a most comprehensive science. In } 8 of Part I of his Beyträge zu einer
begründeteren Darstellung der Mathematik (1810)9 Bolzano defines mathematics

as “a science which treats of the universal laws (forms) things must comply with in

their existence (eine Wissenschaft, die von den allgemeinen Gesetzen (Formen)
handelt, nach welchen sich die Dinge in ihrem Daseyn richten müssen)”, where
‘thing’ is meant to cover “everything that can be object of our representational

capacity”. In I, } 9 he says of mathematics that it is “concerned with the question:

what must things be like if they are to be possible at all (wie müssen die Dinge
beschaffen seyn, die möglich seyn sollen?)” And in I, } 11 he says that the laws of

what he calls “die allgemeine Mathesis” are “applicable to all things without any

exception (auf alle Dinge ganz ohne Ausnahme anwendbar)”. This discipline

comprises, inter alia, Logistik oder Arithmetik and Combinationslehre (cp. I, } 3),
whereas disciplines like geometry and chronometry are “subordinated to the whole

universal mathesis as species to a genus (der allgemeinen Mathesis insgesammt,
wie Arten der Gattung, subordinirt)”.10 Now Husserl acknowledges that Bolzano

characterizes here “a universal apriori ontology”, but he objects that Bolzano does

not develop all features of formalization, of the transition from the material to the

formal, and that he fails to keep the formal and the material aspects of ontology

clearly distinct.

When he conceives of the thing as such (Ding überhaupt) as the highest genus . . . it becomes

clear that he did not see the difference between the empty form of the something as such as

highest genus . . . and the universal realm of possible existents, of the real in the widest sense

(die universale Region des möglicherweise Daseienden, des im weitesten Sinne Realen)),
which differentiates itself in particular regions. He also did not see the difference between

the subsumption of formal particularities (Besonderungen) under formal generalities and the

subsumption of regional particularities . . . under formal generalities. . . In other words,

Bolzano did not attain the proper concept of the formal,. . ., though he touched it somehow.11

In connection with Husserl’s reflections upon the idea of a pure logic, we shall

also discuss in Chapter 2 his development of a propositional calculus of the

axiomatic-deductive kind, which is found in the final section of a lecture course

on logic held at the university of Halle in summer 1896. This lecture course,

8Formal and Transcendental Logic [ed. 1929] (henceforth cited as FTL) 74–75.
9See below, Ch. 2, } 2, n. 32.
10Cp. Casari 2004, 161.
11FTL 74–75.
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generally known as Logikvorlesung 1896,12 contains part of the core reflections that
gave rise to the Prolegomena and the Logical Investigations.

It does not yet give us the “Grundgerüst (the basic scaffolding)” of the

Prolegomena, in spite of Husserl’s claim to the contrary in the Preface to the

second edition of the Logical Investigations.13 The editor of the critical Husserliana
edition, Elisabeth Schuhmann, notes in her Introduction that there is an error in

Husserl’s own dating. He did not hold two complementary courses in 1896.

Moreover, only a few pages of the Prolegomena (more exactly, }} 4–8) coincide
with material in the Logikvorlesung. The reason for this error is probably the fact

that Husserl repeatedly re-used material from the Logikvorlesung of 1896

to prepare additional logic courses, for instance, the course “Logik und
Erkenntnistheorie” (winter term 1901/02), the courses “Logik” and “Allgemeine
Erkenntnistheorie” (winter 1902/03), and the series of lectures “Alte und neue
Logik” (winter 1908/09). In particular, manuscripts from 1901/02, written after

and based on the Prolegomena, were collected together – without indications of the
date – with the Logikvorlesung of 1896. When preparing the new edition of the

Logical Investigations in 1913, Husserl must have found them in the same ‘convo-

lute’ as the 1901/02 lectures on “Logik und Erkenntnistheorie”, which were also

undated. Hence, in the draft for the preface to the new edition of the Logical
Investigations, he wrote that the Prolegomenawere, essentially, only an elaboration
of the Logikvorlesung of the summer and winter 1896.

The issue of imaginary numbers, and, more precisely, of the “logical meaning of
the calculatory passage through the imaginary,” which is, without doubt, the

guiding thread in Husserl’s reflections on the role of the formal attitude in

mathematics, is the specific topic of his famous “double” lecture (known as

the Doppelvortrag) presented to the Mathematische Gesellschaft in Göttingen in

winter 1901.

Chapter 3, the final chapter of this book, is focused on this and other themati-

cally related texts of the Nachlass. In particular, we will emphasize Husserl’s

reflections on the notion of a formal theory in its double aspect of a system of
axioms and the manifold underlying it. We will focus, furthermore, on the more

specific reflections regarding, on the one hand, the structure of (what Husserl calls)

Universal Arithmetic – i.e., a system of calculation rules valid in all number-

systems (cardinal numbers, whole numbers, etc.), and, on the other hand, the

structure of the specific Arithmetics or systems of operations – i.e. systems of

calculation rules that contain those of universal arithmetic as common part plus

some specific groups of rules able to characterize the behavior of arithmetical

operations relating to a specific number system. Finally, we will consider Husserl’s

12Husserl, Logik. Vorlesung 1896, ed. Elisabeth Schumann, Husserliana Materialienbände, Band

1, Kluwer, Dordrecht 2001. Henceforth: LV’96.
13“The Prolegomena to Pure Logic are, in their essential content, a simple elaboration of two

complementary lecture courses held in Halle in the summer and winter of 1896.”
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reflections on the fundamental and closely connected notions of the definiteness,
and the formal extension, of a theory.

In his many references to the Doppelvortrag (inter alia, in the second edition of

the Prolegomena, in the Ideas and finally in Formal and Transcendental Logic)
Husserl observes that some important ideas which he presented on that occasion

were subsequently taken over, without acknowledgement, in the logical investiga-

tions of Hilbert’s school.

The concepts introduced here [Husserl means specifically the concept of a definite system
of axioms] served me already at the beginning of the 1890s (in the “Untersuchungen zur
Theorie der formal-mathematischen Disziplinen [Investigations pertaining to the theory of

formal-mathematical disciplines]”, which I intended as a continuation of my Philosophie
der Arithmetik), to find a fundamental solution to the problem of the imaginary. . . . Since
then I have often had occasion to develop the relevant concepts and theories in lectures and

seminars, partly in complete detail; and in the winter semester of 1901/02 I dealt with them

in a double lecture to the Göttingen Mathematical Society. Some parts of this train of

thoughts have found their way into the literature, without mention of their original sources.

– The close relationship of the concept of definiteness to the “axiom of completeness”

introduced by Hilbert for the foundation of arithmetic will be immediately obvious to every

mathematician.14

In his Doppelvortrag Husserl examines two notions of definiteness: “absolute

definiteness,” which, as he indicates, is analogous to Hilbert’s axiom of complete-

ness, and “relative definiteness,” which he applies to systems of axioms and to the

structures that underlie theories conceived of as deductive systems. Basically, a

system of axioms that is “definite in the absolute sense” or “in the Hilbertian sense”

(as Husserl puts it) is categorical, i.e. it individuates, up to isomorphism, only one

model, whereas a system of axioms that is “definite in the relative sense” is not

necessarily categorical, but it is such that every proposition written in the language

of the theory can be decided on the basis of the axioms. Given the different

implications of these two distinct notions, the aim of giving a rigorous (mathemati-

cal) definition seems to be worth pursuing. It should help to weed out some common

misconceptions as regards the interpretation of these issues and to challenge some

recent and well-documented contributions to this topic.

It is worth emphasizing that Husserl himself has pointed out that “the progress

from vaguely formed, to mathematically exact, concepts and theories is, here as

everywhere, the precondition for full insight into a priori connections and an

inescapable demand of science”.15

14Husserl, Ideen I, } 72, n.1; Ideas 164, n. 17.
15Loc. cit.
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Chapter 1

Philosophy of Arithmetic

1.1 Introduction

The Philosophy of Arithmetic,1 Husserl’s youthful work dedicated to a philosophical,
or better, epistemological foundation of mathematics, shows the shift in his inter-

ests from more properly mathematical issues to those regarding the philosophy of
mathematics. Husserl strives to understand and clarify what numbers and numerical

relations are, a problem that he recasts in terms of the subjective origin2 of the

fundamental concepts of set theory and finite cardinal arithmetic. We will try to

show that on the whole this work of Husserl’s does not deserve the criticism and

ensuing neglect that it suffered from, ever since Frege published his well-known

Review.3 Besides its hotly contested psychologism, we find ideas and conceptuali-

zations that not only were original then, but are still interesting today, such as those

concerning the autonomy of the formal-algorithmic aspect of abstract algebra and

mathematics. Moreover, it is here that the Husserlian idea of a universal arithmetic
receives its first formulation, the full elaboration of which will take at least ten more

years, until his research on these topics reaches its stable form in 1901.4

1Husserl, Philosophie der Arithmetik. Mit ergänzenden Texten (1890–1901), Huss XII, 1–283.

Henceforth cited as PdA. English translation cited as PoA.
2Cp. Tieszen 1996: “Husserl thinks that arithmetical knowledge is originally built up in founding

acts from basic, everyday intuitions in a way that reflects our a priori cognitive involvement”

(304).
3Frege 1894. Cp., for example: Osborn 1949; Picker 1962, 289; Beth 1966, 353. Among the

interpretations that give a positive re-evaluation of some aspects of the PdA: Farber 1943; Føllesdal
1958; Haddock 1973 (especially Ch. VI: however, his focus is mainly on Husserl’s logical theories

in his later works, in particular in the Logical Investigations and Formal and Transcendental
Logic); Miller 1982; Willard 1974, 97 f. & 1984; Tieszen 1990; Ortiz Hill 1994a & b.
4See Das Imaginäre in der Mathematik (December/January 1901/02), PdA, App. 430–451, PoA
409–432, and the new critical edition Schumann & Schumann 2001. Willard 1984 rightly stresses

that Husserl shared “the general persuasion of mathematicians of the time that a rigorous

development of higher analysis – arithmetica universalis in Newton’s sense – would have to

emanate from elementary arithmetic alone.” However, few lines later he writes that “these further

S. Centrone, Logic and Philosophy of Mathematics in the Early Husserl,
Synthese Library 345,

DOI 10.1007/978-90-481-3246-1_1, # Springer ScienceþBusiness Media B.V. 2010
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Of the two volumes of which the work, according to Husserl’s initial plan, was to

consist, only the first was completed and published (Halle 1891). In spite of the

preliminary nature of the studies intended for the second volume that we possess,5

we know that it was to contain two parts: one dedicated to “the justification of

utilizing in calculations the quasi-numbers (Quasizahlen) originating out of the

inverse operations: the negative, imaginary, fractional and irrational numbers,”6 the

other to the determination of the general characteristics of a universal arithmetic.

In the first and only volume the contents of the Habilitationsschrift “On the
Concept of Number: Psychological Analyses” (Halle 1887)7 appeared as Chapters

I–IV without significant changes. It had as its main topic the constitution of the

concept of cardinal number (Anzahl), and it also consists of two parts. The first part
studies the fundamental concepts of mathematics – multiplicity (Vielheit), cardinal

matters – intended is the foundation of the whole of mathematics on the elementary arithmetic –

never received any detailed response from Husserl” (22). Though it is true that Husserl‘s “inquiry

into the theory of number led him into general epistemological investigations that occupied him

for the remainder of his life,” it should not be neglected that Husserl‘s Double Lecture on the
Imaginary in Mathematics is a non-trivial attempt at dealing with the reduction of other number

systems (the wholes, the rationals, the reals) and of their properties to the naturals and thus to give

an answer to some of the problems left unsolved in PdA. From Miller 1982, too, one gets the

impression that Husserl did not achieve “the philosophical project he had begun under the

inspiration of Weierstrass” (9). Miller argues that “one can only conjecture about Husserl‘s

reasoning here. Perhaps his view was simply this: Since even our most elementary number concept

is largely ‘symbolic’, there is no intrinsic mystery regarding the introduction of other ‘symbolic’

concepts, such as those of negative, rational, irrational and imaginary numbers. The original or

‘authentic’ number concept has already been broadened to include numbers not actually given to

us, so why should we not broaden it further? We are perfectly justified in taking this step . . .”What

Miller does not seem to pay sufficient attention to is that in the Double Lecture Husserl’s

philosophical problem is one of a conceptual kind: formally we can extend the natural number

system by dropping certain restrictions to the executability of certain operations, but we cannot

expand the concept at the basis of a specific numerical field (cp. our account of Husserl´s critique

of Dedekind in ch. 3 below). So Husserl’s reasoning seems to be just the opposite of what Miller

suggests.
5See PdA App. Abhandlung I, Zur Logik der Zeichen (Semiotik), 340–373; II, Begriff der
allgemeinen Arithmetik, 374–379; III, Die Arithmetik als apriorische Wissenschaft, 380–384;
V, Zum Begriff der Operation, 408–429; IX, Die Frage der Aufklärung des Begriffes der
“natürlichen” Zahlen, als “gegebener”, “individuell bestimmter”, 489–492; X, Zur formalen
Bestimmung einer Mannigfaltigkeit, 493–500. See Eley, Textkritischer Anhang, 521–562.

A separate treatment has to be reserved for Abhandlung V, Zur Lehre vom Inbegriff, 385–407,
see below Appendix 3.
6PoA Foreword 7; PdA Vorrede 7.
7“A part of the psychological investigations in the present volume was already included, almost

word-for-word, in myHabilitationsschrift, from which a booklet four galley sheets in length, titled

“On the Concept of Number: Psychological Analyses” was printed in the fall of 1887 but was never

made available in bookstores” (PoA Foreword 8; PdA Vorrede 8). See Miller 1982, 11; Willard,

1984, 39; Ierna 2005: “Husserl’sHabilitationsschriftwas never published and the work now known

as Über den Begriff der Zahl is in fact just the first chapter of the Habilitationsschrift” (8).
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number (Anzahl)8 and unity (Einheit) – in so far as they are presented properly

(eigentlich vorgestellt), i.e. intuitively given. The second part tackles the study of

symbolic presentations applied to mathematics.9

To understand the interest in a psychological foundation of arithmetic as devel-

oped in the Philosophy of Arithmetic, we have to take into account both the specific
historical moment at which the work was written as well as Husserl’s own academic

background.

In 1891 a work that aimed at laying bare the psychological foundation of

arithmetic was able to arouse the interest of mathematicians and of philosophers.

Since a psychologistic orientation was then dominant in philosophy, it did not

appear strange at all to look for the ultimate foundation of arithmetic in this science.

And then, the work fitted into the general framework of the so-called ‘research on
the foundations’ of mathematics, and it proposed to tackle it from a philosophical

and from a mathematical point of view.10 From the former point of view, ‘research

on the foundations’ consisted in identifying the fundamental concepts of mathe-

matics and examining the essence of mathematical knowledge, and it is precisely on

this aspect that the first volume of Husserl’s work focuses. From the mathematical

point of view, research on the foundations, as it had been conducted in the second

half of the nineteenth century, had given prominence to elementary arithmetic, i.e.

the theory of natural numbers, as the simple and secure basis on which to found the

entire edifice of mathematics. And it was precisely the issue of the “reduction” of

other number systems (the wholes, the rationals, the reals) and of their properties to

elementary arithmetic that was to be the object of the second volume of Husserl’s

work, which was never completed.11

8To be understood as ‘finite cardinal number’ or ‘natural number’. “E. Schröder introduced this

term (natürliche Zahl) . . . it is apparently intended to mark the distinction of the cardinal numbers

(Anzahlen) over against the other forms of number which come into play in arithmetic: the rational

and irrational, the positive, negative and imaginary numbers. Moreover the term ‘Anzahl’ is not
totally univocal, since it has sometimes been used to designate the concepts of numbers in series.

. . . Nevertheless, we have thought it most suitable in this work to adhere to the older and almost

universally customary use of language” (PdA 114 n., PoA 120 n.).
9“In the first of its two parts, the Volume I before us deals with the questions, chiefly psychologi-

cal, involved in the analysis of the concepts multiplicity, unity, and number, insofar as they are

given to us authentically (eigentlich) and not through indirect symbolizations. The second part

then considers the symbolic representations of multiplicity and number, and attempts to show how

the fact that we are almost totally limited to symbolic concepts of numbers determines the sense

and objective of number arithmetic” (PdA 7; PoA 7).
10See Ortiz Hill 2002, 81.
11As is well known, one of the traits that distinguish the mathematics of the nineteenth century

from the mathematics of the preceding century, is the birth of that movement, often called the

‘critical movement’, characterized by the need to provide rigorous concepts and proofs for vast

branches of analysis and, later on, to reconsider the foundation of mathematics. The arithmetiza-

tion of analysis initiated byWeierstrass concludes with the simultaneous publication in 1872 of the

foundations of the system of real numbers by Georg Cantor (1845–1918) and Richard Dedekind

(1831–1916). See Kline 1972, 947–978; Casari 1973, 1 ff.

1.1 Introduction 3



As regards Husserl’s academic background, we note that while working on the

Philosophy of Arithmetic he still was – as Brentano defined him in a letter to Stumpf

of 1886, asking him to support Husserl in his attempt to obtain the status of

Privatdozent in Halle – “a mathematician interested in philosophical questions.”

In fact, Husserl had studied mathematics in Berlin with mathematicians of great

stature, such as Kronecker, Kummer and Weierstrass, and he had been Weierstrass’

assistant, working with him until about 1883.12 The Husserl-Archives in

Leuven have the following stenographical notes (Nachschriften) of lectures on

mathematics:

1. Einleitung in die Theorie der analytischen Funktionen (Weierstraß, S.S. 1878)

2. Stenographische Nachschrift der 54 Vorlesungen über die Theorie der algeb-
raischen Gleichungen (Ludwig [sic!] Kronecker, W.S. 1878/79)

3. Einleitung in die Theorie der elliptischen Funktionen (Weierstraß, W.S. 1878/79)

4. Vorlesung über die Variationsrechnung (Weierstraß, S.S. 1879), a notebook

which contains an elaboration of lectures by Weierstraß in that term, made by

L. Baur. Husserl employed it to complete his elaboration of lectures by

Weierstraß on the calculus of variations and mentioned it therein. The notebook

has on the front page solely the mark: “Edmund Husserl 1880”.

5. Theorie der analytischen Funktionen (Weierstraß, W.S. 1880/81).13

During the winter semester 1884/85 and the summer semester 1886 Husserl

came under the influence of the philosophy of Franz Brentano,14 and – as his own

words testify – it was precisely in virtue of this influence that he came to dedicate

himself completely to philosophy:

In a time of growing philosophical interests and of wavering, whether I should stick with

mathematics for life or dedicate myself completely to philosophy, Brentano’s lectures gave

the breakthrough. I attended them at first out of mere curiosity, to hear the man, who at that

time was the talk of the day in Vienna, venerated and admired by some in an extreme way,

by (no few) others insulted as masked Jesuit, flatterer, salesman of idle chit-chat (Friseur),
sophist, scholastic. At the first impression I was quite affected. . . . Soon I was drawn

onwards and convinced by the absolutely unique clarity and the dialectic acuity of his

arguments, . . . by the cataleptic force of his way of developing problems, theories. Most of

all from his lectures I got the conviction that gave me the courage of choosing philosophy as

my life-long work. . . [to maintain] that philosophy, too, is an area of serious work, that it

also can and hence must be treated as a rigorous science.15

12Cf. Schuhmann 1977, 7.
13Eley, Einleitung des Herausgebers, PdA xxi–xxii; K. Schuhmann 1977, 6–9; Miller 1982, 2–3;

Ierna 2005, 5.
14“me totum abdidi in studia philosophica duce Francisco Brentano” (Schuhmann 1977, 13).
15Husserl in: Kraus 1919, 153–154.
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From Weierstrass, one could say, Husserl inherits the project of founding

analysis on a restricted number of simple and primitive concepts,16 and from

Brentano he inherits the method for identifying these primitive concepts, namely

by describing the psychological laws that regulate their formation.17

As we shall see, in the Philosophy of Arithmetic ideas and conceptions are voiced
that are shared by an important part of the Berlin mathematical school in which

Husserl had been active. Especially with respect to the specific Husserlian solution

for the foundation of the concept of number based on its psychological constitution, it

was quite usual among the Berlin mathematicians to introduce the concept of natural

number in a psychological way. During his lecture course Introduction to the theory
of analytical functions of the summer semester 1878 (of which Husserl had taken and

elaborated notes, as reported above), Weierstrass himself begins the first class with a

psychological characterization of the concept of number. He introduces it (just as

Husserl will do in the Philosophy of Arithmetic, but in a different theoretical vein18)
as the result of a subjective activity, that of counting, which constitutes “an object of

thought,” i.e. the number:

We best attain the concept of number by proceeding with the operation of counting. We

consider a given aggregate of objects; among these we look for the ones that have a certain

feature apprehended in the presentation by going through them sequentially; we compre-

hend the single objects with the feature together in an encompassing presentation, and thus

a multiplicity of unities is made, and this is the number.19

And already in a lecture from 1874 Weierstrass explained that “a natural number

is the representation of the collection of things that are the same”.20 However, these

were introductory definitions that had didactical purposes and were not referred to

again in the lecture course.

16“It was my great teacher Weierstrass who, through his lectures on the theory of functions,

aroused in me during my years as a student an interest in a radical grounding of mathematics.

I acquired an understanding for his attempts to transform analysis – which was to such a very great

extent a mixture of rational thinking and irrational instinct and knack – into a rational theory. His

goal was to set out its original roots, its elementary concepts and axioms, on the basis of which the

whole system of analysis could be constructed and deduced by a fully rigorous, thoroughly evident

method” (Schuhmann, 7). Among the interpreters who see in Weierstrass the source of Husserl’s

interest for “a radical grounding of mathematics” we find Willard 1984, 21–23; Miller 1982, 3 ff.;

Ortiz Hill 1994a, 2 ff. & 1997b, 139 & 2004, 123–124; Ierna 2005, 3 ff.
17As Miller 1982 puts it “. . . Husserl’s philosophy of arithmetic took shape as an attempt to

address the non-mathematical issues to which the program of arithmetizing analysis inevitably

led”. (4) See also ibid., 19.
18Cp. Miller 1982, 4, 6, 8.
19Weierstrass, Einleitung in die Theorie der analytischen Funktionen (lecture of May 6, 1878),

notes by Husserl, English transl. from Ierna 2006, 36 f. Cp. also Miller 1982, 3.
20Weierstrass 1966, 78.
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1.2 ‘Many As One’: The Concept of Multiplicity (or Set)

The first four chapters of the first part of thePhilosophy of Arithmetic revolve around
the analyses of the concepts21 of multiplicity or set and cardinal number. Before
going into the exposition of its contents, we notice that Husserl uses the terms

‘multiplicity (Vielheit)’, ‘plurality (Mehrheit)’, ‘set (Menge)’, ‘collection (Inbegriff,
Sammlung)’ and ‘aggregate (Aggregat)’ essentially as stylistic variants.22 The

presence of different names for the same conceptual content is thought to express

the difference between the distributive and collective modes of conceiving a whole

made up of discrete objects.23

The problem under consideration here is that of the unitary treatment of a
multiplicity of objects, of the way we connect a multiplicity of things, in other

words, of the way we unify a multiplicity of objects into a new object. This is, at
bottom, the main problem at the core of all set theories.24 That Husserl understood

this issue exactly in these terms is confirmed, among other things, by the following

observation: “But how is this remarkable fact itself to be explained. . . that the same

content appears to us now as ‘one’ and now as ‘many’?”25

In general Husserl distinguishes with respect to a concept its extension

(Umfang), its content (Inhalt), and its genesis (Entstehung). By ‘extension’ he

means more or less what is also meant today, i.e. the class of objects that fall

21In his early writings Husserl “speaks of number, the concept of number, and the representation of

number, in quite the same way” (Willard 1984, 26). (Hence we disagree with the following

contention in Miller 1982, 22: “for the Husserl of PoA numbers are not presentations; they are

rather concepts which are ‘contained’ in certain presentations”.) Willard also gives a justification

for Husserl’s interchangeable use of the expressions “the concept of number” and “number”, and

of “analysis of the concept of number” and “analysis of number”. This use has been largely

followed in the secondary literature, and is adopted here as well. “Conceptual analysis is simulta-

neously an analysis of the essence of an object insofar as it is an object of the concept in question.
. . . The literature of recent philosophy contains many passages where these terms are used

interchangeably, and this also occurs in Husserl” (loc. cit.).
22PoA 15; PdA 14. It is noteworthy that in }82 of theWissenschaftslehre Bolzano defines ‘collection
(Inbegriff)’ as the comprehensive union (Zusammenfassung) of at least two arbitrary objects (con-

crete or abstract) – called parts of the collection – in a whole. Furthermore, he defines the concepts of

set (Menge), sum (Summe), series (Reihe) as suitable specializations – through the specification of the
kind of connection – of the concept of ‘comprehensive union of the parts in a whole’. Here is a rough
summary: A collection is a sum if and only if (i) it contains the parts of its parts, and (ii) it is invariant

with respect to the permutations of its parts. An aggregate is a set if and only if (i) it does not contain
the parts of its parts, and (ii) it is invariant with respect to the permutations of its parts. Finally, a

collection is a series if and only if (i) it does not contain the parts of its parts, (ii) it is not invariant with
respect to the permutations of its parts, and (iii) it has an ordering relation. Cp. Bolzano,WL I, }}82–
85; and the detailed critical reconstruction in Krickel 1995. Cp. also Simons 1997 & Simons (ms.);

Behboud 1997. While Husserl does not say so explicitly, these conceptual distinctions are at work in

PdA – in a very similar way as Bolzano intends them.
23Cp. Ortiz Hill 2002, 80.
24Cp. Casari 2000, 107.
25PoA 162; PdA 155.
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under the concept; by ‘content’ he means sometimes, traditionally, the set of

distinctive features of the concept, sometimes rather the intentional correlate of

the concept;26 and by ‘genesis’ he means the psychological constitution of the

concept. As Willard puts it, “to give the origin [genesis] of a concept . . . is to

describe the essential course of experiences through which one comes to posses the

concept.”27 The fact that each of us arrives at the same concept is warranted here, as

with Brentano, by the uniformity of the ways in which the abstract concept is

constituted.28 Thus, for each of the fundamental concepts of mathematics – multi-

plicity, cardinal number and unity – the logical-psychological analysis must deter-

mine the extension, the content and the genesis.

Now as regards the concept of set, Husserl’s argument can be summarized as

follows:

1. The concept of set is an elementary concept, so it cannot be defined. A definition

can only be given for complex concepts, and it consists in the decomposition of

the concept into its components.29

2. The extension of this concept must be considered as something given (ein
Gegebenes) – for when confronted with an aggregate of any objects we are

always able to decide whether it is a set or not30 –, and it is constituted by

properly presented, i.e. directly intuited, unordered concrete sets.31

26Cp. Casari 1991, 35–49. For a different account of Husserl’s characterization of the content of a

concept see Willard 1984, 27.
27Willard 1974, 106.
28For this interpretation see Casari 1997a, 553–552. By contrast, Tieszen 1990 finds the paradigm

for this procedure in Kant: “on the Kantian strategy human subjects are viewed as so constituted

that their fundamental cognitive processes are isomorphic” (152). Referring to this process in

Formale und Transzendental Logic Husserl says: “I acquired a determined view of the formal and

a first comprehension of its sense already in my Philosophy of Arithmetic. Though immature . . . it
was a first attempt to obtain clarity on the proper and original sense of the fundamental concepts of

set- and number-theory, by falling back on the spontaneous activities of collecting and counting in

which collections (“aggregates”, “sets”) and numbers are given. . . It can be recognized a priori
that each time the form of this spontaneous activities remains the same, correlatively, the form of
their constructions remains the same” (FTL 76, my emphasis).
29“Mathematicians have followed the principle of not regarding mathematical concepts as fully

legitimized until they are well distinguished by means of rigorous definitions. But this principle,

undoubtedly quite useful, has not infrequently and without justification been carried too far. In

over-zealousness for a presumed rigor, attempts were also made to define concepts that, because of
their elemental character, are neither capable of definition nor in need of it” (PoA 101; PdA 96

(my italics)). Simons (ms.) embraces Husserl’s position when he says: “It is impossible to define

the general notion of a collection in terms of anything conceptually more simple, so let us simply

give some examples.”
30“No one hesitates over whether or not we can speak of a multiplicity in the given case. This

proves that the relevant concept, in spite of the difficulties in its analysis, is a completely rigorous

one, and the range of its application precisely delimited. Therefore we can regard this extension as

a given. . . .” (PoA 16; PdA 15). Cp. Ortiz Hill 2002, 81.
31For the distinction between proper and improper (symbolic) presentations, see }8 of this chapter.
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3. The genesis of the concept of set is due to psychological abstraction, starting off
with an unordered set of concrete objects, that constitutes the “concrete basis

(die konkrete Grundlage) for the abstraction.”32

In the context of (3), “abstracting” is: leaving aside the peculiar features of the

elements and considering the resulting units as merely being distinct. The concept

of multiplicity is the result of this process of abstraction, where the idea is that a

single act of abstraction is applied simultaneously to all the members of the set and

not to each single element one by one.33

In his Beiträge zur Begründung der transfiniten Mengenlehre Georg Cantor

gives an account of cardinal number, which is wholly analogous to Husserl’s,

except for the fact that Cantor takes the cardinal number of a set to be the result

of an act of double abstraction both from the particular features, and from the order,

of the elements of a set, whereas Husserl, as we just said, “starts off with an

unordered set M and obtains the cardinal number of M as the result of a single
act of abstraction on its members.”34 In Section 1 of Beiträge Cantor writes:

We will call by the name “power” or “cardinal number” of M the general concept which, by

means of our active faculty of thought, arises from the aggregate M when we make

abstraction of the nature of its various elements m and of the order in which they are given.

We denote the result of this double act of abstraction, the cardinal number or power of M,

by . . .M. Since every single element m, if we abstract from its nature, becomes a “unit”, the

cardinal number M is a definite aggregate composed of units, and this number has existence

in our mind as an intellectual image or projection of the given aggregate.35

In }72 of his Was sind und was sollen die Zahlen? (1888) Richard Dedekind

gives a similar characterization of the numerical series:

If in the consideration of a simply infinite system N set in order by a transformation f
we entirely neglect the special character of the elements, simply retaining their distinguish-

ability and taking into account only the relations to one another in which they are placed by

the order setting transformationf, then are these elements called natural numbers or ordinal
numbers, and the base-element 1 is called the base-number of the number-series N.
With reference to this freeing the elements from every other content (abstraction) we are

justified in calling numbers a free creation of the human mind.36

As Kit Fine puts it, “ what these accounts have in common is a view of

abstraction as the process of freeing an object of its peculiar features and a

conception of number . . . as the product of such a process.”37

32PoA 16; PdA 15. Cp. Ortiz Hill 2002, 81.
33PoA 19; PdA 18. Cp. Fine 1998, 600 (where, however, the characterization of the number

concept through abstraction is discussed with reference to Cantor and Dedekind, and not to

Husserl).
34Fine 1998, 602. Cp. Ortiz Hill 1997b & 2004; Simons (ms.).
35Cantor 1895, quoted after Fine 1998, 599. Cp. Ortiz Hill 1994b, 96.
36Dedekind 1888, 17. Cp. Fine 1998, 600.
37Fine 1998, 600. Fine also shows how, once the specific ontology underlying these characteriza-

tions of the concept of number by abstraction has been determined, it is possible to obtain an
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In the case of the concept now under consideration, however, the passage from

the concrete multiplicities to the general concept presents some peculiar difficul-

ties, for once one abstracts from the nature of the elements the resulting units do

not yet appear to constitute a whole. So the question is: what can we identify as

invariant in all the possible cases of collection of elements in a whole? Generally

we distinguish two ways of making one thing out of many: making a sum out of

many parts and making a class out of many members.38 The core of Husserl’s

argument consists here in observing that a set is not the simple sum (Summe) of
its elements, but is constituted also by their connection within a whole (Ganzes).
Thus, for instance, a wood or the starry heaven are something different from the

trees or the stars taken together. It is the connection of the objects in the unity of

their collection – the relation of ‘collective connection (kollektive Verbindung)’ –
that turns certain contents into the members of a set and constitutes the essential

characteristic that is common to all possible sets as such. Hence it is this

connection that can be identified as the content of the concept of multiplicity.39

Not the single members of the set but the set itself as a whole (als Ganzes)
constitutes the object upon which the abstraction is performed.

It is misleading to say that the collections (Inbegriffe) consist merely of the particular

contents. However easy it is to overlook it, there still is present in them something more

than the particular contents: a ‘something more’ which can be noticed, and which is

necessarily present in all cases where we speak of a collection or a multiplicity. This is

the combination (Verbindung) of the particular elements into the whole.40

1.3 The Collective Connection (kollektive Verbindung)

Husserl extensively discusses the nature and the characteristics of the notion of

collective connection, a notion that, according to him, clearly plays a pivotal role,

not only in psychological reflections on the concept of multiplicity, but also, more

generally, in relation to our entire mental life: “Every complex phenomenon . . . ,
every higher mental and emotional activity, requires, in order to be able to arise at

all, collective combination of partial phenomena.”41 A similar opinion is shared by

Dedekind (among others) who writes: “If we scrutinize closely what is done in

counting an aggregate or number of things, we are led to consider the ability of the

mind to relate things to things, to let a thing correspond to a thing, or to represent a

thing by a thing, an ability without which no thinking is possible.”42

equally plausible conception – though this does not imply its correctness tout court – as the more

familiar one of Frege-Russell on the one hand and of von Neumann-Zermelo on the other. Cp. also

Ortiz Hill 1994b, 96 & 1997a, 67 & b, 141–143 & 2004, 109–114.
38I borrow here terminology from Lewis 1991, 3.
39PoA 18–22; PdA 17–21. Cp. Ortiz Hill 2002, 81–82.
40PoA 19; PdA 18.
41PoA 78; PdA 75.
42Dedekind 1888, III–IV.
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Husserl’s analysis proceeds in two phases.43 The first, contained in Chapter II,44

consists in the critical examination of a series of theories that propose characteriza-

tions of the notion of collective connection that differ from the theory he will

develop in the second phase of the analysis (Chapter III)45 and that consequently

give a different explanation of the origin of the concepts of ‘multiplicity’ and

‘number’. Schematically put, they treat the collective connection as: (i) the simul-

taneous presence of the contents of the aggregate in consciousness; (ii) the temporal

succession of the contents of the aggregate in consciousness; (iii) the intuitive form

of time; (iv) the intuitive form of space; (v) the relation of identity of every content

with itself; (vi) the relation of difference of every content from all others. The

positive result of Hussel’s critique of these theories is that the whole business of

making many into one46 is the result of a psychical act of a specific kind that picks

up certain contents and unites them collectively. Where there are many things, then

there is one thing47 when “a unitary interest – and, simultaneously with and in it (in
und mit ihm), a unitary noticing – distinctly picks out and encompasses various

contents”.48 In a set, apart from the single objects, we do not find anything except

the fact that we ‘think them together’. The collective connection, though treated as

a relation, is actually a psychical act. What justifies speaking of a relation also in

this case is the homogeneity of function that it shares with the primary relations: that

of connecting objects that are “unconnected” by themselves.49

1.4 The Concept of Cardinal Number (Anzahl)

Husserl also distinguishes with respect to the concept of cardinal number extension,

content and origin. The origin is essentially analogous to that of the concept of

multiplicity: the concept of cardinal number is an elementary concept. It is not

possible to define it because it is logically simple. It is generated by (psychological)

43Willard 1984, 30 ff. provides a detailed account of this notion, in particular tracing it back to

earlier sources like Lotze’s account of the psychological origins of representations of relations: “In

a chapter to which Husserl makes explicit reference Lotze presents his general view of how

relations come before consciousness in activities of ‘higher order’ . . . the activity of representing a
relation is called ‘higher’ by him in a sense that precisely coincides with what Husserl later meant

by the terms ‘founded’ and ‘higher order’ as applied to acts . . . of consciousness. It is . . . ‘higher in
that determinate sense in which the higher has the lower for its necessary presupposition’ . . .” (30).
The interest of this issue is mainly historical, so we shall not engage with it here.
44PoA 23–65; PdA 22–63.
45PoA 67–79; PdA 64–76.
46I borrow this terminology from Lewis 1981, 6.
47Terminology again from Lewis 1981, 6.
48PoA 77; PdA 74.
49“There is de facto so much in common between the primary relation and the psychical relation,

as to their essential Moment (Hauptmoment), that I fail to see why a common term would not be

justified here” (PoA 76, n. 11; PdA 73, n. 1).
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abstraction – a process that, so to speak, releases an object from its specific

features. Its termini a quo are the same concrete phenomena that generate the

concept of multiplicity and set, i.e. an unordered collection of arbitrary objects.

And as in the other case, the process consists in disregarding the particular features

of the connected members and in considering each of them only as a featureless

‘something’ or ‘one’, united with the others by way of the collective connection.50

However, it is important that each element is still different (verschieden) from all

the others and remains so after the abstraction.51 ‘Abstracting from the contents’

does not imply that they ‘disappear (verschwinden)’, – ‘abstracting from some-

thing’ is rather, according to Husserl’s unfortunate definition, “not paying any

special attention to it (darauf nicht besonders merken)”.52 Here Frege’s ironical

comments in his Review of the Philosophy of Arithmetic certainly have a point:

Inattention is an extremely effective logical faculty; whence, presumably, the absentmind-

edness of scholars. For example, suppose that in front of us there are sitting side by side a

black and a white cat. We stop attending to their colour: they become colourless, but are

still sitting side by side. We stop attending to their posture: they are no longer sitting

(without, however, having assumed a different posture), but each one is still at its place. We

stop attending to their location: they are without location, but still remain quite distinct. In

this way, perhaps we obtain from each one of them a general concept of a cat. By continued

application of this procedure, we obtain from each object a more and more bloodless

phantom. Finally we thus obtain from each object a Something wholly deprived of content;

but the Something obtained from one object is different from the something obtained from

another object – though it is not easy to see how.53

The final question marks one of the three main difficulties that Frege sees for a

naı̈ve characterization of the essence of number (naı̈ve because it is a theoretical use

of a commonsensical way of thinking).54 This critique can be found already in his

50Cp. Ortiz Hill 2004, 126.
51In On the Concept of Number Husserl characterizes the abstractive process that yields the

concepts of set and number the same way: “It is easy to characterize the abstraction which must

be exercised upon a concretely given Vielheit in order to attain the number concepts under which it

falls. One considers each of the particular objects merely insofar as it is a something or a one

herewith fixing the collective combination; and in this manner there is obtained the corresponding

general Vielheitsform, one and one . . . and one, with which a number is associated. In this process

there is total abstraction form the specific characteristics of the particular objects . . . To abstract

from something merely means to pay no special attention to it. Thus in our case at hand, no special

interest is directed upon the particularities of the content in the separated individuals” (Husserl

1887, 116–117). Quoted after Ortiz Hill 2002, 82.
52PoA 83; PdA 79. Cp. Ortiz Hill 1994b, 96–98.
53Frege 1894, 181. Frege has developed this criticism already 1884 in his Grundlagen, }}29–44,
and in his hilarious 1899 he directs it against a contribution to the Enzyclopädie der mathema-
tischen Wissenschaften by a Gymnasialprofessor in Hamburg. On Frege against psychological

abstraction see esp. Dummett 1991a, 49–50 & 1991b, Chapters 8, 12, and pp. 167–168 where

psychological abstraction is carefully distinguished from logical abstraction as used, for example,

in Frege’s contextual definition of the direction-operator. Cp. also Ortiz Hill 1994b, 96–98 & 2004,

114; Tieszen 1994, 318.
54Cp. Ortiz Hill 1992b, 98 & 1997, 66.
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Grundlagen (}}29–44) as an objection against the definition of numbers as sets of

units, and it is widely accepted in analytical circles as the main objection to all

theories that propose a definition of natural number by (psychological) abstrac-

tion.55 On Frege’s account, the units of which we speak can be neither the things

that are counted, otherwise there would be as many numbers two as there are groups

of two things; nor can they be the things after abstracting from their properties.

Indeed, (1), if we abstract from all the properties of the things, we have by the

Leibnizian principle of the identity of indiscernibles just one single unit and hence

no sets of units; and, (2), if we do not abstract from all the properties, but only from

those that distinguish the objects of a certain group, we will not arrive at a number –

or at a numerical concept – but simply at a general concept: e.g., starting from the

things a and b, we will not get to 2, but to the concept ‘thing that has the properties
common to a and b’.56

Coming back to Husserl, the abstract form ‘one and one and one . . .’, generated
by abstraction, constitutes, according to him, a specific type of structure. This is the

content (Inhalt) of the concept of set as well as of the concept of cardinal number,

only that in the latter case we find associated with that abstract form a numeral

(Zahlwort). The cardinal number is hence conceived, in a Bolzanian way, as a

property that characterizes a set of objects, i.e. as the measure for the width of a set.

It worth recalling here that Cantor wrote in a letter to Giuseppe Peano: “I conceive

of numbers as ‘forms’ or ‘species’ (general concepts) of sets.”57 Husserl’s

view must be that numbers are certain non-distributive properties of sets.58

“‘Non-distributive’ means that just because the multitude has the property, it does

not follow that its parts, or submultitudes, in particular its members, have it.”59

The extension of the concept of cardinal number is constituted by the numbers of

the series. Cardinal numbers answer to the question How many? They represent the
exact determination of the elements of a concrete set or of a set while abstracting

from its elements (set of units). The number series is founded on the possibility to

distinguish and classify all the possible sets of units, and to order them by the order

relation. Between the general concept of ‘cardinal number’ and the numbers of the

series there obtains a genus-species relation: the single numbers are the species
infimae of the genus ‘cardinal number’.

55Cf. Fine 1998, 604–605.
56In his Review Frege ironically concludes that, from what Husserl writes, to obtain the concept of

number, one must exercise abstraction only up to a certain point, i.e. the point at which the

members of the set no longer have any specific properties, but are nevertheless still distinct.

“Number-abstraction simply has the wonderful and very fruitful property of making things

absolutely the same as one another without altering them. Something like this is possible only in

the psychological wash-tub” (Frege 1894, 188). Cp. Ortiz Hill, 1994b, 97.
57Cantor 1991, 365.
58I borrow here terminology from Simons 2007, 233.
59Loc. cit.
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1.5 Chapters VI and VII of the Philosophy of Arithmetic

The reflections and discussions Husserl develops in Chapters VI and VII are, in

many respects, among the most interesting of the first part of the Philosophy of
Arithmetic. Chapter VI, “The Definition of Equinumerosity through the Concept
of Bijection,” opens with a discussion of the definition of the general concept of

equality (Gleichheit), proceeding then to focus on a critical examination of the

definition of equinumerosity (Gleichzahligkeit) through bijection, i.e. one-to-one

correspondence (gegenseitige Zuordnung), and on an analysis of the essence

(Wesen) of one-to-one correspondence as a relation. Chapter VII, “Numerical
Definitions Through Equivalence,” contains both a detailed critique of the defini-

tion of the concept of natural number by logical abstraction in Frege’s Grundlagen
der Arithmetik (1884) and a general critique of the practice of defining a concept by
defining its extension.60 The latter is in fact the true focal point of Husserl’s

complex argumentation: it occurs first in his rejection of theories that define the

concept of having the same number through one-to-one correspondence, and it

reappears in his criticism of the definition of the concept of natural number through

equality (i.e. equality as standing in the relation of one-to-one correspondence).

At the end of these two chapters, Husserl thinks he has adequately justified the

thesis that the concept of equivalence does not occur in any way in the constitution

or the definition of the concept of Anzahl.
Husserl’s critique of Frege in Chapter VI opens with a consideration that we

already know: “As soon as we come upon the ultimate, elementary concepts, all

defining comes to an end.”61 All that we can ask of the exposition (Darstellung) of
an elementary concept is that it enables us to reproduce in ourselves those psychical

processes that are necessary for the constitution of the concept.62 Since they are

elementary, neither the broad concept of equality nor the narrower concept of

equality of two sets with respect to their number (i.e. equinumerosity) can be

defined.

Frege placed the Leibnizian definition63 of equality as substitutivity salva veritate
(“eadem sunt quorum unum potest substitui alteri salva veritate”), which was

also used by Grassmann,64 at the foundation of his definition of the concept of

number.

60Cp. Ortiz Hill 2002, 95–96 & Tieszen 1994, 320.
61PoA 125; PdA 119. Cp. Tieszen 1990, 152 & 1994, 320.
62Cf. PoA 125; PdA 119.
63Definitio prima, in Leibniz 1687.
64Grassmann 1844 represents an important moment in the history of the development of mathe-

matics from a theory of magnitudes to a theory of forms. The substitution of the concept of

magnitude with that of form in the definition of mathematics is not, however, to be considered an

anticipation of the modern conception of mathematics as theory of structures, but, rather, in the

sense of a conception of the objects of mathematics as forms of thought, objects of thought. On

Grassmann also cp. Webb 1980, 44 ff. On Grassmann’s influence on Husserl see e.g. Hartimo

2007, 292 ff.
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This attempt at a definition has an odd feature which neither Frege nor Husserl

comments upon. Take “Hesperus is Phosphorus”. If the substitution is to take place

in a sentence, what is exchanged can hardly be a planet: a sentence does not contain

any heavenly bodies, and then, what could it possibly mean to replace a planet by

itself? Leibniz’s “unum” and “aliud” make sense, however, as soon as we take him

to mean (but unfortunately failing to say) that the singular terms that flank the

identity operator can be exchanged salva veritate. But alas, though this makes sense

it is not true, and Leibniz himself came to recognize this.65

According to Husserl, Leibniz’s attempt at a definition is misguided in any case,

and furthermore it fails for the following reasons. First, it defines identity instead of

equality: “So long as there is a remainder of difference, there will be judgments in

which the things under consideration cannot be substituted salva veritate.”66

Secondly, the fact that two contents can be substituted salva veritate is not the

reason of their equality: on the contrary, their equality is the reason of their

substitutivity salva veritate.67 And thirdly it does not provide us with a criterion
for recognizing the equality: in fact, proving the substitutivity salva veritate of two
contents a and b leads back to the evaluation of an infinite number of equalities –

the equality of the truth value of A(a) with that of A(b), for all possible judgments

A – and so on ad infinitum.
Now Husserl’s analysis moves to a specific notion of equality, the equality of two

multiplicities with respect to their number, or equinumerosity. To find some firm

ground to approach the question, Husserl takes as reference point the following

definition by Stolz: “Two multiplicities are said to be equal [or, more correctly:

equally many, equinumerous] to each other if each thing of the first can be

correlated with one thing of the second, and none of these remain unconnected.”68

There is more than one reason why Husserl thinks this definition is not a “good”

definition of equinumerosity. First of all, it is circular: the concept of (numerical)

equality is defined by implicitly invoking the concepts ‘more’ and ‘less’, which

presuppose it.69 Furthermore, it cannot be considered even a nominal definition of

the concept of equinumerosity, as definiens and definiendum (‘being two equal

65Leibniz’s and Frege’s reasons for restricting the substitutivity claim are explained and discussed

in Künne 2009, Ch. 1, }5. Here one also finds additional reasons that Leibniz and Frege did not yet
take into account.
66PoA 102; PdA 97.
67Cp. Ortiz Hill 1994a, 5–11.
68PoA 103; PdA 98. Otto Stolz (1842–1905) was an influential Austrian mathematician (professor

at the University of Innsbruck since 1872 until his death), with major interests in algebraic

geometry and analysis. Husserl’s quotation is taken from Stolz 1885. Incidentally, Stolz is the

first mathematician who wrote a paper on Bolzano: see Stolz 1881.
69“We can see that the presentation of ‘more’ and ‘less’ is already included in the definition of

equality, while these themselves . . . cannot be conceived without presentations of equality. When

we say that the bijection must not leave any element unconnected, then this is just a different way

of saying that on neither side there can be an element more or less. Thus the circularity is obvious”

(PoA 103–104; PdA 98–99).
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multiplicities’ and ‘being two multiplicities in one-to-one correspondence’) are not

conceptually equivalent.70

To assess the equality of two sets we must first know in what respect the two sets

are to be compared, because the same objects can be judged to be equal or unequal

depending on the characteristics on which we focus our interest at a given

moment.71 If the interest is directed at the number of elements contained in each

set, then there are two possible ways of proceeding in the comparison. The first
consists in trying to put the elements of the two sets into one-to-one correspon-

dence, and in verifying that no element remains unconnected. The second consists

simply in counting the elements of the two sets and verifying in this way whether or

not they have the same number.

The first method can be used when we just want to assess the mere equinumero-

sity, without wanting to know the precise number of elements of each set; whereas

the second method is used when we actually want to know the cardinal number by

counting the elements of the two sets in the symbolic sense. The evident advantages
of the second method, that make it preferable to the first, are essentially the

following three: (i) it is a completely mechanical process, which can be executed

without thinking about the concepts involved; (ii) it is efficient and secure; and (iii)

it enables us not only to compare the two sets, but also to obtain the cardinal number

associated with each of them.72

This should serve to clarify once and for all the sense and role that Husserl assigns

to one-to-one correspondence, and the intrinsic limitation that he finds in the defini-

tion of ‘equinumerosity’ under consideration: relative to sets with a finite number of

elements, one-to-one correspondence ‘warrants (verbürgt)’ equinumerosity, but it is

not what determines equinumerosity. “The possibility of bijection between two sets

is not [the reason of] their equinumerosity, but only warrants it.”73

So the reason why two sets have the same cardinality is not the fact that they can
be put into one-to-one correspondence; on the contrary, the correspondence is

possible only if the two sets have the same cardinality. Trying to put them into

one-to-one correspondence clearly is an operation that is always meaningful and

that can have some practical value, especially when the number of the elements is

high (but still finite). “It may well happen that, in order to verify in concreto the

equality of two sets with respect to their multiplicities [sc.: with respect to the

number of their elements], we place pairs of elements alongside one another or

70Cp. Tieszen 1990, 153.
71“If there is equality in the (internal or external) characteristics that at that moment constitute the

focal point (Mittelpunkt) of our interest” (PoA 105; PdA 100).
72“What is simpler than comparing the two multiplicities with respect to their number by counting

them both in the symbolic sense? Hence, we obtain not only the assurance of the equality (or

inequality) of the numbers, but also these numbers themselves. That the mechanical process of

counting, already for sets with a relatively low number, proceeds in an incomparably faster and

more certain way than that apparently simple process of bijection, surely does not need a

demonstration” (PoA 109–110; PdA 104–105).
73PoA 110; PdA 105.
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connect them in some other way; but neither can we consider this operation
necessary everywhere, nor, where this happens, the essence of the act of compari-
son resides only in this.”74

In other words: ‘to have the same cardinality’ and ‘to be in one-to-one corre-

spondence’ are not concepts with the same content, but only concepts with the same
extension. The definition above, then, cannot be a nominal definition of the concept

‘equality of two multiplicities with respect to their number’. If giving a definition

means univocally fixing a concept, then Husserl’s objection – put forward again in

his critique of the “theory of equivalence” – is that a concept cannot be defined by
defining its extension. The definition only formulates a logically necessary and
sufficient criterion (Kriterium) for establishing the existence of equinumerosity.75

As regards the essence of the one-to-one correspondence as a relation, Husserl

takes it to be a special case of the relation of collective connection (kollektive
Verbindung), limited to pairs of elements. Frege thinks that two sets can be put in

bijection by any relation f (taking ‘a has relation f to b’ and ‘a is in bijection with
b’ to be conceptually equivalent). For Husserl, on the contrary, it is possible to use

any relation f to obtain the correspondence (like ‘put the elements side by side’,

‘order the elements in pairs’, etc.) exactly because the pairs of elements are

previously collectively connected in our thought. It is the collective connection

that makes the correspondence possible, while to any primary relation can be

attributed the practical value that it makes easy to see the equinumerosity of the

two sets. Hence, it is not the relation f that establishes the correspondence, but

the collective connection, i.e. the act of thinking together, in ordered pairs, all the

elements of the sets that we want to compare.

From Husserl’s reflections up to now clearly emerges that all the discussions are

aimed at the characterization of the field of finite cardinal numbers (even if Husserl

never explicitly says so). In his Philosophy of Arithmetic, Husserl says that through
symbolic calculation we can count, at least in principle, any finite set and find its

corresponding cardinal number, no matter how big. However, in his study “Zur
Lehre vom Inbegriff”76 he declares that in the first part of his book he was thinking

only of proper numerical presentations. For these it is not necessary to put all their

elements into one-to-one correspondence if one wants to assess the equinumerosity

of two sets. He also admits that, as far as symbolical numerical presentations are

concerned, there is no unitary a priori principle to establish whether it is also

possible to classify infinite sets according to ‘more’ and ‘less’, and that to obtain

such a classification, bijection is a necessary condition.77 Again, in the same study,

he recognizes the error of beginning the systematical treatment of arithmetic with

74PoA 104; PdA 99.
75“Although it is not necessary to make the comparison through bijection, we are able to do it in all
cases. . . In this consists, accordingly, the only meaningful and useful application of the ‘defini-

tion’” (PoA 110; PdA 105; my italics).
76According to the editor of PdA this study is from 1891. However, as we will show later, this

dating is clearly mistaken.
77PoA 359–383; PdA, App. 385–407.
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the series of natural numbers: in this way, indeed, we tacitly presuppose finiteness

without defining this concept and without using it systematically:

Tacitly, use is made of a fundamental presupposition, that one would limit oneself to finite
numbers alone, construct an arithmetic only for them, and then also only for them all the

basic principles (Grundsätze), that are to be established, hold true. A rigorous system of

arithmetic must therefore begin with the precise distinction of numbers into finite and

infinite, and then on the basis of this distinction, provide proof of the complete classification

of the field of finite numbers by means of the series of natural numbers78

Moreover, he emphasizes that it is exactly this important distinction between

finite and infinite cardinals that is neglected in the first volume of the Philosophy of
Arithmetic.

As we already anticipated, Chapter VII is dedicated to the critique of the

definition of the concept of natural number (Anzahl) through the concept of one-

to-one correspondence. Instead of taking in consideration one by one the various

theories that take this route79 (including Frege’s, which is discussed in a separate

section),80 Husserl deems it more useful to introduce and then discuss a sketch of a

theory, the “theory of equivalence,” that, according to him, is capable of encom-

passing and synthesizing all the essential aspects of the issue. It can be presented

schematically (with a minimum of formalism) as follows:

1. Given two sets A and B, we say that:

– A and B are equivalent (Husserl prefers this instead of ‘equinumerous’) when

there is a one-to-one correspondence f between A and B:

8xðx 2 A ! 9yðy 2 B ^ fxyÞÞ
8xðx 2 B ! 9yðy 2 A ^ fyxÞÞ
8xyzðfxy ^ fxz ! y ¼ zÞ
8xyzðfxz ^ fyz ! x ¼ yÞ

– A is less than B when A is equivalent to a proper part of B.

– A is more than B when B is equivalent to a proper part of A.81

The definitions of the relations of ‘equivalence (Gleichviel)’, ‘more (Mehr)’ and
‘less (Weniger)’ are wholly independent from the concept of cardinal number, so

that, in order to decide whether or not they obtain with respect to two given sets, not

78PoA 374; PdA, App. 399.
79Among which Husserl explicitly mentions Stolz 1885.
80Cp. Tieszen 1994, 319.
81Here we still have the assumption that A and B would be finite sets. Moreover, Husserl’s tacit

assumption is that all sets under consideration contain at least two distinct elements. On this latter

point see Appendix 3.
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only is it not necessary to count the elements of the two sets, but it is not even

necessary to know what counting is.

2. To each concrete set M we can associate the class K of all the sets N, “given or

thinkable (gegebene oder denkbare)”, that are equivalent to M, which we call

“the class of M (die zu M gehörige Mengenklasse)”.
3. The system of classes is a partition of all the sets:

– No set can belong to different classes

– Every set falls in one (and, for (a), only one) class

Consequently, every class is univocally determined by each of its members;

each set of each class K can serve as a foundation (Fundament) for the construction
of K and as a representative (Repräsentant) of K. From a single concrete set,

Husserl says, we generate the entire corresponding equivalence class by indefinitely

varying the kind of elements of the set.

Up to this point, the “theory of equivalence” looks like an analogue of what

today we call ‘making the quotient of a collection modulo a certain equivalence

relation’. The system of what Husserl calls ‘classes’ is the quotient of the collection

of all the sets (tacitly presupposed: finite sets) modulo that specific reflexive,

symmetrical and transitive relation (equivalence relation) that is the relation of

equinumerosity.

4. On the system of classes we can furthermore impose an ordering principle:
given a class K and a set M such that M 2 K, we consider a set M0 obtained by

eliminating from M any single one of its elements, and then we construct the

equivalence class K0 of M0, which is the preceding class (nächstniedrigere)
of K.82 Analogously we can construct the succeeding class (nächsthöhere) of
K, adding to the initial set M 2 K a new element and moving on to the

equivalence class of the set we obtain. Naturally – even though Husserl does

not explicitly say it – this “ordering principle” is only meaningful for finite sets:

only with the added hypothesis that the sets under consideration are finite, can

we produce a univocal ordering of all the classes in a series.

5. At this point we can proceed to the definition of the concept of number. Each

class encompasses the totality of thinkable sets with a certain number of

elements. Each set M of a given class K hence has the same cardinal number.

All sets M belonging to a certain class K must have a certain shared quality

(Beschaffenheit) that distinguishes them from the members of all other classes.

This shared quality is precisely the fact that they all belong to the same class, i.e.

that they are all pairwise in a relation of equivalence. Husserl says, then, that we

need a suitable notation to express this shared quality in such a way as to “reflect

(widerspiegeln)” the system of classes in its natural ordering. Because a class

can be represented by any member, we choose as representatives of the classes,

82Obviously, there is here the tacit assumption that some (equivalently: every) set M in K has at

least three elements.

18 1 Philosophy of Arithmetic



sets of bars (Striche): 11, 111, 1111. . .; or rather, to avoid any confusion with the
notation of numbers in the decimal system, sets of bars combined with the ‘þ’

sign: 1 þ 1, 1 þ 1 þ 1, 1 þ 1 þ 1 þ 1 . . .83 Then we identify these sets of bars

with the natural numbers. “These sets of bars are the natural numbers, because as

representatives of the classes they are also representatives of the number con-

cepts.”84 Counting a concrete set M means to put it in one-to-one correspon-

dence with a set of bars, so that we can subsume it under the class that it belongs

to. “The numbers constitute an ordered series, corresponding to the series of the

classes.”85

It is important to observe that, in the “theory of equivalence,” the numbers are

not identified tout court – à la Frege – with equivalence classes, but with canonical
representatives of the classes, i.e. with certain specific sets.

Husserl’s critique of the “theory of equivalence” consists essentially in arguing

that it is based on a wrong interpretation of the concept of one-to-one correspon-

dence, which is nothing but a simple criterion to establish equinumerosity. The

discussion developed in Chapter VI disputed that equality among sets would be the

sufficient reason for the fact that two sets have the same number of elements,

because “what equivalent sets have in common is not merely the ‘equinumerosity’

or, more clearly, equivalence, but rather the same cardinal number in the true and

proper sense of the word.”86 This argument is now used to criticize the definition of

the concept of number which is at the base of the “theory of equivalence.”

The theory defines two sets as having the same cardinality if and only if they are

equivalent, and considers this as a nominal definition. However, ‘to have the same

cardinality’ and ‘to be equivalent’ are concepts with the same extension, but not

with the same content. To take them as being the same concept leads to considering

equality as source of the concept of number and to conclude that all sets M

belonging to a given class K have nothing in common except equinumerosity.

Consequently, according to this theory, belonging to a class becomes essential for

the concept of number, while establishing the number of elements of a certain set M

means inserting this set in a certain class of equivalent sets.

83On the fact that Husserl starts counting from the number 2, see below. Furthermore, note the

similarities with Schröder’s idea that the number represents (not means) the counted objects: “To

obtain a sign, capable of expressing how many of those unities are present, we direct our attention

step by step to each of the units under consideration, and we represent them with a small bar

(Strich): 1 (i.e. with a numeral 1, a one). Then we put them in line, and to avoid conflating them

into a number 111, they are connected with the þ sign. Hence we obtain a number of the type:

1 þ 1 þ 1 þ 1 þ 1” (Schröder 1873). Cp. the following passage from the Philosophy of Arith-
metic: “We take the sets 11, 111, 1111, . . . , obtained by repeating the bar (Strich) ‘1’ or the sound
complex ‘one’, or (to avoid any confusion with certain composite signs of the decimal number

system) the sets 1 þ 1, 1 þ 1 þ 1, 1 þ 1 þ 1 þ 1, . . . , as representatives of the classes and

name them according to the series 2, 3, 4 . . .” (PoA 110; PdA 105).
84PoA 119; PdA 113.
85Loc. cit.
86PoA 122; PdA 116.
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The core of Husserl’s argument is that a numerical assertion does not at all

express a certain relation of equivalence between a certain set and all possible

equivalent sets.

If cardinal numbers are defined as those relational concepts founded on equivalence, then

surely every numerical assertion (Zahlaussage), instead of being directed upon the con-

cretely given set as such, would always be directed upon its relations to other sets. To

ascribe a determinate number to this set would mean to classify it within a determinate

group of equivalent sets, but this is absolutely not the sense of a numerical assertion. Let us

consider a specific example. Do we call a set of nuts lying before us ‘four’ because it

belongs to a certain infinite class of sets that can be mutually put in bijection? Surely no one

has ever thought of such a thing in this context, and we would be hard put to find any

practical occasion whatever that would make it of interest. What does in truth interest us is

the fact that here is a nut and a nut and a nut and a nut. We immediately adapt his unsuitable

and cumbersome presentation . . . to a form that is more convenient for thought and speech,

by considering it by way of the general form of sets ‘one and one and one and one’, which

has the name ‘four’.87

In the same way, natural numbers cannot be represented by sets of bars simply

because of the equality of their representatives with a class of equinumerous sets, but

because we abstract from the specific nature of the members of each set, regarding

them merely as indeterminate ‘somethings (Etwas)’ and designating them with the

sign “1” or with a bar. “We certainly do not ascribe the number four to a set of nuts . . .
just because this set can be “mapped” (abgebildet) to ‘1111’, and each individual nut
to ‘1’! . . . Therefore, for each content, the bar ‘1’ can only designate that it is a

‘something’, and, accordingly, cardinal number is ‘something and something . . .
etc.’.”88 The concept of set and the concept of cardinal number – this is Husserl’s

position – are obtained by abstraction from a randomly chosen unordered concrete

set, disregarding the specific nature of its elements. The reason we form such concepts
is their practical usefulness for rational thought and language.

In an interesting note, Husserl briefly mentions Cantor’s ideas about the issue at

hand. He observes that only in an initial phase of his reflections Cantor was

apparently moving in the direction of the “theory of equivalence” – as is testified

by the following passage from the Grundlagen einer Allgemeinen Mannigfaltig-
keitslehre (25): “To each well-defined set . . . belongs a determinate power [Mäch-
tigkeit, Cantor here uses ‘power’ for ‘cardinality’], the same power being ascribed

to two sets if they can be reciprocally put in bijection element by element”. But in

all his later publications Cantor takes a completely different position.89

In fact, already in a letter to Lasswitz (from 15 February 1884, published in the

Mitteilungen zur Lehre vom Transfiniten in 26), Cantor radically changes the

definition we quoted above, giving a definition of cardinality or power of a set

that is very close to the Husserlian definition in the Philosophy of Arithmetic:

87PoA 122; PdA 116. Cp. Tieszen 1990, 156–157.
88PoA 123; PdA 117.
89“Nevertheless, this mathematical genius in no way belongs to the tendency the criticized above,

as is apparent from all his later publications.” PoA 121, note 3; PdA 115, note 2.
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By power or cardinal number of a set M, we mean the universal or general concept that we

obtain when we abstract from the quality of the elements of a set as well as from the

relations that exist among them or with other objects and hence also, specifically, from

the order that might exist among the elements, and we reflect only on what is common to all

the sets that are equivalent to M.90

The similarity of Cantor’s and Husserl’s position emerges, even more clearly,

from another passage of the Mitteilungen that Husserl quotes in the above men-

tioned note: “For the formation of the general concept ‘five’ there is required only

one set [. . .] to which that cardinal number belongs.” This method of defining the

concept of set by abstracting from the nature of the elements (and in Cantor

explicitly also from their order), and the refusal to use one-to-one correspondence

to define equinumerosity are common to the two authors.91

1.6 Husserl and Frege’s Theory

Husserl appends two notes to his general critique of the “theory of Equivalence” that

discuss Frege’s and Kerry’s attempts to define the concept of natural number.92 We

will only discuss the former here and we will mention, schematically, the main points

of divergence between Husserl and Frege regarding their conception of arithmetic.

First of all, we have to point out that the Fregean definition of the concept of

natural number does not wholly fall under the theoretical model described by the

“theory of equivalence.” In this theory a number is the shared feature of all the sets

belonging to a determinate equivalence class K, but it ends up being identified with

a canonical representative of the class. For Frege, however, numbers are the

equivalence classes themselves.93

Husserl repeatedly stresses how deeply Frege’s conception of arithmetic and the

goals of his research diverge from his own: Frege wants to found arithmetic on

logic, by formally defining arithmetical concepts and formally deriving arithmetical

truths in pure logic, and to exclude any “intrusion” of psychology into arithmetic.94

90Cantor 1887–1888. As Ortiz Hill 1994a states, “enough kinship is apparent between Husserl’s

and Cantor’s work to have prompted scholars to speak of the influence Husserl may have had on

Cantor’s work”. Indeed such an influence has been suspected e.g. by Cavaillès 1962 and Casari

1991. We do not agree, for Cantor’s letter to Lasswitz dates from 1884, whereas Husserl’s first

explicit definition of sets and cardinal numbers by Cantorian abstraction dates from 1887. One

should rather assume an influence in the opposite direction.
91Cp. Ortiz Hill 1994b, 103 & 1997b, 143 & 2004, 112–114.
92On Kerry cp. Picardi 1994.
93Extensionally speaking. Actually, for Frege, numbers are extensions of second-level concepts,

i.e. if F is a concept, the number of F is the extension of the concept ‘concept equinumerous to F.’
94“A foundation of arithmetic on a series of formal definitions out of which all the theorems of that

science could be deduced purely syllogistically is Frege’s ideal” (PoA 124; PdA 118). Cp. Ortiz

Hill 1994b, 101–104; Tieszen 1994, 318.
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For Husserl as well as for Frege, the natural numbers are those numbers that

answer the question “How many?” However, for Frege numbers are not (i) proper-

ties of spatio-temporal objects, (ii) mental representations, or (iii) sets of units. In

particular, point (ii) implicitly represents a sharp critique to the kind of psycholo-

gism that, according to Frege, underlies all of Husserl’s arguments in the Philosophy
of Arithmetic. If natural numbers were mental representations – Frege says – there

would be as many numbers 2 as there are minds that think “2.” Furthermore,

numbers would be psychophysical facts and hence, together with their properties,

subject to natural evolution and change. Finally, the existence of those numbers

that exceed our subjective presentational capacities would be in doubt, and hence

also the existence of infinite numbers.95 For Frege, psychology must be completely

excluded from arithmetic: in particular, (i) numbers are not subjective entities, they

are objective, i.e. ‘not subjective’ par excellence, independent from our sensation,

intuition, presentation, imagination and mental pictures. Moreover, (ii) descriptions

of internal processes that precede the formulation of numerical judgments do not

have any relevance to arithmetic.

Husserl rightly says that in the Grundlagen, Frege laments the presence of

psychological argumentations in mathematical treatises: “when we feel the need

to give a definition without being able to, we want at least to describe how to reach

the object or concept under consideration.”96 We have seen how, in the Philosophy
of Arithmetic, the introduction of fundamental concepts of set theory and the theory

of cardinal numbers, in addition to the characterization of the very nature of

95Frege, Grundlagen der Arithmetik, }27. By way of an example, in the first volume of the

Grundgesetze der Arithmetik (1893), criticizing the fact that Dedekind’s notion of ‘system’

seems to admit a psychological foundation, even though Dedekind was not interested to give

such a foundation, Frege writes: “This holds especially of what mathematicians like to call a ‘set.’

Dedekind [Was sind und was sollen die Zahlen] uses the word ‘system’ with much the same

intention. But despite the explanation that appeared in my Foundations four years earlier, he lacks
any clear insight into the heart of the matter, though he sometimes comes close to it, as when he

says (p. 2): ‘Such a system S . . . is completely determined if, for every thing, it is determined

whether it is an element of S or not. The system S is therefore the same (dasselbe) as the system T,

in symbols S ¼ T, if every element of S is also an element of T, and every element of T is also an

element of S.’ In other passages, however, he goes astray, e.g., in the following (1–2): ‘it very often

happens that different things a, b, c . . . regarded for some reason from a common point of view, are

put together (zusammengestellt) in the mind, and it is then said that they form a system S.’ A hint of

the truth is indeed contained in talk of the ‘common point of view’; but ‘regarding’, ‘putting

together in the mind’ is no objective characteristic. I ask: in whose mind? If they are put together in

one mind, but not in another, do they then form a system? What may be put together in my mind

must certainly be in my mind. Do things outside me, then, not form systems? Is the system a

subjective construction in the individual mind? Is the constellation Orion therefore a system? And

what are its elements? The stars, the molecules or the atoms?” (Frege 1893, 1–4, transl. Beaney

1997, 208–211).
96Op. cit., 218.
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number, happens precisely by describing the psychological process through which

we reach these concepts.97

Let us now turn to the Fregean definition of the concept of natural number.

Husserl’s critique proceeds from a detailed exposition of the content of }}63–6998

of the Foundations of Arithmetic, in which Frege gives a clear exposition of the

famous method of definition by logical abstraction, on which he bases his definition
of the concept of natural number.

“The relationship of equality – Frege says – does not hold only amongst

numbers. . . We intend . . . , by means of the concept of equality, taken as already

known, to obtain that which is to be regarded as being equal.”99 The Fregean

method, in its generality, can be summarized as follows. Let C be a concept, for

which it makes sense to speak of the objects ‘the C of x’, ‘the C of y’, etc., where

x, y, . . . are elements of an appropriate domain D – think e.g., of concepts like

‘extension’ (of a concept), ‘course of values’ (of a function), ‘direction’ (of a line)

or just ‘number’ (of a concept). Suppose an explicit definition of C is not easily

available, but that there exists a binary relation R (on the domain D) that does not

presuppose C, and satisfies, for all x and y in D:

R(x, y) iff x has the same C as y.

By the latter condition, R is an equivalence relation. Frege would then define:

– The C of x¼df the extension of the concept ‘thing (in D) which stands in R to x’

– C ¼df being the C of x for some x in D

Frege exemplifies this method by applying it to the definition of the concept

‘direction of a line’:100 on the base of the consideration that, if the line a is parallel

to the line b, then the extension of the concept ‘line parallel to line a’ is equal to the
extension of the concept ‘line parallel to line b’, he defines the ‘direction of a line a’
as the extension of the concept ‘parallel to the line a’. He goes on to define the

concept of ‘number’ by analogously substituting concepts for lines and one-to-one

correspondence – making objects that fall under one concept and those that fall

under the other correspond one-to-one – for parallelism: “the concept F is equinu-

merous to the concept G whenever there is . . . the possibility to put the objects that
fall under G and those that fall under F in bijection. . . Consequently I define: the

number that belongs to the concept F is the extension of the concept ‘equinumerous

to the concept F’. ” Next, ‘number’ is defined as the concept to which an object

97“Surely no extensive discussion is necessary to show why I cannot share this view, especially

since all the investigations which we have carried out up to this point present nothing but

arguments in refutation of it” (PoA 124; PdA 119).
98Cp. Simons 2007, 229 ff.
99Frege 1884, }63; Beaney 1997, 110.
100Besides ‘triangular form.’
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belongs iff it is the number of F for some concept F. Finally, by using his (in)famous

postulate V, Frege is able to prove “Hume’s principle”:101

The number of F’s ¼ the number of G’s iff F and G are equinumerous. 102

Husserl’s critique of Frege’s definition is the same that he already used to

criticize the definition of equinumerosity through one-to-one correspondence as

well as the theory of equivalence: this method does not define the contents of the

concepts ‘direction’, ‘form’, ‘cardinal number’, but only their extensions. “We

note, however, that all the definitions become correct statements if the concepts

to be defined are replaced by their extensions. Correct, but certainly entirely

obvious and worthless statements as well.”103

In an annotation, Husserl adds that “Frege himself seems to have sensed the

questionable status of this definition, since he says in a note to it: ‘I think that we

could simply say ‘concept’ instead of ‘extension of the concept’.”104 However, he

does not tell us that in the same note Frege “foresees” the objection that Husserl will

move against him with so much vehemence and for so many pages, and Frege

claims to be able to refute it, but does not do so because it would lead him “too far.”

“However, one could object . . . that concepts can have the same extension without

coinciding. Actually, I am of the opinion that . . . this objection can be removed; but

that would lead too far here.”105

In Chapter IX of the Philosophy of Arithmetic, “The Meaning of Numerical
Assertions,” Husserl comes back to the Fregean theory of number, this time with the

goal of criticizing its characterization of numerical assertions as “predications

about a concept.”

For Frege, numbers are objects while numerical properties are predicated of
concepts: all statements that express the attribution of a number can be reduced to

the form ‘the number of Fs is n’ (e.g., the statement ‘Jupiter has four moons’ can be

reduced to the form ‘the number of moons of Jupiter is 4’ or – as Frege puts it – “to

the concept ‘moon of Jupiter’ belongs the number four”).106 It follows that, in order

to make a numerical assertion (Anzahlaussage) it is not necessary to unite certain

101Cp. Simons 2007: “As an inspection of Hume shows, it is not close to any principle actually

formulated by Hume, and the name follows a somewhat misleading historical footnote to Hume’s

Treatise in Grundlagen }63. In fact the principle . . . is clearly stated by Cantor in 1895” (246).
102Neo-Fregeans like Hale & Wright 2001 try to exorcize the spectre of Russell’s paradox by

adjoining Hume’s principle to second-order logic and showing that the result is a consistent system

in which all the fundamental laws of arithmetic are derivable as theorems.
103PoA 128; PdA 122. Cp. Tieszen 1990, 154; Ortiz Hill 1994a, 5 & b, 100.
104PoA 128, n. 14; PdA 122, n. 1. Cp. Ortiz Hill 2002, 96.
105Op. cit., 306. Perhaps it is useful to remember that in }2 of Concept and Object, while answering
a series of objections by Benno Kerry, Frege writes – among other things – that Kerry, falsely,

thinks that in the Grundlagen the concepts ‘concept’ and ‘extension of a concept’ had been

identified, and that interpreting them thus would be to misunderstand the content of his book.

He then explicitly states: “I merely expressed my view that, in the expression ‘the [natural] number

that belongs to the concept F is the extension of the concept equinumerous to the concept F’, the
words ‘extension of the concept’ could be replaced by ‘concept’.” (Frege 1892, 199; transl. Beaney

187). Cp. Tieszen 1990, 154.
106Frege 1884, }56.
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objects in a collection, but there has to be a concept that unites them. To the same

group of objects can hence belong different numbers, depending on the concept

under which they are thought (one of Frege’s examples, also reported by Husserl,107

is: ‘here are four companies’ / ‘here are 500 men’).

For Husserl, on the other hand, a numerical assertion always concerns a set of

discrete objects.108 What Frege calls “thinking the same objects under different

concepts” for Husserl coincides with the notion of “direction of our interest”: the

objects alone are not sufficient to constitute a set; it is a change of interest that

unifies certain objects rather than others. “With a change of interest is connected a

change of concepts under which we distribute the objects into groups and count

them.”109 By Frege’s lights, subsuming objects under a concept is a precondition of

counting, whereas Husserl maintains that the explicit subsumption of the objects to

be counted under a certain concept does not represent a necessary condition for

counting. For him numerical properties are predicated of sets. According to

Husserl this is confirmed by linguistic usage: numerical attributes do not have a

plural (‘four men’, ‘five trees’), which suggests that it is a collection (taken as a
whole and not distributively) that constitutes the subject of a numerical assertion.

While for Frege numerical assertions say something about a concept, for Husserl

they rather say something about the extension of a concept:

On a more exact examination of the issue, it is clear that a number only has a relation to a

concept in so far as it counts [the objects of] its extension. . . Not to the concept . . . does the
number belong, but rather to its extension.110

1.7 Three Further Issues: Unity, Zero and One, Numbers and

Numerical Signs

Chapter 8 of the Philosophy of Arithmetic (“Discussions Concerning Unity and

Multiplicity”) and the Appendix (“The Nominalistic Attempts by Helmholtz and

Kronecker”) address three additional issues that require treatment here:

1. The difference between the concept of ‘unity’ and the numerical concept ‘one’

2. The difference between the nature of zero and one and that of the other natural

numbers

3. The impossibility to interpret numbers as mere signs and the founding and

constitutive nature of the conceptual moment for arithmetic

Concerning the first point, Husserl presents arguments for the thesis that the

numerical concept ‘one’, i.e. the meaning of the numeral ‘1’, and the concept of

107PoA 171; PdA 163.
108“The number is univocally determined when the collection upon which we exercise that

abstraction process is determined” (PoA 172; PdA 163).
109PoA 172; PdA 164.
110PoA 177; PdA 168.
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‘unit’ – as it is to be found in the traditional (Euclidean) definition “a number is a

multiplicity of units” – do not coincide. The term ‘unity’ is used to designate things

while abstracting from their properties. It has the same logical meaning as the term

‘something (Etwas)’, and this meaning is not to be identified with the numerical

concept ‘one’.111 Numerical concepts are rather, in Cantor’s words, “the intellec-

tual image” or “projection” of a certain given set; the product of an act of

abstraction which has some kind of existence in our mind.

Husserl maintains that this identification often occurs, and leads to the definition

of cardinal numbers (Anzahlen) as a sets of ones in the sense of numerical concepts.

This error is caused by a more general equivocation which occurs in the case of

general and abstract terms, which is due to incorrect linguistic usage.112 According
to Husserl, every abstract term is normally used with a double meaning: (i) as name

of the abstract concept, (ii) as general name. Given the Philosophy of Arithmetic’s
specific way of conceiving the relation of common names (general terms) to the

objects that constitute their extension (i.e. each term has a meaning – which comes

close to a Fregean sense, in virtue of which it applies to the objects of its extension,

one at a time),113 a general term is normally used to designate concrete things and

processes. For example, the word ‘red’ is used to denote the property of being red as

well as red objects. An analogous phenomenon occurs with the names ‘one’ and

‘unity’. Husserl’s general contention is rather doubtful. As a matter of fact only

very few terms in our language do double duty as concrete general terms and as

abstract singular terms (‘the flag is red’ and ‘red is my favourite colour’). Pace

Husserl, normally the distinction is clearly marked: ‘courageous’ vs. ‘courage’,

‘wise’ vs. ‘wisdom’, etc.

Let us now proceed to the second of the three points listed at the beginning of

this section, i.e. the difference between zero and one on the one hand and the other

numerical concepts on the other. A number for Husserl is the answer to the question

‘how many? (Wieviele?)’, but to this question there can be two kinds of possible

answers: positive and negative answers. The positive answers correspond to all the

numbers of the series of naturals except zero and one; the negative answers

correspond to zero and one.114

111“Unit (Einheit) in contrast to multiplicity is not the same as unit in the multiplicity. Along with

the concept of the multiplicity (or number) the concept of the unit is inseparably given. But in no

way this is true of the concept of the number one. The latter is only a later result of technical

developments (ein späteres Kunstprodukt)” (PoA 141; PdA 134).
112“It will often be necessary for us to lose ourselves in what seem to be linguistic investigations

concerning the meanings of the terms in order to put an end to obscurities and misinterpretations of

the concepts that interest us. We find ourselves in such a position also with the question that is to

employ us now: namely, that about the relationship between the concepts or terms one and unit”
(PoA 143; PdA 136).
113Frege, Letter to Edmund Husserl, 24 May 1891.
114“No-many, or no multiplicity [keine Vielheit], is not a special case of many. One object is not a
collectivity of objects. Therefore the assertion that there is one thing here is no assertion of

number. And likewise, no object is not a collectivity, and therefore the assertion that there is no

thing here is no assertion of number” ( PoA 138; PdA 131).
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Between the positive and negative answers to this question there obtains a

difference in conceptual content, that logic must not neglect. Linguistically, zero

and one behave as numbers, and hence they can be regarded as numerical determi-

nations from the grammatical point of view, but this is not so from the logical point
of view. The conceptual difference between zero and one and all the other numbers

should not be ignored: only the latter are numerical concepts in the real and proper

sense. “[For the latter] the unity of the concept . . . is an intrinsic [innere] one. They
form a logical genus in the narrower sense. . . [For zero and one] the unity of the

numerical concept . . . is an extrinsic one, established by means of certain rela-

tions.”115

It remains to be explained why zero and one are included in the series of natural

numbers. Husserl gives two reasons, both of an essentially formal kind: (i) zero and

one are necessary with respect to the calculistic aspect of arithmetic, i.e. to the

elaboration of the algorithms (for instance, think about the role of the zero in the

systems of numerical notation of positional kind);116 (ii) the fundamental numerical

relations are invariant with respect to the two fields, the restricted one (constituted

by the numbers from two onward) and the one expanded with zero and one. Even if
a residue of the different nature of zero and one can be found precisely in the

algorithmic-formal laws of the operations, exactly in the “exceptions” that, when

zero and one are involved, occur for the general rules valid for arithmetical

operations: “The addition of zero does not increase, the subtraction of it does not

diminish. . . Multiplication by one does not proliferate, division by one does not

split up, and so on.”117

Let us now turn to Husserl’s third and final point: numbers cannot be considered

as mere signs; to interpret them in this sense would mean a misunderstanding of the

symbolical nature of calculation.
Numerical signs that constitute the series of natural numbers as well as the other

number systems have the function of being “surrogates for” or of “representing

symbolically” the real and proper numerical concepts, and lack meaning if we

disregard their possibility to refer to the latter. The nominalist interpretation for

Husserl is a misunderstanding, a quite natural one at that, of the process of

symbolization that is at the base of the constitution of numerical concepts as

such, and also at the base of the algorithms and the mechanical calculus. The

means through which we have arrived at numerical concepts is by representing

different sets of concrete objects through certain determinate signs, e.g., bars

(11, 111, 1111, . . . etc.). In the process of constitution every single object is

assigned with a bar and the set of bars resulting from this is considered as the result

of the process of abstraction. But the set of bars, the sign, is not the numerical

concept itself, it is only a convenient representative of it.

115PoA 141; PdA 133.
116“Certainly the decimal number system . . . would be unthinkable without this momentous

expansion of the concept of number” (PoA 139; PdA 132).
117PoA 140; PdA 133.
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“This modelling [Abbildung] of each one of the things to be enumerated by

means of a uniform sign, meaningless in itself, in fact only mirrors the process that

leads from the concrete multiplicity to the number. And only in so far as it does so
has it sense and significance.”118 The nominalist interpretation misunderstands the

sense of this process in the same way as it misunderstands the representative

function of the signs; it mixes up the sign with the thing, restricting itself to

“enumerating merely as a machine-like exterior process” and hence ending up

“totally overlooking the logical content of thought which confers on it justification

and value for our mental life.”119

The point on which Husserl will insist (and to which he will return, with even

greater effectiveness and clarity, in Chapter XIII) is that while calculating is an

activity that proceeds with signs and not with concepts, nevertheless at the end of

every calculation the result obtained is the sign for a numerical concept and as such
it must also be interpreted. On this basis he criticizes not only the nominalist

interpretation of numbers commonly attributed to Helmholtz and Kronecker, but

also their choice of the concept of ordinal number as fundamental concept for

arithmetic; thereby justifying ‘a posteriori’ his own choice of the concept of Anzahl
as constitutive.120 Husserl’s accusation is that Helmholtz and Kronecker fail to

understand the symbolical character of the numerical system and of the techniques

of calculation, by trying to find the origin of numerical concepts in the process of

computation. For Helmholtz, “every number is determined only by its position in

the series of natural numbers”; the series itself is a succession of arbitrary and

conventional signs, and all the arithmetical operations are, in their turn, purely

operations with signs, while the properties of the operations (commutativity, asso-

ciativity, . . .) are equivalences among sign-complexes. The meaning of each sign is

to denote a certain position in the natural ordering of the series from which follows

that ordinal numbers are the fundamental numerical concepts. In short, Husserl

affirms that Helmholtz confuses cardinal numbers with ordinal numbers, and tries

to explain the latter nominalistically as mere signs, while whichever of the two

concepts (cardinal or ordinal number) is to be taken as “fundamental concept” for

arithmetic, the ordering of the series is determined by the very nature of the
numerical concepts and does not have anything to do with a conventional sequence
of arbitrary signs.121 Analogous considerations are implied in the refutation of

Kronecker’s position.

In the second part of the work, Husserl will show that he understands the

possibility that the system of symbols can function independently and autono-

mously from the concepts that it was created to express, but he will always insist

118PoA 135; PdA 128.
119PoA 135; PdA 128.
120In the Introduction to the Philosophy of Arithmetic, Husserl indeed had postponed such a

justification to the end of the discussion about the concepts of unity, multiplicity and number,

being convinced that the subsequent considerations about the constitution of such concepts would

be valid independently of this choice.
121Cp. Frege’s criticism of Helmoltz in 1903, 139–140.
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on requiring, as a conditio sine qua non, the presence of a corresponding system of
concepts that, while not being the explicit object of consideration in the calcula-
torial technique, warrants the meaningfulness of the signs.

1.8 Arithmetic Does Not Operate with Proper Numerical

Concepts

The second part of the Philosophy of Arithmetic intends to investigate – from an

epistemological point of view – the genesis of the art of computation (computis-
tics) founded on the concepts of multiplicity, unity, and cardinal number, and

moreover to study the relationship of this computistics with institutional arithmet-

ical science.122

In Chapter 2 (Mind and philosophy of number) of his Mechanism, Mentalism,
and Metamathematics Judson Webb clearly sets out the conceptual framework by

recognizing two different conceptions of arithmetic that he calls respectively ‘the

algorithmic conception of arithmetic’ and the ‘theoretical approach to it’.

[The former] regards the basic operations of arithmetic as algorithms rather then as

functions in the modern sense, i.e. as rules rather then sets, [it] concentrates on the

construction of arithmetic operations and has a practical orientation. [whereas] the more

theoretical approach of Frege and Dedekind . . . reduces the notion of number to concepts of

pure logic and then concentrates of the proofs of arithmetical propositions. We could

express their respective ideals of completeness as ‘algorithmic completeness’ – which

would require an account of all the ‘proper mixtures’ of arithmetical operations . . . – and

‘deductive completeness’, which would require an account of all logical axioms. The

algorithmic conception tend to stress formalism and concrete symbols while the deductive

conception stresses concepts and abstract objects.123

As we shall see, the second part of the Philosophy of Arithmetic clearly fits into

the framework of the ‘algorithmic conception of arithmetic’.

Husserl’s discussion begins with the observation that the numbers with which

professional arithmeticians work are not the numerical concepts, in particular they

do not correspond to what the logico-psychological analysis has established numeri-

cal concepts to be. These latter, in so far as they are produced by a single act of

abstraction applied to a concrete set, are ‘forms’ or ‘species’ (general concepts) of

sets124 to which additionally is associated a numeral (Zahlwort). While it is evident

that for the purposes of counting and calculating general ‘forms’ or ‘species’ of sets

are not used, nevertheless institutional arithmetic seems to proceed with the tacit

presupposition that it operates with the real and proper numerical concepts them-

selves, considering arithmetical operations as operations on concepts. On this view,

122PoA 191; PdA 181.
123Webb 1980, 44.
124I borrow here terminology from Cantor 1991, 365.
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addition and subtraction are taken as fundamental operations from which all the

others are derivable through specialization. In other words, arithmetical operations

are not anything but particular cases of the two fundamental activities of addition

and subtraction: multiplication a particular case of addition, exponentiation a

particular case of multiplication, and so on.

Husserl’s argument in the discussion of this “prejudice,” which according to

him has blocked a a proper philosophical understanding of arithmetic, can be

reproduced schematically as follows. If by “operations” are meant real activities
on the real and proper numerical concepts, the only activities in this sense are

addition (Addition) and partition or division (Teilung), intended respectively as

collective connection of the elements of two or more sets (i.e. of the units of two

or more numbers) and partition of a set into its subsets. These activities are

founded on our representational ability to unite many sets in a single one that

comprises them all, and to divide a set into the parts that are its components.

However, careful analysis shows that what arithmetic calls “operations” does not

correspond at all to the concepts of ‘uniting’ and ‘dividing’, or to particular cases

of these concepts. For the interpretation described above, for instance, multipli-

cation is a method to make sums of the same addenda faster and easier

(“to shorten 3 þ 3 þ 3 þ 3, we say four times three, where the addition is

tacitly understood”).125 However, if multiplication is nothing but an abbreviated

way to write sums, why does arithmetic speak of a new operation? An abbrevia-

tion in the notation to write sums “may, as such, be very convenient and useful,

but it is, after all, no operation.”126 Moreover, taking the “institutional” point of

view implies that the concrete executability of the operations depends on the

possibility of effectively executing the additions and subtractions of the real units

that form the foundation of the operations.127 But arithmetic does not ever

actually take into consideration this possibility, nor does it consider as a limit

the effective impossibility of operating on the concepts themselves.

The core of the entire argumentation is the following: We can conceive in a
proper and effective way only very small numbers. Our presentational capacity is

limited to such an extent that already for numbers beyond three we cannot

distinctly see the real units that effectively compose them.128 How, then, can

this be reconciled with the fact that arithmetical operations also deal with

numbers that are much bigger, for which no proper presentation is possible, and

furthermore that arithmetic does not consider the incapacity of presenting those

numbers as a real problem? In this context, Husserl introduces the notion of

symbolic presentation and tries to show that the numbers and methods of

125PoA 195–196; PdA 185.
126PoA 196; PdA 186.
127e.g., 4·3 ¼ 3 þ 3 þ 3 þ 3 ¼ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1 þ 1.
128Miller 1982, 9 observes that “. . . one of the eight theses [Husserl] chose to defend in a formal

disputation in the summer of 1887 was the following ‘in the authentic sense one can barely count

beyond three’ (PoA 357, PdA 339)”. Cp. Tieszen 2004, 32.
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arithmetic are not properly conceived or real operations on the concepts them-

selves – as “is assumed inside and outside this science” - but symbolical numbers
and methods, and that this circumstance determines the sense and scope of all

arithmetic.

The conclusion at which he arrives is the following: the genesis of general

arithmetic is to be found in the fact that we are almost always forced to limit

ourselves to symbolical number presentations. Arithmetic as a whole is nothing but

‘a collection of artificial means’ to alleviate the essential incapacity to have a

proper presentation, effectively and actively, of all numbers.129

If we had authentic [eigentliche] representations of all numbers, as we do of the first ones in

the series, then there would be no arithmetic, for it would then be completely superfluous. . . .
But in fact we are extremely limited in our representational capacities. That some sort of

limits are imposed upon us here lies in the finitude of human nature. Only from an infinite

understanding can we expect the authentic representation of all numbers; for, surely, therein

would ultimately lie the capability of uniting a true infinitude of elements into an explicit

representation.130

Given that Husserl attributes great importance to symbolic presentations, it is

worthwhile to examine their main characteristics, before looking at their particular

application to arithmetic and the calculus.

1.9 Symbolic Presentations

Husserl is firmly convinced that symbolic presenting, our capacity to refer to

things that we do ‘intuit directly’, plays an essential role on our psychical and

intellectual life in general and especially in the constitution of the numerical field:

indeed, it is precisely this capacity that constitutes the very possibility of arith-

metic. He claims to have taken over the distinction between proper (eigentliche)
and symbolic (symbolische) presentations from Brentano, partially modifying

it.131 Brentano, in turn, adapted Leibniz’s distinction between ‘cognitio intuitiva’
and ‘cognitio caeca vel symbolica’,132 and this Leibnizian heritage is also visible

129Cp. Weyl’s remarkable summary of Husserl’s Philosophy of Arithmetic in his Habilitationsvor-
trag in Göttingen (Weyl 1910, 302).
130PoA 201–202; PdA 193. Cp. Tieszen 1996, 304: “It is a basic epistemological fact, for example,

that we are finite beings. Elementary finitary processes such as counting objects in everyday

experience, collecting them, or correlating them one-to-one, are clear and familiar to nearly

everyone. It is not necessary to know any set theory in order to be able to do these things. And

recall Poincaré’s characterization of mathematical induction: it is ‘only the affirmation of the

power of the mind which know it can conceive of the indefinite repetition of the same act, once that

act is possible.’ On Husserl’s view, number theory is founded on processes of this type.”
131“To [Brentano] I owe the deeper understanding of the vast significance of inauthentic presenta-

tions for our whole mental life; this is something which, so far as I can see, no one before him had

grasped” (PoA 205; PdA 193). Cp. Miller 1982, 9.
132Leibniz 1684.
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in Husserl when he talks about the “relations between blind (i.e. purely symboli-

cal) and intuitive (proper) meaning.”133 The presentation of something is proper
when it is given to us, “as it were, in persona,”134 e.g., we have a proper

presentation of a house when we actually see it. A symbolic presentation is a
presentation through signs that univocally identify the presented object. In this

case the signs are presented properly, while the object is presented indirectly,

through the signs. Of the same house we have a symbolic presentation when

somebody describes it to us univocally e.g., as “the corner house on such and

such side of such and such street.”135

A symbolic presentation denotes its object in such a way that it can always be

identified. We want to be able to speak about the things themselves, about their

properties and the relations in which they stand to one another, even though by way

of signs. The symbolic presentation has the function of “standing in (surrogieren)”
for the proper, intuitive one when it is not available. Such a substitution can be

temporary, as is the case, e.g., of the house, or permanent, if a proper presentation is

forever beyond our cognitive reach; in this latter case the symbolic presentation has

the function of a permanent surrogate for the proper one, as Husserl puts it.

Between the proper presentation of an object and its various improper or symbolic

presentations there obtains a relationship of “logical equivalence.” On this is

founded the possibility of substituting symbolic representations for proper ones in

judgements.

Husserl stresses that he has brought forward, in a much stronger way than

Brentano, the fact that the symbolic representations univocally identify a certain

object; and the reason for this clarification is the distinction of symbolic from

general presentations.136 In effect, this univocity is a determining property in the

symbolic construction of the numerical field, which is the problem that we are

addressing here.

Symbolic presentations are not just surrogate presentations of direct intuitions:

they also have the important function of enabling our instantaneous apprehension of

aggregates of objects, even quite numerous ones. Thanks to them, it is possible to

isolate groups of objects of the same kind or with a shared characteristic from the

totality of the field of our perceptions and to (symbolically) form the corresponding

aggregate with them.

In short, symbolic presentation is a “presentation through signs”; in general,

nothing can be expressed (in a systematical way, for cognitive purposes), and

almost nothing can be thought, if not by way of signs. This provides for the

possibility of arithmetic as a science.

133LU II, }14a, 141; LI 367.
134LU VI, }45, 144 ; LI 785–786.
135PoA 205; PdA 194.
136A general representation cannot represent a particular object; e.g., the representation ‘man’

cannot be considered an unequivocal sign for a specific individual, e.g., Peter. In order to transform

it into such a sign, we have to add to the general representation some distinctive features

(Merkmale) that unequivocally identify that unique individual.
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The analysis of symbolic presentations, insofar as we also find them in the

procedures of the calculus used in arithmetic, and, furthermore, the analyses of

the processes that lead to the systematic organization of certain specific symbolic

presentations in a numerical system, are articulated in the following way:

a. An explanation of the possibility for a human intellect to conceive symbolically

greater sets of concrete objects (“sensuous sets”).
b. An explanation of the capacity of a human intellect to conceive infinite sets and,

the decomposition of this conceiving into its components.

c. Constitution of the particular infinite set of the natural numbers on the basis of

the results of the preceding point, i.e. using the elementary components of the

presentation of an infinite set, and adding to this an “ordering principle” for the
symbolic number presentations constituted step by step.

1.10 ‘Sensuous Sets’ and Infinite Sets

In Chapter XI, “Symbolic presentations of multiplicity” – which is partially an essay
in descriptive psychology in the style of Brentano and Stumpf – Husserl deals with

the issues mentioned above in (a) and (b). Husserl asks how we can conceive sets for
which it is not possible to carry out those two fundamental acts that are necessary

for the constitution of the concept of set: the ‘singular apprehension’ (i.e. intuiting

each element distinctly for itself) and the ‘collective connection’ (i.e. having them

all present together in one single act). All the sets, called here ‘sensuous sets
(sinnliche Mengen)’, which have so many elements that it is impossible to present

them properly, are of this kind. In other words, the problem is that of providing a

plausible explanation of our capacity to grasp immediately greater collections of

sensuous things of the same type (e.g. presentations corresponding to the words

‘army’, ‘crowd, ‘flock’, etc.). Husserl argues that in the perceptual field there are

some elements that are able to exercise a great influence on our interest and

attention. These elements, even though constituted by some of the members and

relations of the set under consideration, are ‘fused together (verschmolzen)’ and are
grasped by consciousness in the same way as a simple quality, though they are not

simple at all: Husserl calls these moments ‘quasi-qualities of second order’. These

‘mediate the association’, i.e. they make the instantaneous grasping of sets possible,

when it is impossible to see every single element distinctly.

When presented with a sensuous set, e.g. a flight of birds, our consciousness

immediately grasps only the quasi-quality, i.e. some elements of the set and the

figural moment of their distribution, and this surrogates for the other elements that

cannot be intuited distinctly one by one: in this way we form the unitary presenta-

tion ‘flight of birds’. That is why we can symbolically conceive greater sets
composed of things of one kind.

The next step is constituted by the theoretical justification of the possibility, for a

human intellect, to present symbolically infinite sets. Symbolic presentations of
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sensuous sets do not exhaust the extension of the concept ‘symbolically constructed

set’. Indeed, we speak of sets also when not only the proper presentation of all the

elements together, but also the intuition of each of them singly — even taking into

account the idealizing cognitive capacity of a human mind — constitute a logical

impossibility.137

The symbolic expansion of the numerical domain is justified, according to

Husserl, by the ability of the human intellect to refer to infinite ‘objects’: infinite

processes, infinite sets, etc.; e.g., the set of points in a line, the set of moments in a

temporal interval, and so on. Of course, our presentation of infinite sets is not and

cannot be effective: its logical and psychological content is constituted by the

presentation of only few elements of the set under consideration, together with

the “symbolic presentation of unlimited process of construction of concepts.” As

Tieszen puts it, “this kind of analysis . . . brings a constructive turn to the Philoso-
phy of Arithmetic. There must be some constraints on the cognitive process of

collecting, for example, because we are considering what is possible for human
collectors, and human collectors are not omniscient.”138 In other words, our general

presentation of an infinite set has an inductive nature and consists in (i) the

presentation of only few elements of the set, (ii) the presentation of a principle of
construction to obtain all the other elements, and (iii) the certainty that such a

process of construction can be carried on indefinitely.

In the concept of infinite set, e.g., that of the natural numbers, we find the proper

presentation of “a set in the usual sense – namely the numbers of an initial

subsequence of the number sequence . . . To this is joined the supplemental repre-

sentation that this sequence, in view of its principle of formation, can be extended in
infinitum.”139 With this argumentation, we repeat, Husserl thinks he has theoreti-

cally justified the given fact (Tatsache) that we have the possibility to conceive

infinite sets. All his subsequent explanations about the construction and organiza-

tion of the numerical system are founded on this.

The reflections about infinite sets in general considered above are elaborated and

refined with respect to a specific infinite set, i.e. the natural numbers: we only have

proper presentations of very small numbers, and moreover the idea that the

restricted field of properly presentable numbers can be extended indefinitely in a
symbolic way. Hence the problem becomes that of explaining how this idea of a

symbolic extension is actually realized. Husserl conceives all numbers, except

those intuited directly, as products of a process of numerical construction or

constitution. In the Philosophy of Arithmetic there is much talk of numerical
constructions (Zahlgebilde), and the constitution of the numerical field in its totality

is considered as a process of conceptual construction that produces the “closed but

infinite” totality of the natural numbers. Tieszen’s remarks about intuitionistic

constructions apply here as well: “the notion of construction here is ambiguous

137Cp. Ortiz Hill 1997b 147 & 2002, 82–83 & 84; Tieszen 1994, 332.
138Cp. Tieszen 1990, 151.
139PoA 232; PdA 220.
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between process and product. In one sense the ‘construction’ is the cognitive

process carried out in time by the subject . . .; in the other sense it is the object

obtained through this process.”140

According to Husserl, it is necessary to find an adequate method to execute this

construction in an effective and systematical way, i.e. a method capable (i) of

generating new constructions starting from given ones, of transforming an already

constructed concept into a new distinct concept; (ii) of warranting a priori that
every concept generated in this way is unique; and (iii) of establishing a priori
which elements do and do not belong to the generated set.141

For the purpose of laying down conditions that the final organization of numeri-

cal system must satisfy, several alternative ways of constructing the set of natural

numbers – from simpler to more complex – are taken into consideration.

1.11 Unsystematic Number Symbolizations and the Natural

Number Series

Faithful to the psychological method chosen as a guide for the theoretical explana-

tion, Husserl begins with the first method of construction that would come to mind

if, instead of availing ourselves of the arithmetical science as a well-developed

whole, we really had only proper numbers available when trying to construct the

numerical field in its entirety. Such a method consists in the expression of all

numbers through the additive composition of proper ones. If properly presentable

numbers are those, e.g., from 1 to 10, we would have constructions like ‘10 þ 1’,

‘7 þ 5’, . . . , each conceived as a ‘symbolic form’ that designates a certain natural

number.

The defects of this method of construction are evident: (i) the simple additive

composition of proper numbers produces a multiplicity of symbolic forms that is

too large, lacking an organizational criterion; (ii) the same number can be desig-

nated by different compositions of designations of proper numbers (no univocity);
and consequently (iii) we have no criterion for immediately recognizing the rela-

tionship of each given symbolic number to the others with respect to the order

relation (�) and, furthermore, there is no method to order the generated constructs.

The conclusion is that such symbolizations “cannot, with their vague generality,

serve the purpose of counting and calculating.”

In the light of what has emerged above, some fundamental prerequisites for an

adequate symbolic construction of the numerical field become visible. The ultimate

organization of the numerical field must be such that (i) we can effectively calculate

with all conceivable numbers; (ii) these are univocally classified on the base of the

order relation �; and (iii) the following conditions are met: speed in calculations,

140Tieszen 2001, 238.
141Ortiz Hill 1997b, 147 & 2002, 83.
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ease of distinguishing numerical constructs and univocity in the principle of

construction (the same number must not be present more than once, i.e. all must

have different names in the construction).

Finally, the chosen solution must match with the computational side of institu-

tional arithmetic. In other words, the definitive organization of the numerical field

in a system will constitute the technical side of arithmetic, while the description and

explication of the workings of the system will serve as theoretical foundation of the

actual arithmetical methods. On Husserl’s view, these methods work, but “do not

understand themselves,” and, when the problems (Aufgaben) to be solved are

complex enough (as in the case of calculations with the ‘imaginary’), this lack of

understanding can even cause interruptions in the development of the methodolo-

gies of the calculus and, in any case, errors in the correct interpretation of the latter.

Therefore Husserl’s ultimate aim is to give a theoretical foundation to the symboli-
cal aspect of arithmetic, an aspect that functions autonomously and that profes-

sional mathematicians tend to mistake for arithmetic as such.

A second way of constructing the extension of the properly given numerical field

relies on the natural number series. Unlike the method of additive composition, the

series constitutes a systematical extension of the natural numerical field. The

principle for the construction of symbolic number forms – the operation of “suc-

cessor” – is indeed, in this case, strictly univocal and definite at each step. Therefore

it is a priori certain that to each proper number corresponds only one symbolic form

and that the difference in numerical forms implies the difference of the

corresponding proper numbers. Finally, because the classifying principle is the

order relation, we can simply decide on the base of their position in the series

which number is greater.142

The methods of symbolically constructing the set of naturals using properly

presentable numbers as initial primitive objects and the addition of one unity at each

new step as the construction principle, is still not effective: it presupposes a strong

idealization of our presentational capacity. In fact, we cannot indefinitely execute

the necessary repetitions of the application of the principle and give them a definite

order; we lack – as Husserl puts it – the time and spiritual energy required for an

activity of this kind, and we also lack the signs to distinguish all the constructs that

we produce step by step. It is not enough to have a systematical method to arrive at

an extension of the numerical field beyond the one properly given; we also need a

method that is effective, able to actually reach numbers that significantly exceed

this field. One problem is how to construct an infinite set, another is how to structure

it. An adequate method of construction must take into account both these require-

ments. The defect of the series consists in the fact that it does not have an efficient

method to identify the sequentially produced numerical concepts in a manner that it

is adequate for the purposes of arithmetical science. The series cannot have a

practical and effective use, because we would need a new name for each new

numerical construct, and soon the multitude of names would become intractable.

142Cp. Ortiz Hill 2002, 83.
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In principle the natural number series can be continued in infinitum, “but for all that,
it is actually carried out and given to us only within the limits of what we name

(aber wirklich ausgeführt und gegeben ist sie uns doch nur innerhalb der Grenzen
der Benennung). How are we to hold the uniform steps of number formation distinct

in their limitless succession – where each new step indeed presupposes the whole

series of earlier ones – without the support of accompanying designations?”143

1.12 The Numerical System

The impossibility to solve sufficiently complex calculatory problems with the

natural number series shows the need for a more inclusive and powerful conceptual

construction, which requires more refined logical tools. Apart from satisfying the

prerequisites mentioned above, the expansion of the proper numerical domain must

be effected in such a way that all numerical constructs can be obtained through a

few fundamental signs according to a unitary and easily understandable principle of
construction.144 It is also necessary that the names for the numbers of arithmetic are

constructed starting from a few basic names and can be thereby controlled. So

Husserl turns to what in current terminology is called ‘a system of numeration in a

given base’. The essence of such a system consists in the fact that it constructs all

numerical concepts using a few elementary concepts and rules for operations.

The base (1, . . . , X) is constituted by the numbers that are properly given to us or

by those next to them, that, while not properly presentable, are accessible to us

without complex operations or symbolizations.

“Therefore let us consider the numbers

1, 2, . . . , X
in their natural sequence, as the beginning segment of the system given to us; and we then,

to start with, attempt novel formations (Gebilde – constructs) following the old sequence

principle:

X þ 1, X þ 1 þ 1, X þ 1 þ 1 þ 1, . . .”145

Instead of these sums, we can “write more simply (wir zeichnen einfacher):
X þ 1, X þ 2, . . . , X þ X,
X þ X þ 1, X þ X þ 2, . . . , X þ X þ X,
. . . . . . .”146

We can substitute the corresponding numerals taken from the initially fixed

segment for all sums of units (having at most Xmembers) in order to have a simpler

notation. “But this mode of designation also does not suffice. The further we go the

more tedious becomes the designation by the accumulating (sich anhäufende) sums

of X’s. A new means of abbreviation presents itself at this point: the simple

143PoA 242; PdA 229.
144Compare Tieszen 2000, 256.
145PoA 243; PdA 230.
146PoA 244; PdA 230–231.
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enumeration (Abzählung) of the X’s leads to the multiplicative symbolization in

thought and sign; that is, to: 2X, 3X, 4X . . .”147

Using the same kind of argument, Husserl justifies the introduction of the

symbolization of the exponential type: the constructs formed by the iterative

multiplication of the X (XX, XXX, XXXX) proliferate to such an extent that new

abbreviations become necessary; counting the factors leads to the operation of

exponentiation (X2, X3, X4, . . .). We see that the series continues and that the

iteration of the last introduced operation always leads to a new operation; however,

for practical reasons and ends – Husserl maintains – it is sufficient to stop at the
operation of exponentiation. While the series only has the operation of successor as

a method to generate numerical constructs, the system in base X has much more

articulated procedures of numerical construction, which generate and at the same
time designate each number systematically, instead of using a series of repetitions

of the number one, starting from the numbers 1, 2, . . . , X.
Mathematically, all this means that each number is a “whole, whole-number

function (ganze, ganzzahlige Funktion)” of a determinate fundamental number

(Grundzahl) X established conventionally, i.e. that it is symbolically presentable

as a finite set with the form:

fa0; a1X1; a2X
2; . . . ; anX

ng

with ai between 0 and X.

In such a way we have attained to a principle (Prinzip) of formation [i.e. construction] for

numbers and number signs which actually does satisfy the logical requirements imposed: –

It makes possible the systematically uniform continuation, beyond any limit, of the narrow

domain of numbers given to us. To accomplish this it requires, through the introduction of

the symbolic formation principles of multiplication and exponentiation, no other building

blocks than the numbers and signs 1, 2 , . . . , X. It encompasses, in concept, the entire

domain of number: that is, there is no actual (wirklich) number to which there would not

correspond, as its symbolic correlate, a wholly determinate systematic formation (system-
atische Bildung – a [symbolic] construct within the system) equivalent to it.148

The system and the natural number series are two different ways to construct the

same conceptual field (the numerical field) in a systematical way. Both generate all

numerical constructs starting from a certain number of basic constructs. The

numbers of the series and those of the system are symbolic numerical constructs

that have the function to “surrogate” for the real and proper numerical concepts that

are not accessible to us. But in doing this the system uses as generating procedures

not only the operation of successor but also the arithmetical operations (addition,

multiplication, exponentiation, . . .). Thereby the system enables us to cope effec-

tively with the numerical field in its totality.

147PoA 244; PdA 231.
148PoA 246; PdA 233.
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Husserl insists on the fact that the system is not only an instrument, efficient with

respect to the economy of signs, for obtaining a system of names for the natural

numbers. Because the systematic constructs and those of the series identify the

same conceptual field, one can be led to believe that the former is just a more

convenient way to designate the numbers of the series. In fact, to every number of

the series corresponds a number of the system and, with the latter, is associated its

name or designation. For example, with the proper numerical concept three is

associated a systematical number, 3, which has to be distinguished form its desig-

nation, the numeral ‘3’. The systematical number is a symbolic concept, not a sign.
Ignoring this fact can lead to the conviction that the numbers of the system have the

function of being the ‘mediators (Vermittler)’ between the proper number and the

corresponding numeral. Since the element of the numerical series cannot be con-

sidered as actually given in their totality, to obtain an effective mastery of the

numerical field we must consider the systematic constructs as actual concepts

whose methods of construction and organization are different from those of the

series. As we have already seen, the series is a highly inefficient method to construct

the numerical field:

Only a tiny opening segment of the sequence is given to us. Certainly we can conceptualize

the idea (Idee) of an unlimited continuation of it, but the actual (wirklich) continuation,
even for only the moderate range involved in the ordinary practice of calculating, already

places demands upon our mental capabilities which we cannot fulfil. . . . Of course we can
form the ideal of an unrestricted continuation of the simple number sequence by corre-

spondingly idealizing our mental capacity. We can, further, think of the sign formations of

the number system also as a symbolism for the parallel members of the (ideally expanded)

number sequence (als Signaturen für die parallelen Glieder der (ideell erweiterten)
Zahlenreihe). But one must consider well the fact that these all are only modes for

representation and expression, which are inauthentic in the highest degree and have their

source (Quelle) in the idealizations mentioned. To interpret them in another, more authentic

sense would be to distort the entire sense of the systematic formation of numbers.149

Therefore we have to keep in mind that the system is not a way to designate the

concepts of the series in such a way as to solve the problems of practical designa-

tion. Rather, it is a different, alternative way to construct the same concepts that

with the series can be constructed only in principle, and to designate them, this time,

through the construction itself.

The distinction between (i) proper numerical concepts, (ii) symbolic concepts of

the series, (iii) symbolic concepts belonging to the system and, finally, (iv) their

designation, is not easy to grasp because we can refer to all of the above only

through the symbolic notations (the numerals). However, it is important to stress

that numerical constructs, proper as well as symbolic, are concepts; whereas their
symbolic notations are signs.

To sum up: Husserl characterizes proper concepts as “concepts in themselves

(an sich)”; they constitute the substrate of the symbolic concepts, but it is not

possible to conceive them in a clear and distinct way. The constructs of the series

149PoA 247–248; PdA 233–234.
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are symbolic concepts, i.e. presentations that serve as substitutes for the proper

inaccessible ones and that make calculations possible. However, the series does not

simultaneously provide a system of efficient symbolic notation to designate all its

constructs. The constructs of the system are pure symbolic concepts, and their

presentation is also highly improper, but this time no difficulties arise because in the

signs (‘1’, . . . , ‘X’), and in the arithmetical operations we find a univocal way to

designate all conceivable constructs. Because of this, the numbers of the system

must be considered as “permanent surrogates” of the inaccessible proper numbers.

All numerical constructs outside the system (e.g., those in decimal notation of

the form 10 þ 5, 3�7, etc.) form a “problem” that “awaits” a solution, i.e. they must

be reduced to the corresponding number in the system. Husserl regards systematic

numbers as normal forms to which all the others must be reduced through the

operations.150 Calculating means: reducing a numerical construct to its normal

form, to the number of the system that corresponds to it. For example, in ‘49 þ
17 ¼ 66’, ‘49 þ 17’ is one of the possible symbolic forms that serve to represent

that given number, and ‘66’, the result, is the normal form, the number of the system

to which all other representations of that number are to be reduced. ‘49 þ 17 ¼ 66’

is also an ‘arithmetical proposition (ein arithmetischer Satz)’ and, appropriately
interpreted, becomes an extension of knowledge.

According to Husserl, arithmetical operations are procedures to reduce complex

numerical expressions to the corresponding number in normal form, and, vice
versa, to construct complex expressions starting from numbers given in normal

form. One hardly needs to emphasize the depth and “modernity” of this view.

1.13 The Symbolic Aspect of the System

The construction of the numerical field in the form of a system has a characteristic

that deserves particular attention. On the one hand, the system produces all (sym-

bolically) conceivable numerical concepts, using only the base (1, 2, . . . , X) and the
arithmetical operations of addition, multiplication and exponentiation. On the other

hand, it produces for all numbers designations using the signs ‘1’, ‘2’, . . . . ‘X’ and
the signs for the operations of addition, multiplication, and exponentiation.151

Husserl observes that if the signs are separated from their conceptual correlates,

the symbolic aspect of the system keeps working autonomously. The system

consists of two correlative structures, a conceptual and a signitive one. The concep-
tual structure is a way to generate new concepts by combining elementary concepts

in accordance with certain laws: every number derived from the conceptual

150Webb 1980 observes that “Husserl’s theory of calculation has some of the flavour of Church’s

calculi of l-conversion: ‘systematic numbers’ (e.g. Arabic numerals) result from a series of rule

governed ‘reductions’ of ‘unsystematic numbers’ (terms compounded out of numerals with

function symbols), also called ‘symbolische Bildungen’” (25).
151Cp. Hartimo 2007, 288.
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structure is a new numerical concept and hence allows for the acquisition of new

knowledge. The signitive structure is a way of producing signs from signs according

to pre-established rules, without any need to refer to their conceptual content.

Let us abstract from the signification of the designations “1,” “2,” . . . , “X,” as well as from
the designations of the operations of addition, multiplication, and exponentiation, and take

them as totally arbitrary symbols without signification (as, for example, the counters in a

game). Let us replace number definitions and operation rules which are the regular medium

of systematic procedure, with corresponding, conventionally fixed formulas expressing the

equivalences of sign combinations. One will then recognize that, in this way, there actually

originates an independent system of symbols which permits the derivation of sign after sign

in a uniform pattern without there ever turning up – nor could there ever, as such, turn up –

other sign formations that appear in other circumstances, accompanying a conceptual

process, as designations of the concepts here formed.152

The system of signs works mechanically, it is a ‘consequential (konsequent)’
mechanism that produces symbols automatically. It proceeds in an absolutely

independent way with respect to the concepts that it was intended to express.

This implies that when counting given sets in practice as well as when constructing

numbers through operations, the way of operating that leads to the solution is purely

mechanical. The point is that calculating is not an activity with concepts, but with
signs.

Husserl’s account of the systematics of signs,153 and, in particular, the way in

which the conception of the system of signs as an autonomously functioning

mechanism is presented and detailed testify that he understood very well, and

embraced, the results of the process of transformation of algebra that, during the

nineteenth century, led to the birth of abstract algebra.154

In the work of the English algebraists in Cambridge (C. Babbage, G. Peacock,

J. W. Herschel) in the period 1830–1840, the abstract properties of arithmetical

operations began to emerge from the numerical substrate as ‘autonomous’. The so-

called symbolic algebra became an algebraic theory of magnitudes in general: on

the one hand, it assumed as principles (and hence as rules of calculus) the laws that

apply to the usual arithmetical operations, while, on the other hand, it eliminated the

restriction concerning their exclusive applicability to natural numbers.

Already here we have a distinction between (i) a symbolic aspect, i.e. a system of

formal laws of connection and of abstract algorithms of computation, by means of

which conclusions are drawn in a deductive-algorithmic way,155 and (ii) the

possible systems of entities that can satisfy such formal conditions. With the

same symbolic system we can provide a unitary treatment for systems of heteroge-

neous entities that manifest a similar structural behaviour.

With the contributions of scholars such as W. R. Hamilton, H. Grassmann, and

A. Cayley there was a progressive distancing from the idea of algebra as “symbolic

152PoA 251–252; PdA 237–238.
153PoA 251 ff.; PdA 237 ff.
154Casari 2000, 105.
155Casari 1973, 8–9.
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algebra of magnitudes,” which will culminate in the explicit disengagement of

algebraic research from the quantitative dimension with George Boole and his

creation of an algebra of logic. Algebra no longer only treats numbers or magni-

tudes, but also propositions, concepts, and, in general, qualitative data. The laws

under which they fall are independent from any specific interpretation of the

symbolism, and the structural properties of the operations that are reflected in

such laws are unleashed from numerical elements and assume the character of

abstract algorithmic procedures for “calculations” performed with symbolic expres-

sions.156 The explicit separation between laws of calculus – purely formal laws –
and their interpretations is more or less the distinctive trait of modern abstract

algebra and mathematics. In Boole’s words:

The validity of the process of analysis does not depend upon the interpretation of the

symbols which are employed, but solely upon the laws of their combination. Every system

of interpretation which does not affect the truth of the relations supposed, is equally

admissible, and it is thus that the same process may, under one scheme of interpretation,

represent the solution of a question on the properties of numbers, under another, that of a

geometrical problem, and under a third, that of a problem of dynamics or optics.157

A similar statement about the importance of the polyvalence of symbolic-
calculistic systems can be found in the Philosophy of Arithmetic.158

In spite of this development of the calculus, it has to be kept in mind that in the

case of the numerical system the laws that regulate the symbols actually describe a

well-determined reality, that of proper numerical concepts and of the laws regard-

ing the conceptual operations on these concepts; therefore, at least in the case of

numerical concepts, the objective referent is not eliminated. Husserl is always

entirely aware of the conceptual basis of the numerical mechanism, of the thought

that constitutes and accompanies it, and maintains that there must be a conceptual

content that guarantees the meaningfulness of mechanical operations with signs,

even if we can manipulate the signs without attending to the concepts that are their

meanings.159

In the Philosophy of Arithmetic the system of signs has its foundation in

conceptual operations. To every conceptual operation corresponds an operation

with signs. A relation subsists between concept and sign that Husserl calls equiva-
lence, and the system of signs cannot be established without explicating this

relationship.160 The coherence of the conceptual operations is what warrants the

correct functioning of the signitive structure. However, in the first case, the trans-

formations happen on the basis of conceptual knowledge, while in the second case

the transformations of the signs proceed on their own, indeed according to certain

types (Typen), but extrinsical types, according to a fixed template (schablonenhaft).

156See Cantini 1979, 41 ff.
157Boole 1847. Cp. also Webb 1980, 79; Hartimo, 2007, 285 ff.
158PoA 273; PdA 258.
159See e.g. Tieszen 1996, 312–313 & 2000, 9.
160Cp. Centrone 2005.
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In other words, what happens on the level of signs is legitimated by what happens

on the level of proper concepts, and for Husserl this depends on the fact that the signs

are construed as expressing concepts and that the system of concepts, as well as the

operations on them, are consistent (konsequent). It is the exactness of the conceptual
operations that determines the exactness of the system of signs, even if the latter can

then be considered completely independently from its substratum, the concepts.

1.14 The Concept of Computation

In the last chapter of the Philosophy of Arithmetic (“The Logical Sources of
Arithmetic”), Husserl distinguishes arithmetic from the art of computation
(Rechenkunst, computistic). The latter is conceived as the technical side of the

methods of the former, on the basis of the distinction between concepts and signs

and, moreover, on the basis of the peculiar property of the autonomous functioning

of the system of signs.

Arithmetic is characterized as the science of numbers, or, more precisely, as the

science of numerical relations, as it does not have as object the specific properties
of single numbers, but numbers in so far as they are identified through certain

relations or complexes of relations with other numbers. The task of suitably

characterizing the art of computation is more delicate and complex. It is necessary,

first, to consider the various meanings of the concept of computation (rechnen) in
order to arrive at a determination of this concept that enables us to distinguish

arithmetic from the art of computation.

Husserl distinguishes between various meanings of ‘calculation’, one broader

and two narrower ones. In the first, broader sense, calculating is any kind of
derivation of numbers from numbers. Within this characterization, the method of
derivation is not qualified, since it can be conceptual-abstract as well as signitive-
concrete. If it is conceptual, new numerical concepts are derived from proper or

symbolic numerical concepts on the basis of certain real or symbolic operations that
are conceptual as well. The signs, in this sense of calculation, have only a subsidi-

ary role. This implies that if we take ‘calculation’ in this first sense, it is not possible

to exclude from the notion of ‘computation’ the addition and partition of aggre-

gates, and, consequently, there is no real distinction between arithmetic and the art

of computation: arithmetic would be the science of numerical relations, and “com-

putistics” would be the art of calculating, i.e. of deriving numbers from numbers

according to certain known relations through conceptual operations.
In a second, more restricted sense of calculation, the method of derivation is

required to be sensuous, i.e. it operates on signs according to pre-established rules.

Under this reading, “calculating” means “deriving numbers from numbers through

operations on sensuous signs”. In comparison with the restricted sense of calcula-

tion, the method of conceptual derivation is less general, and, moreover, makes

calculation a long and complex operation. By contrast, the method of sensuous

signs, besides being more practical and more functional, is also more general and
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all-inclusive, i.e. universally applicable and potentially able to solve any conceiv-

able problem. “The method of sensuous signs is, therefore, the logical method for

arithmetic.” Ultimately, it makes the method of conceptual derivation superfluous.

However, Husserl maintains that for a general acknowledgment of this view we still

lack a logic of symbolic methods of knowledge.161

Even if we take ‘calculating’ in the last interpretation, in the sense of “deriving

numbers from numbers with a signitive method”, we would not yet be able to make

a conceptual distinction between arithmetic and computistics because, under this

reading, too, arithmetic has as its object the procedures of the calculus and cannot

be distinguished from a computational methodology.

Calculating can also be interpreted in a third sense, different from these other

two, i.e. as deriving signs from signs following formal rules. From the conception of

calculating – this is Husserl’s thesis – must be excluded not only the operation with

proper numerical concepts, but also that with symbolic numerical concepts:162

calculating must be exclusively an activity with signs. This new sense of calculating

is obtained via the consideration that in the symbolic moment of the numerical

system we can abstract from the possible structures that it can be applied to. In

Husserl’s words: “One can . . . conceive of calculation as any rule-governed mode
of derivation of signs from signs within any algorithmic sign-system according to
the “laws” – or better: the conventions – for combination, separation, and trans-
formation peculiar to that system.”163

With this third sense of ‘calculation’ we have obtained a true and proper

characterization of the formal-algorithmic method.164 An algorithm is in fact a

mechanical procedure that operates on configurations of (sensuous) signs according

to certain formal rules. Calculating, now, means deriving signs from signs according
to pre-established formal rules. Husserl attributes great importance to this third

concept of ‘calculation’, since it makes possible an exact separation of the various

“logical” moments that are involved in every derivation of numbers from numbers.

“Each solution obviously decomposes into one calculational part and two conceptual

parts: conversion of the initial thoughts into signs – calculation – and conversion of
the resulting signs back into thoughts.”165

161“Most researchers – guided by the general prejudice that every scientific methodology operates

with the respective intended concepts – have also held the arithmetical operations to be abstract-

conceptual, in spite of all clear indications” (PoA 272; PdA 257).
162Indeed, in both earlier definitions, calculating was defined as a deriving of numbers from

numbers, and by numbers were meant the numerical concepts.
163PoA 273; PdA 258 (italics in the original). Cp. Hartimo, 2007, 289 f.
164As Webb 1980 puts it: “Husserl . . . attempted a complete development of the algorithmic

conception of arithmetic, which required “die logische Untersuchung des arithmetischen Algo-
rithmus”. The notion of algorithm, Husserl felt, had to be bound up with that of a ‘mechanical

process’” (24–25).
165PoA 273; PdA 258 (italics in the original). Husserl does not fail to stress how important a good

choice of the system of signs is, in terms of efficiency, for all three of these phases (encoding –

calculation – decoding) of the solution of a problem.
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With respect to arithmetic the conversion of numerical concepts into signs

consists in abstracting from the concepts (because sign and concept cannot be

properly separated in arithmetic). The importance of the concept of computation

on signs is determined also by the fact that it sensitive to the developments in

logical-abstract algebra. The system of signs is indeed polyvalent: it allows a

uniform treatment of “similar” situations or, equivalently, a single computational

system permits the mastery of more than one conceptual system. “It is a fact highly

significant for the deeper understanding of mathematics that one and the same

system of symbols can serve in several conceptual systems which, different as to

their content, exhibit analogies solely in their structural form. They are then, as we

say, governed by the same calculational system.”166

Taking ‘calculation’ in the third sense we can finally distinguish arithmetic as

deductive science from computational science. Arithmetic is the art of arithmetical

knowledge while computational science is its technical side.167 However, the

method of computation of “signitive” kind must be founded on the conceptual

moment, i.e. (i) on proper or symbolic numerical concepts that are given to us in the

forms of the natural series or of a numerical system, and (ii) on their forms of
composition that enable us to obtain new numbers from given numbers and that,

within a numerical system, coincide with the arithmetical operations.

1.15 The Fundamental Task of Arithmetic

As we saw, in a numerical system there can be different symbolic configurations

that designate the same number. Every “non-systematic” complex of symbols must

be considered as the presentation of a specific “arithmetical problem,” whose

solution consists precisely in the reduction of that complex numerical “term” (as

we would say today) to its normal or canonical form. Each non-canonically

designated number is “equal” to a systematic number in the sense that they both

correspond to the same proper numerical concept.168

Systematic numbers must be considered as ultimate concepts, because they are

indispensable surrogates for the proper concepts that are inaccessible to us. All

acceptable numerical forms (terms) are either canonical forms or reducible to such

forms. Their composition by way of the operations allows us to construct the

numerical field in its totality.

166PoA 273; PdA 258 (italics in the original).
167“If we loose the number signs from their conceptual correlates, and work out, totally uncon-

cerned with conceptual application, the technical methods which the sign system permits, then we

have extracted the pure calculational mechanism that underlies arithmetic and constitutes the

technical aspect of its methodology” (PoA 274; PdA 259).
168“To each non-systematic number there corresponds a univocally determinate systematic num-

ber that is equal to it, i.e. one which symbolizes the same authentic [i.e. proper] number concept”

(PoA 276; PdA 261). Cp. Hartimo 2007, 290.

1.15 The Fundamental Task of Arithmetic 45



The idea that underlies this reduction is the following: with the system we have a

general and exact numerical classification such that the numbers of the system can

be directly and immediately compared according to the relation of order (�).

Presented with two complex numerical forms we cannot immediately decide

which one is greater and which smaller. So the method to achieve this is to reduce

them both to their corresponding canonical forms and then compare these.

Keeping these considerations in mind, let us try to understand the sense and

scope of Husserl’s proposal to establish “the fundamental task of arithmetic,” i.e. to

explicate the proper function of arithmetic as a science once it has been distin-

guished from calculational methodology. In Husserl’s words, the first basic task of

arithmetic, articulated in two sub-problems is:

(i) “to separate all conceivable symbolic modes of formation of numbers into their

distinct types,”169 where the ‘symbolic modes of formation (or construction) of

numbers’ are the arithmetical operations, while the term ‘type’ indicates the

kind of composition (additive, multiplicative) that is used.

(ii) “to discover for each type the methods that are reliable and as simple as

possible for carrying out that reduction.” That is, for each conceivable opera-
tion arithmetic must find a method of calculation, an efficient algorithmic
procedure, to execute it.170 In short, Husserl has divided the numerical con-

cepts into proper and symbolic and has shown that the numbers of arithmetic

are symbolic concepts organized in a system that operates according to certain

rules. He has then distinguished the signs from the concepts, showing that the

signs constitute a “mechanism” that works autonomously and correctly, with-

out conceptual reference. The system of signs constitutes the “technical” aspect

of arithmetic, and in order to function it does not need a further conceptual

clarification concerning its signs: it is the set of computational procedures that

the professional mathematician (arithmetician) uses. Husserl then returns to the

consideration of symbolic concepts of the system, characterizing them as

‘numbers in normal form’, as ‘fixed samples (feste Etalons)’, to which all

other conceivable numerical constructs must be reducible. The constitution of

the numerical field is obtained by composition: starting from certain basic

elements all the others are constructed following certain pre-established

rules. The procedures to construct the numerical field in its totality are the

arithmetical operations. Finally, the basic task of arithmetic is characterized as

that of finding ever-new arithmetical operations to reduce any unsystematic

symbolical sign-configurations to their corresponding systematic one, and to

find ever more efficient procedures of calculation to execute these operations.

Husserl explicitly states that the analyses of the last part of the Philosophy of
Arithmetic aim at sketching the idea of a universal arithmetic (notwithstanding the

fact that all considerations refer to the theory of finite cardinal numbers). As we will

169PoA 277; PdA 262.
170Cp. Webb 1980 25.
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try to show in the next section, these analyses actually constitute a first attempt to

circumscribe in a rigorous mathematical way a class of arithmetical operations that

Husserl calls ‘totality of all conceivable arithmetical operations’. More precisely,

our thesis is that he has a clear intuition of that class of functions, which, in current

logical terminology, is known as ‘class of partially computable numerical func-

tions’.171 The problem of a rigorous characterization of this class – it is useful to

remember – was explicitly and systematically tackled only in the 1930s, in the

context of the theory of effective computability in mathematics (in the works of

A.M. Turing, A. Church, K. Gödel, S.C. Kleene, and others).

1.16 The Taxonomy of Arithmetical Operations

The last four paragraphs of the Philosophy of Arithmetic are centred on a detailed

taxonomy of arithmetical operations. Husserl first discusses the four elementary arith-
metical operations (elementare arithmetische Operationen) – addition, multiplication,
subtraction and division – and then he takes into account a number of generative
procedures which produce new operations (höhere Operationen) from given ones. As

to the former, Husserl’s main concern is, on the one hand, to stress again the symbolic

nature of these operations as methods to reduce non-systematic constructs to normal

forms, and consequently, on the other hand, to give evidence of their computability.
Let us consider in detail addition. If addition were an operation performed with

or on proper numerical concepts (sets of units) adding two numbers would mean

uniting two or more sets of units in a new set. It would not be possible to speak of a

rule to perform the addition. By contrast, taking addition to be a certain method of

reduction of non-systematic constructs to their normal form, we can very well speak

of a rule to perform this reduction. If we take the series of naturals as our numerical

system, adding b to a, (a þ b), means adding b units to a – and this is the best

method of calculation that we have in this case. In the system in base X, instead,
there are more efficient procedures to calculate a sum, e.g., summing by columns.

This procedure allows reducing any addition to a series of elementary additions;

moreover, Husserl adds, it demonstrates how the requested number is constructed

by the numbers that are its parts: “through these same partial numbers . . . those
elemental additions . . . are univocally determined.”172

Similar considerations are made for the remaining three elementary operations,

i.e. multiplication, subtraction, and division. Husserl presents specific examples of

computing algorithms and even discusses aspects such as complexity and time

spent computing these algorithms (e.g., the algorithm to execute division is more

complex than the one which computes the other elementary arithmetical

171For a precise definition of the notion of partial numerical function and for a formal reconstruc-

tion of Husserl’s attempt see Appendix 1 below.
172PoA 282; PdA 267.
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operations).173 Also, he dwells on the fact that subtraction and division are the first

and easiest examples of numerical operations that are computable, but not total (i.e.
not defined with respect to the whole domain, as addition and multiplication are);

they are partial operations, in Husserl’s words, “obviously the problem does not

always have a sense and solution.”174

A special point is raised concerning multiplication. Husserl observes that only

by appealing to the concept of ‘symbolic-algorithmic system’ one can understand

the proper nature of this operation. Under the conceptual interpretation of numbers

and arithmetical operations, multiplication “is a problem,” because it appears to be

a special case of addition, in which the addenda are equal, while arithmetic takes it

to be a “new operation.” Now, within a formal-algorithmic system multiplication is
a new operation. In fact,

a major abbreviation is already brought about through the multiplicative mode of represen-

tation and designation, in that the number of the summands is introduced (herangezogen) as
a means of symbolization. . . The problem which multiplication solves consists in this: to

calculate the product . . . solely from the multiplicand . . . and the multiplier . . . without
having to actually carry out the addition, or even to begin it.175

We think it is important here to stress the jump, both conceptually and in terms

of arithmetical complexity, from the determinate iterations of addition (the unary

operations x � 2 ¼ x þ x ¼ two-times x; x � 3 ¼ x þ x þ x ¼ 3-times x; in general,

x � n¼ xþ xþ � � � þ x n-times, where the multiplier n is a natural number which is

determinate), to the binary operation of multiplication, x � y, in which the multi-

plier y is a variable. The first (used by Husserl in the constitution of the numerical

system in base X) are explicitly defined in terms of addition, whereas multiplication

is not and cannot be so defined. To get a “measure” of this gap in complexity,

contrast the decidability of the theory of addition of natural numbers (that is, the

theory of the structure hN, þ, 0, 1i)176 with the undecidability of the theory of

addition and multiplication (that is, the theory of the structure hN, þ, � , 0, 1i).177
Husserl’s full awareness of the matter is also confirmed in a 1891 manuscript

with the title “On the Concept of the Operation”.178 Here he succeeds in high-

lighting with extreme clarity that “abstracting from the nature of the domain” is a

173The method of finding the systematic number corresponding to the construction a:b consists in
reducing every division to a series of elementary divisions. Nevertheless, while for calculating

addition and multiplication it is sufficient to use a table of all elementary additions and multi-

plications between an i and a j belonging to {0, 1, . . . , X}, for calculating division we need a table
of all elementary divisions of the form a:c where c is a number between 1 and X and a is a “two-

digit” number with respect to the basis X.
174PoA 285; PdA 269. As Webb 1980 rightly says “especially remarkable is [Husserl’s] suggestion

that the question whether an arbitrary ‘Rechnungsaufgabe’ is always defined (Bedeutung haben)
for any number will require a deep analysis” (25).
175PoA 283; PdA 268.
176Presburger 1929.
177Church 1936.
178PoA 385–408; PdA 408–429.
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necessary condition for operating formally. The argument is the following: we

could, at first sight, think that multiplication is reducible to addition, in other words,
that it can be formally defined from it. Now, even though it is correct to say that we

can formally express a · 1, a · 2, a · 3, . . . , additively, as a, a þ a, a þ a þ a, . . . ,
we cannot legitimately consider

a � b ¼df aþ aþ aþ . . . b-times

as a formal definition of a � b. This tentative definition, in fact, has no sense if we do
not already know that b is a natural number. The point is that in order to be formal,
a definition and, more generally, a proof must abstract from the concrete domain
(in this case from that of natural numbers). The same applies to the numerical

operation of raising to a power: in this case, too

ab ¼df a � a � a � . . . b-times

is not a formal definition of this operation.

Why, then, consider multiplication as a new operation? The distinction lies in the fact that,

in order to prove the laws of multiplication, we must go back to the natural number or

cardinal as a sum or equality (Gleichheit) of units, whereas this is not necessary with the

proof of the generalized law of association. All deductions that do not go back to the
concept of the domain are formal. . . A determination (Bestimmung) is a formal conse-
quence of certain presupposed ones if it can be formed from them without ever having to
have recourse to the nature of the domain. In this sense aþ a, (aþ a)þ a, etc., are formal,

but not aþ aþ . . . b-times. For this determination loses its sense if I do not think of the fact
that b is a number. The same holds for raising to a power. . . And because this is so, the

propositions about the new operations also cannot be discovered from those about the old

ones without recourse to the number concepts.179

Let us go back to the presentation of the taxonomy of operations as set out by

Husserl. Having fixed the four elementary operations as a basis, he proceeds to

isolate – in the three final paragraphs: “The Higher Operations,” “Mixing of
Operations,” “The Indirect Characterization of Numbers by Means of Equations”
– a number of different methods by which new operations can be generated. In the

light of the “fundamental task” of arithmetic the aim is that these generation

procedures should prove sufficient to generate all conceivable forms to determine
new numbers.180

A first generation procedure arises from the observation of mutual relations

between operations:

. . . a sum of equal addends (thus the cumulative iteration of one and the same number) has

yielded, through the counting up of the occurrences of its repeated term, a new means of

symbolic number formation: b times a. We have obtained the product representation. But
a product of equal factors (thus the multiplicative iteration of one and the same number)

179PoA 407–408 (my emphasis); PdA 429.
180Cp. Webb 1980, 25.
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then provides, once again, through the counting up of the occurrences of the repeated

factor, a means of abbreviated and indirect number characterization. We obtain the power
concept, ab. And one easily sees that this new type of symbolic number formation has a

sense for any pair of numbers a and b, i.e. it characterizes a wholly determinate number.

In the same way we can continue on: through counting how often a number has been

iteratively raised to a power there arises a new type of symbolic number characterization,

that of elevation; through the counting up of iterated elevations, again a new one; and so

on in infinitum.181

Hence, starting from addition, the iteration of the last operation introduced leads
to a new operation, and this procedure can be iterated an arbitrary number of

times.182 In other words, Husserl has a clear vision of the succession of opera-

tions183 later known as ‘Ackermann’s succession’, that is, the infinite succession

f0; f1; f2; f3; . . .

of binary, total numerical functions defined as follows: f0 is addition (which can be

defined by primitive recursion184 from the successor operation), f1 is multiplication
(which in turn can be defined by primitive recursion from the addition operation)

and, for k� 1, fkþ1 is the function which is defined as follows by primitive recursion

from fk:

fkþ1ðx; 0Þ ¼ 1

fkþ1ðx; yþ 1Þ ¼ fkðx; fkþ1ðx; yÞÞ

In this way, we get an infinite succession of binary functions, each of which, with

the exception of the initial function f0, is defined in terms of the immediately

preceding function by means of the primitive recursion schema.185 We may thus

181PoA 292; PdA 276–277.
182Webb 1980 points out that H. Grassman “was the first mathematician both to approach

arithmetic axiomatically and to employ recursive definition for the basic arithmetic operations.

. . . Recursive definitions for the basic arithmetic operations began to appear frequently in the

literature after Grassman. . .” (44).
183For this interpretation see also Casari 1991.
184See Appendix 1 for a precise definition. Intuitively, a primitive recursive definition of a unary

function f (the n-ary case, with n > 1, being analogous) consists of (i) an explicit definition of the

value of f for the argument 0, and (ii) the definition of the value of f for an arbitrary argument

distinct from 0, i.e. for an argument of the form x þ 1, in terms of the value that f assumes for the

argument x.
185It is reasonable to maintain that Husserl’s theorizations here do not go beyond ‘Ackermann’s

succession’. There is no evidence at all that Husserl had realized the gap, both from the conceptual

point of view and in terms of arithmetical complexity, between the succession f0, f1, f2, . . . and the
so-called ‘Ackermann’s function’, i.e. the ternary function A defined by:

A(n,m,r) ¼ fn(m,r)
A is clearly a computable function, due to the fact that each function in Ackermann’s succession is

computable; one can prove however (as Ackermann did) that A is not primitive recursive. A
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conclude that the primitive recursion schema, even if it is not explicitly theorized, is
clearly exemplified by the above succession of operations.186

A second way to get new operations is to find and identify the inverse of each

given operation. Each operation belonging to the infinite succession considered

above produces only one inverse if it is commutative, and two inverse operations if

it is not; e.g., from exponentiation the two operations of root extraction and

logarithm are generated, whereas from multiplication, which is commutative,

only division is generated.

As the concept of product led to the inverse concept of the quotient, so also each of these

new forms leads to corresponding inverses. If, for example, the power concept is estab-

lished, then the symbolic formation ab points to a certain number c, where ab ¼ c. But now,

in virtue of precisely the same relation, b also in a certain way is characterized by a and c,

and likewise a by b and c. b is characterized as the number of multiplicative iterations of a

which is equivalent to the number c; and a as the number which multiplicatively iterated b

times yields the number c. We therefore have here acquired two new ways of indirectly
symbolizing number formations (in symbols, blog a and b�c), through the inversion
(Umkehrung) of the relationship defining the concept of power. And in the same manner
each further member187 in the above sequence of number characterizations obviously
supplies, through inversion of its definition, a new pair of characterizations.188

As we see, Husserl considers here the step from a total not necessarily unary
function f (as already stated, all functions of the above succession are binary and

total) to its inverse (or inverses); and he expressly poses the problem of the

partiality or non-partiality of functions obtained by inversion (“whether . . . the
problems here characterized have a signification under all circumstances, i.e. for

any arbitrary pairs of numbers a, b . . .”189): the fact of not imposing as a condition

the surjectivity of the function to invert implies that the functions obtained by

inversion can be partial, which is the case for the examples mentioned by Husserl:

division, the logarithm and the root.
As in the case of elementary operations, also for the higher operations consid-

ered up to now – i.e. those belonging to Ackermann’s succession and those obtained

by inversion – Husserl discusses the problem of how to calculate them, in the sense

recursive definition of A requires essentially a nested double induction, which does not fit into the

primitive recursion schema.
186Webb 1980 recalls that also Dedekind used “recursion to provide a precise mathematical basis

for the systematic introduction of new arithmetical operations”. Furthermore, concerning

Ackermann’s sequence Webb rightly stresses: “Of course, none of these fk, beyond f2 [notice

that in Webb’s definition f0 is taken to be the successor function] have any use in the market place,

as already by f4, called ‘elevation’ by Husserl, we encounter a growth rate so steep as to make its

calculation a practical impossibility for all but the smallest arguments. By f5 even our standard

notation conventions begin to buckle, while for f6 we presumably will have to remain for ever

content with a recursion formula [of the kind exemplified by the scheme] as our only feasible

description of it” (51–52).
187Read: each operation.
188PoA 293 (my emphasis); PdA 277.
189PoA 293; PdA 277–278.
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of identifying one or more procedures as simple and efficient as possible for the

reduction to the normal form of the ‘terms’ containing them. He suggests, in this

case, a combination of the method already described for elementary operations

(exemplified by the reduction of the sum of two big numbers to ‘elementary’ sums,

i.e. sums of numbers between 1 and X) with one that consists in the reduction to

operations of a lower level. The discussion of another general issue, i.e. the

assessment whether or not certain important properties are valid for the operations

that are constructed step by step, e.g., commutativity (“whether or not they are

affected by interchanging the numerical values [Zahlenwerte] without changing the
form of the combination”190), is connected with this problem: it is apparent that the

knowledge of structural properties that govern the behaviour of the operations, in

this case commutativity, is clearly relevant with respect to possible gains in the

efficiency of the calculations.

Among the ‘conceivable arithmetical operations’ we find also ‘compositions of

operations (Operationsmischungen)’. These are operations formed by the composi-

tion of other operations that have a lower degree of complexity and behave as

primitive elements:

But with the number compositions and the corresponding operations taken into consideration

up to now, the totality of those that are in general conceivable is still not exhausted. There is
added the entire manifold of new forms that arise from combination of the ones already formed
by using them as their basic elements. There arise problems such as, for example, multiplying
a sum by a number, dividing a product by a sum, raising a quotient to a power, etc.191

The idea here is that of “putting together many functions,” i.e. to move, for

example, from a function f and a function g (which for simplicity we will consider

to be unary) to the function f(g(x)). Each ‘composition’ constitutes a method for

generating new numerical constructions starting from given ones and, vice versa, to
reduce complicated numerical constructions to their normal form.

With regard to the general problem we are discussing here, identifying all
conceivable forms to determine new numbers, Husserl points out that there is a

final case that should be considered. In those discussed up to now, we have found

systematic numbers symbolically determined by ‘complexes’ made up of some

given numbers and of some operations, and arithmetic has the task to reduce every

similar ‘complex’ that is different from the canonical one to its canonical form, and

this has to be done in the most efficient way in terms of speed of calculation.

Nevertheless, a number can also be determined implicitly, by an equation or a

system of equations, of which it is the only solution. “. . .numbers can also be

defined by equations . . . . Finally, there is yet to be mentioned the possibility that

a number is defined by a system of equations, rather than by a single equation.”192

In the first case, we speak of direct operations or the direct determination of a
number: the value is calculated directly from the data. The second case is that of

190PoA 293; PdA 277–278.
191PoA 294 (my emphasis); PdA 278.
192PoA 297; PdA 281.
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indirect numerical characterization, as Husserl puts it, i.e. when a number is

symbolically defined as “an unknown constituent of . . . a precisely characterized

structure of numbers.” The value of the unknown component is calculated by

“unravelling (aufwickeln)” relations that occur between the unknown and the

known numbers: “here we now have before us a far more difficult problem: namely,

that of unravelling complicated number interrelationships into which the unknown
number itself is interwoven.”193 In general, an equation in one unknown x can be

represented in the form t ¼ c, where c is a known number and t is a combination of

operations made up of known numbers a, b, . . . and the unknown x; in the case in

which there is a unique solution n to the equation (i.e. a unique number n such that for x
¼ n the equation becomes true), this n is in fact a function of the parameters a, b, c, . . . .

Of particular interest is the thesis that equations and systems of equations194 are
a generalization of that particular kind of indirect numerical characterization that
is obtained by inverse operations. The specific examples of inversion considered by

Husserl (i.e. the inversion of the direct operations of addition, multiplication and

power which gives rise, respectively, to subtraction, division, root extraction and

logarithm195) can also be expressed as equations; more exactly, each of these

operations is a specific case of the solution of an equation. Subtraction solves (if

this is possible, by remaining in the domain of natural numbers) the equation a þ x
¼ b (for a and b given numbers, and unknown x); the same holds for division, which
solves the equation a¼ b · x, and for the two inverses of the power: “b-th root of a¼
the unique number x, if it exists, that solves the equation xb ¼ a” and “base-a
logarithm of x ¼ the unique number x, if it exists, that solves the equation ax ¼ b”.
In Husserl’s words: “one immediately sees that in all of these cases we have a

generalization of that type of indirect characterization of number which we have

observed in every ‘inverse’ number formation. In the first sequence of number

formations a number x was defined by means of the combinations:

aþ b; a � b; ab; etc:;

and in the second sequence by means of the conditions:

aþ x ¼ b; a � x ¼ b; ax ¼ b; xa ¼ b; etc:196

193PoA 297; PdA 281.
194As regards systems of equations, we observe that it is always possible to associate with every

system of equations an appropriate equation, equivalent to the first in the sense that a number x
solves each equation of the system if and only if it solves the equation associated with the system.

The case in which a number is determined by a system of equations, rather than by one, is

therefore, as Husserl stresses, a case that “in spite of the greater degree of complication, offers

nothing essentially new from the logical perspective” (PoA 297; PdA 281).
195But we can presume that Husserl also has in mind inversion, for example, of the direct operation

of tetration (or super-exponentiation), i.e. the one that immediately follows the power function in

Ackermann’s succession.
196PoA 297; PdA 281–282.
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Moreover, Husserl observes that the inversion is not limited to operations which are

“not-composed” (as they are with Ackermann’s succession): “but now through

combinatorial linkage of these197 there are also to be constructed other complicated

conditions of the same character: e.g., a · x � b ¼ c; a · x2 þ bx ¼ c, and the like.”198

We can be interested in considering the inverse of a ternary function f as for example

f (a, x, b,)¼ a · xþ b, i.e. the function f �1(a, b, c)¼ the unique x, if it exists, such that
f(a, x, b,) ¼ c. It is right in this sense that the inversion procedure is a particular case
of that more general form of inversion which Husserl calls ‘solution of equations’.

With this last method for generating new operations we have considered all the
generation procedures identified by Husserl in order to circumscribe ‘the totality of

conceivable arithmetical operations’. And, in our judgment, this is indeed the most

innovative idea to be found in the final chapter of the Philosophy of Arithmetic: as
far as we know Husserl is the first scholar who, having insisted on the algorithmic

meaning of arithmetical operations, explicitly specifies a number of general proce-

dures by means of which new arithmetical (computable) operations are generated

from given ones, and at the same time attempts to investigate the question

concerning the characterization of the class of computable arithmetical functions

as a whole. In Appendix 1 we defend the thesis that the generation procedures that

Husserl studies in the 13th chapter of the Philosophy of Arithmetic give indeed rise
to a class of numerical functions that is extensionally equivalent to the one known

in contemporary logic as the class of ‘partial recursive functions’.

The Philosophy of Arithmetic concludes with these words:

The fact that in the overwhelming majority of cases we are restricted to symbolic number
formations forces us to a rule governed elaboration of the number domain in the form of a

number system ([. . .]) that according to a fixed principle always selects one from among the

totality of the symbolic formations corresponding to each actual number concept and

equivalent to it, and simultaneously assigns that one symbolic formation a systematic

position. For every other conceivable number form there then arises the problem of

evaluation: i.e. of classificatory reduction to the system number equivalent to it. But a

survey of the conceivable forms of number formation taught us that the invention of

appropriate methods of evaluation is dependent upon the elaboration of a general arithme-
tic, in the sense of a general theory of operations.”199

1.17 Appendix 1: Husserl’s Computable Functions200

As a result of our analysis of the 13th chapter (The logical sources of Arithmetic) of
the Philosophy of Arithmetic we have a complete inventory of the various methods

197That is, the ‘conditions’ of the ‘second sequence’ above.
198PoA., 298; PdA 282.
199PoA 299; PdA 283 (italics in the original).
200This appendix is excerpted from Centrone 2006.
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for generating new operations which Husserl considers to try to dominate the

‘totality of conceivable arithmetical operations’. Summing up, we have:

(i) Certain elementary or “initial” operations: addition and multiplication (which

are total), and subtraction and division (which are partial)
(ii) Certain procedures by which new operations are generated out of other given

operations, and specifically: (a) the schema of primitive recursion - which is not

explicitly isolated, but rather the application of which is clearly exemplified in

the construction of the ‘Ackermann’s succession’; (b) inversion – that is to pass

from a function f to its inverse function or functions – viewed as a special case

of the more general procedure of determining new numbers by means of

equations; (c) composition, which consists in “putting together some functions

(Operationsmischungen)”

It is now quite natural to ask whether it is possible to give a rigorous (mathemat-

ical) definition of Husserl’s notion of the ‘totality of conceivable operation in

calculation’, and moreover whether it is possible to prove that this class of func-

tions, which we will call ‘class H’ (functions à la Husserl) corresponds, i.e. is
extensionally equivalent, to the class of functions known, in computability theory,

as the class of partial recursive functions.201 To this aim, we think it advisable to

review a number of important definitions.

A n-ary (n� 1) partial numerical function is a correspondence fwhich associates
to each element of a certain subset D(f) of the set Nn of all the ordered n-tuples of
natural numbers – the domain (of definition) of f – one and only one natural number.

In the case that D(f) coincides with Nn, f is said to be total. When dealing with

expressions, more precisely terms, which may be undefined (that is, expressions

which may not denote anything, such as for instance, in the context under consider-

ation, the expression f(2) when the argument 2 does not belong to the domain of f )
the usual identity relation (denoted by ‘¼’) is conveniently replaced by the so-called

“Kleene equality” relation (here denoted by the symbol ‘�’): t� s holds if and only
if the terms t and s are either both undefined, or are both defined and t ¼ s.

A function f is said to be (intuitively) computable when there exists a mechanical

procedure which, for every n-tuple x (¼x1,. . ., xn) of numbers belonging to D(f),
allows us to compute in a finite number of steps f(x), the value of f for the arguments

x. As we saw in the preceding section, the fundamental problem of finding an

adequate mathematical characterization (or definition) of the intuitive notion of

computability – in other words, the problem of elaborating a mathematical theory
of the notion of effectiveness (in principle) – has received various answers since

201This question was originally raised in Casari 1991: “It would be really worth to further

investigate Husserl’s attempt to dominate the totality of all conceivable arithmetical operations,
as Husserl calls it. For, we also believe not to get wrong by saying that this is, most likely, the first

characterization of the class of functions nowadays known as the class of partial recursive
functions” (46). Indeed, our investigations concerning this issue, which finally led to the result

presented here, originate from Casari’s insightful suggestions to attempt at a mathematical

reconstruction of Husserl’s intuition.
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1933–34 which, although conceptually distinct, have turned out to be extensionally

equivalent. The approach considered below, which comes essentially from Gödel

and Kleene, is best suited for our aims and is characterized by the fact that the class

of functions which is proposed as a formal candidate capable of capturing the notion

of partial computable function is defined inductively.

Definition. The class Pm of partial m-recursive functions is the smallest class of
partial numerical functions which

(i) contains, as “initial” functions, the total unary functions Z (constant-zero: Z(x)
¼ 0) and s (successor: s(x)¼ xþ 1) and, for k� 1 and 1� i� k, the total k-ary
functions pk,i (projections: pk,i(x1,. . .,xk) ¼ xi);

(ii) is closed under substitution, or composition: given a n-ary function h in Pm
and n k-ary functions g1, . . . , gn in Pm, the k-ary function f defined by:

f ðx1; . . . ; xkÞ � hðg1ðx1; . . . ; xkÞ; . . . ; gnðx1; . . . ; xkÞÞ

belongs to Pm. We denote such a function f by S(h; g1,. . ., gn);

(iii) is closed under primitive recursion: given a k-ary function g and a k þ 2‐ary
function h in Pm, the unique kþ 1-ary function f satisfying the two conditions:

f ðx1; . . . ; xk; 0Þ � gðx1; . . . ; xkÞ
f ðx1; . . . ; xk; yþ 1Þ � hðx1; . . . ; xk; y; f ðx1; . . . ; xk; yÞÞ

belongs to Pm. We denote such a function f by R(g, h);

(iv) is closed under unbounded minimization: given a k þ 1-ary total function h in

Pm, the k-ary function f such that:

f ðx1; . . . ; xkÞ � myðhðx1; . . . ; xk; yÞ ¼ 0Þ

(where ‘mx(. . . x . . .)’ denotes the least number n s.t. . . . n . . ., in case there

exists a y s.t. . . . y . . . , and is undefined otherwise) belongs to Pm. We denote

such a function f by M(h)202.
Concerning point (iv), note that, although M is required to take a total function

h as argument, in general the function M(h) does not need to be total; actually, a

necessary and sufficient condition for the totality of M(h) is that h satisfy the

regularity property: 8x∃y (h(x, y) ¼ 0).

202Equivalently, the closure of the class Pm under unbounded minimization may be formulated as

follows: given a kþ1-ary relation Rwhich is recursive (that is, such that its associated characteristic
function wR is inPm), the k-ary function f such that f(x1, . . . , xk)� my(R(x1, . . . , xk, y)) belongs toPm.
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Definition. The class Rm of total m-recursive functions is the smallest class of total
numerical functions which includes the initial functions of point (i) above, and is
closed under the operators S, R e M, the latter applied to functions satisfying the
regularity condition.

Now, in Husserl’s presentation of the totality of conceivable arithmetical func-

tions we also find certain basic, initial functions (the four elementary operations),

and certain procedures by means of which new operations can be generated; in
particular, among the above mentioned ones, the composition procedure (Opera-
tionsmischungen), which clearly is adequately reflected on the formal level by the

operator S (given that projections are present), and – although not so explicitly, as
we already observed – primitive recursion R. Minimization (M) is not considered by
Husserl, but on the other hand the inversion procedure is explicitly singled out. It is

worth noticing here that the latter generative procedure – more precisely, a

restricted form thereof – also plays a central role in the interesting equivalent

characterization of the class of total recursive functions as presented by Julia

Robinson,203 namely:

Definition. JR0 is inductively defined as the smallest class of unary, total numerical
functions which

(i) contains, as initial elements, the functions s (successor) and E (excess over a
square): E(x) ¼ x – n2, where n is the greatest number such that n2 � x and
(n þ 1)2 > x;

(ii) is closed under

l restricted composition: for any two functions f and g in JR0, the function

h such that h(x) ¼ f(g(x)) (i.e.: h ¼ S(f;g)) belongs to JR0;
l addition of functions: for any two functions f and g in JR0, the function

h such that h(x) ¼ f(x) þ g(x) (i.e.: h ¼ S(þ; f,g)) belongs to JR0;
l inversion of surjective functions: for every function f in JR0 such that 8n∃m

(f(m)¼n), the inverse-function of f, defined as the function h such that h(x)¼
my(f(y) ¼ x), belongs to JR0. We will denote this function by I(f ).

We have to point out that the reason why we use the operator m is that f is not
necessarily injective: so, among the many possible arguments y s.t. f(y)¼ x (at least
one does exist, since f is surjective), we choose the smallest.

Definition. Let J be the binary function (‘pairing function’) such that

Jðx; yÞ ¼ ½ðxþ yÞ2 þ 3xþ y�=2

203Robinson 1950. For a clear presentation, see also Yasuhara 1971, 110–117.
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It is not difficult to prove that J belongs to Rm (actually, J is primitive recur-
sive)204 and that J puts into a one-to-one correspondence the set N2 of all the

ordered pairs of natural numbers with the set N of all natural numbers.

Theorem. The class Rm of all total recursive functions coincides with the closure
under substitution of the class JR0 extended with the function J; that is to say: every
total recursive function can be obtained by repeated application of the operator S,
starting from (unary) functions in JR0, and J.

Concerning the characterization of Rm through inversion which follows from the

above result, it is important to notice that

(i) only unary functions are considered and inverted;

(ii) moreover, only unary surjective functions are inverted (surjectivity obviously

being a necessary condition to have totality).

In contrast, in the 13th chapter of the Philosophy of Arithmetic (at least, in the

examples given by Husserl) inversion of functions which are, in general, neither
surjective nor unary are considered. Two consequences follow:

First, given a unary, possibly non-surjective function f, its inverse function I(f)
may be partial: I(f)(m) is undefined, whenever m is s.t. there does not exist any

number n satisfying f(n) ¼ m.
Next, let us consider a binary function f. In what way can one speak of the

inverse function of f? Normally, when one refers to numerical functions one means

functions which associate numbers, and not pairs or triples or . . . of numbers, to

numbers: in other words, values are always elements of N, and not of N2, N3, . . .
Husserl’s solution consists in the association of two inverses to such a f. For
instance, if f is the exponential function, its first inverse function is the x-th root
of y function:

Radðx; yÞ � the unique ðif it existsÞ positive integer z; s:t:zx ¼ y

While its second inverse function is the base-x logarithm of y function:

Logðx; yÞ � the unique ðif it existsÞ positive integer z; s:t:xz ¼ y:

So, keeping to the binary case – the extension to the n-place case with n greater

than 2 being straightforward, as we’ll see – we will assume, in full generality,205

204A total function f is primitive recursive if it can be obtained from the initial functions Z, s and pn,i
by means of the operators S e R. In the expression defining J, note that the numerator is always an

even number, so that dividing by 2 makes sense.
205Notice that – the assumption that f is injective in both places separately, like the exponential

function, being too restrictive – we have replaced the operator i, ‘the unique . . . such that . . .’, with
the operator m, ‘the minimum . . . such that . . .’. We will come back later on this rather delicate

point.

58 1 Philosophy of Arithmetic



that every function f is associated with the two inverse functions, both possibly

partial, I1(f) and I2( f ):

I1ðf Þðx; yÞ � mzðf ðz; xÞ ¼ y

I2ðf Þðx; yÞ � mzðf ðx; zÞ ¼ y

Given the above preliminary clarifications, we can now readily pass to the presen-

tation of our proposal of a rigorous formal definition of the class H of arithmetical

functions à la Husserl, justifying our choices in the concluding paragraphs.

Definition. H is the class which is defined inductively (analogously to the classes
Pm, Rm and JR0) as the smallest class of partial numerical functions which

(i) contains the initial functions: þ (addition), · (multiplication), – (subtraction,
partial), : (division, partial), plus the projections pk,i;

(ii) is closed under the following generating procedures:

l substitution (Mischung) and primitive recursion (operators S, resp. R), as
for Pm;

l inversion, defined as follows: given a total nþ 1-ary (n� 0) function f inH,

the n þ 1-ary functions I1(f), . . ., Inþ1(f), such that (for 1 � i � n)

Iiðf Þðx1; . . . xn; yÞ � mzðf ðx1; . . . xi�1; z; xi; . . . xnÞ ¼ yÞ

belong to H.

Now, it is not difficult to prove that H contains the functions constant-zero and
successor and is closed under the operator M of unbounded minimization.

First of all, since clearly x – x ¼ 0 and x þ (x : x) ¼ x þ 1 for every x, we have
Z(x) ¼ x – x and s(x) = x þ (x : x); therefore
Z 	 S( – ; p1,1, p1,1) and s 	 S(þ ; p1,1, S( : ; p1,1, p1,1)) belong to H.

Next, let h be a total k þ 1-ary function in H. Since H is closed under inversion
of total functions, H contains – in particular – the k þ 1-th inverse of h, that is the
function Ikþ1(h) such that (with x 	 x1, . . . xk):

Ikþ1ðhÞðx; yÞ � mzðhðx;zÞ ¼ yÞ

Let us now consider the k-ary function f defined by:

f 	 SðIkþ1ðhÞ;pk;1; . . . ;pk;k;SðZ; pk;1ÞÞ

SinceH is closed under substitution (S) and contains the functions Z (as we have

already verified) and the projections (which are initial functions), it holds that f
belongs to H.
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But

fðxÞ� Ikþ1ðhÞðpk;1ðxÞ; . . . ;pk;kðxÞ;SðZ;pk;1ÞðxÞÞ� Ikþ1ðhÞðx1; . . . ;xk;Zðpk;1ðxÞÞÞ
� Ikþ1ðhÞðx1; . . . ; xk;Zðx1Þ� Ikþ1ðhÞðx1; . . . ; xk;0Þ� mzðhðx1; . . . ; xk;zÞ¼ 0

and so M(h) 	 f belongs to H.

Incidentally, we observe that if we add to the initial functions both the charac-

teristic function of identity (e(x, y)¼ 0 if x ¼ y, and ¼ 1 otherwise) and of the strict

order relation (m(x,y) ¼ 0 if x < y, and ¼ 1 otherwise), then – given that addition

and multiplication are initial functions – we may even dispense of requiring closure

under the operator R of primitive recursion.206

As an immediate corollary of what has been established above, we find that the

classes H and Pm are extensionally equivalent, and so that the class of all ‘conceiv-

able arithmetical functions’ isolated by Husserl coincides – assuming the adequacy
of our formal reconstruction – with the class of all partial numerical computable
functions (modulo the Turing-Church Thesis).

It might be objected that our reconstruction is, at least in certain respects, ad hoc.
To begin with, why should one add projection functions to Husserl’s initial opera-

tions (the four elementary operations)? This objection can be easily met. The

inclusion of the projections among the initial functions is dictated exclusively by

the necessity to cope with the “rigidity” of the operator S, by means of which alone
it is clearly impossible to construct obvious ‘compositions’ in which e.g. one
identifies some variables, as in some of the Mischungen which Husserl himself

considers (for instance, x2 þ bx). A second, and according to us more serious,

objection, might point to the fact that, in order to generalize the examples of

inversion explicitly considered by Husserl and to introduce an inversion operator

(the operator I) – with the aim of obtaining a class of functions extensionally
equivalent to Pm –, we have made use, in the definition schema of the latter, of

the operator m. In other words: m is already an ingredient of our general operator of

inversion. Now, on the one hand this circumstance is not automatically tantamount

to saying that H is closed under unlimited minimization (in other words: this has in

any case to be proved). On the other hand we have to admit that closure of H under

unlimited minimization can be easily expected – and in fact the proof given above is
extremely simple.

With regard to this second objection, it is our present opinion that the possibility

of a suitable weakening of the operator I, which is still capable of yielding closure
under M without containing minimization as an explicit ingredient, cannot be
excluded.

206The reason being the following: H, modified as indicated, turns out to be still closed under

minimization and to contain a b-function, and these features are sufficient to express primitive

recursion.
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In brief, we think the crux of the question is as follows. As we have seen, all the

examples which Husserl gives of the inversion procedure concern binary functions

h which – like exponentiation – are injective in both the arguments, that is, satisfy

the conditions:

hðx; zÞ ¼ hðy; zÞ ! x ¼ y and hðz; xÞ¼hðz; yÞ ! x ¼ y:

In this case, in order to define the two inverse functions I1(h) and I2(h) we may

equivalently use, in place of the operator m, the operator i (‘the unique number, if it

exists, such that . . .’):207

I1ðhÞðx; yÞ � izðhðz; xÞ ¼ y

I2ðhÞðx; yÞ � izðhðx; zÞ ¼ y:

We do not know whether the restriction to the applicability of the operator I,

defined via i as above, to injective functions, is such that closure under minimiza-

tion, hence the equivalence of the class Hmodified in this way with the class Pm of

partial recursive functions,208 is still provable. What is certain is that, in the

chapters of the Philosophy of Arithmetic we have analyzed, there is no example

of inversion of non-injective functions, yet one cannot find clear elements to support

the conjecture that by inversion Husserl meant inversion of injective functions only.
So, to conclude, the closure under inversion which Husserl has in mind might be

weaker than the one we postulated in the definition of the class H.

1.18 Appendix 2: On Operations, Algorithmic Systems,

and Computation

‘Operation’, ‘computation’, ‘algorithm’ are, as we have seen, fundamental and

interrelated key-notions that enter into many of Husserl’s reflections in his Philoso-
phy of Arithmetic. It will be rewarding to have a close look at two short treatises

from the Nachlass that have been sadly neglected in the literature, as they will help

us to throw further light on this group of concepts.

207Note that, in case there is more than one z such that P(z) holds, izP(z) turns out to be undefined
whereas mzP(z) is defined. For instance, let h(0, x) ¼ 3 and h(1, x) ¼ 3: then iz(h(z, x) ¼ 3) is

undefined and mz(h(z, x) ¼ 3) is defined and equal to 0.
208While it is clear that inversion I, once it is defined with i in place of m and not restricted to

injective functions, doesn’t preserve computability.
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1.18.1 On the Concept of the Operation

Husserl’s treatise “Zum Begriff der Operation”209 derives from a manuscript that

contains studies for the planned second volume of the Philosophy of Arithmetic.
Evidence for the editor’s conjecture that the text dates from 1891 is the fact that

Husserl scribbled ‘18.XI.91’ on a page of the manuscript.210 On the manuscript

cover he wrote:

Concept of “combination” (“operation” within a Mathesis). Basic operation. Partition of

combinations. — Detailed investigation: why equivalent combinations ([i.e.] operations

that evidently “come to the same thing”) are regarded as the same operation whereas in

other cases equivalences are affirmed as valuable propositions (wertvolle Sätze)? Which

equivalences are [to be] affirmed as propositions within aMathesis, and which ones must be

regarded only as different expressions of the “same” proposition?211

The text, far from offering a unified and systematic account of the above topics,

deals in a rather fragmentary and tentative style with a number of extremely

interesting problems and conceptualizations having to do with the role of ‘equiv-

alences (Äquivalenzen)’ in deductive theories and algorithmic systems, as well as

with the notions of combination (Verknüpfung) and operation (Operation). For the
sake of exposition and analysis it is convenient to start with the latter issue.

1.18.1.1 Combinations and Operations

Husserl uses the term ‘combination (Verknüpfung)’ to mean, in full generality, any

kind of conceptual synthesis of two or more objects which determines a new object

called the ‘result (das Resultat)’ of the combination. Hence we find combinations

not only between numbers, that is, within the arithmetical domain, but between

objects of any domains.

Wherever a conceptual determination is present which determines one object by means of

other objects, we speak of a combination (synthesis) of the latter objects into the former, the

“result of the combination.” Thus, for example, we call any kind of conceptual production

(Herstellung) of one number from two or more numbers a combination (additive, multipli-

cative, etc.) of those numbers.212

The objects entering in a combination either all belong to the same class, in

which case a new object belonging to the same class is determined, or each of them

belongs to a different class, in which case the object determined by the combination

bears the conceptual determinations of each of the classes to which the combined

objects belong.

209PdA App. 408–429; PoA 385–408. Cp. Centrone 2005 for the following discussion.
210PdA App. Textkritische Anmerkungen 538.
211Loc. cit.
212PdA App. 422; PoA 400.
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Husserl often calls the objects which are connected in a combination ‘members

(Glieder)’ of that combination. Since in current algebraic jargon the word ‘combi-

nation’ (in German, Verknüpfung) is sometimes used as a synonym of ‘(binary)

total function over a given set’, it is important to stress that this is not at all the

intended meaning in Husserl’s treatise. It clearly emerges from what he says that

the combination is not at all what effects the connection between its members – the

operation, as we would say – but rather the complex constituted by objects which

are connected (the members) plus their combination – the explicit presentation of

the result, as we would put it nowadays. So in the case of a þ b, for instance, the
combination is not the operation of addition but the very complex aþ b. To put it in
another way, from the formal-morphological viewpoint of current logic Husserl’s

‘combinations’ correspond to complex individual terms of an elementary language,

that is, to those complex expressions which are built from individual variables and

constants by means of iterated application of function letters.

The operation is rather the arithmetical counterpart of the ‘combining thought

(verknüpfender Gedanke)’ that is embedded in a combination. In the treatise we

find some interesting though rather sketchy notes on the nature of operations and

their connection with the notion of production (Erzeugung) of an object. Husserl

also briefly considers the question whether one really needs at least two objects to
have a combination, a requirement he had indeed presupposed throughout the

preceding pages. He takes as an example what happens with negation in the ‘logical
calculus’ (read ‘calculus of classes’), where to each class a there is associated its

complementary class (a’, in Husserl’s notation). His proposal is either to treat

‘unary’ operations as binary univocal relations (“We can interpret the situation as

involving a relation: a f b. Then b is to be a’; a’ unambiguously determinate”), or

to generalize the notion of operation itself: “An operation is a way of deriving new

numbers from one or several numbers; or, from one object: negation, inversion,

coincidence”.213

A certain ambiguity in Husserl’s talk of operation should also be mentioned: he

employs the term ‘operation’ both to designate a certain subjective activity which

can be performed on aggregates, that is, uniting (Zusammenfügung) and dividing

(Teilung) and to designate the ‘forms of numerical determination (Formen der
Zahlbestimmung)’, that is, the arithmetical operations. It is hard to see how a

subjective activity could be a mathematical object satisfying certain general laws.

One stumbles here over the difficulty Husserl himself describes in the Preface to the
first edition of the Prolegomena: “I became more and more disquieted by doubts of

principle, as to how to reconcile the objectivity of mathematics, and of all science in

general, with a psychological foundation of logic.”214

We stick here to the second use of the term ‘operation’: under this reading, to

repeat, operations are ‘forms of numerical determination’, forms of determining

new numbers by means of given numbers. These forms are founded upon (or, in a

213PdA App. 427; PoA 405.
214PR VII, PRe 42.
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sense, generated by) subjective activities such as Addieren and Dividieren. Accord-
ing to Husserl, “on such concepts of determination all the law-like regularities are

grounded that prevail in the domain of number and that are to be investigated by

arithmetic”.215 Obviously, not all possible forms of numerical determination are of

interest to arithmetic. It considers only determinations of numbers by means
of numbers, hence it is not concerned at all with determinations like “the number

of flowers in this garden”.216

Husserl gives the following outline of the manner in which arithmetic must

proceed in order to obtain general laws concerning these ‘forms’:

(i) In order to discover the most general laws of the numerical domain arithmetic

has to leave any specific determination of numbers out of consideration.

(ii) Therefore, each number has to be regarded only as “a certain number

(eine gewisse Zahl)”, as “an arbitrary (irgendwelche) number”. This is the

reason why in general arithmetics numerals are replaced by letters a, b, etc.217

(iii) Once this preliminary abstraction has been effected, it is to be asked in which

forms new numbers can be determined from arbitrarily given numbers,

(iv) and as soon as these ‘forms of construction’ are found, the task is to specify the

general laws to which they are subject. In Husserl’s own words, “when we

have found such forms, we think of ‘any (irgendwelche)’ numbers as united by

them, and then we ask ourselves which general laws result from the concepts

of these forms of construction.”218

Steps (ii) and (iii) rest on the possibility to pass from a concretely given

combination to a ‘form of combination’. This form is obtained by replacing the

objects (that is, the members of the combination) by symbols for objects, and by

replacing the combination (i.e. the operation) by a symbol for an operation. For
instance, to get the form of the concrete combination 5 þ 7 we must first of all

substitute letters for the determinate numerals ‘5’ and ‘7’. In this way, each of the

two members of the given combination is thought of only as “a certain number (eine
gewisse Zahl)”, and now one just has to stipulate that, inside a formal expression,

different occurrences of the same letter always refer to the same object (and, of

course, that different objects are referred to by occurrences of different symbols).

Yet the form we have so far obtained, a þ b, is still bound to a specific domain,

namely that of natural numbers. To build up a more abstract formal theory (a

general arithmetic), one has to go one step further and pass to the general form of

that combination in which the addition sign is replaced by an indeterminate opera-
tion symbol, for instance r. So the general form of the concrete combination we

started from is a r b. As in the case of the letters a and b one now stipulates that

inside an expression as well as inside a ‘formal theory’ different occurrences of the

215PdA App. 408; PoA 385.
216Loc. cit.
217PdA App. 409; PoA 386.
218PdA App. 408; PoA 385.
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same operation symbol always denote the same operation (and, of course, that

distinct operations are denoted by different symbols).219

In Husserl’s treatise the idea of arriving at the form of a combination by

enucleating, as it were, a concretely determined combination at different levels of

abstraction is elaborated at great length. Although his reflections are neither always

accompanied by precise definitions nor always entirely coherent, it is worth trying

to reconstruct some of them – as an impressive sample of his interest in the

algebraic way of thinking.

Both for a concretely determined combination and for a general form of combina-

tion Husserl distinguishes material types from material modes – and formal types

from formal modes. The ‘material type (der sachliche oder innere Typus)’ of a

combination whose members are, say, numbers is the kind of connection (e.g.

additive, multiplicative, mixed, etc.) that combines the members, that is, der ver-
knüpfende Gedanke. For example, aþ b and bþ a belong to the same material type,

and so do (aþ b)þ c and (aþ c)þ b, whereas aþ b and (aþ b)þ c do not belong to
the same material type, although they share the kind of combination (Verknüpfung-
sart, see below). In a type the number of the members is relevant but not their order.

As regards the ‘material mode (der materiale Modus)’, the position of the

members inside a combination does matter: given a type there are as many material

modes corresponding to that type as there are different ways to permute the order of

the same members.220

If in a non-symmetrical combination we interchange the members occupying different

positions, then the “mode of combination” of the members changes, and thus, in a certain

manner, the concept of that combination as well. Nevertheless, the general concept of

combination – the type and the kind of the combination – remains unaltered. Consider, for

example, the combination a þ b. In b þ a the same members are combined in a different

way, but the type is the same: the addition of a number to another.221

All general laws concerning combinations, Husserl says, concern ‘modally’

determinate combinations.222

The ‘formal type (der formale oder äußere, reine Typus)’ of a combination is

characterized as follows:

By the formal type of a combination we understand the concept that results from its type

through the following abstraction: As regards its members we also abstract from the fact

that they are objects of domain D, thus retaining each of them merely as an object in

general. On the other hand, we also abstract from the specific nature of the elementary

combinations constituting the combination as a whole – from combinations of the same

kind merely retaining merely the fact that they are combinations of the same kind, and from

combinations of different kinds retaining only the fact that they are combinations of

different kinds. 223

219PdA App. 427; PoA 404.
220PdA App. 420; PoA 397–398.
221PdA App. 423; PoA 401.
222PdA App. 425; PoA 402.
223PdA App. 426; PoA 404.
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The ‘formal mode (der formale Modus)’ – basically a specific pattern of posi-

tions of the members in a completely abstract form of combination, i.e. in a formal

type – results from a material mode by means of an abstraction that is parallel to

the one leading from a material to a formal type. “If [in (a r b) r0 c] we switch the

letters for the members, arriving at e.g. (b r a) r0 c, we obtain another mode, but the

formal type is the same.”224

Apart from the type and the mode of a combination, Husserl also introduces the

notion of a “kind of combination (Verknüpfungsart)”. At a first sight, at least, this
seems to be the main operation of a combination. Actually, Husserl gives two

different definitions of this concept. According to the first one, the Verknüpfungsart
is the connecting thought of a homogeneous combination of two or more members:

If we direct our attention entirely away from the members and attend exclusively to the

thought that brings about their synthesis, then we obtain the kind of combination. We speak,

for example, of addition, subtraction, etc., as different kinds of number-combinations; and

wherever in so doing we make clear to ourselves the concept of addition in concreto, we
obviously pay no attention at all to the individual members of the particular addition that

serves as our basis. Hence for the concept of the kind of combination the number of the

members is non-essential, whereas the type is immediately modified with any modification

of the number of the members.225

In this sense the combinations a þ b and (a þ b) þ c have the same Verknüp-
fungsart but they are not of the same type, since, as we saw, the type varies with the

number of the members of the combination.

As for the second definition of Verknüpfungsart, we must invoke the Husserl’s

distinction between ‘simple (einfache)’ and ‘complex (zusammengesetzte) combi-

nations’.226 A combination is said to be simple when its members are not them-

selves combinations, as in cases like aþ b and a � b, and a combination is said to be

complex otherwise, as in cases like a � (b þ c) and (a þ b) þ (a � b). Appealing to

this distinction Husserl says that “the type of simple combinations is called the

Verknüpfungsart”.227 So according to this definition (as opposed to the first one) a

Verknüpfungsart comes with a determinate number of argument-places, a determi-

nate -arity, as we would nowadays put it. Under the second reading of the term

‘Verknüpfungsart’ – which is the one Husserl actually employs in the course of his

investigations – we can simply identify a Verknüpfungsart with an operation in the
current mathematical sense.

Having fixed the meaning of ‘operation’ we can now move on to a related notion

that will play an important role in some of Husserl’s reflections on “equivalences”

and algorithmic systems which are to be considered in the next sub-section.

Given the distinction between simple and complex combinations, Husserl

identifies in the processes of instantiation (Besonderung) and composition

224PdA App. 427; PoA 404.
225PdA App. 425; PoA 403.
226PdA App. 426; PoA 404.
227PdA App. 420; PoA 397.

66 1 Philosophy of Arithmetic



(Komposition) the two fundamental ways out of which combinations are generated.

By means of instantiationwe generate e.g. the combinations aþ b, bþ a, aþ c etc.
as particularizations of the additive combination. By means of composition we

obtain a new (form of) combination out of a given (form of) combination by

replacing one of its members by another (form of) combination, not necessarily

one of the same type as the one we started from. For example, from a þ b we may

obtain aþ (bþ c) through composition, and then in turn, e.g., (a � d)þ (bþ c), and
so on.

Given several operations V1, . . . , Vn, Husserl calls the potentially infinite totality

consisting of all combinations that can be constructed, by means of instantiation

and composition, from those operations and the associated simple types the ‘sphere
(Bereich)’ of combinations associated with those operations.

. . . we understand by the sphere of certain kinds combination (Verknüpfungsarten) the
totality of the determinate combinations which fall under those kinds or arise by composi-

tion from combinations belonging to them.228

Thus, for instance, the sphere of (þ, � ) contains the combinations aþ b, bþ a, aþ
(b � c), a þ (b � a), (a � a) þ (b � (a þ b), . . . Formally speaking, we can simply

identify the sphere of V1, . . . , Vn with the set of all terms that can be generated

starting from variables and, possibly, individual constants, by means of the function

symbols V1, . . . , Vn.

1.18.1.2 Equivalences and Algorithmic-Deductive Systems

When Husserl investigates in his treatise “On the concept of the operation” the role
of ‘equivalences (Äquivalenzen)’ and of ‘transformations into immediate equiva-

lents’ in the deductive disciplines, his main question can be rephrased in modern

terminology as follows: how is the abstract-formal approach set up with respect to

typical (arithmetical or more abstract) structures constituted by a domain D plus a

number of operations and (possibly) relations on D to be specified? This main

question is addressed by Husserl via three interrelated sub-questions:

(a) Which cognitions (Erkenntnisse)229 are from a logical, (algebraic) deductive

standpoint relevant as regards a certain structure, and which ones are not?

(b) Which kinds of equivalent cognitions are to be explicitly expressed in a formal

theory?

(c) How is the algorithm, that is, the formal deductive theory finally set up?

Let us try to extract, from an extremely unsystematic collection of claims and

observations, what seem to be the main points Husserl is driving at.

228PdA App. 419; PoA 396.
229Faute de mieux I use ‘cognitions’ as my rendering of ‘Erkenntnisse (propositions that have

become contents of knowledge)’.
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As we saw, Husserl has it that arithmetic considers only general forms of

determination/construction of numbers from numbers, and their laws. The key-

word here is ‘general’. The determination of new numbers has to be performed with

utmost generality, and the laws that come into consideration for arithmetic are

general laws of the form ‘All numbers have such-and-such a property’. For

example, addition is a general, uniform method of constructing a number a þ b
once two arbitrary numbers a and b are given, and e.g. commutativity and associa-
tivity are appropriate laws of this particular form of determination of numbers.

The determining numbers remain necessarily indeterminate in the course of these investi-

gations. They are only . . . thought of as in some way determinate or determinable.

Therefore the numbers signs which are used here are not numerals, but rather are arbitrarily

chosen letters.230

Given the implicit algebraic framework underlying these reflections, the general

laws Husserl is here thinking of have the form of (tacitly universally quantified)

equations, that is of equivalences between concepts (see below). But is every kind

of valid equivalence to be taken into account when an algorithm is set up? Husserl

asks us to consider the following three concepts of operation, which are only

psychologically distinct: ‘the result of the union of a and b’, ‘the result of the

attachment of a to b’, ‘the whole which is decomposable into a and b’. There is,

from a logical point of view, no reason to distinguish them and to establish within a

formal system an equivalence between them.

The psychological difference between the concepts of combination in question is not yet a

reason for distinguishing them logically. Generally, for the purpose of knowledge acquisi-

tion what is psychologically distinct can [logically] be fully equivalent.231

All this holds, however, with some essential restrictions. Husserl actually acknowl-

edges that the logical separation of equivalents, as well as the transformation of

cognitions into immediately equivalent cognitions can sometimes serve the purpose

of extending our knowledge. This happens whenever a proposition – through “imme-

diately equivalent transformation (unmittelbar äquivalente Transformation)”232 –

receives a form which makes it appropriate as a premise for certain inferences.233

As an example Husserl mentions the ‘immediate inferences’ of traditional logic,234

that is, the so-called conversions like SiP! PiS and SeP! PeS. Thus, for instance,

given the propositionsMaP andMiS, once the conversion fromMiS to SiM ismade, it

becomes obvious that SiM, together with MaP as first premise, is the appropriate

second premise for applying the syllogism in Darii that yields the conclusion SiP.

230PdA App. 408; PoA 385.
231PdA App. 411; PoA 388.
232PdA App. 413; PoA 390.
233As to Husserl’s intellectual heritage in this respect, see the following section.
234Loc. cit.
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Answering questions (a)–(c) above, Husserl attempts, first of all, to provide a

taxonomy of all possible types of equivalences that are to be expressed in a formal

system. He considers, substantially, equivalences of two kinds:

1. Equivalences among concepts

2. Equivalences among judgements

Conceptual equivalences open up the possibility of discerning, through a sequence of

equivalent transformations, equivalences of complicated determinations that are extremely

remote and not immediately evident at all. The equivalences between judgements either

function as forms of inference or supply general major premises for inferences to be carried

out, and serve, apart from equational inferences, in the advancement of knowledge beyond

any domain of equivalence.235

Generally speaking, “we learn from the foregoing considerations of what type

the equivalences are that have an essential function in the deductive disciplines.”236

They are

(i) “general logical” equivalences between judgements, such as a ¼ b « b ¼ a
(symmetry of equality) or a > b « b < a (in general: Rab « Rˇba). Such
equivalences express laws – like those concerning equality and relations R with

their converses Rˇ – which hold in every domain whatsoever. (Rxy « Rˇyx is

indeed a logical law of the operator ˇ which produces the converse of a binary

relation.)

(ii) “laws that belong the axioms or follow from them,”237 i.e. equivalences which
depend on the particular domain axiomatized by the theory. They divide in

turn into

1. Equivalences between judgements, such as a ¼ b « a þ c ¼ b þ c (in the

numerical domain). Such equivalences are taken by Husserl as having the

role of inference rules. In our example: from a ¼ b to infer a þ c ¼ b þ c,

and conversely.

2. Equivalences between concepts: they are equivalences among particulariza-

tions of some combination-type, such as that between x þ y and y þ x as a
particularization of the additive type of combination.

Now suppose we have a structure S constituted by a certain domain D, certain

operations V1, . . . ,Vn over D, and possibly certain relations. Which conditions

should an acceptable algorithm, a deductive theory AX[S] for S satisfy? The answer

follows by considering the ‘cognitions’ pertaining to this structure, which according

to Husserl should be divided into the following groups:

235PdA App. 419; PoA 396.
236PdA App. 418; PoA 395.
237Loc. cit.
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(i) “Cognitions (Erkenntnisse) which are founded upon a single concept of combi-

nation,”238 that is, general laws which are valid for one specific operation

applied to arbitrary terms, such as

xþ y ¼ yþ x;

xþ ðyþ zÞ ¼ xþ ðyþ zÞ:

These equivalences are to be expressed in the corresponding axiom system

AX[S] as specific axioms.

(ii) “Cognitions which are simultaneously founded upon several concepts of com-

binations,”239 that is, founded on more than one operation. E.g.

x � ðyþ zÞ ¼ ðx � yÞ þ ðx � zÞ:

Husserl distinguishes three different sub-cases of (ii):

1. “The respective group of concepts of combination contains only concepts

that are non-equivalent to each other,”240 that is to say, the operations

V1,. . . ,Vn are pairwise not equivalent. In this case we shall have in AX[S]

laws of two types:

equations; such as a � ðbþ cÞ ¼ ða � bÞ þ ða � cÞ;
inferences; such as from a > b and b > c to infer a > c

2. “The group of concepts of combination concerned contains only those that

are equivalent to one other,”241 that is to say, all the operations V1, . . . ,Vn

are pairwise equivalent. In such cases it suffices to limit the system AX[S] to
a single, arbitrarily chosen operation of this group.

3. “The group concerned contains combinations some of which are equivalent

to one another and some of which are not.”242 SupposeV1, . . . ,Vi are pairwise

non-equivalent, while Viþ1, . . . , Vn are pairwise equivalent. Then the Viþ1,

. . . , Vn have to be reduced to a single operation V of the group. In other

words, we have to shift from the consideration of the structure hD, V1, . . . ,Vi,

Viþ1, . . . , Vni to the consideration of the sub-structure hD, V1, . . . Vi , Vi.

Nothing essential from a logical point of view – Husserl stresses – is lost in the
above reduction. It is in fact evident that “the totality of truths that are founded upon

238PdA App. 414; PoA 391.
239PdA App. 415; PoA 392.
240Loc. cit.
241PdA App. 415–416; PoA 393.
242PdA App. 416–417; PoA 394.
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all of the types of elementary combinations V1, . . . , Vn of a domain D undergo no

diminution worthy of attention if we restrict ourselves to those combinations that

are not equivalent to one another, and thus retain one from each group of equivalent

combinations”.243 Husserl concludes:

We therefore establish the following rule, valid for all domains of deduction: that among

the elementary types of combination, equivalents are not to be tolerated. From each totality

of equivalent, elementary types of combination, a single one is to be selected; all the

remaining ones are to be ignored.244

Using the present-day algebraic terminology, we can say that all this simply

amounts to the following contention: If V1, . . . ,Vn are the operations on D under

consideration, no equational pieces of information are lost if we pass to the quotient
structure of hD, V1, . . . ,Vni modulo the equivalence relation � of extensional

equality between operations.

It is worth mentioning that Husserl takes also into account further concepts and

problems, all of a “metalogical” character, concerning more general kinds of

reducibility of one operation to others. For instance:

(i) Reducibility: A type of combination V is said to be “reducible to the combination

types V1, V2, . . . , Vk” if among the latter there is one which is equivalent to V.245

That is to say,V is reducible to {V1, V2, . . . , Vk} if and only if V is equivalent to a

certain combination belonging to the sphere of {V1, . . . , Vk}. For instance,

double-of (x) is reducible to the sphere of {þ}, since double-of (x) ¼ x þ x.
(ii) Group of irreducible combinations: “A group of combination types is said to

be irreducible if none of them is reducible to the others.”246 That is to say,

{V1, . . . , Vk} is irreducible iff for each i (1 � i � k) Vi is not reducible to {V1,

. . . , Vi�1,Viþ1, . . . ,Vk}.

(iii) Group of basic combinations: “An irreducible group to which all kinds of

combination of a domain are reducible is called a group of basic combina-
tions.”247

(iv) Problem:248 Suppose C and C0 are two equivalent (interreducible) groups of

operations, respectively axiomatized by AX[C] and AX[C0], and A is a state-

ment relating to C. Is it the case that from the fact that A follows from AX[C]

& AX[C0] we can infer that A already follows from AX[C]?

243PdA App. 417; PoA 394.
244PdA App. 417; PoA 395.
245PdA App. 419; PoA 396.
246Loc. cit.
247PdA App. 419; PoA 397.
248PdA App. 416 PoA 393.
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1.18.1.3 A Historical Postlude on Leibniz

In the introduction to his Mechanism, Mentalism and Metamathematics Judson

Webb writes: “ . . . the more I tried to sort out and understand the arguments, to sift

claim and counterclaim, the more I found that most of the central figures, however

original they might have seemed, had really gotten key ideas from their teachers

and predecessors. . .”.249 A historical observation can indeed help to reveal “the

intentions behind the ideas”250 we have just been concerned with.

As regards the central question Husserl investigates in his treatise “On the
concept of the operation”, namely ‘which kinds of equivalent cognitions are to be

explicitly expressed in formal sciences?’251 the source of inspiration for the whole

discussion may very well have been Leibniz’s defence of the role of identities.

Locke’s mechanical spokesman252 in the Nouveaux Essais, Philalèthe, calls them
“proposition frivoles”: he regards them as trifling because they can be seen “at first

blush . . . to contain no instruction”.253

In Chapter 2 of book IV of his New Essays (Des degrés de notre connaissance)
Leibniz tries to show the usefulness of identities, of primary truths of reason that

“seem to do nothing but to repeat the same thing without telling us anything” (}1).
Identities, according to Leibniz, can be either affirmative or negative. Under the

first heading he includes

(i) Propositions expressed by instances of the schema “Every A is A” (“A 

A”).254 He calls them “completely identical propositions (identiques qui le
sont entièrement)”.255

(ii) Propositions exemplifying the schemata “Every Awhich is B is A” (“AB
A”)

or “Every A which is B is B” (“AB 
 B”). Leibniz calls them “semi-identical

propositions (identiques à demi)”. 256

(iii) Propositions expressed by instances of schemata of hypothetical form such as

“if every A is both B and C, then every A is B” (“A 
 BC ! A 
 B”).257

(iv) “Conjunction [and] disjunctions can likewise be identities.” Here Leibniz

seems to be thinking of propositions that instantiate the schemata “Everything

which is A and (or) B is A and (or) B” (“AB 
 AB”; “AþB 
 BþA”).258

249Webb 1980, xii.
250Loc. cit.
251See above }1.2 (question 2).
252I borrow here terminology from Remnant & Bennett 1996, 10.
253Leibniz 1704, book IV, ch. viii, }2.
254This formulation is taken from Künne 2009, 253.
255Leibniz 1704, book IV, ch. viii, }4. Kant calls them tautologisch, in Bolzano they are called

identisch oder tautologisch. Cp. Künne 2009, 253, fn. 52 & 53.
256Leibniz 1704, book IV, ch. viii, }5.
257Leibniz 1704, book IV, ch. ii, }1.
258Loc. cit.
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(v) Even instances of the schema “Every non-A is non-A” (“–A 
 –A”) are

subsumed under the heading ‘affirmative identities’; for they also instantiate

the negation-free schema “Every B is B”.

Leibniz classifies as negative identities both the principle of contradiction and

propositions he calls disparities (disparates). He formulates the former as the

principle of bivalence: “Every proposition is either true or false”, where the

disjunction is taken to be exclusive. Disparities are propositions which say that

“the object of one idea is not the object of another idea”. Leibniz’s examples are of

the sort “Warmth is not the same thing as colour”, “Man and animal are not the

same although every animal is an animal”. Presumably “Descartes is not Spinoza”

would qualify, too.

After this preparation let us consider the question whether identities (trifling

propositions) are useless for cognitive purposes. Leibniz writes:

Someone who has been listening patiently so far to what I have just been saying will finally

lose patience and say I am wasting time on trivial assertions and that identities are all

useless. But this verdict results from not having thought enough about these matters. The

inferences of logic, for example, are demonstrated by means of identities, and geometers

need the principle of contradiction for their demonstrations by reductio ad absurdum. At
this point let me merely show how identities can be used in demonstrating [the soundness

of] some inferences of reason.259

He then goes on to prove both (i) that by means of the only principle of

contradiction it is possible to obtain the second and the third figures of the syllogism

from the first and (ii) that the conversions traditional logicians appeal to can be

proved by means of the second and the third figures of the syllogism.260

Let us firstly consider (i). The inference “A & B, therefore C” is valid iff the

inference “A & �C, therefore �B” is valid iff the inference “�C & B, also �A”
is valid. (In the derivation we take each time one of the premises to be true and

the other premise and the conclusion to be false.) Two examples may suffice.

From Darii, “MaP, SiM, therefore SiP” we obtain “MaP, �SiP, therefore �SiM”.

Then relying on the diagonals in the Square of Oppositions, we arrive at Cames-
tres, “MaP, SeP, therefore SeM”. Similarly, from Ferio (“MeP, SiM, therefore

SoP”) we obtain “�SoP, SiM, therefore �MeP”. Then, again relying on the

diagonals in the Square of Oppositions, we arrive at Datisi, “SaP, SiM, therefore

MiP”.

Let us now consider (ii), i.e. the provability of the conversions of traditional

logic, i.e. conversio simplex, “SeP ! PeS” and “SiP ! PiS”, and conversio per
accidens, “SaP ! PiS” and “SeP ! PoS”, by means of the syllogisms of the

second and of the third figure. (Note that the conversions per accidens depend on

Aristotle’s assumption that universal propositions have existential import.) Again

two examples may suffice. In order to prove the simple conversion “SeP ! PeS”

259Loc. cit.
260Leibniz acknowledges that the Parisian philosopher Pierre de la Ramée (Petrus Ramus) was

already aware of (b).

1.18 Appendix 2: On Operations, Algorithmic Systems, and Computation 73



we assume “SeP” and the proposition frivole “PaP” and infer “PeS” using the

syllogism of the second figure Cesare, where “P” functions both as terminus
medius and as terminus minor and “S” as terminus major. Similarly, in order to

prove the conversion per accidens “SaP ! PiS” we assume the proposition
frivole “SaS” and “SaP” and infer “PiS” using the syllogism of the third figure

Darapti, where “S” functions both as terminus medius and as terminus major and
“P” as terminus minor. (This syllogism depends on Aristotle’s assumption, for

otherwise it would be possible to prove something that essentially depends on this

assumption, namely a conversio per accidens, by something that does not depend

on it.) At the end of this long discussion Leibniz stresses the importance of

identities in formal sciences:

This show that the purest identities, which appear entirely useless, are really of considerable

use in abstract and general matters [i.e. in the formal sciences]; and that can teach us that no

truth can be scorned

In book IV Chapter viii (Des propositions frivoles) Théophile repeats this point
against Philalèthe whom he makes admit: “It seems that these identical maxims are

merely trifling – or nugatoriae, as even the Scholastics call them. And I would not

be satisfied with just saying that that seems to be so, had not your surprising

example of the demonstration of conversion by interposition of identities made

me step with care when it comes to being scornful of anything.” Théophile first

emphasizes the importance of the principle of contradiction (also a trifling proposi-

tion, as we saw) in apagogic proofs: “Do you count that as nothing, Sir? Do you not

recognize that to reduce a proposition to absurdity is to demonstrate its contradic-

tory?” He then renews the thesis he maintained in Chapter 2: “you can see quite

well how identities should be used if they are to be useful – namely by showing that

other truths which one wishes to establish can be reduced to them by means of

deductions and definitions.”

Let us now read Husserl’s text against this Leibnizian background. He poses the

question which kind of immediate equivalences are worthy of being expressed in

abstract formal sciences? Are they useful for the purposes of reduction and/or

derivation? And then his argument runs on Leibnizian lines:

[W]e do not need to engage in the controversy over whether immediate equivalences . . .
considered in and for themselves must be regarded as extensions of knowledge or not. In

any case they can serve as extremely important instruments for unquestionably extending

our knowledge, namely, for leading it beyond the domain of immediate equivalents. This

will prove true in all cases where a proposition - through immediate equivalent transforma-

tion – first receives that form which makes it appear as an appropriate premise for certain

inferences. The possibility of an inference can impose itself if the premises are of a certain

form. . . The equivalent transformations that show up under the “immediate inferences” of

traditional logic can serve as examples.261

261PdA App. 412–413; PoA 389–390 (my emphasis).
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1.18.2 On the Notion of Computation and on Boole

At the end of his complex discussion of the “calculational technique (Rechen-
kunst)” as opposed to the science of arithmetic (Arithmetik), Husserl arrives in

Chapter XII of his book at a characterization of the notion of computation
(Rechnen) or calculation that he finally deems satisfactory: a computation is

“any rule-governed mode of derivation of signs from signs within any algorithmic

sign-system according to the ‘laws’ – or better: the conventions – for combination,

separation and transformation peculiar to that system.”262

What is really interesting in this characterization lies mainly in the explicit

acknowledgement of the generality of the concept under scrutiny, more precisely,

in the fact that the notion of computation is completely uncoupled from that of

number, and more generally from that of quantity, in which the whole issue had

originated. In Husserl’s words, “there are higher logical interests than those of

arithmetica numerosa (with which we currently have to do) which require this

delimitation of the concept.”263

Thanks to the generality of this characterization it is possible to analyze and

represent the structure of any ‘problem-solving’ process – and not just of those of

numerical kind, but independently from the specific nature of the domain in which

we are operating – in three distinct and sequential moments, the first and third of

which are conceptual, while the second is purely formal-algorithmic:

formal encoding of the problem

ð“conversion of the initial thought into signs”Þ
#

calculation

#
solution as decoding of the result of the calculation

ð“conversion of the resulting signs back into thoughts”Þ

A careful reader cannot fail to notice the similarity (with just one important

difference, to which we will return below) of this abstract representation of the

problem-solving processes with the analysis of “symbolic reasoning” proposed by

George Boole in the Laws of Thought.264 Diagrammatically (as can be seen from

Chapter V, esp. }4), according to Boole a (correct) symbolic reasoning can be

represented by the composition of three moments or steps:

262PoA 273; PdA 258.
263Loc. cit.
264Boole 1854.
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Data
(certain propositions) 

Data in symbolic form
(certain equations) 

Result in symbolic form
(resulting equations) 

Result
(one or more) 

A C 

B

l The first moment (A) consists in the encoding of the data in symbols: these must

have a well-defined interpretation, and their laws of combination must be

determined by that interpretation.
l The second moment (B) consists in the application of symbolic-formal processes

conforming to the laws of combination, and it is completely independent from

the requirements of interpretability: Boole explicitly allows the possibility of
non-interpretability of the intermediate steps in calculation.

l The third moment (C) finally consists in the interpretation (decoding) of the

result of the symbolic process on the basis of the ‘coding system’ chosen for the

symbolization of the data.

Admittedly, in Chapter XIII of the Philosophy of Arithmetic Boole is not

mentioned (indeed, he is not mentioned at all in the entire work). However, in

Husserl’s lecture “Über die neueren Forschungen zur deduktiven Logik”265 of

1895, we find an entire section (circa twenty pages) devoted to Boole. The main

part of this section (which is the one we want to outline briefly here) is focused on

the notion of calculus.
Husserl’s considerations begin with the observation that the real strength of

Boole’s work does not reside in his proposed logical analysis of language (on the

contrary: “he has been less concerned about a possibly complete analysis of the forms

of judgment”266), but rather in the development of a logical calculus, i.e. the
development of logic as a computational discipline:

He took . . . and accepted from his predecessors, from Hamilton and in part also from De

Morgan, what he could use. Use for what? The answer is: for the development of calculus

(für die kalkulatorische Entwicklung). For this is the goal that he had set for himself from

the beginning and that he pursued with powerful genius and achieved with full certainty:

establishing formal logic as a mathematical science. As arithmetic is the computational

265LV 96, App. 305–328.
266LV 96, App. 305.
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discipline about numbers, so formal logic is to be developed as the computational discipline

about concepts and states of affairs (kalkulatorische Disziplin von den Begriffen und
Sachverhalten).267

At this point, Husserl puts Boole aside (returning to him only in the final pages,

where he summarily describes Boole’s class calculus) and develops an articulated

and very interesting discussion of the concept of calculus, using arithmetic as a

paradigm.

Of the four elementary arithmetical operations on natural numbers (greater than

zero), addition and multiplication are total, i.e. defined for every natural number,

while subtraction and division are partial (“subtraction: a� b. Defined, if a> b; and

then also univocal”).268 Consider the following nine fundamental laws (Fundamen-
tale Gesetze or Grundgesetze):

1. a þ b ¼ b þ a

2. (a þ b) þ c ¼ a þ (b þ c)

3. (a – b) þ b ¼ a

4. if a þ c ¼ b þ c then a ¼ b

5. ab ¼ ba

6. a(bc) ¼ (ab)c

7. a(b þ c) ¼ ab þ ac

8. (a/b)b ¼ a

9. if cb ¼ db then c ¼ d

The concept of addition, and mediately the concepts of subtraction, multiplica-

tion, division, are founded on the concept of number; and the nine laws listed above

derive a priori from these concepts. All remaining true propositions of arithmetic

that exclusively concern these four operations of the calculus are purely formal
deductions from the principles (1)–(9). More exactly, they can be proved without
appeal to the concepts (of number, of the four operations), by manipulating the

“sensuous expressions on paper” corresponding to them in accordance with the

rules of symbolic transformation corresponding to the principles (1)–(9). For

example, principle (1) corresponds to the rule of transformation that allows the

equivalent substitution of every sign construction of the form ‘a þ b’ with the

construction ‘b þ a’.

To prove any further proposition I do not need at all to fall back on the concept of number or

on the concepts of addition, multiplication, etc. The proof rather consists entirely of steps in

which we do not need to do anything but apply one of the nine propositions, i.e. we have to

do nothing but subsume. The nine basic propositions (Grundsätze), however, are formally

independent from each other. . . In order to grasp (einsehen) them we must appeal again to

the concepts of number or addition etc. We cannot represent any of these propositions as a

special case of the others or derive it from them through transformations.269

267LV 96, App. 306.
268LV 96, App. 307.
269LV 96, App. 308.
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Calculating is a non-conceptual process that operates on complexes of signs and

proceeds formally according to pre-established rules of transformation. And it is

clear, Husserl claims, that there is no a priori reason to limit calculating to the

numerical domain: in general it is possible to apply the calculus, an algorithmic

system, to any domain that allows an ‘algebraic’ structuring:

It is immediately clear that there is no a priori reason why calculating should be restricted to

the arithmetical domain. Wherever we find a domain of concepts in which obtain analogous

relations as in that of arithmetic, i.e. wherever we can find uniform ways of constructing

new concepts from given ones, in such a way that the results of the constructions can always

serve as elements for new constructions, and where there is a limited number of laws for

these kinds of construction, an infinite manifold of pure theorems (Folgesätze) is deducible
from the axioms (Grundsätze), and this in the way of a purely formal deduction. And the

computational way of proceeding will also be possible that makes falling back on the

concepts superfluous and relies only on the external forms of the process.270

Here we have in a nutshell the essence of calculation:

What is characteristic of calculation? Nothing but the fact that it is a procedure for

deducing equivalent propositions from certain given propositions in a research domain,

without falling back on the specific concepts and relations. How is this possible? What are

we dealing with, if not concepts and relations? The answer is: the concepts are thought

by means of certain terms, the relations by means of corresponding connecting signs.

When we calculate in arithmetic, we only care about the signs and the rules of their

connection.271

This characterization is perfectly in line with what emerged at the end of the

discussion on computation in Chapter XIII of the Philosophy of Arithmetic. But in
Husserl’s reflection on Boole we also find further interesting remarks, two of which

are worth considering in the present context.

Husserl underscores repeatedly, and with abundant examples, the importance of

generality and flexibility of systems of calculation for their application: an algo-

rithmic system obtained – as the one considered at the beginning – by abstraction
from a specific conceptual domain will also be interpretable in different though
structurally similar conceptual domains. This results in obvious “savings in deduc-

tive labour”: a formal proposition, once deduced by calculation, translates into a

true conceptual proposition in every domain that falls under the algorithm. But the

most significant aspect here is that Husserl explicitly takes into account also the

process opposite to one exemplified above (schematically: determinate conceptual

domain! abstraction! algorithmic system), i.e. the process (which is the essence

of the “axiomatic revolution” of the late nineteenth century) that consists in starting
from the constitution of an algorithmic system, and then to look for possible

interpretations (possible models).

But also another way is open. One develops the algorithm for itself and says: every

conceptual domain which is such that we can designate its basic concepts (Grundbegriffe)

270LV 96, App. 312.
271LV 96, App. 309.
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by the basic signs, its concepts of combination (Verbindung) by the signs for combinations

of the algorithm – obviously to the basic rules (Grundregeln) in the domain there corre-

spond basic laws (Grundgesetze) in the algorithm – falls under the algorithm with respect to

all of its deductions.272

While in the case of algorithmic systems obtained by abstraction we have to do

with synthetic a priori laws, founded in given concepts, in this second case the laws
are purely analytic, and the concept is obtained through reflection on the form of

the law.

Let us proceed to the second point that we deem relevant here. Suppose we set up

an algorithm (i.e. a system of signs plus rules of transformation): do the signs have a

meaning which is not the original, conceptual one, if the algorithm is constituted by

abstraction from a specific conceptual domain)? And if so, what is it? Husserl’s

answer to this question is affirmative: the signs do (still) have a meaning in the

algorithm, namely an operational meaning, a “Spielbedeutung”, which is deter-

mined by the complex of formal rules that govern its manipulation.

Suppose a kind of given signs is set and memorized and so is a certain number of rules that

like the rules of a game determine how we are allowed to operate with the signs, in such a

way that every other way of proceeding is considered unacceptable. Then an arbitrary

connection of signs can, on the basis of the rules, be replaced by various equivalent

connections of signs. And a derivation is correct if all of its steps are in accordance with

the rules, i.e. no step is taken which does not have a justification by a simple subsumption

under one of the rules. Hence if I consider the signs in this way by themselves, they are not

merely doodles on the paper, they clearly have a certain meaning. What, then, is their

meaning? It is no longer the corresponding arithmetical meaning, because I have wholly

abstracted from it. Clearly the meaning now lies in the rules of the game. It is exactly like as

in the game of chess: the bishop, castle etc. Now I maintain: all calculating consists in the

fact that the original concepts, the concepts of number and the concepts of relation and

connection belonging to them, are replaced by their mere symbols and these are now

considered only as such purely conventional game-concepts. The game-meaning (Spielbe-
deutung) of these symbols then lies in certain rules which are nothing but the exact

counterparts of the fundamental laws to which all arithmetical deduction can be reduced

by mere subsumption.273

There is a stark contrast here with Frege’s attitude in his paper Ueber formale
Theorien der Arithmetik (1885).274 In the course of his criticism of Heine’s and

Thomae’s theory of irrational numbers in the second volume of his Grundgesetze
(1903) Frege concedes that the Begriffschrift, too, can be conceived as a Spiel (}90)
but he doubts that a theory of Rechenspiele is possible (}93).

Husserl appends a brief description of the Boolean calculus to his general

reflections on the concept of calculus. This calculus is presented as a calculus for

the domain of classes in general: “Boole originally constructs his calculus as a

272LV 96, App. 314.
273LV 96, App. 310.
274Frege 1990, 103–111.
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calculus of classes. As arithmetic is the calculus for the field of numbers (Anzahl-
gebiet), so the Boolean calculus is the calculus for the field of classes in general

(im Allgemeinen).” While this expository part is not really worth discussing a

remark should be made on Husserl’s (and not only on Husserl’s) fundamental

critique of Boole, as regards the correctness of the Boolean method. One can

summarize the entire discussion as follows. Boole explicitly admits (and freely

avails himself of) the possibility, at the risk of losing the generality of the

calculus, that not all the steps in the symbolic-formal process that leads from

the encoded data to the to-be-decoded result are interpretable; in other words, he

does not require that there be a parallelism between the conceptual and the

symbolic-algorithmic level along the entire symbolic process: the important

factor is that this parallelism exists at the beginning (input) and at end (output).
Husserl’s position appears to be the opposite, i.e. that the parallelism between the

two levels should be constant: “Finally, to every principle corresponds a certain

rule for operating with the signs, and every derived proposition is obtained by

mere stepwise subsumption under these rules. Thus there is a one-to-one

corresponding parallelism between the game-system and its rules and the num-

ber-system and its laws. Hence there is no mechanically-symbolically derivable

proposition that does not have its counterpart in the domain of arithmetic.”275

Similar considerations are to be found in “On the concept of the operation”, in the
context of Husserl’s discussion of algorithmic systems:

Whoever has . . . has attained clarity about the algorithmic methods that run precisely

parallel to the . . . objective [sachlichen] methods (operating on the concepts themselves

. . .) will see that all immediate equivalences that mediate (vermitteln) in the objective

methods must have their counterpart in formulae that mediate in the algorithmic

methods.276

Husserl’s conclusion is that in Boole the strength of the idea of extending the

notion of calculation beyond the sphere of quantity is coupled with an intrinsic

weakness at the level of the foundations of the computational process.

Hence Boole’s method must have appeared like shadow boxing (Spiegelfechterei, i.e. a
sham), where, however, one had to register the unexplainable miracle that Boole’s

calculations always led to correct results: somebody who trusts the Boolean method

and solves a logical task by calculatorial means, would in fact find a true solution, while

one would have expected that a meaningless method would also deliver meaningless or at

least false results. However, Boole himself did not have an entirely clear conception of

the reasons for the validity of his method. In his case we are dealing with a brilliant

intuition rather than with a conceptual insight. The logical principles of the calculatorial

method remained completely precluded to him as well as to later researchers.277

275LV 96, App. 311.
276PdA App. 414; PoA 391.
277LV 96, App. 322–323.

80 1 Philosophy of Arithmetic



1.19 Appendix 3: Sets and Finite Numbers in “Zur Lehre vom

Inbegriff”

1.19.1 Introduction

According to the editor, the treatise “Zur Lehre vom Inbegriff ” contains mostly

preparatory research notes for the second volume of the Philosophy of Arithmetic,
that were written around the end of 1891.278 This cannot be right. The text contains

several indications that imply it is later than 1891, by at least a few years. First,

there is an explicit reference to a result obtained by Felix Bernstein279 who was only
13 years old in 1891.280 Further evidence can be gleaned from the discussion of a

specific problem, i.e. the issue of “comparability” of cardinal numbers, which we

will discuss in detail below. Finally, there is a note (written in pencil, which could

have been added later) that contains a reference to a publication by E. Schröder of

1898.281

“Zur Lehre vom Inbegriff ” is not Husserl’s title (on the external cover of the

manuscript there is the title ‘Formal arithmetic’, written in pencil), but has been

added by the editor of the Husserliana edition based on the content of the manu-

script. Indeed, at first sight the study presents itself as Husserl’s attempt to elaborate

a set theory in Cantor’s sense. From an annotation in the margin of the manuscript282

we know that Cantor read the work; moreover, given the very friendly personal and

scientific relationship among them, we can suppose that Husserl might have received

an impulse from Cantor in the direction of the elaboration of these reflections.283

We have to stress right from the start that the explication of the general notion of

set to which the initial pages of the study are devoted, actually serves to pave the

way for the discussion of the real topic of the investigation: “sets of units,” i.e.

numbers. Husserl’s real intent is clearly to obtain not only an adequate definition of

278PdA App. 385–407; PoA 359–383; Textkritische Anmerkungen, 530–533.
279“Bernstein has demonstrated . . . a sufficient condition . . . On this point we still must have an

exchange with Bernstein.” PdA App. 394; PoA 369.
280Felix Bernstein (Halle 1878 – Zürich 1956) studied with Cantor in Halle, then with Hilbert and

Klein at Göttingen, where he obtained his doctorate with a dissertation entitled Untersuchungen
aus der Mengenlehre. After his habilitation (Halle 1903), Bernstein taught at Göttingen from 1907

to 1932. After moving to the United States he taught for sixteen years at various universities

(Columbia University, New York University, Syracuse University), and in 1949 returned to

Göttingen. According to various biographic notes, Bernstein already started to follow Cantor’s

seminars at the university of Halle while still attending the gymnasium; on the other hand, a

precise indication of the year in which contact with Cantor began is unavailable (this information

is not to be found in the most complete biography: Frewer 1981). However, it is reasonable to

suppose that it did not begin before 1894–95 (Bernstein obtained his Abitur in 1896).
281“Read to Cantorwhen he told me of a treatise of Schröder’s for the Leopoldina” (PdAApp. 399,

n. 1; PoA 374, n. 9). The reference is to Schröder 1898.
282Loc. cit.
283Cp. Ortiz Hill 1994a, 3 & b, 96 & 1997b, 137 ff. & 2004, 110–114.
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the general concept of number, but also a rigorous and systematic foundation for the

theory of finite cardinal numbers, so as to correct two – closely connected –

fundamental “omissions” that he finds in his Philosophy of Arithmetic:

(i) A precise determination of the dichotomy finite/infinite with respect to sets, and
hence also with respect to cardinal numbers

(ii) An acknowledgement of equivalence (i.e. of the relation of ‘standing in one-

to-one correspondence’) as an indispensable criterion for ordering improper

number presentations according to the order relation

The central stages of the study, which are the most complex and difficult ones,

are devoted to the detailed presentation (also from a “technical” point of view) of a

rigorous foundation of the theory of finite numbers. In the concluding pages Husserl

corrects some of the positions of the Philosophy of Arithmetic, specifically the

rejection of the definition of number through equivalence. Put in a nut-shell,

Husserl’s argumentation is this: If we limit ourselves to the consideration of proper
number presentations, a definition of equality through equivalence is not necessary,

because we can distinguish proper presentations of numbers and immediately

classify them according to the order relation, and hence it is not necessary to

compare numbers according to equivalence. But for improper number presentations

equivalence is indispensable for a classification based on order. How can we

distinguish two symbolic presentations of number? How can we assess whether

two numbers, presented symbolically, are equal? We have two options:

(1) We first define the natural number series and then the concept of finite number

as set of units that can be associated by bijection to an initial segment of the
series of naturals (though we have to point out that the one-to-one correspon-

dence is independent from the order given to the set of units)

(2) We define numerical equality via the relation of equivalence, and then the

notion of finiteness using that of equivalence (like Dedekind)

Whichever of these roads one might take (Husserl developed only the second

one, as we shall see), the role of the notion of one-to-one correlation, i.e. bijection,

is clearly essential.

Here it may be useful to recall that the proof of the equivalence of the two

notions of finiteness involved in (1) and (2) above (finiteness of a set X as the
possibility of bijection of X with a natural number – FIN1(X) – and finiteness of a set
X as impossibility of bijection of X with any of its proper parts – FIN2(X) or

“Dedekind-finiteness”) requires the axiom of choice.284 More precisely, this

axiom is necessary to prove that from FIN2(X) follows FIN1(X), while it is not

necessary for the converse implication, the so-called “fundamental theorem of finite

arithmetic”: FIN1(X) ) FIN2(X).
285

284In one of the many possible equivalent formulations: For every family F of non-empty and
disjoint sets, there is at least one set X having one and only one element in common with each of the
sets belonging to F.
285See Tarski 1925.

82 1 Philosophy of Arithmetic



1.19.2 Sets and Operations on Sets

In “Zur Lehre vom Inbegriff ” the sets, or aggregates, are objects designated by

terms of the form ‘A and B and C . . .’ that can be given either as objectualizations

of an act of thought or intuition, proper or symbolic, or as extensions of a property.

The aggregate, as mathematical object, however, is independent from the way it is

given as well as from the way in which its single elements A, B, C, . . . are given. “If
‘A’, ‘B’, ‘C’, . . . designate any objects whatever, whether intuited or thought,

existent or imaginary, . . . then the expression ‘A and B and C and . . .,’ taken in

its general sense, yields a definition of the term ‘collection (Inbegriff)’.”286

As in the Philosophy of Arithmetic, Husserl maintains that the concept of a

collection has its psychological origin in a collecting act that “binds” different

objects in an “ideal unity,” but he observes that “conceptual determinations can be

given that decide in a general manner which objects are and which are not to belong

to the intended unity . . . for example, when we speak of a collection of objects that

fall under a concept C.”287 As to the members of the collection, “for logical

purposes . . . it does not matter whether the objects which are to be grasped together

are intuited separately, along with their individual peculiarities, or are only repre-

sented (repräsentiert),”288 i.e. it is sufficient to have an improper presentation of the

collection.

In this respect, it appears possible to maintain that Cantor’s distinction between

internal determination and external determination of a manifold (see his paper

1883) is at least an aspect of the distinction that we find in Husserl between properly
and symbolically presented aggregates. Of course, a properly presented collection

is a manifold of which we can distinctly perceive each member while an improperly

presented collection is a manifold for which this is not possible. In “Zur Lehre vom
Inbegriff ” Husserl declares explicitly that improperly presented collections are

sufficient for the aims of logic. For the sake of simplicity, let us consider only the

second way in which a collection can be given, i.e. as the extension of a concept. On

the basis of the definition of the concept it remains determined for each object

whether it belongs to the collection or not, independent of the existence of an

effective method to establish whether or not the object belongs to the collection.

Now, for Cantor, a manifold is well-defined if the preceding condition is met and if,

furthermore, given two objects belonging to the manifold, it is possible to decide on

the basis of the definition whether they are the same or not. Cantor explicitly states

that “in general relative decisions will not be effectively executable exactly and with
certainty on the basis of the available methods and capacities – but this is not

relevant; only the internal determination is important; this can then be transformed

into an external determination . . .,” which means: transformed into an effective

procedure to decide if the object belongs to the manifold or not. As an example

Cantor gives the definition of the set of all algebraic numbers. This constitutes the

286PdA App. 385; PoA 359.
287PdA App. 385 f.; PoA 359 f.
288PdA App. 385; PoA 359.
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internal determination on the basis of which any number r belongs or not to the

class of algebraic numbers; however, the problem of actually producing a decision

for a given number r often turns out to be very difficult. In other words, in the

classical conception a set M is considered given when for each object it is univo-

cally determined whether or not it belongs to the set. The possibility of effectively

solving every problem of the form “Does x belong to M?” is a different problem.

Bolzano, in his Paradoxien des Unendlichen (1851), was apparently the first to

introduce the concept of a set in an extensional sense: “I call a set (Menge) a

collection (Inbegriff) which we put under a concept so that the arrangement of its

parts is unimportant (in which therefore nothing that is essential for us changes if

only this arrangement changes)” (}4).289 Sets, on this view, are objects exclusively

characterized by their elements: they are said to be equal if they have exactly the

same elements (principle of extensionality).
The definition of the notion of set given by Husserl is very close to Cantor’s and

to Dedekind’s notion of ‘system’.290 Like Dedekind and Cantor Husserl proposes a

“naı̈ve” approach to the concept of set: on the one hand, there is an appeal to the

faculty of the mind of “uniting,” of “thinking together” or of “correlating things

with things,” and sets are conceived as objectualizations of the creative acts of

thought; on the other, the problem of identifying the explicit logical principles that

govern the manipulation of these concepts is avoided. In this respect, it is important

to recall that in more or less the same period Frege undertook a project that aimed at

systematically reducing the concepts of set and number to pure logic.

After describing the notion of set in the terms outlined above, Husserl moves on

to a list of axioms concerning sets and certain set-theoretical operations that he

introduces in that context. In order to improve occasionally on his exposition we

will use the following symbols:

– 2, for the membership relation between an object and a set;

– 
 (�), for the relation of inclusion (resp. proper inclusion) between sets;

– V, for the total set;
– 	, for identity, i.e. extensional equality, among sets.

It is important two keep things in mind:

1. Husserl excludes the possibility of sets with less than two elements.291 Hence,
there is no empty set, and there are no singletons, i.e. sets of the form {x}, for a
certain object x. However, in order to formulate the axioms about the operations

289Bolzano 1975. Cp. WL I, }}84–86.
290“By a ‘set (Menge)’ we are to understand any collection into a whole (Zusammenfassung zu
einem Ganzen) M of definite and separate objects m of our intuition or our thought. These objects

are called the ‘elements’ of M” (Cantor 1895, 481; transl. 1955, 85). “It very frequently happens

that different things a, b, c, . . . for some reason can be considered from a common point of view,

can be associated in the mind, and we say that they form a system S” (Dedekind 1888; 1–2).
291This condition on the concept of collection is taken from } 82 of Bolzano’sWissenschaftslehre.
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on sets without using too many distinctions, he establishes the convention of

treating individuals as if they were sets with just one element.292 In other words,
he conventionally identifies x with {x} (and consequently x 2 A with{x}
 A),

and he uses capital letters indifferently to denote sets and single objects. We

prefer to use the majuscules ‘A’, ‘B’, . . . to refer to sets (including singletons),

and the minuscules x, y, . . . to refer to objects.

2. When Husserl says that a set A is ‘part’ (Teilinbegriff) of a set B, he normally

means a proper part. Hence:

– A 
 B := 8x(x 2 A ! x2B) (inclusion);
– A 	 B := A 
 B ∧ B 
 A (extensional equality);
– A � B := A 
 B ∧ �(B 
 A) (proper inclusion).

Husserl individuates four operations on sets: ‘augmenting (Vermehrung)’,
‘diminishing (Verminderung)’, ‘connection (Verknüpfung)’, and ‘partition (Tei-
lung)’. We note that the first two are not operations in the sense of univocal
correspondences:

– Augmenting a collection is uniting its objects with one or more new objects and
to constitute a new collection with these;

– Diminishing a collection is removing some of its objects and uniting the

remaining into a new collection.

The two remaining operations correspond to the addition and subtraction of sets:

– Adding a collection B to a collection A, given that A and B are disjoint (i.e. they
have no common elements) is augmenting A with the objects of B. The result of

this operation is designated by ‘A þ B’. More generally, given certain sets that

are pairwise disjoint A, B, C, . . . , ‘A þ B þ C þ . . .’ designates the compre-

hensive set that contains the objects of A, of B, of C . . . taken together.

– Subtracting a collection B from a collection A, given that B is a (proper) part of
A, is diminishing A with the objects of B. The result of this operation is

designated by ‘A � B’.

So, addition and subtraction are taken (à la Boole) as non-total operations.
The “axioms” (understood as evident truths) are now the following six:

[HU.1] “For every collection with the single exception of that one which

includes everything representable in the widest sense of the word, there is a possible

further object which is not contained in it.”293 In symbols:

:ðA 	 VÞ ! 9xðx=2AÞ:

292PdA App. 387; PoA 361.
293PdA App. 386 ff.; PoA 360 ff.
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Though Husserl says that he will make essential use of this axiom later on, we

note that it is nothing but a kind of “definition” of the total set V. Indeed, formally

speaking, HU.1 is equivalent to saying that if the set A contains all objects, then A

coincides with the total set:

½:ðA 	 VÞ ! 9xðx=2AÞ� $ ½:9x:ðx 2 AÞ ! A 	 V� $ ½8xðx 2 AÞ ! A 	 VÞ�:

[HU.2] “It is evident that every totality can be augmented by an arbitrarily

selected object not contained in it.” In symbols (using operation þ):

8xðx=2A ! 9BðB 	 Aþ fxgÞÞ

It follows from [HU.1] and [HU.2] that every set A such that �(A 	 V) can be

augmented.
[HU.3] “To augment (or diminish) a totality by certain objects, and to diminish

(or augment) the resulting totality by identically the same objects restores the

original totality. In other words, augmentation and diminishment are inverse opera-

tions.” In symbols (using the operations of addition and subtraction):

8xðx 2 A ! x =2BÞ ! ðAþ BÞ � B 	 A;

B � A ! ðA� BÞ þ B 	 A:294

Hence, addition and subtraction of sets are the inverse operations of each other.

½HU:4� Aþ B 	 Bþ A:

½HU:5� ðAþ BÞ þ C 	 Aþ ðBþ CÞ:

These two axioms establish that addition is commutative and associative (when it is
definite).

[HU.6] “Any totality admits of being diminished by one unit.” In symbols:

8xðx 2 A ! 9BðB ¼ A� fxgÞÞ:

Formulated this way, the axiom is valid, obviously, because of the hypothesis

that every set has at least two elements and because of the conventional identifica-

tion of x with {x}.

294Husserl rewrites axiom [HU.3] so: (I þ I0) – I0 	 I, (I – I0) þ I0 	 I. But he observes that if I is a

collection and I0 is either a single object or a collection, then “Iþ I0” is meaningful if and only if I0

does not belong to I, resp. if and only if I and I0 are disjoint. Analogously, “I – I0” is meaningful

only when I0 is a proper part of I.
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1.19.3 Definition of the General Concept of Cardinal Number

A cardinal number is here defined by Husserl as a ‘collection of units’. The number

is obtained starting from a collection of objects, completely abstracting from every

concrete determination of the content of such objects, and taking into account only

the fact that among themselves they are, in some way, distinct. This abstraction is

possible for every collection in general; in other words (and using Husserl’s

notation), every collection IA(A, B, C, . . .) of arbitrary objects is always correlated

with a collection of units I1(1, 1, 1, . . .) obtained from the first by replacing each

element with “something” (Etwas) or “one” (Eins), here indicated with ‘1’. The

number that belongs to a collection I of arbitrary objects is that particular collection

that is obtained from I by abstraction and transition to units.
It is noteworthy that Husserl also considers a variant of the process of abstrac-

tion, described above, that generates the cardinal numbers. This new abstraction

does not lead to the pure Anzahlen but to the so-called ‘benannte Zahlen’, a term

that one might translate as ‘qualified numbers’. Given any group of objects that are

all of the same kind, B, we abstract from all the characteristics of the elements,

except for the fact that they are distinct and are of kind B. In this way we do not

obtain a set of units, but a set of units of kind B, called ‘benannte Einheiten’. The
relation between reine Anzahl and benannte Zahl295 can be thought of in two ways:
one can consider a benannte Zahl as a specification of the concept of Anzahl,
obtained by adding to the units of pure Anzahlen the qualification of being units

of kind B. One can also, inversely, consider pure Anzahlen as abstraction from

benannte Zahlen, obtained by taking away the sortal term from the latter.

In any case, the way in which the concept of cardinal number is obtained

constitutes, again, a specific element of connection with Dedekind as well as with

Cantor. In Was sind und was sollen die Zahlen?,296 Dedekind defines natural

numbers as the elements of a simply infinite system in which the concrete character

of the elements is neglected and only their discernibility is preserved,297 while

Cantor defines the “power or cardinal number” of a set M as “the general concept

which, by means of our active faculty of thought, arises from the collection M when

we make abstraction of the nature of its various elements m and of the order in

which they are given.”298 Cantor, furthermore, observes explicitly, using a termi-

nology nearly identical to Husserl’s, that if one abstracts from the specific features

295Husserl alludes at this point (PdA. App. 389 n.) to Bolzano. Cp. now Bolzano, BGA 2A, 8, 15ff.
296Dedekind 1888.
297“With respect to this process through which we free the elements from every other content

(abstraction), we can correctly affirm that numbers are a free creation of the human mind”

(Dedekind, op. cit.).
298Cantor 1895, 481; transl. 1955, 86.
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of each element of the set one obtains a unit, thus the cardinal number is a set of

units that “has existence in our mind as an intellectual image or projection of the

given collection M”.

1.19.4 Comparison of Two Sets Relative to Their Cardinal
Number

Two sets A and B are said to be “equal relative to their cardinal number (in Hinsicht
auf die Anzahl gleich)” if and only if B can be obtained from A by transforming the

members of the latter into members of the former in such a way that the following

two conditions are met:

(i) Every member must remain a ‘one’ (eine Eins)
(ii) Different members must be always transformed into different members

Equivalently: there has to be an arbitrary law f that puts A in bijection with B, i.e.:

1. f is a function from A to B

2. f is injective: 8xy 2 A(f(x) ¼ f(y) ! x ¼ y)
3. f is surjective: 8y 2 B ∃x 2 A(f(x) ¼ y)

Given two sets (and hence also two numbers or sets of units) A and B, and using (as

Husserl does)

– ‘A ffi B’ to say that A and B are equivalent, i.e. that there exists a bijection

between A and B,

– ‘A ¼ B’ to say that A and B are equinumerous, or equal with respect to their

number,

we have

A ¼ B if and only if A ffi B.

Like Cantor, Husserl concludes that two sets have the same cardinal number if

and only if they are equivalent: equivalence between sets constitutes the necessary

and sufficient condition for the equality of their cardinal numbers. However,

Husserl explicitly states that it is not the case that equivalence determines the

equality of two cardinal numbers, thereby confirming at least in part the position

of the Philosophy of Arithmetic. Equivalence is a “criterion” whose meaning

consists in the fact that it constitutes “an irreplaceable means to classify the

numerical field” in its totality.

Defined in this way, the cardinal number of a set turns out to be an invariant of
the set with respect to the system of all the possible permutations of its elements:

every permutation of the elements of the set is equivalent to every other permuta-

tion of the same. At this point Husserl makes an interesting reference to the fact that

Bernstein has proven that a sufficient but not necessary condition for the validity of

this second characterization of the concept of number is that “the group (Menge) of
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the permutations of the given group ‘exists’. There are, we should mention, groups

where the group of the permutations contains a contradiction.”299

As to the relationship between the two relations of extensional identity (	) and

numerical equality between sets (=), the following (easily verifiable) theorem is put

forward:

1. A ¼ B ∧ B 	 C ! A ¼ C

2. A 	 B ∧ B ¼ C ! A ¼ C

Again, in terms that are very close to Cantor’s, Husserl maintains the necessity,

given two sets with different cardinal numbers, to prove that those cardinal numbers

are in a well determined relation of order (i.e. that one is greater than the other or

the other way around).

If A and B are two sets that have a different cardinal number, i.e. if it obtains that

A „ B, it is not at all obvious – as Husserl underscores – that one of the following

two situations is the case:

– Either A is equal to a part of B (A� B, in symbols), i.e. there exists a C
 B such

that A ffi C, or

– B is equal to a part of A (B � A).

In effect, the implication under consideration:

A „B ! A � B _ B � A

is nothing but a logically equivalent reformulation of the so-called property of
trichotomy:

A ¼ B _ A � B _ B � A;

i.e., still equivalently,

at least one among A ¼ B;A < B;B < A obtains;

299PdA App. 394; PoA 369. Interpretation: supposing that the class of all the permutations would

always be a set leads to a contradiction. In other words, Husserl shows here that he is aware of the

need to distinguish between proper multiplicities (sets) and multiplicities that are “inconsistent” or

“too extended” to be considered objects. Keep in mind that Cantor, already in 1895, identifies the

paradox that Burali-Forti will make known in 1897, writing about it to Hilbert (1896) and

Dedekind. In particular, in the famous letter to Dedekind of 1899, Cantor indicates the origin of

certain difficulties that had been found in set-theory (specifically, the Burali-Forti paradox) due to

the missing distinction between “absolutely infinite” or “inconsistent” multiplicities, for which

“the assumption that all of its elements ‘are together’ leads to a contradiction, so that it is

impossible to conceive of the multiplicity as a unity, as ‘one finished thing’,” and consistent

multiplicities or sets for which the totality of the elements “can be thought without contradiction as

‘being together’, so that their collection into ‘one thing’ is possible” (Letter to Dedekind, 28 July

1899, in Cantor 1932, 443; transl. in van Heijenoort 1967, 114).
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where A < B ¼df (A � B) ∧ (A „ B). It is known that to prove the property of

trichotomy, i.e. that any two sets A and B are always comparable with respect to
their number, it is necessary to use the axiom of choice.300

Moreover, Husserl points out that the concepts of ‘greater’ and ‘smaller’ imply

that they exclude each other: if M< N then �(N<M). This is equivalent, although

the proof of this fact is not at all straightforward, to the validity of the property of

antisymmetry for the relation �:

M � N ^ N � M ! M ffi N;

i.e. again equivalently, the fact that

at most one among A ¼ B;A < B;B < Aobtains:

This is in effect what is affirmed by the so-called Theorem of Cantor-Schröder-
Bernstein, whose proof is in turn anything but trivial.301

Compare the analogous specification by Cantor of these two properties302 (in

reverse order):

We have seen that of the three relations a ¼ b, a < b, b < a each one excludes the two

others. On the other hand, the theorem that, with any two cardinal numbers a and b, one of
those three relations must necessarily be realized, is by no means self-evident and can

hardly be proved at this stage. Not until later, when we shall have gained a survey over the

ascending sequence of the transfinite cardinal numbers and an insight into their connexion,

will result the truth of the theorem: <A.> if a and b are any two cardinal numbers, then

either a ¼ b or a < b or a > b.303

300Cantor asserts the property of trichotomy, without proving it, already in his 1878. In the first of
his 1895 papers he explicitly acknowledges the need for (and the difficulties of) a proof of this

property (see next footnote). In the letter to Dedekind of 28 July 1899, Cantor sketches a “proof” of

the theorem of trichotomy (or rather, of the theorem that every cardinal is an aleph, from which

follows as corollary the trichotomy), which, however – as Zermelo will observe – is not convincing

as it appeals, tacitly and intuitively, to some sort of “principle of choice”. Indeed, the first correct

proof of the theorem, in the context of the explication of the axiom of choice from which it

depends, is given by Zermelo in 1904.
301More correctly, this theorem should be called the theorem of Dedekind–Schröder–Bernstein.

Cantor, in fact, obtained it as a corollary of the (never proved) theorem of comparability or

trichotomy, until the young Bernstein – in a seminar held around Easter 1897 – gave a demonstra-

tion of it, obtained in the previous year, completely independently from the comparability (see the

letter to Dedekind of 30 August 1899). Bernstein’s proof was relayed by Cantor to E. Borel, who

published it in his Leçons of 1898. In 1896, independently, also Schröder had tried to give a proof

of the theorem of equivalence, but (as Korselt observed in 1911) this attempt contains an error.

Finally, also Dedekind had found, already in 1887, a proof of the theorem (in the equivalent form:

if A
 B
 C and Affi C then Bffi C): Dedekind told Cantor in his letter of 29 August 1899, but the

proof was published only in his 1931.
302This is further evidence for our contention that the study under consideration could not have

been written in 1891.
303Cantor 1895, 484; transl. 90.
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1.19.5 Infinite and Finite Numbers, Natural Numbers and Their
Classification

As we already mentioned in the Introduction to this Appendix, Husserl insists that a

rigorous arithmetical “system” requires the preliminary differentiation of cardinal

numbers into finite and infinite. Beginning with the construction of the natural

number series through the operation of ‘successor’ and then claiming to prove that

the series of naturals determines a complete and systematic classification of the

field of finite numbers, produces a “non-complete” or “deficient” (mangelhaft)”
system, since it makes tacit use of a fundamental presupposition: that of finite-

ness.304 In other words, it fails to acknowledge that an arithmetic is constructed

only for the finite numbers, that the principles and laws that are formulated step by

step are valid only for these numbers. Registering this as a deficiency of his

Philosophy of Arithmetic, Husserl maintains here that the definition of finiteness

must be placed at the beginning of the investigations and put into the correct

systematical relation with the other definitions. Hence the construction of a rigorous

system of arithmetic must be articulated in the following three steps:

(i) Differentiation of finite and infinite cardinal numbers.

(ii) Construction of the natural number series.

(iii) Proof of the fact that all finite numbers have their equivalent in a number of the

series.

For (i), we find – preceded by the “standard” example of the one-to-one

correspondence of the set of whole positives with the set of odd numbers –

Dedekind’s definition of infinite set,305 which is, however, not formulated for sets
in general, but for sets of units, i.e, numbers:

Definition 1. “A number is said to be infinite if among its proper parts (unter ihren
Teilanzahlen) there is one that is equal to it.306 A number for which this is not true is
finite. From its units, therefore, no proper part can be formed that is equal to it.”307

Husserl mentions the following formal consequences of Definition 1:

Theorem 1. The part of an infinite number that is equal to it is itself also infinite.

Theorem 2. No infinite number whatsoever could ever be equal to a finite one, i.e.
no number can be both finite and infinite.

304Tieszen 1990, 153 only alludes to this point without elaborating it any further.
305“A system S is said to be infinitewhen it is similar to a proper part of itself; in the contrary case S
is said to be a finite system” (Dedekind 1888, 18, def. n. 64; transl. 63). In Dedekind’s terminology,

a representation f of a system (or set) S in itself (i.e. a function from S to S) is called similar when
it is injective, i.e. when to different elements a, b of system S correspond different f-images.
306That is, equivalent.
307PdA App. 395; PoA 369 ff.
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Theorem 3. If a is a finite number, then a þ 1 is also a finite number.

We find a sketch for a proof of Theorem 2 in the Beilagen.308

Proof. By contradiction, let Z be a finite number and Z0 an infinite number, such that

ðiÞ Z ¼ Z0; ðiiÞ Z0 ¼ #ðZ0Þ;

for some proper part #(Z0) of Z0. Then, by the definition of equality among numbers:

ðiiiÞ Z ffi Z0; ðivÞ Z0 ffi #ðZ0Þ:

It follows from (iii) and from the fact that #(Z0) is properly included in Z0 that
#(Z) ffi #(Z0) for some proper part #(Z) of Z, but then

Z ffi Z0 ffi #ðZ0Þ ffi #ðZÞ:

And therefore Z, being equivalent to one of its proper parts, would be infinite,

contrary to the hypothesis. Q.E.D.

The (more complex) proof of Theorem 3 is given in full in the text. It is

worthwhile to reconstruct it here in all details and with some additions.

Proof. Let a be finite and let us suppose, per absurdum, that a þ 1 would be infinite

(keep in mind that here 1 is a unit that does not belong to the number a). By the

definition of ‘infinite number’, a þ 1 can be put in one-to-one correspondence to

one of its proper parts, let say #(a þ 1): hence

f : ðaþ 1Þ ffi #ðaþ 1Þ for a certain correspondence f :

LetY be the collection of units of #(aþ1) that is in bijection with a (i.e.: the set
of the images of the elements of a under f), while the element 1 of a þ 1 is

correlated with a certain unit 10 of #(a þ 1) (i.e. 10 ¼df f(1)). Hence:

(i) f: a ffi Y; (ii) Y þ 10 	 #(aþ1).

IfY were to contain only units of a (i.e. ifY
 a were to obtain) then, for (i) and
the finiteness of a, Y would have to contain also all the units of a, given that a as a

finite number cannot be equivalent to one of its proper parts. Therefore Y 	 a
would obtain. But then, 10 would coincide with 1: if indeed 10 were different from

1, necessarily 10 would belong to a and, for Y 	 a established before, to Y. Hence

we would have f(x) ¼ 10 for some x 2 a, and by the injectivity of f and 10 ¼df f(1) it
would follow x¼ 1, i.e., 1 2 a: contradiction. In conclusion, ifY
 awere valid, we
would have, using (ii):

308PdA App. 404; PoA 379 ff.
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(iii) #(a þ 1) 	 Y þ 10 	 Y þ 1 	 a þ 1

against the fact that #(aþ1) is a proper part of a þ 1. Therefore

(iv) �(Y 
 a)

and, since Y 
 #(aþ1) 
 aþ1,

(v) 1 2 Y.

But then also

(vi) 10 2 a (because if 10 were to coincide with 1 then, as above, we would have

that 1 2 a).

Let us then consider the set of unitsY0 ¼df (Y – 1)þ 10 . By (ii), (v) and (vi) we

have

(vii) Y0 
 a (viii) Y0 þ 1 	 Y þ 10 	 #(a þ 1).

On the other hand, if we adequately modify the correspondence f (by mapping 1

on 1 and the x such that f(x)¼ 1 on 10 , and by leaving the rest unchanged) we obtain

an f 0 such that:

(ix) f 0: Y0 þ 1 ffi #(a þ 1).

From (vii), (viii) and (ix), repeating the previously developed argumentation

under the assumption that Y 
 a would obtain, we get that #(a þ 1) 	 a þ 1,

against the fact that #(a þ 1) is a proper part of a þ 1. Q.E.D.

Husserl now moves on to the second phase of the construction of the system of

natural numbers, i.e. to the definition of the series of natural numbers.309 The idea is
to proceed by iterative position of the units and parallel collection of the sets of

units constituted step by step into a unitary whole. More exactly, once a general sign

is established, ‘1’, as indicating “something” (Etwas) or “one” (Eins), we construct
the numbers stepwise, thus:

1þ 1; ð1þ 1Þ þ 1; ðð1þ 1Þ þ 1Þ þ 1; . . .

increasing the previously generated number (i.e. the previously generated set of
units), at every step, by one unit. We then denote the generated numbers by 2, 3, 4,

. . . : “We have therefore the chain of definitions: 2¼ 1þ 1, 3¼ 2þ 1, 4¼ 3þ 1 . . .
The series of numbers thus defined we call ‘the series of natural numbers’.”310

309About the ordering in a series, Husserl makes a remark that might seem marginal, but that is of

great importance from a philosophical point of view: the ordering in a series is not something

extrinsical to numerical concepts, but it is a priori and intrinsical to the very nature of these

concepts. This constitutes “the fundamental fact of arithmetic”. Fields of knowledge for which the

order of the elements is analogous to that of the numerical field give rise to theories that are

“equiform” or potentially identical to arithmetic. The relations and connections among the

elements of these fields can be interpreted arithmetically. See PdA App. 398–399; PoA 373.
310PdA App. 397; PoA 371 ff.
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That this would really be a rigorous “definition” is quite debatable. It is clear that

natural numbers are all those and only those numbers obtainable starting from zero
(or two, as in this case) using a finite number of iterative additions of a new unit.

The problem is that if we want to give a logically sound definition, we would have

to do this without any appeal to a “finite number of iterative additions” or, what is

the same, without using the expression ‘and so on’ or the ellipsis ‘. . .’. While Frege –

as is well-known, and as we will have occasion to recall later on – is clearly and

fully aware of this, Husserl does not seem to regard it as problematic, assuming in a

certain sense that the correctness of the definition above is warranted by the

finiteness of the number 1 þ 1 and by Theorem 3, on the basis of which we

know that the operation of addition of a unit (‘þ1’, i.e. the successor operation)

leads from finite numbers to finite numbers. A further, grave logical omission can

be found in the first of the Theorems that Husserl appends to the definition we just

encountered, which (together with Theorem 8, see below) one could call ‘Theorem
of infinity’:

Theorem 4. The natural number series has a beginning but no end.

Husserl’s alleged proof is the this: the first part of the Theorem is trivial; concerning

the second, due to axiom [HU.1] every collection (except the total class) can be

augmented with a unit, and from this follows that natural numbers do not have an

end. Q.E.D. The problem here is: who tells us that if n is any number of the series, then

n is different from the total class? [HU.1] is not at all an axiom of infinity!

At this point it is useful to recall – even if only in a schematic outline and without

presenting the proofs – how Frege tackled and solved311 the two issues raised

above: the definition of the set of natural numbers and the theorem of infinity.

With every concept F there is associated, according to Frege, a well-determined

object, the number of F (that we will indicate by nu(F)), defined as the extension of
the concept (of second level) ‘concept that is in bijection with F’. Cardinal numbers

are then defined as all and only those objects k that are the number of F for some

concept F. It is possible to prove (by Basic Law V)Hume’s principle: nu(F)¼ nu(G)
if and only if F and G are in one-to-one correspondence, i.e. bijection.

How is it possible to isolate, within the collection of numbers, the natural

numbers, i.e. those numbers that can be reached starting from the number zero
through a finite number of steps to the successor? This characterization is, obvi-

ously, circular: Frege’s strategy consists in attempting to define the three concepts

311This is the approach already delineated informally in the Begriffschrift (1879) and pursued

formally in the Grundgesetze (1893). As is well-known, the system of the Grundgesetze is

inconsistent, and hence from this point of view the provability of a theorem of infinity, as that

of any other proposition, is obvious. But what is interesting is that the proof – as we find it in the

Grundgesetze – of the so-called ‘Theorem of Frege’ (i.e. of the fact that the system of natural

numbers as defined by Frege verifies Peano’s axioms) can be reproduced in a consistent system
obtained by substituting Hume’s Principle (that Frege proves using his Basic Law V, the one

responsible for the contradiction) for Basic Law V; cp. Heck 1993; Hale & Wright 2001.
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that are involved (zero, the successor relation, being reachable in a finite number of

steps) without presupposing the concept of finite number.312

For the first two notions there are no particular problems. Zero (0) is defined as nu
(F), where F is the concept ‘object different from itself’, i.e.: Fx « x„ x. The
relational concept of successor (S) is defined as the one that subsists between an

object x and an object y when there are a concept F and an object a that falls under F,
such that y ¼ nu(F) and x is the number that belongs to the concept ‘object different

from a that falls under F’ (one proves that S is functional, i.e. univocal to the right).

The cornerstone of Frege’s solution, however, is the successful, non-circular

logical characterization of the third notion. In general, given any relation R, we can
introduce the exponential powers (the so-called ‘peirceians’) Rn of R, for n a natural
number greater than zero, on the base of the recursive definition

R1 :¼ R

Rnþ1 :¼ Rn;R

where ; is the operation of relative product between binary relations:

ðR; TÞxy $ 9zðRxz ^ TzyÞ:

We then define Rþ as that relation (called transitive closure of R) that occurs
between an x and a y when for some n > 0 we have Rnxy. Intuitively, Rn occurs

between x and y if and only if y is reachable from x by a chain of exactly n R-steps:

x ¼ x1R x2 R . . .Rxn ¼ y;

and hence Rþ occurs between x and y if and only if x is reachable from y by a finite
number of R-steps.

Frege demonstrates that it is possible to characterize equivalently the relation Rþ

(for arbitrary R) without using the concept of natural number (at the price of a

quantification over concepts, and hence impredicatively). After having introduced

the property Er(F,R) of ‘concept F that is R-hereditary’, as the one that is valid of F
and R if and only if F “propagates” along R, i.e. formally:

ErðF;RÞ: ¼ 8x8yðFx ^ Rxy ! FyÞ;

he proves the fundamental result according to which saying that Rþxy obtains is

logically equivalent to saying that y falls under every R-hereditary concept G under
which x falls:

ðÞRþxy $ 8GðGx ^ ErðG;RÞ ! GyÞ:

312Cp. Simons 2007, 231.
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Using the definitions given above of the zero (0) and the successor (S), together
with the non-circular reformulation of “reachable in a finite number of successor-

steps” given by (*), it is, finally, possible to define the concept NN of natural

number:

NNx :¼ x ¼ 0 _ 8GðG0 ^ ErðG; SÞ ! GyÞ:

Having thus obtained the concept NN, Frege proves that it satisfies Peano’s

axioms, specifically the axiom of injectivity of the successor (for the other axioms

the demonstration is immediate):

8x 8y 8z ðNNx ^ NNy ^ NNz ^ Sxz ^ Syz ! x ¼ yÞ

which is equivalent to the infinity of NN and hence to Husserl’s Theorem 4
mentioned above. Frege’s proof, particularly acute and complex, consists essen-

tially in showing that if x is a natural number (i.e. NNx holds) then, F being such that

nu(F) ¼ x and v being the extension of the total concept V (Vx« x ¼ x), we obtain
that v does not fall under F.

After this digression on Frege, we conclude with the presentation of the remain-

ing five theorems in Husserl’s text, which aim at establishing the main result

according to which for every finite number one and only one representative is
included in the series (Theorem 9).

Theorem 5. 1 þ 1 is a finite number.

Theorem 6. The natural number series contains finite numbers only.

This follows from the “definition” of the numerical series (i.e. “by induction”) by

Theorems 3 and 5.

Theorem 7. The number series contains pairwise unequal numbers only.

Proof. For the construction of the series, if the number Z1 follows in the order of the

series after the number Z0, then all the units of Z0 are contained in Z1 but not the

other way around (the unit that is added with every step is new), i.e. Z0� Z1. Hence,

if we had Z0 ¼ Z1, then Z1 would be equal to, i.e. in bijection with, one of its proper

parts, and hence it would be infinite, contrary to Theorem 6. Q.E.D.

Theorem 8. The number of the natural numbers is an infinite one.

Proof. The set of odd numbers, generated starting from the unit 1 by iteratively

adding two new units, is a succession that is a proper part of the natural one, and that

can be put in bijection with it. Q.E.D.

With Husserl’s last Theorem, we finally arrive at the conclusion that the natural

number series allows a complete classification of the field of finite numbers:

Theorem 9. To each finite number there corresponds in the series of natural
numbers one, but also only one, equal to it.
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Proof. Let a be a certain finite number. Take any pair of units of a and form the

natural number 1 þ 1 (¼2). Then we proceed – until exhausting all the units of a –

to extract from a one unit at a time, adding it to the number of the series we have

obtained at the previous step and obtaining thus the numbers 3 ¼ 2 þ 1, 4 ¼ 3 þ 1,

etc. (in other words: we count a). The natural number resulting when a has been

“emptied” of all units is equal to (i.e. in bijection with) a, and it is certain that this

process leads to a final natural number, because otherwise the infinite natural series

(Theorem 8) would be in bijection with the finite number a, which is impossible.

Moreover, if there were more than one natural number equal to a, there would be

two different natural numbers that would be equal among themselves, which is

incompatible with Theorem 7. Q.E.D.

Husserl emphasizes that in the proof of Theorem 9 the order in which we extract

the units from a is indifferent: in whatever order, the resulting number of the series

is always the same.313 In other words, it is not necessary to prove beforehand a

Lemma that states that if two finite sets are in bijection with respect to a certain

order of their elements, then they are in bijection with respect to any ordering, since

it follows from Theorem 9.314

1.20 Concluding Remarks

In this chapter we have pursued four different goals: (i) a precise positioning of

early Husserl’s work in the field of logic and the philosophy of mathematics; (ii) a

mathematical specification of some of his intuitions by means of standard logical

notions and tools wherever possible; (iii) a comparison with Frege concerning

certain very specific topics such as the use of defining a concept by defining its
extension or the definition of cardinal numbers (cp. Appendix 1); (iv) a comparison

with the algebraists of logic, in particular Boole, as to the treatment of the symbolic

aspect of the algorithmic systems (cp. Appendix 2).

Husserl came to the fore as a mathematician who confronts the problems of the

mathematical world in which Weierstrass and Cantor were active, reflects on the

issue of the arithmetization of analysis, appropriates Cantor’s definition of cardinal
numbers through abstraction and reflects on Cantor’s Mannigfaltigkeitslehre.
He fully understands the demands to which the critical movement devoted to the

313Also see PdA 109; PoA 114.
314Here Husserl seems to answer one of the objections that Frege made in his Review of the

Philosophy of Arithmetic, i.e. that if one maintains that the fastest way to compare the cardinal

numbers of two sets is counting the elements of each set, and furthermore, if one maintains that the

actual reason for which two sets turn out to be in bijection is that they have the same number and

not the other way around, one commits the error of neglecting that “counting the elements” means

precisely to put them in bijection with a segment of the series of naturals.
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“instillation of rigor in analysis”315 tries to give an answer as well as the tendency

towards formalization and generalization present in the mathematics of the nine-

teenth century. From his reception of the results of abstract algebra and his

conception of algorithmic systems as capable of applying to diverse systems of

entities, it emerges that he “clearly endorses a limited version of the thesis later to

be defended by Wittgenstein and Gentzen of meaning as use.”316 Especially

important in Husserl’s youthful work are his reflections on arithmetical operations;

in particular his inquiry into the possibility of circumscribing the ‘class of all

conceivable arithmetical operations’ and his claim that the addition operation is

irreducible to that of multiplication.317 We believe that the attempt at finding a

formal counterpart for the class of functions Husserl was thinking of can be viewed

as an example of how his intuitions can be developed and completed by argumenta
in forma. One of the consequences of this choice is that it makes possible to see

Husserl as a pioneer in his attempt to investigate the question whether the class of

“computable arithmetical functions” can be characterized as a whole. The problem
of finding an adequate mathematical characterization (or definition) of the intuitive
notion of computability has received various answers much later (since 1933–34),

and, to the best of our knowledge, nobody has ever thought of Husserl as someone

who has anything to contribute to this issue. On the whole, a formal reconstruction

can help to overcome the regrettable unclarity of many of Husserl’s formulations.

From the perspective of the history of logic the specific proof of the equivalence of

Husserl’s class of functions with the class of functions known in current logic as the

class of partial recursive functions represents a substantially new result.

315Kline 1972, 947–978.
316Mulligan 2004 (unpublished).
317See }15.
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Chapter 2

The Idea of Pure Logic

2.1 Introduction

In his Prolegomena to Pure Logic Husserl works with Bolzano’s idea that the entire
field of truths can be partitioned into several parts, each of which consists of all

truths “of a certain kind,” that is, all truths that are germane to a certain homoge-

neous kind (Gattung) of objects.1 Husserl says that “it is not arbitrary where and

how we delimit fields of truth,”2 “the domain of truth is not an unordered chaos,”3

but it is articulated in “natural provinces”4 that are also called “fields of knowledge

(Erkenntnisgebiete)”5 or fields of experience (in a broad sense of this word which

comports well with common mathematical usage, where, for instance, a system

of abstract objects like e.g. the natural numbers equipped with certain functions

and relations is said to be a “field of experience”). Each field of experience in

Husserl’s sense can be viewed as “an independent reality with its own experimen-

tally determined mathematical structure.”6 In this sense fields of “the purely

mathematical sciences whose objects are numbers, manifolds (Mannigfaltigkeiten),
etc., things thought of as mere bearers of ideal properties, independently from

real being or not being,”7 are also to be considered fields of knowledge or of

experience.8

1Cp. the allusion to Bolzano’s WL in PR 29, PRe 73.
2PR 5, PRe 54.
3PR 15, PRe 62.
4PR 25, PRe 70.
5PR 19, PRe 65.
6Here I borrow the terminology from Webb 1980, 79.
7PR 11, PRe 69.
8Tieszen 2004 rightly stresses that “Husserl also says that among the eidetic sciences some are

exact and some are inexact. Mathematics and logic are exact . . . mathematics and logic set the

standard for what is clear, distinct and precise” (33–34). Our considerations in this chapter always

refer (unless otherwise specified) to exact sciences.

S. Centrone, Logic and Philosophy of Mathematics in the Early Husserl,
Synthese Library 345,

DOI 10.1007/978-90-481-3246-1_2, # Springer ScienceþBusiness Media B.V. 2010
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Truths that constitute a “natural province” are organized according to a certain

objective relation of dependency.9 It is the task of each single science to make

manifest this relation of dependency among the truths concerning its own field of

objects.

Seen from this perspective, the sciences are characterized by methodologies apt

to transmit cognitive evidence – with respect to circumscribed regions of the

world – ranging from those facts (obtaining states of affairs) which can be directly

recognized as facts, to those for which this is not possible. Within each single

science the transmission of evidence occurs through certain typical “ways of

proceeding” (Verfahrungsweisen) common to all disciplines generally accepted as

such (arithmetic, geometry, natural sciences). Husserl reserves the name of

“groundings” or “foundations (Begründungen)”10 for these “typical ways of pro-

ceeding.”11 These are classes of typical inferences (e.g., the syllogism in Barbara),
that is, all and only those used in the actually existing sciences. The form of the

science is determined by the connection (Verbindung) and the order (Ordnung) of
the foundations. They constitute what Husserl refers to as a “systematic intercon-

nection in the theoretical sense (systematischer Zusammenhang im theoretischen
Sinne)”.12

Three different connotations of the term ‘logic’ can be found in the Prolego-
mena. Logic is conceived of, firstly, as Wissenschaftslehre in the sense of a theory

of scientific methodologies. Thus understood, it assumes effectively the traits of a

metalogic.13 Secondly, logic is intended as pure logic which studies relations

between certain abstract non-linguistic entities, such as concepts and propositions.

Used in the former sense, the term “logic” refers to a meta-theoretical discourse

on scientific theories: as “systematical webs of groundings (systematische Gewebe
von Begründungen)”14 they become the object of the investigation. This is a

9Bolzano 1810: “In the realm of truth, that is in the collection of all true judgements, reigns an

objective interconnection that is independent of the contingent fact that we subjectively acknowl-

edge it; it is in virtue of this that some of those judgements are the reasons of others and the latter

the consequences of the former” (Part II, }2). Cp. Cavaillès 1938, 54–55.
10It would be more correct to translate “Begründung” as “grounding” and to reserve “foundation”

for “Fundierung”. The former is Husserl’s version of Bolzano’s “Abfolge”, as we shall try to show.
The latter is used in the third LU to signify one of the possible dependence relations between the

parts of an object. However, for the sake of fluency of style we shall use both terms (accompanied

by the German word in brackets).
11See for instance the title of }9 (PR 22, PRe 68): “Methodical ways of proceeding in the sciences –

in part groundings, in part auxiliary devices towards groundings”.
12PR 15, PRe 62.
13“The task of the theory of science will therefore also be to deal with the sciences as systematic
unities of this or that sort. . .” Each science “can be subsumed under the concept of method, so that

theWissenschaftslehre’s task is not merely to deal with the methods of knowledge in the sciences,

but also with such methods as are themselves styled sciences” (PR 25, PRe 70).
14PR 25, PRe 70.
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broadening of Bolzano’s concept of a Wissenschaftslehre,15 “a normative and

practical discipline relating to the Idea of science,”16 as Husserl puts it. Here

‘practical’ is meant in the Bolzanian sense: a science that “also has the task of

formulating the rules according to which the sciences must be delimited and

constituted.”17

As regards the second sense of “logic”, it is well known that Husserl’s refutation

of logical psychologism leads in the Prolegomena to the identification of “an

internally closed, independent . . . field”18 of a priori truths, which constitute the

domain of pure logic. Pure logic acknowledges the objectivity of contents of

thinking (concepts, propositions, inferences) and studies the properties of and the

logical relationships among them. It is a formal, theoretical, a priori science,

independent of other sciences, and, in particular, of psychology. Here ‘independent’
is meant in Bolzano’s sense: in order to prove its derived propositions (theorems),

pure logic does not require any auxiliary truths that are not logical truths. According

to Bolzano, a science A is dependent (abhängig) on another science B (takes from

another science part of its own theoretical content, as Husserl puts it19) if in a

textbook of A some truths of B are indispensable as lemmata (Hülfssätze, auxiliary
truths) for proving the theorems of A.

For example, the theory of space (geometry) depends in this fashion on the general theory

of magnitudes (arithmetic, analysis) because textbooks of the former contain certain truths,

indispensable for the proofs of some of its essential theorems, which deal with magnitudes

in general rather than with space in particular and hence essentially belong to the general

theory of magnitudes.20

A science is “altogether independent” just in case it is not dependent on any

other science. So Husserl takes the field of the truths of logic in the second sense to

be the domain of an independent theoretical science in Bolzano’s sense.

Logic is thirdly thought of as a Wissenschaftslehre in the sense of a theory

concerned with the deductive mechanism in general. In this sense, too, it can be seen

15A broadening insofar as, besides the problems of order, organization and systematization which

pertain to the exposition (Darstellung) of a theory, we find in Husserl, from c.1896 onwards, the

idea that not only mathematical but all theories insofar as they are formalized are to be made the

object of the investigation. And formalization in this sense is not present in Bolzano. For more on

this issue see next chapter.
16PR 12, PRe 60.
17PR 29, PRe 73. Actually Bolzano defines Wissenschaftslehre as “the aggregate (Inbegriff) of all
those rules which we must follow when subdividing the entire realm of truth into single sciences

and representing them in special textbooks, if we want to proceed in a useful way” (WL I, }1, 7).
18PR 32, PRe 76.
19See for instance PR 47, PRe 87: “it is . . . easy to see that each normative, and, a fortiori, each
practical discipline, presupposes one or more theoretical disciplines as its foundations, in the sense

namely, that it must have a theoretical content free from all normativity, which as such has its

natural location in certain theoretical sciences . . .”
20WL I, }13, 53.
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as a “science of science”,21 but now it is taken to be concerned with the logical

mechanism as a feature of all formal sciences. Thus conceived it consists of laws

that formally warrant the step from axioms to theorems.22 In the last chapter of the

Prolegomena Husserl speaks of “a sphere of laws, which in formal universality

span all possible meanings and objects, under which every particular theory or

science is ranged, which it must obey if it is to be valid”.23 These are the laws with

which every formal theory is to comply “and through which, as a theory validated

by its form, it can be ultimately justified”.24

2.2 The Concept of a Theory

As we already pointed out in the Introduction to this chapter, from 1896 onwards

Husserl works with an essentially Bolzanian conception of a theory as a collection of

true propositions about a certain sphere of objects, which are either primary and

indemonstrable principles (erste Grundsätze) or derived from such principles in

accordance with a fixed set of rules. It is important to remember that the objects the

theory is concerned with must all belong to the same homogeneous kind and that the

theory must contemplate all the consequences that can be derived from its principles

in accordance with the rules.25 This conception of a theory does not appear to be

substantially different from what emerges from the classical idea of an axiomatic

system that was outlined by Aristotle in his Analytica Posteriora and of which

Euclid’s Elements are the most representative example.26 In this light, a theory is a

tool that enables knowledge about a clearly demarcated realm of objects to be

organized systematically. In order to be categorized a certain limited number of

primitive concepts must be identified that are both immediately intelligible, hence
not in need of definition, and sufficient for every other concept pertinent to the field
to be related to them by means of the logical tool of definition and thus to acquire,

albeit indirectly, intelligibility. As regards the description of the properties of the
field, a certain limited number of primitive propositions (the axioms of the theory) is

to be identified, the truth of which is immediately obvious, hence not in need of

proof, and which suffice for the derivation of every other true proposition about the
field by means of the logical tool of demonstration. The foundations of the theoreti-
cal construct – primitive concepts and primitive truths – thus rest on something

extra-logical, that is on the immediate comprehensibility of some concepts and

on the self-evidence of some propositions. The development of the construct,

21PR 12, PRe 60.
22Cp. Tieszen 2004, 28.
23PR 246, PRe 239.
24Loc. cit.
25For this conception see also Jan Berg, BGA, vol. 11/1, 18.
26The reference paper on this classical view is Scholz 1930; cp. also Casari 1973.
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by contrast, occurs bymeans of the logical procedures of definition and demonstration

that endow defined concepts with intelligibility and derived propositions with truth.

What, if anything, distinguishes the conception of a theory shared by Husserl and

Bolzano from the view just characterized? At this point some conceptual distinc-

tions made by Casari turn out to be very helpful. He calls the conception of a theory

of which the view just described is one variant a categorical conception of an

axiomatic theory. Now “with respect to the distinction between primitive and

derived or derivable, this categorical conception gives . . . rise to two variants that

we can distinguish as the epistemic and the etiological conception.”27 The contrast
is manifest already at the level of proofs: “. . . from the epistemic perspective a

proof is a procedure through which we ascertain the truth of an assertion, while

from the etiological point of view a proof is a procedure by which we bring to light
the reasons of the truth of the assertion.”28 At the level of a theory T this contrast

reappears as the distinction between the various possible logical presentations of T
that are epistemically adequate (insofar as every non-axiomatic truth of T is

provable in them) and a privileged presentation of T in which every non-axiomatic

truth of T is “etiologically proven”. Can one find some suitable formal conditions

by which such a privileged logical presentation of T can be isolated (even though

the content of the relevant propositions cannot be set aside completely)? The most

important formal condition is the following: the proofs must proceed from the
simpler to the more complex, in conformity with the intuitive requirement that in a

good explanation the explicans must not be more complex than the explicandum.
Thus, at the level of invertible logical inferences (such as “A, B, therefore A ∧ B”

and its inversions “A ∧ B, therefore A”, “A ∧ B, therefore B”), the direction of

introduction is privileged. Another formal condition and, intuitively equally justi-

fied, is this one on which Bolzano also dwells: etiologically acceptable proofs must
proceed from the general to the particular.

Bolzano points out that the contrast between the epistemic and the etiological

conception of proof largely coincides with the distinction, marked by Aristotle and

the Scholastics, between those proofs that simply show that something is the case

(demonstratio quia) and those that explain why something is the case (demonstratio
propter quid), which give the objective reason for its being the case.29 He also

captures the contrast as that between proof as ascertainment (Gewißmachung),
which aims at producing certainty as regards the proposition that is to be proven,

and proof as foundation or grounding (Begründung), which rather aims at giving

the reasons for the proposition in question.30 Bolzano had insisted on this distinc-

tion between “subjective” and “objective proofs” already in 1810:

27Casari 1987, 330. The epithet “etiological” alludes to the Greek word ‘aitı́a’ which means

whatever is specified in an answer to a why-question. (Aristotle’s famous theory of the “four aitı́ai”
is a theory of four kinds of because, rather than a theory of four kinds of cause.)
28Op. cit., 331–332.
29Bolzano,WL II, }198, 341. Cp. Aristotle, An. Post. I, 13; Aquinas, Summa Theologiae I, quaestio
2, art. 2.
30Bolzano, WL IV, }525, 261–2. Cp. Bolzano 1834, I, }3, No. 2.
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by a scientific proof of a truth we must understand the presentation of the objective

dependence (objective Abhängigkeit) of a given truth on other truths, i.e. the deduction of

a truth . . . from such truths as must in themselves and necessarily be regarded as its

ground.31

As can be seen from Formal and Transcendental Logic, Husserl knew Bolzano’s

early monograph.32

Unlike the traditional idea of a rigorous deductive science (viz., the categorical

conception of an axiomatic system in its epistemic variant) the concept of theory

with which both Husserl and Bolzano operate (viz., the categorical etiological
conception of such an axiomatic system) needs an account of the nature of depen-
dency relations among true propositions. Bolzano explicitly requires that in the

process of backtracking from a truth to its reasons we want to find neither

(i) “extraneous material” with respect to the conclusion nor (ii) principles that are

more specific than the truth to be proven, that is we want a proof of a given truth that

moves from simplest to most complex and from most general to most specific.

Husserl accepts, as we shall see, both these formal conditions.

In the next sections we will try to do three things: (a) clarify the Husserlian

concept of foundation or grounding (Begründung) and its relation to the Bolzanian

concepts of derivability (Ableitbarkeit) and consecutivity (Abfolge), (b) elucidate
the notions of “interconnection of things” and “interconnection of truths,” as

used in Chapter XI of the Prolegomena, and (c) explain what Husserl means

when he says that a concept (Begriff) founds or determines a conceptual field

(Begriffsgebiet).

2.3 The Concept of Begründung

As we have seen, in the Prolegomena Husserl works with Bolzano’s idea that there
is a certain objective connection among truths, independent of the cognitive

activity of the subject: certain truths are the “reasons” (Gründe) of others and the

latter are “consequences” (Folgen) of the former. Husserl characterizes this relation

between truths as “a certain objective or ideal interconnection which provides

[certain cognitive acts ore states] with a common objectual reference (gegenstän-
dliche Beziehung) and thereby also with ideal validity (Geltung)”.33 In this “sys-

tematic interconnection in the theoretical sense (systematischer Zusammenhang im
theoretischen Sinne) . . . lies the foundation of knowledge (die Begründung des

3117, II, }12; cp. Bolzano 1834, I, }3, No. 2.
32Op. cit., }26 d). The editor of this volume of the Husserliana neither gets the title of Bolzano’s

booklet right nor the name of the editor of the 1926 edition (Heinrich Fels). Husserl says that this

early work of Bolzano had been “nearly unavailable”. This does not imply that he himself only

came across it in 1926. Another Brentanist, Benno Kerry, had referred to it already in the eighties

of the nineteenth century: see Künne 2009, 327.
33PR 228; PRe 225.
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Wissens) and suitable connection and order in the sequence of those groundings.”34

That is to say, the transition from truths that are neither capable nor in need of a

proof because they are self-evident (principles/axioms, Grundsätze/Axiome) to

other truths that require a proof is effected by means of Begründungen, that is it
is an etiologically acceptable proof.

In his Wissenschaftslehre, Bolzano introduces two important relations among

propositions: consecutivity (Abfolge), a relation that can obtain only between true

propositions and that connects certain truths as reasons to others as their conse-

quences, and derivability (Ableitbarkeit), a formal35 relation that does not only

obtain between true propositions and that corresponds to the concept of “following

from certain premises through correct inferences.” The relation of derivability is

characterized by Bolzano in such a way that it covers not only cases of formal

inference, but also cases of semiformal enthymematic inference.36

Because it can obtain only among truths, the relation of Abfolge is not purely

formal: it also depends on the content of the propositions between which it obtains.

More exactly, Abfolge is generally speaking a material relation. However, Bolzano

seems to think that the Abfolge relation confined to conceptual truths is as a formal

relation. In this case the question of the consecutivity among true conceptual

propositions can be recast as the question whether the steps of a proof obey a

principle of analyticity, that is, whether the premises of the inferences do not

contain concepts or propositions that are not contained in the conclusion. This is

a condition which can be fruitfully related to that of a proof in normal form that is

central in contemporary proof theory.

We maintain that the Husserlian concept of Begründung is a direct adaptation of
the Bolzanian notion of “consecutivity between truths.”

First of all, we have to point out that in Husserl’s characterization of the

scientific process as interconnection of Begründungen the concept of logical infer-

ence is privileged. For him the truly important concept in deductions is “logical

inference”, though Bolzano, as we shall see,37 is less certain that each case of

consecutivity is a case of logical inference.

“Scientific knowledge”, Husserl claims, “is as such grounded knowledge

(Erkenntnis aus dem Grunde).”38 He shares with Bolzano the view that the rules

of inferences that give the reasons for a truth must be analytic (in Gentzen’s sense)

and intrinsic: the premises must be simpler than the conclusion, and they must not

contain material that is extraneous to the latter. By contrast, showing that a certain

proposition A is a logical consequence of a certain proposition B is obtaining

A from B through correct inferences. The relation of logical consequence

34PR 15; PRe 62.
35The relation of derivability is characterized by rules of inference that exclusively concern the

form of the involved propositions.
36See Appendix 4 to this chapter for some explanation of these notions.
37See below.
38PR, }63, 231.
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(corresponding to Bolzano’s derivability) is, in this sense, a weaker relation than

that of grounding (Begründung im prägnanten Sinne),39 which is Bolzano’s Abfolge
by another name. We can maintain with reasonable certainty40 that Husserl’s

position on the relation between “foundations” or “groundings” and valid infer-

ences is as follows: not all valid inferences are foundations (yield the “why”, the

Grund), but all foundations are valid inferences. Thus, for example,

A;B; therefore A ^ B

is both a valid inference and a foundation, whereas

A ^ B; therefore A

is a valid inference but not a foundation. Though A can clearly be logically inferred

from A ∧ B, one cannot sensibly maintain that A ∧ B constitutes the (or a) reason

of A. The following passage is very telling in this respect:

Notice the following distinction: every explanatory (erklärende) interconnection is a

deductive one, but not every deductive interconnection is an explanatory one. All reasons

(Gründe) are premises, but not all premises are reasons. Every deduction is necessary, i.e.

falls under laws, but the fact that the conclusions follow according to laws (inferential laws)
does not mean that they follow from those laws and are “founded” (“gründen”) in them in

an emphatic sense. Of course habitually we refer to every premise . . . as “reason” of the

“consequence” that is drawn from it – an equivocation that we need to heed carefully.41

The first generalization marks a difference between Husserl and Bolzano that is

to be registered: Bolzano is by no means certain that every case of Abfolge is also a
case Ableitbarkeit.42

Incidentally, the point Husserl makes in the penultimate statement of the above

quotation is also a Bolzanian one. Anticipating by four decades the insight that was

unforgettably expressed in Lewis Carroll’s “What the Tortoise Said to Achilles”,

Bolzano clearly distinguished in his Wissenschaftslehre between the premises of a

deduction and the rules in accordance with which an inference proceeds:

If one maintains that the complete ground of the truths M, N. O, . . . includes, besides truths
A, B, C, D, . . . , from which they are derivable, also the rule which allows [their] derivation,

then this amounts to maintaining that propositions M, N, O, . . . are true only because this rule
of inference is valid and because propositions A, B, C, D, . . . are true. This is tantamount to

[another] inference. . . But since every inference has a rule, this [new inference] does too. . .
We can see at once that this way of inferring can be repeated ad infinitum, and that, if it were
legitimate to add one rule of inference to the ground of the truths M, N, O, . . . , an infinite

number of them could be claimed to belong to this ground; which seems absurd.43

39PR, }64, 233; PRe 229.
40In this respect, see the following quotation from PR, Chapter XI.
41PR 235; PRe 229.
42Bolzano, WL II, }200, 346–48. But cp. WL II, }221 note, 388.
43Bolzano, WL II, }199, 345. For further references see Künne 2008, 400.
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Moreover, what is grounded cannot be more general than its ground. This

condition, already put forward by Bolzano,44 is interpreted by Husserl in a rather

special sense. He has in mind here the fact that axioms function as schemata whose

instances are used in proofs. This requirement was explicitly stated few years

earlier, in the LV96, as one of the four principles that must precede the constitution

of a deductive theory.45 There he claims that in every deductive theory the proof of

a proposition must consist in subsuming it under more general propositions, that is

finally under a subset of the primitive axioms of the theory. He calls this way of

proceeding “subsumption under the axioms (Subsumtion unter die Axiome)”: We

do not admit as conclusion “any proposition that does not fall under the basic laws

(Grundgesetze).”46 In the Prolegomena he writes: “If we are dealing with the

grounding (Begründung) . . . of a general truth, . . .we are referred to certain general
laws, which, by way of specialization (not individualization) and deductive conse-

quence yield the proposition to be proved.”47 That is to say, we have to show that

the intended proposition is an instance of those laws fixed as basic laws or is

obtained from them (or from derived proposition) by means of an inference rule

of the kind Abfolge.
In }7 of Chapter I of the Prolegomena three peculiarities are ascribed to

foundations (Begründungen). Firstly, they are said to be “fixed structures (feste
Gefüge)”, that is they are valid inferences (the conclusion follows necessarily from

the premises), modulo making intended premises explicit. Husserl allows for

enthymematic inferences, as did Bolzano. In LV96, 234 he maintains that to

every inference, of the kind later called “grounding” or “foundation”, corresponds

a Kausalsatz, that is a proposition of the form ‘A, because B’ (where ‘A’ represents

the conclusion of the inference and ‘B’ the conjunction of its premises); conversely,

to every Kausalsatz corresponds an inference, not in the strict sense, but in the
broadest sense (“wenn der Terminus Schluß in seinem weitesten Sinn genommen
wird”), that is as covering also enthymematic inferences. In Husserl’s example,

‘Caius is mortal because he is a man’ corresponds to the enthymematic inference

that concludes ‘Caius is mortal’ from ‘Caius is a man’, an inference that, making

the tacit premise ‘all men are mortal’ explicit, becomes an inference in the strict

sense.

Secondly, foundations (Begründungen) are said to exemplify kinds, or schemata,

of inference (Schlußarten, Schlußformen): all inferences used in the various scien-

tific disciplines are instances of a finite number of Schlußarten, and the problem

becomes that of determining which and how many kinds of simple inference there

are.48 And finally, Husserl emphasizes that no form of Begründung is reserved for a
special field of knowledge.

44See below, Appendix 4.
45There is a formal treatment of these notions in Appendix 4.
46For example, see LV96, 246.
47PR 232; PRe 228.
48See footnote 49 below.
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Although Husserl conceives of scientific proofs as made up of groundings in the

emphatic (or etiological) sense (Begründungen im prägnanten Sinne), he seems not

to object to valid inferences of a less demanding kind in the sciences, that is to

proofs that only comply with the demands of Ableitbarkeit.49 Presumably he

thereby wants to remain faithful to actual mathematical practice in which deriva-

tions that are not of the canonical kind, that is that are not etiological, are liberally

used. Maybe he thought that all scientific proofs of this inferior type could be

transformed into proofs that are of the canonical kind (although, as far as we know,

he made no attempt at proving that this is possible).

There is a further feature of Husserl’s views on foundations or groundings

(Begründungen) that ought to be mentioned: he requires that the move from axioms

to theorems is made by inferential steps that are simple. An inferential step is simple

just in case it is not possible to decompose the passage from the premises to the

conclusion any further. This further requirement is not explicitly formulated by

Husserl, but it clearly emerges from reflections upon the second of the peculiarities

ascribed to foundations, that is their being inference schemata. We are looking for a

possibly limited number of atomic inferences into which all other (more complex)

inferences can be decomposed.50

Of groundings Husserl says that “science can never do without this helpful

ladder (Stufenleiter).”51 We need them “in order to pass beyond what, in knowl-

edge, is immediately and therefore trivially evident.” After all, “. . . evidence . . . is
in fact only immediately felt in the case of a fairly limited group of primitive facts.

Countless true propositions are only grasped by us as true when we methodically

ground them.” In other words, “there are infinitely many truths which could never

be transformed into knowledge without such methodical procedures.” The “foun-

dational interconnection (Begründungszusammenhang)” characterizes science as

such.

49See for instance the calculus of an axiomatic-synthetic kind presented in LV96 (Appendix 5).

One of the principles that must precede the constitution of every deductive theory is the modus
ponens of traditional logic, that is, the rule: A, A! B/B. This is a typical inference rule of the kind

Ableitbarkeit.
50The inference: a ! b, b ! c, c ! d/a ! d can for instance be decomposed into the simpler

inferences: a ! b, b ! c/a ! c and a ! c, c ! d/a ! d. That Husserl thinks this way clearly

emerges, as we said above, from his characterization of Begründungen as schemata “If (the

Begründungen) were formless and lawless, if it were not a fundamental truth that all Begründun-
gen have certain inherent ‘forms’, not peculiar to the inference set before us hic et nunc, but typical
of a whole class of inference . . .” (PR 20; PRe 66). Here it is quite natural to think that with these

‘forms of inference’ that act as patterns for a whole class of particular inferences we are looking for

forms of inferences of the most elementary kind.
51All quotations in this paragraph are from PR 15–16; PRe 62–63.
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2.4 The Interconnection of Things and the Interconnection

of Truths

Husserl introduces an important distinction when he writes:

Two meanings can be attached to this objective interconnection which ideally pervades

scientific thought and which gives ‘unity’ to science as such: it can be understood as the

interconnection of things which our (actual or possible) acts of thinking are intentionally

directed at, or, on the other hand, as the interconnection of truths in which this unity of

things acquires objective validity (Geltung) as being what it is.52

Perhaps the best way to explain this dichotomy is via elucidating the sense of the
statement that “a concept (Begriff) determines a field.”53 Consider the concept of

cardinal number (Anzahl). The assertion that “the concept of cardinal number

determines a field of knowledge” is to be understood as follows: the field under

consideration is constituted by the objects that fall under (unterstehen) this concept,
that is by infimae species of the genus ‘cardinal number’54: they are precisely the

cardinal numbers, for which there is a uniform and univocal principle of construc-

tion (sc. passage to the successor: 1; 2 ¼ 1 þ 1; 3 ¼ 2 þ 1;. . .55). The only relation

that obtains between the objects of this field, the natural number series, is the order

relation (�: given any two finite cardinal numbers, either one is smaller than the

other or they are the same). The connections “that have . . . a meaning for the objects

of this field”56 are the arithmetical operations (elementary operations: addition,

subtraction, multiplication, division, and higher operations: exponentiation, root

extraction, logarithm, etc.).

What, then, is the sense of Husserl’s often repeated claim that some laws are

“grounded in the essence of this or that”,57 in this case: grounded in the constitutive

concept of the field under consideration? A law is grounded in a concept if and only

if it is analytically included in that concept. So the laws of commutativity and

52PR 228; PRe 225.
53Cp., for instance, this passage: “. . .whether it is the domain of cardinal numbers (Anzahlenge-
biet) or some other conceptual domain (Begriffsgebiet), that the general arithmetic . . . governs”
(PoA 7; PdA 7). The notion of a “conceptual determination (Begriffsbestimmung) that delimits a

field of knowledge” derives from Bolzano. See e.g.,WL I, } 2, 9: “. . . the field of a science that we
obtain by means of this conceptual determination (das Gebiet der Wissenschaft, die wir durch
diese Begriffsbestimmung erhalten)”.
54PoA 414 ff. PdA 434: “If we understand by cardinal number the answer to the question ‘How

many?’ then the number series is the closed manifold of particularizations that are possible in the
sphere of the concept how many.”
55PoA 238 ff., PdA 226 ff.
56PoA 412, PdA 433.
57Cp. for instance PoA 414, PdA 435: “operations which are grounded in the Idea of the cardinal

number” or LV96, 241: “the general logical laws divide in several groups: in laws which have their
roots in the concept of proposition, in laws which have their roots in the concept of concept, in laws

which have their roots in the concept of object”.
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associativity, for example, are grounded in the concept of addition by being

analytically included in this concept.58

What is the interconnection of things? In this specific case it is the numerical field,

organized in the form of a number system: “the system peculiar to science . . . is not
our own invention, but is present in things, where we simply find or discover it.”59

And what is the interconnection of truths? In our example, it is the arithmetic of

finite cardinal numbers. The point is that the interconnection of things and the

interconnection of truths are, in a way, the same thing, considered from two

different perspectives. We have knowledge of a certain field only through the truths

holding of that field; so, sticking with our example, we have knowledge of the

connections (þ,� . . .) and the relations (<,¼) holding in the numerical field – and

we are able to operate with them – only by knowing the mathematical laws that

govern them. Quite generally, Husserl maintains:

[the interconnection of things and the interconnection of truths] are given together a priori
and are mutually inseparable. Nothing can be without being somehow determined, and that

something is and is somehow determined is the truth in itself (Wahrheit an sich) which is

the necessary correlate of the being in itself (Sein an sich). What holds of single truths . . .
plainly also holds of interconnections of truths . . . This self-evident inseparability is not,

however, identity. In these truths or interconnections of truths the actual existence of things

and of interconnections of things finds expression. But the interconnections of truths differ

from the interconnections of things which are ‘truly’ [represented] in the former; this is

immediately evidenced by the fact that truths which hold of truths do not coincide with

truths that hold of the things posited in such truths.60

Thus, for example, no truth that belongs to the arithmetic of natural numbers

(elementary number theory) coincides with any truths about arithmetical truths

(like that concerning the incompleteness of the formal system of PA).

2.5 The Idea of Pure Logic

Let us now consider Husserl’s strikingly innovative view of the structure of formal

logic, as it is outlined in Chapter XI of the Prolegomena, and then (in the next

section) reflect on some of the disciplines that are located at each level in this

58Fine 1994 maintains that as regards explaining the concept of essence the classical doctrine of

real definitions is superior to an account in terms of necessity. Every general law that affirms an

essential relation among the objects of a certain field is a necessary truth, but essence cannot be

explained by modal notions. Fine appeals to a conception of essence that is admittedly inspired by

the Husserlian one, that is the notion of nature/essence of an object is primitive. “[E]ach class of

objects, be they concepts or individuals or entities of some other kind, will give rise to its own

domain of necessary truths, the truths which flow from the nature of the objects in question . . .”
An important development of this conception of “to be grounded in the essence of” can be

found in Mulligan 2004.
59PR 15; PRe 62.
60PR 228; PRe 225–226.
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structure, using for this purpose the sketches of a logical morphology and of a logic

of non-contradiction in the fourth Investigation.
Husserl characterizes the structure and the tasks of pure logic in the course of

answering the question, “what are the conditions of the possibility of a theory in

general?”,61 in other words, “what are the primitive . . . concepts that constitute the
concept of a theory?”62 Since a theory is made up of “truths (that are articulated) in

the purely ideal forms of reason (Grund) and consequence (Folge),”63 where truths
are considered as true propositions à la Bolzano, the science whose task it is to

elucidate the structure of theories will also have the task to isolate the kinds of

notions64 that occur in propositions (categories of meaning), the ways in which

complex notions are composed of simpler notions, the ways in which propositions

are composed of notions, and the ways in which compound propositions are built up

from simpler ones (the meanings of connectives, in current logical terminology).

Now, since knowledge about a field of experience is possible only by way of a

theory that describes the behavior of the objects of that field, their relations and their

connections etc., it is clear that the “ideal constituents of a theory” (notions,

propositions, truths, inferences, logical laws) will be “conditions of the possibility

of knowledge in general.” 65

According to a structuring that is de facto quite close to that in contemporary

logic textbooks, formal logic is conceived by Husserl as hierarchically articulated

in three different logical levels.66 Each of these levels is considered from two points

of view, terminologically distinguished in his later Formal and Transcendental
Logic as ‘apophantic’ (concerned with the forms of propositions, of proofs, and of

theories as systems of propositions)67 and ‘ontological’ (concerned with objects in

general, with sets and relations among sets, with any kind of manifold, with any

kind of connection, order, magnitude, . . .).68

At the basis of this structuring we find a ‘logical morphology’ that, from

the apophantic point of view, aims at determining (i) the ‘pure categories of

meaning’, that is the fundamental semantic categories, (ii) the forms of connection

between the ‘lower elements of meaning’ (i.e. names and predicates) in simple

propositions, and (iii) the elementary forms of generating propositions from

61PR 236–237; PRe 232.
62PR 241; PRe 235.
63PR 240; PRe 234.
64Concerning our choice to refer to non-propositional components of propositions as notions see

below Appendix 4, footnote 96.
65PR 239; PRe 234.
66Cp. Casari 1999; Ortiz Hill 2002, 87–88; Tieszen 2004, 26–34. As Tieszen rightly stresses, in

FTL the third level of Husserl’s stratification of ‘objective formal logic’ is constituted by what

Husserl calls ‘truth logic’ (Wahrheitslogik), an attempt to identify material conditions of truths for
judgements that are already established to be consistent. We will not consider this level here.
67Null & Simons 1982, 448.
68Loc. cit.
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propositions (in particular those that are deductively relevant, i.e. by Husserl’s

lights, conjunction, disjunction and implication69). Thus, from the apophantic point
of view, logical morphology deals with the possible forms of primitive propositions

as well as with the purely formal and a priori laws that govern their possible

compositions (the ‘laws of complication’), without raising the question of the
truth or falsity of propositions at all. From the ontological perspective, logical
morphology aims at determining the pure or formal objectual categories, that is the

higher genera ‘object’, ‘state of affairs (Sachverhalt)’, ‘unity’, ‘plurality’, ‘number’,

‘relation’, ‘connection’ etc., under which all conceivable objects and all conceivable

‘states of affairs’ must fall.70

On the second level, which is based upon this logical morphology, we find a

discipline whose objects are laws that are to ensure, at the purely formal level – that

is without raising the question of the material truth or falsity of propositions – the

avoidance of contradiction (“[formal] truth or falsity of the meanings exclusively

on the basis of their pure categorical form of construction”71). From the apophantic
point of view, the discipline under consideration aims at characterizing logical laws
as well as the laws that ‘unify in a consistent way’ several propositions in theories.

From the ontological perspective, it has the task of establishing which mathemati-

cal structures are coherent from a point of view of logical admissibility (consis-

tency) and which ones are not (“the being or not-being of objects in general, states

of affairs in general etc., again, on the basis of their pure categorial form”). In

Formal and Transcendental Logic this discipline is called ‘logic of consequence’ or
‘logic of non-contradiction’. “These laws, which concern meanings and objects as

such, with the widest universality conceivable, the universality of logical cate-

gories, are in themselves theories.”72 On this second level are located, on the side of

meaning, the theories of logical inference, such as traditional syllogistics and the

theory of propositional inferences,73 and, on the side of the object, abstract mathe-

matics, such as elementary number theory and set-theory (“the pure theory of

pluralities which has its roots in the concepts of a plurality [Vielheit], the pure

theory of numbers, which has its roots in the concept of a number – each of them by

itself a rounded-off theory”).74 Husserl characterizes this level as follows:

69See LV96, 135–141. “The three forms of connection discussed above (sc. conjunction, disjunc-

tion and implication) are the only elementary ones for propositions in general” (140). Negation is

considered as an operation, since it takes only one argument: “The operation of negation is

applicable to any proposition, that is to every proposition corresponds its denial (negation). This

is a proposition that has the original proposition as its topic (Subjekt) and denies its truth.” Husserl
also regards the affirmation of a proposition, that is the passage from ‘S is p’ to ‘[That] S is p is

true’, as an operation and writes: “Both affirmation and negation of a proposition . . . [are]
propositions about (über) propositions” (135).
70PR 244; PRe 237. Cp. also FTL [ed. 1929], 77–78.
71All quotations in this paragraph are from PR 245–246; Pre 237–239.
72PR 245–246; PRe 238–239.
73For a formal presentation of Husserl’s theory of propositional inferences, see below Appendix 5.
74PR 246; PRe 239.
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All the laws that belong here [i.e. on second level, no matter whether viewed from the

apophantic or from the ontological perspective] lead to a limited number of primitive or

basic laws, which have their immediate roots in our categorial concepts. In virtue of their

homogeneity, they must serve to justify an all-comprehensive theory, which will contain

the particular theories just mentioned as relatively closed components.75

Levels one and two together correspond to (what in the terminology of current

logic might be called) specification of a formal language and of a logical calculus,

and with this, as Husserl says, “the idea of a science of the conditions of the

possibility of a theory in general is dealt with sufficiently”.76

Finally, on the third level, based in turn on the logic of non-contradiction, we

find a ‘theory of deductive theories’ that has as its subject-matter, from the

apophantic point of view, the a priori forms of possible theories and, from the

ontological perspective, their objective correlates, that is the varieties or manifolds

considered as the formal counterpart of a possible field of knowledge in general:

“The objectual correlate of the concept of a possible theory, definite only with

respect to its form, is the concept of a possible field of knowledge (Erkenntnisge-
biet) controlled by a theory of this form.”77

As regards the idea of an axiomatization of the theories that Husserl seems to

have in mind, we can say that the formal theories appear to be conceived as

deductive systems defined by a finite number of axioms. Manifolds, on the other

hand, are conceived analogously to then current mathematical thought, as sets or as

sets provided with some algebraic or topological structure78, which underlie the

theories intended as deductive systems. The last chapter of the Prolegomena
provides strong evidence for the claim that Husserl has a clear idea of the distinc-

tion between a theory as formal system (i.e. a theory based on the concept of formal

proof) and a theory as a collection of models (of some set of axioms), and that he

conceives manifolds as classes of models corresponding to theories.79 In general, a

formal theory is determined by a set of formulae that constitute the axioms of the

75PR 246; PRe 239.
76PR 247; PRe 239.
77PR 248; PRe 241. Cp. also Ortiz Hill 2002, 88.
78Cp. Casari 2000. Ortiz Hill 2000a rightly stresses Husserl’s distinction between pure sets in

Cantor’s sense and manifolds: “[Husserl] had come to clearly distinguish his manifolds from

Cantor’s Mannigfaltigkeiten or sets . . .” (173), and in 2002 she writes: “Husserl’s manifolds are

not aggregates of elements without relations. It is precisely the relations that are essential and serve

to distinguish a manifold from a mere aggregate. . . . Husserl saw manifolds as aggregates of

elements that are not just combined into a whole, but are continuously interdependent and ordered

. . .” (97). Apparently Ortiz Hill, too, assumes that manifolds are sets provided with some

topological structure. Husserl clearly marks the relevant distinction when he says in FTL: “From
[a] particular field of objects [we obtain] the form of a field or, as the mathematician says, a

manifold. It is not a mere manifold, for that would be the same of a mere set . . . Rather it is a set
whose special feature is . . . that it is conceived as ‘a’ field which is determined by [a] complete
group . . . of axioms-forms. . .” (81).
79Cp. Null & Simons 1982, where an interpretation of manifolds as certain well-defined classes of

relational structures is developed.
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theory, on the one hand, and by the classes of its models, on the other. Husserl

thinks that it is always possible not only to axiomatize a theory, but also to

formulate and prove general theorems about the relations that obtain between

various deductive systems. Indeed, he introduces purely formal relations among

theories, respectively among manifolds, such as those of “generalization” and

“specialization”80 and, finally, explicitly poses as a task for the “theory of theories”

to find relevant correspondences between certain abstract properties of formal

theories and certain abstract properties of manifolds:

These various forms (of theories) are not . . . without mutual relations. There will be a

determinate order of proceeding according to which we can construct the possible forms,

survey their lawful interconnections and hence also move from one to another, varying

certain fundamental determining factors, etc. There will also be . . . general propositions
that, for certain forms of theory, govern the . . . connection and transformation of those

forms. . . This is a last, highest goal for a theoretical science of theories in general.81

2.6 Logical Morphology and Logic of Non-Contradiction

in the Fourth Investigation

From the ‘apophantic’ point of view, logical morphology has the task of determin-

ing the fundamental semantical categories, the forms of composition of simple

meanings in complex meanings, including propositions, and, finally, all possible

forms of elementary connections for propositions. So its main task is to formulate

laws that regulate the construction of grammatically well-formed sentences without
deciding whether their meanings are coherent – or rather contradictory, absurd or

ridiculous. Among the questions to be answered are the following: How must a

subject and a predicate be connected in order to form a grammatically correct

sentence? In what manner is a meaningful complex term generated from simple

terms? How is a meaningful compound sentence generated from simple sentences?

The starting point in the fourth Investigation is given by the distinction, known

from Scholasticism, between categorematic terms that have a meaning by them-

selves, and syncategorematic terms that are applied to categorematic terms to

produce new meaningful terms. It is important to stress that in Husserl’s theory

of meaning syncategorematic terms by no means lack meaning altogether.82 Rather,

they express moments of dependent meaning:83 their meaning demands completion

80For a precise account of these notions see next chapter.
81PR 247; PRe 240.
82For Bolzano, too, syncategorematic expressions are meaningful, but Bolzano does not distin-

guish between dependent and independent meanings.
83This is an application to the field of meaning of the notion of dependence that was explained in

the third Investigation with respect to objects in general. Dependent are “contents not able to exist
alone, but only as parts of more comprehensive wholes” (LU IV, }7, 311; LI 506).
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which it receives within a more complex expression that has an independent

meaning.

In }10 of the fourth Investigation (“A priori laws governing combinations of
meanings”) Husserl develops the idea of abstracting the logical form from the

observable grammatical structure of sentences. “To consider an example. The expres-

sion ‘this tree is green’ has unified meaning. If we . . . proceed to the corresponding

pure form of meaning, we obtain ‘this S is P’, an ideal formwhose extension (Umfang)
consists solely of independent [sc. sentential] meanings.”84

This concept of a “sentential form (Satzform)” – in this case the result of

substituting individual variables for the individual constants in a sentence and

predicates variables for its predicate constants – captures a structure of complex

meanings that does not vary when the components of these meanings vary. Any

sentence whatsoever can thus be transformed into a sentence schema that subsumes

all sentences of the same form and that represents what the propositions they

express have in common.

Husserl’s doctrine of semantic categories adopts a central idea of Bolzano’s

logic of variation, and it fills up a lacuna in his theory. Bolzano had shown that it is

logically illuminating to consider the results of systematically varying some non-

propositional components of a proposition within certain limits, that is within a

homogeneous sphere of elements somehow specified in advance to which the

component to be varied belongs. In a first approximation one can say that his

logic of variation consists in the examination of the semiotic relationships that

obtain between a proposition X and its variants when some components of X are

replaced by others belonging to the same sphere of variation. But Bolzano himself

did not precisely define what belonging to the same sphere amounts to.

For Husserl, a semantic category is constituted by the class of all expressions

that can be substituted for a component of a meaningful sentence salva congruitate,
that is without detriment to the grammaticality or meaningfulness of that sentence.

Within the sentential schema used above, “we cannot substitute any meanings we

like for the variables ‘S’ and ‘P’. . . Any nominal material (Materie) . . . can here be
inserted (sc. for ‘S’), and so plainly can any adjectival material replace the ‘P’ . . .
but if we depart from the categories of our meaning-material, the unitary sense

vanishes. . . . In such free exchange of materials within each category, false, foolish,

ridiculous meanings . . . may result, but such results will necessarily be unified

meanings.”85 By contrast, the string of words ‘but or similar and’ lacks a coherent

or “unified” meaning (as Husserl puts it), even though the words it consists of are

meaningful.86

Husserl’s logical morphology clearly anticipates the concept of a formal lan-

guage as well as the modalities of its constitution, and it investigates some of its

84LU IV, }10, 318–319; LI 511.
85LU IV, }10, 319; LI 511–512. Cp. Tieszen 2004, 26 ff.
86The categorization of linguistic expressions that is invoked here could be usefully compared to

the typification of entities in Russell’s theory of types.
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main features. In general, a formal language is constituted by the specification of its

alphabet and its well-formed expressions, and it performs two fundamental func-

tions, the indicative one (indication of individuals, properties and relations) and the

declarative one (declaring that things are in a certain way). The constitution of

formal languages then goes through the following process: a certain initial set of

words is specified, and some generation procedures are specified through which it is

possible to obtain new words, requiring that only the words in the initial set and

those obtainable through iteration of the specified procedures must be admitted in

the formal language. The cumulative nature of this kind of constitution is obvious:

under the assumption of closure with respect to the iterable operations, the defini-

tion procedure just described is capable of generating all possible constructs,

starting from “fundamental forms”.

The definition of primitive terms in a formal language corresponds grosso modo
to Husserl’s way of specifying the primitive kinds of meaning categories. The

meaning categories that matter to Husserl largely coincide with the classes of

expressions that current logic deems to be indispensable, namely subjects (singular

terms) and predicates on the categorematic side and connectives and the other

logical operators on the syncategorematic side. What Husserl refers to as “a priori
laws . . . that govern the combination of meanings into new meanings,”87 can be

considered as the counterpart to the procedures that allow the generation of new

expressions in a formal language.

The laws at the first level of logic that are to inhibit the formation of terms or

sentences that are grammatically ill-formed (Unsinn) constitute the “ideal scaffold
(ideales Gerüst)”88 of language, the ideal structure of various actually existing

natural languages. Husserls regards this as an attempt to execute the programme of

a “universal grammar” that was developed by rationalists in the seventeenth and

eighteenth century.89

The second level of formal logic, the logic of consequence or of non-contradic-

tion, as it is called in Formal and Transcendental Logic, is constituted on the

apophantic side (the only one we will be treating here) by laws that are to ensure

the avoidance of contradictions (Widersinn). Since Husserl uses Bolzano’s term

‘objectual’ (gegenständlich)’ for stating that a term denotes something,90 we can

say that at this level formal logic is concerned to establish under which conditions a

meaningful complex term can be objectual. It also seeks to answer the question

under which conditions a meaningful sentence can express a truth, – in other words,

it seeks a criterion to decide whether a proposition is formally true or formally false.

Laws at this level determine whether any object can correspond to the linguistic

constructs built up in conformity with the laws established at the first level. It is

87LU IV, }10, 317; LI 510.
88LU IV, }14, 338; LI 526.
89LU IV, }14, 336; LI 524.
90For Bolzano objectuality is primarily a property of notions (Vorstellungen an sich): a notion is

objectual if and only if there is an object that falls under it, and objectless otherwise.
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clear that if the constructs unite incompatible constitutive elements, then no object

can correspond to them; but if this does not happen, if, as Husserl puts it, “the

meaning has objective validity (objective Gültigkeit),”91 then the construct can
have an object. Whether such an object de facto exists is a problem that is not

decided at this level.

Husserl strictly distinguishes incompatibility (Unverträglichkeit) as nonsense

(Unsinn), which results when the formation-rules for complex terms and sentences

are violated, from incompatibility as contradiction or “countersense (Widersinn),”92

and he divides the latter into two kinds: what suffers from Widersinn is either a

formal or analytic contradiction (“formal countersense”), or it is a material or

synthetic contradiction (“material countersense”).

Husserl agrees with Bolzano that Kant’s attempts at explaining ‘analytic’ “do

not deserve to be called ‘classical’”.93 He distinguishes “analytic laws”, which are

pure analytic truths, from “analytic necessities”, which are impure analytic truths.

The purity of the former consists in the fact that they contain only formal concepts.

Impure analytic truths are said to be “formalizable salva veritate”, that is they can

be transformed into pure analytic truths by replacing the material concepts they

contain by formal concepts. Thus, for example, the proposition that (if Socrates has

both courage and wisdom then he has courage) is an impure analytic truth, an

“analytic necessity”. It can be formalized salva veritate, the upshot of this procedure
being the pure analytic truth, the “analytic law”, that (for any properties x and y, if
something has both x and y then it has x). So what are generally referred to as

analytic propositions are “particularizations (Besonderungen)” of analytic laws.

Husserl’s analytic necessities are expressed by the logically valid sentences of

contemporary logic: what such sentences express is true, no matter what their

descriptive parts actually mean, – it is true, as the saying has it, “in virtue of logic.”

By contrast, an analytic contradiction is a falsehood that contains no material

concepts (it is false “in virtue of logic”), or it is formalizable salva falsitate. Thus
the proposition that (if something has a certain property then it lacks it) and the

proposition that (if Socrates has courage then he lacks courage) are examples of

analytic Widersinn.
For Husserl, a synthetic law a priori is a “law that contains material concepts in

such a way that does not allow their formalization salva veritate”. Particularizations
of such laws are synthetic necessities. So the truth that (if something is clearly red

all over then it is not clearly green all over) is a synthetic law a priori, and the truth

91LU, IV, 294; LI, 493.
92“One must, of course, distinguish the . . . incompatibilities to which the study of syncategor-
ematica has introduced us, from the other incompatibilities illustrated by the example ‘a round

square’” (LU IV, }12, 326; LI 516).
93All quotations in this paragraph and the next two are from LU, 3, }12 (‘Basic determinations

concerning analytic and synthetic propositions’), 254–256; LI II, 457. On Bolzano’s account of

analyticity see Morscher 2008, 60–63, 161–167, Künne 2008, 233–304 and, for a comparison with

Husserl, Künne 2009, }}3–4.
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that (if this patch here is clearly red all over then it is not clearly green all over) is a

synthetic necessity.

By contrast, the proposition that (if something is clearly red all over then it is

clearly green all over) and the proposition that (if this patch here is clearly red all

over then it is clearly green all over) are examples of material Widersinn. The
sentences expressing these propositions are allowed by Husserl’s logical morphol-

ogy: they are grammatically impeccable. The same holds mutatis mutandis of the
term ‘round square’: it cannot possibly apply to anything, and yet it is grammati-

cally flawless, hence permitted by logical morphology.

About the relation between the logical order and the real order Husserl writes:

“The consistency or absurdity of meanings implies objective and a priori possibi-

lity (consistency, compatibility) or objective impossibility (incompatibility); in

other words, it implies the possibility or impossibility of there being objects that

are meant . . . , to the extent that this depends on the intrinsic essence of those

meanings.”94

2.7 Appendix 4: On Bolzano

2.7.1 The Relation of Derivability (Ableitbarkeit)

For Bolzano the most important relations between propositions (Sätze an sich)
come to light when one considers certain notions they contain as variable, that is as

replaceable by others, and then asks in which relation the propositions obtained by

variation stand to truth or falsity.95 One of the earliest uses of the operation of

systematic variation (Veränderung) in Bolzano’s Wissenschaftslehre is to be found
in his theory of “ideas in themselves (Vorstellungen an sich)”, which we call

notions for the sake of brevity:96 here the aim is that of extending concepts

originally introduced only for those notions that are non-empty or objectual

(gegenständlich) to those which are empty or objectless (gegenstandlos [sic]).97

One of the most significant applications of this operation, however, is meant to

bring to light certain logically important relations among propositions.

94LU VI, }14, 334; LI 523.
95WL II, }154, 100.
96Notions are either (objective) concepts or (objective) intuitions in themselves (Anschauungen).
Intuitions are said to be notions that are simple and have exactly one object, and concepts are

defined as notions that are not intuitions and do not contain any intuition as part. An intuition is

expressed in an utterance of ‘this’ if the demonstrative is used to refer to something perceptually

given. Cp. WL I, }}72–78, 325–360.
97WL I, }108, 513–515. It was invoked for the first time in WL I, }66, 299–300 where the topic of

indexicality is briefly touched: the notion that is now expressed by “a presently living human” is

replaced by another notion when this phrase is uttered at a different time, since the time-specifying

component of the former notion is varied.
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In }155 of hisWissenschaftslehre Bolzano introduces the relation of derivability
(Ableitbarkeit)98 as a special case of the relation of compatibility (Verträglichkeit).
As a result of this decision, in Bolzano’s logic nothing is derivable from incompati-

ble premises. A collection of propositions is said to be compatible if and only if

there is at least one substitution of some or all their extra-logical parts99 that makes

all of them simultaneously true. (Thus the propositions expressed by ‘Socrates is

taller than Phaedo’ and ‘Phaedo is taller than Socrates’ are compatible in the

Bolzanian sense, since substituting the notion expressed by ‘knows’ for the notion

expressed by ‘is taller than’ results in two truths).

The relation of derivability is introduced as follows:

Let us consider . . . the case that among the compatible propositions A, B, C, D, . . . , M, N,

O, . . . the following relation obtains: all notions whose substitution for the variable notions
i, j, . . . turns a certain part of these propositions, namely A, B, C, D, . . . into truths, also have
the property of making a certain other part of these propositions, namely M, N, O . . . true.
. . . To this special relation . . . I wish to give the name of derivability (Ableitbarkeit). . .
Hence I say that propositions M, N, O are derivable from propositions A, B, C, D, . . . with
respect to the variable parts i, j, . . . , if every collection (Inbegriff) of notions whose

substitution for i, j, . . . makes all of A, B, C, D, . . . true, also makes all of M, N, O, . . .
true.100

In other words, the relation of derivability obtains between two (sets of) proposi-

tions with respect to a certain series of notions if and only if (i) the premises are

compatible with respect to that series of notions101 and (ii) every series of notions

that makes all the premises true when substituted for the chosen series also makes

all the conclusions true.

Bolzano proves a great number of theorems concerning the formal relation of

derivability. Here are two examples. There is a generalized rule of transitivity for

“Bolzanian sequents”, which we can conceive as syntactical objects of the form

G∧ ! D∧ (i.e. the conjunction of the formulae in the antecedent implies the

conjunction of the formulae in the consequent):

98Nowadays this terminology is prone to cause a misunderstanding, since it has become customary

to use this term in a purely syntactical sense. ‘Deducibility’ would have a strong syntactical

connotation, too; whereas for Bolzano derivability is a (quasi-)semantical relation. Nevertheless,

we have preferred to stay close to Bolzano‘s wording.
99According to Bolzano all propositions can be expressed by instances of the schema ‘A has b’

where ‘A’ expresses any notion (of whatever complexity), while ‘b’ expresses a notion of a

property (Beschaffenheit). Bolzano’s copula ‘has’ expresses the notion of exemplification which is

a logical notion. In WL II, }148, 84 Bolzano maintains that there is no sharp line of demarcation

between logical and extra-logical notions, but he leaves no doubt that his copula expresses a

logical notion.
100WL II, }155, 113–114.
101In the quoted passage, Bolzano explicitly requires compatibility also for the consequences

M, N, O, . . . . This, however, already follows from the definition of derivability. We say that

certain propositions follow from certain others when (i) there is a substitution that makes the

premises true (compatibility); (ii) all substitutions that make the premises true, also make the

conclusions true. From (i) and (ii) follows: (iii) there is a substitution that makes both the premises

as well as the conclusions true.
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G^ ! D^ D^ ^Y^ ! F^

G^ ^Y^ ! F^

And a more sophisticated version:

If the notions i, j . . ./ m, n . . ./ p, q . . . are all mutually different, the following

theorem holds:

if G⊨i;j;...m;n D and DþY⊨m;n;...p;q;F then GþY⊨i;j;...m;n;...p;qF

on condition that p, q, . . . do not occur in G and i, j . . . do not occur in D þ Y. The

simplest case seen above is the one where i, j, . . . and p, q, . . . are empty.102

It has been remarked repeatedly in recent studies,103 that this is a first character-

ization of the notion of logical consequence, which differs from the one given by

Tarski in various respects. (i) Bolzano’s explanation of the notion of “following

from certain premises through a correct inference” rests on the concept of ‘varia-

tion’ of notions, whereas the model-theoretic version of Tarski’s definition of truth

is concerned with non-interpreted languages and so, in order to define truth, or

rather satisfaction, one has to put that language in correspondence with an “exter-

nal” (set-theoretic) structure. (ii) Bolzano also allows for varying only some extra-
logical notions contained in a proposition: the concept of “following from certain

premises” is then relativized to a certain set of notions, while the basically Tarskian

account of the concept of logical consequence given in current logic corresponds to

a special case of the Bolzanian account, namely that in which all (and only) extra-

logical notions are varied.

By admitting derivability not only with respect to all the extra-logical compo-

nents (formal or logical derivability) but also with respect to just some of them

Bolzano can cope with material or enthymematic inferences.104 Thus, that Socrates
is mortal is derivable from the premise that Socrates is a man, for every replacement

of the notion expressed by ‘Socrates’ that makes the premise true also makes the

conclusion true. This is not a case of logical derivability but a case of enthymematic

derivability. Of course, it can be transformed into a fairly well-known case of

logical derivability by adding the premise that all men are mortal.

In }60 of the Logikvorlesung of 1896 (Logical and illogical inferences and
corresponding divisions of hypothetical truths) Husserl tries to characterize the

difference between formal/logical derivability and semiformal/material derivability

(relative to certain notions). At first we find a characterization of logically valid

inferences:

The hypothetical proposition “if every man is mortal and Socrates is a man, then Socrates is

mortal” is a truth. But here we have the peculiarity that in this truth certain moments of the

matter (Momente der Materie), namely the presentations or concepts Socrates, Man and

102WL II, }155, 122–123.
103Berg, in: BGA I, 12/1, 26; Casari 1985; Paoli 1991; Siebel 1996.
104Cp. George 1983.
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Mortal can be varied at will. . . . The particular propositions which constitute the matter of

the hypothetical truths can be false, absurd or ridiculous, nonetheless it always remains a

hypothetical truth. At its foundation there is indeed a law that we express in the form: “If all

A are B and S is an A then S is a B”. . . . [T]he form of the connection is of a general logical

kind, i.e. it has a meaning that is independent from the specifics of any class of matter

(Klasse von Materien). This is not always the case.105

And then Husserl goes on to characterize enthymematic derivability:

if I compare three men, let’s say Hans, Kunz and Wilhelm, and I infer: Hans is taller than

Kunz, who is taller than Wilhelm, hence Hans is taller than Wilhelm, this inference is,

likewise, a particularization of a law. . . . However, a relation of magnitude is meaningful

only for something that has magnitude. More exactly: such a relation applied to things that

do not have any magnitude leads to absurd representations. Hence the relation of magnitude

depends on the specifics of the matter (Besonderheit der Materien). The inference “a > b,

b> c, therefore a> c” does not apply to the general logical domain, it is limited to the field

of magnitudes.106

If the language is interpreted and ‘>’ expresses the notion taller than, the
inference “a > b. b > c. Therefore a > c” is not logically but enthymematically

valid. That it is enthymematically valid becomes clear if we take the notions a, b, c
(i.e. only some of the extra-logical notions involved) as variable and keep the notion
taller-than fixed. It is clear as well that the inference can be transformed into a

logically valid one by adding as an additional premise a claim as to the transitivity

of the relation ascribed by “>”. By contrast, the argument is not logically valid, for

if all its extra-logical components were variable salva veritate, then all relations

would have to be transitive.

2.7.2 The Relation of Exact Derivability (genaue Ableitbarkeit)

In }155 no. 26 of his Wissenschaftslehre Bolzano considers a strengthening of the

relation of derivability and thereby confronts and solves the problem of redundancy:

Let proposition M be derivable from premises A, B, C, D, . . . . with respect to the notions

i, j, . . . If A, B, C, D, . . . are such that none of them, nor even any of their parts, may be

omitted, with M still being derivable form the remainder with respect to the same notions

i, j, . . . , then I call the relation of derivability of proposition M from A, B, C, D, . . . exact
(genau), irredundant (genau bemessen) or adequate. In the opposite case I call the relation

redundant (überfüllt).107

Exact derivability holds between a set X of propositions and a single proposition

p with respect to a certain list a of notions if and only: (i) p is derivable from X with

respect to a and, moreover, (ii) for no proper subset Z of X it holds that p is

derivable from Z with respect to a; and (iii) for no proper sublist b of a it holds that

105LV96, 238–239.
106LV96, 239.
107WL II, }155, 123.
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p is derivable from X with respect b. So the conclusion cannot be derived either

from a proper subset of the premises or with respect to fewer notions. In other

words, all premises should be relevant in toto.
In the previous paragraph we assimilated the Bolzanian notion of derivability

to a (generalization of) the Tarskian notion of logical consequence. Now while

Tarski’s notion of logical consequence satisfies monotonicity:

G⊨ p implies GþD⊨ p

the Bolzanian notion of exact derivability does not:

G⊨genau p does not imply GþD⊨genau p:

While general derivability occurs between sets of propositions, Bolzano takes

the consequent of a relation of exact derivability always to be a single proposition.

This request is intended to comport with mathematical practice: in a rigorous

mathematical proof what is derived is always one proposition. Bolzano proves a

number of theorems concerning exact derivability. Let us consider here only the

most important ones108:

(i) Neither the premises nor the conclusion of an inference of the kind genaue
Ableitbarkeit can be a logical truth, for if a logical truth were among the

premises it would be superfluous and if the conclusion were a logical truth then

all premises would be superfluous.

(ii) The premises of an inference of the kind genaue Ableitbarkeit should be

reciprocally independent, that is none can be derived from the others.

(iii) The rule of transitivity (hence also the generalized transitivity rule for Bolza-

nian sequents considered in the previous section) doesn’t hold in general for

exact derivability, as Bolzano shows in }155 no. 32 by exhibiting a suitable

counterexample:

If the relation of derivability between premises A, B, C, D, . . . and the conclusionM, and also

the relation between premisesM, R, S, T, . . . and the conclusion X is exact with respect to the

same notions i, j, . . . , it does not follow that the relation of derivability, which holds between

premises A, B, C, D, . . . R, S, T, . . . and the conclusion X,109 must also be exact. For example,

the relation of derivability between the premises: all a are b, all b are g; and the conclusion: all
a are g; and also that between the premises: all a are g, all g are b and the conclusion: all a are

b, are without doubt exact. But the relation of derivability between the three premises: all a are
b, all b are g, all g are b and the conclusion: all a are b, is not exact.110

That is, there are suitable G, D and p, q such that, in symbols:

G⊨genau p and pþ D⊨genau q; but Gþ D⊭genau q:

108Cp. Paoli 1991, 233–234.
109Compare the proof given above.
110WL II, 125–126.
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Bolzano’s notion of exact derivability (genaue Ableitbarkeit) provides for an

understanding of “if. . . then” that is closer to the notion we have before we learn

classical logic. In this sense, Bolzano shares with Relevance Logic the concern of

finding a concept of implication capable of avoiding the paradoxes of material

implication, and in this respect he comes closer than Frege to our pre-logical

intuitions. From the standpoint of current logic, the Fregean conditional (hypothe-
tisches Satzgefüge) seems to be nothing but Russell’s truth-functional, material

implication. Actually, this is not quite right, since the Frege of Grundgesetze
conceives of the main operator in a conditional not as a connective in the currently

standard sense (i.e. an operator producing a sentence out of any two given sen-

tences), but as a binary functor defined on the totality of objects which, applied to

the objects denoted by the sentences A and B, in this order, gives as value the False,
in case A denotes the True and B denotes anything other than the True, and in all

other cases gives as value the True. But whether one takes sentences to be a special

kind of proper names or not, the Fregean conditional “the sun shines! 3� 7¼ 21”

expresses a true proposition, in spite of there not being any relevant connection

between the contents of the antecedent and the consequent.

2.7.3 The Relation of Consecutivity (Abfolge)

Bolzano introduces the relation of consecutivity (variously called “grounding”,

“ground-consequence” or “objective consequence”) in Wissenschaftslehre II,

}162, and he develops it, albeit incompletely, in the same volume in }}198–222.
Following Casari, this doctrine may be called Bolzano’s aetiology.111

“There is a noteworthy relation that obtains among truths . . . , in virtue of which
some truths are related to others as reasons [or grounds] to their consequences”.112

This relation does not only obtain between two truths but also among collections of

truths, in which case the members of the two collections are partial reasons/

consequences (Theilgründe, Theilfolgen) and the collections are the complete

reason/consequence (vollständiger Grund, vollständige Folge).
The relation of consecutivity can be expressed by ‘because’ sentences: “we say

that A is because B is, when we want to say that the complete or a partial reason of

the truth A resides in the truth B”.113 Actually, we hardly ever use ‘because’

sentences instantiating Bolzano’s schema in which the letters are placeholders for

names of propositions rather than expressions of propositions, that is sentences.

What could ‘A is because B is’ then mean if not ‘A is true because B is true’? But
Bolzano’s examples are not of this form: they instantiate the simpler schema ‘p,

111For illuminating accounts of this doctrine see Buhl 1961; Berg 1962, 151–164; Casari 1992,

Sebestik 1992, Pt. 2, Chapter 4, Mancosu 1991; Tatzel 2002.
112WL II, }162, 191.
113WL II, }177, 221–222; cp. }168, 207.
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because q’. So let us modify his contention slightly: We say that (p because q),
when we want to say that the complete or a partial reason of the truth that p resides
in the truth that q.

The relation of consecutivity is a relation that obtains exclusively among truths.

By contrast, the relation of derivability can also obtain between false propositions.

Let us consider Bolzano’s favourite example for making the difference between

consecutivity and derivability salient. “[T]he truth that in summer it is warmer than

in winter contains the ground of that other truth that the thermometer stands higher

in summer than in winter, while the latter truth can be considered as a consequence

of the former”.114 Of course, if one knows that the thermometer stands higher in

summer than in winter, one can infer/derive the truth that in summer it is warmer

than in winter, but nobody would acknowledge the first of these truths as the, or a,

reason for the second. By recognizing (erkennen) that the ‘thermometer’ proposi-

tion is true we could acquire the knowledge that the ‘warmth’ proposition is true.

But the ‘thermometer’ proposition does not explain why the ‘warmth’ proposition is

true. “A truth which is related to certain other truths as a consequence to its reasons

is frequently also derivable from these latter truths, provided that we envisage

certain notions as variable. The proposition that the thermometer stands higher in

the summer than in winter is obviously derivable from the proposition that in

summer it is warmer than in winter, provided that only the notions of summer

and of winter are considered variable”.115 But in this case the relation of deriva-

bility also holds in the other direction: these two propositions are interderivable

with respect to those extra-logical notions. By contrast, the relation of consecutivity

is asymmetric.116

Bolzano sometimes uses another example that is in itself philosophically inter-

esting. “Let A be any truth you like: the truth that the proposition A is true is a

proper consequence of A.”117 So according to Bolzano, it is true that p, because p, –
in other words, that things are thus-and-so explains why it is true that things are

thus-and-so. Again, the propositions in such pairs are interderivable with respect

to all extra-logical notions contained in the proposition that p. But the ground-

consequence relation, here as always, obtains only in one direction. Furthermore,

unlike derivability, consecutivity is also irreflexive: nothing is its own ground.118 If
Bolzano is right about such pairs, Frege is wrong, for he famously maintained that

the thought that it is true that p is identical with the thought that p.119

Let us register some other important features of consecutivity that Bolzano

points out: This relation is intransitive (“one cannot say of a consequence of

114WL II, }162, 192.
115Loc. cit.
116WL II, }203, 352; }209, 362.
117WL II, }205, 357; cp. }212, 370, }214, 374. More on this topic in Künne 2003, 46, 151–152.
118WL II, }204, 356.
119Cp., for example, Frege, Der Gedanke (1918), 61 (original pagination).
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a consequence [. . .] that it is the consequence of the reason of its reason, without

altering the concept”120). It satisfies the conditions of

– Functionality: every truth is a reason of at most one other truth121

– Injectivity: every truth has at most one reason122

– Non-surjectivity: there are truths that do not have a reason, the so-called

fundamental or primitive truths (Grundwahrheiten), of which there is more

than one, Bolzano thinks, though he admits of having no proof for this,123 and

– Non-monotonicity: “we must not regard a consequence that follows from several

truths A, B, C, . . . as a consequence of the whole collection of truths A, B, C, D,
E, F, . . .”124

Is the relation of consecutivity a special case of the relation of derivability?

Bolzano takes this to be probable, but he admits that he knows no proof for it.125 If

the affirmative answer were right then it would not only be the case that all

substitutions of certain notions that make the premises true render the conclusions

true as well, but also that these substitutions always result in truths that are related

as reasons to consequences. But is it really “probable”, Bolzano wonders, “that for

every collection of truths from which another truth follows as from its reasons, there

are infinitely many other collections of truths from which other truths follow in one

and the same way, namely in such a way that the peculiarities (Besonderheiten) of
the notions which these collections of truths consist of never have any influence

upon the way they are related as ground and consequence?”126 In other words:

consecutivity is a relation that in some way depends on the content of the connected

truths, on “the peculiarities of the [sc. extra-logical] notions” which are the com-

ponents of those truths, whereas the relation of derivability can account for a

conception of “following from certain premises through correct inferences” as a

relation on which such peculiarities have no influence.

The relation of consecutivity is not to be identified with that of causality.127 The

concepts of cause and effect apply only to objects that have “existence (Dasein)”,
which Bolzano identifies with “actuality (Wirklichkeit)”, that is the ability of acting
upon something (Wirksamkeit). By contrast, the relation of consecutivity obtains

only between causally impotent entities, namely (true) propositions. However, if

two actual objects stand in the relation of cause-effect, then the truths that ascribe

120WL II, }213, 371.
121WL II, }206, 359.
122WL II, }206, 359–360, though it can happen that different reasons share some partial conse-

quences.
123WL II, }214, 374–376.
124WL II, }207, 360.
125See also the incipit of }201, 349: “If the relation of consecutivity is not a species of the relation

of derivability, one cannot hope to explain the former in terms of the latter; hence one must look

for other cognate concepts”.
126WL II, }200, 348.
127WL II, }168, 208; }201, 349–350.
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existence to those objects stand in the relation of consecutivity. For example if on

the level of actuality God is the cause of the world, then on the level of the

propositions the truth that God exists is the ground of the truth that the world

exists. In a way Bolzano is trying to transfer the peculiar nexus intrinsic to the

concept of causality to the level of a logical relation of dependency among true

propositions.128

As in so many other respects, Bolzano stands here on Leibniz’s shoulders:

A reason is a known truth whose connection with some less well-known truth leads us to

give our assent to the latter. But it is called a ‘reason’, especially and par excellence, if it is

the cause not only of our judgement but of the truth itself. . . A cause in the realm of things
corresponds to a reason in the realm of truths, which is why causes themselves . . . are often
called ‘reasons’.129

Bolzano does not provide an analytic definition (Erklärung) of the concept of

consecutivity, which would have to identify the components the concept contains

and their mode of composition. He takes it to be probable, though, that the concept

of Grund is simpler than the concept of Folge (“for generally one is not tempted to

explain the ground through the consequence, but rather the consequence through

the ground”130), and he reckons with the possibility that this concept is simple.

Rather than defining the concept of consecutivity, Bolzano presents a bunch of

postulates that constitute as many rules for its use. In these postulates he identifies a

number of properties of consecutivity, such as being asymmetric, irreflexive, etc.,

many of which we have mentioned in this section.

2.7.4 Some Remarks on the Structure of Etiological Proofs

Etiological proofs are conceived as procedures to finding the grounds or reasons of

a truth. Bolzano explicitly admits that sometimes such a procedure halts when

reaching the so-called fundamental truths or principles. He also allows for pro-

cesses of backtracking from a truth to its reasons that go on indefinitely. When

represented graphically, etiological proofs have a tree structure that is very similar

to that of proofs in a Gentzen-style sequent calculus.131 In the procedure of tracing

back the dependencies of a truth to its reasons, immediate reasons of a certain truth
are those upon which it depends directly, and auxiliary truths (Hülfswahrheiten) are
those on which its reasons depend. In one and the same proof a certain auxiliary

truth (the same premise) can occur more than once (it is a partial reason of different

128Cp. Casari 1987, 332.
129Leibniz 1704, Book IV, Chapter xvii, }3.
130WL II, }202, 351.
131Introduced in G. Gentzen, Untersuchungen über das logische Schließen, 1935. Comparing this

with WL II, }220, 380–383, one should keep in mind that Gentzen’s notion of a “normal proof” is a

syntactical concept.
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consequences), but no truth can be an auxiliary truth of itself.132 Hence Bolzano’s

logic is not, as we would say in current logical terminology, resource-conscious. In
a proof we can use an assumption or hypothesis A as many times as necessary. The

use of A does not, so to speak, wear out A.133

Bolzano uses the term “dependency” (Abhängigkeit) for the transitive version of
the relation of consecutivity (Abfolge). The relation that obtains between truths in

etiological proofs is the relation of Abhängigkeit, with respect to which Bolzano

formulates, as surmises (Vermuthungen), some requirements or formal conditions.

Especially important for a correct grasp of the concept “interconnection of truths”

as explained in Chapter XI of the Prolegomena (The Idea of Pure Logic) are the

following conditions:

(i) The requirement of non–increasing complexity (analyticity).

“I think that every purely conceptual truth (Begriffswahrheit) on which a second
one depends, must never be more complex (zusammengesetzer) than the latter,

though it need not be simpler. Propositions which constitute the objective grounds

of a purely conceptual truth . . . must not contain, each on its own, more parts than

the truth that depends on them.”134

(ii) The requirement that the reasons upon which a certain truth depends are not

only the simplest, but also the most general.

“In a true and proper scientific exposition we must proceed from the more

general to the more specific . . . The more simple and more general truths are the

foundation (Grund) for the more specific and more complex.”135

Other requirements are (iii) compatibility of the premises (reductio ad absurdum
proofs are not desirable)136 and (iv) non-redundancy of proofs137 (in a proof only

premises that are necessary to reach the conclusion must be used, and only those

principles that are deductively weakest). – Bolzano ends his discussion with the

following remark:

I occasionally doubt whether the concept of consecutivity, which I have above claimed to

be simple, is not complex after all; it may turn out to be none other than the concept of an

ordering of truths which allows us to deduce from the smallest number of simple premises

the largest possible number of the remaining truths as conclusions.138

132WL II, }}217–219, 377–380.
133This problem is central for an important family of non-classical logics, so called substructural

logics, which includes (among the others) linear logic and many-valued logics. Indeed, linear logic

is both resource-conscious and attentive to the problem of relevance, while many-valued logics are

(usually) resource-conscious but not attentive to the problem of relevance. Bolzano’s logic is

sensitive to the latter problem, but it is not, as we just saw, resource-conscious.
134WL II, }221, 384.
135WL II, }221, 388 note.
136WL IV, }530.
137Beyträge II }28, WL II, }223, 391–395.
138WL II, }221 note, 388.
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2.8 Appendix 5. The Theory of Propositional and Conceptual

Inferences in the Logikvorlesung of 1896

Although Husserl’s Logikvorlesung of 1896 follows in many respects the model

of Bolzano’s Wissenschaftslehre, in the concluding section on the “doctrine of

inferences (Lehre von den Schlüssen)” its base is the algebra of classes of

Boole-Schröder rather than Bolzano’s proof theory. In other words, the “deductive

calculus” that Husserl outlines139 is of an “axiomatic-synthetic” and not of an

“analytical” kind.140 Of this doctrine we want to examine:

(i) Husserl’s remarks on the notion of calculation (Rechnung) as mechanical

procedure and on the way this notion applies to derivations,

(ii) his theory of propositional inferences (Theorie der propositionalen Schlüsse)
and,

(iii) his theories of predication and of conceptual inferences (Theorie der
konzeptualen Schlüsse).

2.8.1 The Concept of a Calculus

How is a theory of inferences constituted? Husserl answers this question by using

arithmetic as a model. In the same way as the analysis of the simplest arithmetical

propositions shows that certain compositions (Verknüpfungen) (þ,�,�, : etc.) and

relations (¼ , � , �)141 are grounded a priori in the concept of number and obey

certain laws (commutativity, associativity, etc.), the analysis of the structure of

inferences shows that certain connections (∧, ∨ . . .) and certain relations (!)142

are rooted a priori in the concept of proposition, and that their behavior is deter-

mined by certain laws. Hence one tries to isolate a minimal number of axioms

capable of constituting the principles of the theory. The systematical progression

from principles to derived laws occurs in one case through the mechanism of

calculation, in the other through the mechanism of deduction, considered as the

precise analogue of calculation.

Husserl also raises the question – and this is highly significant – whether these

theories, of arithmetic and of inferences, are adequate. He observes that we lack a

proof that the axioms of arithmetic are all those and just those conceivable in

general for the characterization of this theory, that we lack a proof that the laws

139An analogous calculus is developed in the Logikvorlesung of 1902.
140This contrast in current logic corresponds to that between a Frege-Russell-Hilbert style calculus

and a Gentzen style one.
141Cp. PoA 480; PdA 476.
142Here the symbol ‘!’ stands for the relation of conditionality (Bedingtheit), or ‘inferability’
between propositions. Cp. LV96, 254. See also Section 2.8.2.2 below.
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which govern the behavior of the operations are the only laws which are valid for

arithmetical operations, and that we lack a proof that the axioms of arithmetic are

mutually independent.143

Arithmeticians have gone through an infinite amount of trouble to establish the minimal

number of arithmetical axioms. Yet it is still in doubt whether or not one of the axioms is

simply a consequence of the others, without them having noticed it. At least, we still lack a

systematical proof.

The mathematician . . . must not claim that what he offers as foundations is, for a priori
reasons, everything that exists as foundation with respect to numbers a priori and in itself

(alles, was in Betreff der Zahlen and sich und a priori an Grundlegungen existiere). . .
Exactly the same holds for the theory of propositional inferences and for everything else

that we still have to discuss [i.e. for the theory of conceptual inferences]. We cannot

guarantee completeness. . . . And of course, as in arithmetic, there also is the task of

shaping, as systematically as possible, the progress from basic laws (Grundgesetze) to
derived ones and to develop methods that enable us to solve every conceivable problem

(Aufgabe) with an orderly procedure and hence . . . to prove deductively every inference we
are presented with, no matter how complicated it is, i.e. to reduce it to elementary

inferences.

The very same problems reappear in the constitution of the theory of proposi-

tional inferences.

As for the concept of a calculus Husserl recalls in his lectures some observations

that we alreadymet in hisPhilosophy of Arithmetic and that are also to be found in his
1891 review of Schröder’s first volume of the Vorlesungen über die Algebra der
Logik.144 In both texts the core contention is that the deductive mechanism behaves

exactly the same as the mechanism of calculation. In his review Husserl criticized

Schröder for not having understood the nature of the Folgerungskalkül, in spite of

having brilliantly improved its technical apparatus. It is not – Husserl objected – a

“completely reformed deductive logic, in the form of an ‘algebra of logic’”, but

rather an extrinsic, purelymechanical processing, a transformation of signs into signs

according to certain rules, which can also be performed by a machine; it is a way of

“sparing oneself (sich ersparen)” the trouble of making actual inferences, rather than

a way of executing them.While “in [amachine] no thought corresponds to the signs”,

for us the result of the calculation expresses a proposition that enlarges our knowl-

edge, as Frege would put it. In his Logikvorlesung Husserl says: “Calculating is

operating with signs and not with the concepts themselves, and at first the result of the

calculation is again something purely signitive, a certain combination of signs on

paper.” To solve a mathematical expression it is not necessary to fall back on the

concepts, but it is sufficient to “combine signs with signs, replace sign-complexes by

other sign-complexes, according to a rigidly rule-based procedure”145.

A further criticism of Schröder, both in the review and in the Logikvorlesung,
is that he did not understand why the calculus is applicable to different domains.

143LV96, 243–245.
144Repr. in: Husserl, Aufsätze und Rezensionen, 3–43.
145LV96, 247.
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The calculus of classes does not provide a foundation for all the applications that it

admits, but only codifies relations of subordination among sets. The analogies that

allow for the application of the calculus are, according to Husserl, immediately

evident. All the conceptual fields in which it makes sense to speak of set-theoretical

inclusion, exclusion and coincidence can be interpreted by the same symbol system;

for example the same algorithm is meaningful for classes of individuals, ‘groups’,

equations, and in particular – what is most relevant in the present context – for

concepts and judgements, according to their Bedingtheitsverhältnisse.146

2.8.2 On Propositional Inferences

Husserl’s theory of propositional inferences is constituted by (i) certain basic laws

(Grundgesetze) that are said to precede the constitution of any theory in general,

(ii) a finite number of primitive axioms (primitive Axiome), and (iii) theorems

(Lehrsätze) that are derived from (ii) by the rules of inference determined by (i).

Husserl provides the basic laws and axioms in the form of schemata: for every

schema there are infinitely many possible instantiations that he calls “particulariza-

tions (Besonderungen)”. As we will see later on, many of the “primitive axioms”

that Husserl adopts recur in the logical calculi introduced more than twenty years

later by Hilbert and Bernays.

As for the “derivations” of theorems, it does not seem too far fetched to claim

that for Husserl the proofs in the theory of inferences are “formal objects” and that

(as seems to be suggested in the passage quoted below) he would agree to identify

them with what we would define as formal proofs in a logical calculus: finite

sequences of formulae, each of which is either an axiom or is obtained from

previous formulae by application of one of the primitive rules of inference or,

more generally, by an inference “justified” by the theorems of implicational form

demonstrated earlier. In this respect the following passage is very telling:

An ideal theory of inferences would have to offer the following view. As mainstays

(Grundpfeiler) we have certain primitive axioms, which cannot be derived from each

other. Then follow the theorems, i.e. derived inferential laws. These derivations are again

inferences or webs of inferences. But when we dissolve such a web into elementary

inferences, then with the first theorem we will only get at those inferences that fall under

the axiomatic principles as particularizations (Besonderungen). In the case of the second

theorem, the inference that proves it can also have the form that has been shown to be valid

by the first theorem, etc.147 In short, whichever proof one may check and analyze in the

146Cp. Schröder Review and LV96, 242–248.
147In a formal proof (understood as a finite sequence of formulae that satisfies the previously

mentioned requirements) the first formula has to be an axiom. By contrast, the second and all

subsequent formulae are either axioms or derived from the previous ones by application of a rule of

inference. But if in the proof we admit – as Husserl seems to do – the possibility of appealing to a

previously proven theorem (without proving it again), the second formula can also be obtained

through an instance of the first, the third through an instance of the first or the second, and so on.
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theory, one will always find in the series of axioms or previously demonstrated laws those

that justify it.148

The resulting “hierarchical structure” of the theory of inferences therefore imposes

as obvious requirements that none of the propositions that are to be proved is to be

used in proofs (no vicious circles) and that “the derivations themselves do not fall

under inferential laws that still have to be proved directly or indirectly through

them”.149 However, Husserl allows for the case in which the inferential law to be

proved is used in the metatheoretical inferential reasoning which we use to prove

that law. It is really remarkable that Husserl has such a clear vision of the distinction

between theory and metatheory as well as of the deductive machinery. This is very

conspicuous when he writes:

What would happen if we were to deduce an inferential law in such a way that the very law

underlying the inference itself would be the one to be deduced? From law A we derive law

B. But the principle of derivation granting the result B does itself presuppose B or has the

form of B. In this case there is no vicious circle. We do have a circularity in the proof when

we take ourselves to have proved a proposition as the consequence of another, which in its

turn can be proved only by appeal to the proposition in question. Or in the case where we

prove the truth of a proposition B from that of a proposition A, while A itself already

contains B as explicit or hidden premise. In our case however the proposition to be proved

is not a premise, but only provides the principle in accordance with which the proving

inference proceeds.150

2.8.2.1 The General Principles

Let us now consider four “basic laws that must precede every [deductive] theory

(Grundgesetze, die allen Theorien vorhergehen müssen)”. The first of these basic

laws is

(I) The principle that allows the inference “from the general to the particular (vom
Allgemeinen auf das Besondere)”.

For Husserl the fact that the axioms and rules of inference function as general

forms or schemata whose instances are used in proofs must be made explicit as a

law. Basic law (I) warrants that the general inferential laws with which deductive

thought has to comply can be applied in the particular sciences. In proving one

applies principles. For example if among the general principles we have commuta-

tivity (A þ B ¼ B þ A), and we have proved a proposition containing (a � b) þ c,

148LV96, 250.
149LV96, 249.
150LV96, 249–250.
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then we can move to the proposition where (a � b) þ c is replaced by c þ (a � b),
by application of that law.151 “What does applying [a law] mean? It means inferring

the truth of the particular case that falls under it from the truth of the general law.152

As second basic law we have

(II) The modus ponens of traditional logic, that is the rule A, A ! B/B.

“If a proposition A is valid, and moreover it is valid that if A is true then also B is

true, then also B is valid. Evidently this principle finds constant application.”153 (As

ever so often in Husserl, ‘being valid (gelten)’ is just a stylistic variant of ‘being

true’.)

A further basic law that is “needed straightaway at the beginning of a theory” is

given by

(III) The rules of conjunction introduction and conjunction elimination.

If proposition A is valid and so is proposition B, then A ∧ B is also valid, and

vice versa. “If, for example, we want to connect various axioms or theorems

we immediately need the proposition: if the general proposition A (der allgemeine
[sc. Satz] A) is valid and the general proposition B is valid, then also the general

proposition A and B (der allgemeine [sc. Satz] A und B) is valid, that is their

conjunction is true, and vice versa”.154

Husserl’s fourth and final basic law is

(IV) The principle of distributivity of universal quantification over implication:

8xðAðxÞ ! BðxÞÞ ! ð8xAðxÞ ! 8xBðxÞÞ;

where x varies over an arbitrary class C.

Husserl formulates it as follows: “Let A and B be two general propositions, with

a general relation to the objects u of some delimited class. Then we can say:

assuming that it is valid that every u for which the proposition A is true, also

makes the proposition B true, then it is certain that if A in general is true for each u,
also B must be true for every u. For example if it is valid for every square that if it is

divisible into two triangles then the sum of its internal angles must be equal to four

right angles, then this is also valid: if every square is divisible in two triangles then

every square has the sum of its internal angles equal to four right angles.”155

151LV96, 250.
152LV96, 251.
153Loc. cit.
154Loc. cit.
155LV96, 251 f.
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2.8.2.2 The Notation

Before discussing the formal structure that Husserl gives to the theory of proposi-

tional inferences (or laws), let us review his choice of primitive logical operators

and their symbolic notation.156

As meta-variables for propositions Husserl uses the upper-case letters A, B, . . . ;
as meta-variables for ‘terms’ the lower-case letters x, y, a, b, . . . .

– The conjunction of A and B is expressed by juxtaposition: AB

– The disjunction of A and B is expressed by the þ sign: A þ B

– The conditional with antecedent A and consequent B is expressed by�: A�B157

– The biconditional is expressed by the symbol ¼
– The negation of A is expressed by the sign 0 as an index: A0

– P and S represent the universal and the existential quantifier respectively

For a correct interpretation of Husserl’s notation one should keep the following

points in mind:

a. Husserl wants disjunction to be understood as inclusive (‘vel’).
b. The conditional, �, is used both for the operation that from two propositions A

and B forms the new proposition ‘if A then B’ and for what Husserl takes to be

the fundamental relation that can obtain between propositions: implication.158

“A third elementary way to construct one proposition out of two is the hypothet-

ical one: if A then B. But this mode of connection represents at the same time the

fundamental form of the relation between propositions. The validity of A

implies that of B, and thus both propositions are put in a relation from which

originate peculiar relative properties for each: being a reason (Grund) and being
a consequence (Folge).”159

c. The biconditional is defined via conditional and conjunction: A ¼ B abbreviates

(A�B)(B�A).

d. Besides the sign for negation (A0 means the same as ‘it is not true that A’),

Husserl provides also a sign for the affirmation (the sign 1 as an index: A1 is to

mean the same as ‘it is true that A’); but he observes that we do not need the

latter symbol, since A and ‘It is true that A’ are always strongly equivalent.

e. Husserl also introduces (but never actually uses in the subsequent sketch of the

“calculus”) the symbol ‘!’ that has essentially the same point as Frege’s vertical,

the Urteilsstrich: while A expresses a certain propositional content (in Frege’s

156Most of the time we shall not use quotation-marks in our explanations when talking about

symbols. Husserl’s prose is very loose in this respect, too, but hopefully no confusions will be

caused by this sloppiness.
157� is the symbol Schröder uses to signify the relation of inclusion among classes.
158In this way logical laws with implicative form for Husserl also play the role of rules of

inference. This explains the terminological wavering between “theory of propositional inferences”

and “theory of propositional laws”.
159LV96, 254.
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Conceptual Notation A would be preceded by a horizontal stroke), A! expresses

it with the force of a judgement. Frege represented this force by prefixing the

judgement-stroke to the expression of a propositional content: ‘ A). “A propo-

sition can appear simply as proposition, or its corresponding truth can be meant

at the same time. For example if we say that with the proposition ‘God is just’ is

also given the proposition ‘Evil is punished’, if we say that when one is valid

also the other is valid, then we do not affirm these propositions themselves as

being valid. However, if we simply say ‘God is just’ we mean the truth ‘God is

just’. We will indicate the difference with an exclamation mark. Hence: A!”160

The point of the symbol ‘!’ has nothing to do with logical truth or validity, or

with the fact that to prove something is to prove its truth. What Husserl wants to

maintain (as Frege did before him) is that the difference between merely thinking
something without commitment as to its truth and thinking it with such a
commitment must be formally expressible.

f. About the quantifiers, specifically the universal quantifier P (the existential

quantifier S is introduced but never actually used in his “calculus”), Husserl

remarks that the need to explicitly express universality (Allgemeinheit) by means

of a specific sign is due to the fact that there are universal propositions in which

not all of the terms (Termini) are variables (Variablen), that is ‘bearers’ of

universality. “In every universal proposition the universality relates to certain

variables, for example ‘It is generally valid (Allgemein gilt) that a man is mortal’.

Here the word ‘a’ is a sign for the variable. . . . In the arithmetical proposition ‘an

even and an odd number have as their sum an odd number’ we have two

variables. . . In these propositions, however, only these particular terms are

bearers of universality (Träger der Allgemeinheit)”.161 Husserl then uses the

notation f(x y . . . a b . . .) to indicate a proposition in which the ‘terms’ x, y, a, b,
. . . , appear, so Pxy. . .f(x y . . . a b . . .) means: for every x, y, . . . f. . . holds (and
analogously,Sxy. . .f(x y . . . a b . . .) means: there are x ,y, . . . for which f . . . holds).

2.8.2.3 The Calculus

Finally we would like to reconstruct some of the sketches of a “calculus” of the

“theory of propositional inferences” that Husserl presents. What we find in his

lecture is not so much a systematic construction of a formal theory, but a series of

very brilliant intuitions that point into this direction.

First of all, Husserl recapitulates the four basic laws that we already had

occasion to discuss, but he partially modifies them, which again testifies to his

continual rethinking of the issues. The modified versions are indicated by the letters

a, b, g and d.

160Loc. cit.
161LV96, 253.

134 2 The Idea of Pure Logic



(a) The first principle, “the inference from the general to the particular”, is

reformulated as a principle concerning the relations between genus and species.

Indirectly, the distinction between the notion of belonging (of an element to a

class) and that of inclusion (among classes) is taken into account. Husserl

points out that we must now consider not the inference from the general to

the particular tout court, but the “inference from the general to the particular

that is subordinated to it”, and that this particular, far from being a singular

case (ein Einzelnes), must also be something general. “When we apply a

proposition about all quadrangles to squares in particular, then the particular

here is of a different kind than when we apply a proposition that is valid for all

men to Socrates. In the first case the particular is itself something general, in the

second case it is not. For our purposes we will consider the principle only in

that sense where the particular is itself general”.162 Therefore the “official”

formulation of principle (a) is the following: “if a proposition f is generally
valid for any u, v, . . . z, and at the same time it is valid that, in this series, every

u’ is a u, every v’ is a v, and finally every z’ is a z, then the proposition f is also
valid in particular for every u’, v’, . . . z’”.163

It is important to notice that among the applications of this principle that Husserl

mentions, we find not only (as was to be expected) inferences of the kind “if a

proposition is valid in general for every quadrangle, then it is also valid for every

square, for every rectangle, for every trapeze etc.”, but also inferences that instan-

tiate to certain classes of expressions (e.g. to all the expressions of a certain logical

form) a law that is valid in general for every expression. “This principle allows us to

apply every law that is valid for propositions in general to arbitrary combinations,

disjunctions or hypothetical connections of propositions, and this in a completely

general way, so that the resulting propositions have again the character of laws, of

formulae”.164 The effective application of principle (a) in the remaining pages to be

taken into consideration will be precisely of this kind: it is used as if it were a kind

of substitution rule for the logic of connectives. Actually, the “calculus” that we are
discussing is a calculus for the logic of connectives, not for that of the quantifiers.

(The latter, or rather its monadic fragment, will be the topic of the theory of

conceptual inferences.)

(b) As second principle we find again the rules of conjunction introduction and of

conjunction elimination, extended to “universal closures”: “if f is generally

valid [gilt allgemein, i.e. holds of everything] and g is generally valid, then also
the united proposition f and g is generally valid, and indeed with respect to all

the variables that occur in f as well as in g, and vice versa”.165 Husserl will then

162LV96, 254.
163Loc. cit.
164LV96, 254 f.
165LV96, 255.
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use it at times as law rather that as rule; in his notation (where PA is the

“universal closure” of A): P(AB) ¼ PAPB.

(g) The third and fourth principle of those introduced above are “fused” in the rule

of modus ponens extended to “universal closures”: “if the hypothetic proposi-

tion ‘if f then g’ is generally valid, we must conclude that, if f is generally valid,
also g is generally valid”.166 In Husserl’s notation: from P(A�B) and PA

follows PB.

Notice that Modus ponens can be found among the general principles in the

guise of a rule, while we also find it as implicational law among the axioms of the

theory of inferences.167

(d) Finally we find a principle that Husserl calls “trivial” and that is a variant of (b),
this time formulated as a law having the form of a biconditional and with the

explicit assertion of the truth of the premises and of the conclusion: “if A is

true and B is true then the proposition A and B is also true, and vice versa.
A1B1 ¼ (AB)1”.

168

The logical axioms are the following,169 grouped by Husserl according to the

“connectives” they contain. In the first group we notice the law ofmodus ponens (I),
the law of transitivity (II), the lattice-theoretical laws for conjunction, including
commutativity (III, IV and V). The second group consists of the law of modus
tollens or the law of contraposition in imported form (VIII), the laws of non-
contradiction and of double negation (IX, X), and one of the two De Morgan
laws (XI).

Group 1 – conditional and conjunction:

[Husserl’s notation] [“translation”]

I. A(A�B) � B, A∧(A!B) ! B;

II. (A�B)(B�C) � (A�C), (A!B)∧(B!C) ! (A!C);

III. (M�A)(M�B) � (M�AB), (M!A)∧(M!B) ! (M!A∧B);

IV. AB � A, A∧B ! A;

V. AB � BA, A∧B ! B∧A;

VI. (AB�C)A � (B�C), (A∧B!C)∧A!(B!C);

VII. (A�B) � (A�AB), (A!B) ! (A! A∧B).

Group I1 – disjunction and negation (plus conditional and conjunction):

VIII. (A�B)B0 � A0, (A!B)∧�B ! �A;
IX. (AA0) 0, �(A∧� A);

X. (A0) 0 ¼ A, �� A $ A;

XI. (A þ B)0 ¼ A0B0, �(A∨B) $ �A∧�B;

166Loc. cit.
167As is the case for example in the Principia Mathematica of Russell and Whitehead.
168Loc. cit.
169We reproduce them here in Husserlian notation as well as in a transcription using current

symbolism. With 8[A] we indicate the universal closure of A.
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To these axioms Husserl then adds two concerning quantification (they are never

used in the proofs). But his use of small Greek letters to designate them suggests

that Husserl takes them to be on the same level as the fundamental principles, to be

added to the four mentioned in the beginning):

e) PAþPB � P(A þ B)170 8[A]∨8[B] ! 8[A∨B];

i) P(A0) � (PA)0
171 8[�A] ! �8[A].

On the base of these axioms and using the principles (a) – (d), Husserl proves
(or affirms the easy provability of) a whole list of theorems (Lehrsätze) that we
provide172 in its entirety.

Lemmata that follow from the axioms of group I:

1. (A$B) ! (A!B),

2. (A$B) ! (B!A),

3. (A$B) $ (B$A),

4. A∧B ! B,

5. A∧B $ B∧A,

6. (8[A]∧8[B])∧8[C] ! 8[(A∧B)∧C],

7. 8[A]∧8[A!B] ! 8[B],
8. 8[A]∧ 8[B]∧8[A∧B!C] ! 8[C],
9. A∧(B∧C) ! (A∧B)∧C (associativity of ∧),

10. (A!B)∧(A$C) ! (C!B),

11. (A!B)∧(B$C) ! (A!C),

12. 8[A∧B!C]∧8[A] ! 8[B!C],

13. A ! (B!A) (a fortiori),
14. (A!B) ! (A∧C !B∧C),

15. (A!B)∧(C!D)! (A∧C !B∧D),

16. (A!B)∧(C$D)! (A∧C !B∧D),

17. (A$B)∧(C$D)! (A∧C $B∧D),

18. (A∧B!C) ! (A!(B!C)) (exporting the premise),
19. (A!(B!C)) ! (A∧B!C) (importing the premise),

Lemmata that follow from the axioms of groups I and II:

20. (A!B) ! (�B!�A) (contraposition),
21. (A$B) ! (�B$�A)
22. A∨�A (excluded middle),
23. (A∨B) $ (B∨A) (commutativity of ∨),

(continued)

170In the text we find P(A þ B) �PAþPB, but this is clearly a mistake or a trasnscription error;

besides, Husserl explicitly points out: “only one half is valid” (LV96, 259).
171This is what we find in the text, and surely it is a logical law. However, it could be, as above, a

mistake or transcription error (per the logical law P(A0) � (SA)0).
172We do not use Husserl’s notation here; moreover we correct where necessary some errors that

are present in the text regarding the progressive numeration (errors that indicate various stages of

rewriting and rethinking these pages).
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Lemmata that follow from the axioms of groups I and II:

24. A∨(B∨C) ! (A∨B) ∨C (associativity of ∨),

25. (A!B) ! (A∨C ! B∨C)173,

26. (A!B)∧(C!D)∧(A∨C) ! B∨D,

27. A ! A∨B (disjunctive weakening),
28. (A!C)∧(B!C) ! (A∨B!C),

29. (A∨B)∧C ! (A∧C) ∨ (B∧C) (distributivity),
30. (A!B) $�(A∧�B) (Chrysippus’ law).

As we anticipated, Husserl provides a (more or less detailed) proof for some of

these lemmata. Let us consider, as an example, four of the most representative ones,

presenting them in the current style (the “justifications” in right column are those

that can be desumed from the text) and, in two cases, we will also report the proof in

Husserl’s words.

Notice, in particular, the peculiar usage (neither always explicit nor always

consequential) of the principles (b) – (d).
Proof of (5): A∧B ¼ B∧A.

1. 8[A∧B! B∧A]∧8[B∧A! A∧B]!8[(A∧B! B∧A)∧(B∧A! A∧B)] (b)
2. 8[A∧B ! B∧A] V

3. 8[B∧A ! A∧B] V

4. 8[A∧B ! B∧A]∧8[B∧A ! A∧B] (d): 2,3
5. 8[(A∧B ! B∧A)∧(B∧A ! A∧B)] (g): 1,4
6. A∧B ¼ B∧A 5, def.

Proof of (6): (8[A]∧8[B])∧8[C] ! 8[(A∧B)∧C].

1. (8[A]∧8[B]) ∧8[C] ! 8[A]∧8[B] IV

2. (8[A]∧8[B]) ! 8[A∧B] (b)
3. (8[A]∧8[B]) ∧8[C] ! 8[A∧B] II: 1,2

4. (8[A]∧8[B]) ∧8[C] ! 8[C] L 4

5. (8[A]∧8[B])∧8[C] ! 8[A∧B]∧8[C] III: 3,4

6. 8[A∧B]∧8[C] ! 8[(A∧B)∧C] (b)
7. (8[A]∧8[B])∧8[C] ! 8[(A∧B)∧C] II: 5,6

Proof of (18): (A∧B!C) ! (A!(B!C)).

«Principle VI itself has the form AB � C. Applying VI to it, we obtain:

ððAB�CÞA�ðB�CÞÞ
A

ðAB�CÞ
B

� ðA�ðB�CÞÞ
C

But this proposition has again the form AB� C. At the same time it also is a law.

The “A” in it is again a law. If we then apply 12 [8[A∧B!C]∧8[A]! 8[B!C]],

173The text erroneously has a biconditional instead of the main conditional.
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we immediately obtain the proposition. On the left side we indeed have two correct

propositions. Therefore the right side also is a correct proposition (modus
ponens)».174

We can render this as follows:

1. ((A∧B!C)∧A ! (B!C))∧( (A∧B!C)) ! (A ! (B!C)) VI

2. (A∧B!C)∧A ! (B!C) VI

3. 1∧2 ! ((A∧B!C) ! (A ! (B!C))) VI

4. 1∧2 (b):1,2
5. ((A∧B!C) ! (A ! (B!C)) (g): 3,4

Proof of (30): (A!B) $�(A∧�B).
“One half we can prove thus:

By 14: (A�B) �, multiplying both sides, (AB0 � BB0). Let us consider the right

side: by VIII: (AB0 � BB0)(BB0)0 � (AB0)0; hence by 12:

ðAB0�BB0Þ�ðAB0Þ0:

Combining this, on the base of II, with the previously derived proposition,

we get:

ðA�BÞ�ðAB0Þ0:

Proof in the other direction (much more complex):

((A0)0 B0)0 � A0 þ B. Substituting in XIb A0 for A. But by X: (A0)0 ¼ A.

Therefore (A0)0B0 ¼ AB0. Hence (3
�) also the negations of both sides equal. And

clearly we can substitute equivalence. Therefore (AB0)0 � A0 þ B; A(A0 þ B) �
AA0 þ AB. But M þ aa0 ¼ M; hence � AB�B; A(A0 þ B) � B; A0 þ B �
(a � b)”.175

In our notation this can reproduced as follows:

From left to right:

1. (A ! B) ! ((A∧�B) ! (B∧�B)) L 14

2. ((A∧�B) ! (B∧�B))∧�(B∧�B) ! �(A∧�B) VIII

3. �(B∧�B) IX

4. ((A∧�B) ! (B∧�B)) ! �(A∧�B) L 12 (and L 6): 2,3

5. (A ! B) ! �(A∧�B) II: 1,4

174LV96, 258.
175LV96, 259–260 (the lower-case letters are in the text).
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From right to left:

1. �(��A∧�B) ! �A∨B XI176

2. ��A $ A X

3. ��A∧�B $ A∧�B L 14: 2

4. �(��A∧�B) $ �(A∧�B) L 21: 3

5. �(A∧�B) ! �A∨B II (and L 2): 1,4

6. A∧(�A∨B) ! (A∧�A)∨(A∧B) L 29

7. (A∧�A)∨(A∧B) $ (A∧B) “M þ aa0 ¼ M”177

8. A∧(�A∨B) ! (A∧B) II (and L 1): 6,7

9. A∧B ! B L 4

10. A∧(�A∨B) ! B II: 8,9

11. (�A∨B) ! (A!B) L 18: 10

12. �(A∧�B) ! (A!B) II: 5, 11

One may very well wonder why the list of theorems contains neither the law of
identity, A!A, nor the two laws of idempotence for conjunction and disjunction

(A∧A $ A; A∨A $ A). Husserl explains the reason for this absence towards the

end of the section that we are analyzing. Strictly speaking, he maintains, a condi-

tional in which antecedent and consequent coincide is meaningless, in so far as

there cannot obtain “an objective relation of conditionality (objektives Verhältnis
der Bedingtheit)” between a proposition A and A itself. If we utter a natural

language sentence that apparently has precisely this form (e.g. “If I have ordered

something, then I have ordered something”178), we really mean (meinen) something

quite different from a conditional relation (in the example, the speaker means that

he does not retract the orders that he has given, etc.).179 In complete analogy, also

disjunctions and conjunctions with identical members (A∨A, A∧A) are, strictly

speaking, meaningless: “When we say: ‘2 � 2 is 4 and 2 � 2 is 4’, then we have

repeated the very same proposition, but we have not performed a conjunction of

objective propositions”.180

How can this be reconciled with the need to assure that every formal expression

remains meaningful under every substitution? Husserl’s way out consists in assign-
ing a meaning to these formulae, too, and precisely a conventional meaning.

Replacing in lemmata n. 30 (Chrysippus’ law) B by A, we obtain: (A!A) $
�(A∧�A), and hence we can posit by convention A!A ¼df �(A∧�A). Analo-
gously, we can posit by convention A∧A ¼df A, A∨A ¼df A.

181

It is interesting to observe that Husserl sees in this solution an analogy with

arithmetic: “we can operate computationally (rechnerisch) without worrying

176It is unclear what is meant by ‘b’ in ‘XIb’.
177A∨(B∧�B) $ A is not listed among the theorems.
178LV96, 260.
179Cp. Bolzano on Pilate’s “What I have written I have written”: WL II, }148, 85, end of note 1.
180LV96, 260.
181In his last published paper, “Compound Thoughts” (1923), Frege maintains that A∨A and A∧A

express the same thought as the plain A and that A!A expresses the same thought �(A∧�A): see
p 49 and 50 (original pagination).
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whether or not the members of the connections are identical or not. These conven-

tions here have the same function as certain analogous ones in arithmetic, thanks to

which 1 and 0, which in the original sense are not numbers, are adjoined to the

numbers by certain conventions. . . Then we can also understand the arithmetical

formulae in such a general way that the letters could just as well stand for 0 and 1 as

for proper numbers”.182

Husserl’s concluding remarks also deserve attention. To the question whether it

would be possible “to express simple truths in conditional form”, Husserl gives a

positive answer, and he is right. It suffices to observe, he says, that all contradictions

(A∧�A, B∧�B, . . .) are logically equivalent and that, if we indicate any of these

with ‘0’, we can prove (in the “calculus” we described) �A$ (A!0), for every A.

Analogously, given that we have A∨�A$ B∨�B$ C∨�C$ . . . , by indicating
any of these expressions with ‘1’ we also obtain A $ (1!A), for every A.

2.8.3 On Predication and Conceptual Inferences

The topics of Husserl’s theory of conceptual inferences are the “laws that are

founded in the concepts of object and concept, that are valid for objects and

concepts as such”.183 More precisely, the theory aims at characterizing the laws

that are based firstly on the fundamental relation, linguistically expressed by

predication, that obtains between an object and a concept just in case that object

stands under that concept (Frege called this relation subsumption), and secondly on
the relation of subordination among concepts.

Let us first have a brief look at Husserl’s theory of predication. It is to be found in

the second part of his Logikvorlesung of 1896 entitled “On Propositions (Von den
Sätzen )”. Husserl distinguishes here two canonical forms of sentences to which, he

maintains, all sentences of natural languages are, in principle, reducible: the cate-

gorical form (kategorische Form),184 subject – copula – predicate (in symbols: ‘S is

P’) and the existential form (in symbols: ‘S is’). In this respect Bolzano’s reduction-

ism was even more radical: he assumed that all propositions could be expressed by

sentences of the categorical form, or rather of the form ‘S has the property of being

P’.185 In our context only the categorical form is of interest. Unlike traditional

logicians Husserl does not take it to express general propositions – where both the

subject S and the predicate P are general terms (‘a man’, ‘white’, ‘rational’, . . .).
Rather, the subject S is always intended to be a singular term (‘the Sun’, ‘Socrates’,

182LV96, 261.
183LV96, 262 (my italics).
184LV96, 163–165.
185WL II, }127, 9.
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. . .), that is, a term that purports to denote an individual. So sentences of the form ‘S

is P’ have the following structure:

singular term� copula� general term:

From the ontological point of view, this corresponds to the relation of belonging

(zukommen) that holds between a property and an object (in this order) if the

sentence expresses a truth.

One may very well wonder where the copula is to be found in a sentence like

“Socrates walks”. Aristotle tried to uncover a copula even in such sentences: “It

makes no difference whether we say of a man that he walks (badízei), or whether
we say that he is walking (badízon ’éstin).”186 (When one renders Aristotle’s

constructio periphrastica in this way, one better forgets about the English progres-

sive aspect.) Bolzano took the same line:

Each inflected verb that is different form the word ‘is’ can be replaced, without any

essential change of meaning, by the combination of ‘is’ with the (present tense) participle

derived from that verb. ‘A thut’ is tantamount to ‘A ist thuend’.187

In this respect Frege strategy seems to be more reasonable because it spares us a

clumsy paraphrase:

Often the word “is” serves as copula . . . As such it can sometimes be replaced by a verb-

ending. Compare, for example, “this leaf is green” and “this leaf greeneth”.188

Husserl follows suit:

When I say “the flower withers”, the word “withers” contains both the expression for the

pertinent P and something which corresponds to the word “is”.189

As to the specific function of the copula, Husserl regards it as an unsaturated

component, “( ) is ( )”, which becomes a saturated whole, a sentence, once the

places for the subject and for the predicate are suitably filled. As in Frege, the

relation between object and concept is not invertible: the subject can never become

a predicate; the predicate cannot become a subject without a previous essential

transformation (nominalization). The relation between object and concept is primi-

tive and cannot be defined. Husserl takes the schematic form “S is P” to have a

content, which is also indefinable: it expresses the relation of standing under (stehen
unter) that holds between an object and a concept. (The term is Bolzano’s. Frege

has it that an object “falls under” a concept.) As a matter of fact Husserl’s claim

here is similar to (though also, as we shall see, importantly different from) the thesis

which Frege puts forward in his paper “On Concept and Object” (1892):

186Aristotele, De Int. 12: 21b9–10.
187WL II, }127, 10.
188Frege 1892, 194.
189LV96, 144.
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What I call here the predicative nature of concepts is just a special case of the need of

supplementation, the unsaturatedness, that I gave as the essential feature of a function in my

work ‘Function and Concept’ [1891].190

The difference between object and concept is an absolute one.

A concept . . . is predicative. For it is the Bedeutung of a grammatical predicate. By

contrast, a name of an object, a proper name, is quite incapable of being used as a

grammatical predicate.191

But we should not overlook a fundamental divergence between Husserl’s (as of

1896) and Frege’s conception. According to Frege, the unsaturated component in a

sentence of the form ‘S is P’ is what he calls a predicate, namely an instance of ‘( ) is

P’. By contrast, Husserl follows the tradition in classifying the general term ‘P’ as

predicate, and for him the unsaturated component is the copula. By taking the

copula to be more than just a component of a Fregean predicate Husserl can account

for an interesting feature of non-nominal quantification in natural languages. When

we move from ‘Socrates is wise’ to ‘Socrates is something’, in symbols: ‘∃f
(Socrates is f)’, we quantify into the position of the general term ‘wise’, that is

to say, into the position of the Husserlian predicate.192 It is highly doubtful whether
there is something like quantification into the position of a Fregean predicate in a

natural language like English. (Of course this is no objection against Frege’s

understanding of second-order quantification in his “logically perfect language

[Begriffsschrift]”.)
Let us now turn to Husserl’s theory of conceptual inferences. While its goal is

expressed quite clearly, the sketch of a formalization that Husserl presents is far less

detailed than the one of the theory of propositional inferences. Actually there are

just a few hasty and concise remarks that take only a bit more than one page. From

the strictly formal point of view we can say, using a terminology that is not

Husserl’s, that the result is essentially nothing but a part of the “theory of classes”.

On the notational level, Husserl uses the symbols:

– G, D, . . . as variables for objects (individuals)
– a, b, . . . A, B, . . ., a, b . . . as placeholders for monadic general terms

– e for the binary relation of predication

– so ‘GeA’ is the formal representation of a subsumption “the object G is A”, that

is “G has the property of being A”193

For the relation of subordination between concepts, the other fundamental

relation that is a topic of the theory, Husserl’s notation is the sign � (that in the

theory of inferences is the connective of the material conditional) with a dot on top

190Frege 1892, 197 n.
191Frege 1892, 193 and n.
192Cp. Künne 2003, 65 f.
193Husserl emphasizes that, even if G is considered as an indeterminate object (an Etwas), ‘Ge a’ is
not to be confused with the existential statement “Something is a”, for which he suggests the

formal notation ‘Sa’.
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of it. For typographical reasons we shall use the standard symbol for inclusion, ‘�’.

So ‘A � B’ expresses the quantified conditional if something is A, then it is B or,

equivalently, the universal affirmation all A are B. It is not necessary – Husserl

observes – to take the relation of subordination as primitive, since it can be defined

with the help of individual quantification, the predication relation and the material

conditional:

A � B ¼df8GðGeA ! GeBÞ:194

Without explicit acknowledgement Husserl uses the symbol ‘�’ not only for the

relation of inclusion but also for an operation on concepts that associates with the

concepts A and B the concept A � B under which all and only those objects G fall

that are B under the hypothesis that they are A. So the symbol ‘�’ is unfortunately

ambiguous.

Finally, Husserl uses the notation ‘AB’ (without having introduced it explicitly

with this new reading) to indicate the concept of something that is A as well as B,

that is extensionally, the intersection of the classes A and B.195 (In the theory of

propositional inferences such a juxtaposition of letters was used to indicate the

conjunction of two propositions.)

As regards the axiomatization of the theory, it is not possible – for the reasons

given above – to reconstruct precisely what Husserl had in mind. Apparently he was

thinking about an axiomatization based on that of the theory of propositional

inferences, expanded with the appropriate Grundformeln and with a “conceptual

reading” of the fundamental principles. Three of the only four “conceptual laws” he

mentions explicitly in our text:

ðB � CÞ ^ ðA � BÞ ! ðA � CÞ; (1)

ðA � BÞ ^ ðA � CÞ ! ðA � BCÞ; (2)

ðA � ðB � CÞ ! ððA � BÞ ! ðA � CÞÞ; (3)

are in fact, as Husserl points out, the “conceptual” counterpart of the propositional

principles (a), (b) and (g).
(1) is a counterpart to the syllogistic modus barbara and corresponds to the

“principle of substitution” (a); (2) corresponds to the “principle of adjunction” (b),
that is PAPB ¼ P(AB); (3) corresponds to the “generalized modus ponens” (g),
that isP(A�B) � (PA �PB). Clearly, in (3) the second occurrence of the symbol

� denotes the operation on concepts mentioned above and not the relation of

inclusion.

194LV96, 263.
195Husserl’s use of his notation is somewhat unstable: instead of ‘AB’ he sometimes writes ‘AB’.
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The fourth law is:

ðA � ðB � CÞ $ ðAB � CÞ; (4)

the conceptual counterpart of the law of “importing/exporting the antecedent”.

Husserl also provides a sketch of a proof of (3) starting from (4), (1), (2), using

propositional inferences. Indeed, by substitution, from (1) we obtain:

ðAB � CÞ ^ ðA � ABÞ ! ðA � CÞ;

then, using (2),

ðAB � CÞ ^ ðA � BÞ ! ðA � CÞ;

and by propositional inference (exporting):

ðAB � CÞ ! ððA � BÞ ! ðA � CÞÞ;

From this and (4), by transitivity of the implication, follows (3).

Husserl recognized the close “parallelism” between conceptual and proposi-
tional inferences and consequently between the respective axiomatic calculi. So he

must have had a clear awareness of what Boole already knew and what only

Schröder had precisely spelt out: the double interpretation of the “logical calculus”,
that is of the “Boolean calculus”, as a logic of classes and as a logic of propositional

connections:

A first part of the logical calculus is constituted . . . by calculation with concepts (Rechnung
mit den Begriffen); through this it is possible to execute those inferences whose premises

and conclusions are ‘judgements of the first class’, i.e. judgements in which something is

stated about things themselves – normally, categorical judgements.

The second part comprises calculating with judgements (Rechnen mit den Urteilen) . . . In
this part judgements are made about our affirmations about things. These judgements

concern the way in which the truth or untruth of certain affirmations turns out to be

dependent on that of others, hence they concern relations that standardly find their linguistic

expression in conditional propositions, in disjunctive or hypothetical judgements, which we

want to call, following Boole, ‘judgements of the second class’.

While in both parts calculation proceeds in accordance with the same laws, in each of them

it is only the interpretation of the formulae that changes.196

In his reply to Schröder’s review of his Begriffschrift Frege noted two weak-

nesses of the Boole-Schröder type of logic. The first one consists in its inability to

represent deductive relations between judgements of the first and judgements of the

second class. Frege writes:

196Schröder 1877, 1.
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The real difference [between Boole’s logic and my Begriffsschriftt which Schröder does not
notice at all] is that I avoid such a division into two parts . . . and give a homogeneous

presentation of the whole. In Boole the two parts run alongside one another, so that one

is like the mirror image of the other, but for that very reason stands in no organic relation

to it.197 Each transition from a judgement of one kind to one of the other is cut off, though

such transitions very often occur in real life.198

Boole himself gives (i) “All inhabitants are either Europeans or Asiatics” as an

example of a judgement of the first class and (ii) “Either all inhabitants are

Europeans, or all inhabitants are Asiatics” as an example of a judgement of the

second class.199 Obviously, the argument ‘(ii) therefore (i)’ is deductively correct,

but only in Frege’s logic this transition can be formulated and legitimized.

Furthermore, judgements of the first class correspond to monadic quantification

in Frege’s system. In Boole’s algebra of classes multiple quantifications cannot be
adequately represented. One of the glories of the integrated Fregean system is that it

is able to make sense of multiple quantifications which pervade arithmetic (‘For

each prime number there is at least one that is greater than it’).200

2.9 Concluding Remarks

In this chapter we have focused on Bolzano’s sadly neglected role in Husserl’s work

from, say, 1896–1900. We tried to bring to light where Husserl is working with

Bolzanian notions, though not always explicitly acknowledging it, and where his

reflections – as in the case of the so called threefold stratification of logic – go one

step further. Many Bolzanian issues are discussed in the logic lecture of 1896 and in

the Prolegomena: (i) Bolzano’s conception of logic as a Wissenschaftslehre or

“science of all possible sciences”, (ii) Bolzano’s rediscovery of the conception of an

objective relation of dependency among the homogeneous truths which make up

a specific science, (iii) Bolzano’s theory of variation as providing a basis for

Husserl’s theory of semantic categories, (iv) Bolzano’s notion of derivability

(Ableitbarkeit) by means of which it is possible to cope both with logical inference

and with enthymematic inference, (v) Bolzano’s concept of a semantic relation of

consecutivity (Abfolge) between pure conceptual truths.

Of particular interest to us was a contrast between two different approaches to

the concept of proof resp. of theory. In classical logic this contrast is exemplified by

the two contrasting (but equivalent) paradigms of logical calculi: Frege-Russell-

Hilbert (the axiomatic approach: laws are privileged) vs. Gentzen (no logical laws,

only logical rules). The former is an approach of a synthetic kind, the latter of an

197Frege 1881, 15; transl. 14.
198Frege 1882, 100.
199Boole 1847, 58–59.
200For the last two points cp. Künne 2009, Chapter 5 and the literature registered there.
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analytical kind. We have considered the concept of an etiological proof resp. of a
privileged form of theory, in which every derivation answers the question why
something is true. Our intention was to show that Husserl, following Bolzano’s

footsteps, is fully aware of the problem to which an analytical approach tries to give

an answer, that is the ‘problem of Methodenreinheit’: in order to arrive at a certain

proposition we should not use concepts that are extraneous to it.

However, in his Logikvorlesung ’96 Husserl builds up a calculus in the

synthetic-axiomatic style. In Appendix 5 we tried to give a formal reconstruction

of it and emphasized a specific difficulty. Husserl explicitly introduces the symbol

“!” (in Schroeder’s notation (�)) as a sentence-forming operator, that is as a

connective. But at the same time he stresses that “!” also represents the relation of

“inferability” between sentences. This means that “!” has also an operational

algorithmic reading: by knowing that A! B is a logical law we also know that

whenever A is true then B must be true. Hence conditional laws can also be used as

valid inference rules, that is derivation rules. (This is what Husserl in fact does,

although only tacitly, in his development of the theory of propositional inferences.)

Here, however, we stumbled over a difficulty: Husserl characterizes the inferential

reading of “A! B” as the relation by which A is the ground of B and B is a

consequence of A. But then the interreducibility (already known to the Stoics) of the
notions of conditional laws and valid inference schemata obviously breaks down:

for example the conditional law A ∧ B ! A says, in the relational reading, that we

can infer A from A ∧ B. This makes sense if we understand ‘!’ as a sign for

derivability, but it makes no sense in the stronger reading which would require

A ∧ B to be a ground for A; since a ground has to be conceptually simpler than its

consequence. In a more general form our perplexity can be formulated as follows:

why does Husserl explicitly adopt in his conception of Begründung the Bolzanian

idea of an inference rule of the kind Abfolge and then goes on to build up an

axiomatic-synthetic style calculus and work with valid inferences of the kind

Ableitbarkeit? Our answer was that, though accepting the requirements of the

Methodenreinheit, Husserl is simultaneously trying to give a model for derivability

that is as close as possible to what usually happens in current mathematical practice.

A question arises at this point: isn’t this what normally happens in various normal-

izations results given for example for calculi of natural deduction or in sequent

calculi? For example in the case of sequent calculi, by allowing the cut-rule we

allow in our derivations also formulae that are not subformulae of the conclusion;

but we know, thanks to the normalization (cut elimination) theorem, that our

derivation can be always transformed into a derivation of the same conclusion in

which there are no applications of the cut rule, and so in a derivation satisfying the

so-called subformula principle.
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Chapter 3

The Imaginary in Mathematics

3.1 Introduction

The main aim of this chapter is to present both an “analytical” and an “internal”

reading of Husserl’s Doppelvortrag, the lecture he presented to the Mathematische
Gesellschaft in Göttingen in the winter semester of 1901/02.1 We will propose a

formal reconstruction of some of the main results contained in the Doppelvortrag
wherever a mathematical definition of the concepts helps to clarify Husserl’s own

ideas.

Before considering the lecture’s content, clarification of the status of the text is in

order. All that remains of the Doppelvortrag is contained in the manuscript with

signature K I 26 conserved in the Husserl-Archives Leuven, which bears the title

(written by Husserl in pencil) “ad Vortrag Göttingen 1901.” Of the surviving

fragments only a part can be legitimately considered as belonging to the final version

of the Doppelvortrag, while the rest must be attributed to its preparatory stages. We

know that Hilbert urged upon Husserl to publish theDoppelvortrag and that Husserl
was occupied with the elaboration of the definitive text during the Christmas

holidays 1901/1902.2 Husserl did not publish the Doppelvortrag then, nor did he

ever reconsider the possibility of a publication, though on several occasions he

emphasized its importance.3 The themes and problems discussed in the Doppelvor-
trag, in particular the two correlated concepts of definite theory and definite manifold
were later extensively reconsidered in his Formale und Transzendentale Logik.4

Currently two versions of the Doppelvortrag are available, one dating back to

1970, published inHU XII,5 and a more recent version, edited by E. Schuhmann and

1Husserl, Das Imaginäre in der Mathematik. I: Zu einem Vortrag in der mathematischen
Gesellschaft in Göttingen 1901; in: PdA 430–451; PoA 409–452. Henceforth cited as PdA App.
2Schuhmann and Schuhmann 2001, 87. Henceforth cited as Sch&Sch.
3See for example Ideas }72; FTL [ed. 1929], 85.
4FTL 78 ff.
5PdA App. 430–451; PoA 409–432.

S. Centrone, Logic and Philosophy of Mathematics in the Early Husserl,
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K. Schuhmann, from 2001.6 In this second edition the text is reconstructed differ-

ently on the basis of a note, unknown in 1970, contained in the Jahresbericht der
Deutschen Mathematiker-Vereinigung, which states that in the session of Decem-

ber 10, “E. Husserl continues his lecture of November 26. Mainly the concepts of

‘definite’ system and ‘absolutely definite’ system are explained. In definite systems,

and only in these, the transition through the impossible is admitted.” – As for the

analysis of what we consider to be, for internal reasons, the main body of the text,

we will mainly rely on the first edition. (Our justification for this choice will be

presented later on.7) But we will refer both to the first and to the second edition

whenever we try to find a formal counterpart for certain specific Husserlian con-

cepts discussed in the Doppelvortrag. So, for instance, we will rely on the first

edition for our analysis of the concepts of operation system and arithmetizability of
a manifold and on the second edition for our analysis of the concept of mathemati-
cal manifold, since the latter concept is missing from the first edition. We feel free

to adopt this procedure, since the editors of the second version admit that as regards

the first Vortrag there are no relevant problems to recognize the main body of the

text but that it is difficult to reconstruct the text of the second Vortrag, since the

main part of the lecture manuscript is lost: “So this material had to be incorporated

into the text in an order for which the editors themselves bear responsibility.”8

Let us start with some historical remarks about Husserl’s personal and scientific

relation to Hilbert as well as about the particular context in which Husserl delivered

his Doppelvortrag; for this will turn out to be very helpful when it comes to

articulating the conceptual background of the specific problems Husserl tries to

solve in his lectures.

On September 14, 1901 Husserl was appointed extraordinary professor at the

Faculty of Philosophy of the University of Göttingen by the Prussian Minister for

Religious, Educational and Medical Affairs.9 His appointment was applauded in the

faculty of mathematics: Felix Klein and especially David Hilbert hoped to find in

Husserl a colleague who was very much interested in their direction of research.10

The faculty of philosophy, by contrast, especially two of its two most influential

chair holders, the philosopher Julius Baumann and the psychologist George Elain

Müller, strongly opposed Husserl’s arrival, for they perceived it as a weakening of

their own direction of research. At that time Hilbert was trying to establish in

Germany an interdisciplinary area of research for mathematicians, logicians and

philosophers on the model of the kind of cooperation that was in bloom at

Cambridge around Bertrand Russell.11 Hilbert held Russell’s and Whitehead’s

work in high esteem, and he was “convinced that the combination of mathematics,

6Sch&Sch 87–123.
7See below }4, footnote 74.
8Sch&Sch 88.
9Schuhmann 1977, 67.
10Cp. Sch&Sch 87; Peckaus 1990, 206 ff.
11Peckaus 1990, 210.
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philosophy and logic . . . should play a greater role in science”.12 He thought it to be
very desirable that a least part of the philosophical work in Göttingen be devoted to

philosophical questions concerning the axiomatic foundation of the mathematical

sciences. Presumably, Hilbert was disappointed by the later transcendental turn of

Husserl’s philosophy and by Husserl’s increasing interest in purely philosophical

rather than logico-mathematical problems. When Husserl had left for Freiburg and

the discussion about who was to become his successor had begun, Hilbert recom-

mended his former student Leonard Nelson to the faculty of philosophy. Together

with other members of his own faculty he signed a document in which it was

pointed out that epistemological problems connected with the development of the

mathematical sciences did not receive sufficient attention in Göttingen, as wit-

nessed by the fact “that one did not make a man like Husserl stay because one did

not recognize his importance (dass man einen Mann wie Husserl nicht hielt, weil
man seine Bedeutung nicht erkannte)”.13 When Husserl had arrived in Göttingen he

had immediately become involved in the activities of the Mathematische Gesell-
schaft.14 On November 5 he attended (and later wrote down from memory) a lecture

by Hilbert given before that Society on the topic of “the closure of axiom-systems

(die Abgeschlossenheit von Axiomensystemen)”. His own Doppelvortrag followed

in turn, and it is reasonable to assume, both because of the similarity of topics and

because of Husserl’s particular position in the faculty, that he tried to reconsider and

to answer questions that Hilbert had posed on that very occasion.

The text of 1901 that we shall analyze is entitled by Husserl himself “Das
Imaginäre”.15 It has three parts. In the Einleitung Husserl presents the problem as

a fundamental question (Grundfrage) which concerns the mathematical method,
underlining its significance for both mathematics and philosophy. In the second

part, Theorien über das Imaginäre, he briefly examines five proposals for a solution

put forward by contemporary mathematicians, and refutes them all. In the course of

his analysis of these alternative theories Husserl appeals to the idea of a concrete

realization of an arithmetica universalis. In the third part, Der Durchgang durch
das Imaginäre, he presents his own attempt to solve the problem.

His main aims are

(a) to elaborate the structure of an arithmetica universalis, or general theory of
arithmetic, in the direction of an even more general theory of deductive theories

(b) to show how the solution of the ‘problem of the imaginary’ is closely connected

with a specific property that only some formal theories have, – the property of

‘definiteness’.

12Reid 1970, 144.
13Hilbert’s et al. “Minoritätsgutachten” of 1917 against the majority report of the Faculty. Quoted

after Peckaus 1990, 210.
14Cp. Sch&Sch 87.
15PdA App. 431, fn.; (not translated in PoA).
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The following pages contain

(i) an analytic reading of Husserl’s text, with particular attention to these two

indicated topics

(ii) a mathematical interpretation of the Husserlian concepts of ‘universal arith-

metic’, ‘definite axiom-system’ and ‘definite manifold’

(iii) a discussion of divergent interpretations of Husserl’s two notions of definite-

ness

(iv) an attempt at a formal reconstruction of Husserl’s theory of manifold, also in

the light of some further clarification on this same topic given by Husserl in his

later Formal and Transcendental Logic.

3.2 The Einleitung

The Einleitung outlines the basic elements of the issue and opens with the follow-

ing statement: “The theme which I wish to deal with in this lecture concerns a

fundamental question (Grundfrage) of the mathematical method and belongs as

such to that difficult field in which mathematicians and philosophers are interested

to the same degree, even if not entirely in the same sense”.16 Husserl is referring

here to the fundamental question put to mathematics, with increasing frequency

from 1850 onwards, concerning the proliferation of “new mathematical concepts”,

that is concepts that seem to lack any content but nevertheless are “useful” in the

practical process of calculating.17 The general thesis that Husserl presents in the

Doppelvortrag can be formulated as follows: if a new concept in mathematics is

useful, then the need arises both for mathematics and for philosophical reflection on

mathematics to investigate the principles that are at its basis, in order to confer to it

a status analogous to that of already accepted arithmetical concepts. In this case the

use of the new concepts is legitimate or justified, which means that it does not lead

to contradictions. The Doppelvortrag hence sketches the general guidelines along

which a rigorous (mathematical) justification of the use of these new concepts can

be brought about.

Incidentally, the question was not at all alien to Dedekind who wrote inWas sind
und was sollen die Zahlen?:

The greatest and most fruitful advances in mathematics and other sciences have invariably

been made by the creation and the introduction of new concepts, rendered necessary by the

frequent recurrence of complex phenomena which could be controlled by the old notions

only with difficulty.18

16PdA App. 430; PoA 409. Cp. Hartimo 2007, 298 ff.
17Cp. Sieg 2002.
18Dedekind 1888, VI. Already in 1854 Dedekind had delivered a lecture on this topic before the

Mathematical Society in Göttingen on the occasion of his admission as Privatdozent (loc. cit.)
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Now Hilbert’s identification of the mathematical existence of a concept with the

consistency of the system of axioms involving that concept is motivated by the very

same problem (the proliferation of new and useful mathematical concepts).19

Hilbert confronted this problem in the initial phase of his reflections on founda-

tions when he aimed at an axiomatic foundation not only of mathematics but also

of physics and other sciences through the formal-axiomatic method.20 This phase

spans from 1898 to ca. 1901, and these are just the years in which Husserl’s

Göttingen period began. In the famous conference on “Mathematical Problems”
held in Paris in 1900 during the second International Congress of Mathematicians,

Hilbert posed questions about the meaning of mathematical problems for the

development of mathematics and about the sources from which mathematics

derives its problems.21 Some of his remarks turn out to be very useful to sketch

the context and set of problems from which Husserl’s Doppelvortrag arises:

Just as any other human undertaking pursues goals, so mathematical research needs

problems. . . It is difficult, and often impossible, to estimate the value of a problem in

advance, for in the end what is decisive is what science gains by pursuing that problem.

Nevertheless we can ask whether there are general characteristics that mark a good

mathematical problem. . . Surely the first and oldest problems in every branch of mathe-

matics spring from experience and are called forth by the world of external phenomena.

Even the rules for calculating with integers . . . have been discovered in this way... But in

the progressive development of a branch of mathematics the human mind, encouraged by

the success of its solutions, becomes aware of its autonomy. It creates by itself new and

fruitful problems – often without any recognizable external stimulus, just by logically

combining, by generalizing and particularizing, by separating and collecting concepts in

the most felicitous way, and thus the human mind itself steps into the foreground as the real

questioning subject (der eigentliche Frager). . . But then, whilst the creative power of pure
thinking is at work, the external world again comes into play, actual phenomena force upon

us new questions and open up new branches of mathematics, and, while trying to incorpo-

rate new fields of knowledge into the realm of pure thinking, we often find the answer to

ancient and unsolved problems, thereby improving old theories in the best possible way.

The numerous and surprising analogies and the apparently pre-established harmony

between the questions, methods and concepts of the various branches of knowledge

which the mathematician so often perceives all have their origin, it seems to me, in this

ever recurring and ever changing interplay between thought and experience.22

Hilbert’s main problem at that time can be recast as follows: “if a new concept is

useful in mathematics, how can we affirm that it mathematically exists?”23 At this

stage of his foundational research his answer is this: “if one succeeds in proving that

19This proposal was anticipated by Georg Cantor, who in 1883 wrote “mathematics is entirely free

in its development and its concepts are restricted only by the necessity of being non-contradictory

and coordinated to concepts previously introduced by precise definitions” (Cantor 1883, 563–64;

transl. in Kline 1972, 1031.
20Abrusci 1978, 19 ff. See also Abrusci 1981, Corry 2004.
21Cp. Reid 1970, 70–71.
22Hilbert 1900b.
23Abrusci 1978, 21.
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the constitutive properties of a concept cannot ever lead to a contradiction using a

finite number of logical inferences,”24 then the mathematical existence of that

concept is proven. In 1900 Hilbert sought to establish the consistency of the

axiom-system for the real numbers: “such a proof was to ensure the existence of

the set or, in Cantor’s terminology, of the consistent multiplicity of the real . . .
numbers.”25

It should be clear at the outset that Husserl’s problem in the Doppelvortrag is not
that of finding a proof of consistency for the system of axioms involving some new

mathematical concept. Rather, Husserl simply assumes its consistency as a hypoth-

esis. Nevertheless, the Doppelvortrag can be read as Husserl’s own contribution to

the solution of another problem related with Hilbert’s concerns at that time. He will

try to answer the following question: under which conditions can the consistent

system of natural numbers be stepwise expanded to other numerical systems, up to

the system of the real numbers?

Husserl presents the problem of the imaginary as a problem that arises in the

context of the evolution of mathematics from a science of numbers and quantities

into a theory of arbitrary abstract structures. He is thinking of the radical transfor-

mation that mathematics underwent during the nineteenth century, which Howard

Stein defines as a transformation “so profound that it would not be inappropriate to

call it a rebirth of the subject”.26 The transformation consists in a change in the very

way of conceiving mathematics, from a science of systems of determinate entities,

to a study of multiply exemplifiable abstract structures.27

As Casari rightly stressed, Husserl “really had understood the fundamental

aspects of the development of mathematics in his time: its going towards formali-

zation, algebraization . . . ”,28 and he was “fully aware of the fact of having had this
idea before anyone else; some years later, in fact, he will say something like: ‘now

everyone is talking about formalization, but then I had been the only one to see this

thing, to build it up laboriously with theoretical and historical studies’”.29 Husserl

explicitly refers to Leibniz’ idea of abstract mathematics as mathesis universalis, as
a theory of theories that is capable of determining the general form of all formal-

mathematical or deductive disciplines.

Originally limited to the field of numbers and quantities, mathematics has grown far beyond

that field. It has increasingly approximated to the goal that Leibniz had already clearly

conceived, namely, the goal of being a pure theory of theories (Theorienlehre), free of all

24Hilbert 1900b.
25Sieg 2002, 365.
26stein H 1988, 238–259; quoted after Sieg 2002, 365. Cp. Tieszen 1995: “Husserl . . . was witness
to advances in formalization, generalization, and abstraction that were unprecedented in the

history of mathematics” (50).
27Cp. Cavaillès 1938: “Les mathématiques réelles initiales ne sont plus qu’un cas particulier situé

au sein des mathématiques nouvelles, expliqués par elles” (54).
28Casari 2000; cp. Tieszen 2005, 9.
29Casari 2000; cp. also Tieszen 2004, 29.
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special fields of knowledge and insofar formal. Mathematics in the highest and most

inclusive sense is the science of theoretical systems in general, in abstraction from that

which is theorized in the given theories of the various sciences.30

But Husserl is also always interested in studying the ontological correlate of

formal theories, that is to say, he is always aware of the fact that to formal theories

correspond “possible fields of experience” that are axiomatized by those theories.

Hence abstract mathematics, as mathesis universalis, is also to be considered as the
most general theory of structures (each constructed with its own axiom-system), the

task of which is to create step-by-step suitable instruments for the interpretation of

important parts of the world of experience.31

The first step in the construction of a formal theory consists in formalization. To
‘formalize a theory’ means to abstract from the matter, from the particular concrete

“field of experience” that the theory describes and to consider its form. This is

done by substituting “object variables” for the names of “materially determinate

objects”. Thus, for example, we substitute the letters a, b, c, . . . etc. for the

designations of natural numbers. The properties of the objects are now specified

by the axioms of the theory. The formalization allows the unification of fields of

experience that appear to be vastly different: once the theories are formalized, it

becomes obvious that these fields are axiomatized by the same theory.32 In this way

a “generalization (Verallgemeinerung)” is performed: the concrete theory is now an

instance of a class of theories that all have the same form or, as Husserl puts it, an

instance of a certain “theory form (Theorienform)”. It is only later, in Ideas, that
Husserl states explicitly that the transition from a concrete theory to its form

(Formalisierung) and the transition from a certain formal theory to another more

general theory (Verallgemeinerung) are not the same thing: indeed, in the first case

we have a transition from the material to the formal, in the second a relation among

theory forms. In the Doppelvortrag under examination, however, Husserl does not

confuse the two concepts, but only their names.33

At the time of this lecture Husserl conceives of a formal theory, in the narrow

sense of the word, as a collection of axioms that are purely formal, mutually
consistent and independent and, in a broader sense, as also including all proposi-

tions derivable from the axioms “in a purely logical way (rein logisch)”, that is the
theorems of the theory. The related field (Objektgebiet) is in turn considered as

“a field of objects in general”, determined only by the fact that it ‘falls under’ certain

30PdA App. 430; PoA 409–410. In the Prolegomena we read: “The evident possibility of general-

izing (transforming) formal arithmetic, so that, without essential alteration of its theoretical

character and methods of calculation, it could be taken beyond the field of quantity, made me

see that quantity did not belong to the most universal essence of the mathematics or the ‘formal’, or

to the method of calculation which has its roots in this essence” (PR VI, PRe 41–42).
31This point has also been strongly emphasized by Hilbert, his “favorite example being that [of the

application of] of the Euclidean axioms of linear order and congruence to the genetic variations in

Drosophila flies produced by cross-breeding” (Webb 1980, 81). Cp. also Casari 2000.
32PdA App. 431; PoA 410.
33Ideas }13; cp. FTL, 81. See also Tieszen 2004, 28.
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axioms of this or that form. “We call an object field thus defined a [. . .] formally

defined manifold.”34 The axiom-system that characterizes a formal manifold hence

determines only the relations that occur among the elements of the manifold, leaving

the nature of the elements undetermined.

The requirement of formalizing a concrete theory, of transforming it into a

formal axiomatic theory, is articulated by Hilbert in what was referred to above

as the “first phase” (1898–1901) of his foundational research. At that time, his use

of the formal axiomatic method is characterized by methodological features like

(i) the tacit assumption that every logical consequence of the axioms is derivable

from them in a finite number of logical steps; (ii) the fact of not making the

language and logic of a formal theory explicit; (iii) the examination of the deriva-

bility or non-derivability of given theorems from certain groups of axioms. He also

requires a formal theory to satisfy a number of additional conditions, including (1)

the finiteness of the number of axioms, (2) the independence of the axioms (i.e. the

non-derivability of each of the axioms posited for a certain theory from the

remaining ones), and (3) the reduction of the axioms to the least possible number.

All these conditions are also implied in Husserl’s conception of formalizing a

theory in the Doppelvortrag of 1901.35

Furthermore (in this same phase of his foundational research), Hilbert thinks that

it is possible to reduce the axiomatic foundation of all of mathematics to that of the

arithmetic of real numbers and set theory. For the axiomatic foundation of the theory

he requires not only its formalization, but also a proof of the consistency of the

axioms of the theory. This latter constraint, essential for Hilbertian foundationalism,

constitutes an important difference from Husserl’s conception of formalism at the

time, as Husserl, in essence, thinks that once we have stated the axioms for a certain

formal theory, it is “reasonable” to assume that they are non-contradictory.36

Already at this stage in the development of Husserl’s thought the idea is present

that the forms of the theories obtained by formalization can be systematically

classified and related and that they can be put in connection with classes of theories

with a different form. On the basis of these interrelations significant theoretical

conclusions can be drawn, especially with respect to the fact that formal theories as

well as the structures corresponding to them can be generalized or specialized, can
undergo ‘expansions’ and ‘restrictions’.37

The theory forms defined by such abstraction can, then, be set into relation to one another;

they can be systematically classified; one can broaden or narrow such forms; one can bring a

certain previously given theory form into systematic interconnection with other forms of

exactly defined classes and draw important conclusions concerning their interrelationship.38

34PdA App. 431; PoA 410.
35Also cp. Tieszen 2004, 29 and Tieszen 2005, 9.
36For an opposite view on this point see Ortiz Hill 1997b, 153.
37As Hartimo 2007 puts it (though with reference to another work of Husserl’s): “Husserl is

occupied by some kind of a structural relationship between two different domains” (296).
38PdA App. 431; PoA 410.
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The geometry of our physical space, for instance, is a concrete theory that yields,

when formalized, the form of theory that we call a ‘theory of the three-dimensional

Euclidean manifold’.39 In maintaining that through formalization theories are

transformed into mathematical constructs and hence become objects of mathemati-

cal study40 Husserl anticipates a point Hilbert made a few years later. Hilbert

expresses this idea for the first time – but only with respect to formal proofs, not

to theories – in his conference paper Über die Grundlagen der Logik und der
Arithmetik (1904):41 “one has to consider the proof itself as a mathematical

construction (Gebilde)” and, hence, as an object of mathematical research. More-

over, the distinction is present in Husserl between a theory as a formal system and a

theory as a manifold, that is the structure underlying a theory conceived as deduc-

tive system. Consequently, he studies purely formal relations of generalization and

specialization not only among theories but also among manifolds,42 and he poses

the problem of identifying relevant correspondences between certain properties of

the formal theories and certain properties of the manifolds.

The problem of the imaginary is introduced by Husserl in these terms:

Mathematics is thus, according to its highest-level conception, a theory of theories, the

most general science of possible deductive systems in general. This generalization, through

which the sphere of the old objects of mathematical investigation – the cardinal numbers,

ordinal numbers, the scalar and vectorial magnitudes and the like – is entirely transgressed,

is the source of unsolved methodological problems.43

The project of elaborating the structure of a formal mathematics (formal arith-
metic or general or universal arithmetic) that would be a general theory of deduc-

tive systems is connected with reflections on the specific problem of the ‘imaginary

in mathematics’. It has to be kept in mind that Husserl uses the term ‘imaginary

(numbers)’ in a very broad sense, as a collective name that encompasses negative

numbers, rationals, irrationals, complexes, that is all numbers except the whole

positive numbers.44 Husserl observes that the unchecked use of the symbolism in

algebra unleashed from its objective reference – a consequence of what he calls the

“tendency toward formalization” in algebra45 – is at the basis of

39Loc. cit. Cp also Hartimo 2007, 299.
40Cp. FTL 79.
41Published as Hilbert 1905.
42Cp. FTL 80. For a formal characterization of Husserl’s concepts of generalization and speciali-

zation see below }}5 and 10.
43PdA App. 431; PoA 411.
44PdA App. 432–433; PoA 412.
45PdA App. 432; PoA 412. Cp. Webb 1980: “The history of algebra has indeed gravitated to this

formalistic principle. The desire to solve all algebraic equations leads to the notion of an algebraic

closed field constructed by ‘formally adjoining’ new elements to a given field to serve as solutions

to equations which had none over it. If a polynomial P(x) has no roots in a field F, this does not
imply the inconsistency of the claim that ð9XÞðPðXÞ ¼ 0Þgenerally, hence it should be satisfiable

in a suitable extension F’ arising from F by the formal adjunction of new ‘numbers’ to F’ (86).

3.2 The Einleitung 157



forms of operation which were arithmetically meaningless, but which manifested the

remarkable character that they could nevertheless be utilized in calculations. For it turned

out that if the calculation was mechanically executed according to the rules of operation, as

if everything were meaningful, then, at least in a broad range of cases, every result of

calculation free of the imaginaries could be claimed as correct, as one could empirically

establish by means of direct verification.46

Faced with this difficulty, institutional mathematical science reacts by increas-

ingly perfecting the techniques of calculation, without any concern for the difficul-
ties in principle that exist in the application of the symbolism to different concrete
numerical fields. The problem of the imaginary, this is the point on which Husserl

insists, is a problem that concerns the methodology of mathematics, and it is rooted

in the fact that reflection on the symbolic or formal aspect has not been generated

by a genuine theoretical interest, but by a practical interest directed at the develop-

ment of arithmetical algorithms and satisfied by finding new rules of calculation to

solve various concrete mathematical problems.47 Husserl had already made this

point in the Philosophy of Arithmetic, where ‘the general arithmetic of cardinal

numbers (allgemeine Arithmetik der Anzahl)’ was conceived of as a ‘general theory
of operations’, the fundamental task of which was to find the greatest possible

number of procedures to make the methods of calculation increasingly fast and

efficient.

Up to this point Husserl’s argument in the Einleitung of the Doppelvortrag can

be summarized as follows:

(a) In the first form of pure mathematics, algebra, the rules of calculation that are

valid for the arithmetic of finite cardinal numbers are abstracted from the

conceptual field that they are meant to interpret – the numerical field – and

considered independently from the original domain. The arithmetical algorithm

that is now a complex of symbols regulated by formal rules becomes the object

of mathematical research.

(b) Like arithmetic, all concrete theories (of exact sciences such as geometry) can

be transformed into formal axiomatic theories and, once formalized, they can

be expanded in a purely formal way.

(c) “Expanding the rules of calculation that are valid for the theory of finite

cardinal numbers in a purely formal way” means: removing restrictions on

arithmetical operations that are valid for whole positive numbers, and, Husserl

observes, this is done without considering the correlative modification of the
concrete numerical field. This situation is the source of the difficulties that

concern the arithmetical method, the most important of which is related to the

application, in calculations, of ‘meaningless forms’ that nevertheless yield

correct results. From a more general point of view, the problem of the imagi-

nary consists essentially in the lack of understanding of the relations that obtain

46PdA App. 432; PoA 412.
47Cp. Cavaillès 1938: “La fécondité est l’instance devant laquelle tout réfus au nom de l’évidence

s’avère préjugé” (54).
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between general algorithm and real mathematics, between forms of theories
and concrete theories.

Further explanations of (a)–(c) in the Einleitung show how in Husserl’s concep-

tion of axiomatization two ideas co-exist: (1) the objects of a given field of

experience constitute a system of things whose reciprocal relations are regulated

by axioms which constitute the theory of that field of experience, and (2) if the

axiomatization is to be meaningful there has to be a content which the axioms

express. The field of a science, Husserl writes, is delimited by a general concept

(allgemeiner Begriff) and constituted by the objects that fall under it. For instance,

the field of cardinal numbers is determined by the general concept of ‘Anzahl’ and is
constituted by the objects that fall under it, the Anzahlen, understood as the

‘particularizations of the general concept’. The relations and connections that are

possible between these objects flow from the very nature of these objects and find a

formal expression in an axiom-system that constitutes the theory of the field.48 For

this theory, that is on the basis of the specific nature of the objects of the field,
certain ‘compositions’, certain ‘operational complexes’ (‘imaginary forms’) do not

make sense. Nevertheless, when used in calculations, they yield correct results.

Suppose a field of objects given in which, through the peculiar nature of the objects, forms

of combination and relationship are determined that are expressed in a certain axiom-

system A. On the basis of this system, and thus on the basis of the particular nature of the

objects certain forms of combination have no real signification (reale Bedeutung), i.e. they
are absurd forms of combination.49

At this point the fundamental question for Husserl is this: can ‘countersense (das
Widersinnige)’ justifiably be used in the calculus? With what justification can

rational deductive thought, whose scientific expression is a formal-mathematical

science, admit ‘countersense’, and accept the results based on it? If ‘countersense’
has to be admitted in the calculus, then how can that be theoretically justified?

3.3 Universal Arithmetic

Or, il faut élargir le calcul. Puisque les objets ne déterminent pas, dans une intuition
désormais impossible, leur mode d’emploi spécifique, ils ne seront que des supports pour
un certain traitement: la certitude de leur connaissance – et son contenu – ne peuvent
provenir que de l’exact enchaı̂nement des opérations qui leur conviennent. Donc, autant de
calculs que de théories mathématiques et un calcul général qui les subsume tous et qui ne
peut être qu’une théorie formelle des opérations.50

48Cp. Chapter 2, }4 of this work.
49PdA App. 433; PoA 412.
50Cavaillès 1938, 56.
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By ‘universal arithmetic’ Husserl means a system of axioms (generally conceived

of as equations) which govern the behaviour of arithmetical operations and are valid

in all numerical systems (the wholes, the rationals, etc.). Different fields of knowl-

edge, each determined by a given general concept and constituted by different

objects, can be interpreted by the same algorithm, in other words, the objects of
these fields can stand in the same relations and can be axiomatized by the same
theory. The concepts of natural number, whole number, rational number etc.

determine different numerical systems, for the genus of the objects by which they

are constituted changes. The relations among the natural numbers, the “rules of

calculation” for the elementary operations on the naturals, can be expressed in an

‘axiom-system’ that Husserl calls the ‘general arithmetic of the Anzahl’. The
situation is analogous for whole numbers, rational numbers, etc.: each numerical

system will be axiomatized by a different arithmetic.

Numerical systems have the peculiarity that the objects of their fields can be

ordered by a total order relation (obviously, with the exception of that of the

complex numbers), and in all these systems certain operations (þ, –, . . . ) are

given. For Husserl, universal arithmetic is the part that all these theories have in
common. In other words, the different arithmetics are considered as specific

instances of universal arithmetic; the latter represents the general form of all

these theories and stands in a relation of genus to species with respect to them: it

is the system of rules of calculation that is valid in all numerical systems.

Among the rules of calculation Husserl distinguishes

(a) general forms of operations (allgemeine Operationsformen)
(b) specific forms of operations (Operationsformen der Besonderung), that is

operations that are specific for a particular numerical system.

The general forms of operations, in addition to the axioms and the rules they

have to comply with, constitute universal arithmetic, while the specific forms of

operations determine the different arithmetics in their specificity. The passage from

one arithmetic to another, for instance, from that of the natural numbers to that of

whole numbers, consists in expanding the arithmetic of the natural numbers by

determining some of the specific forms that had been left open by the general

axiom-system, that is by universal arithmetic.

The old axioms give a determinate sense to the general operations and to certain special

forms of operation. What is not defined, that is excluded in this narrower field. The new

axioms retain all of these axioms, but give sense to special operational formations which

previously were not defined and were previously left open.51

So the system of natural numbers, the system of whole numbers, etc. are

conceptual fields that are ‘founded’ by different concepts. But, they all fall under

the universal arithmetic, under a common system of rules of calculation. The

specificity of the single arithmetics is given by specific forms of operations, rules

of calculation that are valid only in one or more (but not in all) numerical systems.

51PdA App. 444; PoA 431–432.
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The idea is that specific forms of operations can be admitted in one field without

making sense in another field: in certain fields they may be ‘imaginary forms’.

Let us consider, for example, the axiom-system of the whole numbers, positive and

negative. Then x2 = –a, x = � �–a certainly has a sense. For square is defined, and –a,

and = also. But “in the field” there exists no �–a. The equation is false in the field, since

such an equation cannot hold at all in the field. Therefore I cannot pose the problem: “A

certain magnitude [x satisfies] x2 ¼ a. Which magnitude is that?”52

As we shall see in the course of our analysis, Husserl’s investigation of the

conditions under which the gradual extension of the system of natural numbers is

possible can clearly be regarded as an application of what Hilbert in his paper Über
den Zahlbegriff calls the ‘genetic method’,53 and of the strategy at the basis of

Dedekind’s gradual extension of the number-concept by reduction of the new

numbers (negative, rational, irrational and complex numbers) to the naturals. (As

we shall soon see, there is however a conceptual divergence between Husserl and

Dedekind as to what is to be expanded.) Hilbert’s argument in the paper mentioned

above exactly models the idea of a stepwise expansion of the consistent multiplicity

of natural numbers that Husserl tries to realize with his account of the relation

between universal arithmetic and specific arithmetics. Hilbert says:

Let us first pay attention to the way in which the concept of a number is introduced. Starting

from the concept of the number 1, one normally thinks of the other positive integers 2, 3, 4,

. . . as arising from the procedure of counting and of their rules of calculation as developed

in this process; then one arrives at the negative numbers by requiring the general execut-

ability of subtraction; then the rationals are defined e.g. as pairs of numbers, and thus every

linear function has a zero; finally one defines the reals as sections or fundamental succes-

sions and consequently, one obtains the result that each whole indefinite rational function

has a zero and that the same holds for each indefinite continual function. We can call this

method of introduction of the concept of a number genetical method because the most

general concept of real number is obtained by way of successive expansions of the concept

of natural number. 54

3.4 Theories of the Imaginary

To sustain his conception of universal arithmetic, Husserl presents and criticizes five

different “theories of the imaginary.” Regarding the first two, we will restrict our

discussion to the few hints that he provides about them.With respect to the third and

the fourth theory, the most significant aspect that emerges from his criticism consists

in the elaboration of the conception of universal arithmetic that we have just out-

lined. But the fifth theory, because of the extreme interest of the logical reflections

52Sch&Sch 111–112; PoA 438–439.
53Hilbert 1900a, 180–181.
54Loc. cit.
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that emerge from its exposition and refutation,55 deserves a separate and detailed

analysis.

The first two theories are those of Bain and Baumann, resp. of Boole. The first
states that “the imaginary is vindicated empirically, through induction”, the second
that “the imaginary is directly evident a priori”.56 For Husserl, the unfeasibility of

these theories is so obvious that they are presented without discussion.

In his sketch of the third theory Husserl clearly uses Dedekind’s essay Stetigkeit
und irrationale Zahlen57 as his point of reference. In this essay Dedekind shows that
the “reduction” of the reals to the rationals through the creation of an arithmetized
model of the geometrical line is possible. His argument runs as follows: Because

numbers are constructed by a free creative procedure, we can progressively expand
the originally defined numerical system, that of natural numbers, in such a way that

all inverse operations become effectively executable. This expansion must be

effected by definitions: new numbers are introduced by definitions, insuring that

the rules of calculation for these new numbers wherever possible follow those that

are valid for the numbers of the system with which we started and do not give rise to

contradictions in the whole system.

The idea of a series of successive expansions of the concept of natural number,

that is the creation of negative numbers, of rationals, of irrationals, and, finally, of

complex numbers by reducing the laws of calculation that are valid for these numbers

to those that are valid for the natural numbers is unfeasible by Husserl’s lights – at

least in the way in which it is proposed byDedekind. Husserl’s critique is not focused

on a logical difficulty in Dedekind’s theory (as it will be in the case of the “theory of

permanence”), but rather on a more philosophical problem: the formal procedures by

which the expansion of the natural numerical field is obtained are correct, but

Dedekind’s conceptual presuppositions concerning the foundation of that expansion
are not acceptable. The core of Husserl’s argument is that one cannot expand the
concept of natural number (Anzahl). A natural number, by definition, serves as an

answer to a ‘how many’ question. Something that is not a cardinal number cannot

serve as an answer to such a question. Hence it cannot properly be called a number.

The field of natural numbers is univocally determined by a general concept and by the

possible operations within that field, which are also based on that general concept.

I cannot, without absurdity, arbitrarily expand the sphere of the concept of Anzahl on
the basis of creative definitions, for this very concept imposes limits on me. . .Once a word –
e.g., the word “Anzahl” – is confined to a given field of objects, one that clearly presents

itself as possible, then I cannot decree by some sort of arbitrary stipulation that the field is

to admit an expansion by means of new objects. It would be as if in geometry one would

decree: There are round squares, if not in the plane, then in a higher dimension of space.58

55At this point Hartimo 2007, 300 f. commits a serious mistake. Husserl does clearly not adopt the
fifth theory as she wrongly suggests.
56PdA App. 434; PoA 413.
57Dedekind 1872.
58PdA App. 435; PoA 414–415.
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Hence, for Husserl, it is not possible to enlarge the system of natural numbers by

new objects (e.g., whole negative numbers). What we can do, and this is the crucial

point of Husserl’s critique, is to assume (with reference to the example of the

negatives) a new, purely formal concept, that of whole number. This concept does

not answer the question ‘how many?’, and it is introduced by a definition in a purely

formal way, via “the formal system of the definitions and operations valid for the

Anzahlen”. In other words, we use the same formal system to interpret a different

conceptual field, one that is determined by the concept ‘whole number’. Only in

relation to this new field can the system of definitions and operations be expanded

by new definitions for the specific forms of operations that are valid, in our

example, for the whole negative numbers. The new system of operations obtained

in this way partially coincides with the original system (in the sense that we find in

it a subsystem that “behaves like” the natural numbers), and at the same time it is

broader, as it “contains more basic elements and more axioms.”

On the same basis Husserl also rejects a fourth theory that is meant to cover all

positions that deduce the legitimacy of imaginary magnitudes from the real exis-

tence of different kinds of magnitudes: distances, temporal magnitudes, etc.59 So

the factual existence of different magnitudes is supposed to be the origin of

different numerical concepts. For Husserl, however, empirical proofs are not

sustainable in theoretical contexts. Furthermore, such a conception is founded on

an insufficient analysis of the relation between the different ‘kinds of number

(Zahlarten)’ and the related arithmetics.

So far Husserl’s result is this: different numerical concepts ‘ground’ different

arithmetics, and these “do not have parts in common; rather, they have wholly

different spheres, but an analogous structure; they have partially the same forms of
operations, although different concepts of operation.”60

The fifth theory refuted by Husserl is the “principle of the permanence of the

formal laws” of Hermann Hankel which essentially consists in the following

requirement: when in mathematics we want to expand a concept beyond its original

definition (in particular, the concept of number), we must proceed in such a way as

to preserve, as far as possible, the “old” rules of calculation.61 In this context

59Cp. Dedekind’s analogous expulsion of the notions or intuitions of space and time (Dedekind

1888, III) and of measurable quantities (1872, 9–10) from arithmetic.
60PdA App. 438; PoA 416 (my emphasis).
61The main contributions of the mathematician (and historian of mathematics) Hermann Hankel

(1839–1873) concern the theory of functions and of complex and hypercomplex numbers. The

‘principle of permanence of formal laws’ is formulated in his Theorie der complexen Zahlensys-
teme Hankel 1867, where the system of complex numbers, that of Hamiltons quaternions, and

additionally some of H. Grassmann’s algebraic systems are presented in great detail. The ‘princi-

ple’ is a revision and a precisification of the ‘principle of permanence of equivalent forms’

introduced by the algebraist G. Peacock (1791–1858) to warrant the meaningfulness of the passage

from arithmetical algebra to symbolical algebra. Essentially, this principle consisted in the

requirement that the laws of arithmetical algebra should also be laws of symbolical algebra: if

the general rules for arithmetical operations are adapted to the corresponding operations of

symbolical algebra, then we will have absolute identity of results for the common part of the
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Husserl discusses the concept of a ‘definite (definit)’ axiom-system, and he makes

essential use of it when it comes to solving the problem of a theoretical justification

of the use of the imaginary in mathematics. To obtain what he calls ‘a passage

through the imaginary (ein Durchgang durch das Imaginäre)’, Husserl accepts
some of the results that the theory of permanence arrives at, although he does not

regard them as valid in general but only for definite axiom-systems.

In a passage of Formal and Transcendental Logic Husserl explicitly refers to

these pages of the Doppelvortrag, and he gives a very clear and precise summary of

the problem as well as of the particular solution that he advanced there:

The concept of the definite manifold served me originally for a different purpose, namely to

clarify the logical sense of the computational transition through the “imaginary” and, in

connection with that, to bring out the sound core of Hermann Hankel’s renowned, but

logically unsubstantiated and unclear, “principle of the permanence of the formal laws.”

My questions were: Under what conditions can one operate freely, in a formally defined

deductive system (a formally defined “manifold”), with concepts that are imaginary –

according to the definition of the system? When can one be sure that deductions that

involve such an operation, but yield propositions free from the imaginary, are indeed

“correct”- that is to say, correct consequences of the defining forms of axioms? How far

it is possible to “extend” a “manifold”, a well-defined deductive system, into a new one that

contains the old one as a “part”? The answer is as follows: If the systems are “definite”, then

calculating with imaginary concepts can never lead to contradictions.62

The argument that Husserl develops in the Doppelvortrag begins with an

abstract reconstruction of Hankel’s theory of permanence and its logical grounds.

LetG be a certain given concrete field, for example, that of the natural numbers. Let

AG be the set of axioms relative to G, that is the formal field obtained by formaliza-

tion from G. Finally, let FG be the set of propositions logically derived from (i.e. the

set of the logical consequences, Folgen, of) AG.

Given this formalization, to each proposition determined by the axioms (Grundsätze) of the
real field [G] there corresponds a proposition in the formal field, and conversely. The formal

field will have the same limitations (Schranken) as the real one, limitations that are already

fixed (präformiert) in the axioms.63

Because Husserl is thinking of theories of an algebraic kind, that is, theories

essentially characterized by equations, by ‘restrictions’ of the formal field we must

understand restrictions imposed by the axioms AG to the field of definition, that is to

the executability of certain operations. (If G is the field of natural numbers, for

example, then subtraction is not total, it is defined only under certain conditions

imposed on the minuend and subtrahend.)

disciplines; in other words, symbolical algebra will be a “conservative” (and hence consistent)

expansion. It is exactly the question of conservativity that Husserl will address, as we will see. For
a detailed account of Hankel’s principle of permanence see Hartimo 2007, 285 ff.
62FTL, 85.
63PdA App. 439; PoA 418–419.

164 3 The Imaginary in Mathematics



In Husserl’s reconstruction, the theory of permanence considers at this point an

expansion of AG, let us say AG, with AG ¼ AG þ A0. Consequently it holds that

AG � AG and FG ¼ FðAG þ A0Þ:

The new axioms A0 are such that they exempt the operations from certain

restrictions (in the sense explained above). For Husserl this is equivalent to admit-

ting ‘imaginary entities’. If, for instance, in the new axioms A0 we impose the

condition that subtraction is to be definite everywhere, the imaginary entities that

we admit are the negative numbers. “Now let us conceive the formal field as

expanded in such a way that, as far as is in general possible, it no longer has

these limitations.”64

The theory of permanence at this point states that if the expansion (AG) is

consistent then it is also, as one would put it nowadays, conservative over AG. In

Husserl’s own words:

We rise, according to the principle of permanence, above the particular field,65 pass over

into the sphere of the formal, and there we can freely operate with�1. Now the algorithm of

the formal operation is indeed broader than the algorithm of the narrower operations. . . But
if the formal arithmetic is internally consistent, then the broader operation can exhibit no

contradiction with the narrower one. Therefore what I have formally deduced in such a way
that it contains only signs of the narrower field must also be true of the narrower field.66

For Husserl this implication is not obvious at all. More generally, the entire

argument hides two distinct problems:

(1) Under what conditions is AG, the expansion of AG, consistent?
(2) Under what conditions is the theory AG conservative over AG?

“Under what conditions are the propositions (Sätze) that are free of absurdity

(Widersinn) also actually valid?”67 In other words, under which conditions are the

expressions “of the old language” (that of G, as we would say today) which are

provable starting from AG also provable from AG, and, hence, true in the concrete

field G?
Husserl’s fundamental observation is that, although conservativity over a con-

sistent theory implies consistency, the converse does not hold; in particular, the

conclusion that the extended theory is conservative does not follow from the

premise that it is consistent, as the theory of permanence seems to maintain.

Whether conservativity really obtains has to be proved separately for each theory.

It is natural to stipulate that the ‘expanded’ theory (i.e. the one that expands)

AG is consistent: “An obvious presupposition of the expansion is that the new

64PdA App. 439; PoA 419.
65Here Husserl refers to the expansion of the system of real numbers constituted by the system of

complex numbers.
66PdA App. 438; PoA 418 (my emphasis).
67Loc. cit.
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axiom-system be internally consistent. For from what is inconsistent one can obvi-

ously prove everything.”68 Under this hypothesis – Husserl argues impeccably –

given that AG is included in AG it follows, for any formula a in the language of G,
that if a can be proven from AG then surely (because of the consistency of AG) a is
not incompatible with AG; that is the negation of a is not provable from AG. “It

certainly is correct that no derived proposition . . . can contain an inconsistency,

that it can conflict (streiten) neither with the expanded axioms nor with the

original and restricted axioms.”69

Now from the fact that a is not in contradiction with AG (i.e. :a is not provable

from AG) the theory of permanence concludes that AG proves a. In other words,

according to this theory, if a does not contain imaginary (“impossible”) constructs

and follows from AG then – putting it, with Husserl, in semantic terms – it is true of
the concrete field G:

If the new system is consistent (verträglich) and includes the old one in itself, then in the

entire range of deduction no inconsistency can occur. Thus, a proposition which is derived

in such a way that it contains none of the “impossible” forms of operation, cannot possibly

include an inconsistency, and thus it is true.70

However, for Husserl this presupposes a “conceptual jump” that is possible, as

will turn out, only under specific conditions imposed on the initial axiom-system AG.

But how do we know that what is free of contradiction is also true; or, as it must be

expressed here, how do we know of a proposition that exclusively contains concepts which
occur in the narrower field71 and are there defined, and which does not conflict with the
axioms of the narrower field, that such a proposition is valid for the narrower field?72

And again,

Let us consider the following case: The narrower field G has the axioms AG, and the totality

of its purely logical consequences FG; the broader field G, e.g. AG þ A0 ¼ AG or AG � AG,

and thus the consequence (F ¼ Folge)

FG ¼ FG þ FA0 ¼ FðGþA0Þ73

If some proposition or other [sc.: belonging to FG] does not contain the compounds of the

broadened operations, it is surely not obvious that it belongs to the FG.

68PdA App. 439; PoA 419.
69Loc. cit.
70Loc. cit.
71‘Begriff ’ in the original, but this clearly is a mistake.
72Loc. cit. (my emphasis).
73PdA App. 440; PoA 419–420 (our lettering follows the German original). Notice that the

equivalence FG ¼ FG þ FA0 ¼ F(G þ A0) (that is reported exactly like this also in Sch&Sch)

contains an error: in general, it is not true that FG þ FA0 ¼ F(G þ A0).
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In summa, for Husserl the property of consistency of the expanded theory AG

does not imply the conservativity of AG on AG, while the theory of permanence

tacitly and erroneously accepts this implication.

3.5 Passage Through the Imaginary

In the text Der Durchgang durch das Imaginäre, presented as the last part of the

Doppelvortrag at Göttingen in the critical edition of 1971,74 Husserl identifies a

property of axiom-systems that ensures, in the situation mentioned above, the

conservativity of the expansion: this is the property of ‘definiteness’. On the basis

of various definitions that Husserl gives,75 we can identify this property with what is

nowadays called syntactic completeness of a theory: “an axiom-system is relatively

definite if every proposition meaningful according to it is decided under restriction

to its field,”76 that is if every formula (of the language of the theory) is either

provable or refutable in it.77 This identification has to be taken modulo the fact that
Husserl and his contemporaries (in general, mathematicians and logicians up to at

least 1917–1920) move in a higher-order logical environment, that is to say, they

do not work under the now standard restriction to first-order languages and logic.

Although we can find evidence in Husserl’s writings of an algorithmic notion of

derivability of a formula a from given axioms A according to certain pre-specified

formal rules, one cannot seriously maintain that Husserl possessed the now standard

and clear cut distinction between the syntactic notion of derivability from a (finite)

set A of axioms and the semantic notion of truth in every structure in which the

74After much deliberation we have decided not to follow the reconstruction of the text as given in

Sch&Sch where Der Durchgang durch das Imaginäre is preceded by a text titled ‘Transcript from
the Lecture (Abschrift aus dem Vortrag)’, in which Husserl takes up a crucial aspect of Hilbert’s

way of formulating axiomatic conditions for real numbers, known as existential axiomatic. The
text Abschrift aus dem Vortrag, in Sch&Sch, concludes the first Vortrag while Der Durchgang
durch das Imaginäre belongs to the second Vortrag, and is preceded by a long discussion of the

concept of mathematical manifold. While we agree that this structure reflects the order in which

Husserl must have presented his arguments, we consider presenting Der Durchgang durch das
Imaginäre, which contains Husserl’s peculiar solution for the problem posed by the theory of

permanence, more convenient. Once this point has been clarified, we can look for a suitable

mathematical counterpart for Husserl’s concept of mathematical manifold. Finally, Husserl’s use
of existential axiomatics can be studied separately as one of the possible ways in which he thinks

the system of axioms for a definite manifold can be established. (This is the topic of Appendix 6

below.)
75See also Drei Studien zur Definitheit und Erweiterung eines Axiomensystems, in: PdA App.

452–469, PoA 432–438 & 453–464.
76PdA App. 440; PoA 427.
77Cp. Tieszen 2005: “a ‘definite’ formal axiom-system appears to be a consistent and complete

axiom-system, and a definite manifold is the system of formal objects, relations, and so on, to

which a definite axiom-system refers” (4).
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axioms A hold true.78 Indeed, the autonomy of the syntactical moment of the theory

with respect to the semantical one had not been made explicit at that time yet.79

Husserl often uses in his definitions concepts like ‘true’, ‘false’ or ‘logically

entailed by’ which suggest a semantical reading, whereas in the standard definition

of syntactic completeness a strict notion of being syntactically derivable from an

axiom-system is used. Moreover, Husserl also lacks a full awareness of the mor-

phological aspect of the theory, and hence of the notion of formal language of a

theory.80 So, he refers to what is nowadays called a sentence in the language of the

theory as “a proposition that makes sense with respect to the axiom-system ([ein]
für das Axiomensystem sinnhabender Satz)”81 or, he talks, with reference to the

ontological counterpart of an axiom-system, of “a proposition falling within the

domain”.82 As a consequence Husserl often oscillates between a characterization of

definiteness that we would call syntactical and a characterization that we would call
semantical: he seems to regard syntactical talk and semantical talk as coming more

78For an incisive discussion of these issues, as well as for a technically detailed and historically

well documented study of the various notions of completeness which occurred in connection with

the development of the axiomatic method in the late nineteenth and early twentieth century

mathematics, see Awodey and Reck 2002. The authors take into consideration the origins and

the progressive clarification and differentiation of this notion and of the related notion of

‘categoricity’, starting from the early ‘tentative’ characterizations to be found in the works of

Dedekind and Peano as well as in Hilbert’s Grundlagen der Geometrie (1899) and Über den
Zahlbegriff (1900a), and then following its refinements by Huntington and Veblen, up to the

clearer assessment in Fraenkel 1919 and in the sadly neglected Carnap 2000. It is a pity that

Husserl’s notions of ‘definiteness’ are not mentioned at all; though footnote 38 refers to Majer

1997 and Da Silva 2000 “for more historical and philosophical background, in particular involving

Hilbert’s relation to Husserl in this connection”. – For the reasons given above in the text we

cannot agree with the interpretation of Ideas I, }72 in Hartimo 2007, 298.
79As is well known, the clear distinction between syntactical and semantical aspects of a theory as

well as the recognition of distinct logical levels (propositional, first-order, higher-order) as it is

nowadays standard can be traced back to the years 1917–1919 that mark what is generally

recognized as the “third phase” of Hilbert’s foundational research. Hilbert’s foundational program

at that time is expressed in his Zürich talk Axiomatisches Denken (1917, published as Hilbert

1918). Hilbert appears to be strongly influenced by the Principia Mathematica of Russell and

Whithehead published between 1910 and 1913. His foundational claim consists now in requiring

(1) a strengthening of the logic of the Principia by way of formalization and axiomatization, (2) a

reduction of the theory of cardinal numbers, of the reals and of set-theory to this strengthened logic

and (3) a proof of consistency for this comprehensive great logic. By requiring (3) Hilbert

distances himself from the viewpoint of logicism, for the proof of consistency had to be given in

a new mathematical theory (the ‘proof theory’). It is in this context that a metamathematical study

of propositional and predicate logic begins. For example, soundness and completeness for propo-

sitional logic as a separate logical level are proven, and the concept and structure of a formal

language are outlined in a rigorous way (cp. Abrusci 1978, 27–30).
80This does not contradict our claim (in Chapter 2, }}5–6) that Husserl’s logical morphology

foreshadows our concept of formal language, for we did not maintain that Husserl had the notion of

formal language in the way that is today standard.
81Sch&Sch 111; PoA 438.
82PdA App. 441; PoA 428.
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or less to the same thing. Consider the following three characterizations of the

property of definiteness. The first appears to be more on the syntactical side:

An axiom-system that delimits a field is said to be “definite” if every proposition intelligible

on the basis of the axiom-system, understood as a proposition of the field, . . . either . . .
follows from the axioms or contradicts them.83

The other two seem to be rather on the semantical side:

Equivalent to this is the following statement: An axiom-system with a field is definite if it

leaves no question related to the domain and meaningful in terms of this system of axioms

open or undecided.84

The field is definite if the truth and falsity of any such sentence is decided for the domain on

the basis of the axioms.85

The question as to the interpretation of the property of definiteness is controver-

sial and, as we shall see, different characterizations have been proposed for it. So let

us try to provide further textual evidence for our interpretation of definiteness as

syntactic completeness and add some clarifications. In the second Vortrag Husserl

gives the following definition of a definite axiom-system:

An irreducible axiom-system . . . is definite . . . when no independent axiom can be added

which is constructed only from the concepts already defined (of course, also, none can be

withdrawn, since otherwise the axiom-system would not be irreducible). 86

By an ‘irreducible axiom-system’ Husserl means an independent one, that is a

system which is such that none of its axioms follows from the remaining ones. As to

the impossibility, on pain of inconsistency, of adding new axioms while preserving

the independence of the system, this is a property which exactly corresponds – as is

easily seen – to the property nowadays known as maximality or (sometimes)

saturatedness of a formal system: informally speaking, a formal system T is

maximal when it proves all that can be proved, on pain of inconsistency; that is,

formally, when for each closed formula a of the language of the theory it holds that

if a is not derivable from T then the system T þ a is inconsistent (i.e., a contradic-

tion is derivable from it). Now such a property of formal systems is well known to

be equivalent in classical logic to syntactic completeness. It is worth noticing that

Husserl seems to be fully aware of this equivalence. The passage quoted above

continues as follows:

But I can also say: I define an axiom-system, which formally defines a field of objects in

such a way that every meaningful question for this field of objects finds its answer by means

of the axiom-system; or that every proposition that is meaningful in virtue of the axioms . . .
either follows from the axioms or contradicts them.87

83PdA App. 457; PoA 438.
84Loc. cit.
85Sch&Sch 112; PoA 439.
86PdA App. 454; PoA 434; Sch&Sch 108.
87Loc. cit. (my emphasis).
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Let us now return to Husserl’s text, using the formal counterpart we chose to

interpret the property of definiteness. If AG is a consistent expansion of AG and the

proposition a, ‘devoid of imaginary’, can be proved from AG then AG does not prove

:a and hence, because of the supposed ‘definiteness’ of AG, AG proves a. Consis-
tent expansions of definite axiom-systems are always conservative expansions.88

Before considering the case more generally, Husserl gives an example. He

considers a ‘restricted arithmetic’, AR (we can think of this as an algebraic theory89

of the elementary operations on natural numbers) and a universal arithmetic AU. All
formulae of AR – Husserl says – can be reduced to equations (even the non-

identities can be aptly reduced to equations “just as when we understand a < b as

the equation b þ u ¼ a”90). But AR decides all equations: “each equation falling

within that arithmetic is either valid on the basis of the axioms, or it is invalid on the

basis of the axioms; that is, either the proposition is a consequence of the axioms or
it contradicts the axioms.”91 Hence AU is a conservative expansion of AR:

Accordingly we will state that for arithmetic the problem resolves itself in this way: Every

proposition falling within the narrower, but deduced on the basis of the broader arithmetic,

is an equation. Now every equation falling within the narrower arithmetic is either true

(richtig) in it or contradictory (widersprechend) in it. An equation deduced within the

broader field cannot be in contradiction with the axioms of the narrower field. Otherwise the

entire broader field would be inconsistent. Therefore it is true.92

Generalizing, Husserl synthesizes the result of his reflections: a ‘passage through

the imaginary’ is possible (1) if the imaginary can be formally defined in a

consistent and comprehensive system of deduction, and (2) if the original field of

deduction, when formalized, has the property that every proposition falling within

that field is decided on the basis of the axioms of the field.93

The property of definiteness that we considered up to now is called by Husserl

‘relative definiteness’. He also considers another kind of definiteness which he

calls ‘absolute’ definiteness or sometimes ‘improper (unechte) completeness in a

Hilbertian sense’. (“Absolutely definite ¼ complete, in Hilbert’s sense.”)94

In essence, an axiom-system is absolutely definite when it contains an axiom of
closure (Schliessungsaxiom) analogous to the axiom of completeness that Hilbert
includes in his (categorical) axiomatic characterization of the system of real

numbers: “it is not possible to add to the system of numbers any collection of

88Ortiz Hill 2002, 89–94 discusses at length this issue though she does not expressly interpret the

property sought by Husserl as conservativity of a theory, nor does she provide a formal equivalent

for the notion of definiteness of a theory.
89On the essentially algebraic-equational nature of the ‘arithmetics’ under consideration, see

below.
90PdA App. 440; PoA 428. But notice that strictly speaking bþu¼a is no longer an equation since

the variable u is (tacitly) existentially quantified.
91PdA App. 441; PoA 428. (my emphasis).
92Loc. cit.
93Loc. cit.
94PdA App. 440; PoA 427.
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things such that, in the reunited collection, the previous axioms are satisfied; that is

. . . the numbers form a system of objects that cannot be expanded in such a way that

the previous axioms remain valid.”95 In Husserl’s general formulation, “by such

and such axioms the field is determined, and no other axioms are valid for it.”96 For

him this is a negative axiom to which no interesting property of the axiom-systems

corresponds at all, because every system can be made complete by adding such an

axiom. “Such ‘completeness’ is, of course, not something peculiarly characteristic

[in the intrinsic sense] of axiom-systems.”97

In the (studies for) the second Vortrag Husserl writes:

Finally, I further distinguish relatively and absolutely definite axioms-systems. An axiom-

system is relatively definite if, for its domain of existence it admits no additional axioms,

but it does admit that for a broader domain the same, and then of course also new, axioms

are valid. New axioms, since the old axioms alone in fact determine only the old domain.98

Here99 Husserl also rephrases this distinction as that between “extra-essentially

complete (ausserwesentlich vollständige)” and “essentially complete (wesentlich
vollständige)” axiom-systems. He explicitly claims to have considered in his

investigations only the first kind of axiom-systems, whereas the concept of abso-

lutely complete axioms system had remained outside of his consideration. He

writes:

From these considerations we easily arrive at axiom-systems that are “complete” in Mr.

Hilbert’s sense. The axiom-systems considered up to now which I called “definite”, I shall

henceforth call “extra-essentially complete,” in contrast to those that are complete in

Hilbert’s sense, which I shall call “essentially complete.” This latter concept remained

hidden to me, since for my purposes everything was accomplished by means of extra-

essential completeness.100

In the “Passage through the Imaginary” Husserl observes that absolute definite-

ness implies, in an obvious way, relative definiteness: “it is certainly true that such

an axiom-system, closed in an exterior and spurious manner, already has the

property which we had in mind: namely, it can be read off101 of each proposition

whether it is or is not a consequence of the axiom-system.”102 He then asks whether

there are axiom-systems that do not contain an axiom of closure and that

95Hilbert 1900a, 183. Cp. Webb 1980, 84.
96PdA App. 442; PoA 429.
97Loc. cit.
98Sch&Sch 102; PoA 426.
99PdA App. 450–457; PoA 432–438; Sch&Sch 107–111.
100PdA App. 455; PoA 436; Sch&Sch 110.
101This ‘can be read off’ adds a connotation of effectiveness, that in itself is not part of the

formulation of the property of syntactical completeness. On the other hand, it is true that if an

elementary theory T is recursively axiomatized (i.e. has a [semi]decidable set of specific axioms)

and syntactically complete, then T is decidable (i.e. there is an effective method that allows to

establish, for any given closed formula of its language, whether or not it is provable in T).
102PdA App. 442; PoA 429–430.
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nevertheless, on the basis of their particular nature, are capable of deciding every

formula, in other words, whether there are axiom-systems that are relatively but not
absolutely definite. His answer, already partially anticipated in the concrete exam-

ple of ‘definite’ system, is affirmative: not only the arithmetics of the natural

numbers, but all arithmetics (of the integers, etc.; also that of the reals) are

examples of such systems. The reasons Husserl advances for this statement are,

essentially, three.

(i) The question of the formal decidability of generic ‘algebraic’ formulae can be

reduced to that of the formal decidability of equations.
(ii) An equation has the form ‘t ¼ s’, where ‘t’ and ‘s’ are ‘operative constructs’

(i.e. terms) that can be formally ‘calculated’ on the basis of the axioms of the

theory, which constitute the ‘rules of calculation’. Comparing the ‘normal

forms’ of ‘t’ and of ‘s’ allows us to decide the equation formally: if they are

identical, the equation follows from the axioms, if not, the equation is in

contradiction with them and hence its negation follows from the axioms.

For a numerical equation to obtain (bestehen) means, of course, that given the execution of

operations in the sense of the axioms the identity a ¼ a is produced. Every numerical

equation is true if it can be transformed into an identity, and otherwise false. Every

algebraic formula is, then, also decided, for it is decided for each numerical case.103

Let us digress here for a moment. Speaking of syntactically complete (‘definite’)

arithmetical theories after Gödel’s limitative results might sound puzzling. Actu-

ally, to try to make sense (as far as possible) of what Husserl is saying, one has to

keep in mind that – as is evident from the above quotation – in this context by
‘theory’ of a certain numerical domain he means something like an algebraic kind
of theory, a ‘theory of operations’, in which statements are (or can be reduced to)

equalities and possibly inequalities between terms. In this sense of ‘theory’ it is in

fact possible to design interesting syntactically complete arithmetical theories – at

least in some specific cases, if not in general. It is worth briefly mentioning here

what is perhaps the most famous example, the first-order theory RCF of real closed
fields (also called elementary algebra), whose privileged model (but by no means

the only one) is the field of the real numbers. The language of RCF contains the

identity predicate ¼, a binary predicate � for the order relation, the binary

function letters þ and � (for addition and multiplication) and the individual con-

stants 0 and 1. Its specific axioms feature the usual finitely many axioms for ordered

fields, plus one axiom saying that every positive element has a square root, and

(infinitely many) axioms saying that every polynomial of odd degree has a root.

Now, as proved by A. Tarski,104 RCF admits elimination of quantifiers, that is: to

every (open) formula A in the language of RCF a quantifier-free formula A0 can be

effectively associated, such that A and A0 are equivalent in RCF (thus, basically,

103PdA App. 443; PoA 430.
104The relevant part of the work had already been completed by Tarski around 1930; yet the result

appeared in print only many years later, first as a technical report (1948) and finally in Tarski 1951.

172 3 The Imaginary in Mathematics



Husserl’s above claim (i) is met). As a consequence, the theory RCF is syntactically

complete and, in turn, decidable. Any sentence in the first-order language of RCF is

true in an arbitrary model of RCF if and only if it is true in the reals.105

Let us now come back to Husserl’s arguments in support of his claim that all

arithmetics are examples of relative or extra-essentially complete axiom-systems.

(iii) If we consider the matter from the point of view of the structures underlying

the theories, the justification of the fact that the arithmetics are definite

theories is articulated as follows: to each arithmetic corresponds a well-

determined structure of the field of objects (manifold) axiomatized by it; that

is to each arithmetic corresponds a different numerical system, and numerical

systems are considered as inductively generated manifolds,106 that is, struc-

tures such that (1) a number of initial elements is specified, which belong to the

domain without any further condition, (2) certain procedures are specified to

generate new elements from given ones, (3) the domain so identified is the

smallest among all those that satisfy the two first conditions.

Every arithmetic, regardless of how it is restricted – whether it has reference to the whole

positive numbers, or to the whole real numbers, or to the positive rational numbers, or to the

rational numbers in general, etc. – every arithmetic is defined by an axiom-system such that,

on its basis, we can prove: every proposition in general that is constructed exclusively of

concepts which are established as valid by the axioms (or are axiomatically admitted),

every such proposition falls in the field, i.e. it is either a consequence of the axioms or

contradicts them. The proof of this assertion lies in the fact that every defined operational

formation is a natural number and that each natural number stands to every natural number

in a relation of order determinable on the basis of the axioms.107

When a formal system is such that “it can be shown on the basis of the axioms

that every object of the field reduces to the group of the numerical objects,” then –

Husserl states – such a system is definite. And he adds: “whenever, for example,

each defined proposition is reducible to an equation or to the >/< between numeri-

cal objects, the axiom-system is definite.”108 So definiteness is for Husserl an

internal property (innere Eigenschaft) of an axiom-system, intrinsically connected

with the kind of structure determined by the axiom-system. If the domain of the

latter is inductively generated starting from a finite number of initial objects by

means of pre-specified generation procedures, an axiom-system for such a structure

is definite.

105It may be helpful to observe that, as far as the ‘ontological counterpart’ of RCF is considered,

there are some drawbacks which Husserl would not have liked, as we shall see in Section 7 below.

Indeed, while it is obviously true that the privileged model of RCF (the ordered field of reals)

contains the standard structure of natural numbers as an ‘embedded image’ (that is, as a substruc-

ture), it is known that such an image cannot be defined within RCF: the set of standard natural

numbers (and the successor function as well) cannot be formally defined within RCF.
106The construction of the number system in the Philosophy of Arithmetic can serve as a model.

Cp. Chapter 1 }11 ff.
107PdA App. 442–443; PoA 430.
108PdA App. 443; PoA 431.
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Still more explicitly, this position is restated in Husserl’s notes on a paper

presented by Hilbert on November 5, 1901.109 As Majer correctly observes,110

the notes begin as a reproduction from memory of Hilbert’s paper, but very soon

Husserl breaks off and reports an objection Hilbert made to him during the

discussion following his talk. This objection has not been noticed, Majer remarks,

because, being among the notes taken of Hilbert’s paper, it had been considered as

part of them.

Husserl writes: “Hilbert’s objection: — Am I justified in saying that every

proposition containing only the whole positive numbers is true or false on the

basis of the axioms for whole positive numbers?”111 On our interpretation this

means: “Am I justified in saying that the theory of natural numbers, and therefore

all arithmetics, are definite, that is syntactically complete?” This question is taken

up again, and answered, on the next page:

How do I know that? Every direct operational combination (Operationsverbindung),
however often it may contain each operation, is equal to a number. . . Therefore every

proposition which asserts two algebraically general, closed expressions to be equal – and

likewise every mixed equation built up from algebraic and number signs – will of course

have to be necessarily true or false on the basis of the axioms. For: whichever group of

numbers I may substitute for the a, b, c,. . . p in a formula, there is always one determinate

number for each side of the equation. And, indeed, on the basis of the axioms. If it is

satisfied for all possible combinations of numbers, then the formula is valid. If not, it is not

. . . It suffices that I can demonstrate from the axioms that every expression is a number, and

consequently it is self-evident that two expressions either always represent the same

number or different numbers.112

We take this to mean that the arithmetics are syntactically complete because

every expression a can be reduced to an equation and the axioms of the theory

“calculate” all equations.

In the studies for the second Vortrag Husserl explicitly ascribes relative defi-

niteness to all arithmetics – with the exception of the arithmetic of the reals, for the

latter system is intended to be categorical. This claim might seem to clash with what

we said above, but in fact there is no conflict. Husserl is not thinking here of an

algebraic theory of the basic operations on the reals; he is thinking of a full fledged
theory – like the one put forward by Hilbert – capable of characterizing up to

isomorphism the continuous, uncountable structure of the reals.

Relatively definite is the sphere of the whole and the fractional numbers, of the rational
numbers, likewise of the discrete sequence of ordered pairs of numbers (complex numbers).
I call a manifold absolutely definite if there is no other manifold which has the same axioms

109“Notes on a lecture by Hilbert (Notizen über einen Vortrag von Hilbert)” (PdA App. 444–447;

PoA 464–468).
110Majer 1997, 39. For a contrasting interpretation of the very same point see Sch&Sch 89.
111PdA 445; PoA 465. Cp. Webb 1980, 84–85.
112PdA App. 446; PoA 466–467.
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(all together) as it has. Continuous number sequence, continuous sequence of ordered pairs

of numbers.113

The essentially complete axiom-systems . . . form . . . the outermost sphere within which the

expansion of extra-essential axioms can move, by leaving the original axioms system

unaltered.114

These two quotations provide further evidence for our thesis that, on the one

hand, Husserl’s approach to the number concept is of a “genetic” kind, for he thinks

to obtain the consistent multiplicities of the various number systems by means of

successive expansions starting from the arithmetic of natural numbers115 and that,

on the other hand, Husserl’s Doppelvortrag represents – as it were – his contribu-

tion to Hilbert’s methodological issue at that time, that is the axiomatic foundation

of the system of the reals. Husserl does not try to prove directly the consistency of

arithmetic of the reals but to prove that the stepwise expansion of the consistent

arithmetic of natural numbers remains in each step conservative upon the old

domain. The set of calculation rules for natural numbers can be expanded so as to

interpret a broader domain, for example that of the wholes: one joins new elements

and axioms for the new elements. We obtain a conservative expansion, conserva-

tivity being implied by definiteness, a property that, according to Husserl, pertains

to each arithmetic. Husserl’s idea is that the theory we begin with should be

expanded until it contains all numerical systems. Both universal arithmetic and

each of the specific arithmetics, with the exception of the full arithmetic of the reals,

are extra-essentially complete axioms systems, they leave open the possibility to be

further specified. For instance, the domain of the arithmetic of the wholes is

completely determined by the rules for the operation for these numbers. To the

domain delimited by the axioms for the wholes no new axiom can be joined.

A “definite” axiom-system leaves for its operational substrate absolutely nothing open with

respect to the operations defined. If it were to leave anything open, there would in fact be

relations which are not true or false on the basis of the axioms. And yet something remains
open. Namely, a restricted arithmetic. And a domain of deduction is restricted in an
analogous sense, if not all operational constructs that remain free on the basis of the

general laws of operations are defined, and then of course the specific laws of operation

[relative to these constructs] are not introduced either.116

Once determined the operational forms that have been left open by a particular

specific arithmetic only two cases are possible:

(i) “Either we have set up a series of axioms [Festsetzungen] in such a way that

possible operational constructs are still left open and yet, so far as we have

113Sch&Sch 102; PoA 436–437.
114PdA App. 455; PoA 435; Sch&Sch 109.
115Cp. Cavaillès 1938: “Ainsi procédait-on dans l’école de Weierstass, ainsi Kronecker reconsti-

tuait-il toute l’analyse à partir du nombre entier ‘seul créé par le bon Dieu’” (84).
116PdA App. 456; PoA 436–437.
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defined it, the axiom-system is definite.”117 Intuitively, it is possible to add

further formal axioms, but not with respect to the already determined operations

(ii) “Or else there remain open no further operational results (Operationsergeb-
nisse) whatsoever – nota bene, none that are possible compatibly with the

general basic laws and the specific laws already defined”,118 that is it is not

possible to expand the formal system any further.

In the first case the axiom-system is extra-essentially complete, in the second

case it is essentially complete.

3.6 On Different Interpretations of Husserl’s Notion

of Definiteness

A number of different interpretations of Husserl’s notion of Definitheit has been
proposed in the literature. Let us consider some of the most significant ones and

outline our motives not to share them. This will throw some further light on

Husserl’s desiderata, or so we hope.

3.6.1 Husserl’s Two Notions of Definiteness

In his 2000 da Silva interprets ‘absolute definiteness’ of a theory as syntactic

completeness tout court, and ‘relative definiteness’ of a theory as syntactic com-

pleteness restricted to a specified set of formulae, where a theory T is ‘relatively

definite’ with respect to a set S of formulae if and only if for every a 2 S it is the

case that either T proves a or T proves :a. The author’s distinction is intended to

apply to a given formal theory T, over a certain language L, which is not categorical

(hence does not have only one model, up to isomorphism) but which possesses a

privileged model D (called the ‘formal domain’ of T). Then, such a D determines a

sublanguage LD of L, which is obtained by restricting quantification to the objects

of the formal domain D, and this LD determines in turn the specified set of formulae
to which syntactic completeness has to be restricted. A serious objection to this

interpretation of the notion of relative definiteness (which the author himself seems

to consider, although he decides not to discuss it, for the sake of simplicity of

exposition) concerns the question how LD can be precisely determined as a
sublanguage of L. One might think of a monadic formula d(x) of L defining the

objects of D, so that LD-formulae would in this case be just those formulae of L in

which quantification is restricted to d(x) (i.e. all quantifier occurrences are of the

117PdA App. 454; PoA 436–437.
118Loc. cit.
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form: ‘8xðdðxÞ ! � � �Þ and ‘9xðdðxÞ ^ � � �Þ’. The problem is that such a L-formula

d(x), in most cases, does not exist (for instance, if T is first-order Peano arithmetic

PA and D is the standard model of PA, it is known that no L(PA)-formula d(x)
exists which defines the set N of standard natural numbers in every model of PA).

Da Silva also criticizes the interpretation of ‘relative definiteness’ as syntactic

completeness tout court, arguing as follows: suppose that T is syntactically com-

plete, and that T does not prove “there are imaginaries.” Then, by syntactic

completeness, T must prove that “there are no imaginaries,” and so no extension

T’ of T can exist which proves “there are imaginaries,” thus trivializing the whole

problem under discussion. But, again, we can object to this argument as above, by

observing that nothing ensures us that the sentence “there are imaginaries” is

expressible in the language of T.

3.6.2 Husserl’s Definitheit and Hilbert’s Vollständigkeit

In Ideas }72 Husserl mentions the “close relationship of the concept of definiteness

to the ‘axiom of completeness’ introduced by Hilbert for the foundation of arithme-

tic.”119 In Formal and Transcendental Logic he says “even if the innermost motives

that guided him [Hilbert] mathematically, were inexplicit, they tended essentially in

the same direction as those that determined the concept of the definite manifold.”120

In her contribution to the topic we are discussing121 C. Ortiz Hill quotes these

remarks and goes on to identify these two concepts tout court. She focuses rather on
the problem of the epistemological and philosophical positions that are assumed by

the two authors. She writes in a note: “First of all, for complete and completeness

Husserl uses the German words “definit” and “Definitheit” in the place of Hilbert’s

‘vollständig” and “Vollständigkeit’. Since in the passages cited above Husserl

maintains that his concept of Definitheit is exactly the same of Hilbert’s Vollstän-
digkeit, I have tried to avoid the terminological confusion by translating Husserl’s

terms with the more familiar ‘complete’ and ‘completeness,’ although Husserl

translators have understandably chosen ‘definite’ and ‘definiteness’.”122

This terminological assimilation hides the significant conceptual differences

between Husserl’s concept of “definiteness of a theory” and Hilbert’s concept of

“completeness,” introduced in Über den Zahlbegriff as “completeness of the system

of axioms for real numbers.” The system of axioms for real numbers is categorical;

all its models are mutually isomorphic. In the discussion above we have tried to

give textual evidence for the claim that, according to Husserl, the property of

categoricity belongs rather to those formal systems that are absolutely definite:

Husserl’s “relative definiteness” (the syntactical completeness of a theory T, on our

119Ideas 164, 17.
120FTL 85.
121Ortiz Hill 1995. In: Hintikka 1995.
122Ortiz Hill 1995. In: Hintikka 1995, 161, note 2.
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interpretation) is not meant to imply (and in fact it does not imply) that T is also

“categorical,” while it can be demonstrated that the models of a syntactically
complete theory are all structurally very similar, and the problem arises as to how

to interpret this structural similarity.123

Moreover, it is questionable to maintain that in the Doppelvortrag “Husserl

searched for answers regarding the consistency of arithmetic”.124 Hilbert proposed

the requirement of a proof of consistency for arithmetic in what is known as the

“first phase” of his foundational investigations (1898–1901), explicitly in his address

to the second International Congress of Mathematicians in Paris in 1900, titled

Mathematische Probleme. “But above all I wish to designate the following as the

most important among the numerous questions which can be asked with regard to the

axioms: To prove that they are not contradictory, that is, that a definite number of
logical steps based upon them can never lead to contradictory results.”125 However,
we have tried in our discussion above to provide evidence for the thesis that Husserl is

inclined to take the consistency of the axioms of arithmetic for granted. The thesis

that Husserl proposes in the Doppelvortrag is a conditional claim: “if T is consistent

and syntactically complete (definite) then every consistent extension of T is conser-

vative, so that the transition through the imaginary is justified.”

Regarding the proximity of Husserl’s notion of “passage through the imaginary”

to Hilbert’s “ideal elements,” it must be said that Hilbert starts talking about “ideal

elements” in what is known as the “fourth phase” of the foundational research

(1920–1924) in which “Hilbert’s Program” takes on its proper shape. In a paper

presented in Leipzig in 1922 entitled Die logischen Grundlagen der Mathematik
(Hilbert 1923), Hilbert points to finitary mathematics as that part of mathematics

that “has a concrete content”, that is that operates concretely with symbols and does

not use the procedures and principles criticized by predicativists and intuitionists. It

is in this context that he starts talking about “finitary logic” (the logic of finitary

procedures) and of “ideal elements.” In 1925 in Münster Hilbert presents his paper

Über das Unendliche (Hilbert 1926), where he explicitly speaks of ideal elements.

Here finitary mathematics is said to be that part of mathematics that can be

rightfully considered as “secure.” It does not need a justification, but must itself

serve as justification for infinitary mathematics, which is that part of mathematics

that deals with actual infinity, lacks a concrete content and is moreover a possible

source of contradictions. Infinitary instruments are acknowledged as “useful”: they

are used to prove real expressions. However, they must be justified, that is we must

demonstrate that their use does not lead to a contradiction. In the same way, we

must demonstrate that ideal mathematics is conservative with respect to real
mathematics. – Now, without wanting to detract anything from the hypothesis

123See below }}6–8. For the reasons given above in the text we cannot agree with Hartimo’s

understanding of the property of relative definiteness of an axiom-system in the Doppelvorstrag as
its categoricity, cp. Hartimo 2007.
124Ortiz Hill 2005. In: Hintikka 1995, 145.
125Hilbert 1900b.
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that “Hilbert’s deep underlying reasons for formulating his axiom of completeness

were basically the same as those which had led Husserl to formulate his own

concept of completeness”,126 given the difference in dating (the Doppelvortrag
was written 25 years before Hilbert started talking about “ideal elements”), we

think it more likely that the source of Husserl’s idea is rather the methodological

hypothesis (which surfaced repeatedly during mathematical investigations in the

nineteenth century) that analysis should be conservative with respect to number

theory, that is that the numerical expressions that are provable in analysis would in

any case already be provable without using the transfinite.

3.6.3 Did the Doppelvortrag Ever Confront the Problem
of Semantic Completeness?

In his 1997 Majer maintains that in the Doppelvortrag Husserl discusses the

following question: “Under what conditions does the truth of a theory follow from

its consistency?” The problem is relevant and hence worth to be considered. Majer’s

contention can be recast as follows: Husserl was puzzled about Hilbert’s idea that

the syntactic consistency of an axiom-system is sufficient to guarantee the existence

of a system of entities formally characterized by those axioms. It seems that Majer

first endorses the following rather strong claim: it can be conjectured that Husserl

foresees the necessity to prove – as one would say in present-day terminology – the

correspondence between the consistency of a theory and the existence of a model for

that theory; in short, the necessity to prove a theorem of semantic completeness, at

least for theories that axiomatize numerical systems. Majer writes: “If it could be

proved that the truth of a theory follows from its consistency the search for an

indubitable foundation of mathematics would be a tremendous step forward . . . But,
as you know, these things are not so easy. And Husserl was quite aware of this. . .”127

Majer then endorses a weakening of the above claim, namely, that Husserl criticizes
Hilbert for omitting to make the notion of truth relative to ‘truth in a structure’.
Majer seems to find evidence for this claim in the observations Husserl had added to

an exchange of letters between Hilbert and Frege128 about Hilbert’sGrundlagen der
Geometrie. Of special interest for us are Frege’s letter from December 27, 1899 and

Hilbert’s answer from December 29. Frege says:

Axioms I call propositions that are true but are not proved. . . From the truth of the axioms it

follows that they do not contradict each other; so this does not require any further proof.

126Ortiz Hill c, Husserl and Hilbert on completeness. In: Hintikka J 1995, 144.
127Majer 1997, 38.
128This exchange is contained in Frege 1976, 55–80; Husserl’s annotations are published PdA
App. 476–451; PoA 464–673. For a critical assessment of the Frege-Hilbert debate on this point

see Blanchette 1996.
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Definitions, too, must not contradict each other. If they do they are mistaken. The principles

of defining have to be such that if we follow them no contradiction can arise.129

Husserl comments:

Frege does not understand the sense of Hilbert’s ‘axiomatic’ foundation of geometry.

Namely, that this is a purely formal system of conventions which coincides, as to the

form of the theory, with the Euclidean.

He then presents excerpts from Hilbert’s answer130 and writes:

The proposition “from the truth of the axioms follows that they do not contradict each

other” interested Hilbert a lot, because when he thinks, writes and talks about such things he

says exactly the opposite: “If the axioms that are arbitrarily fixed do not contradict each

other . . . then they are true, then the things defined by the axioms exist. For me this is the

criterion of truth and of existence. . .” In this sense we speak of “the existence of real

numbers,” of the “non-existence” of the system of all cardinals (Mächtigkeiten).

Majer seems to read Hilbert and Husserl in the following way: while Hilbert took

the consistency of the axioms to be a sufficient condition for there being a structure

that verifies those conditions, Husserl, on the contrary, thought that if we formalize

a concrete theory and then expand it formally in a consistent way, then one should

prove that to the expanded consistent theory there still corresponds a system of

entities, for this does not immediately follow from the consistency of the axioms.

However, if some further constraints could be imposed on the theory, for example

definiteness – and all arithmetics are for internal reasons definite – then one can take

semantic completeness for granted as Hilbert does.

As opposed to this interpretation we tried to provide evidence for the following

thesis: in the Doppelvortrag Husserl reaches a position that is very close to Hilbert’s.
He also assumes that the mathematical existence of a system of entities is guaranteed
by the consistency of the theory that implicitly defines that system. More generally,

Husserl at this point does not have a clear vision of semantic completeness as a

problem, but rather tends to take it for granted tout court. In the (preparatory studies
for) the second Vortrag Husserl makes a remark that he does not develop into an

argument: “Field of the axioms system. We restrict ourselves to axiom-systems that

have a field. (Why [don’t we say] directly: collection of objects that satisfy the axioms

[?]).”131 He might as well have said: “we restrict ourselves to consistent axiom-

systems”, thereby identifying the consistency of an axiom-system tout court with its

having amodel. He goes on to say: “All remains correct it we simply take ‘field’ in the

natural sense of the term: objects which satisfy the axioms.”132 So he simply takes the

correspondence between consistent theory and structure for granted.133

129Frege 1976, 63.
130Frege 1976, 66.
131PdA App. 457; PoA 437–438; Sch&Sch 111.
132PdA App. 457; PoA 438 n.; Sch&Sch 111 n.
133I do not even agree with Majer’s attempt to interpret Husserl’s answer to Hilbert’s objection,

and, more generally, Husserl’s conception of arithmetics as essentially algebraic or equational
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To sum up: the problem that Husserl addresses in the Doppelvortrag is exactly

what he himself announces: “how can we justify the use of the imaginary in

calculations?” He reformulates the question as follows: under which conditions

can we expand a given theory with imaginary concepts and still be certain that

contradictions will not be implied by this expansion? And his answer is: if the given

theory is syntactically complete and the expansion is conservative with respect to

the old domain then the use of the imaginary in calculations cannot yield contra-

dictions.

3.7 More on the Conservativity of Expansions

In the preparatory studies for the second Vortrag134 Husserl takes into account

some further aspects of the question concerning the possibility to expand an axiom-

system in a conservative way.
Let A be a given axiom-system, and Aw a formal expansion of it (erweitertes

Axiomensystem). In symbols:

A � Aw:

An expansion should satisfy, according to Husserl, the following conditions:135

Given that Aw ¼ A þ B, the new axioms

1. have to be consistent:

notðB ‘ a ^ :aÞ;
2. have to formulate assertions that are left open by the old axioms:

for all b 2 B; notðA ‘ bÞ and notðA ‘ :bÞ:

theories, as “an axiomatic description” of the intuitively given numerical field. As a matter of fact

the latter is introduced in these terms only in PdA. Majer writes: “if we restrict the axiomatization

of numerical relations to numerical equality and inequality and to the two operations of [Verbin-
dung] and [Teilung] of whole positives, a deductively complete axiomatization of the whole

positives becomes possible”. However, we must heed the fact that Husserl in the Doppelvortrag
does not mention at all the intuitive operations of Verbindung and Teilung. The latter are

introduced in PdA in a completely different context. An ideal continuity of the Doppelvortrag
with PdA consists rather in the following fact: PdA provides the “rules of calculation” for the

theory of finite cardinals and theDoppelvortrag investigates under which conditions the expansion
of that theory remains conservative. For these reasons I do not share Majer interpretation of

the Doppelvortrag as a solution to a conceptual leap in PdA between the intuitive origin of the

numerical field and its properly computational side. Though this leap does indeed exist in the

PdA, I fail to see how this can be legitimately said to be the problem that Husserl explicitly

addresses in the Doppelvortrag.
134PdA App. 452 ff; PoA 433 ff. n.; Sch&Sch 107 ff.
135PdA App. 453; PoA 434 n.; Sch&Sch 108.
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Moreover,

3. Aw , that is A þ B, has to be consistent (note that 3 trivially implies 1).

He then discusses the question of conservativity again, thereby bringing to light

some further aspects: if we derive from Aw an assertion that refers purely to the
objects A, does it hold that this assertion was already derivable from A?136

As we saw, Aw is a conservative expansion of A iff Aw is an expansion of A and,

for each assertion a of the language of A, it holds that if Aw ‘ a then it already

holds A ‘ a. Husserl would say: “Aw is a conservative expansion of A iff Aw is an

expansion of A and, for each assertion a that ‘has a sense’ for the field determined

by the ‘narrower’ axiom-system A, if a follows from the ‘expanded’ system Aw then

a already follows from the ‘narrower’ system A.”
Husserl’s positive answer to the question italicized above is articulated as a

distinction of cases which we can reconstruct as follows:

(1) Either one already knows that Aw is a conservative expansion of A, and hence a
was already derivable from A (“[either] I know quite in general that every

assertion which has a sense for the narrower domain . . .must be a consequence

of the A . . .”137)
(2) Or else one already knows that A is definite (syntactically complete). But then,

from A � Aw together with the consistency of Aw, the assumption that Aw ‘ a
yields that not(A ‘ :a), and hence, in virtue of the property of syntactic
completeness of A, the conclusion that A ‘ a follows also in this case (“or I

know apriori . . . that this assertion belongs to the class of assertions that must

be decided a priori by means of the A . . .” 138)

Generally, use of a broader axiom-system in order to derive propositions of a

narrower one is allowed if we have a property at our disposal that guarantees that

each assertion that “has a sense” in the narrower domain is also decided there, that

is, it follows from the axioms or is in contradiction with them (definiteness).139

It is interesting to note that Husserl also considers the two notions of definiteness
and conservativity relativized to classes of assertions. De facto, to obtain conser-

vativity of an expansion Aw of A with respect to a restricted class G of assertions, it
is sufficient to assume that A is G�definite, that is, syntactically complete relative to

assertions which belong to the class G.

The inference from the imaginary is permitted in a singular case or for a class, if we can

know in advance and can see that for this case or for this class the inference is decided by

the narrower system.140

136PdA App. 453; PoA 433; Sch&Sch 108.
137Loc.cit.
138PdA App. 453; PoA 433–434; Sch&Sch 108.
139PdA App. 456–457; PoA 437; Sch&Sch 111.
140PdA App. 457; PoA 437; Sch&Sch 111.
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3.8 Definite Manifolds

The Husserliana edition of the Philosophie der Arithmetik contains two further

studies on the problem of definiteness of manifolds.141 The text is worth analyzing,

for it deals, though in a rather fragmentary and tentative style, with a number of

extremely interesting problems and conceptualizations as regards definiteness and

conservative expansions with respect to manifolds. The question under scrutiny in

these studies is this: which conditions have to be satisfied by a manifold if it is to be

definite? In which sense is it possible to expand a definite manifold?

Husserl considers here the possibility of effecting a conservative expansion of a

definite manifold. He asks, in particular, under which conditions assertions (and

classes of assertions) relatively to the expanded manifold “can be transferred” to the

narrower one and vice versa.
If the expansion of a manifold is to be conservative, the ‘narrower’ manifold (the

one to be expanded) should be – to put it informally, paraphrasing Husserl –

embedded as image (Gebilde) in the ‘expanded’ one, and at the same time it must

be left unchanged by this embedding. Husserl tries to make this idea precise as

follows.

Let M0 be a certain definite manifold and ME a conservative extension of it. ME

is made up of M0 plus certain new elements, in symbols:

ME ¼ M0 þ en:

“The expansion toME must not disturbM0 in what it is by itself, and above all, it

must not specialize it, that is the axioms (definitorische Bestimmungen) forMEmust

be a mere expansion of those for M0.”
142 Thus M is an expansion of M0 if M0 does

not undergo, in M, any “specialization”, that is, if it does not receive any determi-

nation that results in new propositions both for M and for its elements and

constructs.143

Now let L0 (resp. LE) be the laws (Gesetze) that are valid forM0 (resp.ME), Ln be
the laws that determine relations between the ‘new’ elements en, and L0n the laws
that determine relations between the old and the new elements. Then – Husserl says – it

must hold that

LE ¼ L0 þ Ln þ L0n

This means that “the assumption that the manifold [ME] reduces to the partial

manifold M0 . . . should have the consequence (bedingen) that the LE reduce to the

L0 without any further determination for M0 thereby resulting.”144

141PdA App. 458–469; PoA 453–464.
142PdA App. 459, PoA 454.
143PdA App. 461, PoA 456.
144PdA App. 460, PoA 455.
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The idea is that the laws that turn out to be valid for the manifoldM0 as an image
in ME should be the same as the laws valid for M0 ‘when it was not an image’.

Husserl gives here also several examples of how certain forms of assertions that are

valid for the expanded manifold “move” into the narrower one: if one, for example,

proves relatively to M0 as image that some A are B, then this surely also holds for

the ‘independent’ M0. Analogously, if one proves that there are some A.145

The simplest case of a conservative expansion, Husserl observes, turns out to be

this: “formally the same laws hold both in the expanded domain and in the narrower

one. L0, Ln , L0n then have the same form. By limitation [from the domain of the

manifold ME] to the domain 0 [sc.: M0], L0 proceeds immediately from LE and

nothing else does.”146 In this particular case, one just acquires more generality by

the expansion, and immerging one structure in another simply consists in joining

new objects. For the latter the same laws hold, or more exactly, laws of the same

form hold as those true of the narrower domain.

The most interesting case – it is the intended exemplification of the whole

discussion – is the case of numerical systems. As we saw, Husserl’s idea is to

progressively extend calculation rules for the equational theory of finite cardinal

numbers until the expanded theory finally embraces the theories of all numerical

systems (integers, rationals, and reals too). From the side of the ontological

counterpart of the theories, the narrower structure (natural numbers) turns out to

be embedded as an image in the immediately broader one.

The series of the positive wholes number is a part of the series of numbers that is infinite at

both ends. This in turn is part of the two-fold manifold of the complex numbers. The system

of the positive whole numbers is defined by certain elementary relations. In this latter

nothing is modified through the expansion of the number series. No new elementary

relations are added, but rather only new elements and relations between the new and the

old. The laws of the expanded domain include those of the narrower one, but in such a way

that for the old domain no new laws are established.147

The above issues, like those dealt with in the previous sections, touch very

interesting yet delicate points from the metalogical point of view, and they easily

call to mind certain notions and results familiar from contemporary logic. Yet, here

as elsewhere, some caution is necessary, just to avoid forcing or misinterpreting

Husserl’s views. Let us consider the above concept of “conservative expansion”,

whereby a narrower manifoldM0 is ‘embedded as image’ into an extended oneME.

It is tempting to ask which ‘technical’ notion from model theory provides us with an

(at least reasonably approximate) interpretation of that concept. A first candidate is,

of course, the basic notion of extension. Given two structures M0 and ME of the

same type or signature (that is, two structures for the same elementary language),

ME is called an extension ofM0 (equivalently:M0 is called a substructure ofME) if

the support of M0 is a subset of the support of ME, and moreover each function and

145PdA App. 461, PoA 456.
146Loc. cit. (my emphasys).
147PdA App. 462, PoA 457.
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relation of M0 is the restriction to the support of M0 of the corresponding function

and relation inME. Unfortunately, this doesn’t seem to be the right choice: ifM0 is a

substructure ofME, in general only positive atomic assertions concerning elements

of the narrower support ‘move’ from the extension to the substructure. Indeed,

assertions like Husserl’s example above, ‘there are some A’, may well be satisfied

in ME, though not in M0, by elements of M0. A more adequate candidate is surely

the notion of elementary extension, where a structureME is said to be an elementary

extension of a structureM0 of the same type if and only ifM0 is a substructure ofME

and moreover, for every formula A(x1, . . . , xn) in the first-order language of these

structures and every n-tuple a1, . . . , an of elements of M0, it holds that a1, . . . , an
satisfy A inM0 if and only if a1, . . . , an satisfy A inME. However, it is doubtful that

when speaking of ‘laws (Gesetze) that are valid forM0 (resp.ME)’ Husserl is really

thinking of the totality of what we now call elementary conditions.

3.9 The Concept of ‘Mathematical Manifolds’

In the Schuhmann-and-Schuhmann edition of the Doppelvortrag, we find some

annotations concerning the ‘concept of mathematical manifolds’ that, in the struc-

ture assigned to the text of the Doppelvortrag by the editors, should coincide with

what Husserl presumably said at the beginning of the second Vortrag presented to

the Göttinger Mathematischen Gesellschaft, on December 10, 1901. Here, too, the

text is extremely fragmentary: rather than giving a unitary and systematic treatment

of its topic, it appears more like a series of remarks aimed at distinguishing the

concept of mathematical manifold from that of definite manifold.
We can, nevertheless, gather from it evidence for our claim that there are kinds

of definite manifold having a certain particular property which makes it possible to

give an arithmetical interpretation of them, that is to give an arithmetical interpre-

tation of the basic concepts of those manifolds in such a way that the axioms of the

corresponding theory become, under this interpretation, arithmetical truths.148

To start with, Husserl advances the question whether the concept of a mathe-

matical manifold and that of a definite manifold are equivalent concepts, and he

considers some examples of definite manifolds that cannot be mathematical mani-

folds. Consider for instance a theory regarding a numerical language, containing for

example the operations þ, �, etc. and also the order relation (�). Let the axioms of

the theory be, for example, reflexivity, antisymmetry, transitivity, linearity of the

relation � and, furthermore, certain principles that connect the operations with the

order relation. Let us add to this the axiom: “By such and such axioms the field is

determined, and no others are valid for it.”149 Is such a theory definite? Trivially,

148On this topic see Section 10 below.
149PdA App. 442; PoA 429.
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yes, because we assumed the axiom of closure. But it is not a mathematical

manifold.

This example should help to understand the following remarks:

(a) A definite manifold is ruled out by the inessential closure axiom. (b) Can a purely

algebraic manifold, which defines no individual of the field whatever [there are no

existential axioms, the axioms only define properties of the order relation and connect

the order relation with the operations] – can such a manifold have the character of a definite

manifold? One can certainly say: If only one operation [e.g. addition] is defined, and if I

know that in the deductive sphere in which we are moving only the most general of

formulae hold true . . . . then the associative and commutative laws form a definite combi-

nation (Verbindung) . . . That is, any sentence which contains only the “ þ,” and regardless

of how I derived it, is decided as to truth and falsity. Likewise, the well-known laws of

addition and multiplication are definite in this sense, under the presupposition of the above

supplementary axiom. But it does require precisely the supplementary axiom, and without

this that would not hold true.150

After having excluded the two cases that we just examined and before consider-

ing the philosophically more relevant case of mathematical manifolds, Husserl

turns again to the following problem: in what measure is an axiom-system still

definite when it is obtained from a definite axiom-system by leaving out one or

more axiomatic conditions? This consideration is developed with respect to the

structure rather than to the axiom-system. Here, whenever Husserl speaks of

‘axiom-system’, he means a system of operations. “We now take up operation

systems [Operationssysteme] which do not exclude the introduction of individuals

that give rise to operative results.”151 Take for the moment systems of operations to

be essentially equational theories in which the axioms express the rules of calcula-

tion and the properties (e.g., commutativity or associativity) of certain operations.

In a system of operations the “objects” are determined only through operations and

are taken as 0-ary operations.152 According to the partition of the objects of the field

which exist on the basis of the axioms, we distinguish two cases:

(i) “Indeterminate objects, that is, objects that do not, by means of the axioms,

receive a characterization that turns them into given objects for us”,153 and

(ii) “Determinate objects, that is, individuals defined with their operational axiom-

atic properties.”154

Objects of kind (i) would be characterized by the axioms if one or more axiomatic

conditions had not been dropped. In Husserl’s words, they are not only indeterminate

objects “for us,” like for instance the unknown variables of an equation of which we

do not bother to find the root. These latter kinds of indeterminate objects are fully

150Sch&Sch 99–100; PoA 422–423.
151Sch&Sch 100; PoA 423.
152See next section for a detailed analysis of this notion.
153Loc. cit.
154Loc. cit.
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entitled members of the objects of the field.155 Objects of kind (i) are rather

indeterminate objects “apriori and objectively”, and this depends on the nature of

the axiom-system.156 They do not appear among the 0-ary operations that constitute

the determinate objects of the field, and they are never “results” of operations

admitted in the field. It is clear, however, that if we add the missing axiomatic

conditions they are immediately transformed into determinate objects. “A system of

axioms . . . to which it is possible to add independent axioms (and which therefore

leaves more than one possibility open) is called disjunctive.”157 The question is then
“whether there can still be individuals apart from these – thus, individuals which can

undergo no operational determination and which are absent from the individuals

demarcated”.158 Is the structure determined by the restricted axiomatic conditions

such that it is no longer possible to add any new object to the domain of the

structure? This is the case, for instance, when we consider arithmetic and leave

out the axioms that characterize the relation of order. Is such an axiom-system still

definite if it is obtained from a definite axiom-system by dropping some axiomatic

conditions? In this case, Husserl maintains, we do not have a general rule for

determining whether the system of operations is definite or not, hence it has to be

established case by case. “It would be definite if, for the demarcated sphere of

existence, for the given individuals, and for the individuals not given, no further new

axiom were possible.”159

Finally, the thesis emerges according to which a mathematical manifold is an

inductively generated structure. Husserl calls mathematical manifolds also “con-

structible manifolds (konstruierbare Mannigfaltigkeiten)”,160 thereby emphasizing

that they are generated by certain modes of construction starting from a set of a

given objects. He explicitly allows not only for the case in which the initial

elements are fixed, but also for the case in which they are not and where only the

procedures of generation are fixed. A system of axioms that defines a mathematical

or constructible manifold can

(i) “Either include in its definitions the existence of determinate objects, so that by

the univocal forms [Gebilde] of operation ever new elements are determined

which can then be regarded as given. . .”
(ii) “Or it can be the case that only by the arbitrary assumption of a finite number of

determinate elements all others are univocally determinable, as a totality of

155“As to the former, they are not merely indeterminate for us: Such are also the many generally

defined objects of the second field, with respect to the fact that we cannot subjectively work out the

general definition, cannot resolve the problematic objects into the determinate objects – and in that

sense cannot reduce them to known and given objects” (loc. cit.).
156Loc. cit.
157I borrow this definition from Hartimo 2007, 296 fn. 29.
158Sch&Sch 101; PoA 424.
159Loc. cit.
160PdA App. 452; PoA 433; Sch&Sch 107.
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the possible operational forms, from those determinate elements [arbitrarily

assumed].”161

In (i) both the set of the initial objects and the generative procedures are fixed; in

(ii) the axioms only determine the possible ways to generate new elements starting

from those that were arbitrarily chosen as basis. As an example of this second kind

of mathematical manifold those structures that are called free algebras with a given
set of generators might serve.

Let the system be a mathematical one, That is, any individual existing on the basis of the

axioms admits of an operational determination [is generated by operations whose behaviour

is fixed in the axioms] and must belong within the sphere of specific operational results

(spezielle Operationsresultate) [i.e. to the elements generated step by step] (which are

obtained on the basis of a certain finite number of objects [the initial elements], whether

originally assumed as given in the definition of the manifold [i.e. in the axiom-system] or to

be arbitrarily selected and given).162

Husserl’s idea is that all theories that axiomatize inductively generated mani-

folds are definite, but not all definite theories axiomatize inductively generated

manifolds. Correlatively, on the ontological side, we can say that every mathemati-

cal manifold is definite but not every definite manifold is mathematical.

3.10 On the Concept of an Operation System

In Appendix VIII to the Husserliana edition of the Philosophie der Arithmetik,
Husserl characterizes the concept of an operation system. We already mentioned

this concept when we explained the nature and meaning of mathematical manifolds.

Operation systems are mathematical manifolds, but they are not the only ones. For

mathematical manifolds are all manifolds that can be arithmetically interpreted, as

we shall see in the next section. An operation system is, according to Husserl, a

theory on a domain of species. Its peculiarity is that its elements are considered only
insofar as they stand in certain relations: “Strictly speaking, we have not deter-

mined the objects, but rather the system of relations, the system of combinations

and relations, and as a system that established uniqueness for every term of a

relation (Beziehungspunkt).”163 In certain mathematical investigations elements are

of interest only as Beziehungspunkte of relations. So the difference between a

manifold tout court and a system of operations is that in the former the axioms

determine relations and compositions between elements that, in general, are taken

to be individually different, whereas in the latter the axioms determine relations and

combinations between objects that are species.

161PdA App. 458; PoA 453.
162Sch&Sch 101.
163PdA App. 476; PoA 480.
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We distinguished a definite operation system from a definite manifold. The distinction

consists merely in the fact that in the one case “operations” are defined for a domain of

species, in the other case relation and relational networks are defined for a domain of

elements. We call a domain of species that is defined in a purely formal manner by means

of laws of operations (axioms of operation in general) an “operational system”.164

Husserl takes the elements of an operation system, that is numbers, to be the infimae
species in the hierarchy of genera and species that obtains among operations in an

operation system (“Numbers are the lowest species of operations in a system of

operations”.165) They still admit only a kind of “material fulfillment”, which presum-

ably means that numbers are obtained via abstraction from sets of concrete objects.166

In arithmetic the a, b, etc. are themselves operations, and 1 is the identity element of

multiplication and 0 the identity element of addition. Therefore all the Operationselemente
themselves have there an operational significance.167

Each letter is itself an indicator of an operation, in such a way, namely, that it represents an

object as produced by means of a certain operation type . . . a ¼ b says: The objects

generated by means of the operation a and the operation b are the same. . .168

As we saw above, in the nowadays current presentation of formal languages

one can choose to treat individual constants as functions letters, that is as symbols

for 0-ary operations.

In an operation system, compositions between numbers are operations or species

of a higher level, that have the job of combining numbers; operations of operations

are in turn species of a still higher level, which combine operations. “We have a

sphere of species. These species determine new species in virtue of certain combi-

nations existing between them, and between these combinations relations again

obtain, and these relations can then in turn serve to determine species.”169

Examples of operation systems are for Husserl all arithmetics, including the

arithmetic of ‘types of ordering’ (order-types). Thus, types of ordering are species,
too.

If a is a type of ordering (Reihentypus) (Cantor’s order type [Cantorscher Ordnungstypus])
and b is a type of ordering (the same or conceptually different), then they determine a new

type of ordering, but they do this in the following way: Any ordering of type a can (in the

concrete domain of sequences concerned) be combined with a sequence of type b, in such a
way that the end point of the one is the initial point of the other. And thereby a sequence, is

164PdA App. 474; PoA 477.
165PdA App. 480; PoA 484.
166In the critical annotations to this Appendix we find the following lines cancelled by Husserl

with pencil: “The determinate forms of operations (the ‘numbers’) allow only for a kind of

material fulfillment, namely the one according to which the kind of relations, and thereby the

genus of the objects upon which the relations are grounded, are materially determined” (PdA App.

560–561; not translated in PoA).
167PdA App. 481; PoA 485.
168PdA App. 483; PoA 486.
169PdA App. 481; PoA 485.
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always determined between the initial point of the first and the end point of the second. This

sequence has a type c: a þ b ¼ c.170

This example of type of ordering is interesting because Husserl uses it in his

attempt at clarifying what he means, more generally, by operation – say, for the

sake of simplicity, a binary operation F – defined on the species belonging to a

certain genus G. The idea seems to be the following: F should be defined “by lifting

to the system of species” an operation f on the objects (members of the species)

having the property of being compatible with respect to the partition into species of
the domain of the objects. That is, an f such that for each species a and b and for

each pair of objects x, x0 of the species a and y, y0 of the species b, it holds that the
objects f(x,y) and f(x0, y0) belong to the same species.

Any two individuals . . . of the species a and b (arbitrarily selected form the sphere, where a
and bmay be of different species or of the same) determine . . . a new object that in turn falls

under a species of the genus G, and the species of the object thus determined must be
unambiguously determined: a þ b ¼ c.171

This clarification is highly significant. The idea behind it is the idea that under-

lies a well-known abstract construction from universal algebra, namely the one that

gives rise to a quotient structure of a given algebraic structure A by means of an

equivalence relation that is also a congruence with respect to the operations of A. In
other words, Husserl’s species correspond to the equivalence classeswith respect to
a certain congruence on the domain of the objects. Recall that a congruence over an
algebraic structure A ¼ hA, f, . . .i is a binary relation R on the set A (the support of

the structure A) satisfying the following conditions:

(i) R is an equivalence relation, that is, it is reflexive, symmetrical and transitive

(ii) R is compatible with respect to the operations of A, that is, it satisfies, for each
n-ary operation f of A and each x1, . . . xn, y1, . . ., yn 2 A:

Rðx1; y1Þ ^ � � � ^ Rðxn; ynÞ ! Rðf ðx1; � � � ; xnÞ; f ðy1; � � � ; ynÞÞ:

The quotient of A modulo a congruence R is the structure A/R ¼ hA/R, fR, . . .i
where A/R is the set of the equivalence classes [x]R ¼df {y 2 A | R(x,y)},
for x 2 A; and fRð½x1	R; . . . ; ½xn	RÞ ¼df ½f ðx1; . . . ; xnÞ	R for each operation f of A.

Finally, Husserl considers the logical calculus of classes (der logische Kalkül
der Prädikate). He maintains that, in this particular case, we are dealing with

predicates and modes of combining predicates to obtain new predicates and,

consequently, that the letters a, b, . . . do not stand for species or, in other words,

do not vary on species but simply on classes or predicates. Thus the logical calculus
of classes seems not to be an ‘operation system’ in the sense explained above and,

indeed, union and intersection of classes cannot be obtained by “lifting” operations

170PdA App. 483–484; PoA 487–488.
171PdA App. 484; PoA 488 (my emphasis).

190 3 The Imaginary in Mathematics



on individuals. However, a few pages later, Husserl argues that the logical calculus

is an arithmetic, too; for all “indeterminates (Unbestimmte)”172 of the domain are

determinable as True or False, as 1 or 0. Apparently, he is thinking here of the other

possible interpretation of the logical calculus: not as a calculus of classes, but as a

calculus of propositions: “It is not a question of generating from predicates further

predicates, as if the calculus were to determine predicates from predicates, but

rather it aims to derive true [propositions] from true [propositions], and so in

general to draw conclusions concerning truth and falsehood.”173

Under this second reading, ‘1’ and ‘0’ are no longer the total class and the empty

class, but the species of all truths (of all true propositions), resp. the species of all
falsehoods (of all false propositions). “Thus, as the sphere of the calculus we have
the truth-values of propositions . . . and the possible combinations which such truth-

values permit.”174 And indeed, the Boolean operations on truth-values can be

thought of as deriving (by ‘lifting’) from composition operations (the connectives)

on propositions which, insofar as they are truth-functional – as one would put it

today – are compatible with those species ‘1’ and ‘0’.

Thus the logical calculus, too, is (or can be seen) as an arithmetic, and is

‘defined’ in the sense that “each letter symbol is either ¼ 0 or ¼ 1, and conse-

quently it is a priori determined, for every relation presenting itself as formula,

whether it is satisfied or not. It is, in general satisfied if it, in general, yields 0 ¼ 0 or

1 ¼ 1, otherwise it is false . . . The concept of arithmetic must therefore be so

broadly conceived that it also includes this case”.175

3.11 Arithmetizability of a Manifold

All number systems are, as we saw, operation systems. Now, in Husserl the idea is

present that each discipline, at least each exact discipline, can be arithmetized. As a

theoretical model Husserl follows here Hilbert’s arithmetization of geometry,176

but, of course, all purely mathematical domains such as, for example, the theory of

surfaces, the theory of Galois equations, etc. can be arithmetically interpreted.

Indeed, it is a fact that this translation is always possible: To each (indeterminate)

object of the theory a numerical object is co-ordinated, to each relation of the theory

(as e.g. in the case of geometry, “is upon”, “lies between”) a relation between

numerical objects. Each axiom of the theory of the arithmetized theory becomes a

172PdA App. 487; PoA 491.
173Loc. cit.
174Loc. cit. The Fregean sound of this is unmistakable: Frege calls derivations in propositional

logic “calculation with truth-values (Rechnen mit Wahrheitswerten)” (Frege 1976, 122). But the

Boolean framework is entirely antagonistic to Frege: see above App. 5, }3.
175PdA App. 487; PoA 491–492.
176Hilbert’s Foundations of Geometry has been published in Hilbert 1899.
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true arithmetical proposition, each theorem a consequence within the theory that

interprets it arithmetically.

Husserl thinks that in all theories that axiomatize a definite manifold an arithme-

tic can be established.

In geometry [e.g.] an arithmetic can be established, and the axioms can serve to character-

ize the forms of relation and the modes of determination of the elements. On the basis of the

axioms the forms determination are defined, and then the arithmetic of the modes of

determination is developed – that arithmetic then serves to determine every element by

reference to one that is already given and then to obtain the forms of relation, the relational

networks, which we call formations [Gebilde], on the basis of those modes of determina-

tion: equations in geometry.177

His idea is, in particular, that “to any definite manifold a number system can be

coordinated that governs all of its relations”.178 Thus the conception of arithmetiz-

ability of a manifold can be read as a guide that shows how Leibniz’s idea of

abstract mathematics as mathesis universalis has to be realized. For, on the one

hand, each theory is a conceptual framework (Fachwerk der Begriffe), as Hilbert
once put it, that makes possible the organization of complexes of facts,179 and, on

the other hand, each theory can be interpreted in terms of numbers.

3.12 Husserl’s Reappraisal of His Early Theory

of Definite Manifolds

In his Formal and Transcendental Logic (1929, henceforth: FTL) Husserl reconsi-
ders his introduction of the concept of manifold in the Prolegomena and in the

Doppelvortrag.180 We shall try to provide the conceptual framework for an exten-

sional characterization of Husserl’s theory of manifolds (to be set up in the next two

sections). In this framework it will be possible to throw light on the conception of

the property ascribed by definiteness as categoricity.181 From the perspective of

FTL this characterization seems to be very plausible. So it is necessary to return to

this topic once again. It should be stated at the outset that Husserl in FTL no longer

mentions the distinction between absolute definiteness and relative definiteness.

Our contention can be formulated as follow: it is true that in FTL Husserl believes

that definite axiom-systems identify classes of models that are structurally very

similar to each other. However, it clearly emerges that his desideratum is that to

each definite theory there corresponds a definite manifold and vice versa. This
correspondence does not hold if we interpret the definiteness of an axiom-system as

categoricity. So, let us try to find a way out by choosing a weaker notion than

177PdA App. 482; PoA 486.
178PdA App. 475; PoA 477.
179Hilbert 1918. Cp. Cavaillès 1938, 84 ff.; Casari 2000.
180FTL 82–85.
181Hartimo 2007.
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categoricity, for example syntactic completeness, to interpret Husserl’s concept of

definiteness. Syntactic completeness does not imply categoricity. But a formal

counterpart can be given for the structural similarity of the classes of models of a

syntactically complete axiom-system. Does the wanted correspondence hold in this

case? No, even in this case it does not hold. We didn’t really get very far . . . We

shall now try to reconstruct Husserl’s argument step by step, present Null and

Simons’182 attempt to follow that way out and explain why it fails. Thereby we will

review an interesting mathematical reconstruction of the theory of manifolds,

which illuminates in various respects the conceptual complexity of Husserlian

formal logic. In this context we will also make use of syntactical and semantical

concepts that in 1929 had not yet received an adequate formulation, although they

were present in the mathematical thought of the time as presuppositions or as

problems.

In Chapter 3 of FTL we firstly come across the metamathematical distinction

between a theory as system of axioms and a theory as the corresponding class of

models.183 Husserl writes:

Since the concept of a theory . . . should be understood in the emphatic (prägnant) sense . . .,
that is to say, as a systematic connection of propositions in the form of a systematically

unitary deduction, a beginning was found here for a theory of deductive systems . . .
considered as theoretical wholes. . . As the concept of an objectual totality there appears

here what mathematics, without any explication of its sense, understands by manifold. It is
the form-concept of the realm of objects of a deductive science, where this is conceived as a

systematic or total unity of the theory.184

We will treat a manifold as the class of all models of an axiom-system on a

certain language, and we shall assume that the models of a theory are closed with

respect to certain operations on structures: if we perform certain operations on the

models of the theory what we obtain are still models of the theory.

Husserl then explores the possibility to formalize a theory. From his observa-

tions on formal theories obtained by way of formalization starting from the geome-

try of our concrete space, we can conjecture that Husserl is trying to characterize the

property of isomorphism. He writes:

The transition to form . . . yields the form-idea of any manifold whatever that, conceived as

subject to an axiom-system with the form derived from the Euclidean axiom-system by

formalization, could be completely explained nomologically, and indeed in a deductive

theory that would be (as I used to express it in my Göttingen lectures) ‘equiform’ to

geometry. . . . . Of course all the concretely exhibited material manifolds that are subject

to axiom-systems which, on being formalized turn out to be equiform, have the same

deductive science-form in common; they are equiform precisely in relation to this form.185

182Null & Simons 1982.
183Null & Simons 1982, 448–449.
184FTL 78–79.
185FTL 83.
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The term “equiform” makes us think that Husserl conceives the models belong-

ing to such manifold as isomorphic.186 However, as will soon turn out, Husserl

seems to think not only that to each complete system of axioms there corresponds a

definite manifold but also vice versa. Therefore it is useful to choose a weaker

notion than isomorphism, namely second order equivalence, to characterize the

property of definiteness of a manifold. Husserl writes:

When I moved from reflections about the peculiarity of a nomological field to formalization

in general, the essential feature of a manifold form in the emphatic sense. . . became

apparent. It is defined not by just any formal axiom-system but by a ‘complete’ one.

Reduced to the precise form of the concept of definite manifold this implies:

The axiom-system formally defining such a manifold is distinguished by the fact that every

proposition . . . that can be constructed from the concepts . . . occurring in that system . . . is
either ‘true’ or ‘false’ . . . : tertium non datur.187

The previous quotation suggests that Husserl not only thinks that to each finitely

axiomatized and syntactically complete theory there corresponds a definite mani-

fold but also that to each definite manifold there corresponds a finite syntactically

complete system of axioms, in other words, that for each definite manifold it is

possible to find a finite number of axioms that allow to decide deductively each

formula of the pertinent language.

Like other logicians of the time Husserl tended to use second-order logic and to

consider it as complete even though there was no proof of this supposition. Gödel’s

incompleteness theorem (1931) had not yet been proved, and in order to axiomatize

theories as Analysis and Euclidean and Non-Euclidean geometry it was necessary

to formally express assertions which refer to all possible subsets of the intended

domain. In the formalizations of such theories one pointed to categoricity: the

axioms of the theory should identify only one model up to isomorphism.

In the case of theories equiform to geometry, as Husserl calls them, a categorical

formalization at the first order is not possible; for the Löwenheim-Skolem-Tarski

Theorem shows that if a first-order theory is consistent and has an infinite model

then it has models of arbitrary infinite cardinality. A necessary condition for two

models to be isomorphic is that their domains are in one-to-one correspondence,

hence no first-order consistent theory (having infinite models) is categorical. In

order to have categoricity one has to make use of formal languages expressively

stronger than first-order languages and allow for quantification over function vari-

ables and predicate variables of the language. The models of the theory are taken to

be on maximal universes, as one would put it today. In such universes predicate

variables vary on all possible properties, that is, extensionally, on all possible

subsets of the domain of the individuals.

However, second-order logic is not complete (a consequence of Gödel’s incom-

pleteness theorem): there is no system of axioms and inferences rules that is

effective and characterizes a syntactical concept of derivability that is equivalent

186Cp. Null and Simons 450.
187FTL 100.
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to the semantical concept of second-order logical consequence with respect to

maximal universes.

3.13 Formal Aspects of the Theory of Manifolds

If one wants to tackle the more proper formal aspects of Husserl’s theory of

manifolds, the reconstruction given by Null and Simons turns out to be very helpful.

The authors take manifolds to be certain well-defined classes of relational struc-

tures. They provide for a formal mathematical counterpart of Husserl’s theory of

manifold that modifies Husserl’s notion only when this is made necessary by later

results in logic (e.g. incompleteness of second-order logic).

Let us review the authors’ choice of primitive logical operators and symbolic

notation. The set-theoretic metatheory employed in the paper follows closely those

of Gödel, von Neumann, Bernays and Morse: as primitive concepts we find those of

class (intended as extension of a predicate) and element or member of a class.

All other concepts of class theory and set theory are defined in terms of these

primitives.

Definition. A class is a set if it is element of some other class, otherwise it is a
proper class.

The symbols \ and [ denote the operations of intersection and union among

classes:

1. A \ B ¼ ½x j x 2 A ^ x 2 B	;
2. A [ B ¼ ½x j x 2 A _ x 2 B	:

A is a subset of B, in symbols A � B, iff each member of A is a member of B. A is

a proper subset of B (A 
 B) iff A � B but not B � A. A n-ary relation R (on C) is a
class of ordered n-tuples (of elements of C). The symbol ‘;’ denotes the empty set.

An equivalence relation on a class C is a binary relation R on C which satisfies,

for each element x, y, z of C, the conditions:

a. Reflexivity: < x, x > 2 R
b. Symmetry: if < x, y > 2 R, then < y, x > 2 R
c. Transitivity: if < x, y > 2 R and < y, z > 2 R, then < x, z > 2 R

The formal languages employed are monadic second-order languages with
identity. These languages (from now on denoted by L, L’, . . .) are based on an

alphabet which contains, besides the usual auxiliary symbols:

1. the usual logical constants (connectives and quantifiers), and identity

2. countably many individual variables

3. countably many monadic predicate variables: X1, X2, X3, . . .
4. a (possibly infinite) number of predicate constants P1, P2, . . . (of arity greater

than zero)
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The symbols listed in (1–3) are common to all such formal languages, whereas

those in (4) vary from one language to another. Terms and formulae of L are built up

following the usual recursive procedure as in (purely predicative) monadic first-

order languages, with the fundamental difference that in the construction of the

formulae we allow for quantification not only of individual variables but also of

monadic predicate variables.

Let us now recall the definition of model for a language L. Given a language L
with the predicate constants P1, P2, . . . , a modelM for that language is a relational

structure made up of a domain D and certain relations, defined on that domain,

which are in one-to-one correspondence with the predicate constants of L and taken

to be the meanings of the latter:

M ¼ < D;R1;R2 . . . >;

where Pi and Ri (the meaning of Pi in M) have the same arity.

Following Tarskian semantics, the concepts of satisfaction and truth of a

L-formula in a L-model are defined as usual. As the languages in question are

monadic second-order languages, the quantificational interpretation of predicate

variables is the maximal one, that is, the field of variation of monadic predicate

variables is the set of all subsets of the domain D of M.

If a is a formula, we write ‘M ⊨ a’ to say that a is true in M.

Definition. Given an L-model M and a set of axioms S in the language L, M is a
model of S iff M ⊨ a for each a belonging to S.

Let us now give the definition of deductive system and formal proof.

Definition. A deductive system S for a language L is an effective system of axioms
and/or inference rules.

Definition. A S-derivation of a formula a from a set of formulae S is a finite
sequence of formulae each of which is either an axiom of S or a formula in S or
it is obtained from previous formulae in the sequence by way of an application of an
inference rule of S. A S-theorem of S is a formula of the language of S that is
S-derivable from S.

The properties of correctness and general completeness of a deductive system S
are specified in the usual way:

1. Correctness: for each S and for each formula a (of the language of S), if a is

S-derivable from S then a is true in each model of S.
2. Completeness: for each S and for each a (of the language of S), if a is true in

each model of S then a is S-derivable from S.

The soundness and completeness theorems hold for first-order predicate logic.

Presumably Husserl thought that the two theorems also hold for second-order predicate

logic. In what follows, we will refer to an arbitrary deductive system S for second-

order monadic logic that (i) is sound, and (ii) extends a sound and complete deductive

system for first-order logic. The symbol ‘‘’ denotes the relation of S-derivability.
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As we will use the relations of isomorphism, elementary equivalence and

second-order (monadic) equivalence between models as basic concepts for the

development of Husserl’s conjectures, let us give their definition and recall three

theorems which establish that isomorphism is an equivalence relation and that

isomorphism-types and equivalence-types are proper classes.

Definition. Two models (for the same language L)

M ¼ <D, R1, . . . , Rn . . . > and M0 ¼ <D0, R0
1, . . . , R

0
n . . . >

are isomorphic if there is a function f from D to D0 such that

(a) f is a bijection, i.e., f is:

– injective: if f(x) ¼ f(y) then x ¼ y (for x,y 2 D)
– surjective: for all y 2 D0 there is an x 2 D such that f(x) = y

(b) The relationsRi andR’i have the same arity, and for each n-tuple x1, . . . , xn 2 D
(where n is the arity of Ri) it holds:

Ri (x1, . . ., xn) iff R
0
i (f(x1), . . .. , f(xn)).

Intuitively, two models are isomorphic if they are structurally indiscernible, that

is, they differ only with respect to the nature of the elements of the two domains.

A set of axioms S is categorical if all its models are isomorphic.

We further distinguish between elementary and monadic second-order equiva-

lence:

Definition. Two models M and M0, for the same language L, are elementary
equivalent (in symbols M � M0) if for each closed elementary formula a of the
language it holds: M ⊨ a iff M0 ⊨ a. That is, two models are elementary equivalent
if they make true exactly the same elementary formulae.

Definition. Two models M and M0, for the same language L, are monadic second-
order equivalent (M �m2 M

0) if, for every a, M ⊨ a iff M0 ⊨ a.

Theorem 1. Isomorphism is an equivalence relation (over the class of models for a
given language).

Given a class C and an equivalence relation R on C, R yields a partition of C into

classes or equivalence-types; that is, the relation R divides all individuals of the

class C into non-empty and disjoint classes of elements. Each of these classes

contains all and only the elements of C that stand to each other in the equivalence

relation R.
Given the class of all models of a certain language L, the isomorphism relation

produces equivalence classes that we call L-isomorphism types.

Definition. An L-isomorphism type is the class of all models (of L) that are
isomorphic to any model (of L).

Theorem 2. Each L-isomorphism type is a proper class.
Elementary and monadic second-order equivalence types are analogously

defined.
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Theorem 3. Each (elementary or monadic second-order) equivalence type is a
proper class.

Theorem 3 can be proven by the observation that each equivalence type contains

an isomorphism type as subclass. It follows from the above that each theory

concerning isomorphism types, equivalence types and manifolds is committed to

assign properties and to establish relations on proper classes.

We will now introduce the notions of manifold, Husserl-definite manifold and

formal manifold. We will then present some theorems concerning properties of

manifolds. Each manifold will turn out to be a proper class. We will then consider

some theorems on the fundamental properties that Husserl seems to ascribe to

definite manifolds, in particular the theorem which establishes that a manifold

determined by a set of axiom is definite iff the system of axioms is syntactically
complete. Of this statement, only one direction holds. For the other direction we

have, because of Gödel’s incompleteness theorem, a counterexample at disposal

that proves that the biconditional does not hold.

Definition. A manifold M ¼ M[S] is the set of all models of an axiom-system S on
a language L.

Theorem 4.

(a) Each manifold is a union of isomorphism types.

(b) Each manifold is a proper class.

Definition. A manifold M ¼ M[S] is Husserl-definite if it is a �m2-type. In other
words if it holds that

(a) if M 2 M[S] and M0 is monadic second-order equivalent to M, then also M0 2
M[S], and

(b) if M 2 M[S] and M0 2 M[S] then M and M0 are monadic second-order

equivalent

Theorem 5. Each manifold which is an isomorphism type is Husserl-definite.
Proof. Let M ¼ M[S] be an isomorphism type.

We assume:

(i) M 2 M[S] and (ii) M0 � m2 M

If a 2 S, for (i) it holds M ⊨ a , therefore for (ii) it holds M0⊨ a; hence M0 is a
model of S and therefore per definitionem M0 2 M[S].

We now assume M, M0 2 M[S]. M is, according to the hypothesis, an isomor-

phism type. Now isomorphic models are trivially � m2-equivalent. So M � m2 M
0,

and M is an Husserl-definite manifold.

Definition. A manifold M[S] is formal iff it is an isomorphism type, that is, iff all
models of S are isomorphic.

This means that the axiom set S is categorical. It follows from the definitions and

Theorem 5 that some Husserl-definite manifolds are formal and that each formal

manifold is Husserl-definite.
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It is now possible to prove that, given a system of axioms S that is syntactically
complete (for each closed formula a of the language it is possible to syntactically

decide a on the basis of S, that is, either S ‘ a or S ‘:a holds), the models of S are

all monadic second-order equivalent.

Theorem 6. For each syntactically complete axiom-systemS, themanifoldM ¼ M[S]
is Husserl-definite.

Proof. It suffices to show that, under the hypothesis that S is syntactically

complete and that M, M0 2 M[S], it holds M � m2 M
0. Suppose M ⊨ a. Then M

is a model of S, hence for the property of soundness assumed for the deductive

system S it cannot be the case that S ‘ :a. Hence, for the hypothesis of syntactic
completeness of S, it must be the case that S ‘ a. But M0 is also a model of S and

hence, still for the property of soundness, M0 ⊨ a . In an analogous way we prove

that if M0 ⊨ a then M ⊨ a. Thus, the conclusion is that M � m2 M
0.

Husserl seems to maintain that also the other direction of Theorem 6 holds:

syntactic completeness would then represent a necessary and sufficient condition of

the definiteness of a manifold. This, however, is false, as can be shown by applying

Gödel’s incompleteness theorem.

The following Lemma holds:

Lemma 7. For each set of axioms S, if S is categorical, then M[S] is a Husserl-
definite manifold, or rather (by Theorem 5) a formal manifold.

We can now prove the following theorem.

Theorem 8. There is an infinite system of axioms S, that is categorical and hence,
because of Lemma 7, such that the manifold M[S] (the class of models of S) is
Husserl-definite. But that system is not syntactically complete.

Proof. Let PA2 be the set of the following five axioms188:

The language of PA2 contains the individual constant ‘0’ for the number zero,

the unary function letter ‘s’ for the successor operation and the function letters ‘þ’

and ‘�’ for addition and multiplication. Thus it is not purely predicative. Let then S
be a finite set of axioms that is semantically equivalent to PA2 and is obtained by

N1. 8x½:sðxÞ ¼ 0	
N2. 8x8y½sðxÞ ¼ sðyÞ ! x ¼ y	
N3. 8X½Xð0Þ ^ 8yðXðyÞ ! XðsðyÞÞÞ ! 8xXðxÞ	
N4. 8x8y½ðxþ 0 ¼ xÞ ^ ðxþ sðyÞ ¼ sðxþ yÞÞ	
N5. 8x8y½ðx � 0 ¼ 0Þ ^ ðx � sðyÞ ¼ xþ ðx � yÞÞ	

188The axiomatization of PA2 in Null & Simons 1982, 452–453, is slightly different from ours,

although trivially equivalent to it. This is due to the fact that they do not take the individual

constant ‘0’ as primitive, but replace it by a primitive binary predicate constant ‘<’ (expressing the

standard order relation).
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conveniently recasting the language of PA2 as a second-order purely predicative

monadic language (which is always possible).

Because of the theorem of categoricity of arithmetic (Dedekind 1888) all

maximal models of PA2, and thus of S, are isomorphic; the manifold M[S] is

therefore formal and a fortiori Husserl-definite. However, due to Gödel’s incom-

pleteness theorem, there is no deductive system S (in the sense of the definition

previously given) with respect to which the axiom-system S is syntactically

complete.

The following theorem establishes a weaker correspondence between the defi-

niteness of a manifold and the completeness of some axiom-system that deter-

mines it.

Theorem 9. For every manifoldM, ifM is Husserl-definite, then there is a possibly
infinite set of axioms S0 such that M ¼ M[S0] and S0 is syntactically complete.

To prove Theorem 9 it suffices to observe that each manifold M is conceived

as a manifold determined by an axiom-system S (i.e. M ¼ M[S]). If M is

Husserl-definite and S is not syntactically complete, it can always be extended

to a system of axioms S0 that is syntactically complete and that determines the

same manifold: it suffices to take as S0 the set of all closed formulae that are

true in some model of S (and therefore also in all models of S, because M is

a �m2-type). This system of axioms S0 is, however, infinite (and non-effective),

while for Husserl axiom-systems ought to be finite. Husserl never considered

the notion of an infinite axiom set, which arguably does not fit well with his

philosophical goals.

This formal reconstruction of Husserl’s theory of manifolds is based upon

second-order object languages. If we restrict ourselves to first-order languages, it

can be proved (by applying the completeness theorem for first-order logic) that a

system of axioms is syntactically complete iff the manifold is definite.

A first-order Husserl-definite manifold is a � -type. A system of axioms S on a

first-order language (without quantification on predicate variables) is syntactically

complete iff for every proposition a of the language of S, either a or :a is a

theorem of S.

Theorem 10.For every first-order axiom-systemS, the manifoldM[S] is a first-order
Husserl-definite manifold iff S is a first-order syntactically complete axiom-system.

Proof. From right to left the theorem is to be proved in a way wholly analogous

to Theorem 6. From left to right: Let M[S] be a first-order Husserl-definite

manifold. Let a be a first-order closed formula, such that S ‘ a does not hold.
Because of the general completeness theorem for first-order logic, there is a model

M of S (hence, an M 2 M[S]) such that M ⊨ a does not hold, that is M ⊨ :a.
However, asM[S] is assumed to be a first-order definite manifold, each modelM’2
M[S] is elementarily equivalent to M, and thus makes true all propositions that M
makes true. In particular, asM ⊨ :a, :a will be true in every model of S. In virtue
of the general completeness theorem this implies that S ‘ :a. Thus we have proved
that if not S ‘ a then S ‘ :a. This is equivalent to saying that S is syntactically

complete at the first-order.
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3.14 Ways of Generalization

In order to introduce the concept of generalization, understood as a relation

between manifolds, we first give the definitions of expansion and restriction of a

model and impose some constraints on models.

Definition. An expansion of a model M is a model M0 whose domain is the same as
that of M, and whose relations are those of M, plus possibly some others.

With respect to the language, this means to add new predicate constants to which

there correspond, on the semantical level, new relations.

Definition M is a restriction of M0 iff M0 is an expansion of M.

From now on we will consider only models that satisfy the following additional

constraints:

(1) The domain of M has at least two elements

(2) For every n, the intersection of a finite number of n-ary relations of M is non-

empty

Null and Simons consider three different kinds of generalization for Husserl-definite

manifolds: generalization by weakening axioms, generalization by removals, and gen-

eralization tout court.

3.14.1 Generalization by Weakening Axioms

LetM1 andM2 be two manifolds. By definition of manifold they will be of the form

M[S1] and M[S2] for certain sets of formulae S1 and S2.

Definition. M1 is a generalization of M2 by weakening axioms iff M2 
 M1.

In other words, all models of S2 are also models of S1, but not vice versa.
We recall that there is an inverse correspondence between the axioms of a theory

and the corresponding models:

if S1 � S2 then M½S2	 � M½S1	;

that is to say, given two axioms systems one of which is included in the other, the

corresponding sets of models stand in the inverse correspondence. Intuitively, the

fewer constraints one imposes, the more structures one characterizes. In the case of

generalization by weakening axioms, it is possible to prove that

(i) if a 2 Sl then S2 ⊨ a
(ii) there is at least one a 2 S2 such that not S1 ⊨ a

The system of axioms relative to the manifold that generalizes turns out to

be weaker with respect to the one characterizing the manifold on which the

generalization is performed: S1 is included among the logical consequences of
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S2 (the axioms of S1 are not necessarily among the axioms of S2, but they are in any

case logical consequences of S2).

Having fixed the meaning of generalization by weakening axioms, the authors

prove the following three theorems:

Theorem 16. For each isomorphism type I there is a Husserl-definite manifold M
such that I is a subclass of M and each generalization of M is obtained by
weakening axioms.

Theorem 17. Each Husserl-definite manifold can be generalized by weakening
axioms in a manifold that is no longer a Husserl-definite manifold.

Theorem 18. A manifold is Husserl-definite iff there is no manifold of which it is a
generalization by weakening axioms.

Among manifolds, Husserl-definite manifolds turn out to be the minimal ele-
ments with respect to the generalization by weakening axioms.

3.14.2 Generalization by Removals

Let M1 ¼ M[S1] andM2 ¼ M[S2] be given. To have a generalization by removals

of M2 by M1 the following constraints are to be imposed:

(1) S1 
 S2

(2) Each model M of M2 is an expansion (in the sense defined above) of some

model M0 belonging to the manifold M1

Intuitively, this second kind of generalization of a manifold M2 ¼ M[S2] con-

sists, on the one hand, in the removals of some axioms from S2, thereby obtaining a

subsystem S1 of it, and, on the other hand, in the removals of certain predicates

from the language of S2 (precisely, those predicates that appear in some axioms of

S2, but do not appear any more in any axiom of its subsystem S1), and in the

removals of the relations corresponding to those predicates from each model ofM2.

And all this in a way that each model of S2 turns out to be an expansion of some

model of S1 by means of the meanings for the predicates that could have gone lost

because of the removals.

3.14.3 Generalization “Tout Court”

In conclusion, we define M1 as a generalization “tout court” of M2 iff M1 is a

generalization by weakening of axioms of M2, or M1 is a generalization by

removals of M2, or there is a manifold M3 such that M3 is a generalization of M2

by removals and M1 is a generalization of M2 by weakening the axioms.

Theorem 18 (which refers to the generalization by weakening the axioms) has an

analogoue that concerns the more general notion of generalization “tout court”.
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Before presenting it is necessary to introduce the notion of a model that is a full
expansion.

Definition. A model M is a full expansion iff for each n, the set of its n-ary relations
is an ultrafilter on the domain of M. We recall that, given a set A, an ultrafilter U

over A is a set of subsets of A that

1. does not contain the empty set ;
2. is closed under \ (set-theoretical intersection)

3. if X 2 U and X � X0 then X0 2 U (for all X � A)
4. given any subset X of A, either X or its complement –X is in U

It can be proved (respecting the restrictions here imposed on the models) that

(i) no model that is a full expansion has a proper expansion;

(ii) each model is either a full expansion or has an expansion that is a full

expansion.

Finally, it is possible to prove:

Theorem 20. A manifold is a Husserl-definite manifold of full expansions iff there
exists no manifold of which it is a generalization tout court.

Intuitively: there is no manifold of which a Husserl-definite manifold of full

expansions is a generalization tout court. One can think of a Husserl-definite

manifold of full expansions as an atom: it is at the highest level of definiteness.

3.15 Appendix 6: Husserl’s Existential Axiomatics

On the following pages we shall focus on the text “Das Gebiet eines Axiomensys-
tems/Axiomensystem – Operationssystem” which is “Anhang VIII, Studie I” of the

Husserliana edition of the Philosophie der Arithmetik.189 Its initial part – acknowl-
edged by Schuhmann & Schuhmann as belonging to the Doppelvortrag – is

included in their edition under the title “Transcript from the lecture (Abschrift
aus dem Vortrag)”.190 The main point of interest of this text is Husserl’s discussion,

and acceptance, of some essential aspects of a method that Hilbert and Bernays

came to call “existential axiomatics”.191 This connection will open the way for

some reflections concerning a hierarchical order of manifolds and the property of

definiteness.

189PdA App. 470–474; PoA 420–422 & 475–477.
190Sch&Sch 98–99; PoA 420–422.
191Our analysis has profited a lot from Sieg 2002. It was only by reflecting on Sieg’s illuminating

account of the problems connected with “existential axiomatics” that we (hopefully) found a key

for the interpretation of Husserl’s talk of existential axioms.
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Husserl’s goal in our text is to establish “what is to be understood under a field

(Gebiet) of an axiom-system”.192 So he begins with the question: “The axiom-

system ‘defines’ a field . . .What does that mean?” Generally, he maintains, “we can

say of any consistent (verträglich) collection of formal conventions [axioms] . . .
that it defines a field, a manifold of objects.” However, “a special case is to be

marked out; the concept of the field of an axiom-system, and the sense of the

assertion ‘an axiom-system has a field’ has to be provided with a richer content.”

Strictly speaking, Husserl contends, an axiom-system defines a field just in case

it includes “existential axioms (Existentialaxiome)”.193 To understand what Husserl
means by this phrase, it will turn out to be useful to remember that Dedekind

already in 1888 and 1890, in his Was sind und was sollen die Zahlen? and in his

explanatory letter to Keferstein, explicitly posed questions of existence. In }} 71 and 73
of his bookDedekind explains thatN is a simply infinite system just in case there is an

injective map f of N in itself together with a privileged element 1 of N which does

not belong to the codomain of f and is such that its chain 10 (the intersection of all

subsets of N which contain 1 and are closed under f) coincides with N itself. That

simply infinite systems exist follows (} 72) from the main claim of } 66 in which

Dedekind proves that “there are infinite systems”194 by showing that the “totality of

all things that can be object of my thought” actually is an infinite system:

My own realm of thoughts, i.e. the totality S of all things, which can be objects of my

thought, is infinite. For if s signifies an element of S, then the thought s’ that s can be an

object of my thought is itself an element of S.195

For Dedekind not only the notion of a simply infinite system is crucial but also its

non-emptiness. He returns to this point in a letter to Keferstein:

After the essential nature of the simply infinite system, whose abstract type is the number

sequence N, has been recognized in my analysis . . . the question arose: does this system

exist at all in the realm of pure thought? Without a logical proof of existence it would

always remain doubtful whether the notion of such a system might not perhaps contain

internal contradictions. Hence the need for such formal proofs.196

So Dedekind clearly recognizes the need for a proof of existence for a system

satisfying certain abstract conditions.

In 1904 Hilbert criticized Dedekind’s alleged ‘logical proof’ in a paper Über die
Grundlagen der Logik und der Arithmetik he read in Heidelberg at the Third

International Congress of Mathematicians:

192PdA App. 470; PoA 420 (All quotations in the paragraph are from this page).
193Loc. cit.
194According to Dedekind 1888, }60 a system S is said to be infinite if it similar to (i.e., it can be

put into one-to-one correspondence with) a proper part of itself.
195Dedekind 1888, 14. Dedekind registers the fact that a similar consideration can be found in }13
of Bolzano’s Paradoxien des Unendlichen.
196Dedekind 1890.
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R. Dedekind clearly recognized the mathematical difficulties one encounters when a

foundation is sought for the notion of number: for the first time he offered a construction

of the theory of integers, and in fact an extremely sagacious one. However, . . . in proving

the existence of the infinite he follows a method that . . . I cannot recognize as practicable or
secure, for it employs the notion of the totality of all objects, which involves an unavoidable

contradiction. G. Cantor was aware the contradiction just mentioned, and he expressed this

awareness by distinguishing between “consistent” and “inconsistent” sets.197

This does not mean that questions of ‘existence’ in the spirit of Dedekind do not

matter to Hilbert. In his paper Über den Zahlbegriff,198 published in 1900 (and

presented one year before at a meeting of the Deutsche Mathematische Vereinigung
in Munich), before presenting the axiomatic conditions for the number system of

the reals, Hilbert contrasts ‘the formal axiomatic method’ with the ‘genetic

method.’ The latter consists, as we saw, in obtaining the reals by stepwise expan-

sion of the system of natural numbers. To this method Hilbert attributes at least a

pedagogical or heuristic value. By contrast, he maintains, the construction of

geometry is realized by a completely different method: “one begins by assuming
the existence of all elements (that is one assumes at the beginning three different

systems of things: points, lines and planes) and one puts these elements into certain

relations to one-another by means of certain axioms, in particular the axioms of

connection, order, congruence and continuity”.199 Hilbert asks whether the genetic

method really is the only adequate method for the study of the number concept

while the axiomatic method is the most adequate method for laying out the

foundations of geometry. And his answer is that if one wants to present the number

system of the reals adequately and to ensure logically the significance of our

knowledge-claims in this area, one ought to choose the axiomatic method.

After these methodological clarifications he goes on to list the axiomatic condi-

tions for the reals.200 They are introduced by assuming the existence of a system of
things that satisfies certain conditions: “We think a system of things. Let us call

these things numbers and denote them by a, b, c . . . . We think these numbers in

certain mutual relations whose precise and complete description happens by means

of the axioms.”201 In his 2002 Sieg rightly stresses that Hilbert follows Dedekind

here:

Thus, as in Dedekind’s case, there is an explicit existential assumption that has to be

secured or discharged in some way. To emphasize this crucial aspect of Hilberts method,

both Hilbert and Bernays called it “existential axiomatics (existentiale Axiomatik)”.202

197Hilbert 1905.
198Hilbert 1900a.
199Hilbert 1900a, 181 (my emphasis). Cp. Reid 1970, 68–69.
200Hilbert 1900a, 181–182.
201Hilbert 1900a, 181.
202Sieg 2002, 367–368.
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It will help to clarify Husserl’s talk of existential axioms if we recall some

of Hilbert’s axioms for the reals (taken from the first group, the “axioms of

collection”203):

Axiom I.1. From the number a and from the number b we obtain by means of

“addition” a determinate number c; in symbols: a þ b ¼ c or c ¼ a þ b.
Axiom I.3. There is a determinate number – let us denote it by ‘0’ – such that for

each a it holds: a þ 0 ¼ a, and 0 þ a ¼ a.
Axiom I.4. From the number a and from the number b one obtains by means of

“multiplication”, a determinate number c; in symbols: a · b ¼ c or c ¼ a · b.
Axiom I.6. There is a determinate number – let us denote it by ‘1’ – such that for

each a it holds: a · 1 ¼ a, and 1 · a ¼ a.
When talking of ‘existential axioms’ Husserl means axioms given exactly in this

way. For him an axiom-system defines a field only if it includes existential axioms

of this kind. Thus, if the field under consideration is e.g. the one formally defined by

the axioms of arithmetic, one stipulates that “there is a composition ‘þ’ (which

implies that there are determinate pairs of elements a, b, which are combinable in

the form a þ b, and ‘combinable’ means in turn: there is in it at least one new

element, which equals a þ b), and for this combination such and such laws are

valid.”204

Husserl’s argument in the Transcript from the Lecture can be summarized as

follows:

1. We think of a system of things.

2. We establish existential axioms that determine which objects belong to the field.

3. We establish axioms that fix the relations and the combinations between the

objects of the field.

4. We ask in which sense the specified axioms can be said to univocally identify a

certain system.

Among existential axioms Husserl distinguishes those that are ‘univocal (ein-
deutig)’ from those that are ‘determinately equivocal (bestimmt vieldeutig)’ and
those that are ‘indeterminately equivocal (unbestimmt vieldeutig)’. He writes:

These existential axioms can be univocal or equivocal, and in the latter case again either

determinately or indeterminately equivocal. If we now totally exclude the case of being

indeterminately equivocal, then determinate equivocality can be eliminated by the joint

force of the axioms, so that we are able to determine univocally ever new elements from

given elements (and here that can only mean: elements assumed as given and, as it were,

named by proper names) on the basis of the axioms and consequently to regard them

likewise as given. Of an axiom-system which delimits in this manner a general sphere of

univocally determinate existents and thus contains forms . . . of univocal determination of

objects from which forms . . . ever new elements of a derived kind result: of such an axiom-

system we say that it has a domain.205

203Hilbert 1900a, 181–182.
204PdA App. 470; PoA 420.
205PdA App. 470–471; PoA 420–421.
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In this passage Husserl tries to bring two different kinds of problems to light.

The first can be classified under the heading ‘saturation of an axiom-system’, the

second is connected with the above mentioned view that “an explicit existential

assumption has to be secured and discharged in some way.” Let us confront the

first problem.

The case of existence axioms that are indeterminately equivocal is excluded. But

an ambiguously determinate axiom-system seems to correspond to what Veblen

later called a disjunctive system: it can be extended by adding a new independent
axiom. Thus the role of each further axiom is that of introducing a limitation in such

a way that the sphere of ambiguity progressively disappears. In other words, an

‘ambiguously determined axiom-system’ is such that its saturation is always possi-

ble: “whatever is ambiguous . . . must only be ambiguous because of the incomple-

teness of its determination and must be capable of transformed into something

unambiguous. In the manifold or in the axioms nothing can remain that is ambigu-

ous ‘in principle’”.206 In Chapter 3 we faced the difficulty of making the notion of

saturation precise. Axiom-systems containing existential axioms that are ‘determi-

nately equivocal’ admit models that are formally/structurally different. They leave

open the possibility of bifurcation (Gabelbarkeit), as Veblen put it.207 On the

ontological side, each additional axiom does the job of further specializing the

corresponding manifold.

If the definition of a manifold [sc. its axiom-system] does not unambiguously determine its

objects in relation to each other, it expresses formal relationships that can not only

individually but also specifically belong to [i.e. characterize] manifolds of different

forms.208

Finally, existential axioms are called univocal if they univocally fix (i) a (finite)

number of initial objects and (ii) the generative procedures to obtain all objects of

the domain starting from the given ones.

The most restricted case is the one when the domain coalesces to form one single field of

operations (Operationsfeld): that is, where all existence is enclosed in that which is

constructible from a finite number of pre-given objects.209

Existential axioms are also univocal when they univocally fix only the genera-

tion procedures and leave the initial elements indeterminate. In both cases, ‘uni-

vocity’ coincides with the impossibility of bifurcation (Nichtgabelbarkeit).210 In

this case, no further specialization is possible for the corresponding manifold. The

system of axioms for such a manifold “no longer admits of a further determination

206PdA App. 477; PoA 480–481.
207Cavaillès 1938, 91–92.
208PdA App. 470; PoA 475.
209PdA App. 471–472; PoA 421–422.
210Cavaillès 1938, 91–92.
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. . . so that the manifold can still be individualized but is no longer determinable

(differentiable) as to its form”. 211

To summarize, given a defining axiom-system or theory, “AX”, Husserl distin-

guishes two cases:

1. The theory AX is consistent but not saturated, i.e., there is at least one proposi-

tion A of its language that the system does not decide:

9A½notðAX ‘ AÞ& notðAX ‘ :AÞ	:

In this case the theory can be specified further. How can it be expanded in a way

that it remains consistent? For every statement A, A represents a genuine possibility

to specify the theory if and only if not( T ‘ A ) and T þ A is consistent, i.e. not
(T ‘ A). So T þ A is a genuine expansion of T iff not( T ‘ A ) and not( T ‘ : A ), i.e.

T does not decide A .

2. The theory AX is saturated and determines completely the corresponding mani-

fold.

In this case – according to Husserl – there still remains the possibility of

expanding the domain of the theory by adding new objects (and, correspondingly,

expanding the language of the theory). Yet he explicitly says that this latter kind of

expansion does not constitute a real specification: “But we will not call an expan-

sion of the domain a specification (Spezialisierung) in the true sense”.212

The distinction between ‘ambiguously’ and ‘unambiguously’ determinate

axiom-systems discussed so far opens the way for establishing a hierarchy of

genera and species in the realm of (forms of) manifolds and, correlatively, of

(forms of) theories.

The forms of manifold (and, with them, the forms of theory) thus constitute a realm (Reich)
with tiers of genera and species. The lowest species are, as it were, the individuals of this

realm. These “individuals” are the complete (perfekt) forms of manifolds.213

A manifold is, as we saw, ‘completely definite (perfekt definiert)’214 if the

corresponding axiom-system is saturated. In this case, Husserl claims, the manifold

is only materially determinable (materiell bestimmbar), i.e. only an ‘individualiza-

tion’ of it is still possible.

A formally defined manifold is completely determined as to its form if nothing more

remains open formally [each new axiom would make the theory inconsistent, – the

axiom-system is maximal]. In this case the manifold is only materially determinable, its

concept is an ultimate specific difference.215

211PdA App. 473; PoA 476.
212PdA App. 473; PoA 477.
213Loc. cit.
214Loc. cit.
215PdA App. 472; PoA 475.
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Such a manifold can be considered as an atom, an infima species in the hierarchy
of manifold forms, a manifold whose axiom-system is at the highest degree of

saturatedness. In which sense can such a manifold still be expanded?

Such a manifold still allows for new stipulations of existence and for corresponding rules of

operation, but not for new general law of operation, and above all, not for a new axiom for
the old domain.216

That is to say, it is no longer possible to add to the corresponding theory new

independent axioms dealing with the originally intended components. However,
there remains the possibility of expanding the domain underlying the theory T and

of adding new operations on the extended domain.

At this point some hints as to a conceptual distinction Kit Fine made in a

different context may turn out to be helpful. In his paper ‘Our knowledge of

mathematical objects’217 Fine proposes a new approach to the philosophy of

mathematics that he calls ‘procedural postulationism’. This account differs from
the standard one by the feature that a mathematical domain is not conceived as a

model of certain axioms but rather as a structure generated by one or more

procedural postulates, i.e. procedures for the construction of that domain.

Just as a computer program specifies a set of instructions that govern the state of a machine,

a postulate will specify a set of instructions that govern the composition of the mathemati-

cal domain; and just as the instruction specified by a computer program will tell us how to

go from one state of the machine to another, so the instructions specified by a postulate will

tell us how to go from one ‘state’ or composition of the mathematical domain to another

(one that, in fact, is always an expansion of the initial state).218

Although Fine never mentions Husserl in his paper, some of the main features of

‘procedural postulationism’ come fairly close to Husserl’s peculiar way of

approaching some of the issues we have discussed above. In particular, Fine’s

elaboration of the distinction between an ‘indicative’ style and an ‘imperatival’

style of postulation, together with his emphasis on the latter, should be taken

seriously into account when one tries to understand and evaluate Husserl’s peculiar

attitude which, as we saw, tends systematically to mix and intertwine discourse at

the level of theories (axiomatic systems) and discourse at the level of manifolds.

The reason underlying this attitude is that certain problems he was dealing with

could be better expressed at the level of theories (e.g. the problem under which
conditions a theory can be taken to to be saturated), while others could – at that

time – be more naturally formulated at the other level (e.g. the question concerning

the expansion of the domain of a certain manifold with new objects). Now issues of

the latter kind are typical cases where an ‘imperatival’ style of postulation is at

work. Just by way of exemplification: Fine’s proposal for a ‘procedural postula-
tionism’ envisages only one type of simple postulate or atomic instruction,

216PdA App. 473; PoA 476–477 (our emphasis).
217Fine 2005.
218Fine 2005, 90.
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consisting in a procedure for introducing a single new object into the domain

(Introduction: !xCx). This postulate may be read as “introduce an object x con-

forming to the condition C(x) if there is not already such an object in the domain,

otherwise do nothing!”219 Next, there are four kinds of complex postulates built up

from the simple one and conceived of as multiple applications of the simple

postulate: “A complex postulate . . . requires that we successively, or simulta-

neously, apply the simple procedures to yield more and more complex extensions

of the given domain.”220 Thus in Fine’s approach we find the specification of

certain ‘dynamical’ means or procedures for going from given structures to new

ones, rather than the specification of certain ‘static’, axiomatic conditions for

characterizing structures as in the ‘indicative’ style in which a mathematical theory

is usually set up.

Let us now consider what Husserl says in the concluding paragraphs of our text:

We . . . must distinguish two things:

1. Expansion by means of operations and forms of relations. This is ruled out.

2. Expansion by means of existential axioms, and thus expansion of the domain (within the

sphere of the same operations):

a. Defined completely (perfekt) while keeping the domain closed in virtue of the

existents already defined.

b. Defined completely without qualification, even if the expansion of the domain is

permitted. Expansion is no longer possible.

Again two cases:

a. The axiom-system is to be identically retained.

b. The axiom-system is preserved only for the old domain. But new objects are defined,

and an axiom-system is constructed in such a way that when restricted to the old domain

it becomes the old axiom-system. But completeness (Perfektion) in the sense that such

an expansion must not be possible is not required.221

Thus, given a theory T, two kinds of extensions are, under suitable conditions,

possible.

(i) We add new axioms written in the old language (these new axioms determine

new properties for operations and relations of the old domain). This kind of

expansion is possible if, and only if, the corresponding theory is not saturated.
(ii) We add existential axioms, i.e. axioms concerning the existence of new indivi-

duals, and possibly new operations, such as “there is an a such that . . .”. In
other words, we genuinely expand the domain underlying T.

The latter kind of expansion – which is very close to what usually happens in

current mathematical practice – has clearly to do with performing certain opera-
tions on structures. On our reading Husserl is thinking here of applying something

similar to Fine’s introduction postulate: “Introduce new objects into the domain!”

219Loc. cit.
220Fine 2005, 91.
221PdA App. 473–474; PoA 477.
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3.16 Concluding Remarks

This chapter was devoted to Husserl’s Doppelvortrag and to Husserl’s reappraisal

of its key notions in his later Formal and Transcendental Logic. In the Doppelvor-
trag he introduces two different concepts of definiteness, absolute definiteness and

relative definiteness. We tried to provide an adequate formal candidate for each of

them and to challenge several contributions to the topic in the secondary literature.

We also tried to give an account of a number of other related – and often rather

elusive – issues, whose importance lies in the fact that they have a clear metalogical

flavour and that they have a bearing on fundamental questions concerning the

nature of the axiomatic method and the foundations of mathematical theories.

We interpreted relative definiteness as syntactic completeness of a theory and

absolute definiteness as a closure condition analogous to the axiom of completeness

that Hilbert stated for the system of real numbers. ‘Absolutely definite’ theories are,

in our eyes, categorical theories. We then argued against the interpretation of

relative definiteness (a) as categoricity and (b) as syntactic completeness restricted
to a specified set of formulae, as well as against the interpretation of absolute
definiteness as syntactic completeness. We also contested the claim that in the

Doppelvortrag Husserl confronts the question of the semantic completeness of a

theory.

A definite manifold is a set of models structurally very similar to each other.

How are we to understand this structural similarity? To solve this problem we

reconstructed a path (already explored in the literature) towards an extensional

characterization of Husserl’s theory of manifolds. It turned out that the correspon-

dence between definite theory and definite manifold that Husserl dreamt of must

remain a dream because of certain facts that are acknowledged in current logic.

3.17 General Conclusion

Husserl insistence (in }24 of the third Logical Investigation) on defining concepts

wherever possible “with mathematical exactness” has opened a fruitful direction of

research. Examples thereof are Peter Simons’ formalization of Husserl’s part-whole

theory as well as Casari’s and Kit Fine’s attempts and Null & R. Simons’ formal

reconstruction of Husserl’s theory of manifolds. Hopefully, this book has also

contributed to “the progress” – as Husserl puts it in that Investigation – “from

vaguely formed, to mathematically exact, concepts and theories.”

We tried to address conceptual and historical issues so far almost entirely

neglected in the literature and to reconsider well-known issues such as e.g. the

Frege–Husserl dispute on the nature of logic, the practice of defining a concept by

defining its extension and the true sense of numerical assertions.

We first focused on Husserl’s youthful work, the Philosophy of Arithmetic. Here
we took three topics to be especially worthy of serious consideration: (1) Husserl’s
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definition of number by Cantorian abstraction; (2) the controversy between Frege

and Husserl concerning the definition of cardinal numbers; (3) issues bearing on the

very concept of ‘arithmetical operation’ and, more generally, on the notion of

computational process.

In particular, Husserl’s conception of arithmetical operations as procedures of

numerical construction as well as procedures for reducing complex numerical

expressions to the corresponding ‘normal forms’ turned out to be surprisingly

innovative. Even more striking is the fact that Husserl is the first mathematician-

philosopher to reflect upon and systematically investigate the problem of circum-

scribing the totality of computable numerical operations. Our result [Appendix 1]

concerning the extensional equivalence of the class of operations Husserl had in

mind with the class of partial recursive functions can be seen, or so we argued, as a

step in the direction of defining, wherever possible, all concepts “with mathematical

exactness”.

We saw that Husserl clearly endorsed a version of the thesis that algorithmic

signs have a meaning that is exhausted by the operational rules which constitute the

algorithm. However, as Husserl stresses (in opposition to George Boole), the

logical soundness of the signitive structure has to be guaranteed by the parallelism

between an underlying ‘conceptual’ system and the system of signs. We tried to

clarify this epistemological stance by analyzing several texts from the Nachlass
(dating around 1891–1896) in which Husserl confronts the algebraic approach of

Boole and Schröder.
At this point it remains a topic for future research to fill a gap in the history of the

notion of computation: how exactly are these early Husserlian reflections connected

- via Hilbert and Göttingen – with the beginnings of the combinatorial approach to

logic as developed by Schönfinkel and Curry around 1924–1928?

Another purpose of the present research has been that of bringing to light

Bolzano’s often neglected role in Husserl’s reflections since 1894–96. Ever so

often Husserl works, without explicitly acknowledging it, with Bolzanian distinc-

tions. At the time of the Prolegomena Husserl’s “logical universe” is a universe of

abstract logical contents, such as concepts and propositions. Pure logic studies, here

as in Bolzano’s monumental Wissenschaftslehre, the interconnections between

such meaning-entities. In Husserl we noted a certain oscillation (absent from

Bolzano) concerning laws vs rules and derivations vs etiological proofs. Husserl

is sensitive to the problem ofMethodenreinheit as we called it: a good mathematical

proof should avoid a metabasis eis allo genos. But he is also looking for a concept

of proof that comports well with common mathematical practice, and that makes for

some unclarity.

Already in his Philosophy of Arithmetic Husserl talks of an ‘Arithmetica Uni-

versalis’, i.e. a set of calculation rules common to all numerical systems. This

notion is further elaborated in Husserl’s Doppelvortrag of 1901. Here he makes a

distinction between the rules of calculation in ‘general forms of operations’ that

belong to universal arithmetic and ‘specific forms of operations’ that determine a

particular field: the latter may be admissible in one field without making sense in

another. The ‘problem of the imaginary’, as Husserl calls it, can be recast as that of
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finding the conditions that make it possible to extend consistently a given (numeri-

cal) deductive theory by new ‘specific forms of operations’, in order to answer

the following question: How is it possible that in calculations the application of

‘meaningless forms’ yields meaningful and correct results? In order to solve this

problem Husserl introduces and studies various interesting properties of, and rela-

tions between, axiom-systems and manifolds at the level of structures. In particu-

lar, he circumscribes a property of definiteness (relative vs absolute) which he

contrasts with notions elaborated at that time by Hilbert (notably, his axiom of

completeness).

It was not an easy task to disentangle the intricate and often rather sketchy

conceptualizations of the Doppelvortrag. Despite some recent contributions a

convincing in-depth account and formal reconstruction of the whole range of

Husserl’s views in this area has yet to be written. It could be a highly significant

contribution to the history of the origins and early developments of metamathema-

tics. We just made a beginning with this. A truly comprehensive account would

confirm, or so we believe, the late Husserl’s often repeated claim to be the father of

several important ideas that were subsequently adopted, without acknowledgement,

in the logical investigations of Hilbert’s school. But this is a story for another

occasion.
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Hilbert D (1905) Über die Grundlagen der Logik und der Arithmetik, in: Verhandlungen des

Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 17. August 1904,

Teubner, Leipzig, pp 174–185. English translation: van Heijenoort J, 1967, 129–138

Hilbert D (1918) Axiomatisches Denken. Mathematische Annalen 78:405–415. Reprint in: Hilbert

D, 1965

Hilbert D (1923) Die Logische Grundlagen der Mathematik. Mathematische Annalen 88:151–165
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Cavaillès J (1994) Oeuvres complètes de Philosophie des Sciences. Hermann, Paris

Centrone S (2005) Husserl on the concepts of ‘operation’ and ‘system of operations’. Proceedings

of the Husserl Circle at University College Dublin, 35th Annual Meeting (Dublin, June 9–12,

2005). Humanities Institute of Ireland, Dublin, pp 283–299

Centrone S (2006) Husserl on the ‘Totality of all conceivable arithmetical operations’. Hist Phil

Logic 27:211–228

Church A (1936) An unsolvable problem of elementary number theory, American Journal of

Mathematics 58:345–363

Corry L (2004) David Hilbert and the axiomatization of physics (1898–1918). Kluwer, Dordrecht

Da Silva JJ (2000) Husserl’s two notions of completeness. Husserl and Hilbert on completeness

and imaginary elements in mathematics. Synthese 125:417–438

Dreyfus H (ed) (1982) Husserl, intentionality and cognitive science. MIT Press, Cambridge, MA

Dummett M (ed) (1991a) Frege and the paradox of analysis. In: Frege and other philosophers.

Clarendon Press, Oxford, pp 17–52

Dummett M (1991b) Frege – philosophy of mathematics. Duckworth, London

Fine K (1994) Essence and modality. In: Tomberlin J (ed) Philosophical perspectives 8: logic and

language. Ridgeview Publishing, Atascadero, pp 1–16

Fine K (1995) Part-whole. In: Smith B, Smith DW (eds) The Cambridge companion to Husserl.

Cambridge University Press, Cambridge, pp 463–485

Fine K (1998) Cantorian abstraction: a reconstruction and defence. J Phil 95:599–634

Fine K (2005) Our knowledge of mathematical objects. In: Gendler TS, Hawthorne J (eds) Oxford

studies in epistemology: Vol. 1. Clarendon Press, Oxford, pp 89–110

Florence Centre for the History and Philosophy of Science (ed) (1992) Bolzano’s Wissenschaft-

slehre 1837–1987. Olschki, Firenze
Føllesdal D (1958) Husserl und Frege: ein Beitrag zur Beleuchtung der Entstehung der phänome-

nologischen Philosophie, Aschehoug & Co. English translation (Husserl and Frege: A Contri-

bution to Elucidating the Origins of Phenomenological Philosophy) in Haaparanta L (ed.)

Mind, Meaning and Mathematics: Essays on the Philosophical Views of Husserl and Frege.

Synthese Library 237, Kluwer, Dordrecht 1994

Føllesdal D, Husserl’s conversion from psychologism and the Vorstellung-meaning-reference

distinction: two separate issues. In: Dreyfus H 1982, pp 52–56

Føllesdal D, Husserl’s conversion from psychologism and the Vorstellung-meaning-reference

distinction: two separate issues. In: Dreyfus H 1982, pp 52–56
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dependent ! dependent

conjunction, 72, 112, 132, 133, 135–137,

144

contradiction, 89, 141, 154, 162,

164–166, 170, 178, 180–182, 204

logic of non-c. 111–114, 116, 117

principle of (non-)c. 73, 74, 136

countersense (see also: contradiction) 116,

117, 159

D

decidability, decidable, viii, 48, 171–173

deduction, 49, 71, 74, 77–79, 104–106,

164, 166, 170, 175, 193

natural, 147

definiteness (! also: axiom-system;

manifold) xvii, 151, 167–171, 173,

175–178, 180, 182, 183, 192–194,

199, 203, 210–212

definition, 102, 103, 113, 126

formal, 49, 94

dependent

content, 115

meaning, 114

science, 101

derivability (Ableitbarkeit) xiii, 104–106,
118–125, 146, 147, 156, 167, 195, 196

enthymematic, xiii, 120, 121

exact, 121–123

formal (logical) 120

disjunction, 72, 73, 112, 133, 135, 136, 140

division (operation of) 47, 48, 43, 55

E

equality

extensional, 71, 84, 85

general concept of (Gleichheit) 13, 14,
23, 49, 69

Kleene- 55

numerical ! one-to-one correspondence

vs identity, 14

equinumerosity, vi, 13–16, 18, 19, 21, 24

equivalence

between sets, 88

class, 18, 19, 21, 190, 197

congruence, 190

elementary, 197

relation, 18, 20, 23, 71, 190, 195

second-order (monadic) 194, 197

theory of, 16–21, 24, 82

-types, 197, 198

equivalences, 62, 66, 67, 69, 70

between concepts, 68, 69

between judgements, 69
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between sign complexes, 28, 41

immediate, 74, 80

evidence, 100, 108

self, 102

expansion (! also: extension)

of a domain (field, structure) 156, 161,

162, 164, 175, 183, 184, 200–203,

209, 210

of a theory, 156, 165, 167, 170, 175,

181, 182, 208

— conservative ! conservativity

of the concept of number, 27, 161, 162

symbolic, 34, 37

exponentiation (operation of) 38–41, 49, 53
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of a concept (Umfang) vi, 7, 10, 13,
16, 19, 21n, 23–26, 34, 83, 84,

96, 115, 195

of a structure, 183–185

of a theory, 177, 178, 209, 210

F

formal

algorithmic method, 44, 48, 75, 155, 205

language ! language, formal

laws (rules) 27, 41, 42, 44, 49, 76–79,

112, 158, 163, 164, 167, 189

logic ! logic, formal

manifold ! manifold, formal

mathematics, formal sciences, xi, xii,

xvi, xvii, 1, 2n, 72, 74, 102,

153–155, 157, 159

theory (system) ! theory, formal

formalization, xv, 2n, 49, 67, 155–157,

164, 165

function

Ackermann’s f. 50

addition of, 57

b-function, 60n
composition (substitution) of, 56

computable, 47, 48, 50, 54–56, 60, 98, 212

definition by primitive recursion, 50, 56

definition by unbounded minimization, 56

inverse (see: inversion; operation,

inverse)

pairing f. 57, 58

partial numerical f. 47n, 55

partial m-recursive, 56
primitive recursive, 58

restricted composition of, 57

total recursive, 58

G

game, 41, 75, 79, 80

of chess, 79

genesis, 6–8

geometry xv, 100, 101, 157, 158, 162,

180, 191–194, 205

ground-consequence ! consecutivity

H

Hume’s principle, 24, 94

I

identity, 10, 14, 172

element, 189

law, 140

of indiscernibles, 12

imaginary, xvi, xvii, 2, 3, 36, 151, 154,

157–167, 170, 178, 181, 182, 212

implication

material ( ! conditional)

relation (inferability) 112, 128n,

133, 140

incompleteness

Gödel’s theorem, 110, 194, 198, 199

of second-order logic, 195

Inbegriff, 6, 83, 84, 101n, 119
incompatibility ! compatibility

inconsistency ! consistency

independent

axiom, axioms, theory, 129, 155,

169, 187, 206, 208

meaning, 114, 115, 121

premises, 122

science, 101

inference, XIII, 68–70, 73, 74, 100, 101,

103, 105–108, 112, 120–122, 130,

131, 146, 147

conceptual, 128, 129, 135, 141,

143, 145

immediate, 68, 74

propositional, 112, 128–131, 133–135,

143–145

inversion, 51, 53–55, 57–61, 63
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language, 3n, 20, 26, 76, 116, 140, 141, 143

first-order, 63, 167, 173, 184, 185, 196,

208, 210

formal, xiii, 113, 116, 120, 143, 156, 168

of a theory, 165–169, 176, 208, 210

second-order, 143, 195, 196, 199, 200

law, 109, 110, 117

formal ! formal

Frege’s basic Law V, 94

logical ! inference; ! logic

logarithm (operation of) 51, 53

logic, xii-xv, 21, 27, 29, 42, 44, 63, 76,

83, 84, 97, 99–101, 110–116, 135,

145, 146, 156, 168n, 178, 211, 212

algebra of l. ! algebra

first-order, 167, 168, 196, 200

formal, xi, xiii, 76, 77, 110, 111,

116, 193

of consequence, xiii, 112, 116

second-order, 24, 143, 194–197

traditional, 68, 73, 74, 108n, 132

M

manifold, xvi, 52, 83, 99, 109n, 111, 113,

113n, 114, 152, 157, 183, 184, 193–195,

198–200, 203, 207, 209, 211, 212

algebraic, 186

arithmetizability of, 150

definite, 150, 152, 164, 167n, 177,

183, 185, 186, 188, 189, 192,

194, 211

— absolutely definite, 174

—completely definite, 208

— Husserl-definite, 198–203

expansion of, 183, 184

Euclidean, 157

formal, 198, 199

formally defined, 156, 164, 208

generalization of, 114, 200–203

inductively generated, 173, 188

mathematical (constructible) 150, 167n,

185–188

specification of (! also: specialization)

114

Menge, 6, 84, 88
morphology, xiii, 111–118

multiplication (operation of) 39–41,

47, 48, 50, 53, 55, 98

multiplicity ! set

N

negation, 63, 112n, 133, 136

normal form

numerical construct in, 40, 46, 47, 52, 211

proof in, 105

number, 1–3, 5, 28, 62, 64, 75, 112,

157, 160–163, 165, 166, 172, 174,

175, 184, 189

cardinal (Anzahl) 2, 6–8, 10–26, 29,
30, 81, 82, 87–92, 97, 109, 158,

159, 162, 211
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infinite, 22, 91, 92
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13, 17, 19–27, 34, 35–39, 77, 82,

87, 91–96, 99, 109, 110, 158, 160,

162, 164, 173
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system, 2, 3, 19n, 27, 30, 31, 36–40, 45,

46, 48, 54, 110, 191, 192, 205

O

one

(numerical concept: Eins) 25–27, 38,
87, 93

vs many, 6, 10–12, 20, 30, 88, 93

one-to-one correspondence, 13, 15–17,

19, 21, 23, 24, 31n, 82, 91, 92, 94

operation, operations, 2, 28, 30, 37, 38,

55, 61–71, 112n, 162–166, 170, 172,

174–176, 185–190, 209–212

arithmetical, xiii, xvi, 27–30, 39–41,

44–48, 50–52, 54, 55, 63, 98,

129, 160, 163n, 211, 212

— elementary, 47, 51, 52, 57, 60, 77,

109, 160

— higher, 47, 49, 51, 109

Boolean, 191

composition (mixing) of, 49, 52, 53, 55

conceptual (on concepts) 29–31,

42–44, 47

field of, 207
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forms (general, specific) of, 16, 161,

163, 212

inverse, 2, 51, 53, 162

iteration, 50

laws (properties, rules) of, 27, 28, 37,

41, 42, 52, 129, 175, 189, 208, 210

on sets, 84–86

on structures, 193

partial, 48

succession of, 51

system of, 150, 163, 172, 186–191, 203

with signs, 42, 43

P

Peano’s axioms, 94n, 96, 177

permanence, 162–167

predication, 24, 128, 141, 143, 144

presentation, 5, 6n, 10n, 14, 20, 22,

30–34, 39, 40, 49, 120

general, 32

proper (authentic) 7n, 16, 30–32, 34, 82

improper (symbolic) 3, 7n, 16, 30–34,

82, 83

principle

Grundgesetze (basic p., basic laws) 77,
79, 107, 129–131

of construction, 34, 36–38, 109

of contradiction ! contradiction

of permanence ! permanence

ordering p. 18, 33

psychologism, v, vii, xii, 1, 101

psychology, 22, 33, 101

Q

quantifiers, 133–135

R

reduction to normal form (! normal form)

relative product (operation of) 95

representation ! presentation

restriction, 2n, 41, 156, 158, 164, 165, 167

of a domain (structure) 185, 200

root extraction (operation of) 51, 53

rules of a game ! game

S

sensuous

sets, 33

method of derivation, 43, 44

set (Menge) xii, 1, 6–12, 15, 16, 18–22,
25–27, 29–31, 33–36, 47, 81–86, 88,

89n, 91, 112, 113n, 195

infinite, 16, 33, 34, 91

sign, 19n, 25, 27–29, 32, 37–46, 75,

78–80, 129, 212

-system, 44, 75, 129

specialization, 30, 144, 157, 183, 207

subtraction (operation of) 47, 48, 43, 55

subordination, 130, 141, 143, 144

substitutivity

salva congruitate, 115

salva veritate, 13, 14

subsumption, 25, 141, 143

successor (operation) 36, 38, 50, 91, 94

T

theorem, 21n, 24n, 78, 101, 102, 108, 130,

137, 155, 156, 192

Dedekind’s categoricity t. 199

fundamental t. of finite arithmetic, 82

Gödel’s incompleteness t. 194, 198, 199

Normalization (cut-elimination) 147

of Cantor-Schröder-Bernstein, 90

of Frege, 94n

of semantic completeness, 179, 196, 200

Theorienlehre ! theory of theories

theory, 102–104, 107, 111, 113, 131, 147,

155, 156, 180

algebraic ! algebra

formal (! also: axiom-system) xiii, xvi,

64, 67–69, 81, 102, 113, 114,

151, 155–158, 163, 173, 176,

180, 193, 194

of conceptual inferences ! inference

of equivalence ! equivalence

of manifolds ! manifolds

of operations ! operation

of permanence ! permanence

of propositional inferences ! inference

of science xiv, 100

of semantic categories, 146

of theories xiii, 113, 114, 151,

154, 157

RCF of real closed fields, 172, 173

set-theory, 1, 22, 31n, 81, 89, 112,

156, 168n, 195
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undecidability ! decidable

unity (Einheit) 3, 7, 25, 26, 28n, 29,

36, 86, 87, 112

qualified (benannte) 87
Urteilsstrich, 133

V

variation, 115, 118, 145

Z

zero, 25–27, 94, 95
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