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arranged by sections, symposia or plenary sessions. The titles of all accepted 
contributed papers are listed at the end of the volume. A small selection of 
papers contributed to sections 1-5 has been published as a special issue of 
Annals of Pure and Applied Logic; it appeared as number 1 of volume 63, 
1993. A selection of papers contributed to the other sections will appear in 
a volume Logic and Philosophy of Science in Uppsala published in Synthese 
Library by Kluwer Academic Publishers. 

Appended to this preface is a list of the members of the General Program 
Committee, which had the overall responsibility for the scientific program. 
The members of the Section Program Committees are named in the list of 
sections. Also appended to the preface is a list of the officers of the Division 
of Logic, Methodology and Philosophy of Science for 1987-91, a list of the 
members of the Organizing Committee, and a list of those who sponsored 
the Congress financially. 



vi 

The volume has been produced from camera ready manuscripts. In most 
respects the papers appear in the typographical form choosen by the authors. 
However, the final preparation of the manuscripts has been the responsibil- 
ity of the editors. The production of the camera ready manuscripts has 
been carried out by Mrs. Freyja Hreinsddttir and Mrs. Siv Sandvik. We 
thank them for their patient and careful work. Their work was financially 
supported by a generous grant from the Swedish Council for Research in the 
Humanities and Social Sciences. 

Stockholm and Irvine, March 1994. 

DAG PRAWITZ 

BRIAN SKYRMS 

DAG WESTERSTAHL 



vii 

A P P E N D I X  TO T H E  P R E F A C E  

Sect ions ,  P l e n a r y  Lectures  and Spec ia l  S y m p o s i a  

(Titles of invited lectures are given below only when the corresponding paper does not 
appear in this volume.) 

LOGIC 

Section 1. Proof Theory and Categorial Logic 
Section program committee: G. Takeuti (USA, chair), M. Makkai (Canada), 
W. Pohlers (USA). 
Speakers: S. Buss (USA), J. Lambek (Canada), G. Mints (Estonia), M. 
Rathjen (Germany). 

Section 2. Model Theory, Set Theory and Formal Systems 
Section program committee: A. MacIntyre (UK, chair), G.L. Cherlin (USA), 
D.A. Martin (USA). 
Speakers: A. Louveau (France), W. Mitchell (USA), A. Woods (Australia, 
"Counting finite models"). 

Section 3. Recursion Theory and Constructivism 
Section program committee: R.I. Soare (USA, chair), A. Lachlan (Canada), 
S. Whiner (UK). 
Speakers: M. Arslanov (Russia), B. Cooper (UK), M. Lerman (USA). 

Section ~. Logic and Computer Science 
Section program committee: J. van Benthem (The Netherlands, chair), D. 
Gabb~y (UK), Vu. Gurevich (USA). 
Speakers: P. Aczel (UK, "Structured objects"), J. Makowsky (Israel), ]3'. 
Nute (USA). 

Section 5. Philosophical Logic 
Section program committee: K. Fine (USA, chair), M.J. Cresswell (New 
Zealand), T. Smiley (England). 
Speakers: J. Burgess (USA), K. Segerberg (Sweden), A.I.F. Vrquhart (New 
Zealand). 



viii 

GENERAL PHILOSOPHY OF SCIENCE 

Section 6. Methodology 
Section program committee: B. van Fraassen (USA, chair), M.-L. Dalla 
Chiara (Italy), R. Cooke (The Netherlands). 
Speakers: C. Glymour (USA, "Reliability"~joint paper with K.M. Kelly, 
read at the Congress by P. Spirtes), P. Maddy (USA), P.M. Williams (UK). 

Section 7. Probability, Induction and Decision Theory 
Section program committee: H.E. Kyburg (USA, chair), I. Levi (USA), W. 
Spohn (Germany). 
Speakers: P. Gs (Sweden), W. Seidenfeld (USA). 

Section 8. History of Logic, Methodology and Philosopy of Science 
Section program committee: C. Thiel (Germany, chair), B.V. Birjukov (Rus- 
sia), G. Lolli (Italy). 
Speakers: N. Nagorny (Russia), J. Wolenski (Poland). 

Section 9. Ethics of Science and Technology 
Section program committee: R. Haller (Austria, chair), J. Feinberg (USA), 
K.-E. TranCy (Norway). 
Speakers: L. Bergstrhm (Sweden), A. Gibbard (USA), Qiu Renzong (P. R. 
China). 

PHILOSOPHICAL AND FOUNDATIONAL PROBLEMS ABOUT THE 
SCIENCES 

Section 10. Logic, Mathematics and Computer Science 
Section program committee: P. Martin-Lhf (Sweden, chair), P. Aczel (UK), 
S. Feferman (USA). 
Speakers: T. Coquand (France), E. Nelson (USA), R. Wieszen (USA). 

Section 11. Physical Sciences 
Section program committee: A. Shimony (USA, chair), J. Butterfield (UK), 
J. von Plato (Finland). 
Speakers: M. Berry (UK), H. Primas (Switzerland), H. Stein (USA). 

Section 12. Biological Sciences 
Section program committee: E. Sober (USA, chair), J. Hodges (US), J. 
Mosterin (Spain). 
Speakers: G. Vollmer (Germany), J. Wicken (USA, "Extending Darwinism: 
perspectives from the physical sciences"). 



ix 

Section 13. Cognitive Science and A rtifical Intelligence (including Compu- 
tational Perspectives in Psychology) 
Section program committee: P. Gs (Sweden, chair), A. Clark (VK). 
Speakers: D.C. Dennett (USA), R. Penrose (UK, discussion with Dennett 
on artificial intelligence and physics ). 

Section 1~. Linguistics 
Section program committee: T. Parsons (USA, chair). 
Speakers: S. Bromberger and M. Halle (USA), M.J. Cresswell (New Zealand), 
J. van Benthem (The Netherlands). 

Section 15. Social Sciences (including Non-Computational Psychology) 
Section program committee: C. Glymour (USA, chair), M.A. Wylie (Canada). 
Speakers: C. Granger (USA), J. Pearl (USA), P. Spirtes (USA). 

PLENAR Y SPEAKERS 

Opening speaker: G.H. yon Wright (Finland). 
Closing speaker: S. Kripke (USA, "Logicism and de re belief about natural 
numbers"). 

SPECIAL SYMPOSIA 

Symposium on Prediction 
Chair: P. Suppes (USA). 
Speakers: J. Crutchfield (USA, "Thermodynamics of the artificial"), P. Dia- 
conis (USA, "The problems of thinking too much"), W.D. Sudderth (USA). 

Carnap and Reichenbach Centennial Symposium 
Chair: R. Marcus (USA). 
Speakers: R. Jeffrey (USA), H. Putnam (USA). 

Stig Kanger Memorial Symposium on the Logic of Rights and Choices 
Chair: D. Fr (Norway). 
Speakers: D. Fr (Norway), L. Lindahl (Sweden), A. Sen (USA). 

Symposium on Game Theory 
Chair: E. Kalai (USA). 
Speakers: R. Aumann (Israel, "Some thoughts on the foundations of game 
theory"), K. Binmore (USA), J.C. Harsanyi (USA). 



Executive Committee of the Division of Logic, Methodology and 
Philosophy of Science, International Union of History and Philos- 
ophy of Science, 1987-1991 

L. Jonathan Cohen (UK, president), Ivan T. Frolov (Russia, 1st vice presi- 
dent), Dirk van Dalen (The Netherlands, 2nd vice president), Risto Hilpinen 
(Finland, secretary general), Helmut Pfeiffer (Germany, treasurer), Dana S. 
Scott (USA, past president). 

General Program Committee 

Brian Skyrms (USA, chair), Margaret Boden (UK), V. A. Lektorsky (Rus- 
sia), Graham Nerlich (australia), Dag Prawitz (Sweden). 

Local Organizing Committee 

Dag Prawitz (chair), Dag Westersts (congress secretary), Martin Edman, 
Aant Elzinga, Peter Gs Sten LindstrSm, Per Martin-LSf, Wlodz- 
imierz Rabinowicz, SSren Stenlund, Viggo Stoltenberg-Hansen, Claes .~berg. 
Secretary: Jane Schultzberg. 

Financial Sponsors of the Congress 

UNESCO, International Council of Scientific Unions, Swedish Ministry of 
Education and Cultural Affairs, Swedish Council for Planning and Coordi- 
nation of Research (FRN), Swedish Council for Research in the Humani- 
ties and Social Sciences (HSFR), Swedish Natural Science Research Council 
(NFR), Swedish National Board of Technical Development (STU), Royal 
Swedish Academy of Sciences and its foundation In Memory of Jakob and 
Marcus Wallenberg, Royal Academy of Letters, History and Antiquities, 
University of Uppsala, University of Stockholm, City of Uppsala, City of 
Stockholm, Anders Karitz Foundation, Royal Scientific Society in Uppsala, 
Ericsson Telecom AB. 



xi 

C O N T E N T S  

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v 
Appendix to the Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vii 
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xi 

Pres ident ' s  Address,  L. J. C o h e n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

I N A U G U R A L  A D D R E S S  

Logic and Philosophy in the 20th Century, G. H. v o n  W r i g h t  . . . . . . .  9 

1. P R O O F  T H E O R Y  AND C A T E G O R I A L  LOGIC 

The Witness Function Method and Provably Recursive Functions of 
Peano Arithmetic, S. R .  B u s s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29 

Some Aspects of Categorical Logic, J. L a m b e k  . . . . . . . . . . . . . . . . . . . . . .  69 
Gentzen-Type Systems and Hilbert's Epsilon Substitution Method, G. 

E. M i n t s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  91 

Admissible Proof Theory and Beyond, M. R a t h j e n  . . . . . . . . . . . . . . . . . .  123 

2. M O D E L  T H E O R Y ,  SET T H E O R Y  A N D  
F O R M A L  SYSTEMS 

On the Reducibility Order between Borel Equivalence Relations, A. 
L o u v e a u  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  151 

The Core Model up to a Woodin Cardinal, W. M i t c h e l l  . . . . . . . . . . . . .  157 

3. R E C U R S I O N  T H E O R Y  AND C O N S T R U C T I V I S M  

Lattice Embeddings into the R. E. Degrees Preserving 1, K.  A m b o s -  

Sp ie s ,  S. L e m p p  a n d  M.  L e r m a n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  179 



xii 

Contributions to the History of Variations of Weak Density in the n- 
R. E. Degrees, M. A r s l a n o v  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  199 

Rigidity and Definability in the Noncomputable Universe, S. B. 
Cooper,  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209 

4. LOGIC AND C O M P U T E R  SCIENCE 

The Impact of Model Theory on Theoretical Computer Science, J. A. 
M a k o w s k y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  239 

A Decidable Quantified Defeasible Logic, D. N u t e  . . . . . . . . . . . . . . . . . .  263 

5. P H I L O S O P H I C A L  LOGIC 

Non-Classical Logic and Ontological Non-Commitment, Avoiding 
Abstract Objects through Modal Operators, J. P. B u r g e s s  . . . . . . .  287 

Russellian Propositions, J. P e l h a m  and  A.  Urquhar t  . . . . . . . . . . . . . . . .  307 
Accepting Failure in Dynamic Logic, K. Segerberg . . . . . . . . . . . . . . . . . .  327 

6. M E T H O D O L O G Y  

Reliable Methods, K. T. K e l l y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  353 
Taking Naturalism Seriously, P. M a d d y  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  383 
Recent Perspectives on Simplicity and Generalization, P. M. W i l l i a m s  409 

7. P R O B A B I L I T Y ,  I N D U C T I O N  AND DECISION T H E O R Y  

Three Levels of Inductive Inference, P. Gi i rden fors  . . . . . . . . . . . . . . . . .  427 
When Normal and Extensive Form Decisions Differ, T. S e i d e n f e l d  ..  451 

8. HISTORY OF LOGIC,  M E T H O D O L O G Y  AND 
P H I L O S O P H Y  OF S C I E N C E  

Andrei Markov and Mathematical Constructivism, N. M. N a g o r n y  . .  467 
Contributions to the History of the Classical Truth-Definition, J. 

W o l e n s k i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  481 



xiii 

9. ETHICS OF SC IE NC E AND T E C H N O L O G Y  

Notes on the Value of Science, L.  B e r g s t r S m  . . . . . . . . . . . . . . . . . . . . . . .  499 
Morality and Human Evolution, A .  G i b b a r d  . . . . . . . . . . . . . . . . . . . . . . . .  523 
Conceptual Issues in Ethics of Science and Technology, R .  Q i u  . . . . . .  537 

10. F O U N D A T I O N S  OF LOGIC,  M A T H E M A T I C S  AND 
C O M P U T E R  SC IE NCE 

A New Paradox in Type Theory, T. C o q u a n d  . . . . . . . . . . . . . . . . . . . . . . .  555 
Taking Formalism Seriously, E.  N e l s o n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  571 
What is the Philosophical Basis of Intuitionistic Mathematics?, R. 

T i e s z e n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  579 

11. F O U N D A T I O N S  OF P H Y S I C A L  SCIENCES 

Asymptotics, Singularities and the Reduction of Theories, M .  B e r r y  597 
Realism and Quantum Mechanics, H. P r i m a s  . . . . . . . . . . . . . . . . . . . . . .  609 
Some Reflections on the Structure of our Knowledge in Physics, H. 

S t e i n  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  633 

12. F O U N D A T I O N S  OF BIOLOGICAL SCIENCES 

The Limits of Biology, G. V o l l m e r  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  659 

13. F O U N D A T I O N S  OF C O G N I T I V E  SCIENCE AND AI 
(including Computa t iona l  Perspect ives  in Psychology) 

Cognitive Science as Reverse Engineering. Several Meanings of "Top- 
Down" and "Bottom-Up", D. C. D e n n e t t  . . . . . .  , . . . . . . . . . . . . . . . .  . 679 

14. F O U N D A T I O N S  OF LINGUISTICS  

Logic and the Flow of Information, J. v a n  B e n t h e m  . . . . . . . . . . . . . . . .  693 
The Ontology of Phonology, S. B r o m b e r g e r  a n d  M .  H a l l e  . . . . . . . . . . .  725 
Relational Nouns, M.  J. C r e s s w e l l  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  745 



xiv 

15. F O U N D A T I O N S  OF SOCIAL SCIENCES 
(including N o n - C o m p u t a t i o n a l  Psychology) 

Reducing Self-Interest and Improving the Relevance of Economic 
Research, C. W. J. G r a n g e r .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  763 

A Theory of Inferred Causation, J. P e a r l  a n d  T. S. V e r m a  . . . . . . . . .  789 
Building Causal Graphs from Statistical Data in the Presence of Latent 

Variables, P. S p i r t e s  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  813 

I N T E R S E C T I O N A L  S Y M P O S I U M :  P R E D I C T I O N  

Coherent Inference and Prediction in Statistics, W. D. S u d d e r t h  . . . .  833 

I N T E R S E C T I O N A L  S Y M P O S I U M :  C A R N A P  A N D  
R E I C H E N B A C H  C E N T E N N I A L  S Y M P O S I U M  

Carnap's Voluntarism, R.  J e f f r e y  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  847 
The Limits of Vindication, H. P u t n a m  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  867 

I N T E R S E C T I O N A L  S Y M P O S I U M :  
STIG K A N G E R  M E M O R I A L  S Y M P O S I U M  

ON T H E  LOGIC OF R I G H T S  AND C H O I C E S  

Stig Kanger in Memoriam, D. F r  . . . .  . . . . . . . . . . . . . . . . . . . . . . . .  885 
Stig Kanger's Theory of Rights, L. L i n d a h l  . . . . . . . . . . . . . . . . . . . . . . . . .  889 
Non-Binary Choice and Preference: A Tribute to Stig Kanger, A.  S e n  913 

I N T E R S E C T I O N A L  S Y M P O S I U M :  G A M E  T H E O R Y  

DeBayesing Game Theory, K.  B i n m o r e  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  927 
Normative Validity and Meaning of von Neumann-Morgenstern Util- 

ities, J. C. H a r s a n y i  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  947 

Contributed Papers . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  961 

Name Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  977 



Logic, Methodology and Philosophy of Science IX 
D. Prawitz, B. Skyrms and D. Westerst~lhl (Editors) 
�9 1994 Elsevier Science B.V. All rights reserved. 

P R E S I D E N T ' S  A D D R E S S  

L. JONATHAN COHEN 

The Queen's College, Oxford 

Ladies and gentlemen: We have been most courteously welcomed by 
Dr. Gustavsson, as representative of the Government of this beautiful 
country, where the National Committee for Logic Methodology and Phi- 
losophy of Science of the Royal Swedish Academy of Science has 
very kindly invited us to hold our Congress. And we have been welcomed 
with equal warmth by Prof. Str5mholm, the Vice-Chancellor of this fa- 
mous university, the facilities of which have been so generously put at our 
disposal. We have been told also about the structure of the Programme, 
which promises to make this Congress one of the most rewarding that 
has so far taken place in its field. And we have been told about the lo- 
cal organisational arrangements, which are always so important for the 
success of a congress. So in this context it is appropriate for me to add 

not only on behalf of the Executive Committee of the Division for 
Logic, Methodology and Philosophy of Science but also on behalf of all the 
other participants in the Congress how grateful we are to the various 
national and international, governmental and non-governmental, bodies 
that have made the Congress financially possible. Without their most 
generous assistance the Congress could not have taken place. I hope tht 
in each case Prof. Prawitz will convey our deeply sincere gratitude to the 
appropriate authorities. And we must also express our sincerest gratitude 
to the chairman and members of the Programme Committee, and to the 
chairman and members of the Organising Committee, for all the work 
that they have put into making the arrangements for the Congress. Their 
long, careful and conscientious labours have been essential to it, and we 
must congratulate them on the dedication to their task that they have all 
exhibited. 

All that I have said so far undoubtedly needs to be said in the Congress' 
introductory proceedings, and I take pleasure in saying it. But it con- 
cerns only the 'how' of the Congress. It relates to how the Congress has 



been made financially viable, how it has been accommodated, how its 
programme has been put together, and how its membership and living 
arrangements have been organised. It does not say anything about the 
'why' of the Congress. Why has it taken place at all? What justifies it? 
Why should people bother to attend a congress on logic, methodology 
and philosophy of science, instead of just publishing their own papers, 
and reading the papers of others, in the relevant books and journals? 
What justifies such an extensive commitment of time, money and other 
resources? 

Now these are questions to which the difference between a specialised 
international conference and a comprehensive international congress is 
highly important. The reason why those working in the relevant areas 
need to attend international conferences in appropriate areas of logic or 
philosophy of science are largely the same as those applying to historians, 
for example, or to physiologists, or to any other scholars and scientists 
in relation to their conferences. What is fundamental is that one needs 
to sharpen one's perception of what is going on at the frontiers of one's 
subject by not only listening to what is said by others, but also by partici- 
pating in formal discussions at the actual meetings or in informal discus- 
sions outside them. Indeed this is also, of course, the best way of making 
sure that you fully understand the complexities of the issues. In addition 
people need from time to time to submit their own standards of rigour 
and clarity to recalibration, as it were, in case their normal academic 
environment is insufficiently stimulating to maintain these standards. If 
you come from a relatively small country, or a country in which your own 
intellectual interests are not widely shared, it is obvious that you may 
sometimes need this sometimes, indeed, without being fully aware of 
it. One needs, too, to form some conscious or unconscious criteria of rel- 
ative importance in regard to the various issues that one may be minded 
to investigate in one's research, and attendance at relevant international 
conferences is one good way to help achieve this. The participants at such 
international academic conferences, especially if supplied beforehand with 
abstracts of the papers to be delivered, constitute a kind of jury that votes 
with its feet, both in regard to the importance of a topic and in regard to 
the ability of a speaker to say something interesting about it. 

But is it necessary to organise a whole congress for this purpose, with 
fifteen different sections, covering a wide range of different issues? Why 
not just attend conferences in the area of the subject in which you yourself 
are working? Why not cover just one or two sections rather than fifteen? 

I can suggest two main reasons for this. The first is an obvious one, 
but nevertheless worth bearing constantly in mind. There may well be 



stages in the progress of one's research when one has to concentrate at- 
tention on a fairly narrow range of issues. But most of us also encounter 
other stages when analogies or connections between one problem-area and 
another can be highly illuminating. For example, there are well-known 
problems about the existence or non-existence of a correlation between 
psychological laws and neurological uniformities. But is such a correla- 
tion made easier to accept by adherence to the thesis so common in the 
philosophy of physics, that  laws of nature are always idealisations, rather 
than descriptions, of the actual world? Or does the idealisation thesis 
make such a correlation a correlation between psychological laws and 
neurological uniformities more difficult to accept? Or again, many 
difficult issues arise in philosophical logic about the relationship between 
sentences in natural languages and sentences in artificial ones: for exam- 
ple, how is context-dependent disambiguation so common in everyday 
speech to be formalised on a systematic basis? Without a fairly com- 
prehensive theory of linguistic syntax, as at least a starting-point, no solid 
progress can be made here. So philosophical logic can profit by not be- 
ing wholly insulated from the philosophy of linguistics. These are just 
two e x a m p l e s -  and there must be many others of how the broadness 
of the Congress's coverage may enable participants to get into touch at 
first hand with the latest thinking in relevant areas other than those in 
which they themselves normally specialise. So you might well be wasting 
an important opportunity for the cross-fertilisation of ideas if you spend 
all your time at the Congress attending meetings on a too narrowly con- 
strued range of interests. Nor can you always be sure in advance just 
which other sections may produce ideas that are important for your own 
work and which cannot. Sometimes a quite idle curiosity about what the 
neighbours are up to pays big dividends. Indeed you may even find your- 
self intrigued by other people's problems or excited at suddenly having an 
idea about how to solve them. 

But there is also another reason why from time to time it is important 
to hold general congresses like the present one, rather than just more spe- 
cialised conferences. A problem exists about the nature of what we are 
doing when, as philosophers of science, we argue about, say, the struc- 
ture of scientific theories or the fundamental assumptions of particular 
sciences. If these topics demand philosophical concern, then so too does 
the philosophy of science itself. You may think that you, as a practising 
philosopher of science, know what the philosophy of science is. But do 
you any more than the ordinary practising scientist knows reflectively 
and self-conciously what science is? You may think you know how the 
structure and methods of the philosophy of science differ from one type 



of issue to another. But do you - -  any more than the ordinary practising 
scientist can articulate just how scientific reasoning differs from one area 
of science to another? Or, just as some practising scientists regard the 
philosophy of science as a worthless and unproductive activity, so too you, 
as a practising philosopher of science, may despise the metaphilosophy of 
science. But is the latter attitude any more defensible than the former? 
And where better to consider these problems than at a Congress where 
examples of every current branch of the subject are displayed and a high 
level of professional quality is ensured by the discriminating labours of an 
international panel of referees? 

So the question naturally arises" why is there not a special section 
of the Congress devoted to characterising what the philosophy of science 
and the philosophies of mathematics, physics and the other sciences are all 
about - - d o  they have a unitary problematic, how do they make progress, 
how are their conclusions justified, what is their relationship with other 
branches of philosophy, and so on? Surely the planners and organisers 
of the Congress, you may say, must have realised that this is a serious 
issue and must have been capable of doing something about it? But be- 
hind that question lies the possibility of a paradox, which I shall call 
the paradox of the essential incompleteness of philosophy congress pro- 
grammes. Even if there had been enough activity in the area to justify 
adding a sixteenth section, devoted to papers in the metaphilosophy of 
science, we might still have heard cries for a seventeenth section, devoted 
to the meta-meta-philosophy of science. Nor would that necessarily be 
a frivolous, shallow, or inconsequential request. It is far too soon to be 
sure that recursively higher and higher levels of meta-philosophy have no 
interesting problems of their own. So however diligent are the planners 
and organisers of the Congress in encouraging the submission of papers, 
their task may be essentially incompletable within a finite framework. 

But the point I want to make is just that, if you are a philosopher of 
science, you should not leave the Congress without having taken at least 
some advantage of the opportunity that the Congress affords to reflect 
on the nature of philosophy of science. And there are certainly some im- 
portant questions to be answered here. For example, here - -  if anywhere 

it should at least be evident what the philosophy of science is not. It 
is not primarily oriented towards the description or explanation of scien- 
tists' activities, as is the history, or the sociology, of science. Nor is it 
a purely a priori enterprise, like the construction of formal systems and 
the study of their logical or mathematical properties. Nor is it just a 
tapestry of intuitions, woven together into an inspirational commentary. 
Yet it has affinities with each of these. Nor is it to be identified with 



the ethics of science, though the latter may be part of it. And there are 
also some more positive questions to be answered. For example, whence 
does the philosophy of science derive its premisses? From science itself, 
or from the history or sociology or psychology of science, or from the 
intuitions of scientists, or from the intuitions of philosophers? Again, 
when philosophers of science seek to resolve antinomies, like Zeno's para- 
doxes of motion, or Russell's set-theoretical paradox, or Hempel's paradox 
of the ravens, or the Prisoner's Dilemma, is the type of resolution at 
which they aim i.e. the kind of thing that  would count as a resolution 
of the paradox the same in each case, or not? More g e n e r a l l y -  we 
may ask does dialogue have a special part to play in the philosophy 
of science, whereby apparently opposed positions may be seen to be rec- 
oncilable? Or is the philosophy of science continuous with science itself, 
as Russell once claimed? Should philosophers of science aim to establish 
the validity of selected propositions about scientific reasoning or scientific 
explanation, or is the existence of such a special category of philosophical 
propositions an illusion, as Wittgenstein came to think? 

There is no better place to reflect on all these issues - -  in an up-to-date, 
state-of-the-art setting than at the present Congress. The only regret 
that  you may come to have is that  the Congress does not last longer. So 
let us now spend no more time on preliminaries, but move forward into 
the substantive programme of the Congress. We have all got much to 
learn from it. 
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1. In my talk I shall try to evaluate the place of logic in the philosophy 
of our century. The at tempt is necessarily subjective. Its outcome may 
be different depending upon whether the evaluator is primarily a logician 
or primarily a philosopher. I think of myself as a philosopher who, over 
a period of almost sixty years, has at close quarters been watching and 
also, to some extent, participated in the development of logic. 

As I see things, the most distinctive feature of 20th century philosophy 
has been the revival of logic and the fermenting role which this has played 
in the overall development of the subject. The revival dates from the turn 
of the century. Its entrance on the philosophical stage was heralded by 
movements which had their original centres at Cambridge and in Vienna, 
and which later fused and broadened to the multibranched current of 
thought known as analytical philosophy. As the century is approaching 
its end we can notice, I think, signs of decline in the influence of logic on 
developments in philosophy. 

Our era was not the first in history which saw logic rise to prominence 
in philosophy. In the orbit of Western civilization this happened at least 
twice before. First it happened in Ancient Greece, in the 4th and 3rd 
centuries B.C. The second great epoch of logical culture was in the Chris- 
tian Middle Ages. This was connected with the rediscovery of Aristotle 
mediated by the Arabs, and it lasted, roughly, from the middle of the 12th 
to the middle of the 14th century. 

In between the peaks logic "hibernated". Its latest winter sleep lasted 
nearly half a m i l l e n n i u m -  from the mid-fourteenth to the mid-nineteenth 
century. In this period, there were also logicians of great ability and power. 
The greatest of them was Leibniz. But his influence as a logician on the 
philosophic climate of the time was small. It was not until the beginning 
of our century, when Louis Couturat published his La logique de Leib- 
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niz and a number of unedited fragments that Leibniz the logician was 
discovered. 

Logic in the state of hibernation was respected for its past achieve- 
ments, but not thought capable of significant further development. This 
attitude is epitomized in Kant's well known dictum that logic after Aris- 
totle "keinen Schritt vorws hat tun kSnnen, und also allem Ansehen 
nach geschlossen und vollendet zu sein scheint". [1] 

2. What we nowadays commonly understand by "logic" was not always 
referred to with that name. 

Although the word derives from a Greek root, Aristotle did not use it 
for what we think of as his works in logic. Initially, they had no common 
label at all. The name for them, Organon ("instrument") dates from the 
first century B.C. The Stoics used, with some consistency, the term di- 
alectics for what we would call logical study. This te rmwas  transmitted 
to the Middle Ages through the Latin tradition of late Antiquity. One 
of the earliest works which signalizes the revival of logic is Abelard's Di- 
alectica. The same author, however, also used the name "logica" which 
then became current during the Golden Age of Scholasticism - -  only to 
yield ground once more to the rival "dialectica" in the period of the Re- 
naissance. Later, also the name "Organon" was revived. [2] In German 
writings of the 18th and 19th centuries the terms "Vernunfts-" and "Wis- 
senschaftslehre" were largely used. [3] 

For the rehabilitation of the name "logic" the once influential Logique 
ou 1'art de penser (1662), also known as the Logic of Port Royal, appears to 
have been of decisive importance. This revival, however, was concurrent 
with a deprecation of the medieval tradition and with efforts to create 
something more in tune with the emerging new science of nature. The 
logic of Port Royal is not "logic" in our sense. It is more like what we 
would call "methodology", an "aid to thinking" as the title says. 

Kant, who thought Aristotelian logic incapable of development, wanted 
to renew the subject by creating what he called a transscendental logic. 
This was to deal with "the origin, scope, and objective validity" of ~ priori 
or "purely rational" knowledge. [4] And Hegel who, it is said, [5] more than 
anybody else is responsible for the final establishment of the term "logic", 
says in so many words that the time has come when the conceptions 
previously associated with the subject "should completely vanish and the 
position of this science (sc. logic) be utterly changed". [6] 

Hegel was not entirely unsuccessful in his reformist zeal. What has 
since been known as Hegelian or dialectical logic has had a foothold in 
philosophy up to the present day. But it is not this which I had in mind 
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when extolling the role of logic in contemporary philosophic culture. Far 
from it! 

It is characteristic of the terminological vacillations that when the true 
logica rediyiya entered the philosophic stage in the early decades of our 
century, it too wanted to appear under a name of its own. Couturat  
proposed for it the neologism logistique; [7] in German it bacame Logistik. 
The idea was to emphasize, not only its novelty, but also its difference 
both from the corrupted logic of the immediately preceding centuries and 
from the Aristotelian and the Scholastic traditions thought obsolete. [8] 
It was in this "spirit of modernity" that I, for example, was trained in 
logic as a young student. That the term "logistic" never acquired wide 
currency in English is probably due to the fact that the plural form of 
the word already had an established use with a different connotation in 
this language. [9] Instead, the attributes "mathematical" and "symbolic" 
were long used to distinguish the new logic from its ancestral forms. 

3. In view of the confusion in terminology and multiplicity of traditions, 
it is necessary to say a few words about what I and I believe most of 
us at this congress understand by logic. 

Kant appears to have been first to use the term "formal" for logic in the 
tradition of Aristotle and the School. [10] Logic studies the structural as- 
pects of the ratiocinative processes we call argument, inference, or proof. 
It lays down rules for judging the correctness of the transition from pre- 
misses to conclusions not rules for judging the t ruth of the premisses 
and conclusions themselves. This gives to logic its formal character 
and it was with a view to it that both Kant and Hegel complained of the 
subject's "barrenness" and lack of content. 

The "content" of formal logical study are concepts, one could say. Logic 
studies them, not in their external relation to the world, but in their inter- 
nal relationships of coherence or its opposite. This is what we call "con- 
ceptual analysis". In the simplest cases it takes the form of Aristotelian 
definitions through specific differences within proximate genera. In more 
complex and interesting cases it consists of the construction of conceptual 
networks or "fields", the structural properties of which give meaning to 
the entities involved. Formalized axiomatic systems are examples of such 
constructs. Hilbert aptly called them "implicit definitions". 

The study of inference and of meaning relations between concepts are 
the two main pursuits of the discipline of logic. Some would perhaps 
wish to separate the two aspects more sharply from one another and 
distinguish them as "formal logic" and "conceptual analysis" respectively. 
Both attitudes can be justified. The fact remains that it is the close 
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alliance of the two aspects which has given to philosophy in our century 
its strong "logical colouring". 

4. When one of the many subdivisions of philosophy - -  be it metaphysics 
or ethics or l o g i c -  assumes distinctive prominence, this is usually con- 
nected with some other characteristic features of the cultural physiognomy 
of the time. This holds also for the three epochs in Western culture when 
the study of logic excelled. 

In the history of philosophy, the 4th and 3rd centuries B.C. succeeded 
the period usually named after the Sophists. This had been an era of 
childish delight in the newly discovered power of words (the Ao76/) in 
the uses and misuses of arguments for settling disputes in courts or in 
the market. The challenge to reflect critically on these early eruptions 
of untamed rationality gave rise to the tradition in philosophy known as 
Socratic and, within it, to the more specialized study of the forms of 
thought we call logic. This was also the time of the first at tempts to 
systematize knowledge of mathematics as witness Eudoxos's doctrine 
of proportions and the pre-Euclidean efforts to axiomatize the elements 
of geometry. 

The cultural setting in which medieval Scholasticism flourished was very 
different. Mathematics and the study of nature were in low waters. The 
rational efforts of the times were turned toward elucidating and inter- 
preting the logos of the Christian scriptures. In its deteriorated forms 
this activity acquired a reputation for hairsplitting. But it should be re- 
membered that the "hairs" split were concepts and that their "splitting", 
when skilfully done, was conceptual analysis of an acuteness which rivals 
the best achievements of our century. 

With the calamities that befell Europe in the 14th century, the intellec- 
tual culture of the Christian Middle Ages also declined. Gradually, a new 
picture of the world and of man's place in it took shape. It was based 
on the study of natural phenomena and the use of mathematical tools 
for theorizing about them. Scholasticism fell in disrepute, and on logic 
dawned the halfmillennial slumber to which we have already alluded. 

What  was the cause for the revival of logic in the late 19th century? 
One might see it in the fact that Western science had by then reached 
a maturity which made it ripe to reflect critically on its own rational 
foundations. The organ of the new scientific world-picture being mathe- 
matics, it was but natural that the reflexion should start with people who 
were themselves primarily mathematicians like the two founding fathers 
of modern logic: Boole and Frege. 

Their respective approaches to the subject, however, were rather differ- 
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ent. [11] Boole, like his contemporary Augustus de Morgan, was concerned 
with the application of mathematical tools to traditional logic. Their 
trend was continued, among others, by Peirce and SchrSder. Frege's ob- 
jective was different. He wanted to secure for mathematics a foundation 
in pure logic. To this end he had not only to revive but also to reshape 
it. 

5. The revitalization of logic thus took its origin from foundation research 
in mathematics. 

The line first taken by Frege and then continued by Russell was, how- 
ever, but one of a number. In the light of later developments, Frege's and 
Russell's approach is perhaps better characterized as an at tempt  to give 
to mathematics a set-theoretic foundation rather than to derive mathe- 
matics from a basis in pure logic. Cantor's figure looms heavily in the 
background of the logicists' efforts. 

Another approach to the foundation problems was Hilbert 's conception 
of mathematics as a family of axiomatized formal calculi to be investi- 
gated for consistency, completeness, independence, and other "perfection 
properties" in a meta-mathematics. Hilbert's program is in certain ways a 
revival of Leibniz's conception of a calculus ratiocinator, operating within 
a characteristica unversalis. 

A third venture into the foundations of mathematics, finally, was Brou- 
wer's intuitionism. It had forerunners in Kronecker's constructivism and 
the "semi-intuitionism" of Borel and Poincar~. Brouwer's view of the role 
of logic was very different both from that of Frege and Russell and from 
that of Hilbert. [12] The bitter polemics between "intuitionists" and "for- 
malists" bear witness to this. By raising doubts about one of the corner- 
stones of traditional logic, viz. the Law of Excluded Third (or Middle), 
Brouwer and his followers were also pioneers of what is nowadays known 
as Deviant or Non-Standard or Non-Classical Logic(s). 

Logicism, formalism, and intuitionism were the three main schools 
which, rivals among themselves, dominated the stage during what I pro- 
pose to call "the heroic age" in the reborn study of logic. It lasted about 
half a century, from Frege's Begriffsschrift (1879) and Grundlagen der 
Arithmetik (1884) to the appearance of the first volume of Hilbert 's and 
Bernay's monumental Grundlagen der Mathematik in 1934. As one who 
was brought up in the aftermath of this era, I cannot but look back on 
it with a certain amount of nostalgia. It came to an end in a dramatic 
climax. I shall shortly return to this. But first, we must take a look at 
the more immediate repercussions on philosophy which the new logic had 
had. 
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6. In earlier days it used to be said that  logic studies "the laws of thought". 
This has been the title of Boole's magnum opus. But it was also said that  
logic was not concerned with (the laws of) psychological thought processes. 
So what aspect of thought did logic study then? One could answer: the 
articulation of thought in language. Language is, so to speak, the raw 
material with which logic works. (The Greek logos means, ambiguously, 
both speech and ratiocination.) A time when logic holds a place in the 
foreground of philosophy is also one in whose intellectual culture language 
is bound to be prominent. 

This is eminently true of the Golden Age of logic in antiquity. The 
Sophist movement had been an outburst of exuberant delight in the dis- 
covery of language as logos, i.e. as an instrument of argument, persuasion, 
and proof. The disciplines of logic and of grammar were the twin offsprings 
of this attitude. 

The logic of the School, too, has been described as a Sprachlogik or 
logic of language. [13] An excessive interest in the linguistic leg-pulling 
known as "sophismata" seems to have been a contributory cause of the 
disrepute into which Scholasticism fell in its later days. 

The "linguistic turn", [14] which philosophy has taken in our century, 
has become commonplace. So much so that one may feel tempted to view 
logic as one offshot among many of the study of language, other branches 
being theoretical linguistics, computer science, and the study of artificial 
intelligence and information processing. But this would be a distortion of 
the historical perspective. Unlike what was the case with the Ancients, 
with whom logic grew out of an interest in language, it was the revival of 
logic which, with us, made language central to philosophy. Here Frege's 
work became a seminal influence. But it is noteworthy that Frege the 
philosopher of language was "discovered" very much later than Frege the 
philosopher of logic. This renaissance of Frege's influence and of Fregean 
studies took place only with "the turn to semantics" in logic in the mid- 
century. 

Hilbert's concern with the language fragments we call calculi did not 
much influence developments in the philosophy of language. [15] Nor did 
Brouwer's work do this directly. But Brouwer's attack on formalism is, 
interestingly, also a critique of language as an articulation of the intuitions 
underlying mathematical thinking. With his thoughts on the limits of 
language as well as with some other ideas of his, Brouwer is a precursor of 
the philosoper who, more than anybody else, has contributed to making 
language a major concern of contemporary thinking. 
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7. Even though Wittgenstein never adhered to the logicist position in 
the philosophy of mathematics, he stands in the Tractatus firmly on the 
shoulders of Frege and Russell. The place of this book in the picture we 
are here drawing is peculiar. 

It would be quite wrong to think of Wittgenstein's contribution to logic 
as limited to the discovery of the truth-table method for propositional logic 
and the conception of logical truths as truth-functional tautologies. (The 
truth-table idea has a long tradition going back way before Wittgenstein.) 

Foremostly, Tractatus is an inquiry into the possibility of language. 
How can signs mean? The answer Wittgenstein gave was his picture 
theory about the isomorphic reflection of the configurations of things in 
the world, in the configurations of names (words) in the sentence. The 
essence of language is the essence of the world their common logical 
form. This, however, is veiled by the grammatical surface structure of 
actual speech. The logical deep structure of language is a postulated ideal 
which shows itself in meaningful discourse but which, since presupposed, 
cannot be itself described in language. 

If we abstract from the peculiarities, not to say eccentricities, of the 
picture theory and the mysticism of the saying-showing distinction, the 
Tractatus view of logic reflects what I think are common and deep-rooted 
conceptions of the nature of logical form, necessity, and truth. Indirect 
confirmation of this may be seen in the coolness, and even hostility, with 
which logicians and mathematicians, until recently, have received the 
partly devastating criticism to which Wittgenstein later submitted, not 
only his own earlier views of logic, but foundation research in general. 

The "metaphysics of logic" as I would like to call it of the Trac- 
tatus has survived and, moreover, experienced revivals in more recent 
times. I am thinking of developments in linguistic theory and in the 
partly computer-inspired philosophy of mind represented by cognitive sci- 
ence and the study of artificial intelligence. 

The "never-never language" [16] which Wittgenstein had postulated in 
order to explain how language, as we mean it, is possible, has been res- 
urrected in equally speculative ideas about innate grammatical structures 
or about an ineffable language of thought ("mentalese"), deemed nec- 
essary for explaining the child's ability to assimilate with the language 
community where it belongs. Chomsky's revived grammaire uniyerselle 

or "Cartesian linguistics" is another "crystalline structure" of the kind 
Wittgenstein in the Tractatus had postulated for logic. [17] 

For these reasons alone, I think that Wittgenstein's criticism has a 
message worthy of attention also for contemporary philosophy of language 
and philosophy of mind. The similarity between the Tractatus views and 
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these latter-day phenomena has not escaped notice. [18] But it has, so 
far, hardly been deservedly evaluated from a critical point of view. [19] 
The present situation in cognitive and linguistic research offers interesting 
parallels to the search for "foundations" which earlier in the century made 
logic central to the philosophy of mathematics, and which reached what 
I would call its self-defeating climax in Wittgenstein's Tractatus. 

8. "Every philosophical problem", Russell wrote on the eve of the First 
World War, "when it is subjected to the necessary analysis and purifica- 
tion, is found either to be not really philosophical at all, or else to b e -  - 
- logical." [20] But he also said that the type of philosophy he was advo- 
cating and which had "crept into philosophy through the critical scrutiny 
of mathematics" had "not as yet many whole-hearted adherents". [21] In 
this respect a great change was brought about in the post-war decades by 
the movement known as logical positivism, stemming from the activities 
of the Wiener Kreis and some kindred groups of science-oriented philoso- 
phers and philosophy-oriented scientists in Central Europe. One saw a 
new era dawning in the intellectual history of man when philosophy too, 
at long last, had attained den sicheren Gang einer Wissenschaft. 

According to an influential formulation by Carnap, philosophy was to 
become the logical syntax of the language of science. This was an extreme 
position and was in origin associated with views, inherited from earlier 
positivist and sensualist philosophy, of how a logical constitution of reality, 
a logischer A ufbau der Welt, was to be accomplished. 

It is nowadays commonplace to declare logical positivism dead and gone. 
It should be remembered, however, that the movement was conquered and 
superseded largely thanks to self-criticism generated in its own circle. This 
combination of self-destruction with self-development is perhaps unique in 
the history of thought. At least I know no comparable case. As a result, 
a narrow conception of philosophy as the logic of science gradually gave 
place to a conception of it as logical analysis of all forms of discourse. For a 
just assessment of logical positivism, it is necessary to see the movement as 
the fountain-head which eventually grew into the broad current of analytic 
philosophy with its multifarious bifurcations. No one would deny that 
this has been a mainstream I should even say the mainstream of 
philosophy in our century. It is in these facts about its origins: first with 
foundation research in mathematics, and then with the extension of the 
use of logical tools to the conceptual analysis of scientific and, eventually, 
also everyday language, that I found my claim that logic has been the 
distinctive hallmark of philosophy in our era. 
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9. What I called "the heroic age" in the history of modern logic came 
to an end in the 1930s. The turn of a new era [22] was marked by two 
events, themselves of "heroic" magnitude. The one was GSdel's discovery 
of the incompleteness properties of formalized calculi; the second Tarski's 
semantic theory of truth. There is, moreover, an intrinsic connection 
between the two achievements. [23] 

GSdel's incompleteness theorem had serious repercussions on the for- 
malist program of axiomatization, consistency proof, and decidability. It 
set limits to the idea, ultimately of Leibnizian origin, of the formalization 
of all ratiocinative thought in syntactic structures and of reasoning as a 
jeu de charact~res, a game of signs ignoring their meaning. The related 
achievement of Tarski meant a transcendence of the syntactic point of 
view and its supplementation by a semantic one. Therewith it made the 
relation of language structure to language meaning amenable to exakt 
treatment. The immensely fertile field of model theory is an outgrowth 
of this opening up of the semantic dimension of logic. For its further in- 
vestigation, Tarski's later work was also of decisive, seminal importance. 
His pioneering role is in no way minimized by the fact that, seen in the 
perspective of history, basic ideas in model theory go back to the earlier 
work of Skolem and L6wenheim. 

G6del's impact on the formalist program, although devastating for the 
more ambitious, philosophic aspirations of the Hilbert school, also greatly 
furthered its less ambitious aims. Proof-theory crystallized in the arith- 
metization of metamathematics and in the theory of computable and re- 
cursive functions. 

Something similar happened to the line in logic stemming from Frege 
and Russell and continued through the 1930s, most conspicuously in the 
work of the young Quine. The antinomies turned out to be a more seri- 
ous stumbling block than it had seemed after the early efforts of Russell's 
to conquer the difficulties which had threatened to wreck Frege's system. 
The semantic antinomies, like the Liar, required extensions beyond type- 
theory which in none of their suggested forms can be said to have gained 
universal recognition. The sought for basis of mathematics in pure logic 
gradually took the shape of a foundation in set-theory. Set-theory, being 
itself a controversial branch of mathematics, gave prominence to another 
challenge, viz. that of clarifying the axiomatic and conceptual foundations 
of Cantor's paradise. Even though the difficulties which the logicist ap- 
proach encountered can be said to have ruined the original aspirations of 
its initiators, this heir to their program remains, in my opinion, the philo- 
sophically most challenging aspect of foundation research in mathemat- 
ics today. Not surprisingly G6del, the perhaps most philosophic-minded 
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mathematical logician of the century, devoted his later efforts mainly to 
work in this area. 

The third mainstream in the early foundation research, intuitionism, 
also changed its course. In 1930 Heyting codified, in a formal system, the 
logical rules which were thought acceptable from the intuitionist point of 
view. Thereby he created an instrument which has turned out to be very 
useful in the mathematical study of proof, and thus for vindicating that 
part of Hilbert's program which remained unaffected by G5del's discover- 
ies. In view of the acrimony which once embittered the fight between for- 
malists and intuitionists and not least the relations between the founders 
of the two schools, [24] their reconciliation in the later developments of 
proof-theoretic study may even appear a little ironic. 

Brouwer himself was of the opinion that no system of formal rules 
can encompass the entire range of mathematically sound intuitions. He 
could therefore not attach great importance to Heyting's achievement. Of 
GSdel's results he is reported to have said that their gist had been obvious 
to him long before GSdel presented his proofs. [25] 

In his rebuttal of the idea that logic could provide a foundation for 
mathematics, Brouwer can be said to anticipate the attitude of the later 
Wittgenstein. Wittgenstein also shared the constructivist leanings of the 
intuitionists and their critical reflection on some basic principles of clas- 
sical logic. 

The change of climate in logic after the 1930s I would describe as a "dis- 
enchantment" (Entzauberung) in Max Weber's sense. When the grand 
dreams and visions of the formalist, intuitionist, and logicist schools had 
lost their philosophic fascination, what remained and grew out of them 
was sober, solid science. The discipline which had been the mother of the 
new logic, viz. mathematics, took back its offspring to its sheltered home. 

The homecoming did not fail to raise suspicions among the settled mem- 
bers of the family, however. Early in the century, Poincar~ had objected 
to the logisticiens, that they pretended to give "wings" (ailes) to mathe- 
matics but had in fact provided it only with a "hand-rail" (lisibre) and, 
moreover, not a very reliable one. [26] On my first encounter with Tarski 
a few years after the war, Tarski told me of the difficulties and frustra- 
tions he had experienced trying to make mathematical logic respected in 
the mathematics department at Berkeley. I recall something similar from 
the mathematical establishment in my own country in the form of com- 
plaints that some of the most promising students had left the subject and 
migrated to philosophy. Now, forty years or more later, this attitude no 
longer prevails in the mathematical profession, except maybe in corners 
of the world not yet much touched by modern developments. 
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10. When viewing the history of modern logic as a process of "rational 
disenchantment" in areas of conceptual crisis or confusion, one is entitled 
to the judgement that the most exciting development in logical theory 
after the second world war has been the rebirth of modal logic. The study 
of modal concepts had flourished in the Aristotelian tradition ~ not only 
with its founder, but also with its medieval continuation. In the renais- 
sance starting with Boole and Frege, this study, however, long remained 
neglected. When eventually it was revived in the work of ~ukasiewicz 
and C. I. Lewis, its rebirth was something of a miscarriage. This was so 
because it took the form of a critique of Russellian logic. Modal logic was 
thought of as a "non-classical" alternative or even rival to it. 

It was only with the conception of modal logic, not as an alternative 
to Russell's but rather as a "superstructure" standing on its basis, that 
the logical study of modalities got a good start in modern times. This 
conception did not gain ground until after the second world war, although 
it had had precursors in the 1930s with GSdel and Feys. 

A result of the new start was something that could be called a General 
Theory of Modality. Instead of "General Theory" one could also speak of 
a family of related "logics" of a similar formal structure. These offshoots 
of an old stem of traditional modal logic have become known as epistemic, 
doxastic, prohairetic, deontic, and interrogative logic. Historical research 
has revealed ancestors of many of them either in ancient and medieval 
logic or with Leibniz, this prodigious logical genius, whose seeds mainly 
fell in the barren soil of his own time. 

One thing which made the study of modal concepts controversial is 
that it problematized one of the basic principles of logic ~ it too of Leib- 
nizian ancestry known as the law of intersubstitutivity salva veritate 
of identities. Such substitutivity in sentential contexts is the hallmark of 
what is known as extension~lity in logic. A system of logic which disputes 
or limits the validity of Leibniz's principle is called intensional. Modal 
logic may therefore be regarded as a province within the broader study of 
intensional logic. 

Already Frege had drawn attention to limits of extensionality in dox- 
astic and epistemic contexts. Formal operations in intensional contexts, 
particularly the use in them of quantifiers, have seemed doubtful and un- 
sound to many logicians of a conservative bent of mind. Above all, Quine 
has been an acute and staunch critic of modal and other forms of in- 
tensional logic. But his criticism has also been a challenge and source 
of inspiration for a younger generation of logicians, partly following in 
Quine's footsteps, to clear the jungle of modal and intensional concepts 
and make their study respectable. To this has contributed the invention 
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of the very powerful techniques known as possible worlds semantics. The 
Leibnizian echo in the name is not mere accident. 

With these later developments the study of modal and intensional logic 
has become progressively less "philosophical" and technically more re- 
fined. Another process of "disenchantment" is taking place, an initially 
controversial subject being handed over by philosophically-minded logi- 
cians to logically-minded mathematicians. 

11. Modal logic, also intensional logic in general, is still in some quarters 
called "non-classical". There is no received view of what should count as 
"classical", or not, in logic. As long as modal logic was regarded as an al- 
ternative to some already canonized structure, the name might have been 
justified. But modal logic is not an "alternative" to the logic systematized 
by Frege and Russell at least not to that part of it which is known as 
first order logic and which consists of the two layers of the propositional 
and the predicate calculus. 

A way of distinguishing classical from non-classical logic, which cuts 
deeper both historically and systematically, is the following: Classical 
logic accepts as unrestrictedly valid the two basic principles, first stated by 
Aristotle and subsequently known as the Law of (Excluded) Contradiction 
and Law of Excluded Middle (or Third). Both are also fundamental in the 
logic of Frege and Russell. To question the one or the other is tantamount 
to doubting the division of what is sometimes called logical space in two 
jointly exhaustive and mutually exclusive parts. 

Doubts about the exhaustive nature of the partition were already en- 
tertained by the founding father of logic himself. (Yet I do not think it 
right to interpret Aristotle's discussion of the "Sea-Battle Problem" in 
the ninth chapter of Peri Hermeneias as a denial of the universal validity 
of the tertium non datur.) The same doubts reappeared in the Middle 
Ages together with groping attempts to construct a many-valued logic 
for coping with them. Within modern logic these efforts were renewed 
by ~ukasiewicz. His grand vision of polyvalent logic as a generalization 
of classical logic did not turn out as fertile as its originator had imagined 
it to be. The idea of polyvalence has useful technical applications. But 
the conception of it as a grating of logical space finer than the true-false 
dichotomy encounters interpretational difficulties. It is therefore doubtful 
whether many-valued logic should even count as non-classical in the sense 
which I have in mind here. 

A more consequential onslaught on the Law of Excluded Third and 
some other "classical" ideas associated with it, such as the Principle of 
Double Negation, came from Brouwer and the intuitionists. As already 
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noted, formalized intuitionist logic has turned out to be a useful concep- 
tual tool for proof-theoretic study. It provides the logical backbone for 
a constructivist approach to the notion of existence in mathematics and 
is also helpful for efforts to clarify the concept of the actual infinite. To 
count with truth-value "gaps" has become standard in many fields of for- 
mal study where one deals with concepts of restricted definability or of 
an open texture. The Law of Excluded Middle can hardly any longer be 
regarded as a controversial topic in the philosophy of logic. 

More firm and less assailed, until recently, has been the second pillar 
of classical logic, the Law of Contradiction, which prohibits truth-value 
"overlaps". Therefore, doubts about it, once they are raised, cut much 
deeper into the foundations of logic than doubts relating to the tertium 
non datur. 

In fact, already Aristotle realized that there might be problems here. 
First among the moderns to see the possibility of a non-classical opening 
were ]Sukasiewicz and the Russian Vasiliev. [27] 

Throughout the history of thought, antinomies have been a headache of 
philosophers and since the origin of set-theory also of mathematicians. 
Antinomies exemplify seemingly impeccable logical inference terminating 
in conclusions contradicting each other. If this is thought unacceptable, 
one has to look for some error in the reasoning and lay down rules 
for how to avoid the calamity. This was what Russell did with his Type- 
Theory and Vicious Circle Principle. 

Moreover, the appearance of a contradiction in a context of reasoning, 
such as for example an axiomatic system, seems to have the vitiating 
consequence of making everything derivable within the system, thus triv- 
ializing or, as one also says, "exploding" it. Hilbert's efforts were partly 
aimed at proving that sound systems are immune to such disasters. This 
presupposed that the logic of the meta-proofs has the required immu- 
nity. Hilbert saw a warrant of this in what he called the finite Einstellung 
("finitist stand"), allowing only finite Schlussweisen. 

Another way of meeting the challenge presented by contradictions is to 
scrutinize the idea of logical consequence itself. Contradictions may have 
to be rejected as false, but must they have the catastrophic consequences 
which "classical" logic seems to allow by virtue of what is sometimes 
referred to as Duns Scotus' Law after the doctor subtilis of the School? 
Efforts to modify the classical view of logical consequence or entailment 
have been the motivating force behind the venture called Relevance Logic. 
A more recent and more radical step in the same direction is known as 
Paraconsistent Logic. One of its aims is to show how contradictions can be 
"accomodated" within contexts of reasoning without fear of trivialization 



22 

or collapse. 
These non-classical developments in logic, of the past decades, have 

found an unexpected, but I think not very thrustworthy, ally in Dialectical 
Logic, ultimately of Hegelian inspiration. The best one can hope for is 
that the treatment of dialectics with the formal tools of paraconsistent 
and related "deviant" logics will contribute to a demystification of those 
features of it which have made it little palatable to rational understanding. 
A similar service which these new tools may render is that of reducing to 
its right proportions what Wittgenstein called "the superstitious dread 
and veneration by mathematicians in face of contradiction". [28] 

Just as classical logic, i.e. the logic of Frege and Russell, can be called 
the sub-structure on which stand the several branches of modal and in- 
tensional logic - -  in a similar way the two main varieties of non-classical 
logic: the intuitionist-like ones which admit truth-value gaps and the 
paraconsistent-like ones which admit truth-value overlaps, will serve as 
sub-structures from which a variety of alternative epistemic, deontic and 
other logics will grow out and be further cultivated. But these develop- 
ments are still in early infancy. 

12. I have tried to review the development of logic in this century as a 
gradual progress from the philosophic fascination of a foundation crisis 
in mathematics and the confusions excited by the rediscovery of fields 
of study long lying fallow to increased clarity, exactness, and conceptual 
sobriety. But logic thus transformed ceases to be philosophy and becomes 
science. It either melts into one of the old sciences or contributes to the 
formation of a new one. What happened to logic was that it fused with 
the multifarious study of mathematics, but also with newcomers on the 
scientific stage such as computer science and cognative study, cybernetics 
and information theory, general linguistics - -  all being fields with a strong 
mathematical slant. 

Transformations of parts of philosophy into independent branches of 
scientific study are well known from history. The phenomenon has gained 
for philosophy the name "mother of the sciences". Physics was born 
of natural philosophy; in some English and Scottish universities it still 
bears that name. The second half of the 19th century witnessed the birth 
of psychology and sociology through a transformation of predominantly 
speculative thinking into experimental and empirical research. In our 
century something similar happened with logic. [29] 

Already in the early days of the developments which we have here been 
following, Russell wrote: "Mathematical l og i c - - -  is not directly of philo- 
sophical importance except in its beginnings. After the beginnings, it 
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belongs rather to mathematics than to philosophy." [30] And in an un- 
published typescript of Wittgenstein's we read: "Die formale L o g i k -  ein 
Teil der Mathematik." [31] 

Philosophy, I would say, thrives in the twilight of unclarity, confusion, 
and crisis in fields which in their "normal" state do not bewilder those 
who cultivate them or cause excitement in their intellectual surroundings. 
From time to time, however, philosophic storms will occur even in the 
seemingly calmest of waters. We can be certain that  there will always 
remain obscure corners in logic too, thus assuring for it a permanent 
place among the concerns of philosophers. And I can well imagine that  
individual thinkers will find in logic the raw material for bold metaphysical 
constructions. As an example might be cited GSdel's conceptual realism 
with echos of Plato and Leibniz. But it seems to me unlikely that  logic 
will continue to play the prominent role in the overall picture of an epoch's 
philosophy which it has held in the century now approaching its end. This 
will be so partly because of logic's own success in integrating itself into the 
neighbouring sciences just mentioned. But it will also be due to the rise 
on the philosophical horizon of new clouds calling for the philosophers' 
attention and craving for clarification. 

Big shifts in the centre of philosophy signalize changes in the general 
cultural atmosphere which in their turn reflect changes in political, eco- 
nomic and social conditions. The optimistic mood and belief in progress, 
fostered by scientific and technological developments, which has been our 
inheritance from the time of the Enlightenment, is giving way to a sombre 
mood of self-critical scrutiny of the achievements and foundation of our 
civilization. No at tempt  to survey the overall situation in contemporary 
philosophy can fail to notice this and to ponder over its significance. 

I shall not try to predict what will be the leading trends in the philos- 
ophy of the first century of the 2000s. But I think they will be markedly 
different from what they have been in this century, and that  logic will not  

be one of them. If I am right, the twentieth century will even clearer than 
now stand out as another Golden Age of Logic in the history of those 
protean forms of human spirituality we call Philosophy. 

NOTES 

KANT, Kritik der reinen Vernuft, p. 7 (Pagination of the second edition, 1787.) 
Most notably with FRANCIS BACON's Novum Organum (1620); later also with 
LAMBERT'S Neues Organon (1764); and once again with WILLIAM WHEWELL'S 
Novum Organum Renovatum (1858). 
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3. Thus, for example, by BOLZANO whose Wissenschaftslehre (1837) is one of the 
early precursors of logic in its modern form. 

4. KANT, op.cit., p. 78. 

5. HEINRICH SCHOLZ, Geschichte der Logik, p. 12. Junker und Dfinnhaupt, 
Berlin 1931. 

6. HEGEL, Wissenschaft der Logik, Teil I, p. 36: "Allein sind iiberhaupt 
die Vorstellungen, auf denen der Begriff der Logik bisher beruhte, teils be- 
reits untergegangen, teils ist es Zeit, dass sie vollends verschwinden, dass der 
Standpunkt dieser Wissenschaft hSher gefasst werde und dass sie eine v611ig 
vers Gestalt gewinne." (Quoted from Werkausgabe, Suhrkamp Verlag, 
Frankfurt am Main 1969.) 

7. See the article "Logistique" in LALANDE'S Vocabulaire technique et critique de 
la philosophie. 

8. WHITEHEAD, in his Foreword to QUINE'S early work A System of Logistic 
(1934), wrote: "In the modern development of Logic, the traditional Aris- 
tolelian Logic takes its place as a simplification of the problem presented by 
the subject. In this there is an analogy to arithmetic of primitive tribes com- 
pared to modern mathematics." 

9. Cf. comments on the term "logistic" in C. I. LEWIS, A Survey of Symbolic 
Logic (1918), p. 3ft. Dover Publications, New York 1960. 

10. SCHOLZ, op.cit., p. 14. KANT, op.cit., p. 76ff. 

11. The difference is interestingly reflected in the titles of the works with which they 
embarked on their respective tasks. BOOLE'S was called The Mathematical 
Analysis of Logic, Being an Essay towards a Calculus of Deductive Reasoning. 
FREGE'S pioneering work had the title Begriffsschrift, eine der arithmetischen 
nachgebildete Formelsprache des reinen Denkens. 

12. A contemporary account of the state of foundation research in mathematics, 
still very worth reading is A. HEYTING'S Mathematische Grundlagenforschung, 
Intuitionismus, Beweistheorie, Julius Springer, Berlin 1934. 

13. The term presumably first used by MARTIN GRABMANN in his renowned work 
Geschichte der scholastischen Methode I-II, Freiburg i B. 1909-1911. 

14. The phrase borrowed from the title of RICHARD RORTY'S book The Linguistic 
Turn, Chicago 1967. Rorty attributes the invention of the phrase to Gustav 
Bergmann. 

15. I would conjecture, however, that  WITTGENSTEIN'S notion of "language game" 
and his ideas from the early 1930s of language as calculus have a remote source 
of inspiration in the influence of Hilbertian formalism on the discussions about 
logic and the philosophy of mathematics among members of the Vienna Circle. 
Cf. Ludwig Wittgenstein und der Wiener Kreis. Gesprdche, aufgezeichnet yon 
Friedrich Waismann. Aus dem Nachlass herausgegeben von B.F. McGuinness. 
In Ludwig Wittgenstein, Schriften 3, Suhrkamp Verlag, Frankfurt am Main 
1967. 

16. The phrase was invented by the late Professor MAX BLACK. See his A Compan- 
ion to Wittgenstein's Tractatus, p. 11. Cambridge University Press, Cambridge 
1964. 
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\VITTGENSTEIN, Philosophische Untersuchungen (1953), $ 107: "Die Kri- 
stallenreinheit der Logik hatte sich mir ja nicht ergeben, sondern sie war eine 
Forderung." 

See R. M. McDONOUGH, The Argument of the "Tractatus". Its Relevance to 
Contemporary Theories of Logic, Language, Mind, and Philosophical Truth. 
State University of New York Press, Albany, N. Y. 1986. Particularly pp. 172- 
183. 

The best a t tempt  known to me of such critical evaluation is that  of NORMAN 
MALCOLM. See in particular his book Nothing is Hidden, Wittgenstein's Crit- 
icism of His Early Thought, Basil Blackwell, Oxford 1986. 

RUSSELL, Our Knowledge of the External World, As a Field for Scientific 
Method in Philosophy (1914), p. 42. Quoted from the edition by Allen ~z 
Unwin, London 1949. 

RUSSELL, op.cit., p. 14. 

On this turn and its repercussions on foundation research in mathematics,  see 
the excellent account by ANDRZEJ MOSTOWSKI, Thirty Years of Foundation 
Studies, Lectures on the Development of Mathematical Logic and the Study of 
the Foundations of Mathematics in 1930-196~. Basil Blackwell, Oxford 1966. 

TARSKI, "Der Wahrheitsbegriff in den formalisierten Sprachen", Studia Phi- 
losophica I, 1935. Postscript (Nachwort), p. 404f. 

Cf. HEYTING, op. cit., p. 53f. Also D. VAN DALEN, "The War of the Frogs and 
the Mice, or the Crisis of the Mathematische Annalen", The Mathematical  
Intelligence 12, 1990. 

HAO WANG, Reflections on Kurt G6del, p. 57 and p. 88. The MIT Press; 
Cambridge, Mass. 1987. 

POINCARt~, Science et Mdthode (1909), p. 193f. The references are to the 
Edition Flamarion, Paris 1924. Cf. also RUSSELL, op.cit., p. 68. 

N. A. VASILIEV, Voobra2aemaja logika. Izbrannye Trudy, Ed. by V. A. Smir- 
nov. Nauka, Moscow 1989. 

WITTGENSTEIN, Remarks on the Foundations of Mathematics, Third Edition, 
Basil Blackwell, Oxford 1978, p. 122. In German: "Die abergls Angst 
und Verehrung der Mathematiker vor dem Widerspruch." 

In a well-known simile, John Langshaw Austin compared this process to phi- 
losophy perpetually being "kicked upstaris" - -  and he envisaged that  the "lin- 
guistic turn" in philosophy will eventually also result in the birth of an indepen- 
dent descriptive study of conceptual features of linguistic uses, in a "linguistic 
phenomenology". J. L. AUSTIN, "Ifs and Cans", Proceedings of the British 
Academy, Vol. XLII, Oxford University Press, Oxford 1956. 

RUSSELL, op.cit., p. 50. 

WITTGENSTEIN, TS 219. Wittgenstein's relegation of formal logic to mathe- 
matics is not in conflict with the fact that  he calls his own investigations in 
philosophy "logical". The adjective then means roughly the same as conceptual 
or, in Wittgenstein's  somewhat excentric terminology, grammatical. 
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1. I n t r o d u c t i o n  

The witness function method has been used with great success to characterize 
some classes of the provably total functions of various fragments of bounded 
arithmetic [2, 4, 18, 23, 17, 16, 5, 6, 1, 7, 8]. In this paper, it is shown that 
the witness function method can be applied to the fragments IEn of Peano 
arithmetic to characterize the functions which are provably recursive in these 
fragments. This characterization of provably recursive functions has already 
been performed by a variety of methods; including: via Gentzen's assignment 
of ordinals to proofs [9, 27], with the Ghdel Dialectica interpretation [12, 13], 
and by model-theoretic methods (see [20, 15, 26]). The advantage of the 
methods in this paper is, firstly, that they provide a simple, elegant and 
purely proof-theoretic method of characterizing the provably total functions 
of IEn and, secondly, that they unify the proof methods used for fragments 
of Peano arithmetic and for bounded arithmetic. 

The witness function method is related to the classical proof-theoretic 
methods of Kleene's recursive realizability, Ghdel's Dialectica interpretation 
and the Kreisel no-counterexample interpretation; however, the witness 
function method does not require the use of functionals of higher type. 
We feel that the witness function method provides an advantage over the 
other methods in that it leads to a more direct and intuitive understanding of 
many formal systems. The classical methods are somewhat more general but 
are also more cumbersome and more difficult to understand (consider the dif- 
ficulty of comprehending the Dialectica interpretation or no-counterexample 
interpretation of a formula with more than three alternations of quantifiers, 

* Supported in part by NSF grants DMS-8902480 and INT-8914569. 



30 

for instance). On the other hand, the more direct and intuitive witness 
function method has been extremely valuable for the understanding of why 
the provably total functions of a theory are what they are and also for the 
formulation of new theories for desired classes of computational complexity 
and, conversely, for the formulation of conjectures about the provably total 
functions of extant theories. The main support for our favorable opinion of 
the witness function method is, firstly, its successes for bounded arithmetic 
and, secondly, the results of this paper showing its applicability to Peano 
arithmetic. 

While checking references for this paper, the author read Mints [19] for 
the first time it turns out that Mints's proof that the provably recursive 
functions of IE1 are precisely the primitive recursive functions is based on 
what is essentially the witness function method. This theorem of Mints is, 
in essence, Theorem 9 below. Mints's use of the witness function method 
predates its independent development by this author for applications to 
bounded arithmetic. The present paper expands the applicability of the 
witness function method to all of Peano arithmetic. 

The outline of this paper is as follows: section 2 develops the necessary 
background material on Peano arithmetic, the subtheories IE~, transfinite 
induction axioms, least ordinal principle axioms, the sequent calculus and 
the correct notion of free-cut free proof for transfinite induction/least number 
principle axioms. In section 3, the central notions of the witness function 
method and witness oracles are developed and the E~-definable functions of 
IE~ and IA0 + TI(wm, II~) are characterized. This includes the definition of 
c~-primitive recursive (in Ek) functions and normal forms for such functions. 
Then the provably recursive (i.e., E1 -defined) functions of IE~ are character- 
ized by proving a conservation theorem for TI(wm, II~) over TI(wm+l, II,~_l). 
Section 4 outlines a proof of Parsons's theorem on the conservativity of the 
II~+~-induction rule over the E~-induction axiom. Section 5 contains a proof 
of the II~+l-conservativity of BE~+~ over IE~. Section 6 concludes with 
a discussion of the analogies between the methods of this paper and the 
methods used for bounded arithmetic. 

2. P r e l i m i n a r i e s  

2.1. A r i t h m e t i c  and  ord ina ls  

Peano arithmetic (PA) is formulated 2 in the language 0, S, +,  �9 and __. 

Our formulation of PA is similar to the usual one in [21] except that it has different 
non-induction axioms and has <_ instead of <. It is easily seen that our definition of IE,~ 
and PA is equivalent to the usual one apart from the inessential replacement of < by <_. 
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It has induction axioms 

A(O) A (Vx)(A(x) ~ A(S(x))) ~ (Vx)A(x) 

for all formulas A, plus it has a finite base set of axioms, namely, Robinson's 
theory Q of seven axioms defining 0, S, + and �9 and, in addition, the axiom 

(vz)(vy)(x _< y + z -  y))  

which defines _<. A bounded quantifier is of the form (3x _ t) or (Vx _ t) 
where t is any term not involving x. The usual quantifiers, (Vx) and (3x), 
are called unbounded quantifiers. The A0-formulas, or bounded formulas, are 
the formulas in which every quantifier is bounded. The classes En and IIn 
of formulas are defined by induction on n, so that E0 - ri0 - A0 and so 
that En+l is the set of formulas of the form (3~)B where B C Kin and so 
that 1-I~+1 is defined dually. The theory IEn is defined to be the theory in 
the language of Peano arithmetic with the same eight non-induction axioms 
as PA and with induction axioms for all formulas A C E~. 

The collection axioms provide an alternative way to define fragments of 
Peano arithmetic. A collection axiom is of the form 

(Vx _< t)(3y)A(x, y ) ~  (3z)(Vx _< t)(3y <_ z)A(x, y). 

We let B E .  denote the set of collection axioms for all A E E~ ; BI] .  is 
defined similarly. It is well-known that IA0 + BE.+1 ~ IE~ and IE~ ~ B E . .  
It is also well-known that IAo+BEn+I is 1-I.+l-conservative over IE~ and we 
shall reprove this in section 5 below. An important feature of the collection 
axioms is that it provides a 'quantifier exchange' principle that allows moving 
bounded quantifiers inside the scope of unbounded quantifiers. The classes 
En and l-I n c a n  be generalized to classes En a and IIn a by allowing bounded 
quantifiers to appear anywhere in the formula (instead of only in the A0 
matrix) but counting only the alternations of unbounded quantifiers. For 
example, the hypothesis and conclusion of the collection axiom above are 
EnG-formulas if A C E~. The theory IA0 + BE~, and hence IE~, can prove 
that every E~-formula is equivalent to a En-formula. 

Remark -  Some authors include function symbols for all primitive recursive 
functions in the language of PA. We do not adopt this convention; however, 
as is well-known, every primitive recursive function is provably recursive 
(El-definable, see below) in IE1 and hence the theories IEn, for n _> 1 are 
not significantly affected by the addition of symbols for primitive recursive 
functions. Thus the theorems and proofs of this paper also apply to theories 
with symbols for primitive recursive functions. 
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Defini t ion Let T be a subtheory of PA and f : N k ~ N. The function f 
is Ei-definable in Ti f f  there is a formula A ( x l , . . . ,  xk, y) E F~i such that 

(1) T t-- (V:~)(3!y)A(:~, y), and 

(2) {(g, m): N ~ A(g, m)} is the graph of f ,  i.e., A(g, m) holds iff f (g)  = m 
for all integers g, m. 

The function f is provably recursive in T iff f is El-definable in T. 

The intuitive idea of 'provably recursive' is that the theory T should prove 
that some Turing machine M, which computes f ,  halts on all appropriate 
inputs. Since A(2, y) can be taken to be a El-formula expressing "there 
is a w which codes a halting M-computation with input ~ and output y", 
it is clear that any function which is provably recursive in this intuitive 
sense is also El-definable. Conversely, if f is El-definable in T, then there is 
Turing machine M which computes f ,  provably in T. Namely, M performs a 
brute-force search for values of y and the unboundedly existentially quantified 
variables of A. Thus 'El-definable' coincides with the intuitive notion of 
'provably recursive'. 

One reason that the provably recursive functions of T are of particular sig- 
nificance is that if f is provably recursive in T, then T may be conservatively 
extended by adding f as a new function symbol with f(g) = y ~ A(~, y) 
as a new axiom. If T is a fragment IE~ then f may be used freely in 
induction formulas (without affecting quantifier complexity). Similarly, if T 
can prove that a IIl-formula and a El-formula are equivalent then T can be 
conservatively extended by adding a new predicate symbol with arguments 
including the free variables of the two formulas and adding a new axiom 
defining the predicate symbol to be equivalent to the formulas. The new 
predicate may also be used freely in induction formulas. Such new predicates 
are called A 1-defined predicates of T.  

Recall that IE1 (and even IA0) can formalize many metamathemat- 
ical notions; of particular importance are the sequence coding functions 
(Xo, . . .  ,Xk) , ( (Xo, . . .  ,Xk))i -" X i ,  and Len( ( xo , . . .  ,Xk)) = k + 1. 

The ordinals are set-theoretically defined to be those sets which are 
transitive and well-founded by a. We write -< for the ordering of ordinals, 
so a -< /3 means a E /3. It is well-known how to define ordinal addition, 
multiplication and exponentiation. The Cantor normal form for an ordinal a 
is the unique expression 

0[, - - -  (Z) ")'1 " ?'t 1 "[- W ~2  " ?7,2 "~- " " " W "yr " n r  

where 71 >- 72 >- "'" >- % are ordinals and n l , . . . ,  nr are positive integers 
(i.e., nonzero, finite ordinals). Here w is the first infinite ordinal; we let 
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w0 = 1, W 1 - -  W and, generally, Wn+ 1 = W wn . Thus wn is a stack of n w's. 
The limit of wn as n ~ w is called e0; hence e0 is the least ordinal such that  
e0 = w ~~ For a -< e0, the Cantor normal form can be extended so that  the 
exponents 7/ are also written in Cantor normal form, and with exponents in 
the latter Cantor normal forms also in Cantor normal form, etc. (eventually 
the process must stop). For example, 

W WwO'3@WwO'2 " 4 + w ~ 

is a Cantor normal form; usually this is expressed more succinctly as 
w ~3+~2 �9 4 + 1. In this paper, we shall always use ordinals ~ Co and by 

Cantor normal form always means the extended version with exponents also 
in Cantor normal form. Co is its own Cantor normal form. 

By using GSdel numbering, integers can encode Cantor normal forms and 
this can be intensionally formalized 3 in IE1; with care, these can even be 
formalized in IA0.  In particular, IA0 can define the relation I s O r d i n a l ( x )  

expressing that  x is the GSdel number of an ordinal, the relation x -< y, 
and the functions for ordinal addition, multiplication and exponentiation. 
To avoid excessive notation, we use the same notation for actual and for 
metamathemat ical  operations; for example, w + 1 also denotes its own 
GSdel number. However, there will occasionally be situations where context 
is not sufficient to distinguish between ordinals and their G5del numbers: 
this occurs when n may be either an integer or a finite ordinal; to resolve 
ambiguity, we write rn7 for the GSdel number of the ordinal n and we write 
n for the integer n. To improve readability, we use c~,/~, 7 , . . .  and p, a, % . . .  
as variables that  range over GSdel numbers of ordinals. For example, the 
formula (Vcr -< ~ ) ( . . . )  abbreviates the first-order formula 

I O di al(#) A A �9 -< # . . .).  

Note that  Vcr -</~ corresponds to an u n b o u n d e d  quantifier unless 3 is known 
to code a finite ordinal. 

Transfinite induction on ordinals may be used to provide alternate axiom- 
atizations for fragments of Peano arithmetic: 

D e f i n i t i o n  Let * be a set of formulas and let ~ ~ ~0. Then TI (~ ,  ~ )  is the 
set of axioms 

(V7 ~ n)[(V/3 -~ 7 ) A ( / 3 ) ~  A(7)] ~ A(n) (1) 

where A is a formula in ~ ,  possibly with other free variables as parameters. 

3 'Intensionally formalized' means that IE1 can prove simple syntactic facts about ordinal 
encodings and about operations on encoded ordinals. 
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The least ordinal principle axioms LOP(n, ~) are 

A(a) ---, (37 ~ a)[A(7)A (Vfl -~ 7)(--A(fl))] (2) 

where A E �9 and A may have parameter variables. For a fixed formula A, 
the axioms (1) and (2) are called TI(a, A) and LOP(n, A), respectively. 

TI(-< a, ~) is the theory Uu.~ TI(#, qd). 
noP(~ a, ~) is the theory Uu.~,~LOP(# , ~). 

A slight variation on the least ordinal principle and transfinite induction 
axioms is 

�9 (V7 4 a)[(Vfl 4 7)A(fl) --* A(7)] --* (V7 ~ a)A(7) 

LOP* (n, ~)"  (37 ~ n)A(7) --* (37 ~ n)[A(7) A (Vfl -~ 7)(-A(~))].  

For �9 one of the classes En or IIn, TI* (a, ~) is equivalent to TI(a, ~) since 
the former obviously implies the latter and since TI* (a, A) may be inferred 
from TI(a, B) where B(a) is A(a)V (a ~- 7 'A A(7')), where 7' is a new 
variable acting as a parameter. Similarly, LOP* and LOP are equivalent for 

one of the classes En or Iln. 
This paper is concerned primarily with the axioms TI(-~ win, En) and 

LOP(-< wm, En) where m _> 2 and n _ 0. The next two propositions 
give equivalences among such axioms (see [26] for generalizations of these 
propositions). 

PROPOSITION 1 Let m > 2 and n > O. 

(a) IA0 + TI(~ win, En) - IAo + LOP(-< win, Ha) 

(b) IA0 + TI(~ win, Ha) - IA0 + LOP("< win, En) 

(c) IA0 + LOP(< win, I In) - IA0 + LOP(-~ win, En+l) 

(d) IZ 0 + TI(-  - IZ 0 + n .+ , )  

P r o o f  (a) and (b) are trivial since TI(~,, A) and LOP(a,--,A) are logically 
equivalent (essentially, contrapositives). For (c), if A e En+x then A(p) must 
be (3~7)S(p, ?7) where B e I-In N o w ,  LOP(a,A) follows from LOP*(w.a + 
w, C) where C(p) is the Ha-formula expressing 

"p encodes an ordinal w.  a + (y-), with ~7 integers, such that 
B (a, ~7) holds." 

Also, if a -< win, then w. a + w -< wm; so (c) is proved. Finally, (d) follows 
immediately from (a), (b)and (c). [] 
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It is important to note that  Proposition I holds for n - 0; it is easy to see that  
the proof of (c) is valid for n - 0 since C is a A0-formula if B is. This has as 
consequence that  IA0 + TI(-< win, Eo) is equivalent to IA0 + TI(-< win, 1-I1) 
and since IA0 can express every primitive recursive predicate as a II 1 

formula, it follows that  transfinite (-< win) induction on A0-formulas implies 
the same amount of transfinite induction on primitive recursive predicates. 
In addition, relative to IA0, TI(-< win, E0) is equivalent to LOP(-.< win, E0), 
which in turn is equivalent to LOP(-< w~, El/ .  Since every primitive recursive 
predicate can be expressed as a E1-formula, it follows that  transfinite ( .< wm) 
induction on A0-formulas implies the .< wm least ordinal principle for 
primitive recursive predicates. We shall, in section 3, frequently informally 
argue that  various complicated metamathematical constructions can be 
formalized in theories IA0 + TI(.< win, E,_I) ;  since m >_ 2 always holds, 
these theories can prove the usual induction and least number principles 
for primitive recursive predicates, which is sufficient for formalizing all the 
metamathematical  constructions in section 3. 

PROPOSITION 2 Let n > 1. 

I E ,  - II-I~ - I A 0  + TI( , r . )  - + TI( , 
- IA0 + LOP(-< w2, En) 
- IA0 + TI(-< w2, En-1) 

P r o o f  It is clear that  IEn -= IA0 + TI(w, En) and by standard techniques 
these are equivalent to IIIn and IA0 + TI(w, IIn). In light of Proposition 1, 
it suffices to show that  LOP(-.< w2, E~) follows from IA0 + TI(w, Iln). To 
accomplish this, we show, by induction on k, that  LOP(-< w k, En) follows 
from the latter theory. For k = 1 this is proved by the kind of reasoning used 
to prove Proposition l(a),(b). To show LOP(-< wk+l,E~); let A(a) C E~, 
let c~0 -< w k+l and reason informally with the assumptions TI(w, IIn) and 
LOP(-< w k, En): further set C(c~) to be the formula (3i)A(w.o~ + i), so 
C(c~) C En. Now assume A(c~0) holds; since a0 = w . a l  + il for some 
O~ 1 -< a2 k and some finite il ,  C(C~l) holds also. By LOP(-< w k, E~), there is 
a least a2 such that C(a2) holds and now by TI(w, IIn), there is a least i2 
such that  A(w.a2 + i2). Clearly c~ = w.a2  + i2 is the least ordinal such that  
A(a) holds. [5 

2.2. A r i t h m e t i c  and  t he  s equen t  ca lculus  

This section describes how the sequent calculus and free cut elimination are 
applied to the fragments of arithmetic defined above. The reader is presumed 
to be familiar with the sequent calculus (refer to [27] or Chapter 4 of [2] for the 
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necessary background material). We shall assume the language of first-order 
logic contains symbols 9, A, V, --~, 3 and V; this leads to a large number 
of rules of inference but we shall omit most cases from our proofs in any 
event. It will be assumed that bounded quantifiers are part of the syntax 
of first-order logic with the sequent calculus containing the four appropriate 
rules of inference for bounded quantifiers. 4 See [2] for the full definition of 
the sequent calculus LKB with bounded quantifier rules of inference. 

To formalize the proof theory of arithmetic with the sequent calculus, it is 
customary to use special induction inferences in place of induction axioms. 
An i nduc t ion  inference is of the form 

F, A (a )  - - - >  A ( S a ) ,  A 

F, A(O) - - - >  A ( t ) ,  A 

where t may be any term, a is a free variable called the eigenvariable  and 
a must not appear in the lower sequent. The induction inference for A is 
equivalent to the induction axiom for A, because the side formulas F and A 
are allowed. Thus I E k  is formalized in the sequent calculus with a finite set 
of axiom schemes plus the induction inferences for Ek formulas. The finite 
set of axiom schemes for IEk consists of the following initial sequents: 

S r  - S t - - - > r  - t - - > r  . 0 = 0 

S t  = 0 - - - >  ~ , r  . ( S t )  - r . t + r 

- - - > , .  + o - ,- - - ~ , -  - o,  ( 3 x  < , - ) ( s x  = ,.) 

- - ~  + s t  - s ( ~  + t)  ~ <_ t - - > ( 3 x  _< t)(,- + x - t) 
r + s - t - - > r < t  

where r,  s and t are allowed to be any terms. Of course the usual logical 
initial sequents A - - ~ A  with A atomic and the initial sequents for equality 
are also allowed. It is important for us that every initial sequent consists of 

only A0 formulas. 
The theory IA0 + TI(-~ W,n, En) is formalized in the sequent calculus with 

the same initial sequents, with induction inferences for A0-formulas and for 
transfinite induction, with the LOP(-< win, IIn) inferences defined below. 

Let r be a c losed term with value the G5del number of an ordinal and let 
B(a )  be a formula; the L O P ( r , B )  inference is 

L O P ( T , B )  " 
BO-), r - - >  zx 

a This assumption is not absolutely necessary and the reader may prefer to think of 
the bounded quantifiers as abbreviations- in this case the proofs by induction on the 
number of inferences in a free-cut free proof must be slightly modified. 
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where c~ is an eigenvariable and may occur only as indicated. It is not hard 
to see that the inference rule LOP(r, B) is equivalent to the axiom form of 
LOP(r, B): to derive the inference rule from the axiom, recall that  the axiom 
LOP(r, B) is 

B(~)---->(3~ .~ ~)[B(~)A (VZ -< ~)(-~B(Z))], (3) 

and use the derivation 

.~ ~-, B(~), r - - >  zx, (39 -< ~)B(Z) 
(3) (3c~ 4 7)(B(c~) A (V/3 -< c~)(-~B(/3))), F -----> A 

B(r), r ---~A 

where the double horizontal line indicates omitted inferences. Conversely, to 
see that the LOP(r, B) follows from the inference rule, use 

B(r ----> (?~ .~ r A (VZ -< ~)(~B(Z))] 

where the upper sequent is, of course, provable in IA0. 
The LOP(-< com,~)inferences are the set of inferences LOP(r,B) for 

r -< corn and B C ~.  The principal formula of an LOP inference is the 
formula B(r) in the lower sequent; the auxiliary formulas are the three 
formulas in the upper sequent other than P and A. An important property 
of the LOP(-< corn, II~_1) inferences is that the principal formula and the 
auxiliary formulas are all in En. 5 

Below we shall extensively study the theory IA0 + TI(-< win, En_l), which 
is equivalent to IA0 + LOP(-< corn, I1~_1) and henceforth is to be formalized 
in the sequent calculus with initial sequents given above, the IA0-induction 
rule and the LOP(-< COrn, l-In_l) inference rule. This theory enjoys the 
important property of free-cut elimination. We say that a cut in a sequent 
calculus proof is free unless one of its cut formulas is a direct descendent 
of a formula in an axiom (initial sequent) or of a principal formula of an 
IA0 inference or of a principal formula of an LOP(-< corn, I In_l) inference. 
The free-cut elimination theorem implies that if IA0 + LOP(-< com, II~_l) 
proves a sequent then there is a proof (in the same theory and of the same 
sequent) which contains no free cuts. Such a proof is called free-cut free. 

5This is the reason we use LOP inferences instead of TI inferences. The TI(T, En-1) 
inferences would be 

a 4 r, (V5 -< a)B(Z), r ---> A, B(a) 
r - - >  A, B(~) 

where B E En-1 and c~ is an eigenvariable. These inferences contain a I I  n auxiliary 
formula. 
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This free-cut elimination theorem is proved by a elementary triple induction 
argument (equivalently, induction to w 3) by the same argument used for 
the cut elimination theorem for first-order logic. In particular, the free-cut 
elimination theorem can be proved in IE1. 

A formula A is a subformula of B in the wide sense if A can be obtained 
from some subformula C of B by substituting freely terms for variables in C. 
In a free-cut free proof, each formula A is either (1) a direct descendent of a 
formula in an axiom or of a principal formula of an IA0 or LOP inference, or 
(2) a subformula in the wide sense of such a formula, or (3) a subformula in the 
wide sense of an auxiliary formula of an IA0 inference or an LOP inference, 
or (4) a subformula in the wide sense of a formula in the endsequent of the 
proof. This is because each formula in the proof has a (not necessarily direct) 
descendent which is a cut formula (so (1) or (2) applies), or which is an 
auxiliary formula of an induction or LOP inference (so (3) applies), or which 
is in the endsequent (so (4) applies). 

The above gives the following important proposition: 

PROPOSITION 3 (n > 1) Let T be a theory IE~ or IA0 + TI(-~ Win, E~-I) .  
Suppose F------>A is a consequence of T and every formula in F and A is 
in E~. Then there is a T-proof of F ~ A  in which every formula is in E=. 

3. Def inab le  func t ions  of IE~ 

3.1. W i t n e s s  func t ions  and  o rd ina l  p r i m i t i v e  r e c u r s i o n  

A witness oracle for an existential property (3x)A(x, 2') is an oracle which 
when queried with values for 2' responds either with a value for x such that  
A(x, F) or with the statement that  there is no such value for x. If A is a 
decidable predicate then a witness oracle for A is clearly equivalent to an 
oracle for the function 

1 + (#x)A(x, ~ if (3x)A(x, 
U3xA ( ~) -- 0 otherwise 

where (#x)A(x, F) is the least value for x such that A(x, 2') holds. The 
advantage of viewing a witness oracle as a function is that  it allows the 
definition of being primitive recursive relative to a witness oracle: 

De f in i t i on  Let n > 1. The set of functions which are primitive recursive 
in E~ is defined inductively by: 

(1) The constant function 0, the successor function S(x) = x + 1, and the 
projection functions Try(x1,..., xn) - xi are primitive recursive in En. 
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(2) The set of functions primitive recursive in E~ is closed under composition. 

(3) If g : N k --+ N and h : N k+2 ~ N are primitive recursive in E~ then so 
is the function f defined by 

I(O,Z) = g (~  

f (m + 1, Z) = h(m, Z, f(m, z-')). 

(4) If A(Z) is a formula (3x)B(x, Z) where B e 1-In_l then UA is primitive 
recursive in En. 

The set of functions primitive recursive in E0 is just the set of primitive 
recursive functions, and is defined, as usual, by (1), (2) and (3). 

It is important for the definition of primitive recursive in En that the 
functions UA are included instead of just the characteristic functions of A. 
For example, if n = 1, these two functions are Turing equivalent; however, 
for primitive recursive processes these are not equivalent since even if (3x)B 
is guaranteed to be true and if B is primitive recursive, a primitive recursive 
process can not find a value for x making B true without knowing (at least 
implicitly) an upper bound on the least value for x. 

A primitive recursive in En function may ask any (usual) query to a II~ or 
a En oracle. This is because, for example, if A(Z) E En, then A is equivalent 
to a formula (3x)B where B E IIn_l and a witness oracle U(3x)s can be used 
to determine if A(Z) is true. 

Def in i t ion  Let a be (the G6del number of) an ordinal. The set of a -  
primitive recursive functions is defined inductively by the closure properties 
of (I), (2) and (3) above and by 

(5) If g : N k --+ N, h : N k+1 --+ N and n : N k --+ N are a-primitive recursive 

then so is the function f defined by 

{ h(/7, Z, f(n(/7, 5) z-')) if n(/3, zT) -</7 ~ a 
f (13, s - 

g(/7, 5') otherwise 

where n(fl, Z) -< /3 4 a means that /7 and n(fl, z-) are the Gbdel 
numbers of ordinals obeying the inequalities. 

A function is said to be -~ a-primitive recursive iff it is 7-primitive recursive 
for some 7 -~ a.  

Combining the notions of witness oracles and ordinal primitive recursion 
gives: 
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Def in i t ion  Let n >_ 0 and a be (the Gbdel number of) an ordinal. The set 
of functions which are a-primitive recursive in En is defined inductively by 
the closure properties of (1)-(5) above (omitting (4) if n - 0). 

A function is said to be -~ a-primitive recursive in ~n iff it is v-primitive 
recursive in )-~n for some V -~ a.  

It is well-known, and not too hard to show, that a function is primitive 
recursive in En iff it is w-primitive recursive and iff it is -~ w~-primitive 
recursive in E~. 

3.2. N o r m a l  forms for o rd ina l  p r imi t ive  recurs ive  func t ions  

This section presents three normal forms for the definitions of -~ win-primitive 
recursive functions. These are called the zeroth, first and second normal forms 
and will be helpful for the proofs of the characterization of provably total 
functions of various fragments of Peano arithmetic. 

Recall that that the set of functions -~ win-primitive recursive in En is, 
by definition, the smallest set of functions satisfying the closure properties 
(1)-(5): the Zeroth Normal Form Theorem states that the closure (3) under 
primitive recursion may be dropped at the expense of adding more base 
functions. 

THEOREM 4 (ZEROTH NORMAL FORM) Let m >_ 2 and n >_ O. 
functions -z, win-primitive recursive in En can be inductively defined by 

The 

(0.1) Every primitive recursive function is -4 win-primitive recursive in E~. 

(0.2) The set of functions -~ Wm-primitive recursive in E~ is closed under 
composition. 

(0.3) If n >_ 1 and A(Z) is (3x)B(x,Z) where B e IIn-1, then UA is 
-~ win-primitive recursive in E~. 

(0.4) f f  ~o -~ Wm and if g" N k --+ N, h" N k+l --~ N and a"  N k -~ N are 
-4 wm-primitive recursive in En then so is the function f defined by 

h(/3, 2", f(n(/~, ~ ,  2')) if ~(~, Z) -</~ ~ ~0 
f(/~' z') - g(/~, ~ otherwise. 

P r o o f  The fact that -~ win-primitive recursive in En functions satisfy 
conditions (0,1)-(0.4) is obvious. The idea for the other direction is quite 
simple; namely, that w-primitive recursion may be used to simulate ordinary 
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primitive recursion. For example, if f is defined by primitive recursion from 
9 and h by 

f(O, 2) -- g(5') 

f ( m  + 1, Z) -- h(m, Z, f (m ,  5')) 

then f can also be defined via a~-primitive recursion as follows. For n C N, 
let rn~ denote the GSdel number of the finite ordinal n. Define 

_ ] g(Z) i f c ~ -  ~0 ~ 
F(a ,  z) / H(a, 2, F(Pred(a) ,  ~ )  otherwise 

where 

Pred(ol) 

c t - - 1  

oz 

if c~ is (the GSdel number of) 
a successor ordinal 

otherwise 

and 

Z. - / Z. 
arbitrary / 

if c~ -  rm + 1 ~ with m C N 
otherwise. 

Now Pred is primitive recursive and H is definable by composition from h 
and primitive recursive functions; furthermore, I (m,Z)  - F(rm~,~). Thus 
f is defined from g and h and some primitive recursive functions using 
composition and cJ-primitive reeursion, n 

Note that the proof of Theorem 4 shows that  (0.1) could be weakened to 
include only the usual base functions (1) and a few specific primitive recursive 
functions for manipulating GSdel numbers of finite ordinals. 

THEOREM 5 (FIRST NORMAL FORM) Let m >_ 2 and n >__ O. The set of 
functions -~ cJm-primitive recursive in E~ is the smallest set of functions 
satisfying the four conditions (1.1)-(1.4) 

(1.1)-(1.3)" same as (0.1)-(0.3). 

(1.4) If eCo ~ corn and if 9 and rc are unary functions which are -~ cam- 
primitive recursive in 2~ then so is the function f defined by 

f(c~) -- / f(ec(c~)) if ec(c~) -< c~ 4 ec0 
g(a) otherwise. t 
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In (1.4), we say that f is defined by parameter-free ao-primitive recursion 
from g and ~. 

P r o o f  For this proof only, let ~ denote the smallest set of functions which 
satisfies the closure conditions of (1.1)-(1.4). Obviously, the Zeroth Normal 
Form implies that every function in 9 ~ is -~ win-primitive recursive in En. To 
show that 9 v contains every function -~ win-primitive recursive in En, it will 
suffice to show that 9 ~ is closed under the -~ win-primitive recursion of (0.4). 
For this, suppose f is defined by 

{ h(/~, Z, f(a(/~, ~ ,  2')) if a(~, 2') -~/? ~ a0 
f(~,  z-') = g(l?, z~ otherwise. 

To give a definition of f using parameter-free -~ win-primitive recursion, 
we shall use ordinals that code the parameters Z and which code a history 
of the computation of f(/~) with /3 ~ a0. In order to code the history of 
the computation of f ,  we need ordinals l?0, ~1, . . . , /~,  so that /~0 = ~ and 
~i+1 - -  t~(/~i, Z-~ -~ ~i and so that a(/~s, Z) -~/~s; also we need values a s , . . . ,  a0 
so that  as = g(/~s, 2") and ai = h(/~i, Z, ai+l) for a l l / <  s; it will follow that  
f(/~, ~ is equal to a0. We shall code and index this computation by the 
following scheme. We use ordinals of the form w 2 . /3 /+  (Z,/3o,..., ~i-1} to 
code the first phase of the computation of f ,  where (~', ~0 , . . . ,  ~i-1) denotes 
the finite ordinal equal to the GSdel number of the sequence containing the 
entries Z and the GSdel numbers/~0, . . . ,  ~i-1. To code the second phase of 
the computation we use ordinals of the form w. i + (Z,/?0,...,/~i-1, ai). Since 
~o -'~ Wm there is an ordinal ao -~ 5din-1 such that a0 -~ w ~~ . Define 

_ ~ F ( K ( a ) )  if K ( a )  -~ c~ 4 w 2+~~ 
F(a )  / G(a) otherwise 

where K and G are defined so that 

K(w 2" ~i + (7,, rio,..., ~i-1)) -- (-02. g(~i, ~) -~- (~ ~0, ' ' ' , /~ i )  
if i > 0 and a(/3~, 2') -.< 13~ 

K(  Co2"/~i H- (z*, ]~0, . . . ,  ~i-1}) - co. i Jr- (z*, ~ 0 , . . . ,  ~i-1, g(]~i, z-~} 
where 0 _~ i C N and a(~i, ( ~ )  ~ i?i 

K(w.  (i + 1) + (2',/?0,..., 17~, a)) - w. i + (2',/~0,..., ~i-1, h(l?~, 2", a)) 
for i E  N 

K(~<2', a> ~) -~(Z, a) , 



43 

where, in the last two equations, P(5', a) ' denotes the GSdel number of the 
finite ordinal (~', a). K and G may be arbitrarily defined for other inputs. 
Clearly F is defined by w2+~176 recursion from G and K.  And f is 
definable in terms of F and g using composition" 

F(w ./3 + (z-)) if/3 4 no 
f(/3, Z) - g(/3, 2') otherwise 

We have used only -< a~m-primitive recursion (since co 2+~~ -< corn) and 
composition to define f from g, h, ~ and primitive recursive functions. 
Hence f C ~-. 
Q.E.D. Theorem 5 

The final and best normal form for -4 win-primitive recursive in En 
functions is not an inductive definition, but is a true normal form. 

THEOREM 6 (SECOND NORMAL FOAM) 

(a) Let m >_ 2 and n >_ 1. A function F(Z) is -< win-primitive recursive 
in En iff there are a ao -< win, a A(~7) of the form (3x)B(x ,y )  with 
B c Kin_l, and primitive recursive functions T, 9 and ~ so that 
F ( Z ) -  f(T(~')) where f(13) is defined by 

I (~(/3, UA (/3))) if ~(/3, UA(/3)) -< /3 ~ no 
f(/3) -- 9(/3) otherwise 

(b) Let m > 2. A function F(Z) is -< win-primitive recursive iff there 
are a a0 -< corn and primitive recursive functions T, g and a so that 
F(Z) - / (7 - (Z) )  where 

f(~c(/3)) if ~(/3) -</3 4 ~c0 
f(/3) - g(/3) otherwise 

An important feature of the second normal form theorem is that  ~ is now 
required to be primitive recursive, instead of merely -< win-primitive recursive 
in En. 

P r o o f  We shall prove (a); the proof of (b) is essentially identical. First, 
every primitive recursive function can be expressed in the form (a): to prove 
this, if F is primitive recursive, let n0 = 0, let 7(5') = P(z-) ~, let ~(/3, a) = 0 
and g(~(z-) ") = F(5'). The functions 7 and a are clearly primitive recursive 
and g is primitive recursive since F is. Second, if A(y) is (3x)B(x,  y) where 
B C II~_1, then the function UA can be expressed in the form (a) by letting 
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no = co" 2, lett ing T(y) = co + y, lett ing ~(co + y, i) = ri~ and ~(ri', a) = ~i ~ 
and let t ing g(~i ~) = i. 

Next we show tha t  the set of functions definable in the form (a) is closed 
under  composition. Suppose F1 and F2 are defined by F~ (v, 5) = f~ (~5 (v, z-)) 
and F2(Z) = f2(72(Z)) where 

{ fi(~i(fl, gAi(fl)) ) if ni(fl, UAi(fl)) -< fl ~ ~o,~ 
f ~(fl) -- g~(fl) otherwise 

for i - 1, 2. By assumption,  7i, ni and gi are primitive recursive functions. 
We must  show F(zT) - F1(F2(5'),5') is also definable in this way. Pick 
a -< win-1 to be an ordinal such tha t  ~o,~,~o,2 -< w ~. We set F(5') - 
f (w  ~+~ 2 + (z-)) and define f(f l )  as in (a) with n0 - co ~+~" 3 and with 
defined so that ,  if fl -< a~ ~ , 

N(col+a 

col+o + co. ~-2(2') + (z-) if T2(Z) 4 n0,~ 

�9 2 + (z-)) -- 71(g2(T2(zT))) if T2(ZT) ~ n0,2 and 
Tl(g2(T2(e))) ~ N0,I 

col+o. 3 otherwise 

cdl+a q- CO" tl;2(~, UA2(~)) q- (Z-') 
if n2 (fl, UA2 (fl)) -< fl 4 no,2 

n(co 1+~ + c o . f l +  (z-)) -- Tl(g2(fl), 2') if not n2(fl, UA2(fl))-<f14no,2 
and Tl(g2(fl), 2') 4 no,1 

col+o. 3 otherwise 

and, if fl -< tl;0,1, N(/~) -- N1 (~, UA1 (~)). Also define g so that ,  for all fl -< co ~ , 

g(col+~. 2 + (5)) - gl(Tl(g2(7-2(Z)))) 

g(w 1+~ + w .  fl + (z-)) - gl(Tl(g2(fl))) 

g ( ~ ) -  gl(fl) 

This almost defines f(Z) in the desired form (a); however, there is a problem 
since n (a )  is defined using both  UA1 and UA2 (and not using them in correct 
manner  either). To fix this, we define a new A(y) = (3x)B(x ,  y) so tha t  
n (a )  is a primitive recursive function of only a and Ua(a). For this, suppose 
Ai = (3x)Bi(x,  y) where Bi C I-In-1. Define B by 

B(x,  o~) , ,  { Bl (x, 
arb i t ra ry  

if a - co 1 + ~  + co �9 f l  + m 

if a -< col+a 
otherwise. 
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Since B1,B9 E 1-In_l, SO is B. That  completes the proof that  the set of 
functions definable in the form (a) are closed under composition. 

Finally, we must show that  the functions definable in the form (a) are 
closed under parameter-free -~ cam-primitive recursion. For this, suppose 
f is defined from functions g and ~c, which are defined in form (a), and from 
an ordinal ~c0 -< corn as in (1.4) and further suppose that  n is defined in the 
normal form (a) by 

t~(oz) = fl (7-1(ct)) 

/l(fl) - { glfl(~l(~'gAa(~)))(fl) otherwiseift~l(~'gA~(~))M~N~ 

where n0,1 -< co,~ and 7-1, n l and gl are primitive recursive functions. Pick 
a0, or1 to be the least ordinals such that  ~c0 -< c J  ~ and n0,1 -< co~ hence 
do, a1 -< corn-1. We now define F ( a )  = f,(coi+~l+~O + rat ) where f '  will be 
defined in the second normal form (a) with primitive recursive functions ~c', 
g' and ordinal n~ where ~c' is defined by 

~,(col+~a+~o+rc~7) _ / col+Ol .a+cv ~ i f a ~ C o  

t col+~l +oo + co otherwise 

~I(CO 1 -lt- O'1 o /~ --~- COO'I ) 

CO 1+~ - /~ -'1- 7-1 (/~) 

CO l+al gl (T1 ( 9 ) )  

C01+al+aO 

if 7-1(/3) ~ N0,1 

if T1 (/3) ~ t%,l 
and gl (7"1 ( ~ ) )  -'~ 9 

otherwise 

p~! ((.,1.) 1-4-O"1 �9 /~ + ")/) = 

col+a1 , /~ + /~1 (")/, UA, ('~)) 
if/'C 1 (~', UA1 (~')) -'~ ")/ ~ N0,1 

CUI+~ g 1 (~') --t-(,.a-) fie 

if UAI( )) r 
col+oa+,o if NI(')', UA1 (')')) 7~ ")' a n d  gl(~ ' )  7 ~ /3 

(provided -y ~ t~0,1), and g' is defined by 

+ = 

if/3 4 ~c0 and 3' 4 co~l 

! ~ col+al+aO and n 0 + co. Any values of ~' and g' left unspecified may be 
arbitrary. Now, inspection shows that 

F(oz) - ~ F(ec(o~)) if ec(o~) --< o~ % ec0 
[ a otherwise 
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and, by construction, F is definable in form (a). Now the function f is 
definable by f (a )  - g(F(a)) and since g and F are expressible in form (a) 
it follows by the earlier part of this proof that their composition f is too. 
Q.E.D. Theorem 6 

One further refinement can be made to the second normal form theorem: 
instead of allowing arbitrary UA's with A E E~, it is possible to allow only a 
single, fixed, suitably chosen UA. Of course, such an A is many-one complete 
for E~. It is necessary to modify the ordinal coding methods in the above 
proof to establish this refinement the details are left to the reader. 

3.3. Some definabil i ty t heo rems  

The next theorems characterize the En definable functions of IEn ; their 
proof will be a straightforward use of the witness function method. 

THEOREM 7 Let m >_ 2 and n ~_ 1. The En-definable functions of the 
theory IAo + TI(-~ win, En_x) are precisely the functions which are -~ win- 
primitive recursive in E~_I. 

THEOREM 8 Let n >_ 1. The E~-definable functions of the theory IE~ are 
precisely the functions which are primitive recursive in E~_I. 

THEOREM 9 The El-definable (provably recursive) [unctions of IE1 are 
precisely the primitive recursive functions. 

There are (at least) three prior prooftheoretic proofs of Theorem 9. Par- 
sons [22] gave a proof based on the GSdel Dialectica interpretation, Mints [19] 
gave a proof which uses a method very close to the witness function method 
except presented with a functional language, and Takeuti [27] gives a proof 
based on Gentzen-style assignment of ordinals to proofs. 

P r o o f  Theorems 8 and 9 are corollaries of Theorem 7 since IE~ and 
IAo + TI(-~ win, En-1) are the same theory. Although only the proof of 
Theorem 7 is given below, it should be remarked that the other two theorems 
can be proved directly by a similar and easier argument. 

The easier half of the proof is to show that every -~ win-primitive recursive 
in E~_I function is En-definable in IAo + TI(-~ wm, E~_x). Recall that 
every primitive recursive function is Ex-definable in I~1 so this half of the 
m - 2 and n - 1 case of Theorem 7 follows. For other values of m and n, 
suppose F is -~ win-primitive recursive in E~_I and that F is defined by 
F(Z) - f(w(Z)) where 

{ f(m(/3, UA(~))) if t~(~, UA(~)) "~ ~ ~ t~O 
f(~) - g(j3) otherwise 
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in accordance with the Second Normal Form, so g, a and ~- are primitive 
recursive functions, a0 -~ w,~ and A(y) is (3x)B(x, y) where B C II~_2 (in 
the simpler case where n - 1, a(/~, UA(/3)) is replaced by a(/3) and UA is 
not used at all). Obviously it will suffice to show that  f is En-definable by 
IAo + TI(< win, En-1). 

A sequence of ordinals/~o, . . . , /3k is an f-computation series if fli+l -~ a0, 
fli+l - a(fl~, UA(fl~)) and /3~+1 -~/~, for all 0 _ i < k. To metamathemati -  
cally define an f -computa t ion  series, we use (if n > 1), 

"w codes an f -computa t ion  series" r 

w is a sequence of Ghdel numbers of ordinals of length k + 1 

(Vi < y) A (Vy' < y)) 

y + 1)]) 

V((Vy)(mB((w) i  , y)) A (w)i+l- 1'6((w)i, 0))] 
and (Vi < k)((w)i+, -4 (w)i A (w)i+, -4 no). 

(Recall that  if w = (/30,...,/3k), then (w)i = /3i.) Since 
IAo + TI(--< wm, En-1) contains I~-,n, it also contains the collection ax- 
iom BEn. Thus the subformula (Vy' < y) ( . . . )  above is equivalent to a 
En-2 formula, and by applying prenex operations, the formula "w codes an 
f -computa t ion  series" is equivalent to a 1-In formula. By applying prenex 
operations in a different order, and using BEn,  this formula is also equivalent 
to a En-formula. If n = 1, then instead define 

"w codes an f -computa t ion  series" r 

w is a sequence of Ghdel numbers of ordinals of length k + 1 

and (Vi < k)(/~i+l - ~;(/3i) -~/3i A/3i+1 -~ ~;0), 

so, in this case, it is a primitive recursive property. 6 
The graph of the function f(/3) can now be defined by using the fact that  

y -- f(/3) iff y = g(/3') where ~ is the least ordinal such that  there is an 
f -computa t ion  series ( /3, . . . , /3 ' ) .  More formally, letting ICS(w) be the 
formula "w is an f -computa t ion  series", 

y -  1(/3) r ( 3 ( / 3 , . . . , / 3 ' ) ) [ y -  g(/3')A ICS(Og,...,/3'))A 

UA(Z'))--< Z'A Z' .< 

Since fCS( . . . )  is equivalent to a En-formula and since z = UA(t~') can 
be expressed as a 1-In_l-formula, the relation y = f(/3) is a En-property, 

6 It is possible to strengthen the second normal form theorem to make this a A0-formula. 
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provably in IAo + TI(-< Win, En-1). The theory also proves 

V/3 3 a least/3' s.t. 3( /3 , . . . ,  3')(fCS((/~,...,/3'))) 

since fCS((13)) and by LOP(-'~wm, En)since n0 -~ win. 7 Thus 
I A 0 +  TI(~wm, En_l) can En-define the function f as it proves 
( V 3 ) ( 3 ! y ) ( y -  f(/~)) where y -  f (3 )  denotes the En-formula defining the 
graph of f .  Likewise, 

(VZ)(3!y)(3/~)(/3 - T(z7) A y -- f(/~)) 

is also provable and En-defines the function F .  That  completes the first half 
of the proof of Theorem 7. 

To prove the rest of Theorem 7, assume that  IA0 + TI(-.~ wm, En-1) 
proves (Vx)(3!y)A(x, y), with A C En we must show that  x ~-. y is a 
-~ a;m-primitive recursive in E~-I function. Since IA0 + TI(-z, Wm, En-1) 
proves (Vx)(3y)A, there must be a free-cut free proof in the theory 
IA0 + TI(-.~ win, En-1) of the sequent 

--~(3y)A(c, y) 

where c is a new free variable. Only En formulas can appear in this free-cut 
free proof. The general idea of the proof is to show that  this free-cut free proof 
embodies an algorithm for computing y from c. Indeed, the free-cut free 
proof can be interpreted as explicitly containing a -~ win-primitive recursive 
in E~_I algorithm. Since the proofs of the normal form theorems were 
constructive, the free-cut free proof also contains an implicit description of a 
-~ win-primitive recursive in E~_I algorithm in the second normal form. Our 
proof below that  an algorithm can be extracted from the free-cut free proof 
is quite constructive and can be formalized in IA0 + TI(-z, Wm, E~-I) the 
upshot is that  there is a -~ aJm-primitive recursive in E~-I function f which 
is E~-defined by IA0 + TI(-z, wm, E~_l) in the form given by the Second 
Normal Form Theorem such that  IA0 + TI(-4 Wm, E~-I) F (Vx)A(x, f(x)). 
As a corollary to the proof method, if IA0 + TI(-.~ wm, E~_l) proves 
(Vx)(3y)B(x,y) with B E En then there is a B*(x,y) C En such that  
(Vx)(3!y)B*(x, y) and B*(x, y) ~ B(x, y) are provable, s 

We shall see later that  the proof is formalizable, not only in 
IAo + TI(-< win, Zn-1), but also in IAo + TI(-,: COm+i,~n_2) , provided 
n > l .  

LOP(..< corn, En) is a consequence of IA0 + TI(~ win, E~-I) by Proposition 1. 
s This fact is readily proved directly anyway. If B E IIn-1 then let B* be the formula 
B(x, y) A (Vy' < y)(-,B(x, y')), which is equivalent to a En formula by BEn. For general 
B E E~, incorporate outermost existential quantifiers of B into the the (~ty) and proceed 
similarly. 
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Rather than just considering the free-cut free proof of - - > ( 3 y ) A ,  we more 
generally consider proofs of sequents F ~ A  of En-formulas. Since every 
principal and auxiliary formula of a LOP(-~ win, I-In-i) inference is in ~n and 
every formula in the endsequent is in E~, it follows that every formula in the 
free-cut free proof is in En. For convenience, assume also that the proof is in 
free variable normal form (so free variables are not reused). 

Def in i t ion  Let i > 1 and A(s E E i .  If A C IIi_l then Wiff  A is defined 
to be the formula A. Otherwise, A is uniquely expressible in the form 
(3yo ) . . . ( 3yk )B(~ ,~ )  where B E IIi_~. Then WiffA(W,~ ) is the formula 

B(I, 

Note that Wit~  C IIi_l. If WiffA(W , ~) holds, we say w witnesses the truth 
of A(~). 

MAIN LEMMA 10 (n > 1, m > 2) Suppose IA0 + TI(-< win, En-1) proves 
the sequent A1,..., Ak-- - - - -~B1, . . . , /3g  and tha t  each Ai and  B j  is in Y]~n 
and that ~ are all the variables free in the sequent. Then there are functions 
f l , . . . ,  fe which are -~ Wm-primitive recursive in En-1 and are En-definable 
in I A  o + TI(-~ Wm, P~-,)  such that I A  o + TI(-~ Wm, En-1) proves 

w i tnA1 (Wl, C--'),..., w i tnA k ( W k , C-) ----~ W i tnB1 (fl(W, C-), C-),..., w i tnB , ( f ~ ( v~, C~ , C-) . 

Informally, the f l , . . . ,  fe will, given witnesses for all of A 1 , . . . ,  Ak, produce 
a witness for at least one of B I , . . . ,  Be. 

The proof of the Main Lemma is by induction on the number of inferences 
in a free-cut free proof of the sequent. In the base case, there are zero 
inferences, so the sequent is an axiom and consists of A0-formulas for 
these axioms, the lemma is trivial. For the induction step, the proof splits 
into cases depending in the final inference of the proof. Most of the cases are 
straightforward; for example, if the last inference is an 3 :left inference then 
the proof ends with 

A1 , . . . ,  Ak ---> B0 (~', s), B2 , . . . ,  Be 
A1,..., Ak ~ (~Zo)Bo(~, Zo), B2, . . . , B~ 

where s - s(c-) is a term with free variables from &+ only and where B1 is 
(3zo)Bo and is of the form (3z0). . .  (3zT)B'(zT, c-) with B' E l-In_l (possibly 
r - 0). The induction hypothesis is that 

i n  ~ ' ' ' ~  W tA1 (Wl, ~ WitnAk (Wk, C-) 

---->witnBo(~,s)(fo(~, C-), C-), . . . , witnB,(fe(~, C-), C-) (4) 
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is provable in IAo + TI(.< win, En-1)  for appropriate functions fo, f2 , . . . ,  fl. 
If B1 C E~_2 then Wit~Bo is just Bo and Wit~B1 is just B1; and a single 
3 :right inference applied to (4)gives 

wit l . . . , 

- - ~  w i tnBl ( f l ( C, c-) , c-) , . . . , w i tnB t ( f ~ ( C, c-) , c ~ (5) 

where fl is arbitrary. Otherwise, let j', (C, c-) be defined so that 

f l (W,  C-~ ---- <8(C-), a l , . . .  , at) where fo(v~, ~ - < a l , . . . ,  at> 

if r > 0, and f(v~,~ = (s(~) if r = 0. Clearly fl is .< win-primitive 
recursive in E~-I since f0 is and, also clearly, IAo + TI(.< win, E~-I) 
proves (5) for this fl .  

We leave the rest of the simpler cases to the reader and consider only 
the two substantial cases of g :right and LOP(-< win, II~_l) as last inference. 
(Part of the 3 :left case is also substantial, but is very similar to g :right.) 

(g :right) Suppose the last inference is 

A1, . . . ,  Ak ----> Bo(b, ~ ,  B2, . . . , Be 
A~, . . . , Ak - - - >  (Vzo)Bo(zo,  c-), B2, . . . , B~ 

where the free variable b does not occur except as indicated and Bt is 
(Vzo)Bo(2', ~ .  Since B1 is in E~ and has outermost quantifier universal, it 
must therefore actually be in 1-In-~ and be of the form (VZo).-. (Vz~)B'(zT, 
where B' C En-2. Also Wit~Bo and Wit~sl are just Bo and B1, respectively. 
The induction hypothesis is that IAo + TI(-< win, En-1) proves 

witn   . . . , 

---->Bo(b, ~,  Wit~B2(g2(v~, b, c~, c-*), . . . , Wit~Bt(gl(v~, b, ~ ,  ~ 

for functions g2 , . . . ,g /  which are -< win-primitive recursive in E~_I. The 
difficulty is that these functions take b as an argument, but b is not free in the 
endsequent so we can not just set f i  = gi. The solution to this difficulty is to 
let C ( v ,  c--) be the 1-I~_2-formula ~B' ( (v)o , . . . ,  (V)r, ~ and use the function 
U3,c to find a value, if any, for b such that Bo(b, ~ holds: define 

= - 1 ) o ,  

When BI(~  is false, U 3 , c ( C ~ -  1 codes a sequence <bo,...,b~) such that 
-~Bo(bo,... ,b~) and ( U ~ c ( ~ -  1)o equals bo. Thus IAo + TI(-< Wm, E~-l) 
proves 

Wit~A, (Wl, C-O,..., Wit~Ak (wk, 

- - ~ B a  (~, Wit~2  ( f2 (C,  ~ ,  ~ ,  . . . , Wit~Bt( fe(C,  c], 
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and f 2 , . . . ,  fk are -< Wm-primitive recursive in 2~-i since g~,. . . ,  gk are and 
since (3v)C is in E~-I.  

LOP(-< win, II~_l): Suppose the last inference is 

OZ ~ no, A I (OL, c~, A2 ,  . . . , A k ~ B I ,  . . . , Be,  ( ~  -< ~)A 1(/~, c-) 
A1 (no, c-'), A2 , . . . ,  Ak ----> B1, �9 �9 Be 

where A1 E I-In-1, where no is a closed term with value a GSdel number of an 
ordinal -< win, where c~ is a free variable, which appears only as indicated, and 
where (3r -< c~)A1 (/~) is an abbreviation for the formula (3r -< o~AA1 (/~)). 
The induction hypothesis states that IA0 + TI(-< win, E~_I) proves 

gt ~ no, A l  (OZ, c~, WitnA2 (W2, C--),..., WitnAk (Wk, C~ 

~ W i tnB1 (gl (~/], Ct, @, ~ , . . . ,  W i tnB t ( g e ( ?~, Ct , C~ , C~ , 

ge+l (?~, ~,  C~. -4, OL A Ai ( ge+l (zg, a ,  c-), cO 

for appropriate functions g l , . . . ,  9e+1. Define 

H(/3, c-') - { ~ ifAl(fl, c-) 
no otherwise 

H is -< win-primitive recursive in En-1 since A1 E II~_~. Now define 

{ F(~, H(ge+l(W,/3, ~,  c-"), c-) 
F ( ~ ,  8, c--) - ,5' 

if H(ge+l (~, ~, c~, c~ -< ~ 4 no 
otherwise. 

Clearly F is also -< win-primitive recursive in En-1. Finally set 

f~(~, c-') = g~(~, F (~ ,  no, c-'), c-); 

it is easy to check that IAo + TI(-< win, En-1) proves 

A~ (no, c-), W i t ~  (w~, cO,..., W i t ~  (wk, c-) 

- - - - - )B  1 (C-), W i t ~  (f2(~, c-), c-), . . . , Wi t~ , ( fe(~ ,  c-), c-) 

since F(zg, no, ~ gives the ordinal at which ge+l fails to give a smaller ordinal 
satisfying A1 and with this ordinal, one of g l , . . . ,  ge must produce a witness 
for the corresponding B1 , . . . ,  Be. 

Q.E.D. Lemma 10 and Theorems 7, 8 and 9 

The above proof did not consider the case where the last inference of the 
proof is an induction inference: since induction is restricted to A0-formulas 
and the witness formula for a A0-formula is just the formula itself, that 
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case is completely trivial. However, IE~ is, by Proposition 2 a consequence 
of IA0 + TI(-< Wm, En-1) and it must, a priori, be possible to handle IE~ 
induction inferences by the witness function method as above. In fact, it is 
quite simple - -  an IEn-induction inference is handled by primitive recursion 
in En-~. This leads to a direct proof of Theorems 8 and 9; we leave the 
details of this direct proof to the reader. 

We have now finished the characterization of the En-definable functions 
of IA0 + TI(-< wm, En-1) and of IEn. It remains to characterize the 
Ek-definable functions of these theories when k < n. (In section 6, we 
discuss the case k > n too). The central result needed for this character- 
ization is that the theory IA0 + TI(-< win, En-1) is Hn+l-conservative over 
IA0 + TI(-< win+l, En-2) : 

THEOREM 11 Let m > 2 and n > 1. 

(a) IA0 + TI(-< win, rn-1) ~- TI(-< win+l, E~-2). 

(b) I X0 + TI(-< rn- ) A A e n +l, 
then IA0 + TI(-< win+l, En-2) F- A. 

Part (a) of this theorem is due to Gentzen [10]; the proof can be found in 
Lemma 3.4 of [26] or Theorem 12.3 of [27] and is also repeated below. Part (b) 
extends the prior result of Schmerl [24] that IAo + TI(-< win, En-1) is Hn-l- 
conservative over IA0 + TI(-< Wm+l,F~n_2); Schmerl's proof was based on 
reflection principles. A weaker version of (b) with II2-conservativity in place 
of IIn+l-conservativity can be found in [26]. 

P r o o f  (a) By Proposition 1, it will suffice to show that the theory 
IA0 + TI(-z, wm, Hn) can prove TI(-z, wm+l, Hn-1). Let A(a) r Hn-1 and 
let HYPA be the formula (V/3)[(V7 -</3)A(t') ~ A(/3)] and let ~ -< Wm+l. 
We reason inside IAo + TI(-< win, I In) to prove A(~) assuming HYPA. Let 
A*(c~) be the formula (V7 -< c~)d(7); by HYPA, m*(o~)~ A*(o~ + 1). Let 
J(~) be the formula 

(w) + J ) )  

Clearly, J C Ha. We shall use transfinite induction on J to prove J(no) 
for some fixed n0 -< aJm such that n -< a~ ~~ . Since A*(0) holds trivially, 
J(no) implies d*(w '~~ which, in turn implies d(n).  Thus it suffices to prove 
HYPj  : 

(V/3)[(V7 -</~)J(7)--* 5(/3)] 

since, using TI(-z, win, I-In), this implies J(no) holds for this particular no. 
First note that J(0) holds by our observation that d*(a) --, d*(a + 1). 
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Now let /3 be an arbitrary non-zero ordinal and suppose (V3` -~ fl)J(~)" we 
must prove J(fl).  If fl is a successor ordinal, fl - / ~ '  + 1, it suffices to show 
J(/3') ~ J(/3' + 1), i.e., 

( ~ )  (A* (oz) ---+ A*(oz-~- a2~')) ~ (Vo/) (A* (o/) ---+ n*(oz t --~- (M~'+I)) . 

Assume J(fl ') holds and let c~' be arbitrary such that  A*(c~') and let 3  ̀ -~ 
OJ + (.d ~'+1 ; we must show A* (3`). By consideration of Cantor normal forms, 
3' -~ a'  + a J .  n for some finite n. From J(/3'), it follows that  

(Va)(A*(a)--~ A*(a + a J .  k)) ---, ( V a ) ( A * ( a ) ~  A*(a + w �9 (k + 1))) 

holds for all (finite) k. By ordinary II~-induction, this implies that  

(w) + J ' .  k)) 

holds for all finite k. Thus A*(~/) holds. Finally, suppose/3 is a limit ordinal 
and assume (Y5 -< ~)J(5)  and assume A*(c~). If 7 -~ c~+ czz then 3' < c~+ ca6 
for some 5 -~/3 so A(3') holds by J(5).  Since 3  ̀was arbitrary, J(/~) follows. 
That  completes the proof of (a). 

The proof of (b) consists of a partial formalization of the Main Lemma 10 in 
the theory IA0 + TI(< cJm+l, En-2). First an important lemma is necessary: 

LEMMA 12 Let m > 2 and n > 2. IAo + TI(-z, ~m+l, En-2) can En-detine 
precisely the -~ Wm-primitive recursive in En-I functions. 

P r o o f  By the just established part (a) of Theorem 11, every En- 
definable function of I A 0 +  TI(-'<czm+I,En-2) is also En-defined by 
IA0 + TI(-< cJm, En-1) and hence, by Theorem 7, is -~ corn-primitive recursive 
in En-1. To show the converse, suppose F(zT) is defined from primitive 
recursive functions g, ~-, and ~, from A ( y ) =  (3x)B(x) with B c Iln-2, 
and from an ordinal ~c0 -~ wm as in the Second Normal From Theorem; so 
F(s = f(~-(Z)) where 

{ f(m(r UA(fl))) if ec(/~, UA(fl)) -z, /3 ~ eCo 
f(/3) -- g(fl) otherwise. 

Recall the definition of an f -computat ion series r �9 �9 �9 flk used in the proof of 
Theorem 7 to code a partial computation of f .  In the proof of Theorem 7, the 
existence of a maximal length f-computat ion series beginning with/30 = ~-(zT) 
was proved by finding the least /3k such that  there exists an f -computat ion 
series from fl0 to ~k. The existence of ~k was proved via L OP(-e, cz~, E~): 
this was the key step in E~-defining F in IA0 + TI(-~ cJm, En-1). 
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To En-define f and F in IA0 + TI(-z, 0)m+1, En-2) requires a more subtle 
argument. The basic motivation for this argument is that one could try to 
minimize the ordinals of the form 

0)~0 ..[_ 0)~1 + . . .  + 0)~k-1 _~_ 0)f~k . 2 

with/~0,...,/~k an f-computation series - -  but this is too simplistic because 
of the presence of the UA function. Instead, we encode partial computations 
of f by a sequence of ordinals 

f l0,  OL0, i l l ,  O L 1 , " " " ,  i lk ,  OLk 

where /30,...,t3k is an f-computation series and where each ai ~ 0) and 
encodes the value of UA (13i)" 

Defini t ion Let a be the Ghdel number of an ordinal ~ 0). Then D(a)  is 
the integer defined by 

_ f 0 i f  a = w 
D(a) 

n +  1 i f a -  rn ' 

Def ini t ion An f-computation ordinal (fCO) is (the Ghdel number of) an 
ordinal of the form 

WW 2 "f~0"~'O~0 ~ WW2"f~I -lt-O~l .A r . . . W r "f~k- 1 "lt-O~k - 1 _Jr.. 0.)W2"~k-[-O~k ~ 0) 032 "~k -[-O~k 

(only the final summand is repeated), where 

(i) /~i+l ~ ~i 4 ao, for O ~_ i < k, 

( ii) ai ~ w, for O <_ i < k, 

(iii) ~i-t-1- g(~,  D ( ~ ) ) ,  for 0 _ i < k, 

(iv) F o r 0 < i < k ,  

�9 if a ~ -  rn ~, then B(~i, n) and for all m < n, -~B(~i, m) 

�9 if ai = w, then (Vm)-,B(~i, m), 

(v) It is not the case that ~(/?k, D(ak)) -</~k ~ n0. 

A psuedo-f-computation ordinal (PfCO) is defined exactly like an f -  
computation ordinal except that (v) is omitted and (iv) is replaced by 

(iv') For 0 _ i _ k, if a ~ -  rn~ then B(/~, n). 
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We write fCO(o~, ~ and PfCO(o~, z-') for formulas expressing the condition 
that  c~ is an fCO or PfCO, respectively, with/30 = T(2'). 

The quantifier complexity of P f C O  is easily analyzed since (i)-(iii) are prim- 
itive recursive and (iv ')  is II~_2 since B C II~_2 and by BIIn_2-collection 
(which is a consequence of IA0 + TI(-< win+l, En-2) since this theory con- 
tains IE~_I) .  Thus P f C O  is a II~_2 formula. Letting ~cl - w  ~2~~ 
we have that  ~cl -< Wm+l and, therefore, if ~-(5') 4 ~0 and PfCO(o~,z-'), 
then c~ -< ~ .  We henceforth assume w.l.o.g, that  T(2') 4 ~0. Now, 
there exists c~ such that  PfCO(oL, z-'); namely, w ~~(e)+~ �9 2. Hence, by 
LOP(-< win+l, IIn-2), there is a minimum ordinal denoted C~mi n such that  
PfCO(c~mi n, Z). We claim that  fCO(c~min, Z) also holds. To prove this, 
suppose 

O~mi n __ ww2.Zo+~o + . . .  + Ww2"Zk+~k + Ww2"Zk+'~k; 

the only way fCO(ozmin) can fail is if condition (iv) or (v) is violated. First 
suppose (iv) fails for some value of i. Then, if c~i = w but B(fli, m) holds, 
then 

Ww2"~ont-ozo _~_ . . . .31_ O,)w2"~i - 1 -+-o~i- 1 jr_ W',,o2"~i + m  .%_ Ww2.~i  + m  (6) 

is a psuedo f -computat ion ordinal -< OZmi n violating the choice of OZmi n. 
Likewise, if c~i = ~n' but B(/3i, m) holds with rn < n, then the same 
ordinal (6) is a psuedo f -computat ion ordinal -< OZmi n. Hence (iv) must 
hold. Now suppose (v) fails. Then, 

W W2"flO'-bOtO -Jr- " ' "  -~ W W2"flk-l-~O~k-1 -Jr- W W2"flk-t-O~k ~ W W2"flkTl-t-W 71- W W2"flk+l-~-W 

where flk+l = K(flk, D(o~k))is a psuedo f-computat ion ordinal -< O~min, 
which is again a contradiction. Hence (v) must also hold and O~mi n is an 
fCO. 

Thus IA0 + TI(-< c~m+l, 2n_2) can define F(Z) by proving 

( v s ) ( 3 ! v )  z) A < -+ z))A 

_ + . . .  + 2 A v - ( 7 )  

P f C O  is a II~_2-formula so the subformula (Vc~')(...) is in I-In_ 1 and the 
subformula (~c~)(...) is a E,-formula; thus this is a En-definition of F(Z) in 
IA0 + TI(-< Urn+i, 2 . - 2 ) .  
Q.E.D. Lemma 12 
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Lemma 12 stated that the En-definable functions of IA0 + TI(-~ corn+l, En-2) 
are precisely the -~ Wm-primitive recursive in En-1 functions; the lemma 
was proved using the second normal form for such functions. However, 
this use of the second normal form was not essential for the proof: 
IA0 + TI(-~ corn+l, E,-2) can also prove that the -~ Wm-primitive recursive 
in En-1 functions are closed under composition and under -~ win-primitive 
recursion. These closure properties are proved in IA0 + TI(-~ Wm+l, En-2) 
by formalizing the proofs of the three normal form theorems. Since the proofs 
of the normal form theorem were completely constructive, this formalization 
is straightforward (and left to the reader). 

We are now ready to return to the proof of part (b) of Theorem 11, for which 
it suffices to prove that if B(c-) is a E~-formula and IA0 + TI(-~ win, En-1) 
proves the sequent --->B(c-), then so does IA0 + TI(-< wm+~,En-2). In 
fact, more than this is true: a sequent F - - ~ A  of En-formulas is a 
consequence of IA0 + TI(-< Wm, En-1) if and only if it is a consequence 
of IA0 + TI(-~ win+l, E~_2) this is a corollary of the next lemma. 

MAIN LEMMA 13 (n >_ 2, m >_ 2) Suppose IAo + TI(-~ win, En-1) proves 
the sequent A1, . . . ,  Ak- - ->B1 , . . . ,  B~ and that each Ai and Bj is in En 
and that 6 are all the variables free in the sequent. Then there are functions 
f l , . . . ,  fe which are -~ win-primitive recursive in En-1 and are E~-definable 
i n / A o  + TI(-< wm+~, E~_2) such that/Ao + TI(-~ (Mm_l_l, Y]n-2) proves 

witnA1 (Wl, ~ , . . . ,  WitnAk (Wk, C-) ---->WitnB1 (fl (W, ~,  C-),..., witnBt (f~(~, C-), ~. 

The proof of Lemma 13 is exactly like the proof of Lemma 10 except that now 
the definitions of the functions f l , . . . ,  fk and the proofs that they produce 
the correct witnesses are now carried out in IA0 + TI(-~ win+l, En-2) the 
reader should refer back to the earlier proof to verify that it works out as 
claimed. El 

Now suppose A1,.. . ,  Ak --->BI, . . . ,  Bt is a sequent of En-formulas which 
is provable in IA0 + TI(-~ win, En-1). By the just stated lemma and from 
the definition of Wit, IA0 + TI(-~ corn, En-1) proves 

" t  n ~ � 9  ~ �9 o . ,  . ,  

which, via 3 :left inferences gives 

A I ( ~ , . . . ,  Ak(c-') ---->B1 (c-'),..., Be(c-). 

Q.E.D. Theorem 11 
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THEOREM 14 Let m > 2 and n > 1 and 1 < k < n -  1. Then 
+ TI(-  m-l )  TI(-  rn-l- ) IAo + TI(-  Z _I) 

is conservative over the theory IAo + TI(-< win+k, En-l-k) with respect to 
tin+2- k - co l l s eq  u ell ces. 

P r o o f  Apply Theorem 11 k times. [3 

COROLLARY 15 Let n > 1. The theory I E .  contains and is II 3 - c O n s e r v a t i v e  

over the theory IA0 + TI(-< u;.+l, A0). 

P r o o f  Take m - 2; since I E .  is equal to IA0 + TI(-< a;2, E . - I )  the previous 
theorem with k - n -  1 yields the corollary. 73 

Now we are ready to prove the theorem characterizing the E/-definable 
functions of IAo + TI(-~ ~m, En-1) and of IEn for all 1 _~ j _~ n. 

THEOREM 16 Let m _> 2 and 1 _< j _~ n. 

(a) If  j > 1 then the Ej-defillable functions of IA0 + TI(-~ win, Gn-1) are 
precisely the functions which are -~ Wm+n_j-primitive recursive in Ej_I. 

(b) (For j - 1.) The El-defillable functions O.e., the provably recursive 
functions) of IA0 + TI(-~ Wm, En-1) are precisely the functions which 
are -~ Wm+n_l-primitive recursive. 

THEOREM 17 Suppose 1 ~_ j ~_ n. The functions which are Ed-definable 
in IE~ are precisely the functions which are -~ w~_j+2-primitive recursive 
in Ej_ l . 

THEOREM 18 Let n >_ 1. The provably total functions of IEn are precisely 
the -~ w~+l-primitive recursive functions. 

P r o o f  The proof of Theorem 16 is phrased for j > 1, but applies equally well 
to the j -  1 case. Suppose F(zT) is Ej-defined by IAo + TI(-~ oJm, E~_~) 
proving (VZ)(3!y)A(y,Z) where A E Ej. By Theorem 14 with k - n -  j ,  
IA0 + TI(< ~,~+n-j, Ej-1) also proves the IIj+l-sentence (V2')(3!y)A; that 
is, it also Ej-defines f .  Hence, by Theorem 7, F(2') is -~ U.)m+n_ j -  

primitive recursive in Ej_I. Conversely, every -~ Wm+n_j-primitive recursive 
in Ej_I function is Ej-definable in I A  o + TI(~ U.)m+n_j ,~ j_ l )  , and hence 
in IA0 + TI(-< ~m, E~_I), by Theorems 7 and 14. That proves Theorem 16. 
Theorems 17 and 18 are corollaries of Theorem 16, since IE~ is the same 
theory as IA0 + TI(< a;2, E~_I). [3 

Theorem 18 immediately implies the well-known fact that the provably 
total functions of Peano arithmetic are precisely the -~ ~0-primitive recursive 
functions. 
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4. IIn+l-induction rule versus En induc t ion  axiom 

This section presents a sketch for a proof of Parsons's theorem on the 
conservativity of a restricted IIn+l-induction rule over the usual En -induction 
axiom this proof is based on the witness function method. For reasons of 
length we omit the details of the proof. 

The l-In+l-strict induction rule allows inferences of the form 

~>A(O)  A(b)--->A(b + 1) 

~ > A ( t )  

where b is the eigenvariable and occurs only as indicated, t is any term and 
A is in IIn+l. Note that no side formulas are allowed (otherwise it would 
be equivalent to the Hn+l-induction axiom). The strict induction rule is 
equivalent to what Parsons calls the "induction rule" modified only slightly 
to fit in the framework of the sequent calculus. By free-cut elimination 
any sequent of II~+l-formulas which is provable in IA0 plus the IIn+~-strict 
induction rule has a proof in which every formula is in Hn+l. 

N o t a t i o n  IIn+l-IR denotes the theory of arithmetic IA0 plus the [In+l- 
strict induction rule. This system is always presumed to be formalized in the 
sequent calculus. 

It is not too difficult to see that II~+2-IR proves the En induction axioms, 
for all n >_ 0. To prove this, if A(b) C En, use the strict induction rule on 
the formula 

[A(0) A (Vx)(A(x) ~ A(x + 1))] ~ A(b) 

with respect to the variable b. 

THEOREM 19 (Parsons [22]) Let n >_ 1. A Hn+l-sentence is a theorem of 
IEn iff it is a consequence of Hn+I-IR. 

Parsons's proof of Theorem 19 was based on the Ghdel Dialectica interpreta- 
tion; other proof-theoretic proofs of Theorem 19 have been given in [19, 25]. 
The main novelty of our proof outlined below is that it uses the witness 
function method directly. 

P r o o f  (Outline): The easy direction is that if IE~ F- A where A C 1-In+l, then 
IIn+I-IR also proves A. Since A e IIn+l, A is expressible as (V2)B(2) where 
B E En; it suffices to show that 1-In+l-IR [- B (~ .  By free-cut elimination, 
there is a IE~-proof P of B(c-') such that every formula occuring in P is a 
En-formula. We now can prove by induction on the number of inferences in 
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this proof that every sequent in P is a consequence of II~+I-IR. The only 
difficult case is the induction inferences, which are of the form 

F, A(b) - - ~  A(b + 1), A 
F, A(O) ----> A(t), A 

Letting D(b) be the formula (A r f A(b)) V (V A), the upper sequent is 
logically equivalent to D(b) --, D(b + 1) and the lower sequent is logically 
equivalent to D(0) ~ D(t).  And if 1-In+I-IR proves the upper sequent, then 
it also proves the lower sequent by use of the strict induction rule on the 
formula D ( 0 ) ~  D(b), which, as a Boolean combination of En-formulas is 
logically equivalent to a [In+l-formula. 

For the hard direction of Theorem 19, we need the next lemma. We let 
PRA~ be a set of function symbols for the functions which are primitive 
recursive in E~. By Theorem 8, each function symbol in PRA~_~ represents 
a function which is En-definable in IE~ we may augment the language 
of IE~ with these function symbols, provided we are careful not to use them 
in induction formulas. In the next lemma, the notation 2~i denotes a vector 
of variables and I1~11 denotes the number (possibly zero) of variables in the 
vector. 

LEMMA 20 Suppose Ai(:~i, c-) and Bj(!~j, c-) are En-formulas, for 1 _< i _< k 
and 1 <_ j <_ g, and that [In+l-IR proves the sequent 

(VZl)AI(Zl, ~ , . . . ,  (V:gk)Ak(:gk, ~ ---~(Vffl)Bl(ffl ,  c~, . . . ,  (V~t)Bt(~, c~. (8) 

Let f l ,  . . . , A be new function symbols so that fi has arity I li, II + I lcll. Then 
there are terms t i ( f f l , . . . ,  if,, ~ in the language PRAn-1 U { f l , . . . ,  fk}, for 
1 <_ i <_ g, such that IEn proves 

(VZl)WitnA~ (fl(Zl, ~ ,z ,  c-),..., (V~k)WitnAk (fk(zk, C~,~, C~ 
--~,Wit~B~ (tl, Yl, ~ , . . . ,  Wit~t(tt, ~, c-). (9) 

Theorem 19 follows immediately from Lemma 20 with k = 0 and g = 1 and 
from the fact that every PRAn_l- funct ion is definable in IE~. For reasons 
of length, we omit the proof of Lemma 20: the general idea of the proof 
is a relatively straightforward use of the witness function method; however, 
it requires the development of some deep facts about primitive recursive 
(in E~) functions. An important feature of the lemma is that each term t~ 
may involve all of ~1, . . . ,  ge. 

A second theorem of Parsons is that Theorem 19 also holds with the 
addition of the BEn-collection axiom: 
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THEOREM 21 (Parsons [22]) Let n >_ 1. The rIn+l-consequences of 
Hn+~-IR + BEn are the same as the Hn+l-COnsequences of IE~.  

P r o o f  (Outline) Recall that BHn-1 is equivalent to BEn, relative to the base 
theory IA0. The BHn_I axioms contain unbounded quantifiers in the scope 
of bounded quantifiers, so it is not possible to use free-cut elimination to force 
a proof in IIn+l-IR + BEn to contain only IIn+l-formulas. We let H + denote 
the set of formulas which have n blocks of like unbounded quantifiers, starting 
with a block of universal quantifiers, allowing arbitrary bounded quantifiers 
to be included in the first block of unbounded quantifiers (see the next section 
for a careful definition of the analogous class En +). Now, temporarily define 
the set of E~ formulas to be the formulas which are of one of the following 
forms: (1) (3ff)B(:g) where B 6 nn+_l or (2) (Wz < t ) (3y l )B(y l ,  z,c-) where 
B 6 IIn-1. We also define the Hn+ 1 formulas to be the formulas which are 
either IIn+l or E n. Since the BIln_l axioms can be formulated in the form 
A ~ , A '  with A and A' both in E~, the free-cut elimination theorem implies 
that if F ~ A  is a sequent of IIn+l-formulas provable in Hn+I-IR + BIIn, 
then this sequent has a proof in which every formula is a IIn+l-formula. The 
notion of "witness" can be generalized as follows: if A(c-) is a E~-formula in 
one of the above forms; then, if A is of form (1), Wit*An(W, C') is defined just 
like witnA(w, c-) was and, if A is of form (2) then Wit*An(W, c-) is defined to be 
the formula 

(Vz _< t)Wit(~yl)B((w)z , z, c-). 

LEMMA 22 Suppose Ai(i,i, c-) and Bj(~Tj, c-) are En-formulas , for 1 _< i _< k 
and 1 <_ j <_ g, and that IIn+l-IR + BEn proves the sequent 

(V:~I)A1 (:~1, c-),..., (V:~k)Ak(:~k, C') ------> (V~71)B1 (~71, c-),... ,  (V~Tl)Bt(~t , c-). 

Let f l ,  . . . , fk be new function symbols so that fi has arity II  ll + Iic11. Then 
there are terms t~(~71,..., ~7~, cO in the language PRA~_I  U { f l , . . . ,  fk}, for 
1 <_ i <_ g, such that IEn proves 

(VZ1)Wit~ (f~ (~,~, c-), i,, c-), . . . , (Vi, k)Wit*Ank (fk(~,k, C'), ~, C-) 

~'Wit*Bn~ (tl, ~1, c-),..., Wit*B~ (Q , ~l, c-).(10) 

We omit the proof of the lemma and the rest of Theorem 21. 

Finally, it should be remarked that nn+l-IR-~- BEn does not contain IEn.  
This can be proved by noting that Hn+I-IR + IE~ is not Hn+2-conservative 
over IEn.  For example, with n = 1, let A(k,  m) be the Ackermann function 
so that the functions f k (m)  = A(k,  m) are all primitive recursive and so 
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that each primitive recursive function is eventually dominated by fk for 
sufficiently large k. Let A*(k, m, y) be the graph of the Ackermann function; 
it is well-known that A*(k, m, y) is A0 (for us it is sufficient that  it is E~ ). 
Now, it is easy to see that I}--] 1 proves (Vx)(3y)A*(O,x, y) and 

(Vx)(3y)A*(b,x, y)---->(Vx)(3y)A*(b + 1,x, y). 

Thus H2-IR + IE1 F (Vk)(Vx)(3y)A*(k,x, y). But the Ackermann function 
is not primitive recursive, hence not El-definable in IE1. Thus II2-IR + IE1 
is not II2-conservative over IE1 and thus not equal to II2-IR and not a 
subtheory of II2-IR + BE1. 

To show IIn+I-IR + BEn Y IEn for n > 1, use essentially the same 
argument, but use 'primitive recursive in En- l '  in place of 'primitive 
recursive' and use a suitable replacement of the Ackermann function that  
dominates the functions primitive recursive in En_l. 

5. C o n s e r v a t i v i t y  of co l lec t ion  over  i n d u c t i o n  

In this section we prove the well-known theorem that the BE,,+l-collection 
axioms are IIn+2-conservative over IEn.  The proof method does not use the 
witness function method per se, but it involves an induction on the length of 
free-cut free proofs similar to the methods of earlier sections. Earlier proofs of 
this theorem include Parsons [22] and Paris-Kirby [21]; see in addition, [3, 25]. 
The advantage of our proof below is that it gives a direct and elementary 
proof-theoretic proof. 

Recall that the BEn+l-collection axioms are equivalent to the BHn- 
collection axioms. In the sequent calculus, the BIIn-collection axioms are of 
the form 

(Vx < a)(3y)A(x, y)----->(3z)(Vx _< a)(3y <_ z)A(x, y) 

where A C n n and may contain free variables besides x, y. In the above 
sequent there are bounded quantifiers outside of unbounded quantifiers so 
the formulas are not, strictly speaking, En+l-formulas. Accordingly, we 
define a generalized form of En+l-formulas that  will be allowed to appear in 
free-cut free proofs. 

+ 
Def in i t i on  The class En+ 1 of formulas is defined inductively by 

(1 / H. C En+l, 

+ 
(2) If A E En+ 1, then (3x)A, (3x < t)A and (Vx < t)A are in En++l, where 

t is any term not involving x. 
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+ If s is a term and A is a En+l-formula, then A -<s is the formula obtained 
by bounding unbounded existential quantifiers in the outermost block of 
quantifiers of A by the term s; namely, 

De f in i t i on  Fix n and suppose A C E + n + l  �9 

(1) If A c 1-In, then A'<S is A. 

(2) If A is (3x)B and A r  then A "<s is (qx <_ s)B. 

(3) If A is (Qx <_ t)B then d "<s is (Qx < t)(B<'S). 

Let F ~ A  beasequent  A 1 , . . . , A k - - - > B 1 , . .  Bl of + ., En+~-formulas. Then 
k 

F "<s is the formula A A~ ~ and A "<s is the formula V Be ~ �9 This notation 
i = 1  j = l  

should cause no confusion since antecedents and succedents are always clearly 
distinguished. 

If ~ " -  c~,...c~ is a vector of free variables, then ~' _< u abbreviates 
the formula c~ _< s A . . .  A c~ _< u. (V~' ___ u) and (3~' _< u) abbreviate the 
corresponding vectors of bounded quantifiers. 

+ THEOREM 23 (n > 1) Suppose F ~ A  is a sequent of En+ 1 -formulas that 
is provable in IAo + BEn+I �9 Let ~' include all the free variables occurring in 
F ~ A .  Then 

IP,~ F (W)(3v)(W_< u)(C -<~ -~ a'<~). 

Intuitively, the theorem is saying that given a bound u on the sizes of the 
free variables and on the sizes of the witness for the formulas in F, there is a 
bound v for the values of a witness for a formula in A. 

Theorem 23 immediately implies the main theorem of this section" 

THEOREM 24 IA0 + BEn+I is IIn+2-conservative over IEn. 

Recall that  IA0 + BEn+I k- IEn.  Before proving Theorem 23, we establish 
the following lemma (due to Clote and H~jek). 

LEMMA 25 (n > 1) Let B(5, d) c 1-In. Then 

< (Vx < x)]. 

The formula of Lemma 25 is called the En-strong replacement principle. 

P r o o f  Let s be the length of the vector ~'. We reason inside IP, n. Let C(E, d) 
be the En-formula -~B(E, d). Let Num(u, ~) be the formula expressing 
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3(5"1, d l , . . . ,  fie, de) s.t. c~ , . . . ,  c) are distinct s-tuples _< u and 
C(ffi, di) holds for all 1 _< i _< g. 

Of course, this asserts that  there are _> g distinct values of ~' _< u for which 
(3z)c(~', z) holds. Now N u m  is a m-formula and Num(~, (u + 1) * + 1) 
is clearly false; so by IEn, there is a value go such that  Num(g, go) but 
not Nurn(~,go + 1). Given ~'1, d~ , . . . ,  C)o,deo witnessing Num(~,go), let 
v - m a x { d l , . . . ,  deo}. It follows that  

(w'___ ___ 

which is what we needed to prove. El 

P r o o f  of Theorem 23: By free-cut elimination, F - - - > A  has a sequent 
calculus proof P in which every formula is a E++l-formula. (Since we allow 
bounded quantifiers in E~++I -formulas, it is convenient to work in the sequent 
calculus LKB with inference rules for bounded quantifiers [2].) We prove 
the theorem by induction on the number of inferences in P .  The proof splits 
into cases depending on the last inference of P .  The hardest case, V:right is 
saved for last. 

Case (1): If P has no inferences and F----->A is an initial sequent, then 
either F ~ : > A  is a logical, equality or arithmetic axiom, containing only 
A0-formulas, and the theorem is trivial, or F - - - > A  is a BE~+I axiom. In 
the latter case, taking v = u, it is immediate that  IEn proves 

(Vx <_ a)(3y < u)A(x, y ) ~  (3z <_ u)(Vx _< a)(3y < z)A(x, y) 

and the theorem holds. 

Case(2): Suppose the last inference of P is a structural inference, a 
propositional inference or a V :left or V _< :left inference. The inference may 
have either one or two premisses: 

l-I ~ A 111 ---->A1 1-12 ------->A2 
or 

F ~ >  A F ~ A  

It is easily checked that,  in the first case we have that  IEn proves F "<u ~ I1 "<~ 
and A "<v -~ A "<v and, in the second case we have that  IEn proves F "<u ---, 

.<v .<v <v I1~ ~ A II~ u and A 1 A A 2 ---. A In the first case, the induction hypothesis 
states that  IEn proves 

s A 
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from which (3v)(VE _< u)(F "<u ---+ A <~) follows. In the second case, by the 
induction hypothesis, IEn proves 

< u A -  <v, --'+ "-i ) 

for i - 1,2. Taking v - ma•  and noting that IEn proves 
_ A <~vi A<.V v~ < v A ._~ --* ._~ , we get that IEn proves (3v)(VE_< u)(F ~= ~ A<') .  

Case (3)" Suppose the final inference of P is an 3 :right inference- 

F - - ~  B(E, t(c-)), a 
F - - ~  (3x)B(E, x), A 

We reason inside IE= as follows: given arbitrary u, there is (by the induction 
hypothesis) a v' such that  

(VE _< u ) ( r  "<~ ~ B <'v' (E, t(c-)) V A'<r 

Letting v - max{v', t ( u , . . . ,  u)} we have that t (~  < v for all E < u (since 
the language has 0, S, + and �9 as the only function symbols). This v makes 
the theorem true. The case where the last inference of P is a 3 < :right is 
similar. 

Case (~)" Suppose the last inference of P is an 3 :left: 

A(E, d), F ---> A 
(3x)A(E, x), F ---> A 

where d is the eigenvariable occuring only where indicated. The induction 
hypothesis is that I~n proves 

d < d)A r -<u 

This is equivalent to 

(W)(3v)(VE < u) ((3d < u)A'<U(~, d)A r "<~ -~ A ~ )  

which is what we needed to prove. 

Case (5): The 3 _ :left inference is a little more subtle. If the final inference 
of P is 

d <_ t(c-),A(g, d ) , r  - - ->  A 
(3x <_ t(c-))A(5, x) ,F  ----> A 

we reason inside IE~ as follows. Let u be arbitrary, there is a v' such that  

(VE, d < u)(d <_ t(c-) A A'<~(E, d)A r ~<u ~ A'<v'). (11) 
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Let u' - max{u, t (d)};  by the induction hypothesis, there is a v such 
that (11) holds with u ' ,v  in place of u,v ' .  Now let ~' _< u and suppose 
(3x <_ t)A<'U(g,x)A F -<u. Clearly, this implies (3x _< u')(x _< tAA<-~'Ar<-~'). 
Taking d to be this x, we have A "<v holds. 

Case (6)" Suppose the last inference of P is a Cut: 

['1 - - > / k l ,  A A, F~ --->A2 

Pl, F2 ----->A1, A2 

~<u ~<u We reason inside IE~. Suppose u is arbitrary and r 1 A 1-" 2 . Pick vl, 
depending only on u by the induction hypothesis, so that  A <v~ V A "<'~ . Let 
u2 - max{v1, u}. By the induction hypothesis, there is a v > vl depending 

"<~ holds. Now clearly either A~ v or only on u~ so that  if A <<-v~ holds, then A 2 
A~ ~ holds. Since v depends only on u, this proves this case. 

Case (7): Suppose the final inference of P is a V:right: 

F - - ~  B(~, d), A 
r - - ~  ( V . ) B ( < . ) ,  a 

+ 
Note B E [Is since (Vx)B must be a En+l-formula. We reason inside IEn. 
Let u be arbitrary. By En-strong replacement (Lemma 25) there is a u' >_ u 
such that  

(re-_ u)((w)B(< ~ )~  (w _< ,,')B(< u')). 
Let v > u' be given by the induction hypothesis so that  

(v< d _< ~') (r-<~' -~ B(< d)v :x-<~). (12) 

Now let 6' _< u be arbitrary such that  F <~ We need to show (Vx)B(5", x) V 
A -<~. Suppose not, then there is a d < u' such that  --B(5", d), and by (12), 
A<V holds, which is a contradiction. 

The case where the final inference of P is a Y _< :left inference is similar, 
although Lemma 25 is not needed. 
Q.E.D. Theorem 23 

It would be interesting to give a similar proof that  [In+l-IR + BEn is IIn+l- 
conservative over 1-I~+I-IR, in place of the more complicated and omitted 
proof of Theorem 21 above. 

6. Ana log ie s  b e t w e e n  b o u n d e d  a n d  P e a n o  a r i t h m e t i c  

The witness function method has been extensively used characterizing defin- 
able functions of fragments of bounded arithmetic the work in section 3 
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above gives an approach to Peano arithmetic which is very similar to some of 
the proofs used earlier in bounded arithmetic. 

First, Theorem 8, which characterized the En-definable functions of IEn 
is analogous to the main theorem of Buss [2] which characterized the E~- 
definable functions of S~ (which is axiomatized with E~-PIND axioms). 
In I~n, the En-definable functions are precisely the functions primitive 
recursive in En-1; whereas, in S~, the Ebn-definable functions are precisely 
the functions polynomial time computable with respect to a (usual) E~_~P - 
oracle It should be noted that a usual E p -oracle is equivalent to a witness 

�9 n - 1  

oracle for P En_ ~ with respect to polynomial time computation, since there is 
an a-priori bound on the size of a witness and a witness value may be queried 
bit-by-bit. The proofs of these two theorems are analogous as well. 

Second, Theorem 11, which stated that IA0 + TI(-~ wm, E~_l) is II~+l- 
conservative over IA0 + TI(-z, win+l, En_2) is analogous to the result of [4] 
that S~ is VEbn-COnservative over T~ -1 . To see the analogy more sharply, 
note on one hand IA0 + TI(-~ ~m, En-1) and IA0 + TI(-~ win+l, E~-2) are 
equivalent to IA0 + TI(-~ win, II~) and IA0 + TI(~ wm+l, IIn-1) (respec- 
tively), which are axiomatized with transfinite induction on II~-formulas up 
to ordinals -~ wm and on 1-In-1 formulas up to ordinals -~ w~m; and on the 
other hand, S~ may be axiomatized by induction (PIND) on H~-formula up 
to lengths Ix I and T~ -1 may be axiomatized by induction on II~-formulas up 
to 21xl. So both conservation theorems give situations where the complexity 
of induction formulas may be reduced by one block of quantifier alternation 
in exchange for "exponentiating" the length of induction. Another theorem 
of this type is the result of [6] that R~ is VEbn-COnservative over S~ -1 . 

Witness oracles have been applied to bounded arithmetic in [18] and in [6]. 
Another area of contact between bounded arithmetic and Peano arithmetic 
may be found in Kaye [14] who gives a proof that IE~ ~: BEn+I based on 
methods used earlier by [18] to show that if T~ +1 - S~ +1 then the polynomial 
time hierarchy collapses. 

We conclude with a partial characterization of the Ej-definable functions 
of IE~ when j > n: 

Defini t ion Let A be a formula; w.l.o.g, all negations in A are on atomic 
formulas. The counterexample oracles of A are the witness oracles U(3x)-~B 
for (Vx)B a subformula of A. 

THEOREM 26 Let j > n > 1. Suppose IEn F- (Vx)(3!y)A(x,y) where 
A e Ej. Then the function f ' x  ~ y, such that (Vx)A(x, f(x)) ,  is primitive 
recursiye in En-1 and in the counterexample oracles for A. 

The same holds for IAo + TI(-~ wm, En-1) with "primitive recursiye" 
replaced by "-~ win-primitive recursiye". 
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The proof of this theorem is analogous to the proof of Theorems 7 and 8 
except tha t  the V :right cases of the proof now have to accommodate  the fact 
that  a V:right quantifier may be an ancestor of a quantifier in (3y)A(c, y). 
Of course a counterexample oracle for A is exactly what  is needed for this 
case. 

Theorem 26 can be extended to partially characterize the E~-definable 

functions of Tff -1 or S~ when j > n; namely, 

THEOREM 27 (See [18, 23, 17]) Let j > n >_ 1. 

(a) Suppose A E E~ and S~ F- (Vx)(3!y)A(x, y). Then the function f such 
that (Yx )A(x , f ( x ) )  can be computed by a polynomiM time Turing 
machine with an oracle for EP_I and with the counterexample oracles 
of A. 

(b) Suppose A c E~ and T~ -1 F- (Yx)(3!y)A(x, y). Then the function f such 
that (Vx)A(x, f ( x ) )  can be computed by a polynomial time Turing 
machine which makes a constant number of queries to an oracle for 
E~_~ p and to the counterexample oracles of A 
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0. I n t r o d u c t i o n  

Logic, like Caesar's Gaul, used to be divided into three parts: proof the- 
ory, recursion theory and model theory. To all these category theory can 
make some contributions, although more in analyzing basic concepts and 
determining direction for further development than in addressing specific 
problems or pursuing technical details. On the other hand, techniques de- 
veloped by logicians have proved very fruitful when lifted to the categor- 
ical level. Here I shall largely confine myself to proof theory, mentioning 
recursive functions only briefly and barely touching the theory of models. 

The present account is largely a survey of results to which the author 
feels he has made some contributions; it tends to ignore parallel devel- 
opments by others, in particular the work by Makkai and Reyes [1977] 
on coherent and infinitary logic and the study of models of elementary 
theories by Makkai and Par~ [1990]. Nor do the many profound contri- 
butions to categorical logic by Andr~ Joyal fall within the scope of this 
paper. However, credit must be given to Lawvere [e.g.1969,1970] for the 
basic insight to encode logical concepts into categorical language. Most of 
the ideas discussed here have already been treated elsewhere, but a few, 
such as those concerned with the subcongruence completion of deductive 
systems, are still under investigation. 

1. Ca tegor i ca l  p roo f  t h e o r y  

Proofs can be described in various ways, one of them being in terms of 
deductive systems. A deductive system deals with deductions, also called 
"entailments", f : A --~ B, where A and B are formulas. In labeling the 
deduction f,  we have already been influenced by category theory. Before 
the advent of computer science, logicians were usually just interested in 
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the existence of a deduction A ~ B and did not consider the necessity of 
sometimes distinguishing several such deductions. 

The deduction symbol (arrow) is assumed to be reflexive and transitive, 
so we always have the deduction 

1A :A---~A 

and the rule 
f : A - ~ B  g : B ~ C  

g f  : A ~ C  

As categorists we must also study the equality relation on the set of all 
deductions A ~ B; in particular, we insist on the following equations: 

f l A  = f = l B f  , (hg) f  = h(gf )  , 

where h : C ~ D, say. The deductive system then becomes a category. 
To get away from generalities, let us look at a particular deductive sys- 

tem, the positive intuitionistic propositional calculus. Among its formulas 
there is T (true) and there are given two ways of forming new formulas 
from old: A A B ( A  and B) and A ~ B ( i rA then B). We postulate 
the following axioms and rules of inference, duly labeled in the spirit of 
category theory: 

OA : A---, T 7tAB : A A B  ~ A eCB : (C =~ B) A C ~ B 

r~A B . A A B ---~ B 

f : C ~ A  g : C ~ B  f : A A C ~ B  

< f , g  >: C ~ A A B  f * : A ~ C ~ B  

The logician will recognize all these, for example, ~CB as modus ponens 
and the transition from f to f* as a form of the deduction rule. 

A categorist will now insist on suitable equations between deductions. 
In fact, Lawvere [1963] introduced the notion of a cartesian closed cate- 
gory, henceforth abbreviated CCC, which can be described by imposing 
appropriate equations in a positive intuitionistic propositional calculus: 

k - - O A ;  7rAB< f , y > =  f , e-CB < f*TrAC, 7rlAC > =  f ,  

~'~B < f, g > =  g ,  (eCB < g~AC, CAC >)* - - g .  
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It is here assumed that  

k : A - ~ T ,  h : C - - ,  A A B  , g : A ~ (C=~  B )  . 

Cartesian closed categories abound in mathematics.  
one example, in the familiar category of sets we have: 

To mention just 

T = { , } ,  

A A B = A x B ,  

C o B = B  e , 

a typical one-element set, 

the usual cartesian product,  

the set of all functions from C to B .  

The idea that  one should look at an equivalence relation (equality) be- 
tween proofs was introduced, quite independently of category theory, by 
Prawitz [1965]. A comparison between his method and ours [L1972] was 
carried out by Mann [1975]. In his review of Mann's  paper, Feferman 
[1976] suggested that  two things should still be incorporated: quanti- 
tiers and equalizers. As for quantifiers, over either individual or proposi- 
tional variables, this is by now well understood, see Lawvere [1970], Seely 
[1984,1987] and also Section 3 below. The possibility of introducing equal- 
izers, though not perhaps in the most economic way, will be discussed in 
Section 5. (For a more economic way, see Seely [1984].) 

2. I n t r o d u c i n g  var iable  arrows  

A typical meta theorem in elementary logic is the deduc t ion  theorem, 
which may be stated in the present context as asserting the following: 
if we assume A, or rather  T --, A, and if, from this assumption, we can 
prove B, or rather  T ~ B, then there must exist a deduction A ---, B not 
depending on this assumption. 

We shall label the assumption x : T --, A, then the conclusion ~a(x) : 
T --~ B may be viewed as a polynomial in x and the theorem asserts the 
existence of a deduction f : A --~ B not depending on x. The categorist 
is now inclined to draw a commutat ive diagram: 

T 

x / ~ f ( x )  

A . . . . . . . . . . . . . . .  > B  

f 

In fact, he would insist that  there is a unique deduction f such that  
f x  = ~(x),  where = is the equality relation in the CCC of all polynomials 

X X 

in x. 
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This property is known from combinatory logic as functional complete- 
ness (see Rosenbloom [1950], Curry and Feys [1958], not to be confused 
with a different notion in universal algebra by the same name). If we write 
f = )~xeA~(X), it may be summarized by the following two equations: 

, 
x 

(rl) )~xEA(fX) = f . 

Using the general algebraic principle of substituting for free variables, we 
may specialize (/3) thus: 

)~xeA~(X)a = ~(a) , 

where a : 3- --~ A is any deduction of A from 3-. 
A word of warning: what we have described here is not the usual A- 

calculus, where )~xeA~(X) is written not for the deduction f : A --. B 
but for the deduction r f ,  : 3- _~ B =~ A. Still, it serves to illustrate 
the proof theoretic interpretation of the A-calculus, known as the Curry- 
Howard isomorphism, according to which formulas correspond to types 
and deductions to A-terms. 

For more details on the material of this and the previous section, the 
reader is referred to the book [LS1986]. 

3. Introducing variable formulas 

What happens if we also allow variable formulas X, Y, etc.? If we also 
admit universal quantification over variable formulas, we obtain second 
order positive intuitionistic propositional logic or second order polymor- 
phic )~-calculus, with the following additional axiom and inference rule: 

~ ( X ) :  V x F ( X ) - - +  F ( X )  , 

~ ( X ) :  C ~ F ( X )  

A x e ( X )  : C ---, V x F ( X )  ' 

usually called universal specification and generalization respectively. Ac- 
cording to the usual algebraic principle of substituting for free variables, 
namely 

F ( X ) - - , G ( X )  

F (A)  ---, G(A)  ' 

the axiom of universal specification gives rise to 

~(A) : V x F ( X )  ~ F (A)  . 
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We shall also insist on the following additional equations: 

~(X)Ax~(X) = ~ ( x ) ,  

where we have suppressed the subscript X on the equality sign, and 

Ax(Tr(X)f)  = f .  

Moreover, the usual principle 

~ ( x )  = r  

~(A) = ~p(A) 

allows us to specialize the first of these equations to 

~-(A)Ax~,(X) = ~ ( A ) .  

With this additional structure, we obtain a cartesian closed ca tegory  
with formal produc ts ,  to be abbreviated as CCCP. However, a proper 
treatment of these involves simultaneous consideration of the categories 
C, C[X], C[X, Y ] , . . .  together with functors Vx : C[X] ~ C, V y C [ X ,  Y] --+ 
C[X], and so on (see Seely [1987]). 

By confining attention to positive intuitionistic logic, we have com- 
pletely ignored _L (false), d V B ( A  or B )  and 3 x F ( X ) .  Here, for ex- 
ample, are the axioms, rule of inference and equations to be satisfied by 
disjunction if it is to agree with the categorical coproduct:  

nAB : A ~ A V B  , 

NAB' " B ~ A V B , 

f : A - - + C  g : B ~ C  

[ f , g ] : A  V B --+ C 

[f , g]NAB = f ,  

[f , g]~AB - g ,  

[hNAB, hNIAB] -- g , 

where it is assumed that  h : A V B ~ C. 
In the presence of universal quantifiers, it is easily shown that  

A v B ~ V x F A B ( X ) ,  

where 
FAB(X) - ((A ~ x ) i  (B ~ X))  ~ x 



74 

Indeed, Prawitz [1965] has suggested this as a definition of A V B. Unfor- 
tunately, ~ does not always translate into categorical isomorphism. The 
best known counter-example is 

((A =~ C) =~ C) =~ C ~ A =~ C ,  

whereas, in the category of sets, 

C CcA ~ C A . 

At best we can say that the right hand side is a retract of the left hand 
side. Similarly, A V B, when interpreted as a categorical coproduct, turns 
out to be only a retract of VXFAB(X)  in a CCCP. 

4. Introducing equalizers 

Not all is lost however. One easily obtains an a r r o w  r : A ---, 
FAB(X)  in C[X], where C is any CCC, hence an arrow 

kAB -'~ A X 9 9 A B ( X )  : A --~ V x F A B ( X )  

in any CCCP, and similarly an a r r o w  klAB starting from B. As in [L1991b], 
it is now easily shown that 

A k~, V x F A B ( X )  k~. B 

is a weakly initial object in the category of all A ~ C g B (meaning that 
there is an arrow from the former to the latter which is not necessarily 
unique). If follows that  we have a weak coproduct of A and B (mean- 
ing that all but the last equation in the definition of a coproduct in the 
previous section are satisfied.) 

If our CCCP also has joint equalizers of families of parallel arrows 
[loc.cit.], we can define the coproduct A V B  as the subobject ofVx FAB(X)  
which equalizes all pairs of arrows (h, h') from the latter into any object 
C such that  

hkAB -- h' /CAB , hklAB -- h' k'AB . 

We recall from general category theory that the equalizer of two arrows 
f , g  : A ~ B is an a r r o w m :  E ( f , g )  ~ A s u c h t h a t  f m = g m a n d m  
is universal with respect to this property: if also m' : C ~ A is such 
that  f m '  = gm' then there is a unique arrow k : C --, E ( f ,  g) such that  
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m I - ink. In the category of sets, equalizers are easily constructed: let 
E(f ,  g )= {a E A l f a -  ga} and take m to be the inclusion. 

What  could we possibly mean by E(f ,  g) in a deductive system? Martin- 
Lhf [1984] might speak of a "judgement" that  the deductions f and g are 
equal, but such a judgement does not come equipped with an arrow into A. 
To imitate the above set-theoretic construction we should rather carry out 
the Brouwer-Heyting-Kolmogorov interpretation of intuitionistic logic, in 
which formulas are replaced by sets (see Troelstra and van Dalen [1988]), 
say the formula A by the set {A} of all reasons for A. I say "reason" 
rather than "proof", since otherwise {A} would be empty whenever A is 
not a theorem. 

Without  enlarging our ontology, we may take as a reason for A any 
deduction C ---, A from an arbitrary formula C. (Categorists have called 
this a "generalized element" of A.) Thus {A} is the union of all sets 
Horn(C, A), where C ranges over all objects of the category C. 

We can then introduce E(f ,  g) as the set of all reasons a �9 C ~ A 
such that  fa  - ga. Then E( f ,g )  is not a formula, or object of C, but 
a right ideal or sieve a of A, which assigns to each formula C a subset 
ac c_ Hom(C,A)  such that,  whenever a C ac and c "  D ~ C, then 
also ac E aD. (If C is a monoid, that  is, a one-object category, then this 
agrees with the usual definition of right ideal in a monoid.) In categorical 
language, a is nothing else than a subfunctor of the representable functor 
Ho~( - ,  A ). 

We can now form a new category whose objects are right ideals of 12 
and whose arrows are induced from those in (J. This new category will 
have equalizers, but unfortunately it won't inherit the CCC structure of 
C. It turns out that  we can remedy the situation by considering right 
ideals modulo congruence relations instead. In other words, we pass from 
subfunctors of representables to quotients of such. By an application 
of Occam'a razor, we shall replace the right ideals modulo congruence 
relations by the congruence relations on the right ideals. 

5. A s u b c o n g r u e n c e  c o m p l e t i o n  

A (right) subcongruence a of A assigns to each formula C a partial equiv- 
alence relation ac on Horn(C, A) such that,  whenever a, a "  C ~ A and 
c" D ~ C, then 

aaca' implies (ac)ao(a'c).  

It is easily seen that  the domain Dom a of any (right) subcongruence of 
A is a right ideal of A. 
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We now form the category CR: its objects are subcongruences of objects 
of C and its arrows (#, f, a ) : a  ~ # are induced by arrows f : A  ~ B in 
C (assuming a to be a subcongruence of A and # one of B) such that ,  for 
each object C and all a, a' :C ~ A, 

(,) aaca'  implies ( f  a )#c ( f  a') . 

We shall often just write f : a ~ #. If also g : a ~ #, we shall say tha t  
(#, f, a)  = (#, g, a)  provided, under the same conditions, 

(**) aaca'  implies ( f  a)~c(ga') . 

Here ( , )  was chosen to ensure that  f induces a mapping Dora a c / a c  
Dora #c /#c .  Then (**) just means that  f and g induce the same map- 
ping. However, there is another way of interpreting (**). Observe tha t  a 
gives rise to a functor Fa :C ~ ~ Set such that  

F~(C) = Dom a c / a c  . 

If # similarly gives rise to F#(C), then (/3, f , a )  gives rise to a natural  
t ransformation t f : F~ ~ FZ. Then (**) means precisely that  t I = tg. 

However, not all natural  transformations Fa ~ FZ are obtained in 
this fashion. To describe all of them we would have to consider (right 
homomorphic) relations p between A and B, which to each object C 
assign a binary relation Pc between Hom(C,A)  and Hom(C,B)  such 
that ,  whenever a : C ~ A, b: C ~ B and c:  D ---, C, then 

bpca implies (bc)pD(ac). 

Then p induces a mapping Dora a / a  ~ Dora #/#,  or a natural  transfor- 
mation F~ --~ F#, if and only if, for all objects C, 

(t) ac  C_ p ~ p c  and pcacPcU C_ ~c , 

where juxtaposit ion denotes the relative product and p~ is the converse 
of Pc. Moreover two relations p and a between A and B induce the same 
mapping, or natural  transformation, if and only if, for all objects C, 

(tt) ac C or Pcaca~ C #c �9 _ 

(In view of (t), the two clauses of ( t t )  are equivalent.) 
In this way one obtains all natural  transformations F~ ~ F#, hence a 

full subcategory C (n) of the functor category Set c~ (I believe tha t  the 
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transi t ion from C R to C (R) resembles a construct ion recently described 
by McLarty.) We shall not consider the category C (R) any further in 
this article, except for drawing the following picture, in which all arrows 
represent faithful functors, but  not all of them are full: 

Yoneda 
C , Set c~ 

full 

full ,L T full 

C R , C(R) 
not full 

Of course, the functor C n ~ C (n) sends the arrow f " a ~ /3 onto p f  �9 

a ~ / 3 ,  where b ( p f ) c a  means b -  f a ,  for all a"  C ~ A and b" C ~ B. I 

hope to re turn to a consideration of C (R) on another  occasion. 

6. S o m e  p r o p e r t i e s  of  C R 

Readers not too familiar with category theory may wish to skip this sec- 
tion, some of which describes work in progress. 

If a and cd are subcongruences of A such tha t  a C_ a ' ,  then (a ' ,  1A, oz) 
will be an arrow a ~ a / in C R. Two extreme cases are of special interest. 

(a) If a is the restriction of a '  to Dora a, tha t  is, if a a ' a  - a,  1A �9 

a ~ cd is a (canonical) s u b o b j e c t  of a ' .  The subobjects  of a '  form 
a complete lattice. 

(b) If Dora a - Dora a ' ,  tha t  is, if a a ' a  - a ' ,  a '  induces a congruence 
relation on Dora a and 1A " a ~ a '  is a (canonical) quo t i en t  of a. 
The quotient objects of a form a complete lattice. 

The original motivat ion for introducing C R was to construct  equalizers. 
Indeed, the equalizer of f ,  g ' a  =:t/3 is 1A " K; --+ ct, where 

gc  - a c  N fU~cg  �9 

(We identify f with the relation pf  mentioned at the end of Section 5.) 
Since the lattice of subobjects  is complete, we also have equalizers of 
families of parallel arrows. (Perhaps, we have achieved too much; we 
would have been happy with joint equalizers of, in some sense, "definable" 
families.) We also have coequalizers: the coequalizer of f,  g"  a =:t /3 is 

~ A, where A is the smallest congruence on D o m  ~ extending/3U f a g  u. 

By completeness, we also have joint coequalizers of families of parallel 
arrows. 

We shall discuss some further properties of C R under various assump- 
tions about  C. In doing so, we shall switch from logical to categori- 
cal notat ion and terminology, replacing T, A A B, A =~ B, •  A V B by 
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1, A x B, B A, O, A + B respectively, speaking of terminal object, product, 
exponentiaion, initial object and coproduct. 

(1) If C has finite products, then so does C R. In fact C R is then a 
regular category. (I am endebted to Dugko Pavlovi5 for pointing 
this out.) This is so since regular epimorphisms are isomorphic to 
quotient objects and are preserved under pullbacks. 

(2) If C is a CCC, then so is C R and the functor C ---, C R preserves the 
CCC structure. (See [L1991b, Proposition 10.1].) 

(3) If C is a CCCP, then C R is also cocartesian and any finite coproduct 
of definable endofunctors of C has a least fixpoint in C R. (See 
loc.cit., Proposition 10.2, where a precise definition of "definable" 
is given. Suffice it here to point out that e.g. 1, X , X  2 and C Cx 
are definable.) 

(4) If C is a poset, then C R is the complete lattice of downward closed 
subsets of C. (Unfortunately, this is not the same as the Dedekind- 
MacNeille completion, see Birkhoff [1967].) 

(5) If C is the monoid of partial recursive funtions N ~ N, that is, par- 
tial functions whose graphs are recursively enumerable, C R contains 
the category PER, whose objects are partial equivalence relations 
on NI. To see this, one associates with every partial equivalence 
relation A on N the subcongruence c~(A) such that, for all partial 
recursive funtions f, g : N  ~ N, 

fa(A)g if and only if, for all n e N, ( fn )A(gn) ,  

and with every subcongruence a the partial equivalence relation 
A(a) such that 

mA(a)n if and only if kmakn , 

(6) 

where k,~ is the constant function with value m. Every finite co- 
product of definable endofunctors of PER has a least fixpoint (see 
loc.cit. Proposition 8.1.). Hyland [1988] and Moggi have shown 
PER to be a model of polymorphic A-calculus, though not in the 
usual universe of sets. 

Weak binary products are defined like binary products, except that  
the equation < 7rABh, 7dABh >= h is missing. If C has weak binary 
products, then d R has binary products; if a and/3 are subcongru- 
ences of A and B respectively, we define 

I U , ~  I 
x ~ - 7rA~ ~TrAB n 7tAB pTrAB 



(7) 
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and check tha t  7tAB" OZ X j~ --~ Oz and 7i'#4 B "OZ X ~ ~ ~ .  Moreover, 
i f a  : -y ~ ~ and b : ~, ~ /7, then < a ,b  >: 7 ~ c~ • ~ and, if 
h"  ~, --+ c~ • then < 7rABh, 7r~AB h > induces the same arrow as 
h. A similar result holds for nullary products ,  tha t  is, te rminal  
objects,  and for exponentiat ion.  

If C has weak coproducts,  then C R has coproducts;  if C has a weak 
na tura l  numbers  object,  then C R has a na tura l  numbers  object.  
These and similar results are buried in the proof of (3), bearing 
in mind tha t  a na tura l  numbers  object is a least fixpoint of the 
endofunctor 1 + X.  

We say tha t  C has a weak subobject  classifier t : I ~ f~ provided 
I is a weak terminal  object ( that  is, for each C there is an arrow 
iv  : C ~ I) and, for each right ideal a of any object A, there is an 
arrow h :  A ~ ~ such tha t  a = K e r  h, where 

(Ker  h)c  = {a :  C ~ Ai3i:c_~zti = ha} . 

Let iLci' for all i, i' : C  ~ I and let 

hwAh' if and only if K e r h = K e r h ' ,  

then ~ is a congruence on I and ~ is a congruence on Ft. One easily 
checks tha t  c is a terminal  object (just take OA -- iA) and we shall 
see tha t  w is a subobject  classifier in the usual sense. 

In fact, it is easily verified tha t  (w,t,~) is an arrow. Now let 
1A : o~' ~ oz be any subobject  of a ,  we pick h : A ~ ft such tha t  
D o m  (~' = K e r  h and verify tha t  h : c~ ~ w and cd = c~ N hUwtoA. 
Moreover, it follows tha t  (w, h, c~) is unique with this property.  

7. Gentzen style proof theory (intuitionistic) 

A different way of presenting proofs was discovered by Gentzen. For deal- 
ing with intuit ionistic logic he introduced generalized deductions,  usually 
called sequents, of the form 

f : A I . . . A m - - - ,  B , 

where the Ai and B are formulas. When  the set of sequents F ~ B (we 
use capital  Greek letters to denote strings of formulas) is subjected to 
appropr ia te  equations,  we obtain a Gentzen multicategory. It is not so 
obvious how to describe these equations directly [Szabo 1978], we shall 
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here follow [L1989a] and pass to the internal language of a multicategory, 
in which the sequents act as operations, while equations between sequents 
are best described through equations between terms. 

Here then is the language: for each object A of the multicategory we 
introduce countably many variables. Rather than burdening our termi- 
nology by labeling these variables once and for all, we shall just say that  x 
is a variable of type A and write x C A. Terms of given types are defined 
inductively: every variable is a term of its type and, if f : A1 . . .  Am ~ B 
is a sequent and ai is a term of type Ai, for i = 1 , . . .  ,m, then f a l " . a m  
is a term of type B. In particular, if xi c Ai, then f x l " " X m  C B. There 
can also be constants of type B, namely any sequent b : ~ B, with 
?Tt  --- 0 .  

Algebraically speaking, f x l " " X m  is a polynomial; we think of xi as 
an indeterminate of type Ai and of f as an m-ary operation. In fact, a 
Gentzen multicategory is nothing else than a many-sorted algebraic theory 
(see Higgins [1963], Birkhoff and Lipson [1970]). 

Logically speaking, f x l " " X m  is a proof from certain hypotheses; we 
think of x~ as an occurrence of the hypothesis Ai and of f as a deduction 
of B from these hypotheses. Thus a Gentzen multicategory may also be 
viewed as a natural deduction system as promulgated by Prawitz [1965]. 

Gentzen postulated for each formula A the sequent 

1A :A---~A 

and he admitted four rules for deriving new sequents from old, the cut 
rule 

f : A ~ A  g : F A A ~ B  
g< f >:FAA--*B 

and three structural rules: 

f : F A B A  ~ C  

f i  : F B A A  ~ C 
(interchange) , 

f : F A A A  ~ B 

f~ : F A A  ~ B 
(contraction),  

f : r A ~ B  

f~  : F A A  ~ B 
(weakening) . 

The intended algebraic interpretation requires that  the internal lan- 
guage of a multicategory be subject to the following equations and, of 
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g < f > u w v -  g ~ f ~ - - ~ ,  

f i ~ y x ~ -  f ~ x y ~  , 

f C - ~ x ~ -  f ~ x x ~  , 

f ~ x ~ -  f ~ - ~ .  

Here ~ -  X l . . . X m ,  where xi C Ai and F - A1 . . .Am.  Similarly ~ is 
related to A and ~ to A, while x c A and y C B. (Our account is 
somewhat incomplete, as we have not bothered to d e c l a r e  variables; e.g. 
the first equation should really be written l A x -  x . )  

x 

To return to the question" what are the equations of a multicate- 
gory, we are now in a position to define equality between operations 
f , g " A I  " " A m  ~ B to mean that f x l  " " Xm - g x l  " " x n  is provable 
in the internal language. 

There is quite an industry involved in studying s u b s t r u c t u r a l  logics, in 
which some or all of the structural rules are absent. For example, the 
weakening rule is omitted in relevance logic, the weakening and contrac- 
tion rules are both omitted in Girard's [1987] linear logic and all three 
rules are omitted in the syntactic calculus [L1958], a form of bidirectional 
categorial grammar. 

Gentzen's original motivation was to show that, for example, in the 
positive intuitionistic propositional calculus freely generated from a given 
multicategory, the cut rule (and incidentally also, for compound A, the 
axiom I A �9 A ~ A) is redundant, provided the connectives T, A and =v 
are subjected to appropriate introduction rules. Thus, for given F and B, 
he was able to find all provable sequents F ~ B. His method can also 
be used for deciding when two sequents from F to B are equal. (See e.g. 
Szabo [1978], [L1958] and [L1991a] for the case without structural rules.) 
At least one of Gentzen's introduction rules was discovered independently 
by Bourbaki [1948] in his study of multilinear operations. 
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8. T h e  a lgebra ic  t h e o r y  of p r i m i t i v e  recurs ive  func t ions  

I learned about Gentzen's sequence calculus from Kleene [1952]. While 
Kleene does not discuss many-sorted algebraic theories, equations very 
much like the above occur in his treatment of primitive recursive functions. 
The question thus arises: can these be viewed as realizations of operations 
of an algebraic theory? Indeed, there is such an algebraic theory, even a 
single-sorted one. 

Consider a sort N, operations 

O: ~ N(zero) , S :  N ~ N(successor) 

and the following rule for forming new operations from old: 

a : N  ' ~ N  h : N  n + 2 ~ N  

Rah : N  n+l ~ N 
(recursion) . 

These operations are subject to the following equations, which already 
appear in Kleene's book: 

Rah-iO -- a~  

(Eah  ) Rah-XSy  - h-xyRah-Xy , 

where 5 = x 1 . . . x  n .  

Since the operation defined by recursion is supposed to be uniquely 
determined, one would also like to satisfy the conditions: 

( U f h )  i f  f ~ S y  = h ~ y f ~ y  then f = RI<0>h , 

where f : N '~+1 ~ N and f < 0 > 5 = fh0, an example of the cut rule. 
It had been an embarrassment for some time that the conditions ( U f h )  

were not presented in equational form (see Ghdel [1958], Sanchis [1967], 
[LS1986]). Yet they can be so presented [L1988], although the argument 
is a little tricky. 

A ternary operation m : N 3 ~ N is called a M a l ' c e y  o p e r a t i o n  if it 
satisfies: 

m x y y -  x , m y y z -  z . 

(Mal'cev [1954] had shown that the existence of such an operation is neces- 
sary and sufficient for congruence relations in every model of the algebraic 
theory to permute.) There are many Mal'cev operations in primitive re- 
cursive arithmetic, e.g. 

m x y z  = (x  + z)  - y , 
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where x + y and x - y, the naive difference, are easily defined by recursion. 
With the help of a Mal'cev operation m, we can construct a new n + 2- 

ary operation Hmfh from h and f: 

Hm:hSyZ  = m ( h ~ y z ) ( h S y f S y ) ( f S S y )  . 

We can now replace (Ufh) by 

(Mm:h)  R f  <O>HmIh = f . 

More precisely, one notices that 

(Mm:h) :::> (U:h) , 

(U:H~:h)=> (M,~:h) . 

Once stated, these implications are easily verified. 
If we choose m x y z  = (x + z) - y, we finally arrive at the following 

equational presentation of primitive recursive arithmetic: 

( x  + y )  - y = x .  

The last equation must be postulated, because its usual proof depends on 
(Ufh), whereas here it is used to derive (Ufh) from ( M ,  q h ) .  

It is quite easy to find a primitive recursive function f x y z t  such that 
Fermat's conjecture asserts that f is the function with constant value 0. It 
is not impossible that f x y z 4  = 0 already in the algebraic theory discussed 
here, in view of Fermat's method of descent. (A similar question was raised 
conversationally by Joyal.) We can, of course, replace f by a function of 
one argument here. Work on reducing such polynomials to normal form 
is being done by Okada and Scott. Unfortunately, as they point out, one 
cannot expect to have both strong normalization and the Church-Rosser 
property, in view of G5del's result that provability in Peano arithmetic is 
not decidable. 

Note added in proof: Gregory Mints informs me that Mal'cev and his 
students have also studied algebras of primitive recursive functions. 

9. Gentzen style proof theory (classical) 

Gentzen devised a different sequent calculus for classical logic, with se- 
quents of the form 

f : A 1 . . . A m  ~ B I " " B n  �9 
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These were supposed to be interpreted as 

f : A 1 A . . . A A m - - - , B 1 V . . . V B ~  , 

in categorical language 

f :A1  x . . .  x Am ---* B1 + " "  + Bn �9 

Having convinced oneself that Gentzen's intuitionistic sequents are noth- 
ing else than operations in a many-sorted algebraic theory, one wonders 
why his classical sequents have not surfaced in algebra. 

Take, for example, a single-sorted "bi-operation" 

f : A x A - - - , A + A .  

Up to isomorphism, this may be written 

f : A  2 ~ A x 2 ,  

where 2 - {T, _1_} is a representative two-element set. 
f = <  f0, fl  >, where 

We can write 

f 0 : A  2 ~ A  , f l : A  2--- .2,  

the former being a binary operation, the latter a binary relation. It would 
therefore appear that, in the single-sorted case, bi-operations may be an- 
alyzed into operations and relations. Indeed, algebraists study ordered 
groups and similar structures. 

The classical Gentzen calculus can also be extended to the substructural 
situation, where one should interpret f : A I ' "  Am ~ B I " "  Bn as 

f : A1 | 1 7 4  Am ~ B1 �9 " " 0  Bn �9 

The tensor product | comes up in multilinear algebra. Its dual | appears 
in Girard's linear logic, although in a different notation. It so happens that 
in Hopf algebras | coincides with | and the same is true in production 
grammars. However, it is easy to give examples in which | and @ are 
different. 

In the algebra of all binary relations on a set X, we may write: 

a(R | S)b for 3=ex(aRz A xSb), 

a(R e S)b for V xSb). 
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The former is the usual relative product. 
classically as its De Morgan dual by 

The latter may be described 

but it also exists intuitionistically. Unfortunately, intuitionistic logic does 
not suffice to prove that | is associative. (See [L 1991 c].) 

The categorical treatment of classical Gentzen style proof theory re- 
quires something new in place of multicategories, namely "polycategories". 
These have been discussed by Szabo [1975] and others, but not yet in suf- 
ficient generality to handle the last example above. 

10. Completeness of higher order logic 

Categories may also be used to clarify and sharpen some basic ideas in 
model theory, though these may be far removed from the combinatorial 
preoccupations of specialists in that area. We shall only briefly sketch the 
situation as it concerns higher order logic. 

On the one hand, there are certain intuitionistic higher order languages 
or type theories; they form a category, whose arrows may be called "trans- 
lations". On the other hand, there are elementary toposes, namely carte- 
sian closed categories with subobject classifier and, for the present pur- 
pose, also a natural numbers object; they form a category too, whose 
arrows are called "logical functors". 

For each higher order language/2 we may construct a topos T(/2), the 
topos generated by s essentially what logicians call the "term model", 
which might also have been called the "Tarski-Lindenbaum topos". With 
each topos we may associate a higher order language L(T),  its internal 
language. It turns out that L and T are functors between the two cat- 
egories under consideration and that T is left adjoint to L. (Actually, 
this assumes that toposes have "canonical" subobjects, a technical detail 
which we shall ignore here, see [LS1986] for a fuller account.) In particu- 
lar, this means that we have a one-to-one correspondence between logical 
functors 

:r 

and translations 
- - +  

either of which may be called an interpretation of 12 in T. 
If we allow every such interpretation as a model, the completeness the- 

orem would be quite trivial, as a single model would suffice, namely 
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s ~ LT(s We shall, however, define a model topos as one whose 
internal language has very special properties: 

(1) _1_ is not true in T, that  is, not provable in L(T); 

(2) if p V q is true in T, then p is true or q is true; 

(3) if 3~eAqO(x) is true in T, then ~(a) is true for some closed term of 
type A in L(T).  

Peter Freyd observed that  these properties can be translated into algebraic 
properties of the terminal object 1 of T: 

(1) 1 ~- 0; 

(2) 1 is indecomposable; 

(3) 1 is projective. 

Here "projective" means exactly the same as in module theory, where the 
term originated. It turns out that, when L(T)  is classical, a model topos 
is precisely a non-standard model in the sense of Henkin [1950]. 

The completeness theorem for intuitionistic higher order logic, in the 
tradition of Gbdel [1931], Henkin [1950], Aczel [1969] and others, may 
now be stated as follows: 

every higher order language s has enough models, meaning that  a for- 
mula p is provable in s if and only if it is true under every interpretation 
of s in a model topos T. 

Algebraically, this result asserts" 

every topos is equivalent to a subtopos of a product of model toposes. 

This last statement bears a formal resemblance to the following result 
about commutative rings: 

every commutative ring is isomorphic to a subring of a product of local 
rings. 

But actually we know more. According to Grothendieck and Dieudonn~ 
[1960]: 

every commutative ring is isomorphic to the ring of continuous sections 
of a sheaf of local rings. 

A similar result holds for toposes in which all subobjects of i are pro- 
jective. This is so for toposes of the form T(/:) when/2 satisfies Hilbert's 
rule (see Hilbert and Bernays [1970])" 

for any inhabited type A (i.e. ~xeAT is provable in / : ) ,  if a = {x C A[ 
~(x)} is a closed term of type PA, then there is a dosed term e~ = 
CxeAqg(x) of type A such that 3xeAqg(x) ~- qg(e~) in s 
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In [L1989] I wrongly asserted also the converse of this; I am endebted 
to John Bell for pointing out the error. 

One can get rid of the restriction to Hilbert's rule, provided one looks at 
toposes generated by languages with sufficiently many constants. The idea 
goes back to Henkin [1949]. One may think of the constants as variables 
held constant: if V is a set of variables, s  is the same language as / : ,  
except that now a formula is called "closed" if it contains no free variables 
other than those from V. Here is the final result: 

if s is any higher order language and V is a sufticiently large set of 
variables, then T(s is the topos of continuous sections of a sheaf of 
model toposes. 

I have been told that Grothendieck actually used the expression "local 
topos" for what has here been called "model topos", although in a different 
context, making the analogy with commutative rings even more striking. 

For successive versions of this sheaf representation the reader is referred 
to [LM1982], [LS1986] and [L1989]. 
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G E N T Z E N - T Y P E  S Y S T E M S  A N D  
H I L B E R T ' S  E P S I L O N  S U B S T I T U T I O N  M E T H O D .  I 
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I n t r o d u c t i o n  

The substitution method was suggested by Hilbert within the framework 
of his program for the foundations of mathematics. It is a successive ap- 
proximation method for finding a finite function solution of a system of 
equations derived from a proof in a formal system. The problem of con- 
vergence, i.e. termination of the process after a finite number of steps 
was treated by von Neumann [1927] for quantifier free induction, by Ack- 
ermann [1940] for first order arithmetic, and by other authors includ- 
ing Kreisel [1951,1952] and Wait [1965a]. Related material is in Scanlon 
[1973], Goldfarb and Scanlon [1974]. We present here a new proof of Ack- 
ermann's result allowing extension to analysis (second order arithmetic). 
This extension, to be described in a sequel to this paper, settles one of 
the problems stated by Hilbert in [1929]. 

The proof consists of the following parts: 

1. The formalization in the infinitary sequent calculus of a non-effec- 
tive proof of the existence of a solution. 

2. A standard normalization proof. 

3. A proof that the normal form after this normalization is a conver- 
gence protocol for the epsilon substitution process. 

Note that in the case of first order arithmetic there is a simple non- 
effective proof of convergence (aft Kreisel [1952], Wait [1965a], Mints [1982, 
1989]), but no generalization of this proof to the second order case is 
known. 

The metamathematical means used in our convergence proof are the 
same as in other normalization proofs for the systems considered: epsilon- 
0 induction (on quantifier-free formulas) for first order arithmetic, and 
Girard's method of computability predicates in the second order case. 
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Hence it is difficult to claim that it has a foundational significance, and 
one should look for its applications elsewhere. 

This work started at Steklov Institute of Mathematics (Leningrad), con- 
tinued at the Institute of Cybernetics of the Estonian Academy of Sciences 
and was finished at Stanford University. The author is grateful to partici- 
pants of logic and proof theory seminars of these institutions for attention 
and valuable discussions. Especially important was correspondence with 
G. Kreisel who drew the author's attention to the problem of convergence 
of the epsilon substitution method and had systematically pointed out 
various related problems (much more significant in his opinion than the 
problem investigated here). Special thanks are to S. Tupailo, who went 
through the first draft of this paper and helped to find and correct several 
discrepancies and to improve the presentation. 

1. L a n g u a g e  a n d  t h e  d e s c r i p t i o n  of t h e  s u b s t i t u t i o n  m e t h o d  

We use standard terminology of the substitution method from Hilbert & 
Bernays [1970]. 

There are two kinds of individuum variables: free variables, denoted by 
a, b, al, ..., and bound variables denoted by x, y, z, Xl, ... .  Primitive recur- 
sive (PR) terms are constructed from free individuum variables and the 
constant 0 by means of fixed supply of PR function symbols including suc 
(successor), addition and multiplication. Numerals 0, suc(0),suc(suc(0)), 
. . .  are sometimes also treated as constants. PR formulas are constructed 
from equations t -- u between PR terms by boolean connectives &, V, ~,- 
etc. A[v := t] (abbreviated by A[t] when v is obvious) denotes the result 
of substituting the expression t for a variable v in the expression A. 

Terms and formulas are defined by simultaneous recursion beginning 
with PR terms and formulas. If A is a formula which does not contain 
the bound variable x, and a is a free variable then exA[a := x] is an 
(epsilon) term. The set of terms is closed under function symbols of our 
language, and the set of formulas is closed under boolean connectives. 

So our formulas are formally quantifier free. In fact the epsilon symbol 
e plays the role of a quantifier via the translation 

(1) (3x)F F[ xF]; (Vx)F F[ x ~ F] 

which agrees with the interpretation of cxA as the least natural number 
x satisfying A[x] and 0 if ,,~ A[x] for all x. 

Terms and finite sequences of terms are denoted by s, t, u, S l , . . . ,  for- 
mulas are denoted by A, B, C, D, F, A1, . . . .  
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The rank rk(t) of a term t is the measure of nesting of bound variables 
defined in a standard way. rk(t) = 0, if t is PR, rank is not changed 
by primitive recursive functions, and rk(exA) = max{rk(eyB): eyB is a 
subterm of A[x := a] containing a} + 1, where a is a free variable which 
does not occur in exA. 

The degree deg(t) is the familiar nesting of epsilon-terms, deg(t) = 0 for 
PR term t, and deg(exA) = max{deg(eyB):eyB is a proper subterm of 
exA} + 1. An e-matrix or simply matrix is an e-term having only variables 
as proper subterms with no variable occuring twice. 

An e-substitution for an e-matrix exA[x, al , . . .  ,an] with all free 
variables (arguments) explicitly listed is a finite numerical function 
f ( a l , . . .  , an), i.e. a function of finite support with explicitly given finite 
domain. By the definition f = 0 (trivial zero value) outside this domain. 
The e-substitution for a finite set of e-matrices is the set of e-substitutitons 
for each matrix. Each e-term t is uniquely representable in the form 
t =  exA[x, tl, . . . .  tk] where t l , . . . ,  tk are terms and exA[x, al , . . .  ,ak] is 
a matrix called the matrix of t. The value S(t) of a constant term t under 
a given e-substitution S is defined by recursion in a natural  way with the 
main step: if S ( t l ) =  N1 , . . .  , S ( t k )=  Nk then S(exA[x, t l , . . .  , t k ] ) -  
f ( N l , . . . ,  Nk) where f = S(exA[x,a~,... ,ak]) is the e-substitution for 
the matrix exA [x, a l , . . .  , ak]. This also determines the values of all con- 
stant formulas. 

The value of a matr ix  exA[x, al , . . .  ,ak] for a tuple N 1 , . . .  ,Nk of 
numeric arguments is the same as the value of the constant term exA 
[x, N~, . . .  , Nk] of degree 1. Such terms r N I , . . .  , Ark] will be called 
canonical. 

The role of quantifier axioms in Hilbert 's e-calculus is played by critical 
formulas 

(2) A[t] --. A[exA] 

Formula (2) is said to belong to the rank rk(exA). 
The goal of Hilbert 's e-substitution method is to find a satisfying (or 

solving) substitution for any system E of closed critical formulas , i.e. a 
substitution S such that  S(C) = true for any critical formula C in E. 
Such a substitution provides finitistic proofs of constant combinatorial 
identities and numerical realizations of E ~ sentences provable from E in 
a free variable equation calculus. 

It is assumed that  critical formulas in the system E are numbered 

(3) Cri : A[t]-~A[exA] 
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in such a way that formulas belonging to bigger ranks have greater num- 
bers. 

The epsilon substitution method as outlined by Hilbert and made pre- 
cise by von Neumann [1927] and Ackermann [1940] applied to a given 
system E of constant critical formulas (2) generates successive epsilon 
substitutions So, $ 1 , . . . ,  Sm for matrices in E until all critical formulas 
Cr in E are satisfied: Sm(Cri) = true for all i. 

By the definition, the initial substitution So is the trivial zero substitu- 
titon assigning a function with empty domain to every matrix. In other 
words So(M)(N)  = 0 for every matrix M and every tuple g of numeric 
arguments. 

The successor S I for any given epsilon substitution S is defined as fol- 
lows. If all critical formulas in E are satisfied by S, i.e. S is a solution, 
then S has no successor. Otherwise pick up the first critical formula (3) 
in E which is false under S: 

(4) S ( A [ t ] ) -  true and S(A[exA] ) -  false 

Change the value of exA to be equal to the least natural number N for 
which S ( A [ N ] ) -  true: 

(5) S'(~xA) - the least N <_ S(t) such that S(A[N]) = true 

and make the domains empty for all matrices of greater rank. More pre- 
cisely, if the matrix of cxA is M,  - cxB[x, a] then 

(6) S ' (M)  - S (M)  for all matrices M with rk (M)  ~ rk (M, )  

except M,  itself. If exA = ~xB[x, u] then letting t* - S(t), u* - S(u) etc. 
put 

(7) S ' ( M x ) ( u * ) -  the least N < t* such that S(A[N])= true 

(8) S ' ( M ~ ) ( K ) -  S (Mx) (K)  for all remaining tuples K. 

Put 

(9) S ' (M)  = 0 for all matrices M with rk (M)  > rk(Mx) 

If the substitution Si has already been defined and is not a solution for 
the given system E of critical formulas, put 

(10) Si+, - (Si)' 
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The epsilon substi tut ion method terminates (or converges) at the step i 
for the system E if Si satisfies E. 

2. C o m p u t a t i o n s  wi th  epsi lon t erms  

From now on an arbi t rary system E of closed critical formulas 

(1) Cri : A[t] ~ A[exA] 

is considered. The value of a closed e-term exA, i.e. the least x satisfying 
A, is not computable in general, but additional information can help: 
if exA is canonical and A[N], ~ A [ N -  1 ] , . . . ,  ~ A[0] are known to be 
true, then cxA=N provided the information is consistent. To be sure 
the value has been really computed, we will also require the information 
to be complete: the same kind of justification should be given for the 
subterms of A[i] (i <_ n) etc. First we define a weak derivability relation 

meaning roughly that  an object ( term or formula) can be computed 
to a normal form (numeral, canonical term, truth-value) on the basis of 
accessible information. 

Such information is encoded in a sequent, i.e. finite list X of formulas. 
Formulas which can be members of a sequent X (= occur in X)  are closed 
formulas of the epsilon-calculus as defined in section 1 (also called basic 
formulas) as well as formulas of the form ?exA, !~xA (modal formulas) 
with canonical (xA. ?exA means that  the term has trivial value 0 (roughly 
corresponding to undefined). !~xA means that  the term has numeric value 
N satisfying 

(2) A[N],~  A [ N -  1 ] , . . . , ~  A[0] 

The list (2) is abbreviated by ~xA# = N. 
The notation !~xA=N means the sequent !exA, e x A #  = N. 
Unless stated otherwise we assume that  the sequent X is correct: the 

formula ?cxA, !cxA can have at most one occurrence in X (as a member 
formula) and if ?cxA occurs, then !exA does not. 

CALCULUS C X  FOR COMPUTATIONAL VALIDITY 

t, u are lists of terms, M, N are lists of numerals. 

?exA occurs in X; ( ~  0) 

~xA ~ 0  

!exA=N occurs in X; (~xA# = N) ~ true 

exA --, N 
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t 4 n ;  A[N] is a primitive recursive true constant  formula 

A[t] -~ true 
(bool) 

t ~ N; exA[x, t] occurs in X, E; (e ___,) 

exA[x, t] ~ exA[x, N] 

 xA[x,N] 
is canonical 

exA ~ e x B ;  cxB ~ N 
~x A 4 N (trans) 

A 4 false means ~ A --. true. C X  : D 4 v means derivabili ty of 
D ~ v in C X .  Reference to C X  will be dropped sometimes.  A sequent 
X is computationally inconsistent (c.i.) if CX:  A 4 false for some 
formula A occurring in X.  Otherwise it is computa t iona l ly  consistent 
(c.c.) provided it is correct. A numeric value Itl, IA[ of a t e rm t or 
formula A relative to a sequent X is any numeral  N or boolean value v 
such tha t  CX:  t ---, g or A 4 v. The canonical value Iltll of an epsilon 
t e rm t is any canonical t e rm s such tha t  t 4 s, or t itself if t is canonical. 

The substitution S x  determined by a given sequent X consists of nu- 
meric values of all canonical terms: S x ( t )  = Itl. In other words, if 
M = exA[x,a] is an epsi lon-matr ix with free variables (=a rguments )  
a, then S x ( M ) ( N )  = ]exA[x, N] [. It is unders tood tha t  S x ( M ) ( N )  = 
0 if IexA[x, N][ does not exist. 

LEMMA 2.1. I f  B is derivable in the calulus C X  then one os the following 
conditions is satisfied: 

(a) B = exA ~ N with exA in X , E  and N in X;  
(b) B = ~xd[x, t] 4 exd[x, N] with ~xd[x, t] in X ,  E, g in X and 

canonical exA[x, N]; 
(c) B = Air] d[x] pri itiv   ith 

t in X,  E, and C X  :t  ~ N for some numerals N.  

(Numeral 0 is assumed to occur in any sequent). 

PROOF is by induction on the derivation in C X .  Case (a) corresponds to 
the rules 4 0 ,  4 + ,  trans.  Case (b) corresponds to the rule e 4 .  Case (c) 

corresponds to the rule bool. -I 

If not explicitly s ta ted  otherwise we identify constant  primitive recursive 
terms with their numeric values. We employ a somewhat  non-s tandard  
notion of a substi tution instance of a term. This will be any result of drop- 
ping some epsilon symbols and subst i tu t ing numerals  for all occurrences 

of corresponding variables and for some terms. 

LEMMA 2.2. (a) Derivability of t ~ u is decidable; 
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(b) derivability of  A --+ true for any formula A is decidable; 

(c) existence of  ]]t[[, It], [A[ is decidable. 

PROOF: (a) By Lemma 1 a derivation of t --+ u in the calculus C X  con- 
tains only terms and formulas from X, E and their substi tution instances 
by numerals in X. So there is only a finite number of derivations. 
(b) follows from (a) by Lemma 2.1 (c): a formula can be reduced to t ru th  
in C X  only if it is primitive recursive in a term t such that  C X  : t --+ M 

and t, M occur in X, E. 
(c) For given t only u, N occuring in X, E (and their substi tution instances 
by numerals in X) should be tested for derivability of t --+ u, t --+ N. To 
find [A[ one tests A --+ true and ~,, A ~ true. 

LEMMA 2.3. [exA[ = N implies the existence of  a canonical e x B  such 

that (exA = e x B  or ~xA -+ exB)  and e x B  -+ N ,  i.e. 

(3) (?exB is in X and N = O) or 

(4) !exB is in X and A[N] ,~  A [ N -  1], . . .  , 
reducible to truth in C X .  

A[0] are in X and 

PROOF is by induction on the length of the derivation of exA --+ N .  If 
exA is not canonical, this derivation ends in the trans-rule, and over the 
right branch of this rule one of the rules --+0,--++ is situated. The latter 
provides the data mentioned in (3),(4). -~ 

LEMMA 2.4. A derivation of  any relation e --+ v in C X  contains only 
subst i tu t ion instances of  its subterms.  In particular the rank of  terms in 

the derivation does not exceed the max imal  rank of  terms in the derived 

relation. 

PROOF: The proof is by easy induction on the derivation. -4 

Now we establish a version of the Church-Rosser theorem. 

LEMMA 2.5. I f  X is a correct c.c. sequent then Itl, tltll, IAI are unique 
for any epsilon term t and formula A. 

PROOF: Apply induction on the sum of the lengths of derivations 

d:  A ~ v; dl : A --+ Vl ;  

d:  t -+ N; dl : t  ---+ N1; 

d: t --+ eyB; dl : t --+ eyB1. 

Let L, L1 be the last rule in d, dl. 
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CASE 1. L is bool. Then L1 is also bool. If v is different from Vl, then 
the premises of L and L1 assign different values for some subterm t of A 
with shorter derivation, which contradicts the induction hypothesis. So 
v - Vl as required. 

CASE 2. L is one of ~o, - -*+,  trans with conclusion t ~ N. Then L1 is 
also one of these rules. Consider possible combinations L, L1. 
(~0 ,  ~ o )  is as required. 
(~o ,  ~ + )  is excluded since then X contains ?t, !t and so is not correct. 
(~o ,  trans): 

exA ~ exB; exB ~ N (trans) ?exA in X 
~xA ~ N exA --, M (~o)  

is impossible since exA in ~ o  is canonical, and so the relation exA ~ exB 
cannot be derivable. 
( ~ + , t r a n s )  is impossible for the same reason as (--*0, trans). 
( ~ + ,  ~ + )  : !exA=N, [exA=N1 occur in X and exA=//= = N, e x A #  = N1 --* 
true. 

Assuming g > g l  we see that  A [ N -  1],~ A [ N -  1] are in X and 
A [ N -  1] ~ false since ,,~ A [ N -  1]---, true. So X is c.i. 
(trans, trans): 

exA ~ exB; exB ~ N exA ---, exB1; exB1 ~ N1 

exA ~ N exA ~ N1 

By induction hypothesis for [[t[[ one has exB = exB~, so again by 
induction hypothesis N -  N1. 

CASE 3. L is e ~ .  Then L1 also is e ~ .  

t - - - ,N;  t---,N1; exA[x,t] is in X,  E; 

exA[x, t] ~ N, N1 

Again N - N1 by the induction hypothesis as required. 

COROLLARY 2.6. I f  exA[x, u] ~ N for exA[x, a] of degree 1 and terms u 
different from numerals then u ~ M for a unique M and exA[x, M] ~ N.  

PROOF: The relation exA[x, u] ~ N can be obtained only by the rule 
(trans) and both premises of that  rule are uniquely determined by Lemma 
2.5. The left premise is obtained by the rule ~ e as required. 

Recall that  the substi tut ion S x  determined by a given sequent X con- 
sists of numeric values of all canonical terms: Sx ( t )  = Itl. Recall also 
the definition of the correct epsilon substi tution from Hilbert-Bernays 
[1970]: substi tution S is correct if for any matrix M = exA[x,a] with 
arguments a and any corresponding tuple N of numerals S ( M ) ( N )  - 0 
or S ( M ) ( N ) =  the least g such that  S ( A [ K , N ] ) =  true. 
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LEMMA 2.7. The substitution Sx  determined by a correct c.c. sequent 
X agrees with derivability in the calculus CX" 

(5) if e --~ v in C X  then S(e) - S(v) 

In particular Sx  is uniquely determined and correct. 

PROOF: Uniqueness of S ( M ) ( N )  follows from the uniqueness of 
lexA[x,N]l. (5) is proved by induction on the derivation. To establish 
correctness of S assume exA[x, N] ~ K > 0. Then by the lemma 2.3 and 
(5) one has S(A[N]), S (~  A [ N -  1 ] ) , . . . ,  S(~,, A[0]) = true as required.-4 

A closed term exA is decided by a sequent X if ]exA] exists. A formula 
A is supported by X if C X : A ~ true. A sequent Y is supported b.y X 
if all formulas in Y are supported by X. A sequent X is supported if X 
is supported by X. X is decided if all terms in X, E are decided by X. 

We say that  a basic formula A has rank r +  where r is the maximal 
rank of epsilon terms in A. We put 

(6) r < r +  < r + 1 

Formulas ?exA, !exA have rank - rk(exA). For a sequent X its part 
X G r consists of members of X with ranks at most r. The sequent X < r 
contains formulas of rank < r, including ( r -  1)+. 

The following proposition expresses subformula properties of the calcu- 
lus CX.  

LEMMA 2.8. Any formula of rank at most r supported by X is supported 
b y X ~ r .  

PROOF: This is a reformulation of Lemma 2.4. 

3. G e n t z e n - t y p e  s y s t e m  PA~. S t a t e m e n t  of resu l t s .  

Recall that a system E of closed critical formulas 

(:) Cri " A[t] ~ A[exA] 

is assumed to be fixed. 
Derivable objects of the Gentzen-type system PA~ will be sequents 

X. A rough first approximation of the meaning of X is: any extension 
of X to a decided sequent either is inconsistent or determines a solving 
substitution. If E '  is a closed arithmetic statement saying that  the system 
E has a satisfying (solution) substitution, then X can be interpreted as 
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X --. E ' ,  i.e. X implies the existence of a solution substi tution for E. 
An alternative interpretation would be X, ~ E ~ ~ false (to stay in the 
negative fragment and make the derivation intuitionistic). Each sequent 
X in a derivation is decomposed into a lqxed par t  X I and a provisional 

part  X t  : 

X-X fUXt .  

Components of epsilon substitution determined by formulas in the fixed 
part  X I should not be changed in a non-trivial way when the derivation 
is followed bottom-up; they can only be truncated to zero. 

Formulas in the provisional part  X t  can be changed during a H-step 
(for Hilbert) of a generating new epsilon-substitution. The notation {A} 
means that  A is in the t-part (i.e. provisional part  Xt ) .  The number I ( X )  

is the maximal i such that  the i-th critical formula Cri  is computationally 
true, i.e. CX"  Cri  ~ true. 

Recall that  a sequent X is decided if itl exists for all terms t in X, E, 
and that  the sequent X < r is obtained by deleting from X all formulas 
containing terms of rank > r and all basic formulas containing terms of 
rank r. 

Axioms different from the A x F ( a l s e )  below and conclusions of all rules 
should be c.c. The conclusion of any rule exept (cut) and (Fr) and any 
axiom exept A x F  should be decided. In the axiom Axc and the rule H 
we write J - th  critical formula as C r j ' B [ t ] - - - ,  B[exB].  

AXIOMS. A sequent X is an axiom in the following cases: 

AxSol. I ( X )  - Im~x, i.e. C r j  ~ true for all J 

AxF. X is c.i. 

Axc. I ( X )  - J - 1 < /max, .91lexBII - ?exA is inXl ,  ( e x A #  - 

N) ~ true for some N. 

INFERENCE RULES. 

(Cut) 
?cxA, X ;  . . .!cxA - N, X ;  . . . 

X 

all N 
?exA, !cx A - N 

are in the f -par t  

(Fr) { ? ~ x A } , X  

X 
The premise is c.c. 
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(H) 
{!~x A - N } , X  <_r 

{?cxA} ,X  

where r = rk(exA), 
I ( X )  = J -  1 < /max  
ll xBIL =  xA, 
C X  : ( e x A # =  N) --* true 

This concludes the description of PA~. 
f-derivation is a derivation containing no rules (Fr), (H), i.e. only the 

rule cut and axioms. 
The remaining part of the paper is devoted to proving the following 

theorems. 

THEOREM 1. The empty sequent is derivable in PA~ by an f-derivation. 

THEOREM 2. Every f-derivation of an empty sequent can be transformed 
into a cutfree derivation by standard cut-reduction transformations. 

THEOREM 3. A cutfree derivation of the empty sequent is finite and lin- 
ec~r: 

No, X 1 , . . .  , X n  

It begins with axiom Sol (sequent Xo), ends with the empty sequent 
(Xn), and consists only of rules (Fr), (H). The corresponding sequence 
Sn, S(n--1), �9 �9 �9 , SO of epsilon substitutions Si = Sx~ is a convergence pro- 
tocol of the Hilbert's substitution method: Sn is the zero substitution and 
S(i-1) either coincides with Si or is obtained from Si by Hilbert's step. 
So is the solution substitution. 

4. C o n s t r u c t i o n  of  t h e  o r ig ina l  d e r i v a t i o n .  
s t r u c t u r e  of  d e r i v a t i o n s .  

R u l e  CutFr .  T h e  

To derive the empty sequent 0 expressing solvability of our fixed set E of 
critical formulas we proceed bot tom-up introducing cuts until all terms in 
E (and all necessary subterms) are decided. Then the resulting sequent 
either is computationally inconsistent (c.i.) or falsifies one of the critical 
formulas, or determines a solution substitution. In all these cases it is 
an axiom of our calculus PA~ and so the whole tree is well-founded. To 
provide bounds for the length of its branches, i.e. for the height of the 
whole tree it is convenient to use computat ion from outside in addition to 
the computat ion from inside encoded in the calculus CX.  

We introduce a new CALCULUS C1 which differs from C X  only in the 
formulation of the rule ( ~ + ) :  

!exA=N occurs in X 

cxA -~ N 
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The requirement ( e x A #  = N)  4 true is dropped compared with the 
calculus C X  of section 2. 

The notation e 4 1  v means that  e ~ v is derivable in C1. The meaning 
of iel 1, ]ltlll, 1-decided etc. should be obvious. The next proposition shows 
that  eventually decidability coincides with 1-decidability. 

LEMMA 4.1. I f  the sequent X is correct, c.c. and 1-decided then it is 
decided. 

PROOF: Let r(e) be the maximum rank of subterms of the expression 
(term or formula) e. We apply induction on r(e) to show that  lel exists. 
The induction base r(e) = 0 is evident since e does not contain an epsilon 
symbol, i.e. is a primitive recursive term or formula. 

The induction step for a formula A follows from the induction step for 
terms. The induction step for a term e is proved by induction on the 
degree d(e). 

INDUCTION BASE d(e) - 1. 

Let e = exA. Since e is 1-decided, we have ?e in X (and e 4 O) or 
!e = N, i.e !exA, A[N], ~ A[i] (i < N)  in X. Since deg(e) = 1, we have 
r(A[j]) < rk(e) = r(e). By induction hypothesis IA[j]I (j <_ N)  exists, 
and since Z is c.c., IA[N]I = true, IA[i]I = false (i < g ) .  

So the rule ( 4 + )  of the calculus C1 yields ( e x A #  = N)  4 true as 
required. 

INDUCTION STEP FOR DEGREE-INDUCTION. 

One has e = exA[x, u] with deg(u) < deg(e). Since e 4 1  g is obtained 
by the rule (trans)l  of C1, and the left premise of this rule should be 
obtained by (c 4 ) 1  

u 4 M  

(e 4 )  exA[x, u] 4 exA[x, M]; exA[x, M] 4 g 
(trans) exA[x, u] ~ g 

we can use induction hypothesis for u and exA[x, M] to drop the subscript 
1 in the rules. 

A sequent is weB-formed (wf) if it has the form 

(4) ?cXlA1,. . .  , ?ex,~A,~, !eylB1 = N1, . . .  , !ey,~B,~ = Nm 

where for every j _ m all formulas in !eyjBj = Nj are in the f -par t ,  or 
all of them are in the t-part. In other words all formulas except ?exiAi 
are separated into disjont clusters 
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NOTE. Any sequent occurring in a derivation is wf. This is established 
by bot tom-up induction on the derivation. 

Indeed the last empty sequent is obviously well-formed with n - m - 0. 
Cut adds ?exA to the left premise and the cluster !exA=N to the N- th  

right premise. Fr adds ?exA. CutFr (cf. next page) is a combination of 
Cut and Fr. Finally H adds a cluster {!exA=N} after deleting ?exA and 
all formulas of rank > r. The latter operation deletes some clusters: if the 
rank s of ~yB is greater than r, then the rank of formulas in e y B #  - N 
is equal to ( s -  1)+ which is still greater than r. If s _< r, then !eyB is not 
deleted, and the same is true for e y B #  - N.  From now on all sequents 
are assumed to be wf unless the opposite is explicitly stated. 

Note that  for any wf sequent X and any !exA in X the value ]exAI1 
exists. We assume as before that  all considered sequents are wf. 

LEMMA 4.2. Let X be a correct sequent, L be any finite set of epsilon 
terms and r be the maximum rank of undecided terms in X ,  E, L. Then 
there is a deduction of X of height < wr by the rule cut from some axioms 
and decided correct sequents X '  containing X which decide all terms in 
XI, E , L .  

PROOF" We shall construct a derivation from 1-decided sequents which is 
sufficient by the Lemma 4.1. We use induction on r and (inner) induction 
on the number of 1-undecided terms of rank r. Take one such term cxA 
of minimum degree and write down the list 

(1) ~xlA1, . . . , eXkAk(= exA) 

of its c-subterms including itself which are not 1-decided in order of in- 
creasing degree (i.e. lesser degree comes first). We apply the rule cut 
bot tom-up to decide the term exlA1 to be written ~zC. All subterms 
of ~zC are 1-decided, otherwise it would not be the first in (1). So 
czC -~1 ~yB of degree 1 (or is of degree 1 itself). 

CASE 1. Neither of ?cyB, !eyB is present in X. Then cyB is 1-decided in 
all premises of the rule 

(cut) ? e y B ,  X ;  . . . ! e y B  - N ,  X ;  . . . 

X 

since cyB ~ 0 in the leftmost premise, and cyB ~ N in the (N + 1)-th 
premise. So ~zC is also 1-decided as required. 

CASE 2. One of ?eyB, !cyB is in X. In the first case IcyBI = 0, in the 
second case ]cyBI1 exists since X is wf. 
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PROOF O F  THEOREM 1 (cf. section 3): First apply Lemma 4.2 to the 
empty sequent and the empty list of terms. Consider an arbi t rary top 
sequent X of the resulting figure. We show how to extend X to an axiom 
if it is not one, i.e. if X is c.c. and I ( X )  </max .  Since X is decided we 
have Crg ---4 false for J = I ( X )  + 1. Then writing 

(2) Cra : A[t I ~ A[cxA] 

we have A[t] --, true, A[exA] -~ false. Since all subterms in (2) are 
decided we have t ~ N for some N. Since ~xA is decided we have ?llexAII 
in X and I~xAI = 0. Indeed, if !l[~xAII is in X and I~xAi = M then 
AIM] ~ true by the Lemma 2.3 and so A[cxA] ~ true, which contradicts 
A[~xA]--~ false. 

Now let L be the list of all c-terms occuring in the formulas 

(3) A [ N -  I ] , . . . , A [ 0 ]  

Apply Lemma 4.2 to sequent X and list L. Each of the top sequents X ! 
of the resulting deduction which is c.c. decides all formulas in (3). Let K 
be the least numeral such that  C X  ~ : A[K] --, true. Such a K exists since 
A[N] --~ true. Since C r j  --~ false we have I ( X ' )  = I ( X )  and the sequent 
X ~ is an instance of the axiom Axc .  

During cutelimination the cut rule will be gradually replaced by other 
rules, but for technical reasons (to be explained in the subsequent sections) 
some traces of eliminated cuts will be left in the derivation in the form of 
the rule CutFr below. 

We introduce a new system P A  + by adding to PA~ the new rule: 

(CutFr) {?cxA}, X ; . . . ! e x A = N ,  X ; . . .  The leftmost premise is c.c. 
X !exA=N are in the f -par t  

In other words the leftmost premise is exactly as in the rule (Fr), and 
remaining premises are exactly as the corresponding premises of Cut, i.e. 
are the same as in the omega-rule. We call the leftmost premise of a cut 
or CutFr  the major  premise of that  rule, and remaining premises its minor 
premises. 

THEOREM 4.3. Let d be a derivation and X be a sequent in d. 

(a) f f  ?~xA is in X then either of the following holds: 
(al)  ?cxA is in X f  and traceable to the major premise of  a cut, or 
(a2) ?cxA is in Xt and traceable to the major premise of a Fr or CutFr. 
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(b) I f  !cxA is in X then either of  the following holds: 
(bl)  !exA is in X f  and traceable to a minor premise of  a cut or CutEr; 
(b2) !~xA is in X t  and traceable to an H-rule. 

(c) / f  a basic formula A is a member  of  X then either 
(cl) A is in X /  and traceable to a side formula in a minor premise of  a 

cut or CutEr, or 
(c2) A is in X t  and traceable to a side formula of  an H-rule. 

The proof is by bot tom-up induction on the derivation. The induction 
base is trivial since the last sequent is empty. The induction step is proved 
by cases depending on the last rule. Only side formulas of this rule are to 
be considered. -~ 

Call the derivation cutfree if it contains neither cut nor CutEr. 

COROLLARY 4.4. Let d be a cutfree derivation of  the emp ty  sequent. 

(a) only rules Fr and H are used in d; 
(b) X - X t  for every sequent X in d; 
(c) any sequent X in d is supported and c.c.; 
(d) d begins with the axiom Sol. 

PROOF" (a) By the definition of cutfree. 
(b) By Lemma 4.3 any formula in X I  should be traceable to a cut or 
CutEr below X, so X I  is empty by (a). 
(c) Use bot tom-up induction on d. The empty sequent is obviously c.c. 
and supported. Rule (Fr) has c.c. proviso and its premise does not contain 
new basic formulas compared to the conclusion. 

Consider the rule H 
{!~xA=N},  X <_ r 

{?~A},X 
Assume that  the conclusion {?exA}, X is a correct supported c.c. sequent. 
Then !~xA does not occur in X,  hence the premise Y - { ! e x A = N } , X  
<_ r is also correct. Suppose for contradiction that  C Y  �9 B ~ false for 
some basic formula B in Y. Then r k ( B )  < r since formulas of rank exactly 
r in Y are of the form ?~zC, !ezC. By Lemma 2.8 we have C ( Y  ~_ r) �9 B 

false. The cluster { !~xA=N} cannot be used in this derivation unless B 
is a formula in ~ x A #  - N.  In that  latter case we would have C ( X  < r)" 

B ~ false which contradicts the proviso of the H-rule: C X  �9 ( c x A #  - 

N) ~ true. All basic formulas in X _< r are supported as before (by 
Lemma 2.8) together with all basic formulas in ~ x A #  - N ,  as explained 
above. 

This argument is our version of Ackermann's [1940] correctness argu- 
ment (presented in Hilbert-Bernays [1970], section 2 of the Supplement 
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V) showing that the next substitution S' is correct if the previous substi- 
tution S was correct. 
(d) The uppermost sequent should be an axiom. It cannot be the axiom 
False because of (c), and cannot be Axc since the f -par t  is empty. -~ 

LEMMA 4.5. If  X / X  1 is an inference according to the rule Fr then the 
corresponding epsilon substitutions coincide: Sxl  = Sx .  

I f  X / X  ~ is an inference according to the rule (H) then the corresponding 
epsilon substitution Sxl is a successor of Sx ,  i.e. is obtained from S x  by 
Hilbert's step : Sxl = (Sx) ' .  

PaOOF: By Corollary 4.4(c) all basic formulas in clusters !exA=N are 
supported, hence if such a cluster is present in a sequent X then the 
substitution Sx  contains a component exA=N, and consists exactly of 
such components plus zero substitutions for all remaining canonical terms. 
So the rule Fr only makes explicit existing zero components, and does not 
change the substitution. The rule H eliminates all components of rank > r 
(by eliminating whole clusters) and adds one new component of rank r 
(in the form of supported cluster !exA=N) exactly as required in Hilbert's 
substitution method. -~ 

PROOF OF THEOREM 3 (cf. section 3): Apply Corollary 4.4 and Lemma 
4.5. 

LEMMA 4.6. I f  X is a sequent in a derivation of an empty sequent, then 
any basic formula in Xt  is supported and any formula !exA is 1-decided. 

PROOF is by bottom-up induction on the derivation. New basic formulas 
in the provisional part Xt appear only in the rule (H), and there they are 
supported by Lemma 2.8. New formulas of the form !exA in Xt are 1- 
decided by the same argument. In X f they appear in the minor premises 
of the rules (Fr) and (CutFr), and they are 1-decided by the very form of 
these premises. If some formula F looses its support or 1-support in the 
rule (H) since some of the supporting formula is deleted, then F is also 
deleted. -~ 

5. The weakening rule 

The weakening (or thinning) rule 

X 
(1) X , A  

in some form (postulated or proved admissible) is frequently used in the 
process of cutelimination. It is not in general admissible in our systems 
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with the c-symbol because adding a new formula (say ?exA) to a cor- 
rect sequent (say !exA - 1) can make this sequent incorrect. The usual 
method of proving the admissibility of weakening (1) is to add formula A 
to the whole derivation of the premise X. Sometimes this transformation 
is called multiplication of the derivation by A. Even if correctness of se- 
quents is preserved, some of our rules can be destroyed by this transforma- 
tion for reasons similar to the unstability of the proviso for (generalized) 
eigenvariables of quantifier rules or (even more relevant) the restriction 
in the necessity-introduction rule of $4. If the derivation of X in the 
Gentzen-type formulation of the modal logic $4 contains this rule, one 
has to drop A altogether at the conclusion of this rule. Our treatment of 
weakening will be along these lines. 

Recall that we consider wf sequents of the form 

(*) ?~XlAl, . . . , ?e_xnAn, !eYlB1 - N I , . . .  , IeymBm - Nm 

or X?, X! for short. 
The product X �9 Y of two sequents will be defined by concatenating 

them and identifying the whole clusters. 

DEFINITION. Let X,  Y be correct sequents, X be of the form (,) and Y 
be of the the form 

X~ X2 w YI? Y2! 

where the parts of Y coinciding with the corresponding part of X are 
shown first, and the remaining parts are shown later. Then X �9 Y is 
X, YI?, Y2! with the t-part preferred: if  a t / eas t  one of the identified for- 
mulas is in the t-part, the result is also placed in the t-part. I f  identified 
dusters !exA=N1, !exA=N2 have different N1, N2, then the maximum is 
preferred (in fact this case will never occur). 

EXAMPLE. Assuming Ai to be different for different i we have 

?exA1, ?exA2, !exA3 - 5 �9 ?exA1, !exA3 - 5, !exA4 - 1 = 

?exA1, ?exA2, !exAa - 5, !exA4 - 1 

and 

9. exA1, ?exA2, {!exAa = 5} , ?exA1, !exAa = 5, !e_xA4 - 1 = 

?exA1, ?exA2, {!exA3 = 5}, !exA4 = 1 

Recall that {} means being in the provisional part. A sequent X is 
supported (t-supported) if C X  : A -+ true for every basic formula A in X 
(in Xt) .  

NOTE. If sequents X and Y are correct and do not conflict in a formula 
of the form ?exA (i.e. one contains ?exA and the second !exA) then X ,  Y 
is correct since such a conflict is the only possible reason of incorrectness. 
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LEMMA 5.1. (a) /It" X, Y are c.c. supported sequents, and X �9 Y is correct 
then X �9 Y is also a supported c.c. sequent. 

PROOF" The sequent X �9 Y is supported since the X-par t  is supported by 
X and the Y-part  is supported by Y. To prove computational  consistency 
of X �9 Y consider a derivation of A - ,  false in C ( X  �9 Y )  for (say) A in 
X. Since X is c.c. and supported we have a derivation of A - ,  true in 
C X .  We apply induction on these derivations to prove that  A - ,  false for 
a formula A in X, Y, or t ~ N, N1 with different N, N1, or t ~ t l, t2 for 
different t l, t2 implies that  X �9 Y is incorrect. This induction is similar 
to the one used in the proof of the Church-Rosser property for C X .  The 
induction step goes smoothly exept in the situation when t is canonical 
and the derivations of t ~ N, N1 are given. They should end in some 
combination of the rules (~0) ,  ( ~ + ) .  These rules cannot both be ( ~ 0 )  
since then N - N1 - 0. If both of them are ( ~ + ) ,  use the induction 
assumption for the formula A[min(N, N~)]. Otherwise X �9 Y contains 
?~XA and !~xA and so is incorrect. 

LEMMA 5.2. If X, Y are c.c. sequents, X is supported and X . Y  is correct 

but not c.c. then there is a basic formula A in Y not decided by Y and 
such that C ( X  �9 Y)  " A ~ false. 

PROOF: Again apply induction on the pair of derivations of A ~ false in 
C ( X  �9 Y )  and A ~ true in C X  or C Y  or a pair t ~ N, N1 with different 
N, N1. --t 

Cuts will be eliminated in the usual way beginning with maximum rank 
r. Eliminated cuts of rank r will be replaced by CutFr and H with the 
same main term, i.e. with the same rank. More precisely, a cut will be 
replaced by CutFr and then moved (permuted) up the derivation until 
one encounters Axc with main term ?r traceable to the main formula 
?r of that  CutFr. Then the Axc is replaced by the rule H , and the 
derivation of the corresponding right premise of the cut is placed over the 
H-rule. After all cuts of rank r are eliminated, these CutFr will be pruned 
to Fr. So finally cuts of rank r will be replaced by Fr of rank r. The cut to 
be eliminated will be one of the uppermost cuts of rank r. This motivates 
the following 

DEFINITION. A derivation d is an r-derivation if it contains cuts of rank 
at most  r, CutFr only of  rank r, H only of  rank > r, Fr only of  rank > r, 

and no CutFr or H of  rank r is below any cut of  rank r. 
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rank r H 

rank r 

A sequent U is an r-sequent if all formulas in its provisional part Ut are 
of rank > r -  1, and all formulas in its fixed part UI have rank _< r" 

Ut is contained in U(> r -  1) and Uy is contained in U(<_ r). 

So U I consists of U(_< r -  1) and some part of U(_< ( r -  1)+) and U(= r), 
while Ut consists of U(> r) and the remaining part of U(_< ( r -  1)+) and 
u(-  

Ut 

vl 

I I I 
r-1 (r- l)+ r r+ r+l 

Recall that basic formulas containing terms of rank r -  1 have rank 
( r -  1)+ > ( r -  1) by the definition. This is motivated by the fact that 
all formulas in {!exA=N} for exA of rank r should be treated together. 

LEMMA 5.3. Every sequent in an r-derivation is a t-supported r-sequent. 

PROOF is by the bottom-up induction on the derivation. Induction base 
(empty sequent) is obvious. For induction step consider cases according 
to the last rule applied. 

RULE Fr. ?exA is added to t-part and is of rank > r. Everything else in 
the t-part is supported in view of the induction assumption. The f -par t  
is not changed at all. 

RULE Cut. ?exA is added to the f-par t  of the major (leftmost) premise. 
Its rank is _< r, so the conditions for the r-sequent are satisfied and no 
new conditions for support have to be checked in this premise. In the 
remaining premises formulas ! r  of rank _< r are added to f-part ,  so 
again conditions for the r-sequent are satisfied and no new conditions for 
support have to be checked. 

RULE CutFr. This is the combination of the two previous cases. 
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RULE H. Here {!exA=N} with exA of rank s _ ( r -  1)+ > r -  1 is added 
to the t-part and all formulas of rank > s as well as ?exA are deleted 
(from the conclusion). So the condition for the t-part  in the definition of 
the r-sequent is preserved, and no new formulas are added to the f -par t .  
The added formulas {exA#  = N}  in the t-part are supported in view of 
the proviso in the rule H. The remaining formulas X _< r in the t-part of 
the premise are supported by the same derivations as for the conclusion: 
all of them have rank <_ r, and by Lemma 2.4 only formulas of rank _< r 
were used in the supporting derivation. But none of those formulas was 
deleted. -~ 

LEMMA 5.4. (a) Let Z, U be c.c. t-supported r-sequents and Z �9 U be 
correct. Then if Zf(<_ r) �9 Uf(<_ r) is c.c. then Z �9 U is a c.c. t- supported 
r-sequent. 

(b) It" Z, U are correct c.c. t-supported r-sequents, Z coincides with 
Z(_< r) and contains U(<_ r), then Z , U  is a correct c.c. t-supported 
r-sequent. 

PROOF: (a) Z �9 U is a t-supported r-sequent since Z, U are such. We 
prove uniqueness of Itl, litli, IAI by induction on the derivations in the C- 
calculus. If the rank is at most r +  then the derivations use only Z(_< 
r ) ,  U (_  r). These in turn use only Zf(<_ r ) ,  Uf(<_ r) since (by the 
definition of r-sequent) the only formulas in the difference set are of the 
form ?exA, !exA=N, with exA of rank r, but the derivation of exA --, N 
uses only formulas of rank < r which are in the f-par t .  

For the terms and formulas of rank > r +  we use induction on rank and 
the fact that  A ~ true in CZ or CU for each basic formula A of rank > r 
in Z �9 U. Indeed in this case A is in the t-part and Z, U are t-supported. 
(b) In this case Zf(<_ r ) ,  Uy(<_ r) is Zf(<_ r) which is c.c. by the 
assumption. -~ 

LEMMA 5.5. Let the conditions of Lemma 5.4(b) be satisfied and R be 
an inference rule with conclusion U. Then 

(a) if R is (Fr) with side formula {?exA} and rk(?exA) > r or 
(b) R is (H) of rank s > r and all terms in Z are decided, 

then Z �9 R, i.e. the result of multiplying Z by all premises and the con- 
clusion of R, is the same rule as R, and all premises are turned into correct 
c.c. t-supported r-sequents. 

PROOF: (a) Consider 

{?~xA}, U {?cxA}, Z �9 U 
U (R) and Z �9 U (Z,R) 
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Since rk(exA) > r, and rk(Z) < r, neither of ?exA, !exA occurs in Z. The 
conditions of Lemma 5.4(5) are satisfied also by Z and {?exA}, U, and 
moreover Z �9 ({?exA}, U) = ?exA, ( Z .  U). So the premise is a correct c.c. 
t-supported r-sequent and Z �9 R is an Fr-inference. 
(b) Consider 

{!exB, B[K], ~., B[i], i < K } ,  X ( <  s) (H) 

{!exB, B[K], ~ B[i], i < K } ,  Z �9 X(_< s) 

?exB, Z �9 X 
(Z,H) 

By the proviso for the rule (H) and the subformula property of the cal- 
culus C we see that  the premise {!exB = K},X(<_ s) is  a t-supported 
r-sequent, and it is c.c. decided. Since Z is also t-supported, the con- 
ditions of Lemma 5.4(b) are satisfied for the premise, so the result of 
multiplication by Z is also c.c. decided, and since all terms in Z are 
decided, the proviso of H is satisfied. -~ 

DEFINITION. Let d be a deduction, that  is a derivation from hypotheses, 
and Z be a correct wf sequent. Let us define a figure Z �9 d by induction 
on d. [ Z ,  d will not be a deduction in general.] Roughly speaking Z ,  d is 
the result of multiplying all sequents in d by Z, deleting everything which 
is above incorrect or computationally inconsistent (c.i.) sequents and 
pruning the branches over the premises of (cut) and (CutFr) which have 
become redundant.  More precisely, some members of Z can be deleted 
in the process of going up the derivation when the rule H is encountered. 
So in fact Z �9 d is defined in terms of W �9 d' for W contained in Z and 
subderivations d' of d. We shall verify later that  Z ,  d is again a derivation 
in the cases we need. In the remaining (degenerate) cases the definition 
will be more or less arbitrary. 

INDUCTION BASE. U is the last sequent in d. If Z*U is incorrect (degen- 
erate case) or c.i. then Z �9 d consists of the only sequent Z*U analysed as 
AxF if it is correct but c.i. 

INDUCTION STEP. Let W ,  d' be defined for all correct wf sequents W and 
immediate subderivations d' of the given derivation d. Let d end in a rule 
R with the conclusion U. If Z ,  U is incorrect or c.i. then Z ,  d consists of 
the only sequent Z �9 U. If Z �9 U is correct and c.c. consider the following 
cases. 
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CASE 1. R is cut or (CutFr).  If Z does not contain the cut formula, i.e. 
?xA or !exA, then multiply premises by Z and apply the rule R. This 
means that  

dl : U1; . . .dn  : Un . . .  
d:  U 

is transformed into 

Z , d l  : Z , U 1 ; . . . Z , d n  : Z , U n . . .  
Z , d :  Z , U  

If Z contains the cut formula, then prune the branch of R containing the 
complementary cut formula, delete the cut and proceed up the premise 
containing the considered cut formula: 

d, dN 

?~xA, U; !~x = N,  U 

d:  U 

Derivation d is transformed into 

?exA, Z ~ �9 d., : ?exA, Z ~ �9 U 

o r  

!~xA=N,  Z �9 dN : ! exA=N,  Z ~ �9 U 

where Z = ?exA, Z ~ or Z = !exA, Z ~ with one exception. In a degenerate 
case when the rule is CutFr  and ?exA is in the fixed part  Z f ,  Z �9 d is the 
figure 

{?~xA}, Z ~ *U 

?exA, Z ,,~ , U  

which is not an application of any rule. 

CASE 2. R is (Fr). If Z does not contain the Fr-formula, i.e. ?exA, !exA, 

then multiply by Z: 
{ ? e z A } , U  

U 

is transformed into 
(Z �9 U) 

Z , d :  Z , U  
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If Z contains ?exA in the t-part, prune (Fr). If Z contains !exA (degen- 
erate case) then Z �9 d consists of the incorrect sequent ?cxA, !cxA, Z �9 U. 

In the degenerate case when ZI contains ?exA the derivation Z ,  d 
consists of the only sequent Z �9 U. 

CASE 3. R is (H). If Z does not contain ?exA, !exA, multiply the premise 
by Z(~  r). 

If Z contains ?r i.e. Z = ?r V, multiply the premise by V. 
Sequent Z cannot contain !~xA since the conclusion U of the (H)-rule 

contains ?cxA, and Z �9 U is correct by the assumption. This concludes 
the definition. 

We now begin to investigate sufficient conditions of the admissibility of 
the thinning rule X / X ,  Y. 

Consider the structure of a derivation of the right premise of an upper- 
most rank r-cut in an r-derivation. 

LEMMA 5.6. Let X be a sequent in an r-derivation of the empty sequent 
0 with no (CutFr) of rank r under X .  Then 

(7) X f - X(~_ r); Xt - X ( >  r) 

PROOF is by bottom-up induction. For the last sequent 0 all parts in (7) 
are empty. Consider possible inference rules. 

CASE 1. Cut rule 
?exA, U; . . . !exA=N, U 

U 

Here rk(exA) < r and ? , !exA=N is in the f-part ,  rk(A[j]) <_ ( r -  
1)+ < r, and so (?, !exA=N, U)I - ?, !exA-N,  UI - ?, !cxA=N, U(<_ r) - 
(?, !exA=N, U)(<_ r), and (?, !exA=N, U)t - Ut - U(> r) - (?, !cxA= 
N, u)(> 

CASE 2. Rule (Fr). 
{?~xA},U 

V (Fr) 

By the definition of' r-derivation 'rk(exA) > r. Hence ({?exA}, U)f - 
Uf - U(< r) - ({?exA},U)(< r), and ({?exA},U)t - ?exA, Ut = 
?cxA, U(> r ) -  ({?exA}, U)(> r). 

CASE 3. Rule (H). 
{!~xA=N},U 

{?~xA},U 
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By the induction hypothesis rk(exA) > r, and so rk ( ! exA-N)  > r+ > r. 
We have ( { !cxA=N} ,U) f  = Ill = U(<_ r) = (!exA=N),U(< r), and 
({!~xA=N}, U)t = !cxA=N, lit = !ex = N, U(> r) = ({!cxA=N}, U)(> r). 

CASE 4. Rule (CutFr). This case is impossible by the condition of the 
lemma since rk(CutFr) = r in any r-derivation. -q 

LEMMA 5.7. Consider an r-derivation with a branch 

Axc ?eyB, Z, V 

J 
?eyB, . . .!eyB = N, X 

X 
cut 

containing the left premise of an uppermost cut of rank r and correspond- 
ing axiom Axc . Let d be a deduction obtained by deleting from the given 
derivation the part  above X.  Then !eyB = N, Z �9 d is a deduction of 
!eyB = N, Z from !eyB = N, Z �9 X by the rules (Fr), (H): 

(Fr, H) 
!eyB = N, Z �9 X 

I 
Z, !eyB = N 

PROOF: We shall prove the following claims: 

(a) Z contains X ( <  r) 
(b) the segment from 0 to X contains neither (Fr) or H-rules of rank 

_ r nor (CutFr), and after multiplying by Z, !eyB - N all cuts are 
pruned from this segment, but a branch contained in the segment 
is always chosen; 

(c) all remaining rules, i.e. Fr and (H), are preserved, and all sequents 
( ! c y B -  N, Z ) .  U in the segment are c.c. r-sequents. 

Indeed, by the definition of r-derivation all (CutFr) have rank r, all 
H-rules have rank _ r and there are no (CutFr) or H-rules of rank r 
under any cut of rank r. So no formula of rank <__ r, in particular no side 
formula of a cut, is deleted in any H-rule (viewed bottom-up), and Z(<  r) 
inherits all these formulas from X, which proves (a). Claim (b) follows 
from the condition on the arrangement of cuts, H-rules and (CutFr) in an 
r-derivation. Note that rank(H) _> r, rank (CutFr) - r ,  rank (Fr) > r in 
an r-derivation. To prove claim (c) we verify conditions of Lemma 5.4. 
The relation Z - Z(_< r) is equivalent to rk(Z)  <_ r. Since ?eyB, Z, V 
is decided, and ?cyB, Z is of rank _< r, sequent Z is supported by the 
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subformula property of the calculus C. It is c.c. since ?eyB, Z, V is c.c. 
And it was just proved that Z is contained in U(_< r). Rules not listed 
in claims (a),(b) are (Fr) and (H) of rank > r. Their conclusions and 
premises are c.c. t-supported r-sequents. So by Lemma 5.5 multiplication 
by Z(_< r) preserves them. Claim (c) is established, q 

LEMMA 5.8. Let d be an r-derivation of  a sequent ?cxA, X with ?exA of  
rank r in the f -par t .  Then the result of  provisionalization of  ?cxA, i.e. 
moving ?exA into the t-part is a deduction of  a sequent 

{ ? r  

where all inference rules and axioms except Axc  with main formula {?exA} 
are correct. 

PROOF: By inspection of axioms and inference rules. -q 

LEMMA 5.9. Let d be a part of  an R-derivation of  0 ending in an upper- 
most  cut of rank r: 

Then 

(b) 
(cl) 

( c 2 )  

(d) 

d, ? t ,X . . .!t - N,  X . . . dN (c) 

X 
o , o d ~  

d?, dN contain only (Fr)-rules of  rank> r, CutFrs of  rank r, cuts 

of  rank < r, H-rules of  rank >__ r; any H-rule of  rank r in d?, dN is 
traceable to (CutFr) in d?, dN (not in d - ) ;  any axiom Axc  of  rank 
r in dN is traceable to a cut in d - ;  axiom Axc  in d? can also be 
traceable to a cut in d -  and to the explicitly shown cut. 

- x ( <  r);X  = x ( >  

for any sequent V in clv one has Vy - Xd  U ?t U side formulas of  
cuts of  rank < r and of  CutFrs of  rank r (fixed premises) in d~ 
for any axiom Axc �9 ?t, Z in d? one has 
Z(~_ r) - X f  hA side formulas o f  cuts of  rank < r in d~ U 
fixed side formulas !u - K of  CutFrs of  rank r in d7 U 

(provisional) side formulas { ! u -  K }  of  H-rules of  rank r in dv U 

provisional side formulas {?u} of  CutFr of  rank r. 

In particular (Zy)r - (Xf)r U {{!u - K }  " rk(u)  - r} where V~ is 

V ~_ r intersected with V(> ( r -  1)). 
for any sequent U in dN one has 

Uf - X f U !t - N U side formulas of  cuts of  rank < r and of  
CutFrs (fixed) of  rank r in dN. 

- x / .  u - K } ' r k ( u )  - r } .  
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This is summarized as follows: 

Axc  ?t, Z 

d, ? t ,X ! t - N , X  
X 

(c) 

rk(H) _> r, rk(Cut) < r, 
rk(CutFr) - r, 
rk(Fr) > r, 
Axc  " ?u, Wl 

?u ,W ! u - M , W  
d -  W 

I 
0 

PROOF" (a) The definition of an r-derivation implies the condition on the 
ranks of (Fr) (Cut) and (CutFr), and the bound > r for ranks of remaining 
rules. The sharp bound > r for CutFr and tracing of Axc follows since 
there are no cuts above (c). Part d -  below the cut (c) cannot contain 
(CutFr) by the definition of r-derivation which concludes the proof of (a). 
Parts (b)-(d) follow from (a). 4 

THEOREM 5.10. Under the conditions of  L e m m a  5.9 let Axc: ?t, Z, V 
with (?t, Z ) -  (?t, Z, V)(<_ r), C Z  " t #  - N - .  true be traceable to the 
main premise of cut (c). Then dg  * { ! t -  N } ,  Z is an r-derivation. 

PROOF: In fact we prove by bottom-up induction on dN the following 
lemma. 

LEMMA 5.11. Under the conditions of  L e m m a  5.9 let U be a sequent in dg  
which is not pruned in the process of  multiplication of  dg  by {!t -- N } ,  Z,  
and let W be the sequent to which U is multiplied in the process of  
comput ing  dN * (!t -- N ,  Z).  Then 

(a) U ,  W is correct; 
(b) i f  U �9 W is the topmost  sequent, it is an axiom; 
(c) i f  some formulas in U and W are identified, and only one of  them 

is in the f -par t ,  it is the formula in U; 
(d) every rule left in dN * {!t - N } ,  Z up to U �9 W is correct. 

PROOF: Note that the sequent W for every U is of the form 

(3) W - {!t - N } Z ' ;  Z - Z'  U {{?u~}, . . . ,  {?u~}},n >_ O, rk(ui )  - r 

i.e. Z' is obtained from Z by deleting of some formulas {?u} with rk(u)  - 
r. Indeed, only formulas of the form {?u} can be dropped from W in the 
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process of the mult ipl icat ion,  so r k ( u )  <_ r and since {!t - N},  Z is an 
r-sequent and {?it} is in Z, we have r k ( u )  - r .  Since {!t - N},  Z is a 
suppor ted  correct r-sequent  of rank _< r and by the subformula proper ty  
of the calculus C the sequent W is also a suppor ted  correct r-sequent  of 
rank < r. 

INDUCTION BASE: sequent X �9 {!t - N, Z}. From the fact tha t  {!t - 
N},  Z - W - W(_< r) contains X I  - X(<_ r)  by L e m m a  5.9 (c2), and 
the correctness of W it follows tha t  

x �9 w - (x(<_ ~), x ( >  r ) ) ,  w - w , x ( >  r) 

is correct. This sequent is also a c.c. r-sequent  by L e m m a  5.4(b). (b) 
follows from X ( <  r) = X f .  

INDUCTION STEP. Let R be a rule in d N ,  and (a)- (d)  be verified up to 
conclusion U of R. If U �9 W is c.i., then it is an axiom, we are done. 
Otherwise U �9 W is c.c. and we consider cases depending of R. 

CASE 1. U was an axiom in d. Then U , W  is an axiom of the same 
kind: since W is suppor ted  and U is supported,  W �9 U is supported,  so 
all restrictions are satisfied for the new axiom. 

CASE 2. R is Fr (of r k  > r by L e m m a  5.9 (a)) 

{?~}, u {?~}, u �9 w 
u (Fr) U , W  r k ( ~ ) > , -  

Since {?u} is added to the common par t  of U and U(>  r), the sequent 
{ ? u } , U , W  is correct and {?u}U is c.c. The sequent U(_< r ) , W  is a 
correct c.c. r -sequent  by induction assumption,  so {?u}, U �9 W is a c.c. 
r-sequent by L e m m a  5.4(a), and R ,  W is again an instance of (Fr) of rank 
> r .  

CASE 3. R is (Cut)  (of rank < r by L e m m a  5.9(a)) 

eo eN 

?u,  U; . . . !u - N ,  U; . . . ( R )  

U 

rk(u)  < r 

CASE 3.1. Neither of ?u, !u is in W. Then all premises in 

?u, U ,  W ; . . . ! u  - N, U ,  W 

U , W  
( R , w )  

are correct. They are r-sequents  since ?u or !u is added to the f - p a r t  and 
is of rank < r. So R �9 W is a correct applicat ion of (Cut).  
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CASE 3.2. One of ?u, !u is in W. Then it is in Wf  since rk(u) < r and 
?t, Z is an r-sequent. In particular u is different from t. So the cut is 
pruned into repetition 

eo*W eM*W 

?u, U �9 W Rep or !u - M, U �9 W 
U �9 W, ?u U �9 W,!u = M 

We used the fact that  W is wf and supported, so if !u is in W, then !u = M 
is in W for some M. 

CASE 4. R is (CutFr) (of rank r by the definition of r-derivation): 

{?u}, U ; . . . ! u  = N, U ; . . .  
U (CutFr) 

CASE 4.1. Neither of ?u, !u is in W. Then R �9 W is again (CutFr): 

{ ? u } , U , W ;  ! u = N , U , W  

U , W  

Indeed, the premises are correct since ?u, !u are not in W. They are 
r-sequents since only {?u} is added to the t-part  and rk(u) - r. The 
premise {?u}, U �9 W is c.c. by Lemma 5.4(a), since {?u}U is c.c. 

CASE 4.2. ?u is in W. If ?u is in Wf  then ?u is in Xf~ by Lemma 5.9(c2) 
and then ?u is in UI, so the main premise of (CutFr) would be incorrect. 
So ?u is in Wt, i.e. W = {?u}, W',  and then (CutFr) is  pruned into (Rep): 

{?u}, U �9 W'  

u �9 w' ,  {?u} 

CASE 4.3. !u is in W. Since W is wf and supported, !u = M for some 
M i s i n W ,  i.e. W = W ' , ! u = M .  I f ! u i s i n W f  then CutFr is pruned 
exactly as a cut. 

!u = M, U �9 W'  

U �9 W ~, !u = M 

If !u is in Wt, then it is supported, so (!u = M, U ) ,  ({!u = M}, W) = 
{!u = M}, U �9 W and (CutFr) can be pruned as before. 

CASE 5. R is the H-rule. 

{!u- M}, U(<_ s) r k ( u )  - s >_ r, CU : u #  = M ~ true 
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CASE 5.1. Neither of ?u, !u is in W. By the assumption the sequent {?u}, 
U �9 W is a c.c. correct r-sequent. Since U supports u -  M,  that  sequent 
also supports u - M. We have (U �9 W)(_< s) - U(_< s ) ,  W(_< s) - (U _~ 
s) �9 W, so R �9 W is again the H-rule: 

{ ! u - M } , U ( < _ s ) , W  
{?u}, U �9 W 

CASE 5.2. One of ?u, !u is in W. It cannot be !u, since otherwise (?u, U ) ,  
W would be incorrect. So W = {?u}, W where ?u should be in the t-part  
since otherwise ?u is in X f  which is contained in Uf. Now ({?u, U ) ,  
({?u}, W) = {?u}, U �9 W and since {?u} is pruned from W the figure 
R �9 W is again the H-rule: 

{ ! u - N } , ( U < _ s ) , W  
{?u}, U �9 W 

- ({!u - N } ,  (U _< s)) �9 W 
: ({?u},  U ) ,  ({?u) ,  W) 

This concludes the proof of Lemma 5.11 and hence of Theorem 5.10. -~ 

6. C u t e l i m i n a t i o n  

Now we can describe cutelimination transformation. 
s tandard Gentzen-type calculus a cut 

Recall that  in the 

A , Z , A  

(1) d, ~ A, X A, Y d, 
X , Y  

in a derivation where all occurrences of ~ A are traceable to axioms (and 
not to main formulas of rules) is reduced to the following derivation: 

d , , Z  [ 
Y ,Z ,A  

d? [~ A "- Y] I 
Y,X 

obtained from the original derivation by first replacing ~ A by Y and 
then deriving images ]I, Z, A of former axioms ,,~ A, Z, A by derivation d, 
multiplied by Z. The axioms of the form ,,~ A, B, ~ B, Z are transformed 
into Y, B, ~ B, Z and the second derivation is not needed. 
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In our e-calculus the role of the axiom ~ A, Z, A for the cut with main 
formulas ?s, !s is played by the axiom Axc: ?s, Z with C Z  : s #  = N ---, 
true: 

(2) 

9. s , Z  

I 
d, ?s, X !s = N, X dN 

d__ 
X 

I 
0 

It would be natural to transform such a derivation into the figure 

(3) 

d N * Z  

d ~ * X  

d__ 

{!s = N} ,  z ,  x 
{?s},z,x 

I 
{?~},x 

X 
I 
0 

(H) 

(Fr) 

but there are two problems. First, the H-rule in the new figure will be 
incorrect in general since both Z and X can contain formulas of rank 
> r. Second, the thinning rule is not admissible in general, in particular 
the result of multiplying a derivation by a sequent is not necessarily a 
derivation. 

These problems are solved as follows. We leave d~ as it is, make ?s 
provisional, truncate Z to Z(_< r) over the H-rule (3) and reintroduce the 
missing formulas from X by using t he  part d- of the original derivation 
situated below X: 

x z(< ~),  x 
d -  Z(_< r) �9 d -  

0 z(<_ ~) 

while the standard cut reduction uses only the part above X. 

DEFINITION. Let d be an r-derivation and (c) be a cut of  rank r in d with 
no cuts of rank r above (c) (cs (2)). Then red(d, (c)) is the figure: 



d~ �9 {!~ = N}, Z(< ~) 

d -  �9 {7~ = X}, Z(_  ~) 

d~{} 

d~ 

I 
{ ~  = N} ,  z(_< ~) �9 x 

I 
{~ = N},Z(_< ~) 

{?~},z 
I 

{?s},X ! s = g , x  

X 
(CutEr) dN 
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Note that in branches that do not end in the Axc with main formula 
traceable to the cut (c), no fancy transformations are needed: dN is simply 
pruned. 

The main syntactic result of this paper is the following 

THEOREM 6.1. red(d, c) is an r-derivation. 

PROOF: Consider the parts of red(d,c) bottom-up, d -  is left intact. 
d?{} is correct by Lemma 5.8. Next, part d -  ,{!s = N},Z(<_ r) is 
correct by Lemma 5.7. The part dN * {!s = N},Z(_< r) is correct by 
Theorem 5.10. It remains to verify the correctness of the rule (CutFr) 
introduced instead of cut (c). Indeed {?s} has rank r, ?s, X is correct and 
(?s,X)(_< r) = ?s,X(_< r) which is c.c. since X ( <  r) and even X is c.c. 
So {?s}, X is c.c. by Lemma 5.4(b) 

We can now formulate 

THEOREM 6.2. Any derivation of the empty sequent 0 (of height less than 
to) can be transformed into a cutfree deirvation (of height less than to) 
by cut-reduction red and pruning. 

PROOF is standard: we use induction on the maximal cut rank r and 
induction on the height h in the induction step. The only non-trivial 
step left is the passage from an r-derivation to an ( r -  1)-derivation in the 
induction step of the induction on r. So suppose an r-derivation containing 
no cuts (only CutFr) of rank r is given. Prune all minor premiss of (CutFr) 
(and everything over them) and prove by bottom-up induction that the 
resulting figure is an ( r -  1)-derivation, i.e. contains only ( r -  1)-sequents. 
This is easily done by cases. 
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1. P r o l o g u e  

Ordinals made their entrance in proof theory through Gentzen's second 
consistency proof for Peano Arithmetic by transfinite induction up to g0, 
the latter being applied only to decidable predicates (cf. Gentzen [1938]). 
Gentzen's constructive use of ordinals as a method of analyzing formal the- 
ories has come to be a paradigm for much of proof theory from then on, 
particularly as exemplified in the work of Schiitte, Takeuti and their schools. 1 

One of the strongest theories for which ordinal-theoretic bounds have been 
obtained is the impredicative subsystem of second order arithmetic based 
on A~ comprehension plus bar induction. The latter result was achieved 
by employing the most advanced techniques in this area of research: cut 
elimination for infinitary calculi of ramified set theory with II2-reflection 
rules. This gathering of tools was entitled "Admissible Proof Theory" (cf. 
Pohlers [1982]), yet another appropriate title could have been "Proof Theory 
of II2-Reflection". Unfortunately, these methods are not strong enough 
for carrying through an ordinal analysis of II 1 comprehension, let alone for 
second order arithmetic. 

This article will survey the state of the art nowadays, in particular re- 
cent advance in proof theory beyond admissible proof theory, giving some 
prospects of success of obtaining an ordinal analysis of II 1 comprehension. 

Although a great deal of ordinally informative proof theory has been 
pursuing an extension of Hilbert's program, that is sought-for consistency 
proofs, I shall only indulge very little in this issue. 2 Even those who wish 
to detach themselves from consistency matters may benefit from ordinal 
analyses. Ordinal analysis has proved to be an important tool in reductive 

lcf.Schiitte [1977], Takeuti [1987], Pohlers [1987], Pohlers [1991]. 
2For details cf. Takeuti [1987] and also the papers Feferman [1988] and Sieg [1988] being 
written on the occasion of a special Symposium on Hilbert's Program. 
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proof theory and also for the determination of the provably total functions 
of various complexities of a variety of theories. Putting things into a broader 
perspective, a leit-motif for ordinal analysis could have been Kreisel's ques- 
tion: 

What more than its truth have we recognized, when we have es- 
tablished a theorem in a formal theory? 

The article is divided into four parts. In Section 2 I roughly describe the 
role of ordinals and ordinal analysis in proof theory. 

Section 3 will be concerned with the program of admissible proof theory as 
well as its achievements. Also, in a nutshell, the cut-elimination procedure 
for Kripke-Platek set theory is given. 

After having witnessed a real ordinal analysis, the reader will be more 
prepared for a discussion of the many facets of ordinal analysis which will 
be the purpose of Section 4. 

The final Section 5 deals with new cut-elimination procedures for reflec- 
tions higher than H2. Cut-elimination for IIn-reflection entails a proof- 
theoretic treatment of theories of nonmonotone inductive definitions. It is 
also touched upon the question of how far afield all this is from H~ compre- 
hension. 

2. Ord ina l  analysis  

Let T be a theory the language of which is rich enough to contain for- 
mulas expressing well-foundedness properties. In addition, assume that T 
comprises primitive recursive arithmetic P R A  and that T is faithful, i.e. 
whenever T F- A, then A is true. Under these conditions the proof-theoretic 
ordinal iT I of T is often defined as follows: 

IT I= sup {c~ : c~ provably recursive in T}, 

where a is said to be provably recursive in T if there is a recursive well- 
ordering -< with order-type c~ such that 

T F- WO(-~) 

with WO(-<) expressing in the language of T that -< is a well-ordering. 
The determination of iT] is then called ordinal analysis of T. 

The above definition of ] T t  has the advantage of being mathematically 
precise, but as to the activity named 'ordinal analysis' it is left completely 
open what constitutes such an analysis and in what terms IT i is to be given. 
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A nude set-theoretical ordinal is hardly ever of interest from the viewpoint 
of foundation. In proof theory attention focusses on structured ordinals 
which can be dealt with in a finitary manner. The paradigm is Gentzen's 
use of Cantor's representation of ordinals < So. Every ordinal 0 < c~ < So 
has a unique representation of the form 

OL - -  W Or1 "Dr- " ' "  -'{- W Oz n 

with an <_"" <_ OL1 < OZ. 
Therefore the ordinals < So can be represented by terms built up from 

a symbol for 0 and symbols for the function + and A~.wr We also gain 
finitary control on such (infinite) ordinals because of the following facts: 

�9 For every expression E composed of the symbols 0, + ,w it can be 
decided whether E represents an ordinal. 

�9 Given two representations Eo, E1 of ordinals oL0, o~ 1 respectively, we 
know how to compare a0 and OL 1 solely by means of the build-up of 
E0 and El. 

It is by now clear that I TI is to be given in terms of a system of ordinal 
representation usually called ordinal notation system. Significant features 
that ordinal notation systems should have will be adressed in Section 4. 

I have always found the description of ordinal analysis as a quest for 
proof-theoretic ordinals to be bad propaganda, above all, since it remains 
silent about the most interesting aspects of ordinal analysis and prejudices 
people against this enterprise. If experience has shown that the ordinal I TI 
is intrinsically related to the proof power of T, it is rarely the sheer knowing 
of IT I that lends itself to important information about T. 3 Most of the vital 
information springs from the proof itself. Turning attention to practice, an 
ordinal analysis of T provides, among others, the following results: 

�9 A reduction of T to Heyting's Arithmetic, HA, plus a scheme of trans- 
finite induction. 

�9 A consistency proof of T. 

�9 A classification of the provably recursive functions (on N) of T. 

�9 A classification of the provably hyperarithmetical functions of T. 

�9 A classification of the provably A~ functions of T. 

3Actually, it has to be reckoned with theories where the proof-theoretic ordinal in the 
above sense doesn't reflect the proof-theoretic strength of the theory. 
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�9 A description of partial models of T, for instance models of all II~ or 
1131 theorems of T. 

A discussion of these points will be more fruitful and lively after the reader 
has gained some experience with ordinal analysis, so we defer it to the next 
but one Section. 

3. A d m i s s i b l e  p r o o f  t h e o r y  

Admissible proof theory arose out of the work of Js und Pohlers (cf. 
Pohlers [1982], Pohlers [1987]) who from a proof-theoretic stance started to 
investigate weak set theories featuring admissible sets. The direct proof- 
theoretical treatment of set theories is rather recent. Historically, the pri- 
mary concern has been on subsystems of second order arithmetic and theories 
of iterated inductive definitions (cf. Buchholz et al. [1981]). 

Admissible sets are the transitive models of a remarkable subsystem of Z F ,  
known as Kripke-Platek set theory (hereinafter called K P ) .  Admissible sets 
were a major source of interaction between model theory, recursion theory 
and set theory (el. Barwise [1975]). 

In this section I am going to sketch an ordinal analysis for K P .  The 
motivation behind this is twofold. On the one hand, I would like to give 
some insight into admissible proof theory by presenting the basic ideas that  
underly its cut-elimination procedures. On the other hand, this will serve 
as a foil for a comparison with new cut-elimination procedures in Section 5 
and also for the discussion in Section 4. 

3.1. T h e  s y s t e m  K P  

Though considerably weaker than Z F ,  a great deal of set theory requires 
only the axioms of K P .  The axioms of K P  are: 4 

Extensionality: a = b ~ IF(a) ~ F(b)] for all formulas F.  

Foundation: 3zG(x) 3ziG(z) A (Vy e 

Pair: 3x (x = (a, b}). 

Union: 3x (x = U a). 

4For technical convenience, E will be taken to be the only predicate symbol of 
the language of set theory. This does no harm, since equality can be defined by 
a - b :r (Vx E a)(x E b) A (Vx E b)(x E a), provided that we state extensionality in a 
slightly different form than usually. 
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Infinity: 

A0 Separation: 

A0 Collection: 

# 0 A (vy e  )(3z e e 

3x (x = { y e a :  F(y)}) 6 for all A0-formulas F 
in which x does not occur free. 

(Vx C a)3yG(x,  y) ~ 3z(Vx e a)(3y C z)G(x,  y) 
for all Ao-formulas G. 

By a Ao formula we mean a formula of set theory in which all the quantifiers 
appear restricted, that is have one of the forms (Vx E b) or (3x C b). 

K P  arises from Z F  by completely omitting the power set axiom and 
restricting separation and collection to absolute predicates (cf. Barwise 
[1975]), i.e. A0 formulas. These alterations are suggested by the informal 
notion of 'predicative'. K P  is an impredicative theory, notwithstanding. It 
is known from Howard [1968],[1981] and Js [1982] that K P  proves the 
same arithmetic sentences as Feferman's system ID1 of positive inductive 
definitions (cf. Feferman [1970]). Its proof-theoretic ordinal is the Howard- 
Bachmann ordinal 0ca+10. 

3.2. In f in i t a ry  calculi 

Peano Arithmetic, PA,  does not admit cut-elimination. However, it is well 
known that the infinitary calculus PAw which results from P A  by replacing 
the induction scheme by the so-called w-rule 

F, A(fi) for all n 

r, VzA(x) 

does admit cut-elimination. 7 An ordinal analysis for P A  is then attained as 
follows: 

�9 Each PA-proof  can be unfolded into a PAw-proof of the same sequent. 

�9 Each such PAw-proof can be transformed into a cut-free PAw-proof 
of the same sequent of length < Co. 

In order to get a similar result for K P ,  we have to work a bit harder. 

Experience has shown that the main obstacle for understanding ordinal 
analysis of impredicative theories is raised by its being intimately linked 

5x = {y e a : F(y)} stands for the A0-formula (Vy e x)[y e a A F(y)] A 
(Vy �9 a)[F(y) --, y �9 x]. 
6This contrasts with Barwise [1975] where Infinity is not included in KP. 
7~ stands for the n th  numeral. 
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to specific systems of ordinal notations, even worse, to auxiliary deduction 
functions or relations needed in order for this method to work (cf. Pohlers 
[1981]). s Fortunately, Buchholz [1991] has presented a new approach which 
is distinguished by conceptual clarity and flexibility, and in particular by the 
fact that  its basic concepts are in no way related to any system of ordinal 
notations. We are going to take up Buchholz's approach but in an even 
more relaxed atmosphere, thereby refraining from technical details as far 
as possible. Especially, we shall put forward that  the collapsing of proof 
trees which is paramount in impredicative proof theory can be understood 
in terms of the usual Mostowski collapse familiar from set theory. 

At the outset, we set up an infinitary calculus of ramified set theory which 
is modelled upon the constructible hierarchy. 

For a an ordinal, L~ is the a th level of G6del's constructible hierarchy, i.e. 

Lo - 0 

L ~ -  U L~ if a is a limit ordinal 
fl<a 

L~ - { X - X  c_ L~ and X is definable over (L~, E)} if a - / 3  + 1. 

Guided by the analogy with PAw, we would like to invent an infinitary rule 
which when added to K P  enables us to eliminate cuts. However, as opposed 
to the natural numbers, it is not very clear how to bestow upon each element 
of the set-theoretic universe a name that  reflects its generation; but within 
the confines of the constructible universe which is made from the ordinals it 
is pretty obvious how to name sets once we have given names to ordinals. 
Thus we are naturally led to the calculus R S  we are going to introduce next. 

3.2.1. Infinitary syntax 

RS- t e rms  and their levels are inductively defined as follows. 

1. For every ordinal a, L,~ is an R S - t e r m  of level a. 

2. If F(x ,  yl,"" ", y~) is a formula of set theory with no free variables other 
than shown, and s 1, . . -  sn are RS- te rms  of levels < a, then the formal 
expression 

[x e [.,,~ " F(z ,  81,''" 8n) L~ 

is an R S - t e r m  of level a. 

SFor instance, several years ago in a seminar at Miinster devoted to the ordinal analysis of 
u-fold iterated inductive definitions, more than half of the time was spent on developing 
collapsing functions with peculiar features, and those collapsing functions were not the 
ones that surfaced in the corresponding notation system. 
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We denote the level of an RS-term t by It I. For a formula F, we denote 
by F ~ the formula that is obtained by restricting any unbounded quantifier 
in F by a. 

The interpretation i of an RS-term in L is, as was to expected, 

�9 i (L~)-  L~ 

�9 i ( [ x e L a  " f ( z ,  81, - - . sn )L" ] ) -  {xc=L, " L~ ~ F(x,i(Sl),...,i(sn))} 

= {zeL~" L ~ F(x,i(sl),...,i(Sn))L"}. 

An RS-formula is one that arises from a A0 formula of set theory by replac- 
ing all its free variables with RS-terms. Let G be an RS-formula. By way 
of the interpretation i, validity of G in L, L ~ G, is understood. 

Abbreviations. 

k ( G ) -  {a" ~,~ occurs in G} (subterms included). 

l a I- k(a)  
For RS-terms a, b with l a t<lb P, o a propositional junctor, and A an arbi- 
trary RS-formula, we set 

(a~=b) o A - { B(a) o A if b - [ x e L ~ ' B ( x ) ]  
A if b - L  z. 

Obviously (a e b) <> A and (a~:b)<> A have the same truth-value. 

3.2.2. Infinitary rules 

Next we introduce an infinitary sequent calculus, RS, that admits cut elim- 
ination. 

A,B, C,. . . ,F(t) ,  G(t ) , . . .  range over RS-formulas. We denote by up- 
per case Greek letters F, A, A, . . .  finite sets of RS-formulas. The intended 
meaning of F = {A1,. .- ,  An} is the disjunction A1 V - . - V  An. F,A stands 
for r u  {A}. 

The rules of RS are: 

(A) F, A F~ A' 
F, A A A '  
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(v) F~ Ai 
F, Ao V A1 if iE{0, 1} 

(v) r, s~t --, F(~) for all s such that I~ I<ltl 
F, (Vx E t)F(x) 

(3) F,s~tAF(s) 
r, (3~ e t)r(z) if Isl<lt l  

(r F, s~t ~ r r s for all s such that I~ I<ltl 
F, rC_t 

(where r ~ s : -  -1 ( r -  s) and r ~ t : -  -~ (r E t)) 

r , s ~ t  A r - s  if I~l<ltl (E) F, r E t 

(Cut) F, A F, ~ A 
F 

As in Schwichtenberg [1977] we shall regard -~ in front of a non-atomic 
formula as a defined operation: 
-1 A is defined to be the formula obtained from A by (i) putting a ~ in 
front of any atomic formula, (ii) replacing A, V, (Vx E a), (3x E a) by V, A, 
(3x E a), (Vx E a), respectively, and (iii) dropping double negations. 

Owing to the symmetry of the pairs of rules 

(A), (v) 

(v), (3) 
(r (e), 

the usual cut-elimination procedure (cf. Schwichtenberg [1977]) applies to 
RS. But unequal to the situation for PA and PAw, RS does not allow of 
any nontrivial embedding of KP; the trivial one being provided by the fact 
that for any admissible ordinal ~, L~ is a model of K P  and the following 
completeness property of RS: 

Theorem.  (cf. Pohlers [1991], Theorem 3.2.6) For each RS-formula G, if 
L ~ G, then there is an RS proof of G. 

The only axioms of K P  that shatter hopes of obtaining an informative 
embedding into RS are instances of A0 collection. To remedy this, we simply 
add a new rule to RS which plainly entails A0 collection. The reverse of 
the medal is that we need to be particular about permitting derivations in 
order to restore (partial) cut-elimination. 
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In the sequel, we fix an admissible ordinal ft. Henceforth we will only be 
v 

concerned with RSn-formulas, i.e. RS-formulas of the form F ( s l , . . . ,  Sn) Ln, 
where S l , . . . ,  sn are RS-terms of levels < ~ and F ( x l , . . . ,  Xn) is a formula 
of set theory. In case that F ( X l , . . - , x n )  contains no unbounded universal 

quantifiers, F ( X l , . . . ,  Xn) is said to be a E formula, and F ( S l , . . - ,  sn) L" will 

be called E(~) formula. Frequently we write A" instead of A G.  Occasion- 
ally, (3x ") will be a shorthand for ( 3 x e / , , ) .  

The already announced rule is 

F,A a 
( r - R e f n )  F, (3z E Ln)A z if A n is E(~). 

The motivation behind this rule is that on the basis of the other axioms of 
K P ,  A0 collection is equivalent to the scheme of E reflection, i.e. 

B ~ 3zB  z 

for every E formula B (cf. Barwise [1975]). 

3.2.3. /-/-controlled derivations 

The concept of/-/-controlled derivations stems from Buchholz [1991]. 

Let P ( O N )  - { X "  X is a set of ordinals}. 
A class function 

7-I" P ( O N )  ~ P ( O N )  

will be called operator if the following conditions are satisfied for X, X ~ C 
P ( O N )  " 

(H1) 0 r 7-/(X). For a - w "x + - . .  + w ~ with 0/1 __~ " ' "  _~ a n ,  it 
holds a c U ( X )  if and only if al ,  ..., an E T/(X). (Especially, 7-/(X) 
is closed with respect to + and A~.w r i.e., if a, fl C 7-/(X), then 

+ ~, ~" e n ( x ) . )  

(H2) X C_ ~ ( X )  

(H3) x ' c  n ( x ) ~  u(x ' )  c u(x).  

Abbreviations. a r ~ "-  a C Tl(O) 

x c_ ~ . - x  c_ ~(0) 
For ~,  n&-t~rm ~, U[s] denote~ the operator (X ~ U(k(~)U X))~p(o~) .  
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Let ~ E 7-I and F be a finite set of RSn-formulas. The relation 7-I ~-F 
(7-i-controlled derivability) is defined inductively by 

{~} u k(r) c 

and the following rules 

(A) 7-/ ~ A, Ao n ~ A A1 
Ol0: O~ 1 < OL 

?-l ~-A, A o A A ,  

7-/~-~ A, C 
(V) 7-t[2A, A V B  i f C E { A , B }  a o < a  

(V) . . .  7-/[s] ~z_ A, s~t --, F ( s ) . . .  (I s I<l t l )  C~s < c~ 

7-/~ A, (Vx c t)F(x) 

(3) 7-l ~2_ A, s~t A F(s) if Is I<ltl  
7-I ~- A, (3x e t)F(x) 

~o, Is I< ~, k ( ~ ) c  n 

(r �9 �9 .7-/Is] ~Z-A,s~t --. r # s . . . ( I s l<[ t] )  

7-l ~-A, rqf t 
O~s < @ 

(e) 7~ ~2-A'sC:t A r -- s if I s l< l t l  
7-I ~-A, rE t  

~o, Is I< ~, k(s)  c n 

(E-Re fn) 7-l ~ A A n ' if A n e E(f~), 
7-I ~- A, (3z E Ln)A z 

Ozo < oz 

7-/~a--9- A, B 7-/~?2 A, --,B 
(Cut) ~o < ~. 

n p - A  

Since we also want to keep control of the cuts of 7-/-controlled derivations, 
we assign a rank, rk(A), to RSn-formulas A. All we need to know is 
that ~k(A) - ~ �9 I A I  + ~ for som~ n < ~,  ~k(A) - ~k(-~A), ~nd 
rk((3z e Ln)A ~) - s if A e E(gt). 

�9 O~ 

We write 7-I ~ F to express that there is an 7-/-controlled derivation of F 
such that rk(B)  < p holds for all cut formulas B in this derivation. 

Having defined 7/-controlled derivability, the notion of an 7-/-controlled 
derivation (or proof) is understood. To be more precise, an Tl-controlled 
derivation is a well-founded tree the nodes of which are pairs (a, F) resulting 
from its immediate successor nodes by one of the above rules. 
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We will use the notation I l n ~  F to indicate that 1-Ix is an 7-/-controlled 

derivation witnessing 7-/~ F. 

3.3. E m b e d d i n g  KP 

Let d be a KP-p roof  of a sentence F. Then there exists an integer n such 
that for every operator 7-/with f~ C 7-/we have an 7-/-controlled derivation 

['-~" n 
IIn,a ~ F a 

(cf. Buchholz [1991]). Furthermore, it is to be noted that the construction 
of the 7-/-proof IlT~,a of F a is uniform in 7-/ and ft. This is reflected by 
the following facts: If 7-/' majorizes 7-/, i.e. VX(7-/(X) C_ 7-/'(X)), then 
IIT~,a - IIn,,a. If f~ < ~ c ~ ,  then IIn,a and IIn, fi are closely related to 
each other. 1]n,a can be obtained from Iln, fi by the following pruning and 
substitution processes: 

�9 Omit from each instance of a rule 

�9 . .A ,H( t ) . . . ( I t l<  (~) 
ZX, H(x) 

in I-In, fi all premisses A, H(t) with h ___ltl as well as the subproofs of 
these premisses. 

�9 Within the mutilated proof, each ordinal c~ > 0 has Cantor normal 
form c~ - ~'e~ kl/~l -~-"""-+- ~-~krgr where kl > . . .  > kr and/~1,""" ,/~r < ['~- 
Now replace c~ by f~kl/~l + " "  + f~kr/?r. 

The use of a whole family of proofs is reminiscent of Girard's notion of 
/3-proof (cf. Girard [1985]). 

Indeed, there are more points of contact. Usually for a single 7-/, it will not 
be possible to transform an 7-t-proof into a cut-free 7-/-proof. To overcome 
this difficulty, we pass over to stronger and yet stronger operators during 
the cut-elimination procedure, but in a controlled manner, thereby working 
simultaneously on a whole family of proofs indexed by operators. 

3.4. C u t - e l i m i n a t i o n  

As already mentioned, (E-Refa) is the only rule that spoils cut-elimination. 
Since an instance of (E-Refa) always introduces a formula of rank ft, we 
can at least remove all cuts of rank > ft. So we get 
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C u t - e l i m i n a t i o n  I. Let n > O. Then: 

fl .n 

'f~+l 

where f2(1):= a and t2(k + 1 ) : =  f2a(k). 9 

A first step towards elimination of (E-Refa)  is provided by the following 

B o u n d i n g  T h e o r e m .  Let B ~ be a E(f2) formula. If ce < f2 and Ill ~ F, B a , 

then TI ~ F, B ~ . 

This result is easily proved by induction on a. First let us focus on the case 
when the last inference is (E-Refa)  with principal formula B a. Then B ~ 
is of the form (3z E La)A ~, and we have 7-I ~ F ,A a for some a0 < a. By 
induction hypothesis we get 

7-I ~ F, A ~~ , 

which is the same as 7-I ~2_ F ,L~oELa A At"o, thus 7-I ~ F,  (3z E La)A z 
follows by an inference (3). 

The key to an understanding of the Boundedness Theorem is provided by 
the case when the last inference is of the form 

7-I ~- F, F(s)  a, A 

7- /~  F, (3x E La)F(s )  a 
(3) 

with A - (3x E L~)F(x).  Using the induction hypothesis we then get 

7-t r , F ( s )L" ,  A 

The conditions imposed by (q) ensure that  [s [< a, thus 7-I ~2_ F, A s via an 
inference (3). 

The Boundedness Theorem also traces out the way for an elimination of 

(E-Reff~) in the more general situation when 7-I ~, F with fl > f~. 
i - i  

However, 
we can no longer deal with arbitrary operators. In the sequel we shall restrict 
ourselves to operators 7-I such that  for each ?/-controlled derivation II~ 
without f~-branchings the following "collapsing" properties are satisfied: 

(C1) The set { Is I< t 2 : s  occurs in Iln} is bounded below t2 

9This is the right place to explain why we demanded 7-/(X) to be closed under + and 
a ~ w~: simply because these closure properties are needed for the above cut-elimination 
method. 
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(C2) The Mostowski collapse of the set {c~ " a occurs in 1-In} is less than f~. 

Of course, requiring that 1-In has no ft-branchings is a necessary condition 
for (C1) and (C2) to hold. But the reader might have a suspicion that the 
restrictions imposed by (C1) and (C2) give a too narrow class of operators 
in order for the cut-elimination to work. At the end of this Section we 
shall deliver a class of operators that fulfills (C1), (C2) and, in addition, is 
sufficiently rich for the purpose of cut-elimination. 

Now let us fix an ?-/-controlled derivation 1-In ~ F without ft-branchings. 
This is for instance guaranteed if F is a set of E(ft) formulas. On the other 
hand, if F entails a formula D which contains a quantifier (Yx 6 La), then it 
can be shown that ?-/~ F \ {D},  i.e. D can be dropped from the derivation. 
Thus the exclusion of f~-branchings is almost equivalent to F being a set of 
E(f~) formulas. 

Henceforth we assume that F is a set of E(f~) formulas. 
We are going to transform 1-In into a proof-tree without instances of 

(E-Refa).  To this end, using (C1), pick ~ < ft such that 

{ I s  I< f~ " s occurs in 1-In} C_ ~. 

By (C2), we then find an order preserving function 

f ' / 3  U {c~ 'a  occurs in Fin} ~ 7 

onto some 7 < f~. 
Next let II~ denote the tree that results from IIn by replacing every node 

(f, F / in I-In by (f(f) ,  F>. If we now define 7-18 via the equation 

?-/~(X) -- T/(X U (fl + 1)), 

we may expect that II~ ~ F is an ?-/z-controlled derivation. Indeed, 
'gt 

this is readily verified. Since f(c~) < f~, we can employ the technique of 
the Bounding Theorem to get rid of all instances of (E-Refn) in 1-Ifn. We 
just have to replace the transitions in 1-I~ that are under the command of 
(E-Refa) by suitable instances of (3). So we come up with a derivation 

IIn[~] ~ ,~  F that no longer contains (E-Refn) 

After having devised ways and means to remove (E-Refn) from derivations 

with F C_ E(ft), we may now attack the problem of removing cuts of rank ft 
from derivations 1-In ~+1 F. 
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The reason why the usual cut-elimination method fails for cuts with rank 
f~ is that  it is too limited to treat a cut in the following context: 

n~ ' (E-Refn) �9 �9 �9 I In[s] ~ r ,  ~m s . . .  ([ s l< ~) (V) 

n~ ~ F, (3z E [_,n)A z II~ ~ F, (Vz C/,n)-~A z 
(c t) 

In this situation we are apt to apply the above introduced collapsing tech- 
nique to rI~. Thus from YI~ we can extract a/3 < f~ and a function f such 

that  t /8 f ~  F A f(~~ Next we single out the f(~o) th premiss of the last 

inference of II~, that is 

[~I(r F, ~A f(~~ 1-I7-t[f(~o)] ,f~ 

and, as rk(A f(~~ < f~, a cut yields 

for some 5. 
In order to get rid of all cuts of rank ~t in an arbitrary derivation l:In ~+1 F 

one has to repeat the foregoing process at worst a many times. 

3.5. T h e  func t ions  O~ 

Yet another point is that  we want to extract bounds from proofs of E for- 
mulas in KP. Therefore we have to take account of the quantitative aspects 
of "collapsing". Specifically, the "seize" of the operator after reducing the 
cut-rank from f~ + 1 to gt has to be related (via a functional dependence) 
to the "seize" of the input operator. 

Through the above construction of/-/B from 7-/, one is quite naturally led 
to processes lying behind the construction of the Feferman-Aczel functions 
t)~ (cf. Schiitte [1977]). 

The functions 0~ :f~ ~ ~ are inductively generated as follows: 1~ 

Let 

C(o,, 9) - { closure of {0, ~} o 3 
+. 

~~ the basis of the assumption f~ = ~1 (cf. Schiitte [1977]) it is easily verified that 
0a(~) < f~ holds for ~ < f~ because of the countability of the set C(a,~). If, instead, 
f~ is merely supposed to be an admissible > w, it is by no means trivial to show that 
0~(~) < f~ (cf. Rathjen [1991b],[1991c]). 
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and 
0~(~7) = ~7 th ordinal 5 such that 5 ~_ C((~, 5). 

So this is a recursion with regard to c~. If we now define operators 7-/a by 

n (x) - [-'1 Z ) x  c Z) A < 

then the family of operators 

where cfl+ 1 - - - -  sup~(n),  is sufficient for all our purposes. However, it takes 
n < w  

some efforts to show that the operators ~ (a < ca+l) meet the require- 
ments (C1) and (C2). Moreover, the technical details of the cut-elimination 
procedure via the familiy (~)~<~n+l are very delicate and fiddly; but we 
shall be satisfied by having pointed out the key ideas. 

3.6. II2-reflection 

As yet we have been dealing merely with E-reflection. One could argue that 
by doing so we covered II2-reflection as well since II2-reflection is a conse- 
quence of E-reflection, at least for structures of the form L~ (cf. Barwise 
[1975]). On the other hand if instead of (E-Refa) we incorporated the rule 
(II2-Ref~) in the infinitary calculus, cut-elimination could be handled in 
almost the same spirit. By (II2-Ref~) is meant the rule 

F, Vx~3y~F(x,y) 
F, 3z [Tran(z) A z ~ 0 A (Vx e z)(3y e z)F(x, y)] 

where Tran(z) says that z is transitive and F ranges over the A0(~)-  
formulas. 

At first glance it might be surprising that the collapsing technique of 3.4 
also renders (II2-Refn) accessible since, as a rule, a derivation with instances 
of (1-I2-Ref~) will have ~t-branchings whilst the collapsing technique is evi- 
dently constrained to derivation without such branchings. To overcome this 
difficulty, one employs an asymmetrical interpretation of the quantifiers. To 
explain this, let II~ ~ A be a derivation, possibly containing instances of 
(II2-Refa), and suppose that A is a set of RSa-formulas of utmost com- 
plexity II2(~). Now proceed as follows: 

�9 Pick 7 < ~, and remove from each rule 

" " A ' H ( t ) ' " ( I t l <  ~) (V) 
A, Vx~H(x) 



138 

in 1-In all the premisses A,H( t )  with 7 -<1 t l as well as their sub- 
proofs. In the remaining tree replace every quantifier Vx a by Vx ~. 
For a suitably chosen operator (uniformly in 7) this will give a new 
proof without ~-branchings to which the collapsing technique of 3.4 
can thus be applied. After collapsing employ the Bounding Theorem 
to the collapsed derivation in order to extract a bound g(7) < ~ for 
the existential quantifiers (3xa). 

�9 Compute the function g~ which enumerates the fixed points of g. 

�9 Construct a new operator 7-/~ from 7-I which is closed under g~, i.e. 
~ E ~ ' ( X )  entails g'(~) ET-/'(X). 

�9 By combining all the previous steps one receives an ?-/~-controlled 
derivation IIn, ~ A without any instances of (II2-Refa). 

The final result reads as follows: 

T h e o r e m .  If  K P  F Vx3yF(x, y) with F a E formula, then there exists an 
n such that for all ~ < ~, 

(Vx E L~)(3y E Le,(,o(~+l))F(x, y). 

3.7. M o r e  admiss ib les  

The cut-elimination procedure we have seen operating so well on K P  can 
be adapted to extensions of the form 

K P  + 'there are many admissibles'. 

A prominent example for such a theory is Jgger's system K P i  which, in 
addition to KP,  has an inaccessibility axiom saying that for every set x 
there is an admissible set y containing it, i.e. x E y. 

It turned out that K P i  is of the same proof-theoretic strength as the 
subsystem of second order arithmetic, (A 1 - CA) + BI.  The latter system 
consists of arithmetic plus 

-CA). Vn[F(n) ~ G(n)] ~ 3XVn[n E X ~ F(n)] 

B I :  

for all FEII~, GE2~,  

W O ( < x )  h Vn[Vm <z n H(m) ~ H(n)] ~ VnH(n), 
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where m < x  n := 3 m �9 5 n C X. 

However, adjusting the methods which have been fruitfully employed to 
KP to KPi, is easier said than done. When ascending from KP to KPi, 
the ordinal notation systems as well as the cut-elimination procedures get 
more and more complicated. Notwithstanding that,  the key idea pervades. 

Finally, I shall briefly report on the theory K P M  which is somewhat on the 
verge of admissible proof theory. K P M  is designed to axiomatize essential 
features of a recursively Mahlo universe of sets, i.e. a universe that  is a 
model of KPi and the scheme 

(M) Vx3yH(x, y) ~ 3z[Ad(z) A (Vx E z)(3y e z)H(x, y)] 

for all A0-formulas H(a, b), where Ad(z) signifies that  z is an admissible set. 
It is easily verified that  L~ is a model of K P M  if and only if a is a 

recursively Mahlo ordinal (el. Hinman [1978]). 11 

An ordinal analysis for K P M  was published in Rathjen [1991] and has 
also been obtained independently by Arai [1989]. 

Roughly speaking, the central scheme of K P M  falls under the heading 
"II2-reflection with constraints". The main stumbling block for an analysis 
of K P M  was the invention of a suitable ordinal notation system. Till that  
time the recipes for creating ordinal notation systems had been based on 
ideas of Veblen and Bachmann. But these ideas only enabled one to engender 
collapsing functions which take as their values ordinals that,  even when 
looked at from within the notation system, have cofinality w, thus are highly 
singular ordinals. To be more precise, from the viewpoint of a notation 
system N the regularity of an ordinal n C N is manifested by its being 
equipped with a collapsing function r : N ~ N N n. Yet, in the approaches 
we have been just alluding to, the image of ~ would never contain an ordinal 

that  is anew equipped with a collapsing function r whereas the ordinal 
analysis of K P M  requires a collapsing function always having this property. 
Eventually, such collapsing were developed in Rathjen [1990]. 

Not to leave any stone unturned, a characterization of K P M  in terms of 
subsystems of second order arithmetic may be found in Rathjen [1991d]. It 
turns out that  K P M  proves the same sentences of second order arithmetic 
as (A~ - CA) + BI  augmented by an axiom schema expressing that  every 
true H i sentence (possibly including parameters) is already satisfied in a 
Z-model of ( A ~ -  CA). 

11An admissible ordinal a is said to be recursively Mahlo if for every total function 
f : a ~ a that is E-definable in L~ there exists some 0 < ~ < a such that 
(V( < ~)(f(~) < fl). 
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4. Aspec t s  of ord ina l  analysis  

This Section is reserved to the discussion of consequences of ordinal analysis 
which were exhibited at the end of Section 2. 

To explain these points, let (D, -~,.. .) be an ordinal notation system where 
D stands for a set of terms and -~ denotes their ordering relation. 12 More- 
over, let T be a theory which has been analyzed by way of (D,-~,- . . ) ,  
resulting in ] T I=]-~[. 

4.1. Cons i s t ency  

By PRWO(-~) we mean the H~ of arithmetic expressing that -~ is 
primitive recursively well-ordered, i.e. for every primitive recursive function 
p a strictly -<-descending chain p(0) -~ p(1) -~ . . .  must terminate after 
finitely many steps. 

Then a consistency proof of T can be carried out in PRA extended by 
PRWO(-<). 

PRA is distinguished here since it is widely agreed that this system does 
not go beyond finitary reasoning in Hilbert's sense. 

However, PRA + PRWO(-<) proves a much stronger consistency property, 
namely the 1-consistency of T, signifying that any E0 sentence which is 
provable in T is also true. 

As to PA, the result PRA + PRWO(co) F- Con(PA) can be easily drawn 
from Gentzen's 1938 paper. There he assigned ordinal notations ord(d) < So 
to PA-derivations d and gave a primitive recursive reduction procedure R 
such that, for any derivation d of an inconsistency, R(d) is also a derivation 
of an inconsistency and, in addition, ord(R(d)) < ord(d). 

Later on, the ordinal So was reobtained as the ordinal of PA by use of 
derivations in infinitary logic with w-rule, especially through Schiitte's work. 
In the infinitary setting ordinals make a canonical appearance as a measure 
of the lengths of proof trees as well as of their cut-ranks. One is naturally 
led to ask whether Gentzen's result can also be achieved by employing cut-  
elimination for infinitary logic. This can be answered in the affirmative. It 
has turned out that primitive recursive proof-trees suffice and that the syn- 
tactical transformations employed in the course of cut-elimination can be 
represented by primitive recursive functions on the codes (cf. Schwichten- 
berg [1977]). Thus the use of infinitary derivations in metamathematics is 
much in keeping with Gentzen's extension of the finite standpoint since the 
only principle for dealing with them that transcends finitistic means is a de- 

12,,...,, is supposed to indicate that such a notation system usually conveys a much richer 
structure. 
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scending chain principle to show that certain 'concrete' (primitive recursive) 
processes terminate. 

4.2. R e d u c t i o n  

-~ will arise as the union of initial segments -~n (n C ]N) such that, for any 
n C IN, T proves -~  being well-ordered. 

Let PA<IT I stand for Peano Arithmetic endowed with the scheme of trans- 
finite induction for all the orderings -~n. Then T is conservative over PA<IT I 
with respect to all arithmetic sentences or, equivalently, T is conservative 
over the intuitionistic system HA<IT I with respect to all arithmetic sentences 
modulo --7--1 translations. 

Just to mention two applications of such reductions: 
By an ordinal analysis of the theories ID, formalizing y-fold iterated 

inductive definitions, Pohlers and Buchholz (cf. Pohlers [1981])showed that 
these theories were reducible to their intuitionistic counterparts IDa. 

Another famous example is provided by the reduction of A 1 comprehen- 
sion plus bar induction to Feferman's constructive theory To of functions 
and classes. To is based on intuitionistic logic and is a suitable framework 
for Bishop style constructive mathematics. In 1977, Feferman (cf. Feferman 
and Sieg [1981]) had shown that To is interpretable in (A 1 - C A ) +  BI. 
The ordinal analysis of the latter system is due to joint work of J/iger and 
Pohlers [1982]. J/iger [1983] then showed that the well-ordering proof for 
any ordinal <l ( A ~ - C A ) + B I I  can be carried out in To; thereby completing 
the reduction. 

4.3. A classification of the  provably  recursive funct ions 

The --<-descent recursiye functions, DCR(-z,), constitute the smallest class 
of recursive functions that has all the closure properties of the primitive 
recursive functions and, in addition, is closed with respect to the scheme: 

If g and h are in the class, and there is some natural number k such 
that h(x, y) -~ k holds for all x, y E IN, then so is 

f (m) = g(#n.fh(n, m) ~_ h(n + 1, m)], m), 

where #n indicates the least n in the ordering of the integers. 

The reason for introducing the class DCR(~) is (as was to be expected) 
that this class coincides with the provably recursive functions of T. 

The concept of descent recursive function is for instance discussed in Smith 
[1985]. 
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5. Beyond  admissible  p roof  t heo ry  

The strength of II~ comprehension is greatly bigger than that of A~ com- 
prehension. In particular, there is no way to describe this comprehension in 
terms of admissibility. 

As to the set-theoretic side, II~ comprehension corresponds to E separa- 
tion, i.e. the set of axioms 

3z(z = { x E a :  F(x)}) 

for all E formulas F in which z does not occur free. 
The precise relationship reads as follows: 

5.1 Theo rem.  K P  + E separation and (II~ - CA) + B I  prove the same 
sentences of second order arithmetic. 13 

The ordinals n such that L~ ~ K P  + E separation are familiar from ordinal 
recursion theory. 

5.2 Definit ion.  An admissible ordinal ~ is said to be nonprojectible if there 
is no total ~-recursive function mapping ~ one-one into some fl < ~, where 
a function F : L~ --, L~ is called ~-recursive if it is E definable in L~. 

The key to the 'largeness' properties of nonprojectible ordinals is: 

5.3 Theo rem.  For any nonprojectible ordinal ~, L~ is a limit of E l -  
elementary substructures 14, i.e. for every fl < ~ there exists a fl < p < 
such that Lp is a El-elementary substructure of L~, written Lp -~ L~. 

Such ordinals satisfying Lp "<1 L~ have strong reflecting properties. For 
instance, if Lp ~ F for some set-theoretic sentence F (possibly containing 
parameters from Lp), then there exists a 3' < P such that L~ ~ F. This is 
because Lp ~ F implies L~ ~ 37F L~, hence Lp ~ 37F L~ using Lp -<1 L~. 

The last result makes it clear that an ordinal analysis of II~ comprehension 
would necessarily involve a proof-theoretic treatment of reflections beyond 
those surfacing in admissible proof theory. Here one encounters two difficul- 
ties. 

1. Significantly stronger notation systems are required. The problem is (as 
always in this area) to develop a constructive object, i.e. a notation system, 
that shares "enough" properties with a (recursively) large ordinal. So far 

13Warning: It is crucial to this result that Infinity is among the axioms of KP. 
14Lp is said to be a El-elementary substructure of L~ if every El-sentence with param- 
eters from Lp that holds in L~ also holds in Lp. 
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definition procedures based on ideas of Veblen and Bachmann have been 
paramount,  but it seems that  this approach is constrained to admissible 
proof theory. So some new ideas will be needed. 

2. New cut-elimination procedures have to be invented. Of course, this 
task cannot be completely separated from the previous one since the ideas 
giving rise to a notation system should lend themselves to a cut-elimination 
procedure. 

Recently we have been able to get hold on 1-In-reflection for arbitrary n. 

5.4 Def in i t ion .  A set-theoretic formula is said to be IIn (respectively 
En) if it consists of a string of n alternating quantifiers beginning with an 
universal one (respectively existential one), followed by a Ao formula. By 
tin-reflection we mean the scheme 

F ---, 3z[Tran(z) A z :/: 0 A F z] 

where F is rIn, and Tran(z)  expresses that z is a transitive set. 
a > 0 is said to be IIn-reflecting if L~ ~ IIn-reflection. 

En-reflection and En-reflecting ordinals are defined analogously. 

Kin-reflecting ordinals have interesting points of contact with non-monotone 
inductive definitions. 

5.5 Def in i t ion .  A function F from the power set of Fq into itself is called an 
operator on IN. F determines a transfinite sequence (F ~ �9 ~ E ON) of subsets 
of ~ defined by 

F ~ - E <~ U F ( F < ~ ) ,  

whereF < ~ -  U F ~. 

The closure ordinal IF I of F is the least ordinal p such that F p+I = F p. 
r is s id to n o is a ithmetic n o fo muU F(V, with 

free second order variable U such that for X C_ 1~, 

F(X)  - {n E IN" F(X,  n)}. 

Let [ rI~ [ ' -  sup{ I F 1" F is rI~}. 
By work of Aczel and Richter [1974] we have the following characteriza- 

tion. 

5.6 T h e o r e m .  

IriS[ - first IIk+l-reflecting ordinal. 
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Several notions of recursively large ordinals are modelled upon notions of 
large cardinals. This is especially true of notions like "recursively inaccessible 
ordinal" and "recursively Mahlo ordinal". It turns out that the least II3- 
reflecting ordinal is greater than the least recursively Mahlo ordinal, indeed 
much greater than any iteration of "Mahloness" into the transfinite from 
below. 

5.7 Definit ion.  Assume that ~ is recursively Mahlo. ~ is called recursively 
a -Mahlo  if  for every ~-recursive function f : ~ ~ ~ there is an ordinal 
/3 < ~ closed under f such that/3 is recursively "f-Mahlo for any ~/ < a. 

is recursively hyper-Mahlo if ~ is recursively n-Mahlo. 

As a matter of fact, there are 'many' recursively hyper-Mahlo ordinals below 
the first rI3-reflecting ordinal. Aczel and Richter [1974] have convincingly 
argued that rIs-reflecting ordinals are the recursive analogue of weakly com- 
pact cardinals also known as fl~-indescribable cardinals. The same consid- 
erations justify the view that rIn+2-reflecting ordinals provide the recursive 
analogue for the II~-indescribable cardinals for all n > 0. 

Next we shall glimpse at an ordinal notation system which in some respect 
internalizes the first rI3-reflecting ordinal. Rather than exhibiting such a 
notation system, it is more appropriate to give a model for the peculiar 
functions the notation system is made from. Such a model can be provided 
on the basis of a weakly compact cardinal. 

So let us indulge in a little science fiction and fix a weakly compact cardinal 
/~. 

5.8 Definit ion.  Let 

v-Uv  
aEON 

be the cumulative hierarchy of sets, i.e. 

Vo - O, V~+x - { X  " X c V~}, V~ - U v~ for limit ordinals A. 
~<~ 

A cardinal ~ is weakly compact i f  whenever U c_ V~ and A(P)  is a II~ formula 
of set theory with P a class variable such that (V~,r ~ A(U),  then for some 

A(U n 

For ~ a regular cardinal, a subset S c_ ~ is stationary in ~ if  S N C ~ 0 holds 
for every set C c_ ~ that is closed and unbounded in ~. 
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5.9 Def ini t ion .  Let ~ be a weakly compact cardinal. By recursion on a we 
define sets B(a,/3), M s and the function E~ as follows: 

- { closure of 3 U {0, ~} 
under +, A~.w ~ and (~ ~ E~(~))~<~ 

M s - {Tr < ~c" B(oz, 7r) n ~c -- 7r A V{ C B(oz, 7r) n c~[~ n M ~ stationary in 7r]} 

E~(c~) - least element of M s. 

The hypothesis that ~ be weakly compact will be needed to ensure that 
M ~ r 13 and thus to show that E~(c~) is defined. 

In a second step, for every rr E M s and ~ C B(c~, rr) n c~, one defines collapsing 
functions 

O~ �9 O N  ~ 7r N M ~. 

With the aid of (symbols for) the functions and constants E~, 0~, +, co, n, O, 
and special constraints needed to ensure uniqueness of notations, it is then 
possible to construct a primitive recursive system of ordinal notations N(n) 
which reflects some properties of the rather large cardinal n. 

Akin to RSfl one can invent an infinitary calculus RS~, which in addition 
has the following rules: 

(II3-Re f~) r' A" 
F, (3z e L~)[Tran(z) A z 7s 0 A d z] 

for every Ha(n) formula A and 

F ,B  

F, (3z e L~)(z e Me A B z) 

for every II2(Tr)-formula B, where 7r e M s, ~ < c~, ~ e B(c~, 7r). 
The rules (II2 - RelY) are not needed for an embedding of K P  + II3- 

reflection into RS~. They are only required for carrying through the cut-  
elimination procedure. Usually, removing one instance of (II3-Ref~) in a 
derivation can be done only at the expense of introducing a bunch of new 
(II2-Ref~) rules. This discriminates the cut-elimination for RS~ sharply 
from that for RSa, where instances of the impredicative rule (E-Refa)  are 
replaced by instances of the predicative rule (3). 

Cut-elimination for RS~ can be achieved by using the ~-controlled RS~- 
derivations, with ~ ranging over the operators 

- x c_ B(o , 9 )  A -y < A < 
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where 3, E N(a) .  

For F -- {A1, ' "  ,A~} we set F" := {A~, . . . ,  A~}. 
The key to the elimination of (II3 - Rely) is the following theorem. 

5.10 Theorem.  If F is a set of II3(~) [ormulas and 7-/~ ~ F, then, for 

every 7r C M/(a'~), 

- ~  ( / ( a , 7 ) + ~ r )  ' 

where f is a function that depends only on F. 

It is not by accident that  in Theorem 5.9 a single derivation is 'collapsed' into 
a family of derivations indexed by a stationary subset of a. The elimination 
of (II3-Ref~) requires such a "stationary collapsing" technique. 

Unfortunately, we will not be able to go any further into details. The 
interested reader is referred to Rathjen [1991e]. 

At the end we hasten to assure that this is not the first of an infinite series 
of new cut-elimination procedures. II3-reflection just served as a paradigm. 
Stationary collapsing is applicable to all of the theories K P  + Hn-reflection. 

To close, we raise the question of how far afield from II~ comprehension 
all this is. The idea is to approach H~ comprehension by stronger and yet 
stronger reflection principles in an autonomous manner. I conjecture that  
the large cardinal analogue for a suitable notation system resides below the 
first Ramsey cardinal, and, moreover, is compatible with V = L. 
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In tr od u c t ion  

An equivalence relation E on a set X is a Borel equivalence relation if 
both X and E are Borel, in some Polish space ( which can always be taken 
to be the space 2~), and its square, respectively. We denote by BOREQ 
the class of all Borel equivalence relations. 

We say that (X, E) is reducible to (Y, F) if there is a Borel function 
f "  X ---, Y such that 

Vx e X Vy e X (xEy ~ f ( x )F  f(y)) .  

This defines a quasi-ordering _< on BOREQ,  with associated equivalence 
_=. For more information about this quasi-ordering, see the paper of 
Kechris [6]. 

In [2], H. Friedman and L. Stanley prove: 

Fact  1. (BOREQ, <_) has no maximum element. 

In fact, they introduce a "jump" operator, a version of which is defined 
as follows: To each E, associate E + on X ~, defined by 

(Xn) E+ (Yn) e---> VTt~m (xnEym) A V n ~ m  (xmEyn).  

Fact 1 then follows from: 

THEOREM (Friedman-Stanley). For all E in BOREQ with at/east two 
classes, E < E +. 

The original proof of this theorem used the deep results of H. Friedman 
on Borel diagonalizations, and in particular was not elementary (i.e. in 
second-order arithmetics). In [3], Harrington gives an elementary proof of 
this theorem. For each countable ordinal ~, let E(~) be the ~th iterated 
jump, using the above operator +, of (2 "~, =). Harrington proves" 
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THEOREM (Harrington). The family E(~), ~CWl iS unbounded in 
BOREQ.  In fact for each ~, and each E~ equivalence relation E, 
E ( ~ +  1) 2~ E. 

This result easily implies the Friedman-Stanley theorem, hence Fact 1, 
but also 

Fac t  2. B O R E Q  N E~ is not cofinal in BOREQ.  

Harrington's proof is elementary, but uses a delicate forcing argument. 
The aim of this paper is to give a different, and much simpler, proof 
of Facts 1 and 2, based on a different "jump" operator, for which we 
will prove analogs of the two theorems above. This proof also brings 
in an interesting invariant of the reducibility equivalence relation =, the 
potential Wadge class of a Borel equivalence relation. 

I would like to thank R. Sami and J. Saint Raymond for the discussions 
we had on the subject. 

1. P o t e n t i a l  W a d g e  classes 

DEFINITION 1. Let F be a Wadge class, and X a Borel set. A subset A 
of X 2 is potentially of class F, written A E potF, if for some finer Polish 
topology T on X, A is in F in (X, T) 2. 

One can define the potential Wadge class of a Borel set A c_ X 2, 
potF(A), as the least F such that A E potF (this is clearly well-defined). 
Now if A C X 2 and B C y2 are such that there exists a Borel function 
f "  X ~ Y with (x, y) e A ~ ( f(x) ,  f (y))  e B, then potr(A) c_ potr(B).  
We will apply this remark to Borel equivalence relations. 

Note that the notion of potential Wadge classes is non trivial: For each 
non self dual Borel Wadge class F, with dual class F, there is in (2w) 2 a 
set in F which is not in potF, namely any F-universal set. To see this, note 
that any two Polish topologies, with one finer than the other, coincide on 
a dense G6 set, hence on a perfect set, which contains a set in F\F.  

It is usually hard to compute the exact potential Wadge class of a Borel 
equivalence relation. However, we will be able to do it in enough particular 
cases. 

Let 9 ~ be a filter on w. We define the relation 2 T on 2 w by 

2 e 7 .  

THEOREM 2. Let F be a Wadge class dosed under intersections. I f  2 7 is 
in potF, then ~Y is in F. 

PROOF" Let T be the finer Polish topology on 2 W for which 2 J: is in F, 
and H C_ 2 ~ be a dense G6 set on which the two topologies coincide. We 
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claim tha t  there is a par t i t ion of w into two sets Ao, A1, and two sets Bo, 
B1, with for i - 0, 1 Bi C_ Ai, such tha t  for i - 0 or 1, if A C_ w satisfies 
A N A i  - Bi, then A C H. This claim will finish the proof, for one has, 
for A C a;" 

A c ~ ~ (A N Ao) t2 B 1 25-B1 A (A N A1) [-J Bo 2~:Bo 

(here and below, we identify a subset of ~ with its characterist ic function). 
And as 2 7 is in F on H 2, this gives a F definition of $', as desired. 

To prove the claim, note first tha t  for any dense open set G in 2 ~, and 
any k, there is an 1 > k and a subset S of [k,l[ such tha t  any A c_ w 
with A N [k,/[= S is in G" Enumera te  all subsets of [0, k[ as (Sn)n<2k, 
and build inductively kn and Tn C_ [kn, kn+l[, s tar t ing with ko - k, so 
tha t  for each n < 2 k, if A N [ki, k i+l[= T~ for all i < n and A N [0, k[= Sn, 
then A E G, using the density of G. Then 1 - k2k and S - UnTn work. 
Applying the subclaim successively to a decreasing sequence ( G , ~ ) , ~  of 
dense open sets with intersection H gives a sequence k,~ with ko - 0, 
and sets Sn c_ [kn, kn+l[ such tha t  if A N [kn, kn+l[-- Sn, A E Gn. Then  
Ai - I, Jn[k2n+i, k2n+i+l[ and Bi - U,~ S2n+i, for i - 0,1, satisfy the 
claim. -t 

R e m a r k .  The claim used in the previous proof is a folklore result. It 
can be used e.g. to show that  a free Borel filter 9 r on w is meager,  or 
tha t  there exists a finite-to-one function ~a �9 r - .  w with ~a(9 r )  - A/'. More 
interestingly, W. Just  uses it in [5] to prove tha t  there are in (BOREQ, <_) 
antichains of a rb i t ra ry  finite cardinality. 

By the previous result, the computa t ion  of the potent ia l  Wadge class 
of 2 7 is reduced to the computa t ion  of the Wadge class of 7 .  We do not 
know exactly which Wadge classes are Wadge classes of filters on w (Easily, 
A ~ II ~ and E ~ are such classes, and by a Baire category argument ,  any 
II ~ filter is II ~ Calbrix [1] has exhibited filters of Wadge class II~ and 

E~ for all ~ > 2). Nevertheless, it is easy to check tha t  Borel filters have 

Wadge classes unbounded in A~. In fact if we let Af be the Fr~chet filter, 
A; - {A C_ w"  A is cofinite}, and if we define its i terates ( A f ~ ) ~ I  by 
induction by 

2r 

A c X +I A} c c N 

where ~ is a bijection between w and w 2, and for limit A 

A c A} c He(n)} e 
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where r is a bijection between w and A, then one easily checks that all 
Borel sets are obtained from the clopen sets by the operation of liminf 
along one of these iterates. So their Wadge classes are unbounded, and 
by the theorem above, we get: 

COROLLARY 3. 
(a) The sequence ( 2 A r ~ ) ~  is unbounded in B O R E Q .  
(b) Given any countable ~, there is a ~ such that for any ~o equivalence 

relation E, 2Are ~ E (In fact, by the exact computations of Calbrix [1], 
one can take ~ = ~ ). 

R e m a r k s .  1. Theorem 2 has another nice consequence. In [4], Harring- 
ton-Kechris-Louveau prove that any Borel equivalence relation either is 
smooth, i.e. reducible to (2 ~, =), or else reduces 2Ar. From this, they infer, 
using a measure theoretic argument, that every G~ equivalence relation 
is smooth. This can also be derived from Theorem 2, by noting that 
otherwise 2Ar would be potentially II ~ hence jkf would be II ~ in 2 ~, a 
clear contradiction. 

2. In the proofs above, the only property used of the reducing function 
was the Baire Property, so that our arguments would apply, using the 
appropriate level of determinacy, to more general notions of reducibility, 
up to reducibility by arbitrary functions in the context of AD, as noticed 
by A.S. Kechris. 

2. A j u m p  o p e r a t o r  in B O R E Q  

DEFINITION 4. Let $" be a Borel filter on w, and E a Borel equivalence 
relation on some Borel X. We define the relation E J: on X ~ by 

(xn)E ~(yn) ~ {It" xnZYn} e jz. 

Note that with this notation, 2 ~: is just (2, =)J:. 

THEOREM 5. The operator E H E Ar is a jump operator in B O R E Q "  For 
every Borel E with at least two classes, E < EAr. 

PROOF: Clearly, E _< E X, by sending any x E X to the constant sequence 
(x). Assume that E X <_ E. We claim that for every ~ < Wl, E Xr _< E. 
This is proved by induction on ~. Suppose first ~ - ~? + 1 is successor, and 
let f be a Borel reduction of E X, to E. Define F"  X • ~ X ~ by: 

= 
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One gets 

(xk)eZ,(yk) {k" xkEyk} e 

F( (xk ) )EAr F( (yk ) ) 

So E Xr _< E X _ E,  as desired. 
The proof for limit ~ is similar: Let for each ~ < ~ fv reduce EAr, to E,  

and set 

F ( ( x k ) k )  - ( f r  

By a computa t ion  similar to the one above, one checks tha t  F reduces 
FAre to EAr, and as above we get the claim. 

Suppose now tha t  (2, =)  < E.  Then easily for any $-, one gets 2 f _~ E 7,  
hence by the previous claim, for all ~ < Wl, we get 2Arc _< E,  contradict ing 
Theorem 2. -~ 

REFERENCES 

[1] J. CALBRIX, Classes de Baire et espaces d'applications continues, Note aux 
C. R. Acad. SC. Paris, 301, 1985, 759-762. 

[2] H. FRIEDMAN, L. STANLEY, A Borel reducibility theory for classes of countable 
structures, J. Symb. Logic 54 (1989), 894-914. 

[3] L. HARRINGTON, On the complexity of Borel equivalence relations, abstract, 
International Workshop on Set Theory, Marseille-Luminy, 1990. 

[4] L. HARRINGTON, A. S. KECHRIS, A. LOUVEAU, A Glimm-Effros dichotomy 
for Borel equivalence relations, Journal of the A.M.S.4(3),1990,903-928. 

[5] W. JUST, More mutually irreducible ideals, preprint, 1990. 

[6] A.S. KECHRIS, The structure of Borel equivalence relations in Polish spaces, to 
appear in the Proceedings of the Workshop on Set Theory and the Continuum, 
MSRI, Berkeley 1989. 



Logic, Methodology and Philosophy of Science IX 
D. Prawitz, B. Skyrms and D. Westersffthl (Editors) 
�9 1994 Elsevier Science B.V. All rights reserved. 157 

T H E  C O R E  M O D E L  U P  TO A W O O D I N  C A R D I N A L  

WILLIAM MITCHELL 

Dept. of Mathematics, Univ. of Florida, Gainsville, Fl 32611, USA 

Inner models, and in particular core models, have made important contri- 
butions to the theory of measurable cardinals and of other large cardinal 
properties of similar consistency strength. Until recently, however, very 
little was known about the inner model theory of cardinals beyond mea- 
surable cardinals. Part  of the reason for this weakness was our lack of un- 
derstanding of the potential of large cardinal properties: it was generally 
believed that  the smallest important cardinal larger than a measurable 
cardinal was a supercompact cardinal, and even supercompact cardinals 
were believed to be relatively weak far weaker, for example, than the 
axiom of determinacy for E 1 sets of reals. This made inner model theory 
a hard nut to crack: very little is known even today about inner model 
theory for supercompact cardinals. Work of Foreman, Magidor, and She- 
lah [6] started to reverse these views, showing that  supercompactness was 
stronger than previously believed, and following this Woodin built on their 
ideas to pinpoint a property, now known as a Woodin cardinal, which is far 
weaker than supercompactness but appears to be at least as interesting. 
Further work has confirmed the importance of Woodin cardinals, most no- 
tably through the discovery by Martin and Steel [8] and by Woodin [10] 
that  the existence of a Woodin cardinal is equiconsistent with the axiom 
of determinacy for E1 formulas, and that  the existence of infinitely many 
Woodin cardinals is equiconsistent with the full axiom of determinacy. 

This work has led to major advances in core model theory. On the 
one hand it has given an additional impetus to the study of cardinals 
small enough that a core model theory is practical at the present time, 
while on the other hand it has provided new tools together with a new 
understanding of some of the older tools. The purpose of this paper is 
to give an exposition of the current state of core model theory, and in 
particular of the core model theory for large cardinals up to a Woodin 
cardinal. The core model which we will be describing is due to J. Steel 
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[19]; other major contributors to the inner model theory leading up to 
this have been S. Baldwin, R. Jensen, D. A. Martin, W. Mitchell and 
H. Woodin. 

This paper is not intended to be technical discussion of the core model. 
It does not assume a knowledge of core model theory for measurable car- 
dinals, and will not at tempt to give more than a superficial knowledge of 
the new core model theory. It will a t tempt to give some idea of what has 
been accomplished, of the main difficulties that have been surmounted, 
and of some of the gaps and limitations in the current theory. 

w 1. W h a t  is a core  m o d e l ?  

What  we will call "the true core model" is a model, to be denoted by K, 
which contains all of the large cardinal structure existing in the universe, 
but which is, at the same time, as much as possible like the constructible 
sets L. The existence of this model is speculative, but K is known to 
exist under appropriate assumptions restricting the size of large cardinals 
existing in the universe. The results discussed in this paper imply that  
it exists under the assumption that there is no Woodin cardinal together 
with a further technical assumption. 

For the core model program to succeed it is not enough that this "true" 
core model exist, but it is also necessary that it be recognizable when it 
is found. With this in mind we will begin by describing some examples 
of core models for smaller cardinals, looking at their characteristics as a 
guide to what to expect as we move up to larger cardinals. 

EXAMPLES OF THE CORE MODEL. The simplest example of a core model 
is simply the class L of constructible sets. This model does contain the 
large cardinal structure of the universe, provided that this structure is 
not too large: for example any cardinal which is inaccessible, Mahlo, or 
weakly compact in V has the same property in L. Measurable cardinals, 
on the other hand, cannot exist in L. A large cardinal property which is 
weaker than measurability but still cannot hold in L is the existence of 
a nontrivial embedding i: L --~ L, which is necessarily not a member of 
L. This property is equivalent to the existence of a class of indiscernibles 
for L, and also to the existence of a particular subset, known as 0 #, of w. 
The existence of 0 # is a critical dividing line: it is inconsistent with L, 
but every smaller large cardinal is not only consistent with L but reflects 
to L just like inaccessibility and weak compactness. Thus we say that L 
is the core model up to 0 #, that is, K = L provided that  0 # does not 
exist. 
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The second example of a core model to be studied was L[#], the class 
of sets constructible from a measure #. It is easy to check that  L[#] is the 
minimal model in which # is a measure, but Kunen showed in [7] that  in 
addition # n L[#] is the only measure in L[#], and that  the model L[#] 
does not depend on the choice of the measure #, but only on the cardinal 

where # lives. This work, together with work of Silver ([17], [18])led 
to the recognition that  L[#] has the properties which now lead us to call 
it a core model: we say that  K = L[#] provided that  L[#] exists (that is, 
that  3#, ~ L[#] ~ "# is a measure on ~"), that  ~ is as small as possible, 
and that  0 t does not exist. The nonexistence of 0 t, by analogy with 0 #, 
asserts that  there is no nontrivial embedding from L[#] to L[#]. Many of 
the techniques which are used in more general core models are taken from 
this basic work on L[#]. 

There is a large gap between L and L[#]. This gap ranges from 0 # up 
to a measurable cardinal, so that  these models are of little help in un- 
derstanding important  intermediate notions such as Ramsey cardinals. In 
addition, L[#] is frequently not very useful even in dealing with conditions 
which are as strong as a measurable cardinal. The problem is that  if we 
want to show that  some property P implies the consistency of a measur- 
able cardinal, then it may not be of much use to have a model which can 
only be constructed after we have our hands on a measure #. What  is 
needed is a model which exists without any preconditions but which will 
give us a model with a measurable cardinal if there is such a model. The 
birth of true core model theory came with the construction by Dodd and 
Jensen ([2], [3], [4], [5]) of a model satisfying these conditions. The idea 
of the Dodd-Jensen core model K is that  even if there are no measurable 
cardinals there may exist approximations to measurable cardinals. These 
approximations, called mice, are models M = L~[U] such that  

(1) L~[U] ~ U is a measurable cardinal on some ordinal ~ < a. 
(2) All iterated ultrapowers of L~[U] by U are well founded. 
(3) L~+I[U] ~ [a] = p for some p < n. 

The Dodd-Jensen core model K is equal to L[3d], where ,M is the class 
of all mice. The measure U in a mouse L~[U] is partial by necessity; 
clause (3) guarantees that  U cannot be extended to a measure on any set 
extending 7 ) (~ )n  L~[U]. These partial measures can, however, be used 
in connection with cardinal properties smaller than measurable cardinals. 
Suppose, for example, that  ~ is a Ramsey cardinal in V. This is equivalent 
to the existence of a certain kind of ultrafilter on each field of subsets of 

of cardinality at most ~. This ultrafilter can be used to construct the 
ultrafilter U which is needed to define a mouse and the mice constructed 
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in this way can then be used to show that  a is a Ramsey cardinal in K 
(see [13]). 

The simplest example of the Dodd-Jensen core model K occurs when 
0 # exists, but no class of indiscernibles exists for L[0#]. In this case K 
is equal to L[0#]. To see why this is true, recall that  0 # holds if and 
only if there is an embedding i: L ~ L which is not the identity. If 
is the critical point of i then set U = {x C ~ : ~ C i(x)}, so that  U is 
the ultrafilter on 7)(a) N L which is generated by the embedding i. Then 
L[0 #] = L[U]. The ultrafilter U is not a measure on ~ in L[U]; in fact i f /  
is chosen so that  its critical point a is as small as possible then L~+I[U] 
is a mouse. 

An important  fact about K is that  the measures in the mice can be used 
to define a canonical well ordering of the class A/t of mice. To decide which 
of two mice L~[U] and L~,[U'] is smaller, we take iterated ultrapowers 

i: L~[U] ---, L~[U*] and i ' :  La, [U'] ~ LZ, [U*] 

of each of them until the measures U* in the two resulting structures 
agree. The lengths ~ and/~t of the iterated ultrapowers then determine 
the order of the the mice. This well ordering of the mice, to which will 
return later in this paper, yields a L-like structure on the Dodd-Jensen 
core model K. 

The model n[#] has been generalized ([12], [15]) to an inner model L[U] 
for a sequence U of measures, and to the associated core model K[U]. A 
key concept here is the notion of a coherent sequence of measures, which 
allows for models with measures concentrating on measurable cardinals. 
In this paper we will not discuss further the concepts of coherence or 
general sequences of measures, though the reader should be aware that  
they are important  ingredients in the core model we will be studying. 

CRITERIA FOR A CORE MODEL. Suppose that  we are given a model: how 
do we recognize it as the core model? There is only a limited sense in which 
we can give an answer to this question as we consider larger and larger 
cardinals the core models will look less and less like L, and a good part  
of the interest in the investigation of large cardinals, including core model 
theory, is in the discovery of these necessary differences. One possible way 
around this question is to simply assert that  we will recognize the core 
model when we see it. This answer is not entirely frivolous: part  of the 
strength of core model theory so far has been that  the core models defined 
have been clearly and unambiguously recognizable as such. Nevertheless 
we can describe some properties of the known core models which we can 
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expect to continue to hold, at least for core models at the levels which we 
are currently considering. 

The most basic characteristic of L which we would like to be preserved 
in future core models is its method of construction: it is built around the 
ordinals, which form its basic skeleton, and it is built up "from below" 
along this skeleton by pieces L~ which are defined by recursion along 
the ordinals using some very simple closure properties. One consequence 
of this construction is that  the logical complexity of L comes entirely 
from that of the ordinals. Another consequence of this construction is 
the absoluteness of L: if M is any well founded model of set theory then 
L (M), the model L as constructed inside M, is equal to L~ where c~ is 
the order type of the ordinals of M. For the Dodd-Jensen core model K 
described above we have a similar situation, but in this case the central 
skeleton is given not by the well ordering of the ordinals but instead by 
the more complicated well ordering of the class .~4 of mice. As with 
L the complexity of K comes entirely from the complexity of the well 
ordering of its skeleton. The well ordering of the reals in L, for example, 
is A~. The reason for this is that  if r  is the formula asserting that  
(w,E) is isomorphic to some countable initial segment (L~, E) then the 
only nonarithmetical part of r is the assertion that  the relation E is well 
founded, which is a II~ condition. The assertion that  (w, E) be isomorphic 
to some mouse L~[U] involves the assertion that  every iterated ultrapower 
of (w, E) by its measure is well founded. This is a H I condition, and hence 
the well ordering of the reals of K is A~. 

An important consequence of the method of construction of L is the con- 
densation principle: if ~ is an ordinal and M -~ H -~1 L~ then M - L~, 
for some ordinal c~' _~ c~. The condensation principle leads immediately 
to the proof that  GCH and ~ hold in L and is the basic fact behind the 
fine structure theory of L, including such applications as [3 and morasses. 
This principle is obscured in the normal description of L[#], and is also 
obscured (though to a lesser degree) in the Dodd-Jensen core model K, 
but it is as critical to the theory of each of these models as it is to that  
of L. One of the recent advances in inner model theory [11] is a way 
of defining core models (including K and L[#]) so that  condensation is 
(almost) literally true instead of being hidden in the machinery. 

A second basic characteristic of the core model is rigidity. We men- 
tioned that  an elementary embedding i �9 L --, L is the least large cardinal 
inconsistent with L, and similarly the existence of an nontrivial embed- 
ding i �9 K -~ M of the Dodd-Jensen core model implies that  there is a 
model L[#] with a measurable cardinal. This is one of two basic ideas for 
using the core model to prove the existence of inner models with large 
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cardinals. In general a basic condition for recognizing a model K as the 
correct core model up to some large cardinal property P(n)  is that  the ex- 
istence of a nontrivial embedding i �9 K ~ K is equivalent to the existence 
of a model with a cardinal n satisfying P(n) .  In the well established core 
models we have the stronger property that  there is no nontrivial embed- 
ding i �9 K ~ M for any well founded class M, but it is still open whether 
this stronger rigidity property will hold past a strong cardinal. 

A third basic characteristic of the core model is the covering lemma, 
but it is difficult to use this as a criterion for a core model since it is 
not clear what we can hope for in an abstract covering lemma. Jensen's 
original covering lemma [1] for L asserted that  if 0 # does not exist - -  that  
is, if L is the true core model then any set x of ordinals is contained in 
some set y E L such that  lYl -< Ixl + R1. This same covering lemma holds 
for the Dodd-Jensen core model K, provided that  there is no model with 
a measurable cardinal, and this is the second of the two basic ideas for 
using the core model to prove the existence of a model with a measurable 
cardinal. For the model L[#] it becomes necessary to admit an exception: 
Prikry forcing over L[#] will yield a w-sequence C of indiscernibles over 
L[#] which is cofinal in the measurable cardinal ~ of L[#], and this set 
C is not contained in any member of the core model L[#] of cardinality 
smaller than n. If there are longer sequences of measures this exception 
expands: the set C of indiscernibles for the single measure # becomes a 
system of indiscernibles for the measures in the sequence, and each set x 
to be covered begins to require a different system of indiscernibles. There 
is, however, one corollary of the covering lemma which holds in all of these 
models. This corollary, known as the weak covering/emma, asserts that  
if A is any singular strong limit cardinal then A + - A +(g). The weak 
covering lemma remains true up to a Woodin cardinal, but at that  point 
either it or the immutabili ty of K will also have to be sacrificed, as another 
exception appears: we will later discuss the stationary tower forcing at 
a Woodin cardinal n which, among other things, will collapse A + for an 
unbounded set of singular cardinals A below t~. 

While the statement of the covering lemma has been changing so dra- 
matically, however, one thing has stayed relatively constant" the basic 
proof of the covering lemma. Suprisingly, the increasing awkwardness 
necessary to incorporate the exceptions such as Prikry sequences into 
the statement of the covering lemma is not reflected in the proof, which 
remains essentially the same except for some fairly difficult but straight- 
forward adaptations to the complications of the larger models. The awk- 
wardness comes from interpreting what it is that  the proof actually proves. 
It is still open whether there will be a similarly straightforward adaption 
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to handle the latest exception, stationary tower forcing, but there are in- 
dications of how the proof may eventually take account of this case as 
well. 

We will mention one final characteristic of core models: correctness (or 
absoluteness). If F is a class of formulas over the reals then we say that  
a model M is F-correct if for all formulas r in F and all reals r C M we 
have M ~ r  ~ V ~ r The concept of correctness may not 
at first appear to be an extrapolation from L, but recall the statement of 
Shoenfield's El-absoluteness theorem [16]" Any model M containing L ~  
is E~-correct. The theorem is usually stated with wl in place of L ~ ,  but 
as long as M is a model of a fragment of ZF the statements are equivalent. 
It has turned out that for stronger correctness theorems it is not enough 
to use some ordinal larger than wl, but instead it is necessary to look 
at the more complex well ordering of the mice. We have the following 
conjecture: 

CONJECTURE Assume that the sharp a # of  a exists for every real a (and 
probably something more), and let K* be the core model for a Woodin 
cardinal (and slightly more) i f  there is an inner model with such a cardinal, 
and let K* be the true core model K if  there is no such model. Then any 
model M of set theory which contains an iterated ultrapower of  K* is 
E~-correct. 

This is known to be true under the additional assumption that  there is 
no inner model with a strong cardinal (or with more than a few strong 
cardinals), but the point is that  the correctness theorem should be true, 
for this fixed model K* which cannot contain more than one Woodin 
cardinal (plus a bit more), no matter  what additional cardinal structure 
may exist in the universe. 

It appears that correctness may be not only a pleasant application of 
core model theory, but also a prerequisite to the further development of 
core model theory. We will mention later how the iterability of a m o d e l -  
the property that  every iterated ultrapower of the model is well founded 

becomes much more complex as we get into larger cardinals. A major 
jump occurs at a Woodin cardinal, as is to be expected from the theorem 
of Martin and Steel that  slightly more than a Woodin cardinal implies the 
axiom of determinacy for E21 formulas and hence that  there can be no A~ 
well ordering of the reals. One scenario suggests that  the 1 E2-correctness 
given by the conjecture will be necessary for a full theory of iterability for 
models with up to two Woodin cardinals. An alternate scenario, due to 
Woodin, suggests that  the necessary correctness will come instead from de- 
scriptive set theorical considerations. This reflects the increasingly strong 
interconnections between the core model and descriptive set theory. 
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w 2. W h y  is a W o o d i n  ca rd ina l  i n t e r e s t i n g  (and  w h a t  is i t )?  

Woodin cardinals, like most large cardinal properties above measurable 
cardinals, are defined in terms of the existence of elementary embeddings 
i: V ~ M where M is a well founded model which is, in some sense, large. 
A cardinal ~ is measurable provided that there is such an embedding 
i: V ~ M with ~ equal to the critical point of i, the least cardinal a 
such that i (a)  > a. Strong cardinals increase the constraints on M: 
is A-strong if there is such an embedding with critical point ~ such that  
V~ C M and ~ is strong if ~ is A-strong for every A. The definition of a 
Woodin cardinal ~ uses embeddings with critical point smaller than ~: 

DEFINITION. A cardinal ~ is a Woodin cardinal i f  for any function f :  ~ 
there is an embedding i: V ~ M with critical point  a < ~ such that 

f " a  C a and V/(f)(a ) C M. 

A cardinal is A-supercompact, for A > n, if there is an embedding 
i: V ~ M w i t h c r i t i c a l p o i n t  n such  AM C M. For n t o b e  a W o o d i n  
cardinal is much weaker than for it to be even n+-supercompact. 

The definition of a Woodin cardinal has been included to satisfy the 
reader's curiosity, but it was probably more puzzling than satisfying. As 
the title of this section suggests, we will rely on the consequences of a 
Woodin Cardinal rather than the definition to justify the claim that  the 
extension of the core model to a Woodin cardinal is an important step in 
the progress of set theory. 

The most important of these consequences involve the axiom of deter- 
minacy. Martin and Steel have shown [8] that a Woodin cardinal, plus 
slightly more, implies that the axiom of determinacy holds for ]E~ sets 
of reals, while Woodin has shown [10] that E~ determinacy implies that 
there is an inner model with a Woodin cardinal. Later, Woodin showed 
that the full axiom of determinacy is equivalent to the existence of a model 
with infinitely many Woodin cardinals. 

Since the axiom of determinacy for E 1 sets implies that every E 1 set 
of reals is Lebesgue measurable it follows that no model containing more 
than a Woodin cardinal can have a A~ well ordering of the reals. Thus 
the minimal inner model for a Woodin cardinal is the the largest inner 
model having a A31 well ordering of the reals, and in this respect it is just 
one step past L, which is the largest inner model which has a A~ well 
ordering of the reals. 

The second reason for the importance of a Woodin cardinal is the sta- 

tionary tower forcing which was briefly referred to earlier. A condition of 
the stationary tower forcing on a cardinal n is a pair (S, X), where X E V~ 
and S is a stationary subset, in the appropriate sense, of X. A condition 
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(S', X ' )  is stronger than (S, X)  if X '  D X and S t NX C S. Thus a generic 
object G for the s ta t ionary tower forcing is a tower of ultrafilters on the 
power sets of the members X of V~, and it is possible to use this tower to 
form a generalized ultrapower i a" V ~ ult(V, G). It can be shown that  if 

is a Woodin cardinal then V (ult(V'a)) = V (VIal), and in part icular ~ is 

still a cardinal in V[G]. 
Now suppose that  ,~ < ~ is a cardinal and u _< )~ is a regular cardi- 

nal, and consider the condition (S~,,Ha+), where Ha+ is the set of sets 
hereditarily of cardinality less than A + and 

S.  - {M -< Ha+ " k C M and c f ( o r d i n a l s ( M ) ) -  u}. 

This condition will force that  A + is the critical point of i a, so that  A + is 
collapsed in ult(V, G) and hence in V[G]. On the other hand ~ remains a 

cardinal in ult(V, G), and since V (ult(V'a)) = V (VIal) it remains a cardinal 

in V[G] as well. Furthermore A+(v) has cofinality u in ult(V, G) and hence 
in V[G]. Notice tha t  no assumptions were imposed on the cardinal A: it 
could be choosen to be N0, or b~, or a measurable cardinal. Thus we can 
collapse the successor of a singular cardinal while giving it any cofinality 
we wish, or we can collapse the successor of a measurable cardinal while 
keeping the cardinal measurable. Neither of these is possible below a 
Woodin cardinal. 

There is one further, rather startling, consequence of a Woodin cardinal 
which should be mentioned. Woodin (unpublished) has shown that  if L[$] 
is the minimal model of a Woodin cardinal ~ then there is a notion P of 
forcing in L[g], having the x-chain condition, such tha t  if X is any set 

whatsoever, taken from the universe V, then there is an i terated ultra- 
power i: L[g] ---, L[$'] such that  X is i(P)-generic over L[g']. Of course i 
will not in general be a member  of L[$] (and in fact slightly more than a 
model of a Woodin cardinal is needed to prove tha t  this i teration can take 
place) but the point is that  X could be any set whatsoever: for example, 
X could code a class model containing a supercompact  or a huge cardinal, 
or even the sharp of a minimal model for a Woodin cardinal. 

w 3. H o w  is t h e  m o d e l  c o n s t r u c t e d ?  

The definition of a Woodin cardinal, or even a strong cardinal, requires 
the existence of embeddings i: V ~ M with Va C M for ordinals I larger 
than the critical point ~ of i, and hence we will need to have a way to 
represent such embeddings. A measurable cardinal ~ is tradit ionally given 
by a x-complete, normal ultrafilter U on ~. The canonical embedding 
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i U" V -+ M - ult(V, U) using such an ultrafilter has the property that  

(1) M -  { i v ( f ) ( ~ ) "  f e V M ~ V } .  

The embeddings for cardinals stronger than measurable cardinals are 
given by ex tenders .  A (~,A)-extender E,  with ~ + 1 < )~, has an em- 
bedding i E" V ---, M - ult(V, E) with the property that  

(2) M = { i E ( f ) ( a )  �9 f E V A 3n  < w ( f "  [~]n ~ V A a E [/~]n)}, 

which is essentially formula (1) with the ordinal ~ replaced by the interval 
[~,)~). This may look unwieldy, but it is made workable by realizing 
that ,  just as the embedding i v defines the ultrafilter U by setting U - 
{ x : n  e i U ( x ) } ,  an embedding i E with property (2) defines a sequence of 
ultrafilters Ea = {x C t ~ n : a  C i E ( x ) } .  The extender E itself is defined 
to be the sequence ( E a : a  E [A]<"~) of all these ultrafilters. Notice in 
part icular that  a measure on ~ may be regarded as a (~, ~ + 1)-extender. 

There are three basic problems connected with the movement from 
ultrafilters to more general extenders, all of which arise from the problem 
of over lapp ing  ex tenders .  The models we are looking at have the form 
LIE] where each member $ .  of the sequence $ is a (~.,)~u)-extender for 
some pair ( ~ ,  A.) of ordinals. Now the length )~. of the extenders is 
almost a nondecreasing sequence, but once we pass a strong cardinal there 
are essentially no restraints on the behavior of the critical points ~.  of 
the extenders. Thus there are ordinals a such that  ~ < c~, and hence 
iE-(c~) ~= c~, for cofinally many extenders $ .  in the sequence $. This 
contrasts with the behavior of a model L[U], where U is a sequence of 
measures. Here each L/. is a measure on a cardinal ~.  and the sequence 
~.  is nondecreasing, so that  if v > c~ ++ then ~.  > a and hence c~ is not 
moved by i u" . 

The first problem in its most serious form is connected with the fact 
that  we may have two extenders E0 and E1 which overlap in the sense that  
Eo is a (no, Ao)-extender and E1 is a (~1, A1)-extender, with no _< t~l < z~0. 

To see why this is a problem, let us look briefly at i terated ultrapowers 
as they come up in the theory of inner models for sequences of measures. 
A typical two stage iteration would look like 

(a) i" Mo iQ, M 1  -- ult(Mo, Uo) i~ 3//2 - ult(M1, U1) 

where n0 < ~1 and Ui is an ultrafilter on ~i in Mi for i - 0,1. By 
property (1) above, if x C P(~o) M Mo then x E Uo ~ no E io (x ) ,  and 
since t~ 1 > t~ 0 we h a v e  i 1 ( ~ o )  - t~0 and hence x E Uo ~ ~o C i ( x ) .  
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~o 

Mo in ; M1 il > M2 

il(t~0) = t~0 

Figure 1 

Since ~o is never moved after the first embedding io, we can keep track 
of Uo by keeping track of the ordinal ~o. This situation is illustrated in 
figure 1. 

Now consider the same situation with the measures Uo and U1 replaced 
by overlapping extenders Eo and El,  so that the embedding (3) becomes 

(4) i :  Mo io)M1 = ult(Mo, Eo) io;M2 = ult(M1, E1). 

Now we want to use property (2) to keep track of Eo, but this will require 
keeping track of the whole interval [~o, Ao) instead of just the ordinal ~o. 
Unfortunately ~1 < A0, and as a consequence il is not the identity on this 
interval, as is illustrated by figure 2 where the generators of Eo, indicated 
by the thicker line, are broken up by the embedding il. 

~o 

t~o 

Mo in; M1 il ) M2 

i1()~0) 

i1(t~1) 

Figure 2 

The theory breaks down because of the difficulty of keeping track of 
these moving generators. Fortunately there is a way out, namely iteration 
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trees. The iteration (4) is restructured to become a tree 

M1 - ult(Mo, E0) 

Mo 

il 

M2 - ult(Mo, Ex) 

where the extender EI is applied to Mo even though it is a member of, 
and would thus naturally be applied to, MI. In a more general iterations 
of length a this leads to a tree T with nodes (M~ �9 p < a),  where there is 
an embedding from M~, to M~ just in case M~ is below M~, in the tree 
T. The tree T may branch any number of times at any node, and may 
have arbitrarily large height. 

Now suppose that  a is a limit ordinal and the iteration tree T has been 
defined with nodes (M.  �9 u < a). In the case where there only ultrafilters 
this tree never splits, so that  the tree is a well ordering and the limit Ms 
of the iterated ultrapower is just the direct limit of the sets M .  for u < a. 
In this case the only question is whether Ms is well founded. With  a tree 
iteration, there is more of a problem. In the first place, there may or may 
not even be a cofinal branch the tree could conceivably consist of a 
root node and infinitely many branches each of length one. If it does have 
cofinal branches then we can take the direct limit Mb along any cofinal 
branch b of T, and the models Mb may or may not be well founded. In 
order for M to be iterable we will need to have an iteration strategy, that  
is, a function a on iteration trees such that  a(T) is always a cofinal branch 
b of T such that  Mb is well founded, provided that  T is a tree that  was 
formed by following a at all previous limit points. 

If there is no model with a Woodin cardinal then this iteration strategy 
has a simple description: A theorem of Martin and Steel [9] asserts that  
if there are no Woodin cardinals then no tree has more than one cofinal 
branch with a well founded limit, so that  the only possible iteration strat- 
egy is to always pick the unique well founded branch and the condition 
for iterability is that  every iteration tree have at least one well founded 
branch. This would seem to be a II 1 condition, but Martin and Steel 
also show that  if T is a countable tree with no well founded branch then 
there is a witness to this ill foundedness which is continuous in T, so that  

1 the condition is II~. Recall that  the well ordering of the reals of L is A 2 
because of the fact that  "E is well founded" is H~, while the ordering of 
the reals in the Dodd-Jensen core model is A31 because the assertion that  
every countable iterated ultrapower of a countable model M - (w, E) is 
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well founded is II~. Thus the well ordering of the reals of the core model 
is still A~ up through a Woodin cardinal. 

As soon as we pass a Woodin cardinal we will have trees with more 
than one well founded branch b, but Martin and Steel prove that  below 
two Woodin cardinals there is at most one of these branches such that  
the direct limit MD has the additional property that  every iteration tree 
starting anew from Mb has a well founded branch. The iteration strategy 
then calls for choosing the branch with this stronger property, and the 
iterability condition on M is that  there always is such a branch. This is 
a II~ condition, and thus the well ordering of the reals is now A~. 

There remains the problem of showing that  there exists some sequence C 
such that  every iteration tree on L[~'] has a well founded branch. With the 
unbranching trees which come from using only ultrafilters this problem of 
iterability has a simple solution: If all of the ultrafilters in C are countably 
complete then every iterated ultrapower will be well founded. Steel's 
solution for iteration trees which so far is only a partial solution is 
given by background embeddings. For each (~, A)-extender E in the inner 
model M we require that  there be a background embedding i* : V ~ M* 
in the real world which extends E in the sense that  Ea = {x C 7)(~n)NM : 
a C i* (x)} for each a E [A] n, but which is stronger than the embedding i E. 
The appropriate notion of "stronger" has changed with the development of 
the theory. When Steel first introduced background extenders he required 
that  the embedding i* map a rank into a rank, so that  much more than 
huge cardinals were needed in order to get an inner model with a Woodin 
cardinal. Martin and Steel then reduced this requirement [9] so that  an 
inner model with a Woodin cardinal could be constructed using only a 
Woodin cardinal in the universe, and finally Steel [19] further weakened 
the requirements on the background extenders so that  they can be used, 
with restrictions, to construct a core model. 

Background extenders, while useful, present a problem: it is not pres- 
ently known how to get the extenders without assuming some sort of extra 
large cardinal structure in the universe. Steel's original notes assumed 
that  there was a complete ultrafilter on the definable subsets of the class 
of ordinals. This condition can apparently be weakened to a strong form 
of ineffability, but it is not know whether it can be eliminated. The 
difficulty that  this causes in applications is illustrated by a theorem of 
Steel asserting that  if there is a ~2-saturated ideal on wl together with a 
measurable cardinal then there is an inner model with a Woodin cardinal. 
The measurable cardinal is needed in order to provide the extra large 
cardinal structure needed for the core model. The conclusion probably 
follows from a saturated ideal alone, but no proof is known. 
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The other two problems arising from the movement to extenders come 
from the fact that  the sequence $ of extenders may have cofinally many 
extenders E~ with critical point below some fixed ordinal c~. Recall that  a 
mouse in the Dodd-Jensen core model is a set m = L~[U], where m ~ "U 
is a measure on ~" and L~+I[U] ~ Ic~l = p < ~. Thus there is a subset 
Xm of p which is definable in, but not a member of, L,~[U]. To see the 
critical role this set xm plays in the theory, we recall the definition of the 
well ordering of the mice. Suppose that  m = L,~[U] and m ' =  Loj[U'] are 
two mice, each of which adds a new subset of an ordinal p < min(a, ~'). 
To see which is larger we form iterated ultrapowers 

L~[U] i) L~[U*] 

La,[U'] i') L.,[U*] 

so that  i(U) = i'(U') = U* agree. Since p < min(n,~ ' )  both  of the 
embeddings i and i ~ are the identity on p and hence the sets xm and xm, 
are definable in, but not members of, Lu[U*] and Lu,[U*] respectively. 
Suppose that  u < u'. Then xm C L~+I[U*] C L~,[U*] and hence xm E 
m' = La, [U] so that  m' is larger than m in the well ordering of the mice. If 
the mice m and #~ contain extenders then this no longer works, since the 
mice m and m ~ may have cofinally many extenders s with critical point 
smaller than p, and hence the embeddings i and i ~ need not be the identity 
on p. There is a way around this: we build into the theory of iteration 
trees the condition that  whenever this situation arises we will apply the 
offending extender to the core model K rather than to the current iterate 
of the mouse m. The weak covering lemma referred to earlier, asserting 
that  A+ -- A+(K) for singular cardinals A, can then be used to substi tute 
for the use of the set xm above, and in fact the argument shows that  this 
situation never occurs on the unique well founded branch of the final tree. 
Unfortunately this approach is c i r c u l a r -  we need to be able to compare 
mice long before we can prove the covering lemma. Steel avoided this 
problem by again using the extra large cardinal structure in the universe 
to show that  the weak covering lemma holds on a stat ionary class even 
without the covering lemma. This allows the core model theory to go 
through, eventually proving a form of the covering lemma which implies 
that  the weak covering lemma is true everywhere. Again, this trick comes 
at a cost: it only works with the assumption that  we have this extra large 
cardinal structure. 

The final problem is more subtle. In order to see where the problem 
arises we will consider the core model for two measures, which has the 
form L[Uz, U2, AJ] where U1 and U2 are the two measures and A//is the 
class of mice. The measures U1 and U2 are chosen in sequence, so that  
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nothing is known about  U2 at the t ime U1 is chosen. Thus some care is 
required in picking U1 to ensure that  it will remain iterable after U2 is 
chosen. There is no such problem with the mice. To see why this is so it 
is enough to recall the Dodd-Jensen mice below one measure, which have 
the form m = L~[W] where W is a measure on a cardinal ~ in L,~[W] but 
Ic~l < ~ in La+I[W].  There is no need to worry about the well foundedness 
of ultrapowers of the core model by W, since W is not a measure even in 

With  extenders this si tuation can change. An extender which first ap- 
pears in a mouse m may have critical point smaller than the projectum 
p of m, so that  it may survive to be an extender in the final core model. 
Thus the same care has to be taken in adding mice to the core model as 
is necessary in adding extenders. 

This section has concentrated on problems arising in dealing with larger 
embeddings, and seems to suggest that  what was a difficult construction 
in the original core models has become exponentially more complicated. 
It is true tha t  the models have become more complicated, but we conclude 
this section on a more positive note, outlining one development which has 
lead to a substantial  simplifications even in the older cases where there 
were no extenders, only measures. 

The original construction of the core model for sequences of measures 
[14] involved three different sorts of models. First  there were ordinary 
inner models for sequences of measures, which had the form L[U] where 
U is a sequence of measures. Next were the mice, which had the form 
La[U r P, ~/Y] where W was a sequence of measures peculiar to the mouse, 
and finally there was the core model itself, which had the form L[U, A/f] 
where A/l was the class of mice. Some ten years ago I proposed, in an 
a t t empt  at a solution of the first two problems described above, a first ap- 
proximation to the concept of i teration trees together with the suggestion 
tha t  all three models should have the same form. In particular a mouse 
should look like the core model, having the form m = L~[U r a,  A/t t a] 
where j~4 r a is the set of all mice smaller than m. I dropped work on 
this approach, part ly because I was unable to solve the iterability prob- 
lem but also because this approach seemed likely to become excessively 
complicated. Recently Stu Baldwin mentioned to me tha t  he had been 
thinking of a approach which, on examination,  turned out to be essen- 
tially the same as mine. He remarked that  this approach made things 
much simpler, so I went back and looked at it again and I found tha t  he 
was right: this approach not only makes a good inner model theory for 
extenders possible, but it makes the core model theory much simpler even 
for well understood models such as L[#] and the Dodd-Jensen core model. 
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The proper approach turns out to be to code the class A4 of mice by 
the extenders appearing in the mice. Thus the core model K has the form 
L[~ c] where 5" is a sequence containing both full extenders in L[s and 
partial  extenders which are extenders only in mice from L[~c]. The actual 
condition on the sequence ~c is that  each member 5"~ of the sequence is an 
extender only on sets in L[t~ [ v]. The extender ~c may or may not survive 
to be an extender in LIE]; this depends on whether there is a subset x of 
the critical point ~ of E~ which is in L[E] but is not in L[~ c t v]. The 
mice in this approach turn out to be simply the initial segments L~[~ r [ a] 
of the full core model L[5"]. Fine structure can be defined in this model 
word for word the same (except for the need for a X]0 code) as it is defined 
in L; and condensation holds exactly I as in L, at least for substructures 
of L~(E) of the form 7-fL~(E)(pUp) where p is an ordinal, p is finite, and 
If(pUp) is the Skolem hull. 

w 4. W h a t  is to  be  d o n e ?  

I will conclude this paper with a list of three conjectures, some of which 
are repeated from earlier in this paper. These conjectures will illustrate 
the depths and gaps of our current understanding of the core model. In 
general, the depths become shallower and the gaps deeper as the size of the 
cardinals increase: We have a very good understanding of the core model 
up to a strong cardinal, and with the results outlined in this paper we have 
a good understanding, with serious gaps, up to a Woodin cardinal. Steel 
has looked at the theory for larger cardinals: there are problems at the 
levels of a Woodin cardinal and of infinitely many Woodin cardinals, and 
there are major  difficulties at the level of a measurable limit of Woodin 
cardinals. Beyond this point very little is known, and much of what is 
known consists of results of Woodin and others which indicate that  some of 
the properties which we expect to hold of a core model will eventually have 
to fail. Studies of inner models for these larger cardinals will provide a 
fertile field for research, but most of the questions listed below concentrate 
on the bet ter  understood area discussed in this paper. 

CONJECTURE 1. Assume that the sharp a # exists for every real a (and 
possibly something more), and let K* be either the core model for a 
Woodin cardinal (and slightly more), or the true core model K if there is 
no model with this much large cardinal structure. Then any model M of 
set theory which contains an iterated ultrapower of K* is El-correct. 

1 Actually there is one remaining technicality, although Sy Friedman has suggested a 
way in which this technicality may be avoided. 
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Recall that  this is currently known to be true up to a strong cardinal 
and slightly beyond. A solution to this problem would both materially 
advance our understanding of the core model below a Woodin cardinal 
and provide a valuable tool for the understanding of the core model above 
a Woodin cardinal. 

CONJECTURE 2. I f  there is a a;2-saturated, countably complete ideal on 
a;1 then there is an inner model with a Woodin cardinal. 

It will be recalled that  Steel has proved this with the additional hy- 
pothesis of a measurable cardinal. The problem here is to eliminate the 
need for the extra large cardinal structure in the construction of the core 
model, perhaps by giving a proof of the covering lemma which does not 
presuppose the weak covering lemrna and does not require background 
extenders stronger than given by the proof of the covering lemma itself. 
It is possible that  the extra structure is in fact essential to a full core 
model theory, in which case the behavior in the important  special cases 
in which there is no such structure should be very interesting. 

CONJECTURE 3. Suppose that A is a singular cardinal and A + ~ A +(K). 
Then there is a model M of set theory with a Woodin cardinal and a set 
G such that G is generic over M for some variant of the stationary tower 

forcing and A + - A +(M[cJ) . 

The question here is how stationary tower forcing, the next exception to 
the covering lemma, is to be handled. It is already known (at least with the 
extra large cardinal structure required for the core model) that  a Woodin 
cardinal is required to collapse the successor of a singular cardinal. It 
should be noted that  there is an additional question hidden here: exactly 
what happens if there is inner model with a Woodin cardinal, but nothing 
more. For technical reasons it appears likely that  there may not be a core 
model, at least in the traditional sense, in this situation. 

I will conclude with one more conjecture, which is related to conjec- 
ture (3) but goes far beyond the known core models. The second condition 
was suggested by Woodin. 

CONJECTURE 4. Suppose that M is a model of set theory, M[G] is set 

generic over M,  and A is a singular cardinal of M[G] such that A +(M) is 
collapsed in M[G] and either (i) A is the only such cardinal or (ii) A +(M[C]) 
is accessible in M.  Then there is a model with a ~+-supercompact cardinal 
K,. 

The results outlined in this paper show that  large cardinals, which once 
seemed an amorphous contrast to the order of the constructible sets, can 



174 

in fact be ga the red  into a s imilarly rigid and  powerful s t ruc ture ,  and  the  

problems  listed in this section show tha t  there  is yet much  to be done. 

I expect  this area  to cont inue to be an excit ing a n d  fruitful field in the  

foreseeable future.  
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1. I n t r o d u c t i o n  

The characterization of the finite lattices embeddable into the recursively 
enumerable (r.e.) degrees (possibly with various additional restrictions, 
such as preserving the least and/or greatest element) is important to re- 
cursion theorists for two reasons: On the one hand, it gives insight into 
the (very complicated) structure of the r.e. degrees. On the other hand, it 
constitutes a crucial step in determining the decidability of the universal- 
existential theory of the partial ordering of the r.e. degrees and of the 
existential theory of the r.e. degrees in the language of lattices (where 
meet is a ternary relation), possibly with constant symbols for the least 
and/or greatest element. 

Unfortunately, even though substantial progress has been made, the full 
characterization of the lattices embeddable into the r.e. degrees remains 
open. Work by Lachlan, Lerman, Thomason, Yates, and others [6,13,14] 
led to a proof of the embeddability of all countable distributive lattices 
into the r.e. degrees, while Lachlan [7] showed the embeddability of the 
two nondistributive five-element lattices, M5 and N5. Hopes that all fi- 
nite lattices might embed into the r.e. degrees were dashed by Lachlan 
and Soare [9], who exhibited the counterexample Ss. The latest word on 
lattice embeddings into the r.e. degrees is Ambos-Spies and Lerman [3,4], 
who isolate sufficient conditions (for both embeddability and nonembed- 
dability). It is not known whether these conditions are complementary. 

This research was partially supported by the Mathematical Sciences Research Institute 
(where all three authors stayed in the spring of 1990), the Deutsche Forschungsgemein- 
schaft (for the first author), and the last two authors' NSF grants DMS-8901529 and 
DMS-8900349. 
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All known lattice embeddings into the r.e. degrees preserve the least el- 
ement, 0. Preserving the greatest element, 1, turned out to be quite a bit 
harder. Lachlan [8], and independently Shoenfield and Soare [10], showed 
the embeddability of the diamond lattice preserving 1, and Ambos-Spies 
[1] extended this proof to all countable distributive and some nondistribu- 
tive lattices (the latter all generalizations of N5). 

Here, we show the embeddability of M5 into the r.e. degrees preserving 
1, which is harder since the usual proof for embedding requires infinitary 
traces. We also reprove the embeddability of N5 published in Ambos- 
Spies's thesis [1] but not elsewhere. 

Our notation is standard and generally follows Soare [12] with two ex- 
ceptions. Here, the use of a computation o x  (y) is the largest number 
actually used in the computation and is denoted by qa(y) (and similarly 
for other Greek letters). If the oracle is given as the join of two sets then 
we assume the use function to give the use separately for each set of the 
join, thus r is the same as (I)X ~(~(z)+l)$V r(~(z)+l)(z). 

2. T h e  t h e o r e m s  

We consider embeddings of two lattices, M5 and Nh. Both have five 
elements (including the least element, 0, and the greatest element, 1) and 
are nondistributive. M5 is a modular lattice and contains three pairwise 
incomparable elements while N5 is a nonmodular lattice and contains two 
comparable elements both of which are incomparable to a third element. 
An embedding of a lattice into the r.e. degrees is said to preserve the 
greatest element, 1, if the image of 1 under the embedding is the complete 
r.e. degree 0'. 

The purpose of this paper is to give the proofs of the following two 
theorems: 

THEOREM 1. The modular nondistributive five-element lattice, M5, can 
be embedded into the r.e. degrees preserving the greatest element. 

THEOREM 2. The nonmodular nondistributive five-element lattice, Nh, 
can be embedded into the r.e. degrees preserving the greatest element. 

(In [1], Ambos-Spies also shows the embeddability of several other lat- 
tices (similar to Nh) preserving 1.) 

The proofs of the two above theorems are fairly unrelated. We begin 
with the first and more complicated proof. 



181 

3. T h e  r e q u i r e m e n t s  a n d  t h e  i n tu i t i on  for M5 

We need to construct three incomplete r.e. sets A0, A1, and A2 and an 
r.e. set B such that any two of the degrees of Ao, A1, and A2 join to 0 I 
and meet to the degree of B. We thus also build partial recursive (p.r.) 
functionals F0, F1, and F2 and infinitely many p.r. functionals A and p.r. 
functions A (of which we suppress the indices), and we ensure the following 
requirements: 

$i : B  _T Ai (for i < 3), 

79i �9 F AjGAk = K (where {i,j, k} - {0, 1, 2} and j < k), 

.A/~, k . ~ A j  _ d2Ak total ,.. ~ A  ( A B _ (~aj  ) 

(for j < k < 3, all p.r. functionals (I)), and 

Af t "  ~A~ _ K '.. ~ A ( A -  K) (for i < 3, all p.r. functionals ~). 

(Here K is the complete r.e. set of the halting problem. Notice that we 
assume Posner's trick (see Soare [12]) for the A/I-requirements, so we can 
assume the same p.r. functional (I) for both Aj and At:.) 

The global requirements $i are easily met by putting all numbers en- 
tering B also into all Ai so as to ensure B = Ai N Ri for recursive sets 
Ri. 

The global requirements 7)i are met by ensuring that the functionals 
F AjeAk are total and correctly compute K. (The hard part here will be 
totality.) 

For the local requirements A/rye, k, we use Fejer's strategy [5]. Whenever 
AB(x) is defined but equal neither to (I) A~ (x) nor to oAk(x) then that  
strategy puts a number y _< 6(x) into B to allow the correction of A s (x). 

For the local requirements A/'/~, the problem in meeting ~Ao ~ K (set- 
ting i = 0 to simplify notation) is that protecting computations ~A~ 
for the Sacks preservation strategy conflicts with higher-priority Pj- (and 
M r j,k-) requirements putting numbers into A0 (either directly or via B). 
The usual way to resolve this conflict with 7)j is to fix a number Yo (in- 
dependent of n) and to "lift" uses 7j(yo) <_ r  by enumerating 7j(yo) 
into Ak (for k ~: 0) so that  7j(Yo) > r  can be achieved without having 
injured ~A~ But in order to "lift" all three 7j(Yo) (for j - 0, 1,2), 
we need to put numbers into at least two sets, namely A1 and A2 (since 
~PA~ must not be injured). If we put numbers into A1 and A2 simul- 
taneously, this may injure a higher-priority A/llC,2-requirement and cause 

it to destroy ~A~ through the correction process. So we have to put 
a number into A1 first, wait for (I)A1 to recover, and then put a number 



182 

into A2. While we wait for (I)A1 to recover, ~A~ is still unprotected 
and thus may be destroyed before we can put a number into A2. If this 
pattern repeats infinitely often then ~A~ is undefined but also "Yo(Yo) 
and 72(yo) enter A1 infinitely often, so FAleA2(y0) and FA~ are 
undefined, injuring our highest-priority requirement. 

We use a trick first used by Ambos-Spies, Lachlan, and Soare in their 
refutation of the existence of a minimal cupping pair of r.e. degrees [2]. 
It consists in not using y = Yo at first but some y - yl > Yo, and then 
repeating the procedure for y = yl - 1, Yl - 2 , . . . ,  Yo. We will be able to 
show that once we have reached y < yl, only a K [ (y + 1)-change can 
cause the destruction of ~A~ 

The full strategy a for an N'o~-requirement thus proceeds intuitively as 
follows (for a fixed number Yo): 

(1) Fix Yl "big", set n = 0. 
(2) Wait for tI/A~ I (n + 1) = g I (n + 1). 
(3) For y = Yl, Yl - 1 , . . .  , Yo + 1, Yo, proceed as follows: 

(a) 

(b) 

Put  7o(Y) and 72(Y) into A1; if y < Yl then also put "h(Y + 1) into 
Ao. Wait for all higher-priority M-strategies to recover. 
Put  7o(Y) and 71 (Y) into A2, and put ")'2(y)into Ao. If y > Yo then 
wait for all higher-priority M-strategies to recover. 

(4) Define A n ( n ) =  K(n), increment n by +1, and go to 2. 

Our strategy assumes that  K r Yo will no longer change; so whenever 
K t Yo does change, we "reset" a (thus discarding An) and start again at 
(1) with the same Yo. (This constitutes only finite injury to a.) Further- 
more, while a is in (3) it may be injured by higher-priority MCj-strategies 
T with r ^ (0) C_ a (i.e. r ' s  of which a assumes the infinite outcome). Be- 
fore performing (3)(b), a will Check if Ao or A2 have changed (on an initial 
segment to be specified later). Before performing (3)(a) (for y < yl), a 
will check if Ao or A1 have changed (again on an initial segment to be 
specified later). If so (in either case), a will destroy ~A~ (by putting 
some 6(y) _< r  into B and thus also into Ao), increment Yl by +1, and 
go back to (2). 

The possible outcomes of the N'o~-strategy a (neglecting the finite injury 
by K r yo) are thus as follows: 

(A) a eventually waits at (2) forever. Then clearly ~Ao ~ g .  
(B) A~ is total. Then we will be able to show A, = K, a recursive 

computation for the nonrecursive set K. Thus this outcome cannot 
actually occur. 

(C) Otherwise. Then n must come to a limit, no, say; Yl is incremented 
infinitely often; and ~Ao (no) must be destroyed infinitely often (we 
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call this the "infinite outcome for n0"). We will be able to show 
in this case that  for each y', eventually ~A~ will always be 
destroyed before we put 7j(Y') into any Ak (for j ,k C {0, 1,2}), 
thus allowing each Fj to be total. In order to show this, we will 
use the fact that  when yl > y' and n = no then ~A~ can only 
be destroyed if either y > y' or K r (Y' + 1) changes (where the 
latter, of course, can occur at most finitely often for each y'). The 
hard part  will be to show that  no higher-priority M-s t ra tegy  ~- 
with r ^ (0} C_ a (i.e. of which a assumes the infinite outcome) will 
injure a infinitely often while y < y'. Here we will use the fact that  
A0 "holds one side" for ~- if T is an A/t~ or AJ0~,2-strategy, and 

that  Aj "holds one side" for 7- if T is an A/t~,2-strategy where j - 2 
between (3)(a) and (3)(5) and j = 1 between (3)(b) and (3)(a). 
(For this, we use a variant of the concept of "configurations" from 
Slaman's proof of the density of the branching degrees [11].) 

We are now ready to describe the full construction. 

4. T h e  c o n s t r u c t i o n  for M5 

Our tree of strategies is the full binary tree T - 2 <~ with the ordering on 
T induced by the ordering on 2. The requirements Si and Pi are global 
and will not be put on the tree. We effectively w-order the "/~j,k- and 

Aft-requirements as {,A/in }new and {Afn }new, respectively. A node p e T 
works on A/In if ]Pl - 2n is even, and on Af~ if IPl - 2n + 1 is odd (we call 
p an .A/in- or Afn-strategy, respectively). We identify 0 with the infinite 
outcome and 1 with the finite outcome of a strategy p. 

Each A/In- (or Afn-) strategy p c T builds a p.r. functional Ap (or a p.r. 
function Am, respectively) to satisfy its requirement. (We will frequently 
suppress the index on A and A.) 

A strategy p C T is initialized by making all its parameters undefined 
and its functional undefined on all arguments. A strategy p E T is reset 
by initializing it, except that  if p is an N-s t ra tegy  then p's parameter  Yo,p 
remains defined. A parameter  is defined big by setting it to a number 
greater than any number mentioned thus far in the construction. 

We now describe each stage of the construction. 

At stage 0, we initialize all strategies and let all F Aj@Ak be undefined 
on all arguments. 

A stage s + 1 consists of substages t _ s + 1 with some additional 
action before the first and after the last substage. At each substage t, a 
strategy p c T of length t is "eligible to act" and either "ends the stage" 
or determines the strategy p' D p eligible to act at substage t + 1. 
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yo I 
y 

~ p" IOl eligible next~-------~ .... ;+~---------~ 

" set i 
[p (1) eligible next" = Y' ! 

]put ")',(y)and "),j,(y)into AJ'kr 
j set s ,  = current stage, 

, [end stage | 

for each such r: 
put/~,.(y,.) into 
B and all Av, 
increment yl by +1 

~T(T ca.n  

s.-injure p) a•:put 
~'i(V) and ~,j(y) into Ak, 

put 7k(Y) into Ai, 
set s, - current stage, 
:end stage 

.,e, ^(,,)= ur ] 
increment n by +1,] 
initialize all p' > p ,] 

increment Ya by +1 

for each such r: 
put 6,.(y,.) into 
B and all Av, 
increment yl by +1 

3 r ( r  can 

s.-injure p) 
put 7i(Y) into Ai,  

decrement y by q-1 

Diagram 1: The A/'/*-strategy p, 

Diagram 
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Before the first substage of stage s + 1, we determine the (least) n C 

Ks+l - Ks (if any). If n exists then, for all i, j ,  and k such that  F A~eAK (n) 
is currently defined, put ~/i(n) into B, and thus into Ai, for all i ~ < 3, and 
reset all strategies p C T for which there is an Af-strategy a _< p whose 
parameter  Y0,~ is defined and > n. Now proceed to substage 0 of stage 
s + 1, at which the strategy 0 is eligible to act. 

At a substage t of stage s + 1, suppose p is eligible to act. We distinguish 
cases depending on whether p is an f14- or an H-strategy.  

If p is an AJ~,k-strategy we first check if there is a (least) Xo such that  
B Ap (Xo) is defined but equals neither (I)AJ (Xo) nor (I) Ak (Xo). If so then pick 

X l _< xo minimal such that  

(1) VX(Xl  ~__ X < XO 
Vi E {j ,k}(~A~(x) l-- AB(x)  ~ ~A~(x) >_ 5p(x + 1))). 

(I.e. correcting AB(x0) by putt ing 5p(Xo)into B and thus all Ai's would 
trigger a cascade of corrections ending with the correction of AB(xl) . )  
Then put 6p(xl) into B and all Ai's. 

Next check if the length of agreement 

[(p) - max{x I Mx' < x( A'(x ') $-- 1)} 

is now greater than at any previous stage at which p was eligible to act. 
If so then for each x < g(p) (for which now A B ( x ) i s  undefined) set 

B (x) was defined before and B ( x ) -  (I) Aj (x) with the previous use (if Ap Ap 
no 5p(y) (for y _< x) has entered B since the last definition of AB(x))  or 
v~ith big use (otherwise), and end the substage by letting p^ (0) be eligible 
to act next. Otherwise, end the substage by letting p^ (1) be eligible to 
act next. 

Now assume an 2r p is eligible to act at substage t. We 
describe its action using the flow chart in Diagram 1. After each initial- 
ization, p starts in state init, and at each substage at which it is eligible to 
act, it proceeds from one state (denoted by a circle) to the next, following 
the arrows and along the way executing the instructions (in rectangular 
boxes) and deciding the t ru th  of s tatements (in diamonds, following the 
y-arrow iff the s tatement  is true). The parameters  defined in the flow 
chart intuitively have the following meaning: n is the argument at which 
we currently a t tempt  to define A; y is the number for which the ")'e(y)'s 
are currently lifted by strategy p to a large number; y0 and yl are the 
current lower and upper bounds for y; i, j ,  and k are indices of the sets 
Ai, where {i,j ,  k} = {0, 1, 2}, i is determined by A/'~, and j < k; and s, 
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is the latest stage at which markers were lifted (this parameter  is needed 
to measure (potent ial) injury) .  

Given an A//$,k,-strategy T with T ̂  (0) C_ p (i.e. of which p guesses the 
infinite outcome and by which p could be injured), we define (for 1 - j~ 
or k') 

m~ - #z  >_ max{~pA'(y) l b~(y) <_ r  1<_ z 

, ~A, (y) 1< z)).  

(Note that  we allow m~ - c~ if oA,(y) T for some y with AB(y) $.) We 
say 7 can s.-injure p at stage s + 1 if (a) p was in waitAj at the beginning 
of stage s + 1, j '  - j, k' - k, and some number _ m~[s.] has entered 
Ak since stage s.  (note that  Ak was supposed to "hold one side" for T); 
or (b) p was in waitAk at the beginning of stage s + 1, j~ - j ,  U - k, 
and some number _< m~[s.] has entered Aj since stage s.  (note that  Aj 
was supposed to "hold one side" for 7); or (c) j '  ~ j or k' ~ k, and 
some number _ m~[s.] has entered Ai since stage s.  (note that  Ai was 
supposed to "hold one side" for T). If (a), (b), or (c) applies then we 
define 

y~ - m~x{y I ~(y)[~ , ]  < r 
We say p has been s.-injured if some number < r  has entered Ai 
since stage s.  (this takes care of miscellaneous injury). Note here that  we 
may assume 

(2) w ( ~  < r  

We end the stage if Diagram 1 specifies so or if s <_ t, otherwise we go 
to substage t + 1. 

Aj@Ak 
At the end of stage s + l ,  i.e. after the last substage, we define F i (n) 

(for each F A~eAk and each n _< s such that  F A~eA~ (n ) i s  now undefined) 

with the previous use (if F AjSAk (n) was defined before and no ~'i(n') (for 

n' <_ n) has entered Aj or Ak since the last definition of r~ea~(n)) or 
with big use (otherwise). Furthermore, we initialize all strategies > the 
strategy last eligible to act, and proceed to the next stage. 

This ends the description of the construction. 
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5. T h e  v e r i f i c a t i o n  for  M5 

Our first two lemmas are easy: 

LEMMA 1 (~i-SATISFACTION LEMMA). B _<W Ai t'or i - 0, 1, and 2. 

PROOF: Fix any number  x. By the construction,  B C_ Ai. So assume 
x c Ai, say x c Ai,s for some stage s. But  then x C B iff x C Bs by the 
construction.  This establishes the claim, m 

LEMMA 2 (RESETTING LEMMA). I f  p C T is initialized at mos t  finitely 
often then it is reset at  most  finitely often. 

PROOF: Since p is initialized only finitely often, the same holds for any 
p' _ p, and thus yo,p comes to a limit. Fur thermore ,  yo,r < yo,p at any 
stage at which yo,p' is defined for any p' _< p. Thus p is never reset after 
Y0,p and K r lim~ yo,p,s settles down. m 

We define the true path  f C [T] by induction as follows: Let p -  f r n. 
Then f ( n )  - 0 if p^ (0) is eligible to act infinitely often, and f ( n )  - 1 
otherwise. 

We now turn  to the M-requi rements :  

LEMMA 3 (,A/~,k-SATISFACTION LEMMA). I f  an A/l~,k-strategy r C f is 
eligible to act infinitely often and is initialized at most  finitely often then 
it satisfies its requirement.  

PROOF" Suppose ~Aj _ ~Ak are both  total.  By Lemma  2, r is reset at 
most finitely often, so Ar  is never discarded after some (least) stage so, 
say. By the first par t  of r ' s  action in the construction,  AB(x)  l #  (I)A' (x) 
is impossible for any x. 

Thus we only have to show A B (x) I for all x. Suppose this fails for some 
(least) xo, and A B r xo as well as oA5 (x0) and oAk(xo)  are defined by 
correct computa t ions  after some (least) stage Sl ___ so. Since lims gs(r) - 
c~, we have p^ (0} C f and thus AB(xo)[S] must  be defined at infinitely 
many stages s. Since AB(xo) T, we have lim~ 6r,~(Xo) -- C~. By the way 
&-,~(Xo) is defined, it can only be increased by the action of r or some 
A/'-strategy a _D r ^ (0). Once 5~,,(x0) >_ ~Aj(xo), ~gAk(xo) and s > 81, 
r will not increase a~,~(Xo) by our assumption on Sl and by (1). There  
are only finitely many A/'-strategies a _D r ^ (0} tha t  ever set their  s ,  < sl.  
Let s2 _ S l be the least stage such tha t  each such a will either never put  
5~(y) (for y <_ xo) into B after stage s2 or has already set its s,  k Sl. 
Suppose some N - s t r a t e g y  a _D r ^ (0} causes 5~(xo) to increase by put t ing  
5~(y~) into B (for y~ < Xo) at a stage s > s2. By our assumpt ion on Sl 
and the minimal i ty  of Xo, we have y~ - xo. Then  Aj  r (m~[s,] + 1) or 
Ak I (m~[s,] + 1) must  have changed between stage s,  and s; wi thout  loss 
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of generality assume the former has changed. Since s, >_ s l and by our 
assumption on sl, m~[s,] > ~A~ (x0). But by the definition of y~ (= xo), 

we have 6~(x0 + 1)[s,] > r  and thus, by 6~(xo)[s,] >_ ~AJ(xo)  , we 
have m~[s,] < ~A~ (Xo), a contradiction. II 

We now prove a very technical lemma, which constitutes the induc- 
tive step in the proofs of the satisfaction of both the Af- and the P- 
requirements: 

LEMMA 4 (CONFIGURATION LEMMA). Let {i, j, k} = {0, 1, 2} with j < k. 
Let a C f be an N~-strategy, and suppose that a is not initialized or reset 
after some (least) stage so. I f  a reaches state waitAk with parameter y at 
a stage Sl > so, then ~A'(n) will not be destroyed after stage sl unless 
K t Y changes. If  a reaches waitS, having defined A(n) for some n at a 
stage sl > so, then ~Ai(n) will not be destroyed after stage Sl. 

PROOF: Let { i , j , k }  = {0, 1,2} with j < k. Let 

= {T Ad~,k-strategy ] 7 ^ (0) C_ a A �9 p.r. functional), and 

72 - {T JVl~,,k,-strategy ] 7 ^ (0) C a A �9 p.r. functional 

A ( j C j ' o r k ~ k ' ) } .  

(These are the M-strategies "dangerous" to a.) We will first note that  
by reverse induction on y E [Yo, Yl] the following hold: 

(3) If a is in waitAj with y = Yl then 

(3a) 7i(yl), 7k(Yl) > m~[s,], r  for all T e ~ ,  and 
(35) 7i(Yl), 7k(Yl) > m~[s,], r  for all ~- e T2. 

(4) If a is in waitAk with y = Yl then 

(4a) 7i(Yl), 7j(Yl), 7k(Yl) > m~[s,], r  for all T e ~ ,  and 
(45) 7i(Yl), 7j(Yx), 7k(Yl) > m~[s,], r  for all 7 e ~ .  

(5) If a is in waitAj with y < yl then 

(ha) 7i(Y), 7j(Y + 1), 7k(Y) > m~[s,], r  for all T e ~ ,  and 
(55) 7i(Y), 7j(Y + 1), 7k(Y) > m~[s,], r  for all T e T2. 

(6) If a is in waitAk with y < Yl then 

(6a) 7i(Y), 7j(Y), 7k(Y) > m~[s,], r  for all T e ~ ,  and 
(6b) 7i(Y), 7j(Y), 7k(Y) > m~[s,], r  for all 7- e :T2. 

(7) If a reaches wait~ while defining A(n) for some n at a stage s > so 
then (6a)-(65) hold for this n and s until a reaches a new state. 
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It is not hard to verify (3)-(7), keeping in mind the definition of the 
F-uses, the actions of a, and the fact that the right-hand sides are defined 
and finite since all the T C T1 U T2 have outcome 0 at stage s. (i.e. greater 
length of agreement than at all previous T-stages). 

Note that a ends the stage when it reaches any state other than wait~ 
and initializes all p > a when it defines A on some n. By this feature, the 
definition of the m~'s, our assumption on so, and (3)-(7) we have after 
stage So" 

(8) After a reaches waitAk for some y and n, we have 

(8a) q/i(y), q/j(y), ~/k(Y) :> m~, r  for all T e T1, or 
(85) 7/(Y), 7j(Y), 7k(Y) > m~, r  for all 7 e T1; and always 
(8c) 7i(Y), "/j(Y), 7k(Y) > m;,  r  for all v e T2 

unless K r Y changes later. 
(9) After a reaches wait~ having defined A(n), we have (Sa)-(Sc) for 

y - y0. 
By (8a)-(8c) and (9a)-(9c), we have established the lemma since the 
7 c T1 U T2 are the only strategies able to destroy ~A~(n) but are pre- 
vented from doing so by m~ or m~ for 7 C T1, and by m~ for T C T2, 
respectively, m 

The satisfaction of the N-requirements now follows easily: 

LEMMA 5 (.Af?-SATISFACTION LEMMA). I f  an A/'~-strategy a C f is 
eligible to act infinitely often and is initialized at most finitely often then 
it defines A~ - K t dom Ao correctly and satisfies its requirement. 

PROOF" Suppose a is not initialized or reset after some (least) stage s', 
using Lemma 2. Then, after stage g,  a will pick a big n (call it no) and 
will try to define A~(n) for all n >_ no. Once A(n) is defined, the corre- 
sponding gJA~(n) cannot be destroyed by Lemma 4 and our assumption 
on s', establishing the first half of our claim. 

Now suppose tI/AN - -  K ,  and fix s~ __ s' (for n _> no) such that t~ Ai 

(n + 1) is never destroyed after stage s~ and such that Ks.  ~ (n + 1) - 
K r (n + 1). Then, after stage sn, a will enter states waitAj and waitAk 
with this n and, since ~A, (n) is no longer destroyed, return to state wait~ 
only after having defined Aa(n). Thus A a ( n ) -  K(n)  for cofinitely many 
n, establishing the satisfaction of the Af/ -requirement. m 

LEMMA 6 (INITIALIZATION/ELIGIBILITY LEMMA). Each p C f is eligible 
to act infinitely often and is initialized at most finitely often. Thus all 
A/I~, k- and Afi~-requirements are satisfied. 

PROOF: Since K is not recursive the domain of Aa for any N-strategy 
a c f must be finite. Thus no N-strategy a C f will initialize a ^ (0) 
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infinitely often. Furthermore, a can be in states waitAj and waitAk at 
most finitely often before returning to state waitS, and it will return 
almost always via injury. Thus a will not end the stage at infinitely many 
of the stages at which it is eligible to act. This establishes the first half 
of the lemma. The rest follows by Lemmas 2, 3, and 5. m 

LEMMA 7 (~i-SATISFACTION LEMMA). If { i , j ,k}  = {0, 1,2} and j < k 
then F AjeAk = K. 

PROOF" By the construction it is impossible to have F A~Ak (z) ~# K(z) 

for any z. It thus suffices to show that  F Aj@Ak is total. So assume 

F A~eAk (z) is undefined for some (least) z. By the construction, F A~Ak (z) 
Aj~Ak 

is defined infinitely often, and by the assumption on z, F i (z) is de- 
stroyed infinitely often by some N-s t ra tegy  a. By the way Y0 is picked, 

only finitely many N-strategies  a can destroy F A~eA* (z), so say ao is the 

<-least of them destroying F A~eAk (z) infinitely often. Then necessarily 
ao C f (by initialization). By Lemmas 6 and 2, ao is not initialized or 
reset after some (least) stage So. Thus limb Yl,8 - co, say yl,~ > z + 1 for 
all s > S l (for some S l > so). Then a0 must reach waitAk with y - z + 1 
infinitely often, and, by the first sentence of the proof of Lemma 6, almost 
always with the same n. So ~A, (n) is defined infinitely often after stage so 
when ao reaches waitAk with y - z + 1 but later destroyed. By Lemma 4, 
K r Y must change every time, a contradiction, m 

This concludes the proof of Theorem 1. We now turn to the proof of 
Theorem 2. 

6. T h e  r e q u i r e m e n t s  a n d  t h e  s t r a t e g i e s  for N5 

We have to construct r.e. sets A0, A1, A2, and B such that  for ai = deg(A~) 
(i = 0, 1, 2) and b = deg(B), 

ao U a2 = 01, 

a l  CI a2 = b~ 

b < a 0 < a l ,  and 

b < a 2 .  

We ensure this by the following requirements: 
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S"  B ~T Ao ~T A1 and B ~T A2, 
P "  K _~T Ao | A2, 

.A/[ 0"  (I)A1 -- (I)A2 total ~ 3A(A B -- (I)A1) (for all p.r. functionals ~), 

D~ �9 Ar ~- ff~s (for i -- 0, 2 and all p.r. functionals ~),  and 

~pl~ . A1 ~_ ~Ao (for all p.r. functionals ~). 

The global requirement S is met by direct coding, i.e. whenever a num- 
ber enters B (Ao, resp.) it also enters Ao, A1, and A2 (A1, respectively). 

To satisfy the global requirement P we construct a functional F which 
computes the complete set K from Ao | A2. We will define F implicitly 
by a marker function 7(x) which may be viewed as the use function of F. 
The xth position of 7 at the end of stage s will be denoted by 7(x)[s]. 
The marker obeys the following rules (for any numbers x, y, s, t): 

(~,o) 
(~) 

(~) 
(~4) 

x r y ~ ~(x)[~] ~ ~(y)[t], 

7(x)[s] ~= 7(x)[s + 1] ~ 7(x)[s] < 7(x)[s + 1] 
and, for some i e {0, 2}, 7(x)[s] e Ai[s  + 1], 

lims 7(x)[s] exists, 

7(x)[s] r (Ao U A2)[s], and 
x e K s + l  - K s  ~ 7 ( x ) [ s ] e ( A o U A 2 ) [ s + l ] .  

Then, by (71) and (72), 7*(x) "- limsT(x)[s] exists and 7*(x) = 
sup s 7(x)[s]. Moreover, by (71) and (73), 7* _<w Ao | A2. Finally, by 
(7 3 ) and (74), 

7*(x) - 7(x)[s] ==~ Ks(x) - K(x). 

So to compute K(x) from Ao | A2, F A~ computes the first stage s 
such that 7*(x) = 7(x)[s] and checks whether x has entered K by the end 
of this stage. If so, x C K; otherwise x r K. 

For the local requirements A/I r as in the preceding proof, we use Fejer's 
strategy [5]" Whenever A B (x) is defined but equal neither to �9 A1 (x) nor 
to oA2(x) then the strategy puts a number y _< 5(x) into B to allow the 
correction of AB(x). 

For the local requirements :D~ for i = 0 (i = 2, respectively) we basically 
use the Friedberg-Muchnik strategy: The strategy has a follower x. If 
~I/B(x)  --  0 at some stage then it puts x into Ai and tries to preserve the 
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computation ~B(x). The latter conflicts with the A/l-strategies which are 
the only ones which put numbers into B. To prevent that an infinitary 
higher-priority strategy A/I ~ destroys ~I/B (X), the T~-strategy attacks only 
at O-expansionary stages and tries to protect the computations (I)A2 (y) : 
A B (y) (or (I)A1 (y) = AB(y), respectively). This is achieved by initializing 
lower-priority 79- and A/t-strategies and by lifting markers ~,(z) _ ~(y) by 
enumerating them into A~. 

The strategy for the local requirements T~  is similar but slightly more 
complicated. Again the strategy has a follower x and waits for ~Ao (x) = 0. 
Then it wants to put x into A1 and hold A0 t ( r  1) to ensure 
Al(x) ~ ~A~ Now, to lift a marker 7(z), however, we have to put 
7(z) into A2, since putting 7(z) into A0 might destroy ~A~ So if we 
put x into A1 at the same time, for some A/I ~ and y as above we might 
destroy both sides of an agreement 

thereby causing A~ r to put a number u <_ 5(y) into B and therefore into 
Ao (by 7)), which might destroy ~A~ This problem is overcome by 
doing the attack in two stages. 

At the first expansionary stage we lift markers 7(z) via A2 to protect 
�9 A~ (and hold A1 to prevent ,~4 r from acting). Then, at the next ex- 
pansionary stage, we put 7(z) into A0 and x into A1, thereby diagonalizing 
(and now hold A2 to prevent A/l r from acting). 

7. T h e  c o n s t r u c t i o n  for Ns 

We define the tree of strategies to be 

T - {x e 2 <~ I Vn(a(2n + 1) I ~ a(2n + 1) - 1)}. 

Let {AJn}~e~ and {:P~}~ew be effective listings of the M ~- and 79~- 
requirements, respectively. As before, node a works on A/In if ]cr I - 2n 
is even and on 79~ if lal - 2n + 1 is odd; and we call a an ,~4n- or 79,~- 
strategy, respectively. (Since the 79n-strategies are finitary we have put 
only their finitary outcome 1 on the tree T.) Every jk4n-strategy a builds 
a functional A~ to satisfy J~4n. Initializing a strategy a is defined as in 
the previous construction. We let In(a)[s] be the greatest stage t _< s at 
which a is initialized. 

M ~ For n with A/In - we let 

~ (n) [ s ] -  max{x " Vy < x(on~(y)[s] J,- ~A2(y)[s] 1)}. 
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Here we adopt  the convention tha t  if oA~(y)[s] 1r  oA~(Y)[ s + 1] then 
oA~(y)[s + 1] T ("hat- t r ick",  see Soare [12]). 

Based on the length function t~, a-stages and a-expans ionary  stages are 
defined as usual by induction on [a[: Any stage is a 0-stage, and stage s 
is 0-expansionary if s = 0, or s > 0 and Vt < s (t~(0)[t] < f(0)[s]). For a 
with lal > 0, s is a -expans ionary  if lal = 2n is even, s is a a-stage,  and 

g(n)[s]  > m a x { g ( n ) [ t ]  " t < s A t is a (r-stage}. 

Finally s is a a ^{/}-stage if < s and either i - 0 and s is a-expansion- 
ary, or i - 1 and s is a a-s tage but  not a a -expans ionary  stage. 

The unique string a of length s such tha t  s is a a-s tage will be denoted 
by a[s]. 

In the following description of the stages of the construction,  a number  
y is called big if y is bigger than  all numbers  mentioned in the construct ion 
up to this point (with the exception of the values of the marker  function 
~). 

S t a g e  0: Initialize all strategies a. Let ~ / (x) [0] -  2(x, 0}. 
S t a g e  s + 1: The stage consists of 6 steps. 
S t e p  1" Initialize all strategies a with dis] < a. 
S t e p  2 (D-Strategies)" For any a c_ dis] with - 2 n + l  odd and ~)n = 

:D/~, a requires a t tent ion if either a has no follower or, for the follower x, 
Ai(x)[s] - ~B(x)[s] - 0 ( i f /  e { 0 , 2 } ) o r  Al(x)[s] - ~A~ -- 0 (if 
i - 1 ) .  

Fix the least a which requires at tent ion,  say lal - 2n + 1, 7Pn -- 7P~. 
(If no a requires at tent ion,  Step 2 is vacuous.) Say tha t  a acts. Initialize 
all strategies a '  with a < a ' .  If a has no follower, let x be the least big 
odd number  and appoint  x as a a-follower. If a has a follower, say x, then 
distinguish the following 3 cases. 

C a s e  1: i c {0, 2}. Then put  x into Ai. Moreover, for any y _> In(a)[s],  
put  7(y)[s] into Ai and let 7(y)[s + 1 ] -  2{y, s + 1). 

C a s e  2: i -  1 and x is not yet confirmed. Then,  for any y _> In(a)[s], 
put 7(y)[s] into A2, and let -/(y)[s + 1] - 2(y , s  + 1). Say tha t  x is 
cont~rmed. 

C a s e  3." i - 1 and x is confirmed. Then put  x into A1. Moreover, 
for any y _> In(a)[s],  put  "~(y)[s] into A0 and let -/(y)[s + 1] - 2(y, s + 1). 
Moreover, for any y >_ In(a)[s],  put ~/(y)[s] into A0 and let ~'(y)[s + 1 ] -  
2 ( y , , ) s  + 1. 

S t e p  3 (P-Strategy)"  For any x such tha t  x e K s + l - K s  and 7 ( x ) [ s +  1] 
has not been redefined in Step 2, put  ~ , (x ) in to  A0, let ?(x)[s  + 1] - 
2(x, s + 1}, and, for any a such tha t  la[ is odd and x < In(a)[s],  cancel 
the a-follower (if there is any). 
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If not stated otherwise above, -y(y)[s + 1] - ~/(y)[s]. 
S t e p  4 (A/l-Strategies; correction): For any a such that  a has not 

been initialized in the previous steps and [a[ is even, say la] = 2n and 
A/~n = Ad r and for any number y do the following: If r r 
AS(y)[s] ~ g2A2(y)[s] then put 6o(y)[s] into B, let ~ (y ) [ s  + 1] T and 
AB(y)[s + 1] T, and initialize all a '  with a ^ (0) <L a' .  

S t e p  5 (M-Strategies; extension): For any a such that a ^ (0) C_ a[s], 
a has not been initialized in the previous steps and such that [a I is even, 
say [a I = 2n and A/In = A/~ r and for any number y do the following: If 
y < e(n)[s] and AB(y) T then let AB(y)[s + 1] -- c A ~ ( y ) [ s ] -  cA2(y)[s] 
and let 6~(y)[s + 1] be the previous use (if AB(y) has been defined before 
and no 6a(y') for y' < y has entered B since the last definition of AB(y)) 
or the least big odd number (otherwise). 

S t e p  6 (S-Strategy): Put any number which has entered B (A0) in one 
of the previous steps also into Ao, A1, and A2 (A1, respectively). 

This completes the description of the construction. 

8. T h e  ver i f i ca t ion  for N5 

LEMMA 1 (8-LEMMA). B ~_T A0 ___T A1 and B ~T A2. 

PROOF: Any number x which enters any set under construction at stage 
s + 1 has not entered any other set under construction at any previous 
stage. So the claim is immediate by Step 6 of stage s + 1. m 

The true path f E [T] is defined to be the leftmost path through T such 
that  for any n, f r n C_ a[s] for infinitely many s. 

We say x is a permanent a-follower if x is a-follower from some stage 
on. 

LEMMA 2 (INITIALIZATION LEMMA). Let a C f .  

(a) a is initialized only finitely often. 
(b) I f  [a[ is odd then a acts only finitely often and has a permanent  

follower. 

PROOF: We proceed by induction on [a[. 
Fix so such that a <_ a[s] for all s _> so and such that, by inductive 

hypothesis, no a t with a t C a acts after stage so. Then a will not be 
initialized in Step 1 or 2 of any stage s > so. Moreover, no 8r(y) for 
T ̂  (0) <L a will be appointed after stage so (in Step 5), whence, there 
will be a stage S l > So such that  a will not be initialized in Step 4 of any 
stage s _> s l and hence will not be initialized after stage S l at all. 
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Now, if [a[ is odd, fix s2 > 81 such that  Ks2 r (81 -[- 1) = K r (81 -[- 1). 
Then no follower of a will be cancelled in Step 3 of any stage s >_ s2, 
whence any a-follower existing after stage s2 is permanent.  Moreover, if 
s3 is the least a-stage > s2 then either there is a a-follower at the end of 
stage sa or a a-follower is appointed at stage sa. So a will act at most 
once (if i C {0, 2}) or twice (if i = 1) after stage s3 + 1. m 

LEMMA 3 (P-LEMMA). K _~T Ao | A1. 

PROOF" By the discussion of the P-s t ra tegy preceding the construction 
it suffices to show that  the function 7(x)[s] satisfies conditions (@)-(@).  
For (7~ and (73)-(@) this is immediate by the construction. For a 
proof that  liras 7(x)[s] exists fix x. By Lemma 2, choose stages sl and so 
such that  81 > 80 > X, Ol[80] C O~[81] C f ,  and no a with a _< his0] acts 
after stage S l. Since any a with c~[so] < a is initialized in Step 1 of stage 
so + 1 > x and since only such a will act after stage s l, 7(x)[s] will not 
be redefined in Step 2 of any stage s + 1 > Sl. So the value of 7(x)[s] 
will change at most once after stage s l, namely if x enters K after that  
stage, m 

LEMMA 4 (/k-CORRECTNESS LEMMA). Let 2t4 r - - /~n,  I O ' 1 -  2Tt, and 
a^(O) c f .  If s is a a^(O)-stage and AB(y)[s] $ then AB(y)[s] -- 

PROOF" For a contradiction assume that  AB(y)[s] r oA~ (y)[s]. Let t be 
the greatest stage < s such that  AB(y)[t] T. Then t is a a-expansionary 
stage and 

A B ( y ) [ s ] -  AB(y)[t + 1] -- oA~(y)[t]- oA~(y)[t]. 

Since s is a-expansionary, too, we must have AB(y)[s] ~- oA1 (y)[s] t and 
AB(y)[s] ~ oA2(y)[s] I. So, by the "hat-trick", there must be a stage v 
such that  t < v < s (whence AB(y)[t + 1 ] -  A B ( y ) [ v ] -  AB(y)[s]), and 
AB(y)[v] ~ oA~(y)[v] and AB(y)[v] ~ oA2(y)[v] (where one of the right- 
hand side computat ions is undefined). So, by Step 4 of the construction, 
A s(y)[v + 1] T contrary to the choice of t. m 

LEMMA 5 (M-LEMMA). Each M r is met. 

PROOF" Without  loss of generality, we may assume that  (I)A1 -- (I)A2 
is total. Pick n and a such that  Ad ~ - A/in, lal - 2n, and a C f .  
Then, by assumption, lims g ( n ) [ s ] -  c~. So there are infinitely many a- 
expansionary stages, whence a ^ (0) C f .  Moreover, by Lemma 2, there is 
a stage after which a is never initialized. It easily follows from Step 5 in 
the construction that  A B is total and, with Lemma 4, that  A s - r m 
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LEMMA 6 (T) -LEMMA).  Each T)~ is met. 

PROOF: We give the proof for i = 1. (The other cases are similar and 
somewhat  simpler.) Fix n and a such that  T~n - ~ ,  l a l -  2n + 1 and 
a C f .  B y L e m m a 2  there i s a s t a g e  So such that  at stage s o + l  c a -  
follower x is appointed which will never be cancelled. We will show tha t  
Al(X) ~: ~A~ We distinguish two cases. 

C a s e  1. There is a a-stage s > So such tha t  

CAo l= 0. 

Then let s l be the least such stage. By the choice of So, a acts at stage 
Sl + 1 and x becomes confirmed. Now let s2 be the least a-stage > Sl. 

We claim that  

(,) B[Sl] I 81 = B[82] { 81 and A,[sl] I 81 = A,[s2] t sl 

for i = O, 1, whence in part icular  

tI/A~ (X)[82] -- II IA~ (X)[81] -- 0 

via the same computat ion.  For a proof of ( , )  we note that  all strategies 
a ~ > a are initialized whence such strategies cannot injure ( ,) .  Moreover, 
since, by choice of so, a is not initialized after this stage, no M - s t r a t e g y  
a ~ with a ~  ̂(0) <L or will put  a number into B after stage so and no :D- 
s t rategy a ~ with a ~ < a will put  a number into any set Aj (j = 0, 1, 2). 
Since a itself does not destroy ( , )  (at stage sl + 1 it puts  numbers into A2 
only and it does not act before stage s2 + 1 again), this leaves only the 7'- 
s t ra tegy and M-s t ra teg ies  7- with T ̂  (0) C_ a. Now, by action of a at stage 
s + 1, 7(y)[s l  + 1] > sl for all y with y _> In(a)[Sl]. So if the 7)-strategy 
injures ( , ) ,  then it enumerates some 7(y)[s] with y < In(a)[Sl] _< In(a)[s] 
into some Ai, which will result in cancellation of the follower x contrary 
to the choice of x. Finally, consider an M - s t r a t e g y  T with r ^ (0) C_ a. 
Then S l is T-expansionary and, by Lemma 4, 

Now 7 will injure ( ,)  at a stage s + 1 > sl only if, for such a number  
y, ~Al(y)[sl] ~: ~A~(y)[s] and ~A2(y)[sl] =/= ~A2(y)[s], i.e. if some other 

s t ra tegy has injured Al[Sl] t sl  - Al[s2] t Sl before. As we have shown, 
however, this will not happen. 
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Now at stage s2 + 1, a becomes active again and puts x into A1. To 
show that  ~A~  = q2A~ = 0 (whence ~Pn is m e t ) i t  suffices to 
show 

(**) B[s2] r s2 = B I s2 and A2[s2] r s2 = A2 r s2. 

This is shown as ( ,) .  We only have to note that  a acts at stage s2 + 1 
for the last t ime and that  it does not put any numbers into B or A2 at 
this stage. (Also note that  the 7(y)[s2] which a enumerates into Ao have 
been lifted at stage Sl already whence they cannot injure the computat ion 

C a s e  2. Otherwise. Then ~A~  ~= 0 and x never enters Ax. So 
A I ~: ~Ao whence l)1 ~ is met. m 

This completes the proof of Theorem 2. 
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C O N T R I B U T I O N S  TO T H E  H I S T O R Y  OF V A R I A T I O N S  
OF W E A K  D E N S I T Y  IN T H E  n-R.E.  D E G R E E S  

MARAT M. ARSLANOV 

Department of Mathematics, University of Kazan 

A set A c_ w is called n-r.e, if n - 1 and A is recursively enumerable 
(r.e) or n > 1 and there is an r.e. set A1 and an n-r.e, set A2 c_ A1 such 
that  A - A1 - A2. A Turing degree is called a n-r.e, degree if it contains 
a n-r.e, set; it is called properly n-r.e, if it is n-r.e, but  not n -  l-r.e. 
Clearly a set A is n-r.e, if and only if there is a recursive function f such 
that  for all x limb f ( s , x ) -  A(x), f (0 ,  x ) -  0 and 

(1) card{s " f ( s  + 1 , x ) #  f ( s , x ) }  < n. 

In the obvious way, a set A C_ w is called w-r.e, iff it satisfies the same 
definition where (1) is replaced by 

(1') card{s " f ( s  + 1,x) ~- f ( s , x ) }  < h(x) 

for some recursive h. The reader should note tha t  if a set A satisfies 
(1') for some recursive h then it satisfies (1') for any recursive unbounded 
function g (see [1]). 

The existence of properly a-r.e, degrees was first proved for 1 < a < w 
by Cooper [2] and for a - w by Epstein [5] and Lachlan (1968, unpub- 
lished), who showed that  there is an w-r.e, minimal degree, and tha t  
every nonrecursive n-r.e, degree for 1 < n < w bounds a nonrecursive 
r.e. degree, respectively. 

During the past decade, an intensive s tudy of the s t ructure of n-r.e. 
(and more part icularly d-r.e.=2-r.e.) degrees was initiated. Interest in 
the n-r.e, degrees stems from their affinity with the r.e. degrees, a l though 
a number  of recent papers have sought several essential differences be- 
tween these structures.  Probably  the most fundamental  result in this di- 
rection is the Cooper-Harr ington-Lachlan-Lempp-Soare Nondensity The- 
orem, which states t h a t  the part ial  orderings of n-r.e, degrees for any 
n > 1 are not dense. 



200 

THEOREM 1 (Cooper, Harrington, Lachlan, Lempp, Soare [3]) There ex- 

d < a < 0  I. 

Some authors studied variations of the next "weak" density problem for 
n-r.e.degrees. Let n _> 1 and I ( n )  denote the set of integers k such that  
for any two n-r.e.degrees a < b there is a properly k-r.e.degree c such 

that  a < c < b. The question is whether k E I ( n )  for several k, n. The 

next two results assert that  for any n > m > 1, m ~ I ( n )  and 2 e I(1),  
respectively. 

THEOREM 2. (Hay and Lerman [6]) For all n, m such that  n :> m > 1, 
there exist n-r.e.degrees a < b such that  there is no m-r.e.degree between 

them. 

THEOREM 3 (Cooper, Lempp, Watson [4]) Given r.e. degrees a < b  there 

exists a properly  d-r.e, degree c such that  a < c < b. 

Further, the Nondensity Theorem for n-r.e, degrees asserts that  for any 
n > 2 and k > 1, k fd I (n ) .  Therefore, the only open question in this 
area is whether n E I(1) for all n > 2. 

Our notation generally follows Soare [8]. 

1. T h e  t h e o r e m s  

In this paper we study the next related question. Let a and b be d- 

r.e. degrees such that  a < b and either a or b is r.e. In which cases do 

r.e. degrees c exist such that  a < c < b? 

Before presenting our results, we survey the related results known to 
us. We first consider the case when a is r.e. 

THEOREM 4. (Lachlan, unpublished) For any n-r.e. 

r.e. degree c such that  0 < c < b. 

b > 0 there is a 

THEOREM 5. (Kaddach, unpublished) There are r.e. a and d-r.e, b such 

that  a < b and there is no r.e. degree c between them. 

Assume now that  a is d-r:e, and b is r.e., a < b. 

LEMMA 1. (Cooper, Harrington, Lachlan, Lempp, Soare [3]) There exists 

a d-r.e, degree a < O' with no n-r.e, c such that  a < c < O' for any 

n < w .  
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This result compares with theorem 7 below. For the case c r.e. it was 

first obtained by Hay and Shore (unpublished). 

The next theorem also follows from known results. 

THEOREM 6. For any high r.e. degree b < 01 there exists a d-r.e, degree 

a < b with no r.e. degree c such that a < c < b. 

PROOF" Let b < 01 be an r.e. degree such tha t  b I - 0 II. Harr ington 

proved (see [7]) tha t  every high r.e. degree has the anticupping property:  
there is a nonzero r.e. degree d < b such tha t  for no r.e. c < b does 

b - d U c. Cooper, Lempp and Watson [4] proved tha t  there is a d- 

r.e. degree a < b such tha t  a U d -  b. Obviously, there is no r.e. degree 

c between a and b. 

Studying the last question we add to this list of known results the next 
two theorems. 

THEOREM 7. Given r.e. sets A , P  and a d-r.e, set B - B ] -  B2 such 

that A ( T  B, B i T P  and B2 ~ T  P, there is an w-r.e, set X such that  

A <T X <T B.  

We have noted above tha t  we can choose the sets A and B so tha t  in 
this theorem X cannot  be r.e. A very interesting open question is the 
following: is it possible to generalize the theorem so tha t  the condition 
"X~-r .e ."  is replaced by "Xn-r.e."  for some n, 1 < n < w? 

THEOREM 8. Given an r.e. set A <T 01 A I ~, ,  , ~ T  there is a d-r.e, set B 
such that A <T B and there is no r.e. set C such that A <T C <T B.  

Theorems 6 and 8 imply the following interesting 

COROLLARY. For any high r.e. degree a < 01 there are d-r.e, degrees b 

and c such that  b < a < c and a is the single r.e. degree between b and 

c. (0?  course, it means that  any high r.e. degree a is definable in Tt (the 

structure of  the r.e. degrees) using two parameters from D2 (the set of  

b y  f o r m u l a  b, - b < x < 

2. T h e  p r o o f  of  T h e o r e m  7 

We first note tha t  given an r.e. set A and a d-r.e, set B such tha t  A <T 
B <T ~', it is easy to prove the existence of an r.e. set P such tha t  A <T P 
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and BITP. Indeed, it suffices to construct such a set P - A @ Q meeting 
for all e the requirements: 

& .  S -r 
T ~ . Q r  A. 

The overall requirements will ensure that  either A <T P <T B and the 
theorem is proved with the r.e. set P instead of X, or A <T P and PITB. 

Let us give a recursive enumeration {Ks}se~ of the creative set K.  To 
meet Te we compute (I)eA((e,x)) for any x C Ks. If for some t _> s and 
r C w ~eA,*str $= 0 then (e,x) C Qt, otherwise (e,x) q~ Q. Obvi- 

ously, either there is an x such that  OAe((e,x)) ~ Q((e,x}), or for any x 
we have x E Ks & (I)eA,~ tr ((e, x)) $ for the least s -+ As t r ~ A t r Thus, 

_ we have x C K ~ x E Ks,, where s' #s{3r  C w~ e,s , 
As = A I r and K is hence recursive in A. 

The strategy for meeting S~ (cycle k) is next. 

1. Fix a length of agreement x > (e, k/. 

2. Wait for a stage s at which 
T ( A s @ Q )  ~r 

Bs r x = (Pe,s s t x for some r 

3. Start  cycle k + 1, to run simultaneously. Set 

and restrain Q r r from strategies of lower priority. 

4. Wait for B(k) to change at some stage t > s. 
(If A t r changes between stages s and t, then go back to 2.) 

5. Cancel cycles greater than k. Wait for a stage u > t at which a new 

~(A~eQ~) re' t x is achieved for some r 2 r agreement B~ t x -  ~e,~ 
(Obviously, this happens only if A~ r r ~ As r r 

6. Set B(k) - B~(k) - A A~ re(k). Cancel the restraint of this cycle 
and start  cycle k + 1. 

Ao 

There are three possible outcomes of this strategy. 

Some cycle waits forever at 2 or 5. It clearly means that  B ~ (I) AeQ 
and we meet Se. 

B. There are infinitely many cycles, and every cycle finishes in 4 or 6. 
It obviously means that  B _~T A which contradicts the condition. 
Therefore, Se cannot have this outcome. 

C. There are infinitely many cycles, and A t r changes at any time 
between stages s and t. It means that  (I) A~Q is partial and we 
again meet Se. 
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It is easy to see that  Se as well as Te, e E w, causes finite injury to 
lower priority requirements. So, the whole construction is a finite injury 
argument on the priority orderings So, T o , . . . ,  Se, T~, . . . .  

Therefore, let P be an r.e. set such that  P I T B  and {Ps}~e~ be a recur- 
sive enumeration of P. We construct an w-r.e, set M ~<T B meeting for 
all e E w the requirements 

A 

. B # 

Then X = A | M will be the desired w-r.e, set. 
The priority ranking of requirements is U0, Vo,. . .  , Ue, Ve, . . . .  

To ensure that  M ~T B we use the permit t ing argument.  The strategy 
for Ve proceeds as follows (cycle k). 

1. Choose an x > (e, k). 

2. Wait for a stage s at which Bs r x - O(AsseMs)rr I x for some r 

3. Start  cycle k + 1, to run simultaneously. Set 

. 

5. 

Restrain M [ r from other strategies with priority St. 

Wait for B ( k )  to change at some stage t > s. 

Cancel cycles > k. Wait for a stage u >_ t at which a new agreement 

d)(Au@Mu) re' rx 

. 

o 

. 

10. 

is achieved for some r (Notice that  this can happen only if A~ r 

Cancel the restraint of M r r 

If Bu(k )  - 0 (thus B ( k )  - B u ( k ) )  then  set B ( k )  - FA~(r 
Start  cycle k + 1. 

If B~(k )  = 1 then restrain M r r set B ~(k )  - F Ate' (k) and star t  
cycle k + 1, to run simultaneously. 

Wait for B ( k )  to change at some stage v > u. 

Cancel cycles > k. Wait for a stage w > v at which a new agree- 
ment 

m(AwOM~) re" 

11. 

is achieved for some r  (Again, this can happen only if A.  r r # 
A~ [ r 

Cancel the restraint of M t r and set B ( k )  = Bw(k )  - F ArC' (k). 
Start  cycle k + 1. 
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There are three possible outcomes: 

A. Some cycle waits forever at 2, 5 or 10. Then clearly B ~ (I)A@M 
and we meet V~. 

B. There are infinitely many cycles, and every cycle finishes in 4, 9 or 
11. Then B ~T A, which contradicts the condition. Therefore Ve 
can not have this outcome. 

C. There are infinitely many cycles, and A [ r or A [ r changes 
at any time between stages s and t or between stages u and v, 
respectively. Obviously, this means that  (I) A is not total  and we 
again meet Ve. 

INJURY LEMMA for Ve. Any Ve-strategy causes finite injury to lower pri- 
ority requirements. 

PROOF: If Ve has outcome (A) then each of its finitely many cycles causes 
finite injury to lower priority requirements. If Ve has outcome (C) then 
each of its cycles creates restraints which later are cancelled. Therefore, 
Ve again causes finite injury to lower priority requirements. 

Strategy for Ue (cycle k). 

1. Wait for a stage s at which k E Ps. Start cycle k +  1 to run 
simultaneously. 

2. Wait for a stage t > s at which (I)eA~((e, k)) ~. 

A~ 3a. If Oe,t((e, k)) - 1 then restrain (e, k> from Z and close this cycle. 

3b. If oeA[(<e, k)) - 0, then 

4. Wait for B [ (e, k) to change at some stage u ~ s. 

5. Put  (e, k) into X if it is not restrained by some V/of higher priority. 
(If (e, k) is restrained by some V/, i < e, then 

1 Wait for a stage u ~ > u at which the restraint of V/ is lifted and 5~. 
then go to 5.) 

6. Wait for a stage v > u at which again By [ (e, k) = Bt, [ (e, k) for 
some t' < t. 

7. Remove (e, k> from X and go to 4 with s - v if (e, k> is not re- 
strained by some V/, i < e. (If (e, k> is restrained by V/, i < e, 
then 

1 Wait for a stage v ~ > v at which the restraint of V/ is lifted and 7~. 
then go to 7). 
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LEMMA 2. X _<T B and X is w-r.e. 

PROOF: Obviously, by the construction we have X _<T B and X is w-r.e." 
there exist not more than 2 ( e , k ) +  2 stages s such that  Bs t {e,k) # 
B s+l r (e, k). Therefore, for any k, X((e,  k)) changes its value not more 
than 2(e, k} + 2 times. 

LEMMA 3. X_<T A. 

PROOF: Assume that  X - ~A for some e and choose the least k such that  
any x k k is never injured. Then 3ccx{x E Ps & ff~eA~ ~r I for some least 
s e w a n d r  C w&(As  r r  A r r (Obviously otherwise we have 
P _<T A). If Vx k k{[x e P~&'~A~rr l =  0 for some least s 
and r  r r - A r r ~ B~ r (e,x) - B r (e,x)},  then obvi- 
ously we have B _<T A (9 P --T P. Therefore, for some x > k we have 
x E P ~ & g A ~ r r  ~ for the least s , r  ~ A8 I r  A I r and 

�9 ~A~r -- 0 ~ Bs I {e,x) # B I ((e,x)). This means that  at the 
cycle x of the Ue-strategy we meet Ue. 

LEMMA 4. B ~T A (9 X.  

PROOF" At the end of the description of the V~-strategy we have seen 
that  if the s trategy for Ue is finite injury then for any e we meet Ve. 

The above lemmas establish the theorem. 

3. T h e  p r o o f  of  T h e o r e m  8 

Let A be an r.e. set, A' : T  ~" and ~' ]~T A. We construct a d-r.e, set B 
meeting for all e C ~o the requirements 

T~ " B r ~A; 

S ~ . w ~ - , ~ A e ~  ~ W~-r~ 
- - e  

Then A | B will be the desired set. 
In satisfying Se we shall construct a functional Fe. The priority ranking 

of the requirements is To, So, T1, S1 , . . .  , Te, Se, . . . .  
The strategy for Tr is the same as that  for T~ of Theorem 7. Let us 

now consider the requirement Se. We may assume that  A is e-dominant, 
namely, the computat ion function CA defined by 

CA(X) = #s{d8 r x = d r x} 

dominates every total  recursive function f ,  i.e., 

3xoVx _> XO{CA(X) > f(x)}. 
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The strategy for Se (cycle k) proceeds as follows: 

1. Choose an x > (e, k). 

2. Wait for a stage s at which 

(x) We, l X - - - - e , s s  (I)(AsOBs) tr I X for some r 

3. Start cycle k + 1, to run simultaneously. Set 

where r _ any r used to stage s of the construction. 

4. Wait for W~(k) to change at some stage t > s. 
(Note: If A r r or B [ r changes between stages s and t, go back 
to 2.) 

5. Restrain B r r from other strategies of lower priority from now on, 
cancel cycles greater than k, and 

6. Wait for a stage u > t at which a new agreement 

(I)(A~'@B~') ~r I X (xx) 

is achieved for some r 

7a. If (xx) is achieved because of Au r r r At r r (clearly we have 
ff~(At@Bt) ~r We,t I X -  ~e,t I x, see Note at 4.) then set 

7b. 

7bl. 

7b2. 

cancel the restraint of B t r and start cycle k + 1. 

Suppose now that  A~ t r - At I r Therefore we have Bt I r r 
B~ r r There are the following possible cases. 

Some b is removed from B at stage t ~, t < t ~ < u. This means (see 
7b3 below) that  either some requirement Si, i < e, of higher priority 

is satisfied at some stage k' because Wi(k ' )7  ~ (~(e A@B)[r (k/), or 
later A [ r will be changed. By construction we restrain B t 
r in the Si-strategy at some stage < t ~ hence r > r (see 3.). 
Therefore, in this case we must wait for A [ r  (C_ A [ r to 
change at some stage v > u and then go to 8. 

Bu D_ Bt, and 3b <_ r (b E Bu - Bt and b is restrained by some 
Si-requirement with restraint B [ r In this case for all such b 
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7b3. 

~ 

we wait for A [ r to change at some stage v > u and then go to 

7b3. 

Bu ~_ Bt, and Vb (b C Bu - Bt ~ b is not restrained by require- 
ments of higher priority). Remove all these b from B and wait for 
A r r to change at some stage v > u. 

Set We(k) - We,v(k) - F A ~r (k). Cancel restraints of Se and start  
cycle k + 1. 

The 

A~ 

B~ 

C~ 

D�9 

possible outcomes for Se. 

Some cycle waits forever at 2 or 6 Clearly, then We ~: ~A~B and 

we meet Se. 

There are infinitely many cycles, and every cycle (beginning for 
some cycle k) finishes in 4., 7a. or 8. Then clearly We <_T A and 
we again meet Se. 

There are infinitely many cycles which finish in 7b1~. This means 
that  any of their A r r is not changed after stage u. Hence, some 
requirement Si, i < e, is satisfied at stage u. But there are finitely 
many requirements of higher priority, therefore we cannot have this 
outcome. 

There are infinitely many cycles which finish in 7b2. To prove that  
we again cannot have this outcome we define by induction a total  
recursive function he which contradicts that  A is e-dominant. 

Suppose x0 is the greatest integer such that  he(x) is defined for any 
x _ x0. Define he(xo + 1) - u (the stage where a new agreement is 
achieved, see point 6. of the description of the Se-strategy). Clearly if he 
is not total  then we do not come to 6. from 4. at some cycle k. Therefore, 
We ~ ffpAGB and we meet Se ~ e  

Let b _< r be an integer which is enumerated in B at some stage t I > t 
(see point 4. of the description of the Se-strategy) and after that  at point 
3. of cycle k I of some Si-strategy, i.e., creates a B [ r with 
r >_ b. (Otherwise, if it creates a B r r at stage t / < t, b 
may be removed from B without problems.) To force A r r to change we 
want to have x0 + 1 _ r and we slightly modify the definition of r in 3." 
r must be greater than ~, where ~ - max{x �9 h~(x) is defined at some 
stage < s and for some e}. 

Now it is obvious that  the existence of infinitely many cycles which 
finish in 7b2 means that  he is total  and CA does not majorize he. 

Therefore, there are only two possible outcomes (A) and (B) for the Se- 
strategy. If the strategy Se has outcome (A), then it causes finite injury to 
lower priority requirements. If it has outcome (B), then each of its cycles 
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crea tes  r e s t r a in t s  which  la te r  are cancel led.  

finite in ju ry  to  lower p r io r i ty  r equ i r emen t s .  

Therefore ,  Se aga in  causes  
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R I G I D I T Y  A N D  D E F I N A B I L I T Y  
I N  T H E  N O N C O M P U T A B L E  U N I V E R S E  1 

S. BARRY COOPER 

University of Leeds, Leeds LS2 9JT, England 

w 1. T h e  n o n c o m p u t a b l e  un ive r se  

It followed from Ghdel [1931], [1934] that most functions are not effectively 
computable and most interesting mathematical theories are undecidable. 
This led to an awareness of, and a growing interest in, a noncomputable 
universe intimately connected with the world of everyday mathematics. 
This noncomputability is of a fundamental nature, and does not arise from 
mere practical limitations such as those on capacity of memory or duration 
of computational processes. An important aim of recursion theory is to 
investigate the context of interesting mathematical objects (for example, 
Ghdel's undecidable theories) within the noncomputable universe, and 
Kleene and Post [1954] proposed the degrees of unsolvability (or Turing 
degrees ) as an appropriate theoretical framework, or fine structure theory, 
within which to do this. 

The subsequent development of local degree theory (concerned with 
that part of the noncomputable universe already manifest in the work 
of Ghdel) was largely based on an autonomy of interest and motivation 
through which evolved elegant techniques and striking results, while its 
general impact amongst mathematicians and computer scientists was lim- 
ited by its seeming preoccupation with pathology and technique of ever 
more prohibitive complexity. The need to match this complexity with an 
understanding of the wider significance of the theory has meant a more 
recent emphasis (already apparent in Lerman [1980]) on the global the- 
ory of the Turing degrees (focused largely on a number of basic questions 
raised by Rogers [1967] and by Kleene and Post [1954]). 

1The author received support from SERC Research Grants nos. 
GR/H 02165 during the preparation of this article. 

GR/F 42003 and 
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There are of course a number of notions on which to base a useful fine 
structure theory, of which two are especially important. 

DEFINITION 1.1 (Turing [1939], Kleene [1943], Post [1943] etc.). Let A, B 
be sets of numbers. Then 
(1) (Many-one reducibility ) A <_m B r A - f -  1 (B), some recursive f . 
(2) (Turing reducibility ) A <_T B r 3 an oracle Turing machine T which 
computes XA using an oracle for B. 

Many-one reductions are historically significant as the recursion the- 
oretic analogues of natural translations between formal theories (see for 
example Davis [1958]), while Turing reducibility is thought to include, es- 
Sentially, all possible notions of effective computability relative to oracles. 

w 2. Bas ic  s t r u c t u r e  t h e o r y  

We use standard notation and terminology (see for example Soare [1987]). 
For instance, corresponding to the ith Turing machine, Oi denotes the 

ith partial recursive (p.r.) functional 2 ~ ~ 2 ~, so that  A ~T B if and 
only if A - �9 B for some i 6 w. 

DEFINITION 2.1 (Post [1944], Kleene-Post [1954]). A, B are Turing equiv- 
alent (A ~T B) i[ and only if A ~T B and B ~T A. The degree of 
unsolvability or Turing degree of A is defined by 

deg(A) = {X e 2 ~ I A  --=T X}. 

We write <_ for the partial ordering on ~P, the set of all degrees, 0 for 
the least degree, consisting of all recursive sets of numbers, and T~ for the 
structure (T), <_1. 

To notate the analagous degree theoretic notions derived from many- 
one reducibility in place of Turing reducibility it is usual to append a 
subscript m. For instance/~m denotes the structure of all m-degrees with 
the ordering induced by _<m. 

The most important nonrecursive degree 0' is that  containing the 
(coded) undecidable axiomatic theories of GSdel, as well as many other 
natural mathematical objects. When relativised to an arbitrary set A 
of degree a, it gives rise to a jump operator taking a to a strictly 
higher degree a', defined as the largest degree containing sets which are 
effectively enumerable (or recursively enumerable , written r.e.) using 
oracle A. Post's Theorem [1944] showed a close relationship between 
the quantifier forms of most naturally occuring sets of numbers and the 
ascending sequence 0 < 0' < 0" < . . .  < 0 ('~+1) - (0(n)) ' < . . .  
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(0 being the degree of the recursive sets). Feferman [1957] and Shoen- 
field [1958] showed the r.e. degrees to be exactly those degrees containing 
(coded) recursively axiomatisable first-order theories. 

DEFINITION 2.2. Let W A - domcb A denote the i th recursively enumer- 

able in A (A-r.e. ) set (Wi - W r being the i th r.e. set). Then the 
j ump  (n + 1 th j ump  ) of a set A is defined by A' - A (1) - {x [x 6 W A} 
(A(~+ 1) = (A(~))'). 

The j ump  operator on degrees is defined by a' = deg(A'),  A c a, 
where a < a', and a' is the least upper bound of  the degrees of sets r.e. 
in A E a. We also write a (n+l) = deg(A (~+1)) = (a(~)) '. We define the 
standard a;-jump of a by a (~) = deg(|  A r a. 

We write 1)' for the structure (Z), _<,' >, and ~ for the structure of  the 
r.e. degrees. 

We assume that we have standard recursive sequences {(I)i,~}s>O, 
{W .A }s>0 of finite approximations to the p.r. functionals and r.e. sets 
respectively. We denote by A[s] the corresponding approximation to an 
expression A at a stage s. A superscript s may also be used to convert a 
particular set, function or relation to its sth-stage approximation. 

w 3. Q u e s t i o n s  

Given an oracle A, an examination of its context within the noncom- 
putable universe can be approached via two general and related questions: 

I. Which relations on 1) are (first-order) definable in 1) or 1~'? 
II. Which relations on 1) are unchanged under all automorphisms of  

1), i.e., are order-theoretic? 

In particular, we have: 

3.1. (Kleene-Post [1954]) Are 0' and the j ump  operator definable in 1~? 
3.2. (Rogers [1967]) Are 0' and the j ump  operator order-theoretic? 
3.3. (Slaman-Woodin [1986]) Is ~ definable in 1~? 
3.4. (Rogers [1967]) Is the relation of  "r.e. in" definable in 1)/order 

theoretic? 

Since the notion of a relation being order-theoretic is not language based 
it is more widely applicable than that  of definability, but it may be trivial 
without an answer to the fundamental question: 

III. Do there exist any non-trivial automorphisms of  1) or 1)'; i.e., Is 1) 
o r / ) '  rigid? 

Related to the question of rigidity are those of homogeneity: 
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3.5. (Yates [1970]) For which a , b  e D is T~(>a) -- /~(>b)  or 
D'(_>a) - D'(_>D) ? 

and of strong homogeneity: 

3.6. (Rogers [1967]) For which a , b  e 
D'(_>a) - D'(_>b)? 

Of course, analagous versions of the above questions exist for the other 
known degree structures, in particular for the many-one degrees Dm. 

/P is D (_>a) -~ D (_>b) or 

w 4. R ig id i ty  a n d  t h e  m a n y - o n e  deg rees  

In contrast to the Turing degrees, initial segments of ~ m  can be con- 
structed by successive extensions. The elements of the technique for doing 
this appears in the simplest such construction: 

PROPOSITION 4.1. (Lachlan [1972]) Every m-degree a has a strong min- 
imal cover (that is, a degree b such that 9m(<  a) = ~ m ( ( b ) ) .  

This leads to a striking characterisation of the structure of the many- 
one degrees. Dm is fixed by a few known basic properties and the special 
feature allowing extensions of ideals of 9m isomorphic to any 'reasonable' 
ideal. Call a partially ordered set L an m-ideal if and only if 

1. L is a distributive uppersemilattice with least element. 
2. L has the countable predecessor property. 

Then 

THEOREM 4.2. (Ershov [1975], Paliutin [1975])~m can be characterised 
(up to isomorphism) as the only m-ideal with power 2 ~~ satisfying: 

(~) Any  ideal I of T~m can be extended to one isomorphic to any m- 
ideal with power < 2 ~~ which contains an ideal isomorphic to I. 

PROOF: Given any two m-ideals L1, L2 with power 2 ~~ satisfying (~), we 
can use (~) as the basis for a back-and-forth argument which builds an 
isomorphism between L1 and L2. 

Theorem 4.2 gives immediate answers for Dm to all the global questions 
of the last section. 

COROLLARY 4.3 (STRONG HOMOGENEITY). Any two upper cones of Dm 
are isomorphic. 

PROOF: Straightforward re|ativisation shows that any Din(>__ a) is an m- 
ideal with power 2 ~~ satisfying (~),  so is isomorphic to Dm by Theorem 
4.2. 
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COROLLARY 4.4 (DEFINABILITY). Om iS tile only order-theoretic m- 
degree, so is the only definable m-degree. 

PROOF: Given a > 0,~, find b # a with Din(< a) ~ :Dm(< b). Extend 
this isomorphism to an automorphism of ~}Pm along the lines of the proof 
of Theorem 4.2, where a is not a fixed point. 

In fact (since there are 2 s~ choices of b): 

Every order-theoretic/definable set of m-degrees ~{0m} has power of the 
continuum. 

Finally: 

THEOREM 4.5 (AUTOMORPHISMS). (Shore) There are 22~~ automorph- 
isms of T~.~. 

PROOF: Note that if a -- 0m the back-and-forth argument underlying the 
proof of Strong Homogeneity produces an isomorphism T~m ~ / ~ m  in 2 ~~ 
steps. By exercising choice at successor stages in extending the partial 
isomorphisms build a tree of height 2 ~~ of automorphisms of / )m.  

A more detailed discussion of the global characteristics of /~m can be 
found in Odifreddi [1989]. 

w 5. R ig id i t y  a n d  t h e  Tu r ing  degrees  

The fact that many-one reductions are unable to use to the full the indi- 
vidual information content of a given oracle is reflected in the fact that ~)m 
is as far from being rigid as it can be. Nothing is nontrivially definable in 
/),~, strong homogeneity holds, and there are many automorphisms. The 
extra subtlety possible with Turing reductions gives a very different, more 
differentiated kind of degree structure. Firstly, many degrees and classes 
of degrees are definable in ~.  

THEOREM 5.1 (DEFINABILITY). The following are first-order definable 
in 1), and so are order-theoretic: 

(&) Ot (and so 0 (2), 0(3), . . .  ), 

(b) the jump operator, 
(c) all the jump classes Higlh, Low~, n > 0 (where a C Higlh r 

a < 0' & a (~) - 0 (n+l) and a CLown r a < 0 ~ & a (n) - o(n)), 
(d) (Jockusch and Shore [1984]) .4-  the set of all arithmetical degrees 

(a E .4 r a <_ 0 (n), some n), 
le, 

2Slaman and Woodin [1986] used codings in the degrees to show ~,. definable in # ( <  0') 
using a finite number of parameters. 
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(f) the relation 'REA' (i.e., 'recursively enumerable in and above'), 
and 

(g) the relation 'r.e. in'. 3 

PROOF: For (b) relativise (a) to get a definition of a in/)(_>a). (c) fol- 
lows immediately from (b). Since (Jockusch and Soare [1970]) the set of 
arithmetical degrees is definable in 1)i (using Spector's exact pair theorem) 
as the smallest jump ideal of/~' ,  we can also get (d) from (b). Standard 
relativisation of (e) gives (f). We return to (a), (e) and (g)later.  

For information on the historical background to Theorem 5.1 see Shore 
[1981], Lerman [1983], Odifreddi [1989] or Cooper [tall. One important 
consequence of Theorem 5.1 is that results concerning definability in :D I 
also hold in/) .  

COROLLARY 5.2. Any relation on1)(>_ 0 (3)) which is definable in second- 
order arithmetic is definable in 1). 

PROOF: Shore [1982] showed it for / ) ' .  Result follows by the definability 
of the jump in/9. 

However, the definability of the jump does not help us in defining jump 
classes in the degrees below 0 I. Shore [1988] showed that High, and Low~ 
are definable i n / ~ ( <  0 I) for n _> 3 using coding methods, but the ques- 
tion for n < 3 is still open. Also, defining ~ leaves us a long way from 
answering the questions of Slaman/Harrington concerning the existence 
of a definable/nondefinable (respectively) r.e. a ~ 0 or 0'. 

COROLLARY 5.3. (a) (STRONG HOMOGENEITY) If:D (_>a) -~ :D (_b)  then 
a (3) --b(3). 

(b) (HOMOGENEITY) I f : D -  :D(>_ a) then a (3) - 0  (3). 

PROOF: (a) follows from Richter's [1979] result for the theory o f / ) ' .  
(b) follows from Shore's [1981] result for :D'. 
(Both proved using degree theoretic codings.) 

Parts (a) and (b) of Corollary 5.3 already suggest contrasting situations 
with regard to homogeneity and strong homogeneity. In fact Jockusch 
(private communication) has extended the methods of Jockusch [1980] 
(see also Odifreddi [1989], p.546) for proving elementary equivalence of 
lower cones to obtain results for upper cones: 

3This extension of 5.1(f) originated with an observation of C. G. Jockusch (August 
1991), which we gratefully acknowledge. 
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PROPOSITION 5.4. Assuming Projective Determinacy (PD), there is a 
comeager set of degrees which are bases of elementarily equivalent cones. 

PROOF: If ~ is a sentence in the first-order language of partial orderings, 
let P~(A) be the second-order predicate which says that ~ is true in the 
cone of degrees above deg(A). Since the family of sets satisfying P~(A) is 
projective, PD implies that it has the Bake property. Let A~ be this set 
if it is comeager, and its complement otherwise. Forming the (countable) 
intersection of all such sets A~, we get a comeager set MA~ such that the 
truth-value of any such ~ in T~(>_ deg(A)) is independent of A C M.4~. 

Martin [1968] previously showed (again using determinacy) that there 
is a d such that all cones having base _> d are elementarily equivalent (see 
also Shore [1982]). 

Proposition 5.4 suggests a number of questions. Since rigidity of / )  may 
have little direct relevance for the context of everyday mathematics within 
the noncomputable universe, one would prefer a language-based formula- 
tion of rigidity despite the fact that only countably many degrees can 
be definable. Noting that ~ is rigid if and only if 

(Va, b E/9)[(~, a} -~ (T~, b) =~ a - b], 

we say" 

DEFINITION 5.5. ~ is first-order rigid if and only if 

(Va, b e :D)[ (~ ,  a)  - (~ ,  b / =~ a = b]. 

Equally as interesting a question as that of rigidity is: 

QUESTION 5.6. Is :D first-order rigid? 4 

More generally: 

DEFINITION 5.7. a E T~ is first-order characterisable in 1) if and only if 

(Vb e ~P)[(/~, a) - (/~, b) =~ a -  b]. 

That is, if and only if 

(Vb C/9)(~ a sentence g~) [ (l), a) ~ ~& (/), b) ~ ~qp]. 

Then: 

4 Jokusch (private communication) can extend the methods of the proof of Proposition 
5.4 to show (assuming PD) that/) is not first-order rigid. 
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QUESTION 5.8. Which degrees are first-order characterisable? 

There remains the main question left open by Corollary 5.3 as to 
whether there exist any distinct a, b which are bases of isomorphic cones. 

Using the theorem of Epstein [1979] and Richter [1979] on automor- 
phisms of ~1, one can use the definability of the jump to show that all 
automorphisms of/~ are the identity above 0 (3). But Slaman and Woodin 
(see Slaman [ta]) have announced the following, proved directly via their 
simplified coding techniques based on the Spector exact pair construction: 

THEOREM 5.9 (Slaman and Woodin [ta]) (AUTOMORPHISMS). 
(a) Any automorphism of 1~ is the identity above 0 II. 
(b) Any automorphism of 1~ is represented by an arithmetically defin- 

able function on reals - so there are only countably many such automor- 
phisms. 

Even if rigidity fails, one would hope to see 0" eventually replaced by 
01 in Theorem 5.9. 

w 6. A u t o m o r p h i s m  bases  

The question of rigidity of a degree structure can sometimes be reduced 
to that  for a familiar substructure. 

DEFINITION 6.1 (Lerman [1977]). A C /~  is an automorphism base for 
1~ if and only if any automorphism r �9 1~ - ,  Z~ is completely determined 
b y r  IA.  

For instance: 

THEOREM 6.2. The following are automorphism bases for :D: 

(a) (Jockusc5 and Posner [1981]) Any comeager set .4 C_/~, 
(b) (Jockusch and Posner [1981]) ~4 - the set of all minimal degrees, 

and 
(c) Woodi  

PROOF" (a) Jockusch and Posner show that 19 is actually generated by 
any given comeager r  if d E l:) then d - (al U a2) n (a3 U aa), some 
ai 's E A. 

(b) Show that M generates/~ using the same idea. 
(c) Exploit the rigidity of the standard model of second-order arithmetic 

by showing that there is a finite set F of r.e. degrees such that (in a sense 
made precise by Slaman and Woodin)/~ is biinterpretable with second- 
order arithmetic in the parameters from F. So/~ is biinterpretable with 
second-order arithmetic using r.e. parameters. 
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The Slaman-Woodin result has important consequences concerning the 
question of rigidity of D. From part (c) of Theorem 6.2 we get that  i f ,4  
is any set of degrees which generates the recursively enumerable degrees, 
then ~l is an automorphism base for D. For instance, since Posner (see 
Jockusch and Posner [1981]) has shown that ,M (_< 0') generates D ( <  0'), 
the set of minimal degrees below 01 forms an automorphism base for D. 

Further: 

COROLLARY 6.3. Let .4 be a definable set of degrees which generates the 
recursively enumerable degrees. Then rigidity of.A implies rigidity of D. 

Combining this with the definability results of Theorem 5.1, we get: 

COROLLARY 6.4. If  the Turing degrees at any level of the arithmetical 
hierarchy are rigid, then so is D. 

In particular, nontrivial automorphisms of D can only exist if there are 
nontrivial automorphisms of 17. and D (<_ 01). 

Hence, in this context, proving rigidity of the noncomputable universe 
reduces to the local problem of proving ~ or D(_< 0 I) to be rigid. The 
converse, of course, depends on an affirmative answer to the question of 
Slaman as to whether all automorphisms of 7~ are extendable to automor- 
phisms of D. 

w 7. T h e  def inab i l i ty  of  " r ecu r s ive ly  e n u m e r a b l e  in" 

We have seen above that  the definability of the relation of "r.e. in" is 
central to the reduction of the rigidity problem to questions of local degree 
theory. The definition of "r.e. in c" is a natural one depending on an 
adaptation of known splitting properties for r.e. degrees. The proof that  
this definition does not include any d not r.e. in the given c necessarily 
falls into two parts, each part depending on a new nonsplitting theorem. 
Given d not r.e. in c, one needs to construct a context for d within which 
adapted splitting fails. 

The first part, for d ~ c', combines a nonsplitting theorem for d-r.e. 
degrees (which is independent of d) with the Jockusch-Shore [1983], [1984] 
pseudo-jump machinery. An immediate corollary is the definability of c I 
in (~, c). 

The second part, for d < c I, requires the nonsplitting context for d to 
be constructed directly from d, and below c I. This gives a proof of the 
definability of "r.e. in c" in 19 (_~ cl), and hence in (D, c) by the first part 
of the proof. 
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DEFINITION 7.1. Given a, b, d, we say d is unsplittable over a avoiding 
b i f  and only i f  a, b _< d, b ~ a, and for all do, dl  < d, i f  a < do, d 1 then 

either b_<do  Ordl ,  or d ~ d o U d l .  
d is relatively unsplittable i f  and only i f  d is unspli t table over a avoid- 

ing b, some a, b. 

It is important to notice that, by the relativised Sacks Splitting Theorem 
(see Soare [1987], p.124), there is no relatively unsplittable r.e. degree. 

THEOREM 7.2. Given c, a degree d is r.e. in c i f  and only i f  

(Va, b > c)[a U d is not unspli t table over a avoiding b]. 

PROOF SKETCH" (1) Assume that d is r.e. in c, a, b > c, b <_ a U d and 
b ~ a .  Then a < aUd and aUd is r.e. in a since d is r.e. in c < a. If d < a, 
then a U d -- a is trivially not unsplittable over a avoiding b. Otherwise 
a < a U d, so by the relativised Sacks Splitting Theorem (p.124 of Soare 
[1987]) there exist a-REA degrees do, dl  such that a U d - do U dl  and 
b ~ do or d l. Again, this means a U d is not unsplittable over a avoiding 
b, as required. 

(2) Let d be a degree which is not r.e. in c. We need to show that  

(3a, b > c)[a U d is unsplittable over a avoiding b]. 

The case d/~ c' was described in Cooper [tall. We describe in more detail 
what happens when d < c' and d ~ c. 

Let D E d. We construct sets A, B E A C satisfying the requirements: 

Pk" B ~ 0 A V (3A* E HC)(A * --T D),  
A,D AA,D 

. ( ~ A , D  ^ A , D  Ok ,A O k ,A 
Qk D = q~k~x k , ~k ) =~ B - F k V B - A k , 

A 
k >__ 0, where (Ok, ~k, ~k, if)k) is a standard list of all quadruples of 
p.r. functionals and F k, Ak are C-partial recursive functionals to be con- 
structed. The fact that  B ~T A @ D will follow from the satisfaction of 
the Q-requirements. We assume a standard coding of C into A and B to 
give C ~T A and ~T B. 

We consider just two requirements P ( -  Pk', say) and Q (= Qk, say) in 
relation to each other, Q being of higher priority than P. We follow the 
convention of writing Ok, ~k, ~k, Ck, ~k, Ak etc for the respective standard 

A 

use functions of Ok, Ok, ~k, ~k, Fk, Ak etc. 

T h e  na ive  P - s t r a t egy"  Monitor  the growth of the length e(B, O A) 
of the initial segment of agreement of B and O A. As g(B, O A) grows 
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larger, progress a modelling of B on D in B { g(B, 0 A) and make any 
subsequent change in A below the A-use of 0 A r g(B, 0 A) an extraction 
from A dependent on a change in B r t~(B, 0A). The result in the case 
Liminf, g(B, 0 A) is unbounded will be that D _<T B (because of the 
modelling) - 0 a _<T A C 1-If, and A _<T B (because of the restriction 
on A-changes) _<T D (due to the modelling again), giving D --T A C He, 
this contradiction indicating a pseudo-outcome. 

T h e  na ive  Q-s t ra tegy"  First try to implement the F-strategy" Previous 
to P requiring us to make a B(x)-change (due to a D (x)-change), try to 
prepare" 
(a) A situation such that 7(x) > O(x), so we can rectify the equation 
B(x) - F(O A'D, A)(x) following the B(x)-change with an A-change bigger 
than O(x). 

This may entail" 
(b) Getting 7(x) > some r and then hoping to get a oA,D r '7(x)- 
change through a D r y-change forcing a d2 A,D I r via the 
equation D - ~k(~ A'D ~A,D) k ~ k " 

If it looks like we always get a ~A,D [ r in (b), start to 
implement the A-strategy. 

We consider in detail some of the problems involved in reconciling the 
strategies for P and Q. 

F u r t h e r  discussion:  Roughly speaking, our strategy for P and Q to- 
gether is as follows. If g(D, ~((I) A,D, ~A,D)) (the standard length of agree- 
ment function at stage s + 1) grows large, we follow the naive Q-strategy 
in initially implementing the F-strategy for making B ~_T d2A'D G A.  P 
may initiate B-changes intent on making B look like D below the g(B, 0 A) 
level. This may conflict with the F-strategy in that changing B(x), say, to 
agree with D(x) at stage s + 1 may not be accompanied by the establish- 
ment of a n e w  (~A,D I ~ ( x ) .  This will require the B-change to be signalled 
through a positive change in A r ,7(x) c_ A [ O(x), in opposition to that  
part of the P-strategy aimed at limiting A-changes below the A-use of 
0 A r t~(B, 0 A) to extractions from A. 

According to the naive Q-strategy, our first approach to a resolution of 
this conflict will be to anticipate such a D(x)-change by trying to make 
7(x) > 0(x). Then this will free 7(x) for unrestricted use in indicating 
a B(x)-change via F, and any positive A-change resulting on the D(x)- 
change will be above the relevant use of OA(x) (the impact of unrestricted 
7(x)-changes on 0 A (x'), x' > x, can be discounted because of an inductive 
relationship between B(x) - OA(x) and such values OA(x')). But in 
general we can only do this by injuring the existing use of OA(x), in the 
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hope that our new larger 7(x) will be greater than O(x) when this becomes 
defined again (that is, by moving F-markers). This process (essentially 
Harrington's "capricious destruction") may be repeated using A-changes 
on larger and larger numbers. We will be able to recognise the P-strategy 
to be working up to the x level when we see that all the potentially 
damaging F-markers have been cleared from the use of O A t x + 1. 

There are various possible outcomes to this. We may succeed in obtain- 
ing a suitable relatively small use for oA, resulting in a successful outcome 
to the P-strategy up to the x level. On the other hand, infinite repetition 
of this process at the x level will lead to OA(x) T (P satisfied again), 

but (without further analysis) we will also end up with F r not total 
so that the F-strategy fails. We need to pursue a further possibility for 
avoiding this in order for such an outcome to provide the conditions for 
replacing the failed F-strategy with a successful A-strategy for Q. Since 
we are only concerned about Q if (I) D is a total function, we may allow 
some D [ y-change, with r < 7(x), to initiate an attempt to move 
7(x), but defer making any A-changes needed for such a move until at 
least ~A,D I ~/(X) has become redefined. This leaves open the possibility 
that we may get a completely new ~A,D I "[(x) (that is, not containing 
as an initial segment any previously defined oA,D ~ ~[(X)) which can be 
used to clear F-markers from the use of OA(x) without the need for any 
A-changes to be made. 

But then, assuming the D [ y-change has been timed to coincide with 
0 A [ x I (= B [ x), we avoid disturbing A [ O(x)while clearing all 
F-markers  _> -~(x) to positions above O(x). Hence we get 7(x') > O(x) for 
x ~ > x following the above actions, so satisfying P up to the x level, and 
in the process leaving the F-strategy intact. 

We can assist this outcome by using A to increase the likelihood of 
a new if2 A'D I ~[(x) being produced which can be used to clear the F- 
markers. D ~T C provides infinitely many changes in beginnings of D. 
We try to ensure the occurrence of a D [ y-change with r l <__ 7(x) 
and ,~(x), such a change being termed a /eve/x D-agitation , with D- 
agitator y, so that the D r y-change will at least produce some sort of 
change in either oA,D r 7(x) or ~o A,D [ A(x). The provision of the right 
conditions for a level x D-agitation is attempted via a process similar 
to Harrington's "honestification" whereby if 7(x) or ~(x) < r some 
designated y, we make an A [ w change, say, with w < min {7(x), ,~(x)}, 
redefining 7(x), ,~(x) > r when r  next defined. In fact honestifi- 
cation is extended by making w < min {7(x), ~(x)} for all such 7(x), )~(x) 
defined since the last occurrence of honestification, thereby ensuring that 
previously defined r r 7(x) or ~A,D r 1(X) will not return in tan- 
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dem with corresponding A r 7(x) or A t A(x) to prevent us oA,D_ or 

~A'D-permitting a F- or A-marker clearance following the D r y-change. 

There is a problem here (apart from that of not knowing whether we 
get a oA,D_ or ~)A'D-change following such a D r y-change), in that 
honestification will very likely also involve an A t O(x) change, so that 
a suitable D I y-change can only be recognised following redefinition 
of 0(x), by which time the effects of honestification may have worn off, 
demanding renewed honestification. If this repetition developes into an 

infinite outcome, we get F oA'D,A, A $A'D,A not total. But Q is then satis- 
fied since we must have min {7(x), A(x)} < r infinitely often so that 
~(~A,D ~m,D)(y) T also. And O(x) T infinitely often, so P is satisfied 
th rough  ~}d (x) T. Unlike the construction for the definability of the jump, 
we no longer have control of D (while on the positive side A-changes no 
longer need D-permitting), so we must also wait for the D-agitations to 
be provided. This means we must work with an upwardly shifting choice 
of y, relying on D ~ H e for the corresponding possible infinitary outcome 
being a pseudo-outcome. 

Even then, honestification as described will still not be sufficient to 
supply the ideal conditions for exploiting the D t y-change. This is be- 
cause of a new complication resulting from the possibility of returns to 
strings (~A,D I ~(X) (following the D r y-change) which appeared since 
the last occurrence of honestification for (P, Q). So before recognising a 
D r y-change as a usable D-agitation we further ask that oA,D ~ r  

~pA,D ~ r are unchanged at all stages since the previous occurrence 
of honestification, and if this condition is not met, we again honestify 
(even if r  _< 7(x), A(x)). If continued honestification is required we 
still get ~(~A,D ~A,D)(y) T, and Q is again satisfied (along with P since 
OA(x) T). 

So far, there is nothing in the above discussion to indicate that A need 
not be r.e. in C over the segment A r O(x). it is only when we consider 
the interactions of more than one P-requirement with a Q-requirement of 
higher priority that we find that we may need to extract some numbers 
from A. We briefly look at what happens. 

Say we have a P' ,  of priority intermediate between that of Q and P, and 
that we get a D r y-change leading to a suitable n e w  0 m,D ~ "f(x) which 
we restrain in order to be able to preserve B(x) = D(x), with A _<T B 
up to the O(x) level, while maintaining the F-strategy. It may happen 
at a later stage that we act on some y' through P' ,  resulting in a loss of 
the new (~A,D r ")'(X) (replaced by a new ~A,D I )~(X), presumably). It 
may not be possible now to rectify F by a suitable positive A-change, as 
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this may conflict with the actions for P '  (for instance). We then have no 
alternative but to reverse any consequent B(x)-change and any moving 
of markers for x beyond 0(x), and to extract the relevant marker from A 
in the case that the new oA,D r .y(x) had been used to permit a B(x)- 
change via F. (There is still the possibility of the n e w  oA,D ~ "y(x) which 
permitted B(x) = D(x) via F reasserting itself at a later stage, but in 
defining the corresponding "y(x) we will have been able to have regard for 
higher priority P '  to the extent that we can avoid having to redefine B(x) 
by making a suitable A [ "y(x) change.) It remains to follow through the 
consequences of infinitely many occurrences of post-honestification level 
x D-agitations for (P, Q) which produce no appropriate new strings of 
the form (~A,D I "[(X). In this case we utilise the fact that following each 

such D-agitation we get a new ~A,D [ A(x) to satisfy P, Q through the A- 
strategy. In fact, this outcome for (P, Q) gives us a successful A-strategy 
for each (P' ,  Q) with P '  (= Pk" say) of lower priority than P, so we will 
not assume that the infinite set of y's we act on necessarily relates to P ' .  

We now assume that the A-strategy has its own set of followers z _ 0, 
disjoint from any other set of followers, and its own procedure for D- 
agitation (called D-agitation). We D-agitate with the pre-knowledge that  
we get infinitely many A [ 7(x) changes through capricious destruction, 
and infinitely many usable ~A,D [ A(y) changes (or, more relevant, no 
usable ~A,D I ")'(Y) changes). This means we only bother to act in the 
interests of B(z) ~: oA,,(z) if Ok,,(z) < "y(X). Since "y(x) goes to infinity, 
this will still provide sufficient space in which to satisfy Pk',. 

In order to use a D-agitator ~" we also need to obtain r < r  and 
r _< A(z). The failure of y to successfully D-agitate for (P, Q) will mean 
that  ~" must /9-agi ta te  in the interests of obtaining a usable ~A,D [ A(z) 
change to clear markers from the A-use of Ok A, (z )v ia  A without the need 
to injure OkA,(z)~: D(z) with an A [ A(z) change. This requires its own 
honestification, which we can time to coincide with the honestification 
for (P, Q). Again, the honestification takes the stronger form described 
previously. 

As for the construction for the definability of the jump, one needs a tree 
of outcomes on which to reconcile the strategies for different pairs (P' ,  Q'), 
relative to which (in this case) we can determine the final outcomes along 
the true path recursively in C (3). It is worth mentioning here some of 
the special complications arising from the fact that D is not r.e. in C 
but is only A C. An inevitable consequence is a certain amount of 'A C- 
noise' in the construction. This means that the questions appearing in 
the basic module for the earlier construction, which acted as gateways 
through which the module irrevocably passed, now appear as tests .  The 
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results of these tests can change leading to a revoking of the license to 
proceed, and demanding a reversion to another phase of the module. 

The extra unpredictability of D- and hence B-changes does not in itself 
cause too many problems for A. With the help of redefinitions of q,, A A 
can cope with the corresponding demands of the F- and A-strategies. And 
to some extent the added technical complexity merely acts to mask the 
eventual, but still inevitable situation, the strategy covering this event- 
uality working with ultimate outcomes in place of recognisable events. 
There are slightly more problems with the consequent lack of control over 
~A,D and ~A,D. We relied above, in certain situations, on  (~A,D_ or 

SA'D-changes enabling us to avoid certain sorts of A-changes in the inter- 
ests of the A*-strategy for the P-requirements. When these changes are 
in doubt, we will have to fall back on the undesired type of A-changes. 
However, temporary vacillations in ~A,D or ~A,D can be matched by a 
corresponding flexibility in the A-changes; and where the ultimate out- 
comes for ~A,D_ or ~A,D-changes are assured we will be able to maintain 
our aims in regard to the A*-strategies. On the other hand, in reconciling 
the demands of different P-requirements, the A*-strategies may demand 
negative A-changes where the immediate need may seem to be new posi- 
tive A-changes. The key factor here is, of course, that the success of the 
A*-strategy for P lies in producing B -J: 0 A, not in an infinitary outcome 

A* of D ~ T  C 1-I C 

We now give a more formal description of the strategies for (P, Q). 

T h e  basic m o d u l e  for P conf ron ted  wi th  one h igher  p r io r i ty  Q 

(All statements in the description below are assumed to relate to stage 
s + 1 of the construction.) 

Let 

g.(D, ~(~A,D, ~A,D)) : # z  [D(z) -J: ~(~A,D, ~A,D; z)] and 

s e A) =pz [B(z) :/: OA(z)] (at stage s + 1). 
A 

We say that a D- or D-agitator y for x (say) associated with (P, Q) is 
realised if (P, Q) is in possession of a suitable D r y-change for (respec- 

tively) D- or D-agitation. Otherwise y is unrealised. Let z = the largest 

unrealised D- or D-agitator for any x associated with (P, Q) (at stage 
s + 1), if such a z exists, and = s otherwise. We have an overall constraint 
on the construction relative to (P, Q) that if g(D, r ~A,D)) > Z 

then we must define F ~A'D,A r x or A $A'D,A I x. 
A 

And if y, z are unrealised D-, D-agitators respectively for x (at stage 

s + 1) we ask that whenever we redefine F r I x or A $A'D,A I x 
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we choose 7(x),A(x) so that 7(x) _> r or A(x) _> r respectively. 

Also, whenever we redefine F~A'~ or ASA'~ w >_ 0, we define 

F~A'~  B(w) or AeA'U'A(w)- B(w), respectively. 

Whenever we redefine values of F eA'~,A or of A SA'D,A in such a way 

that F r _~ B (that is, they agree on all values on which both are 

defined) or A SA'o'A ~_ B, we say that we rectify F or A, respectively. 
We assume that (P, Q) has available an infinite set 7 of potential D- 

agitators and a set ~ of potential markers 7(x) for numbers x _> 0. At 
stage s + 1 7, r consist of those members of 7, ~ respectively which have 
not yet been used in the construction. 

The basic module consists of the following phases together with the 
above overall constraints. 

1. We F-select x - the least number not previously F-selected for 
(P,Q). 

2. We select the least y E 7, Y > x, as a D-agitator for x, and 
initiate a y-cycle with phase 3 below. 

3. We wait for ~(D, ~((~A,D, ~A,D)) to grow bigger than y and define 
the least E ~ to be the F-marker 7(x) for x. 

4. And we test for~(B,O A ) > x .  
(a) A positive test allows us to restrain A_ t 0(x), where A_ is 
the set of numbers in A (at stage s + 1) and to continue with 
the cycle from 5 onwards so long as A r O(x) is unchanged. An 
A r 0(x)-change at any subsequent stage dictates a return to 4(b). 
(b) Following the emergence of a negative test result we return to 
4 for a retest, and cancel any existing restraints dependent on an 
earlier positive test. 

5. We test for 7(x) > O(x). 
(a) If 7(x) > O(x) we proceed to 6. 
(b) (Honestification and capricious destruction combined.) 

If 7(x) __ O(x) we enumerate 7(x) in to  A, and proceed through 
phases 3, 4 and then 7. 

6. In the absence of a return to 4 we restrain A t O(x) and get" 
Outcome: P is satisfied up to the x level, and x ceases to interfere 
with Q. 

7. We now test if 7(x) >_ r and if O A'D I r ~A,D I r are 
unchanged at all stages since they became redefined following the 
latest application of phase 5(b) (at stage u + 1 say). 
(a) At each stage at which the test is positive we can proceed 
through 8 and beyond. 
(b) While a failed test at any stage dictates a return to 3. 
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8. We wait f o r D  I y ~ DU' I y, each u' with u + l < u' < s + l. 
(a) If we achieve such a D-change we go to 9. 
(b) During the wait phase, we return once to 2 to choose a new 
D-agitator (y' say) and initiate a new y'-cycle. 

9. We wait for g(D, ~r > Y, and then: 
10. Test if F~A'D'A(x) T" 

(a) If the test is positive, we redefine 7(x) > 0(x) (that is, we 
move the marker 7(x)), and restrain d t 0(x). 
Outcome: P is satisfied up to the x level, and following a B(x)-  
change F can be rectified without an A r 0(x)-change being re- 
quired. 
(b) During negative testing we return to 2, replacing any marker 
previously moved through 10(a). 

In the case of infinitely many returns to 2 on behalf of x and (P, Q), 
we need to describe the A-strategy. This is an auxiliary strategy that  
synchronises its activities with phases 2, 5, 7 and 8 of the F-strategy. As 
mentioned before, it can relate to (P', Q) even if P '  ~- P. 

A 

2. (Simultaneous with 2.) (a) We A-select the least number x' not 
previously A-selected for (P' ,  Q) and then (b) select the least 

A 

E ~, ~ > x', as a D-agitator for x' (with (P', Q). 
A 

7. (Simultaneous with 7.) We test if A(x') _ r 

(a) At each stage at which the tests in 7 and 7 are positive we can 
proceed through 8 and beyond. 
(b) While a failed test at any stage dictates a return to 3 as already 
described. 

8. We wait f o r D  rY~-DU' ry,  e a c h u ' w i t h u + l _ u ' < s + l .  
(a) If we achieve such a D-change we go to 9. 
(b) (Simultaneous with 8(5).) During the wait phase, we return 
once to 2(5) (working with the existing A-selected x') to choose a 
new D-agitator (~" say). 

9. We wait for t~(D, ~A,D,$A,D) > ~., and then: 

11"0. Test if A~A'D'A(x ') T and "~(x') > 0'(x'). 
(a) During a positive test, we redet~ne A(x') > 0'(x') and restrain 
A I 0'(x'), while initiating a new cycle of the A-strategy for (P' ,  Q) 

A 

with a return to 2. 
Outcome: P' is satist~ed up to the x' level, and following a B(x')-  
change A can be rectit~ed without an A r 0' (x' )-change being 
required. 
(b) During negative testing we return to 2(b). 
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S u m m a r y  of o u t c o m e s  of t h e  F- a n d  A-s t ra teg ies  for (/9, Q), (P' ,  Q) 

The finite outcomes: 

[ ~ "  The strategy halts at 3. Then D ~ ~(oA'D, ~A,D) and Q is satisfied 
and ceases to interfere with P. 

[ ~ "  The strategy proceeds infinitely often through phase 4(b). 

B ~- 0 A and P is satisfied. Any interference with Q is transitory. 

Then 

[ ~ "  The strategy for making D ~T A* r.e. in C is defended by the 
placement of 7(x) and the imposition of an A_-restraint in 4(a). P is 
satisfied up to level x and ceases to interfere with Q up to that  level, due 
to phase 6 applying. [ ~  will only apply with respect to finitely many 
followers x of (P, Q), so represents a genuine finite outcome. 

~ " The strategy halts at 9. Outcome as for [ ~ .  

�9 o A ~ o ~2]  Strategy halts at 10(a) The strategy for making D --T r.e in C 
is defended by the moving of 7(x) and the imposition of an A_-restraint 
in 4(a). P is satisfied up to level x and ceases to interfere with Q up to 
that  level, while maintaining F ~'A'~ = B via a ~a 'n-change.  

I ~1[~" The strategy halts at 9. Outcome as for [ ~  and [ ~ .  
I "l 

[ • "  Strategy halts at l'0(a). P~ is satisfied up to level x ~ by the moving 

of A(x'~), and ceases to interfere with Q up to that  level. A CA'~ = B is 
maintained via a ~A,D-change. 

The infinitary outcomes: 

~ " The strategy passes through phase 7(b) infinitely often. 

Since we infinitely often pass through phases 3 and 4, 7(x) goes to 
infinity. Since we never halt at 6, 0(x) >_ 7(x)infinitely often, so OA(x) T 
and P is satisfied. 

Since we go through 7(b) infinitely often, either r  > 7(x)infinitely 
often, or ~A,D r r or ~A,D t r changes infinitely often, so in 

either case ff/r (y) T (possibly with r  bounded but ff~A,V (u) or 

~A'O(u) T, some u <_ ~b(y)), giving Q also satisfied. 

~ " We wait at phase 8 for D-changes relative to infinitely many D- 
agitators y for x with (P, Q), leading to infinitely many returns via 8(b) 
to 2. An application of Miller and Martin's Lemma (see Soare [1987]. 
p.223) relativised to C removes this as a possibility since D is not r.e. in 

(7 ( ~  is a pseudo-outcome). 
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~ "  strategy passes through phase infinitely The 10(b) often. Outcome" 
We implement the A-strategy, P' is satisfied as in ~ .  

~ " The strategy passes through l~-0(b) infinitely often. 

As for [ ~  we get pi satisfied through oIA(x I) T, while the A-strategy 
for (P', Q) is maintained. This is because, by the conditions of 7(a)/8(a) 

and 7(a)/8(a) we must arrive at l'0(a) with either ASA'D'A(x ') T or 

FcA'D'A(x) T. Since 10(a) does not apply, we must have AcA'D'A(x ') T, so 

we get to move )~(x') before returning to 2 /2 .  

C o m b i n i n g  the  s t r a teg ies  for m o r e  t h a n  one pair  P, Q 

We look at some immediate consequences of combining the P, Q-strategies, 
giving separate consideration to what happens when the number of P- or 
Q-requirements alone is increased. 

(a) Inf ini te ly  m a n y  P - r e q u i r e m e n t s  below one Q - r e q u i r e m e n t  

We need only look at the situation in which for some P above Q the 
outcome for P, Q is infinitary. 

If [ ~  is the outcome for P, Q (with P minimal), each P~ of priority 
between Q and P has a finite outcome. The main consequence for the 
requirements P~ below P is that the strategy for P~, Q can ignore the 
F- and A-strategies for Q, and at stage s + 1 pursue the satisfaction of 
P~ within the upper boundary determined by the top of the column of 
markers for P, Q already in A at stage s + 1. 

The outcome [ ~  for P, Q is similar in effect in that we need to pursue 
outcomes for P~, Q, P /be low P, within the upper boundary determined 
by the already utilised markers for P, Q. Then [ ~  for P, Q presents such 

P~, Q with the possibility of a successful A-strategy with outcome [ ~  o r  

We also note that it is at the level of one Q-requirement above just 
two P-requirements that we make full use of the ability to extract num- 
bers from A, resulting in A being A2 c. Say we have P, P~ below Q, P' 
of higher priority than P, and that we are pursuing outcome [ ~  for P 
and P' within the context of a successful F-strategy for Q. So we can 
assume that during the construction we pass through phases 7(a), 8(a), 
9, 10and 10(a) of the basic module in relation to outcome [ ~  for P, Q. 
That is, we get a suitable D [ y-change, some D-agitator y, achieving a 
suitable new r r 7(x), arriving at A t 0(x) cleared of markers for x and 
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The following diagram relates the strategies to the outcomes: 

5(b). l . I  5. Test for I Negative: 
~x) ~ A  

1. F-select x ] 

2. Select D-agitator I / ~ a )  F-select x'. \ 
y for x ~(b) Select D--agitator~ 

, - \  DefineF-marker f 1"7-1 l '  

, ~ ~ [7~)n 

, ~  4. Testfor [ / ~, ~ 
, /',,,?_,?J:_.'~l~<B,o")>x I_/ ~,.'o;~, \ T 
,, ~r%s~uvc.] I 4(a).Positive: r - - , , , , : , , s : : , ~ , /  I 
l ~ R e s t r a i n A _ r O ( x )  I "~"--v~/Y [ 

7. Test for 
~x)> V0') etc. 

1 
[ 8. Waitfora I /  

new D {'y 

[ lO. TestifI~'a(x)* I 

Wait for a 

9. Wait for ' 

l(D, W 'l/t'~ > 

�9 10 .  " 
Test if 

~(x') > 0"(x') & 

�9 A~'a(x')$ 

l"O(a) .Pos i t ive :  \ \  
Move ~(x') > O'(x'). II  
Restrain A I O~(x'). ]] 
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a possible rectification of F in the interests of the F-strategy for Q. It 
maylater happen that we follow a similar process for p1, Q, acting on some 
D-agitator y' through 7(a)/8(a), resulting in a loss of the n e w  c~ A,D I ~/(X) 
(replaced by a new ~A,D r A(x), presumably). It may not be possible now 
to rectify F by a suitable A-change, as this may conflict with the actions 
for P '  (or for some other P-requirement of higher priority than that of P). 
We then have no alternative but to allow F (oA,D A; x) t o  find its value 
relative to existing axioms for F, while using an at most finite number 
of B(x) changes in maintaining B - F (~A'D,A; X). Reinstatement of 
7(x) ~ A following the ultimately unsuccessful D-agitation will now be 
necessary in the interests of ensuring F (~A,D A) e A C. 

(b) One P - r e q u i r e m e n t  below two Q- requ i r emen t s  

Say we have Q above QI, with both Q and Q' of higher priority than P. 
An infinitary outcome to the strategy for P, Q or P, Q~ results in OA(x) T 
for some follower x of P, so any problems for P arise in this simple case in 
the situation in which both Q and Q~ either maintain viable F-strategies 
or switch to a A-strategy due to some other P requirement. This means 

that (discarding the simple outcomes [ ~ ,  [ ~ ,  ~ and ~ ) w e  aim 

to satisfy P through a combination of outcomes ~ ,  [ ~  and ~ for 
subrequirements P, Q, P, Q~. 

If we follow the F-strategy for P, Q or P, Q' (say P, Q) and fail to get 
outcome [ ~  on P, Q we have no need to pursue such an outcome on 

P, Q~. This is because phase 5 of the basic module is only necessary for 
to be sure that O(x)is unbounded if outcomes [ ~  or [ ~  apply to P US 

i t  

with some higher priority Q-requirement, and for this the repeated fail- 
ure of ~ on P, Q would be sufficient. In any case, we cannot expect 

to combine outcomes [ ~  or [ ~  for P, Q with outcome [ ~  for P, Q' 
since the former require A-changes of unpredictable magnitude to coun- 
teract changes in C~ A'D- or  ~A,D-permissions via F or A, respectively, and 
these may conflict with the A-restraints required for the latter. So, failing 
7(x) > O(x) while following the F-strategy for P, Q, we either work with 
the one follower x and attack P, Q and P, Q' simultaneously through step 
5(b) of the basic module, aiming to satisfy P through outcome [ ~  for 

both subrequirements, or the A-strategy will be appropriate to P, Q~. 
We can use the tree of outcomes to help us work with the right com- 

bination. The main problem is that of asynchronicity of occurrences of 
F(oA'D,A; x) T and F'(o'A'D,A; x) T or A'(~'A'D,A;x) T. This is because 

A 

the completion of phase 9 or 9 for the F- or A-strategy for P, Q, say, has 
to include steps to ensure that F(O A,D, A; x) $ or A(~ A'D, A; x) 1, respec- 
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A 

tively, without waiting for P, QI to complete 9 or 9. This means we can 
only anticipate a successful outcome 10(a) to an implementation of 8(a) at 
stage s + 1, say, by also setting up a restraint for OA(x) at stage s + 1, and 
then, if 10(b) is the actual result cancelling the restraint for OA(x) and 
retaining follower x in any further capricious destruction through phase 
5(b), but necessarily choosing a new follower xl, say, for the purposes 
of further pursuit of outcome [ ~  through 7(a)/8(a) etc. The situation 
is similar but simpler with regard to the A-strategy. Although we must 
define A'((~ 'A'D, A; x'), say, at 8(a), and set up a (possibly temporary) A- 
restraint, we can do this in such a way that a failure of ~'A'D-permission 
means we must initialise the A-strategy. 

There are some new features arising from combining the strategies for 
pairs P, Q where both multiple P- and Q-requirements are involved. For 
instance, the temporary A-restraints consequent on li31 define a lower 
boundary on the usage of markers which present extra timing difficulties. 
See Cooper [ta2] for further discussion and a formal proof. 

T h e  t r ee  of o u t c o m e s  

Our tree will reflect the fact that restraints, followers and agitators are 
chiefly manipulated in the interests of the P-requirements, while the man- 
agement of the F- and A-strategies is in direct response to activity on 
lower priority P-requirements. Since each P-requirement Pi is consid- 
ered in relation to its higher priority Q-requirements, the strategy for 
each pair having consequences for the requirements below Pi, it is con- 
venient to consider Pi via a corresponding block of subrequirements, or 
P, Q-requirements, namely (P~, Q0), (Pi, Q1) , . . . ,  (Pi, Qi-1). The priority 
ordering of the P-, Q- and P, Q-requirements is the obvious one, (Pi, Qj) 
having priority relative to Ri, ~= Pi given by the priority of Pi relative to 
Ri,, Pi itself having priority greater than each of its subrequirements, and 
within the block of subrequirements for P~ by (P~, Qj) >_ (P~, Qj,) if and 
only if j _< j ' .  

During the construction, requirements and their individual ingredients 
are only considered in relation to nodes a on a tree T which correspond to 
either immediate or more long-term assessments of the true outcome for 
the higher priority requirements (that is, those assigned to the levels of T 
below ~h(a)). If Ai is an expression being considered at node a E T we 
will usually write Ao for Ai. We write R~ for the requirement located at 
node a C T, calling a a P-, Q- or P, Q-node according as Ra is a P-, Q- 
or P, Q-requirement, respectively. (P, Q)a denotes the P, Q-requirement 
situated at P, Q-node a, (Pa, Qr) denotes some subrequirement of the full 
P-requirement Pa. In referring to P~, Qa or (P, Q)a below we presuppose 
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R~ to be (respectively) a P-, Q- or P, Q-requirement. 
The P, Q-nodes lay out a framework of possible outcomes for the higher 

priority requirements, within which a full P-requirement actively pursues 
its strategy in relation to the higher priority Q-requirements. 

For the purposes of satisfying P~, the activity on (P~,, Q~,) of higher 
priority limits the segment of numbers over which the strategy for Pa can 
usefully operate. The restraints consequent on (P~,, Q~,), and any finitary 
use of markers, present a lower boundary to activity on P~. The use of 
infinitely many markers in relation to (P~,, Q~,) will require P~ to wait 
until activity on agitators for (P~,, Q~,) has moved above the region in 
which we seek to satisfy Po, so presenting an upper boundary to activity 
on P~. Meanwhile the main feature of the activity on Q~ of higher priority 
than P~ is the ultimate choice of F- or A-strategy for Qr, although this 
depends on what happens on lower priority P-requirements. Outcome 
[ ~ i s  not of special interest to Po in far whether except so as knowing 

there is an infinite column of markers for a higher priority (Po,, Q~) used 
in relation to this outcome. On the other hand, a switch from F- to A- 
strategy for Q~ may be due to some (Po,, Q~) of lower priority than that 
of P~, so cannot be deduced from that part of the tree above the node for 
P~. 

w 8. Def inab i l i ty  in R. a n d  D (_< 0') 

As noted above, if R or Z) (<_ 0') is rigid then so is/~, so particular interest 
attaches to the question of definability in these degree classes. The more 
we can define in R or D(_< 0'), the less likely are non-trivial automor- 
phisms to exist. 

The main definable classes below 01 are ~ and Highn, Lown for n > 3. 
Classes and relations we would like to define in ~,./D(< 0 I) include" 

(1) Higl~, Lown for n < 3. 
(2) Jump equivalence �9 x' - y'. 
(3) Individual atomic jump classes" c -1 - {x I x ' -  c}, c 0'-REA. 
(4) Individual r.e. degrees e (0, 0'). 
(5) R.(_< a), given a r.e. > 0. The set of n-REA degrees <_ 0', n >_ 2. 
(6) Rn - the set of n-r.e, degrees, n > 1. 

A first step in defining High / Low2 is provided by Shore and Slaman 
[ta2] who succeeded in separating High and L o ~  in the r.e. degrees: 

THEOREM 8.1 .  

Low2 c R - C. 
There is a definable s c R. such that High C C and 
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PROOF: Take 

C =  {xl3z < y _ < x V u ,  v [ u U v  = y  ~ u U z = y V v U z = y ] } .  

Apply the Harrington Low2 Splitting Theorem (see Shore and Slaman 
[tall), and push the Lachlan Non-Splitting Theorem [1975] below any 
given high r.e. degree. 

There are a number of other known structural features of the High/ 
Low2 degrees which indicate a definability result below 0': 

(1) (Cooper [1974]) Any h e ~ bounds a minimal r.e. pair. 
(2) (Posner [1977], Cooper [1972]) Any h e :D(_< 0') is the join of a pair 

of minimal degrees, whereas (Jockusch-Posner [1978]) all minimal 
degrees are Low2. 

(3) (Harrington, Cooper, Yates) There is a relatively non-cuppable de- 
gree below any h C R. 

There is a related basic question: 

QUESTION 8.2. 
each a < 0'? 

Can we (first-order) distinguish 1)(< 0') from :D(<a) for 

A (relativisable) positive answer to this question would enable us to 
define the low degrees: A degree a would be low if and only if :D [a, 0'] 
looked like :D [a, a'] should do. 

It is not easy to see what sort of property is required to answer Question 
8.2, although pointers are provided by results of Soare and Stob [1982], 
Shore [1982a] and Harrington (the degrees below any a < 0' do not realise 
all jumps in the 0'-REA degrees), and Cooper and Epstein [1987] (who 
found a finite injury construction giving a first-order distinction between 
/9(_< 0') and T~(<a), some r.e. a > 0). 

w 9. Rigidi ty  and definabil i ty for o the r  degree  s t ruc tu re s  

Nerode and Shore [1980a1 and Slaman and Woodin [ta] have extended 
a number of their global results for the Turing degrees to other degree 
structures such as the 1-, m-, tt-, btt-, wtt-, arithmetic, hyperarithmetic 
and e-degrees. But for some degree structures there are very strong results 
concerning rigidity and definability and for others much less is known. A 
comprehensive review of information can be found in Odifreddi [1989] 
and [ta]. We mention one or two of the more striking results, and related 
questions. 
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THEOREM 9.1 (Slaman and Woodin [ta]). The hyperdegrees are rigid. 

THEOREM 9.2 (Slaman and Woodin [ta]. Any  automorphism of the 

arithmetic degrees T~ is the identity above 0 (w). 

Shore (see Odifreddi [ta]) has a number of global results for the theory 
o f / ~ '  and in particular shows that  every automorphism o f / 9 "  is the a ~  

identity above 0' a. 

QUESTION 9.3. Is O~ definable in l~a? 

For the 1-degrees there is no characterisation of/~1 to parallel that  for 
the m-degrees. But" 

THEOREM 9.4 (Nerode and Shore [1980a]). I f /~1 '  
D~m (>__ b)) then b is arithmetical. 

- T ~  (>_ b) (or/~m ~_ 

Non-homogeneity for the truth-table degrees follows from results of 
Mohrherr [1984] (l~tt (> O~t) is dense) and Martin (any hyperimmune- 
free minimal Turing degree is also a minimal tt-degree) that  l~tt 7~ l~tt 

(> 0~t). 
Slaman and Woodin [ta] have some partial results for the enumeration 

degrees, although most global questions are open. Homogeneity is known 
to fail by results (see Cooper [1990]) of Gutteridge (there does not exist 
a minimal e-degree) and Cooper (there exists a minimal cover i n / ~ ) .  

QUESTION 9.5. Do the Turing degrees form an automorphism base for 
the enumeration degrees (under the natural embedding)? 

QUESTION 9.6. Are the Turing degrees definable in the enumeration de- 
grees? 
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1. I n t r o d u c t i o n  

The purpose of this survey is to give an account of those aspects of model 
theory which we think are relevant to theoretical computer science. The 
exposition here follows rather closely the presentation given at the conference 
itself. A very expanded version of this paper appears as [Mak92b]. We give 
a general outline of the evolution of model theory, which will serve as an 
exposition of the major themes. For each of them we sketch its relevance to 
Theoretical Computer Science. 

We assume the reader is familiar with the basics of First Order Logic, 
Computability Theory, Complexity Theory and Basic Algebra. Whenever 
possible we shall refer to textbooks and monographs rather than the original 
papers. Only material not treated in standard texts will be quoted in the 
original (or by referring to a subsequent paper which contains the result in 
the most readable form). 

Logic and model theory are relatively old disciplines which enjoy renewed 
interest. They can serve as one explanatory paradigm for foundational prob- 
lems in theoretical computer science. But the gap between the traditional 
logicians and mathematicians and the working computer scientists is first 
of all cultural in the sense of R. Wilder's [Wi181]. His studies deserve spe- 
cial attention especially when one has in mind the evolution and devel- 
opment of programming languages, operating systems, user interfaces and 
other paradigms of computing, but also in addressing foundational questions, 
cf. [Mak88]. 

Wilder's studies clearly show several phenomena: that the evolution of 
concepts to widely accepted norms of practice takes much longer and needs 
more than just the availability of such concepts; that the evolution of con- 
cepts is not due to individuals but is embedded in one (or several competing) 
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cultural systems which are themselves embedded in host cultural systems; 
that nevertheless the fame and prestige of the protagonists of science and sci- 
entific progress do play an important, possibly also counterproductive rSle; 
that cultural stress and cultural lag play a crucial rSle in the evolution of con- 
cepts; that periods of turmoil are followed by periods of consolidation after 
which concepts stabilize; that diffusion between different fields usually will 
lead to new concepts and accelerated growth of science; that environmental 
stresses created by the host culture and its subcultures will elicit observ- 
able response from the scientific culture in question; and, finally, revolutions 
may occur in the metaphysics, symbolism and methodology of computing 
science, but not in the core of computing itself. Wilder has developed in 
[Wi181] a general theory of 'Laws' governing the evolution of mathematics, 
from which I have adapted the above statements. It remains a vast research 
project to assimilate Wilder's theory into our context, but it is an indispens- 
able project if we want to adjust our expectation of progress in computing 
science to realistic hopes. Wilder's work also sheds some light into the real 
problems underlying the so called 'software crisis': The cultural lag of pro- 
gramming practice behind computing science and the absence of various 
cultural stresses may account for the abundance of programming paradigms 
without the evolution of rigorous standards of conceptual specifications. 

2. Theore t i ca l  c o m p u t e r  science 

As we discuss here applications of model theory to computer science we have 
to clarify what we intend both by model theory and theoretical computer 
science. Concerning Computer Science we take a pragmatic approach. Any 
mathematically modelled situation which captures any issue arising in the 
dealings with computers is a possible topic for computer science. This in- 
cludes hardware, software, data modelling, interfaces and more. Some of the 
more classical fields of theoretical computer science have already matured 
into well established subdisciplines. Among them we find computability 
theory, algorithmics, complexity theory, database theory, data and program 
specification, program verification and testing etc. However, we feel that a 
certain confusion in the definitions of these fields is obfuscating the issues in- 
volved. It very much depends whether our point of view is method-oriented 
or application-oriented. Computability and complexity theory deal with the 
clarification of our notion of what is computable. This represents a clear 
case of a well defined method-oriented subdiscipline of computer science 
and the foundations of mathematics. Database theory on the other hand is 
a field which grew from an application-oriented approach. From a method- 
oriented point of view, database theory tends to fall apart into subfields, such 
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as finite model theory, operating systems, file systems, user interfaces and 
algorithmics, where each of these transcend the boundaries of the database 
applications. Scientifically speaking, the ad hoc collection of methods bound 
together by a vaguely defined common application is unsatisfactory. It is 
justified only for didactic purposes such as training application-oriented en- 
gineers. But such training is detrimental to a deeper understanding of the 
craft and the science and leads to chaotic duplicity of research and research 
subcultures each disguised in its own terminology and provincialisms. 

In this paper we try to exhibit a method and a scientific framework, model 
theory and discuss typical problems whose discussion in this framework is 
beneficial to our understanding. 

3. The  set theore t i c  model l ing  of syn tax  and semant ics  

Model theory is the mathematical (set theoretical) study of the interplay 
between Syntax and Semantics. Historically it has its roots in the various 
attempts of reducing first mathematics to logic (Frege, Hilbert), then logic 
to number theory (Skolem, G5del) and finally, of modelling logic within 
set theory (Tarski, Vaught). The first two reductions were motivated by 
the fundamental questions of the foundations of mathematics, whereas the 
latter accepts Bourbaki's view that set theory is the foundational framework 
of mathematics. It is this latter approach which forms the background of 
model theory proper. Let us elaborate this further: We take some Naive Set 
Theory for granted and attempt to model all objects of mathematical study 
within this Set Theory. Without having to bother too much about the choice 
of set theory we can model the natural numbers, finite strings, finite graphs 
within set theory. We accept the axiom of choice as a fact of life. With this 
we can model also most of the concepts of classical algebra (field theory, 
ring theory, group theory, but not necessarily cohomology theory) within 
set theory. The natural numbers, fields, graphs are mathematical structures 
which serve as the prime examples for models of logical theories. We usually 
think of models of a logical theory rather than of a single model, and the 
models form usually a proper class (the class of all groups, rings, etc.). If 
we restrict ourselves to finite mathematical structures we can additionally 
consider recursive sets of models or sets models of lower complexity classes 
(Logarithmic Space or Polynomial Time recognizable classes of models). 
Next we observe that logical theories are just sets of formulas and that 
formulas can be viewed again as either strings over some alphabet or as 
some kind of labeled trees. Most people think of formulas as inherently 
finite objects, but infinite formulas (then better viewed as trees) are easily 
conceivable. So formulas and sets of formulas can also be modelled in our 
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set theory. If we think of finite formulas as strings it makes sense to bring 
in also concepts of recursion theory and complexity theory. 

The basic relationship between sets of formulas and models is the satis- 
faction relation. We view it here as a ternary relation M(E,  ,4, z), where E 
is a set of formulas, .A is a structure, i.e. a generalized algebra over some 
vocabulary (similarity type) and z is an assignment function mapping free 
variables of the formulas E into elements of the universe of the structure ,4. 
If M(E,  A, z) holds for every z we simply write A ~ E and say that  A is a 
model of E. The characteristic function of the satisfaction relation is often 
called meaning function. The meaning function can also be modelled in set 
theory. 

3.1. F i r s t  o r d e r  s t r u c t u r e s  

I t  is customary to model algebraic structures as sets equipped with functions 
and relations. This view has its origins in algebra as understood in the 19th 
century. A structure consists of a set, the universe, equipped with some 
relations, functions and constants, which model the primitives. 

A group then is a set equipped with a binary function, called multipli- 
cation, a unary function, called the inverse, and a constant called the unit 
element. An ordered group is additionally equipped with a binary rela- 
tion, called the order relation. In similar ways we can define fields, rings 
or the structure of arithmetic on the natural numbers. In computer science 
other data structures are defined similarly, such as words, stacks, lists, trees, 
graphs, Turing machines etc. A word of length n over the alphabet {0, 1} 
can be viewed as a set of n elements with a binary relation which linearly or- 
ders that  set and a unary relation, which indicates which places in the word 
are occupied by the letter 1. A graph is just a set with a binary relation. 
In each case it is required that  the functions, relations and constants satisfy 
some interrelating properties which make it into a group (field, word, graph, 
Turing machine etc.). 

Sometimes, it is more practical to model structures with several underlying 
sets, as in the case of vector spaces. These sets form several universes and are 
called sorts. We then speak of many-sorted structures. A Turing machine 
consists of two sets: a set of states and a set of letters; a binary relation 
between states and letters; a unary relation, the set of final states; and a 
constant, the initial state. Many-sorted structures allow us to model also 
concepts which involve sets of sets, such as topologies, families of subgroups 
or whatever comes to ones mind. This last statement is not just a sloppy way 
of saying something vague. It really expresses a belief, or rather experience, 
that  everything which can be modelled in set theoretic terms with finitely 
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many basic concepts can be modelled by such structures. 

In modern terms a structure is a tuple of sets of specified characteristics. 
The primitive concepts have names and these names form again a set, called 
the vocabulary. A structure then is an interpretation of a vocabulary. More 
precisely, a (first order) vocabulary T is a set of sort symbols, function sym- 
bols, relation symbols and constant symbols. The function, relation and 
constant symbols have an arity which specifies the number and sorts of the 
arguments and values. The arity is mostly assumed to be finite. In this 
way we can naturally associate with a vocabulary v the proper class of all 
T-structures, which we denote by STR(T). 

3.2. T h e  choice of  t he  v o c a b u l a r y  

The notion of a T-structure evolved naturally in mathematics, more precisely 
in algebra. Groups and fields are usually described as sets with operations, 
ordered fields are sets with operations and relations. The choice of the basic 
operations is in no way trivial. Should we add the inverse operation as basic 
or not? In the case of arithmetic we have the successor relation, addition and 
multiplication. The first order theory of arithmetic is undecidable, but if we 
leave out multiplication, it becomes decidable. This is a dramatic change. 
Subtraction is definable by a first order formula, so leaving it out or adding 
it, does not affect decidability. But it does affect the set of substructures. 

In the case of graphs the modelling issue is more subtle. It is customary to 
describe a graph as a set with an incidence relation. Thus there is quantifi- 
cation over vertices but not over edges. If we choose to allow quantification 
over edges we change the notion of structure. To what extent this matters 
has been studied by Courcelle in a series of papers [Cou90a, Cou90b]. Finite 
graphs can also be described by their incidence matrix, which does not fit 
the notion of a T-structure in a natural way. However, we can consider the 
incidence matrix itself as a T-structure in manyways.  

Logic and model theory take the notion of T-structures for granted. How 
to choose the particular vocabulary depends on many extra-logical issues. 
Discussing some of these issues is a discipline in itself called Data Modelling. 
The issues discussed there come from data processing and data bases. 

First order logic allows quantification only for elements of the underlying 
universe. This looks like a severe restriction, as in mathematics we quantify 
very often also over subsets and more complex objects. However, this re- 
striction only affects the modelling issue. In set theory all objects are sets, 
and second order arithmetic can be formalized using first order T-structures, 
where the universe consists of points and sets with a unary predicate distin- 
guishing between them. It is in this sense that the notion of T-structures is 
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as universal as the set theoretic modelling of mathematical situations. 
More surprisingly, T-structures can also capture situations of modal and 

temporal propositional logic. A propositional variable may be true in some 
moments of time and false in others. So let the universe of our discourse 
be time and propositions be unary predicates [Bur84]. This is almost ob- 
vious. In the case of modal logic it needed Kripke's ingenuity to make use 
of this idea [BS84]. The universe now is a set, the set of all possible worlds 
or situations, propositions are again unary predicates, but the relationship 
between possible worlds is described by an accessibility relation. From here, 
it is natural to continue and consider several accessibility relations (to model 
for example the distinction between the legally and the morally possible). 
In the theory of program verification this was used to model the behaviour 
of abstract programs (Dynamic Logic [Har84]). In AI this approach was ex- 
tended further to model reasoning about knowledge [Eme90]. The interested 
reader will find more also in section 7. and [Ga92]. For reasons of space we 
shall not treat these issues much further in this paper. 

The point we want to emphasize here is that the framework of T-structures 
is flexible enough to model everything which can be modelled in mathemat- 
ics, more precisely in set theory. The choice of vocabulary is sometimes 
difficult and guided by various issues, including user friendliness, explicit- 
ness and technicalities of the field of application. 

3.3. Logics 

The most prominent logic is First Order Logic. Although we argued that 
T-structures are sufficiently general to model all situations which can be 
treated mathematically, First Order Logic has a limited expressive power. 
This means that a description in First Order Logic of a situation will allow 
what are called non-standard models. In other words, it will have models of 
that description which do not capture all the intended features. 

Other logics we shall consider are Second Order Logic (allowing quan- 
tification over subsets and relations without making them into objects of 
the model), Monadic Second Order Logic (allowing quantification only over 
subsets), infinitary logics (allowing infinite conjunctions and disjunctions) 
and logics with generalized quantifiers. The latter is discussed in detail in 
[Mak92b]. 

A logic itself again can be modelled within set theory. It consists of a 
family of r-formulas Frn(T) with associated meaning functions M~ sub- 
ject to several conditions. The most fundamental among them is the Iso- 
morphism Condition which asserts that isomorphic T-structures cannot be 
distinguished by T-formulas. The other conditions assert that the most ba- 
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sic operations such as conjunction, disjunction, negation, relativization and 
quantification over elements are well defined. Such logics are called regular 
logics. If negation is omitted we call the logics semi-regular. The model 
theory of such logics has been extensively studied, cf. [BF85]. 

For applications in computer science the relevant logics have two addi- 
tional features: The set of T-formulas Fm~ is recursive for finite T and 
the meaning functions Mr are absolute for set theory, i.e., they do not de- 
pend on the particular model of Zermelo-Frs set theory we are working 
in. If we additionally require that  the tautologies of such a logic are re- 
cursively enumerable, we call such a logic a Leibniz Logic. It now follows 
from work of LindstrSm and Barwise that  every Leibniz Logic is in some 
precise sense equivalent to First Order Logic, cf. [BF85]. In other words, a 
proper extension of First Order Logic is either not regular or not absolute 
or its tautologies are not recursively enumerable. If we restrict ourselves 
to finite structures the latter is unavoidable even for First Order Logic (by 
Trakhtenbrot 's  theorem), but then the satisfiable formulas are recursively 
enumerable. Semi-regular logics on finite structures where the satisfiable 
formulas are recursively enumerable have many applications to computer 
science and are studied in [Mak92b]. 

4. T h e  b i r t h  of m o d e l  t h e o r y  

Model theory deals with the mathematical study of the satisfaction relation 
or its characteristic function, the meaning function. For a specific syntactic 
system which we call logic, the meaning function singles out the pairs of first 
order structures and formulas which we interpret as asserting that  the given 
formula holds in the given structure. Any mathematically proven statement 
about the meaning function is a model theoretic theorem. 

4.1. T h e  f u n d a m e n t a l  t h e o r e m s  

The first result of mathematical  logic which could be called model theoretic 
was the famous L5wenheim-Skolem Theorem: 

THEOREM 4.1 (L(3WENHEIM-SKOLEM THEOREM) Let E be a set of for- 
mulas of first order logic such that there is an infinite A with j[ ~ E. Then 
there are models 13 of arbitrary infinite cardinalities such that B ~ E. 

The most basic model theoretic theorem is the compactness theorem for 
first order logic. We say that  a set E of formulas is satisfiable if there is a 
structure A such that  .4 ~ E. The compactness theorem now states that: 
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THEOREM 4.2 (COMPACTNESS THEOREM) A set E of first order formulas 
is satisfiable iff every finite subset of E is satisfiable. 

It follows from GSdel's completeness theorem for countable E and was proven 
for arbitrary E by Mal'cev. A model theoretic proof of the completeness 
theorem was given independently by Hasenj/iger, Henkin and Hintikka in 
1949. This proof, most widely known as Henkin's method, was instrumental 
in shaping the further developments of logic and model theory. 

The completeness theorem usually refers to some specific deduction method 
and states that a T-formula r is derivable from a set of T-formulas E iff r 
is a semantical consequence of E. The notion of semantical consequence is 
model theoretic. It says that for every T-structure j[ and every assignment 
z such that M(E, A, z) = 1 we also have M(r ,4, z) = 1. A purely model 
theoretic statement which captures the essence of the completeness theorem 
without reference to the particular deduction method is the following: 

THEOREM 4.3 For every recursive enumerable set E of T-formulas the set 
of T-formulas r which are semantical consequences of E is recursive enumer- 
able, and this uniformly in E. 

4.2. Definabi l i ty  quest ions  

The next ten years of evolving model theory were marked by explorations of 
the compactness theorem and the LSwenheim-Skolem Theorem. The first of 
these explorations concerns definability questions, both negative and positive 
results. 

On the negative side we have that many important mathematical concepts 
cannot be captured by first order formulas. Among them are the concept 
of well-orderings, connectivity of binary relations and Cauchy completeness 
of linear orders. This was first perceived as a blow to the foundation of 
mathematics, as it led to 'non-standard' models of the Natural Numbers, 
the Real Numbers and of Set Theory. However, A. Robinson realized that 
those non-standard models had their own usefulness for developing genuine 
first order mathematics. For theoretical computer science, non-standard 
models of number theory and set theory only recently started to play a 
r61e. We shall not discuss their use in this paper, but refer the reader to 
[ANS82, MS89, Pas90]. 

On the positive side we have Beth's theorem on implicit definitions and 
its various generalizations. Those theorems were mostly proven first by 
syntactic methods, but the model theoretic proofs found later make those 
theorems independent of the particular formalism of first order logic. Let 
E be a set of first order formulas over some vocabulary T, and let P be an 
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n-ary relation symbol not in ~-. We say that a formula r over T U {P} 
defines P implicitly using E, if in each model ,4 of E there is at most one 
interpretation of P. We say that the predicate implicitly defined by r using 
E has an explicit definition if there is a formula O(xl, x 2 , . . . ,  xn) over T such 
that 

[.J q~(P) ~ VXl,X2,. . . ,Xn(O(Xl,X2,. . . ,Xn) ~ P(Xl,X2, . . . ,Xn)) .  

Now Beth's theorem can be stated as follows: 

THEOREM 4.4 (BETH) Let E be a set of first order formulas and let r  
be an implicit definition of P using E. Then there is an explicit definition 
of P using E. 

Beth's theorem is trivially true for second order logic, and false for first order 
logic when restricted to finite structures. In the latter case, implicit defini- 
tions allow us to define classes of structures recognizable in N P  N c o - N P ,  
whereas first order formulas define classes recognizable in L (Deterministic 
Logarithmic Space). Beth's theorem is mainly appealing as a closure prop- 
erty of a logic. There are surprisingly few genuine applications of Beth's 
theorem and its relatives. One of them, in the axiomatic treatment of spec- 
ification theory, is relevant to theoretical computer science (cf. [MS92]). 
More recently Kolaitis has studied implicit definability on finite structures 
and related it to issues in complexity theory, [Kol90]. 

5. Maturing model theory 

In the sixties model theory flourished around applications of the compactness 
theorem and around alternative proofs of it. 

5.1. P r e se rva t i on  theorems 

One line of explorations of the compactness theorem was initiated by Tarski. 
He observed that universal first order formulas are preserved under substruc- 
tures. In other words, if E is a set of first order formulas in prenex normal 
form with universal quantifiers only and A ~ E and B c_ ,4 is a substruc- 
ture of A then B ~ E. The same is true for any E1 equivalent to E. By an 
ingenious application of the compactness theorem he proved the converse of 
this observation" 

THEOREM 5.1 (SUBSTRUCTURE THEOREM) A set E of tirst order formulas 
is preserved under substructures iff E is equivalent to some set of universal 
formulas. 
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The Substructure Theorem set a pattern for further investigations whose 
results are called preservation theorems. It led to similar syntactic charac- 
terizations for formulas preserved under unions of chains, homomorphisms, 
products, intersections and other algebraic operations. There are also some 
surprising interrelationships between a generalization of Beth's theorem and 
preservation theorems for a wide class of operations between structures, cf. 
[Mak85]. Some of these preservation theorems have variations and interpre- 
tations which are of importance in database theory [Mak84] and the foun- 
dations of logic programming, [Mak87]. Questions related to such preserva- 
tion theorems also occur naturally in the compositional approach to model 
checking for various temporal logics, [Eme90]. The latter is a subdiscipline 
of program verification. It still remains an open avenue of research to find 
the preservation theorems which will be useful for model checking, in par- 
ticular those preservation theorems which will reflect the compositionatity 
of programs. 

H o r n  formulas  

Both in Relational Database Theory and Logic Programming, first order 
formulas form the syntactic background of the field. In both fields it was 
observed that certain syntactically defined classes formulas play a special 
r61e. For a detailed discussion of first order logic's r61e in database theory one 
may consult [Var88, Kan90] and the corresponding chapter in [Mak92a] The 
most prominent such class of formulas are called Universal Horn formulas. 
They also play a certain r61e in the Specification of Abstract Data Types. 

DEFINITION 5.2 (HORN FORMULAS) 
is a formula of the form 

(i) A quantifierfree Horn formula 

P1A. , .A Pk ~ Po 

where all the Pi, i <_ k are atomic formulas. 

(ii) A Universal Horn formula is a formula of the form V X l , . . . ,  Xmrb with 
g; a quantifier free Horn formula. 

The classical theorem of model theory gives the following characterization 
of Universal Horn formulas. 

THEOREM 5.3 (MAL'CEV) Let K be a class of T-structures which are ex- 
actly the models of a set of first order T-formulas E. Then K is dosed 
under substructures and products iff E is equivalent to a set of Universal 
Horn formulas. 
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It is now tempting to try to use this characterization of Universal Horn 
formulas in order to explain their special properties in terms of Databases 
and Logic Programming. Fagin has done this in [Fag82] for the case of 
databases. Mahr and Makowsky have done this for the case of Specification 
of Abstract Datatypes [MM84] extracting the model theoretic content of 
[GTWW77]. The latter was based on ideas from Category Theory and 
Universal Algebra. A more general discussion may be found in [Mak84]. 
Clearly, neither the closure under substructures nor under products has any 
explanatory power per se in these contexts. It would be more satisfactory, 
if the formation of products and the closure under substructures could be 
replaced by some activity stemming from handling databases. This was 
achieved with moderately satisfactory results in [Mak81, MV86]. 

The predominant rhle Horn formulas play in Logic Programming can be 
explained syntactically by the similarity of Horn formulas to deterministic 
rules or instructions. Semantically, the situation is similar to Abstract Data 
Types in as much as one thinks of a unique minimal interpretation. An 
exact model theoretic analysis of Horn formulas in Logic Programming was 
proposed in [Mak87]. Its relevance for Negation by Failure was discussed in 
Shepherdson's [She84, She85, She88]. The exact formulation of this analy- 
sis is unfortunately not possible in this survey. An excellent exposition of 
special properties of Horn formulas is [Hod92]. Formulas preserved under 
relativization play a vital rhle in relational database theory, especially in 
connection with safe queries, cf. lUll82, TS88, MV86]. Horn formulas pre- 
served under intersections were analyzed in [Mak87]. Finally, formulas with 
monotone predicates can be characterized as formulas with positive occur- 
rence of the predicate and play an important rhle in the theory of computable 
fixed points and related topics [Mos74]. The use of preservation theorems in 
Database Theory will be discussed in [Mak92a]. 

5.2. U l t r a p r o d u c t s  and fast growing funct ions 

With these early investigations centering around the compactness theorem 
and the preservation theorems an alternative proof of the compactness the- 
orem was discovered using ultraproducts. The method of ultraproducts also 
lead to alternative proofs of preservation theorems and dominated research 
in model theory throughout the sixties (cf.  [CK90]), but it had almost 
no impact on theoretical computer science. Although Kripke and Kochen 
[KK82] used bounded ultraproducts to give a model theoretic proof of the 
Paris-Harrington Theorem, Kanamori and McAloon [KM87] gave a model 
theoretic proof of this theorem without bounded ultraproducts. In the lan- 
guage of theoretical computer science this theorem can be stated as follows: 
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THEOREM 5.4 (PARIS, HARRINGTON) There are programs (number theo- 
retic functions) which 

(i) always terminate (are total) but 

(ii) such that a termination proof does not exist within the formalization 
of Peano arithmetic. 

A very picturesque version of this theorem is due to Kirby and Paris [KP82]. 
The function described there is a winning strategy for the fight of Hercules 
against the Hydra, where the Hydra grows n new heads after the nth blow it 
receives. The underlying theme of this theorem are fast growing functions. It 
is questionable whether the model theoretic proof of the Paris-Harrington 5.4 
theorem really captures the essence of the matter completely. The original 
proof has a proof theoretic flavour and for various generalizations of this 
theorem no purely model theoretic proof is known. A prominent example is 
Friedman's theorem: 

THEOREM 5.5 (H. FRIEDMAN) There are programs (number theoretic 
functions) which 

(1) always terminate (are total) but 

(ii) such that a termination proof does not exist within the formalization 
of various fragments of second order Arithmetic. 

A technical and philosophical discussion of such theorems may be found in 
[HMSS85]. A presentation of this theorem and related results accessible to 
computer scientists may be found in [Ga191]. 

5.3. Comple te  theories and e l iminat ion of quantifiers 

Another line of early investigations was the study of complete theories. A 
set E of formulas (over a fixed vocabulary T) is complete if for every formula 
r either E ~ r or E ~ -~r The original interest for complete theories stems 
from questions of decidability. A set of formulas E is decidable if its set of 
consequences is recursive. 

THEOREM 5.6 /f E is recursive and complete then E is decidable. 

Proofs of completeness were often obtained using the method of elimination 
of quantifiers. Tarski used these ideas to show that there is a decision proce- 
dure for Elementary Geometry, which he identifies with the first order theory 
of real closed fields. This theorem led recently to interesting applications in 
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robotics. But the method of elimination of quantifiers has not yet received 
the attention it deserves among researchers in automated theorem proving. 
The state of art in automated theorem proving for elementary geometry is 
best discussed in [Cho88, SSH87]. 

Another way of proving completeness of first order theories is based on a 
simple but ingenious observation due to Vaught, which shows the power of 
model theoretic reasoning. Let E be a complete theory. If E has a model 
A which is finite, then it is unique up to isomorphism. If A is infinite, 
then by the L5wenheim-Skolem Theorem, E has models of arbitrary infinite 
cardinalities. Now, if all models of E of infinite cardinality n are isomorphic, 
we say that E is n-categorical. Note that if A and B are isomorphic then 
they satisfy the same first order sentences. 

THEOREM 5.7 (VAUGHT) /f E iS n-categorical for some infinite n and E 
has no finite models, then E is complete. 

Proof .  Assume, for contradiction, that there is r such that neither E ~ r 
nor E ~ -~r As E has no finite models, using the LSwenheim-Skolem 
Theorem we can find models A and B such that A ~ E U {r and B 
E U {-~r both of cardinality n. But then A is isomorphic to B, which 
contradicts the fact that A ~ r and B ~ -~r I 

Classical mathematical results establish categoricity of a few natural first 
order theories. Hausdorff and Cantor showed that any two countable dense 
linear orderings are isomorphic, and a similar argument shows the same for 
countable atomless boolean algebras. Steinitz showed that any two uncount- 
able algebraic closed fields of characteristic zero of the same cardinality are 
isomorphic. So Vaught's theorem quickly establishes that these theories are 
complete and therefore decidable. 

6. S p e c t r u m  p r o b l e m s  

The study of categoricity of first order theories was the driving force behind 
the deepest results of model theory. Ryll-Nardzewski, Svenonius and Engeler 
independently characterized w-categorical theories, and Morley proved the 
following generalization of Steinitz' theorem: 

THEOREM 6.1 (MORLEY) ff E is categorical for some uncountable n then 
E is categorical for every uncountable n. 

If E is not categorical, then it is natural to look at the following: Let E be a 
set of formulas and denote by I(E, n) the number of non-isomorphic models 
of cardinality n. I(E, n) is called the spectrum of E. The study of I(E, n) 
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for infinite a was initiated by Morley and Vaught (cf. [CK90]). A complete 
analysis of the infinite case dominated the research efforts in model theory 
and culminated in Shelah's theorem [Sheg0]: 

THEOREM 6.2 (SHELAH'S SPECTRUM THEOREM) 
For uncountable ~ I(E, ~) is non-decreasing in ~ and,*in fact either 

(i) I(E, ~) = 2 ~ or 

(ii) I(E,w~) < B E T H ,  s(card(a)). 

The infinite spectrum and its ramifications are the core of a highly sophisti- 
cated development in model theory called stability theory. Although it is of 
extreme mathematical depth and beauty I can so far see no fruitful interplay 
between stability theory and computer science. 

Instead of I(E, ~) for finite ~, we shall look at the finite cardinal spectrum 
Spec(E) of finite sets of formulas E. Spec(E) is the set of natural numbers 
n such that there is a finite model of E of cardinality n. (The study of 
Spec(E) was initiated by Scholz. For the historic remarks cf. [Fag90]). In 
contrast to stability theory, the study of the finite cardinal spectrum Spec(E) 
led to very interesting interactions between model theory and complexity 
theory, through the pioneering work of Biichi, Fagin and Immerman (cf. 
[Bii60, Fag74, Imm871). 

Biichi studied the interplay between Monadic Second Order Logic and 
automata theory. He looked at words over a finite alphabet as finite linearly 
ordered structures with unary predicates. Recall that a set of words is 
regular if it is recognizable by a finite automaton. His theorem states: 

THEOREM 6.3 (BOCHI) A set of words is regular iff it is definable by an 
existential formula of monadic second order logic. 

Fagin studied the finite spectrum and was led to the following theorem: 

THEOREM 6.4 (FAGIN) A set of finite structures is in N P  iffit is definable 
by an existential (full) second order sentence. 

Let r be a first order formula over a vocabulary T. We note that Spec(r 
can be viewed as the set of finite models of (I) over the empty vocabulary, 
where (I) is obtained from r by existentially quantifying all the predicate 
symbols of ~-. So Fagin's theorem generalizes both the spectrum problem as 
well as Biichi's theorem. 

Immerman characterized similarly sets of ordered finite structures in L, 
NL, P. We shall discuss the interplay between model theory and complexity 
theory in the last section. 
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7. B e y o n d  first o rde r  logic 

In this survey we already have come across features which go beyond first or- 
der logic. We have tacitly introduced quantification over relations in Biichi's 
theorem, and we have mentioned the semantic restriction to finite structures. 
These mark the two independent directions generalizations might take: More 
sentences vs. more complex models. 

The model theoretic study of richer logics over T-structures in the usual 
sense was initiated in the late fifties independently by A. Tarski and his stu- 
dents, and E.Engeler for infinite first order formulas, and by A. Mostowski 
for generalized quantifiers. The book [BF85] contains an excellent bibliog- 

raphy and historic account. From a naive model theoretic point of view it 
is natural to ask whether for those generalized logics the compactness theo- 
rem and the Lhwenheim-Skolem theorem are still true. For infinite formulas 
compactness fails trivially. It was also observed that in all the examples 
of generalized quantifiers studied one of the two usually failed. In 1966 P. 
Lindstrhm published a paper which was hardly noticed till 1970. In it the 
following fundamental result was stated and proved: 

THEOREM 7.1 (LINDSTROM) Let s be a regular logic over T-structures 
which both satisfies the compactness theorem and the L6wenheim-Skolem 
theorem. Then s is, up to semantic equivalence, t~rst order logic. 

A logic is regular if it is closed under boolean operations, quantification, rel- 
ativization and does not distinguish between isomorphic T-structures. This 
theorem was followed by intense investigations of model theories of partic- 
ular logics and the evolution of a framework for 'abstract model theory'. 
The fruits of these investigations were collected in the monumental volume 
[BE85]. 

In 1965 S. Kripke initiated the model theoretic study of logics different 
from classical first order or propositional logic, such as intuitionistic logics, 
modal logics and temporal logics. His main idea was to look at, say propo- 
sitional modal or temporal logic, as a special case of first order logic. A 
Kripke-structure is a first order structure with a binary relation for acces- 
sibility to possible states (worlds in the case of modal logic, points in time 
in the case of temporal logic). Propositions then are unary predicates in 
Kripke-structures. The modal and temporal operators (necessarily/possibly, 
always/sometimes) now become first order definable. The axioms of modal 
or temporal logic shape the accessibility relation. In this way Kripke was 
able to state precisely the semantics of modal logic and prove, for the first 
time, completeness theorems. To illustrate this let us state here the case of 
the modal system T, which captures the unproblematic aspects of 'necessity'. 
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The formula [3r is read as 'necessarily r The system T contains all substi- 
tutions of propositional tautologies, the axioms [:3(r ~ r ~ (pC ~ t3r 
and [3r ~ r and the two deduction rules Modus Ponens and from r infer 
Gr 

THEOREM 7.2 (KRIPKE) A modal formula r is provable in T i f f  r is true 
in all Kripke-structures with a reflexive accessibility relation. 

We speak of temporal logic when the accessibility relation is a partial order, 
in the most natural case, a discrete linear order. The formula [3r is now 
read as 'always r It is natural to ask whether the introduction of one 
temporal operator (or for that matter, modal operator) suffices, or whether 
there are many hitherto undiscovered temporal operators. Obviously we 
have operators corresponding to 'next'. 'previously' 'always in the future', 
'always in the past', 'r until ~' and 'r since r We note that all these 
operators are first order definable over linearly ordered Kripke-structures. 
H. Kamp now proved the following remarkable 

THEOREM 7.3 (KAMP) Let TO(p~, . . . ,p~)  be an n-ary temporal operator 
which is/~rst order definable over discrete, complete linear orderings. Then 
TO(p1, . . .  ,p~) is definable from the operators 'next', 'previously', 'some- 
times in the future', 'sometimes in the past', 'until' and 'since'. As a matter 
of fact, 'until' and 'since' sut~ce. 

The theorems of Kripke and Kamp are two prime examples of model theo- 
retic theorems in non-standard logic. The underlying techniques, however, 
are applicable in a much wider context and have not yet been systematically 
developed. Good surveys are [Bur84, BS84, RS23]. 

Both types of generalizations of first order logic, more formulas and richer 
semantic structures, found rich applications in theoretical computer science. 
Engeler was the first to observe that infinitary logic can serve as a framework 
to formulate the input/output  behaviour of programs. His approach was con- 
sidered awkward. V. Pratt  and D.Kozen used a Kripke-like semantics for 
an approach to axiomatize the input/output behaviour of programs, which 
was finally called 'Dynamic Logic'. This was received enthusiastically. How- 
ever, it was soon observed that the two approaches were equivalent. Burstall 
suggested modal and Pnueli temporal logic for the axiomatic description 
of program behaviour. Kripke-structures are also abundant in foundational 
research in AI, especially in the theory of knowledge. 

8. T h e  h i dde n  m e t h o d  

One model theoretic tool of central importance does usually not appear in 
the statement of theorems, but mostly in their proofs. This is the 'back-and- 



255 

forth' characterization of n-equivalent structures, i.e. structures satisfying 
the same sentences of quantifier rank n. This characterization originated 
in the early work of R. Fra'/ssfi and was popularized in an influential paper 
by A. Ehrenfeucht. Ehrenfeucht also generalized the method to monadic 
second order logic, and further generalizations for infinitary logic and log- 
ics with generalized quantifiers and predicate transformers were developed 
subsequently, cf. [BE85]. In [Mak92b] one may find an extensive discussion 
of this method, which we call Ehrenfeucht-Fra'/ss~ games. Here we only list 
some of its application. 

Originally, Ehrenfeucht-Frg/ss~ games were used to prove that certain con- 
cepts are not definable by first order formulas even if restricted to finite 
structures. Among such concepts we find the connectivity and planarity of 
graphs. The deepest and most surprising application of Ehrenfeucht-Fra'/ss~ 
games occurs in the proof of Lindstrhm's theorem. A close analysis of this 
proof also shows that Beth's theorem can be proven using this method, as 
well as various preservation theorems. Ehrenfeucht's generalization of the 
method to monadic second order logic can be used to give a model theo- 
retic proof of Biichi's theorem. It was used in [FR79] to establish lower and 
upper bounds for the complexity of decidable theories such as Presburger 
Arithmetic and the theory of two successors functions. And finally, it can 
be also used to prove the 0-1 law for first order logic over finite structures, 
due independently to R. Fagin and Glebskii, Kogan, Ligon'kii and Talanov. 

9. 0-1 laws 

To state the 0-1 Theorem, let 7 be a vocabulary without function symbols 
and let r be a first order T-formula. We think of a structure of size n as 
having the universe {0, 1 , . . . ,  n - l } .  Let S~(n) be the number of w-structures 
of size n. Recall that I(r n) is the number of different structures of size n 
satisfying r Let P(n, r be the fraction of I(r n) and S~(n). 

THEOREM 9.1 (0-1-LAw OF FIRST ORDER LOGIC) _For every w without 
function symbols and every first order T-formula r the limit 

lnim ~ P(n, r 

is web defined and is either 0 or 1. 

DEFINITION 9.2 (ALMOST TRUE FORMULAS) A First Order Formula r is 
almost true if limn--,oo P(n, r  1. 

In contrast to First Order Validity over finite structures, which is undecidable 
by Trakhtenbrot's classical theorem, the set of first order sentences true in 
almost all structures is decidable. In fact, Grandjean proved [Gra83]: 
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THEOREM 9.3 (GRANDJEAN) Assume that 7- has no function symbols. The 
problem of deciding, whether a first order T-formula r is almost true, is P -  
Space complete. 

0-1 Laws were investigated also for extensions of First Order Logic. For 
a further discussion of similar theorems the reader should consult [Com87, 
Fag90] and the literature quoted therein. Striking applications of 0-1 Laws 
in Computer Science are still missing. They may emerge in the context of 
Average Case Complexity Theory [Gur91], Graph Algorithms [GS87] and 
the like. 

10. Mode l  theore t i c  aspects  of P ~-?NP 

In this final section we discuss some model theoretic aspects of the question 
P =/=?NP, 

10.1. Non-def inab i l i ty  

The first observation ist the following consequence of Fagin's theorem 6.4. 

THEOREM 10.1 C o -  N P  - N P  it[ every second order formula of Second 
Order Logic is equivalent over finite structures to a El-formula, i.e. a second 
order formula of the form 3Re(R)  with r first order. 

In other words, to show that C o -  N P  ~ N P  it suffices to exhibit a 
second order formula which is not equivalent over finite structures to a E~- 
formula. 

This seems very difficult, although plausible. A more amenable problem 
might be to prove that 1NL ~: NP.  Here we have more hope for two rea- 
sons: NL (Nondeterministic LogSpace) has been identified by Immerman 
[Imm87] as the complexity class captured by the logic TC obtained from 
First Order Logic by adding transitive closure operators for 2n-ary rela- 
tions. Furthermore, for TC an Ehrenfeucht-Fra'fss6 type game has been 
defined in [Ca189, CM91]. The existence of similar games as introduced in 
this paper, already follows from successive papers cumulating in [MM85]. 
There, they are defined for logics with generalized quantifiers rather than 
predicate transformers. 

The games naturally induce a sequence of equivalence relations = T C  be- 
tween structures which we call n-isomorphic for TC. In [Ca189] Calb proves 
soundness and completeness of these equivalence relations in the sense that 
two structures are n-isomorphic for TC iff they satisfy the same formulas 
of quantifier depth n. 
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As an application of our work [CM91] we can state a necessary and suffi- 
cient conditions for separating the complexity classes L, NL, P and N P  
respectively which is of pure model theoretic character. In the case of 
NL :/: N P  this condition can be stated as follows: 

Let H A L F C L I Q U E  be the set of ordered graphs which contain a clique 
of half its size. Let H A M  be the set of ordered graphs which contain a 
hamiltonian path. Note that H A L F C L I Q U E  and H A M  are NP-complete, 
cf. [G J79]. 

THEOREM 10.2 NL 7! N P  iff there is a sequence of pairs of ordered graphs 
Gn, Hn such that 

~) anon TCHn and 

(ii) Gn f[ H A L F C L I Q U E  but H~ c H A L F C L I Q U E .  

The same holds for H A L F C L I Q U E  replaced by H A M  or any other N P -  
complete problem. 

The construction of such families of graphs may be very hard and possi- 
bly requires probabilistic methods similar to the ones used in [AF90]. The 
following result nevertheless sheds some light on the problem. 

THEOREM 10.3 H A L F C L I Q U E  and H A M  are not definable in Monadic 
Second Order Logic (with arbitrary alternation of quantifiers) and hence not 
definable in TC 1, the logic obtained from TC by restricting the transitive 
closure to binary relations. 

In [dR87] it is only proved that H A M  is not definable in existential Monadic 
Second Order Logic. 

This gives us a quick example for interesting families of pairs of ordered 
finite structures which are n-isomorphic in TC  1. 

COROLLARY 10.4 There are functions f , g  : N ~ N such that for every 
n C N f (n)  7~ g(n) and the words af(n)b f(n) and af(n)b g(~) are n-isomorphic 
(equivalent) in TC 1. 

It would be interesting to estimate the growth rate of the functions f, g. Note 
that this corollary is a model theoretic analogue of the Pumping Lemma of 
Formal Language Theory. 
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10.2. Non-provability 

We now address the question whether it could be possible that P r N P  is 
not provable in some formal system of arithmetic such as Peano Arithmetic 
or Predicative Analysis. The following variation of the Paris-Harrington 
Theorem is due to S. Ben-David [BDH91]: 

THEOREM 10.5 (S. BEN-DAVID) There is a language (sets of words rec- 
ognizable by Turing machines) LpH such that 

(i) LpH is in Co-NP; 

(ii) LpH is not context free, but 

(iii) it is not provable in Peano Arithmetic that LpH is not regular. 

The language LpH is very simple. Its words consist of sequences of n a's 
followed by r(a) b's where r is some fastgrowing function such as the Ramsey 
function needed in the Paris-Harrington Theorem. This particular language 
seems to be a good candidate to prove an analogue of corollary 10.4 for TC,  
which would establish that LpH is not in NL. 

Recently, S. Ben-David has analyzed these results further and related 
them to discuss the prospect of P # N P  not being provable in some for- 
malized system such as Peano Arithmetic or fragments of Second Order 
Arithmetic [BDH91]. The key notion here are functions extremely close to 
polynomials where extremely close depends on the growth rate of functions 
not provably total in the formal system in question. His theorem states the 
following: 

THEOREM 10.6 (S. BEN-DAVID) K P  :/: N P  is not provable in some frag- 
ment of second order Arithmetic S then every problem P in N P  can be 
solved by an algorithm with run time upper bound S-extremely dose to a 
polynomial. 
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1. Dec idable  and undecidable  formal sys tems  

For our purposes, a formal system consists of a formal language and a proof 
theory. Familiar examples are sentential logic and first-order logic (FOL). A 
well-formed formula (wff) ~ in the formal language of a formal system E is 
derivable from a set F of such wffs (in symbols, F ~-r~ ~) iff there is a proof of 

from F in the proof theory of the system. A formal system E is monotonic 
iff for any wff ~ and any sets of wffs F and A in E such that F C A, if 
F ~-r~ ~, then A F-r. ~. Of course, E is nonmonotonic iff there are ~ and 
F C_ A such that F ~-r~ ~ and A ~r~ ~. Familiar nonmonotonic systems 
include circumscription (McCarthy 1980, 1986; Lifschitz 1985, 1986), default 
logic (Reiter 1980), nonmonotonic logic (Doyle and McDermott 1980; Moore 
1985), and autoepistemic logic (Moore 1984; Konolige 1988). In this paper 
we will say that a formal system is decidable iff for any finite set of wffs 
F, the set of wffs provable from F is recursive. A formal system is semi- 
decidable iff for any finite set of wffs F, the set of wffs provable from F is 
recursively enumerable. Sentential logic is decidable. FOL and Horn Clause 
Logic (HCL) are not decidable, but they are semi-decidable. 

Nonmonotonic extensions of semi-decidable theories may also be semi- 
decidable. For example, consider an FOL language containing all the integers 
as constants and a monadic predicate F. To the proof theory of FOL, we 
add the rule that F(n) is derivable from F if F has n many members. The 
resulting system is an extension of FOL, but it is nonmonotonic" F(0) is 
derivable in this system from q~, but it is not derivable from {F(1)}. Since 
it is decidable whether F(n) is derivable from any finite set of wffs of this 
language, and since FOL is semi-decidable, this extension of FOL is also 
semi-decidable. 

Nevertheless, most interesting nonmonotonic extensions of FOL are not 
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semi-decidable. This is because for any one of these systems E, there are 
wffs ~ and ~ and some set of wffs F of E such that to prove ~ from F in 
E, it is necessary to demonstrate that there is no proof of ~ from F in E. 
If any wff of an undecidable fragment of E can play the role of ~ in this 
requirement, then since the set of wffs which are not derivable from F is in 
general not recursively enumerable, E cannot be semi-decidable. A similar 
argument is not possible for a decidable system like sentential logic, and we 
should expect a nonmonotonic extension of a decidable system also to be 
decidable. 

If a system is at least semi-decidable, it is possible to build a sound and 
complete theorem prover for it. So we can build sound and complete theorem 
provers for FOL and HCL. But we cannot in principle build a sound and 
complete theorem prover for a system that is not even semi-decidable. This 
suggests that we should look for nonmonotonic extensions of interesting 
decidable fragments of FOL. These should be not only semi-decidable but 
actually decidable. This is the approach taken here. 

The system of nonmonotonic logic developed here is called defeasible be- 
cause it involves conditional rules which can be blocked or defeated in some 
way. It is possible in this and similar systems to have a consistent theory 
which contains such a rule, its antecedent, and the denial of its consequent. 
This distinguishes defeasible formalisms from circumscription, default logic, 
autoepistemic logic, and other nonmonotonic formalisms. Defeasible for- 
malisms have been developed by Pollock (1987), Loui (1987), Geffner (1989), 
Geffner and Pearl (1990) and others. The system presented here evolved 
from a system described in (Nute 1991). Besides showing that this system 
is adequate for many standard examples of nonmonotonic reasoning and 
that it is decidable, I will also show that it has a property similar to one 
which has been associated with the term cumulativity in the literature on 
nonmonotonic reasoning. 

2. S t r i c t  logic 

The monotonic basis for our defeasible logic will be called strict logic. A 
strict language L is generated by a recursive set B L of predicates and con- 
stants called the basis of the language. Atomic formulae of L are formed 
from members of B L and some countable set of variable expressions in the 
usual way. A negation symbol ~ is introduced, and ~ is a literal of L if ~ is 
either an atomic formula of L or the negation of an atomic formula of L. A 
ground literal is a literal in which no variable expression occurs. Where 
is an atomic formula, we say p and ~ p  are the complements of each other. 
We represent the complement of any literal r as --r 
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Next we introduce a metalinguistic symbol ~ and use it in the definition 
of a strict rule. Then we define a strict theory and present the simple proof 
theory for strict logic. 

DEFINITION 1 A strict rule is a triple (A, --,, 99) where A is a set of literals 

and 99 is a literal. We represent (A, 7 ,  99) as A ~ 99 and ({99},---,, r  as 

DEFINITION 2 A strict theory is a pair (K, R) where K is a set of literals 
and R is a set of  strict rules. 

DEFINITION 3 A ground substitution is a function 0 which assigns to each 
variable v a constant O(v). Let 0 be a ground substitution, F(t~, . . . , tn)  
an atomic formula, 99 a wff, and F a set of wffs. Then F(t l ,  ..., tn)O = 
F(tlO, ..., tnO), r0 = {r  r c r}. 

DEFINITION 4 t is a strict proof of 99 from (K, R) iff t is a finite labeled 
tree, ~ is a ground literal, and (K, R) is a strict theory such that 

1. the top node o f t  is labeled ~, and 

2. for every node n in t, either 

(a) there is r c K and an ground substitution 0 such that n is labeled 
~0 or 

(b) there is A ~ ~p c R and a ground substitution 0 such that n is 
labeled ~0 and n has a child labeled c~O for each c~ C A. 

DEFINITION 5 99 iS strictly derivable from (K, R) (in symbols, (K, R) F-s 99) 
iff there is a strict proof  of 99 from (K, R). 

Intuitively, a strict rule A -~ 99 is a metarule that  says 99 is to be inferred 
from A; i.e., it is an inference rule. Soon we will introduce defeasible rules 
as well. The intended interpretation of both strict and defeasible rules in 
defeasible logic is as honest-to-goodness rules of inference or policies for 
belief fixation and revision (Israel 1980, Nute 1992). They play a different 
role than that  of the literals in a strict language. Literals represent contents 
of beliefs; rules represent policies for accepting beliefs. Thus, we have a 
two-tiered language where rules are metalinguistic expressions in the higher 
tier denoting literals in the lower tier. Our proof theory for both strict 
and defeasible logic can be viewed as telling us what it means to comply 
with some set of strict or some set of strict and defeasible rules. Thus, our 



266 

proof theory provides compliance conditions for these kinds of inference rules 
(Nute 1988, 1992). 

Despite the intended interpretation of strict rules just explained, strict 
logic is equivalent to a fragment of FOL. In this fragment, the only wits are 
literals and expressions of the form 99 D r where 99 is a conjunction of literals 
and r is a literal. The system has no axioms, and its only rule is a modified 
modus ponens which says to infer r from ~1,...,99k, and ~1 A ... A 99k D r 
Using this rule we would define linear proofs in the usual way. It is more 
convenient to define proofs for strict logic and its successor, defeasible logic, 
as trees because this simplifies the decidability argument and because it 
mirrors the search strategy of an automated theorem prover for the systems. 

Strict logic is both monotonic and decidable. 

3. Some  examples  of defeasible reason ing  

Now we look at some examples which will motivate both the formal lan- 
guage and the proof theory for our logic of defeasible reasoning. Some of 
these examples have appeared often in the literature; others are new and 
demonstrate features of defeasible reasoning that have received little atten- 
tion. 

EXAMPLE 1 (NIXON DIAMOND) Quakers are normally pacifists but repub- 
licans typically are not pacifists. Nixon is both a Quaker and a republican. 

Notice first that we have general principles here which may admit of excep- 
tions. The uses of the terms 'normally' and 'typically' indicate this explicitly. 
We will call general principles like this, as well as their singular counterparts, 
defeasible rules. We might rephrase the first of these as 'If something is a 
Quaker, then normally it is also a pacifist' or as 'Take a thing's being a 
Quaker as evidence that it is a pacifist'. What conclusion can we draw 
about whether Nixon is a pacifist based on the information given in this 
example? None at all. We have here evidence supporting contradictory con- 
clusions and no criteria for deciding between them. We might say that in 
the case of Nixon, our rules concerning both Quakers and republicans are 
defeated. Or perhaps more precisely, we can say that our application of each 
of these rules to Nixon is defeated. Moreover, we can say that each of the 
rules is defeated by the other. 

EXAMPLE 2 (TWEETY TRIANGLE) Birds normally fly; but penguins are 
birds and penguins normally don't fly. Tweety is a penguin. 

Here again, we have two competing principles. But in this case, we can 
resolve the conflict and conclude tentatively that Tweety apparently does 
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not fly. Notice that  unlike the two defeasible rules in this example, the 
principle that  penguins are birds is not defeasible. It is a strict rule. How do 
we resolve the conflict between 'Birds normally fly' and 'Penguins normally 
don't fly'? By using the information that  penguins are birds. We know what 
normal or typical birds do, but we also know that  penguins are special kinds 
of birds. Since they don't  fly, we know in fact that  one way in which they 
are special is in this respect. Put  another way, the information that  Tweety 
is a penguin is more specific than the information that  Tweety is a bird, and 
any rule for penguins will be more specific than any rule for birds in general. 
This example suggests that  when we have two competing defeasible rules 
and we can determine that  one is more specific than the other, we prefer the 
more specific rule. 

EXAMPLE 3 College students normally don't have full-time jobs. But col- 
lege students normally are adults and adults typically have full-time jobs. 
doe is a college student. 

This example is similar to the Tweety Triangle, but here the connection 
between college students and adults is itself defeasible. Nevertheless, we 
are inclined to conclude that  rules about college students are more specific 
than rules about adults and to resolve the conflict by concluding that  Joe 
evidently does not have a full-time job. 

EXAMPLE 4 As we noted in the previous example, college students normally 
don't have full-time jobs even though college students are normally adults 
and adults typically have full-time jobs. Furthermore, people with jobs 
normally pay income tax and college students normally don't. Fred is a 
college student but he also has a full-time job. 

This example shows some of the complications that  arise when we try to 
use the notion of specificity to resolve conflicts between rules. Here we have 
conflicting rules about who pays income tax. The conditions of both rules 
are satisfied by Fred. Although we have a chain of rules leading from being 
a college student to having a full-time job, we also know that  Fred is an 
atypical college student with regard to his employment. So we do not say 
that  the rule for college students is more specific than the rule for people 
with jobs. We can draw no tentative conclusion about whether Fred pays 
taxes based on this collection of rules and information. Our formalization 
of specificity should be correct for examples of this sort. 

EXAMPLE 5 Normally, something that looks red is red. But something that 
looks red under red light might not be red. Observing my car under red light, 
it looks red. 
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The second principle in this example is unlike any we have seen before. 
Unlike either a strict or a defeasible rule, it does not tell us that  some 
proposition is evidence for something else. Instead, it tells us that  under 
certain conditions, something does not count as evidence which ordinarily 
would count as evidence. In our other examples, we can say that  each of the 
conflicting rules rebuts its competitor. But our 'might' rule does not rebut 
its competitor since it does not give us evidence for its own conclusion. 
Rather it undercuts its competitor. We should not conclude, tentatively or 
otherwise, that  my car either is or is not red on the basis of the facts and 
principles comprising this example. We will call a rule like this a defeater. 

Notice that  simply because the corresponding positive principles are de- 
feasible, they allow that  a republican might be a pacifist, a bird might not 
fly, a college student might have a full-time job, etc. But it would be pecu- 
liar to respond to an argument that  presumably Tweety flies since Tweety 
is a bird and birds normally fly by objecting that  a bird might not fly. The 
proper response to such an objection would be something like, "That 's  true. 
That ' s  why I said that  birds normally f ly -  because there are exceptions. But 
unless you give me some reason for thinking that  Tweety is an exception, I 
am justified in tentatively concluding that  Tweety flies." The point is that  
being a bird is not a reason to call into doubt a claim that  something flies; 
but being sick or being very young is a reason to call into doubt a claim that  
a bird flies. We voice defeaters only to undercut defeasible rules, to point 
out circumstances under which the rules should not be applied. 

EXAMPLE 6 Native speakers of Pennsylvania Dutch are native speakers of 
(a dialect of) German. Native speakers of Pennsylvania Dutch are normally 
born in Pennsylvania. People born in Pennsylvania are born in the United 
States. Native speakers of German norrnally are not born in the United 
States. Hermann is a native speaker of Pennsylvania Dutch. 

One of our conflicting rules is strict while the other is defeasible. But the 
antecedent of the strict rule is itself a consequent of a defeasible rule, while 
the antecedent of the defeasible rule is a consequent of a strict rule. We 
should conclude that  Hermann definitely is a native speaker of (a dialect 
of) German and that  he apparently was born in Pennsylvania. Intuitively, 
we also conclude that  apparently Hermann was born in the United States. 
This is because we prefer strict rules over defeasible rules, even when the 
commitment to the condition of the strict rule is only tentative. This also 
suggests that,  as a general rule, we need only look at the conditions of the 
conflicting rules and the relations between them rather than at the argu- 
ments supporting these Conditions. 
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EXAMPLE 7 Football fans normally drink beer and Mormons normally do 
not drink beer. Joel is a Mormon football fan. Mormon football fans nor- 
really don't drink beer. 

Without  the final principle in this example, it has the same form as the 
Nixon Diamond. But rules for Mormon football fans are clearly more specific 
than rules for football fans in general. So we conclude, at least tentatively, 
that  Joel does not drink beer. 

A problem with this example is that  we need separate rules for Mormons 
and for Mormon football fans. We need the first rule to support conclusions 
about Mormons when we have no idea whether or not they are football fans. 
We need the second rule to rebut our general principle for football fans. 
There is a construction in English that  allows us to represent the situation 
more elegantly. 

EXAMPLE 8 Football fans normally drink beer, but Mormons normally don't 
drink beer even if they are football fans. Alzina is a Mormon and Joel is a 
Mormon foot ball fan. 

A single rule allows us to conclude that  neither Alzina nor Joel drinks beer. 
The rule about Mormons does not require us to establish that  Alzina is a 
football fan before we can conclude that  she does not drink beer. However, 
the 'even-if' clause in the rule allows us to discount the football fan rule as 
a rebutting defeater. And this is the usual role of 'even-if' in English: to 
discount potential defeaters. We will incorporate this t reatment  of 'even-if'  
into our defeasible logic. 

EXAMPLE 9 Normally local residents are permitted to vote in local elections 
even if they do not have local jobs. But convicted felons are normally not 
permitted to vote in local elections even if they are local residents. Knuckles 
is a local resident and a convicted felon. 

Here are competing rules each of which has an even-if condition. Intu- 
itively, whether Knuckles works locally is irrelevant and Knuckles apparently 
is not permitted to vote in local elections. 

EXAMPLE 10 Presumably, the water from the faucet is potable. But if the 
water from the faucet has a peculiar odor, it may not be potable. The water 
from the faucet has a peculiar odor. 

A weak initial premise is stated as a presumption. We also have an under- 
cutting defeater for this presumption whose antecedent condition is satisfied. 
The intuitively correct conclusion is no conclusion. We cannot conclude even 
tentatively that  the water from the faucet either is or is not potable. 



270 

EXAMPLE 11 (YALE SHOOTING PROBLEM) At time to, a gunman holds a 
loaded gun and her victim is alive. At  time tl, she accurately aims the 
gun at her victim and fires. We presume that features of situations tend to 
remain unchanged from one time to another. We also accept the rule that 
if a loaded gun is accurately aimed at a person and fired at some time, then 
that person normally is not alive at any succeeding time. 

This example, a simplified version of an example in (Hanks and McDer- 
mott 1987), involves a simple case of temporal reasoning. The question is 
whether the intended victim is alive at time t2. The intuitive answer is that 
he is not. The importance of the Yale Shooting Problem is that other non- 
monotonic formalisms such as circumscription, default logic, nonmonotonic 
logic, and autoepistemic logic have problems getting it right. These ap- 
proaches emphasize violation of a minimum number of defeasible principles. 
In the example, we can violate the temporal persistence principle with re- 
gard to the gun remaining loaded from time to to time tl, we can violate the 
persistence principle with regard to the victim remaining alive from time tl 
to time t2, or we can violate the rule about the normal effects of accurately 
shooting a loaded gun at someone with regard to the intended victim. The 
victim's survival varies according to which principle we choose to violate. 

With these examples as models to guide us, we will develop a defeasible 
extension of strict logic. 

4. A language  for defeasible logic 

Starting with the formal language for strict logic, we add three new logical 
symbols @, => and ~ .  We use these to formulate a new kind of wff and two 
new kinds of rules. 

DEFINITION 6 A tentative conclusion is an expression of the form @~ where 
is any literal. 

We read @qa as 'Apparently, ~'. Other commonly used qualifiers are 'ev- 
idently', 'probably', and 'presumably', but we will reserve 'presumably' to 
mark tentative initial premises and take 'apparently' as the qualifier of choice 
for expressing conclusions that may rest on defeasible reasoning. 

Literals and tentative conclusions comprise the wits in our formal lan- 
guage. A ground wff is one in which no variable expression occurs. Besides 
the wffs, we have a second level of language made up of rules. These rules 
express policies about when we should believe the propositions expressed 
by the literals in our language. Besides strict rules, our language includes 
defeasible rules and defeaters. 



271 

DEFINITION 7 A defeasible rule is an ordered quadruple (A, B, =~, 99) where 
A and B are sets of literals and 99 is a literal. We represent (A, B, =~, 99) 
as A I B  ~ 99. A defeasible rule A I B  ~ 99 is a presumption iff  A = 0. We 
represent A]~ ~ 99 as A ~ 99, ~]B ~ 99 as ]B ~ 99, and ~]~ ~ 99 as = ~ .  
Where A or B has only one member,  we omit  the curly braces. 

We read A I B  =~ 99 as 'Take everything in A being true as evidence for 99, 
even if some or all members of B are true', or colloquially as 'If all of A, then 
even if some or all of B, 99'. We read =~99 as 'Presumably, 99', and [A =~99 as 
'Presumably, 99 even if A'. 

DEFINITION 8 A defeater is a triple (A,-,-,, 99) where A is a set of  literals 

and 99 is a literal. We represent (A , -~ ,  99) as A -,~ 99 and we represent 

r a s  r 

We read A ~ 99 as 'Take everything in A being true as a reason to doubt 
~99', or colloquially as 'If all of A, then it might be that 99'. Defeaters do not 
give us evidence for anything. Their role is to inform us of circumstances 
under which we should doubt any evidence we have for some conclusion. 

DEFINITION 9 T is a defeasible theory iff there exist a finite set K ofli terals 

and a finite set R of  rules such that  T = (K, R).  

Obviously, every strict theory is also a defeasible theory. Notice that  ten- 
tative conclusions do not occur in defeasible theories. A tentative conclusion 
is used to indicate that some literal is supported by some theory. The inclu- 
sion of a literal in a defeasible theory indicates that the literal is accepted 
without possibility of defeat. The only way to withdraw commitment from a 
literal included in a defeasible theory is to remove the literal itself. However, 
we may on occasion wish to include a tentative initial premise in a theory, 
a premise that might be overridden or defeated when reviewed in light of 
other premises and rules in the theory. We do this, not by adding a tentative 
conclusion to the theory, but by adding a presumption. 

The formal language we have described is clearly limited and does not 
have the power to express many kinds of statements or inference rules. Nev- 
ertheless, it is strong enough to represent all of the examples of the last 
section. Now we need a proof theory that will also allow us to derive the 
intuitively correct conclusions in these examples. 

5. T h e  m o n o t o n i c  core of  defeas ib le  logic  

While strict logic provides the underlying monotonic foundation for our de- 
feasible logics, some basic changes in the proof theory are required. The 
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proofs in strict logic are trees whose nodes are labeled by literals. The 
proofs in defeasible logics are also labeled trees, but the labels are more 
complex. 

DEFINITION 10 t is a proof tree iff t is a finite labeled tree and for every 
node n in t there is a defeasible theory (K, R) and a ground literal or ground 
tentative conclusion ~ such that n is labeled ( K , R , ~  +) or n is labeled 
(K, R, ~- ) .  

In the system we are developing, it is sometimes necessary to show that  
something is not derivable in order to show that something else is derivable. 
Intuitively, a node labeled by (K, R) and ~+ indicates that ~ is derivable 
from (K,R) ,  while a node labeled by (K,R)  and ~ -  indicates that  ~ is 
demonstrably not derivable from (K, R). Of course, we will never want the 
same wff to be both derivable and demonstrably not derivable from the same 
defeasible theory. Our definition of a defeasible logic will incorporate this 
requirement. 

If we are to use specificity as a means of resolving conflicts between dif- 
ferent rules, we must sometimes show that the antecedent conditions of one 
rule are derivable from the antecedent conditions of another. Thus, our sub- 
derivations may be based on different defeasible theories and it is necessary 
to label the nodes in our proof trees with the defeasible theories upon which 
those particular nodes depend. 

DEFINITION 11 Where n is a node in a proof tree and n is labeled 
(K, R, ~+/-), a substitution 0 is restricted to n iff the range of 0 is restricted 
to the set of constants occurring in (K, R) and ~. 

Of course, not just any proof tree will constitute a defeasible proof. The 
nodes in trees must be supported in appropriate ways by their children just 
as the nodes in a strict proof are supported by their children. In fact, one 
way that a node may be supported by its children derives directly from the 
proof theory for strict logic. Thus we have the following condition which a 
node might satisfy, thereby justifying it as a proper "step" in a defeasible 
proof. 

M + : Node n is labeled (K, R, ~+) and either there is r C K and a substi- 
tution 0 restricted to n such that r = ~ or there is A ~ r c R and 
a substitution 0 restricted to n such that r  = ~ and for every a E A, 
n has a child labeled (K, R, ~0+). 

Since our system is defeasible, we must also have a way to show that  a 
literal is not derivable from a defeasible theory. This principle must be a 
strong negation of M +. 
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M - :  Node n is labeled (K, R, ~-) ,  there is no r C K and substitution 0 
restricted to n such that ~0 = p, and for every A ~ r C K and 
substitution 0 restricted to n such that r  = p, n has a child labeled 
(K, R, c~0-) for some c~ C A. 

If we can derive a literal in strict logic, then we certainly want the corre- 
sponding tentative conclusion to be derivable in our defeasible logic. This 
gives us another principle. As with M +, this new principle E + has its neg- 
ative counterpart: @~ should not be derivable when -~a is derivable. The 
only exception (because of E +) is when ~a is also derivable. 

E + :  Node n is labeled (K, R, @99 +) and n has a child labeled (K, R, eft+). 

E - :  Node n is labeled (K, R, ~ - ) ,  n has a child labeled (K, R, ~- ) ,  and 
n has a child labeled (K, R, --p+). 

DEFINITION 12 M = {M +, M-, E +, E-}. 

We will define a defeasible logic as a set of conditions on proof trees. We 
will want to include M in the set of conditions that constitute any defeasible 
logic. We can think of M as comprising the monotonic core of defeasible 
logic. But we will want our logics to satisfy another important condition: 
it should not be possible for any wff p and any theory (K, R) both to show 
that ~ is derivable and that ~ is demonstrably not derivable from (K, R). 
Before doing this, we will formally define what we mean when we say a wff 
is either derivable or demonstrably not derivable from a defeasible theory 
relative to some set of conditions on proof trees. 

DEFINITION 13 Where E is a set of conditions on proof trees, (K, R) is a 
defeasible theory, and ~ is a wff, t is a E-proof for ~+/ -  from (K, R) iff t is 
a proof tree, the top node of t is labeled (K, R, ~+/-) and for every node n 
in t, there is a condition in E which n satisfies. 

DEFINITION 14 Where E is a set of conditions on proof trees, (K ,R)  is a 
defeasible theory, and ~ is a wff, ~ is E-derivable from (K, R) (in symbols, 
(K, R) F-z ~) iff there is a E-proof for ~+ from (K, R), and ~ is demonstrably 
not E-derivable from (K, R) (in symbols, (K, R)rfl  ~) iff there is a E-proof 
for ~p- from (K, R). 

DEFINITION 15 E is a defeasible logic iff E is a set of conditions on nodes 
in proof trees, E D_ M, and there is no defensible theory T and wff 9~ such 
that both T Vz ~ and Tr, q ~. 
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THEOREM 1 M is a defeasible logic. 

A proof for the propositional counterpart to this theorem is found in (Nute 
1991). The proof proceeds by induction on the depth of a proof tree and 
can easily be adapted to the quantified case. 

Literals and tentative conclusions are not equivalent in defeasible logic. 
For example, from the empty theory (0, 0) we can construct a proof in M 
for ~ -  but not for @~-. 

6. T h e  quan t i f i ed  defeas ib le  logic QDe 

E + lets us infer that  a literal is tentatively or defeasibly derivable from 
the fact that  it is strictly derivable, and E -  lets us infer that  a literal is 
demonstrably not tentatively derivable from the fact that  it is not strictly 
derivable and its complement is strictly derivable. In either case, we draw a 
conclusion weaker than the premise(s) it is based on. Other conditions for 
proof trees permit us to infer that  a literal is or is not defeasibly derivable 
without first deriving that  it or its complement is strictly derivable. 

There are two different cases to consider. The first is the case where the 
antecedent of a strict rule is only defeasibly derivable. The second is the case 
where the antecedent of a defeasible rule is strictly or defeasibly derivable. 

Consider the case of the strict rule 

{~Married(x), Male(x), Adult(x)} ~ Bachelor(x) 

and suppose we can derive the tentative conclusions 

@~Married(john) 

@Male(john) 

@Adult(john) 

Then we have reason to draw the tentative conclusion @Bachelor(john). 
Under what circumstances should this inference be blocked? First and most 
obviously, we would not draw this conclusion if we know that  John is not 
a bachelor, i.e., if ,,~Bachelor(john) is strictly derivable. (Under these cir- 
cumstances, we would also know that  John is either married, not a male, 
or not an adult, but neither strict logic nor defeasible logic allows this kind 
of contrapositive inference.) But there is another situation where we might 
want to block the inference. Let's add the strict rule 

Infant(x) ~ ~Bachelor(x) 
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to our theory and suppose that  we can also derive the tentative conclusion 
~Infant(john). A complete model of the relevant portion of our conceptual 
scheme would include rules that  tell us something can' t  be both an infant 
and an adult, but we will assume that  these rules are missing from our 
theory. What  we have, then, are two conflicting strict rules and we can 
defeasibly derive the antecedents of both. Something has clearly gone wrong 
either in our knowledge representation or in our information, but we may 
not be able to pinpoint the problem. What  we can do, though, is a bit 
of damage control. In this situation, we can refrain from inferring either 
~Bachelor(john) or @~Bachelor(john). This amounts to saying that  a 
strict rule can be defeated by another strict rule if its antecedent is only 
defeasibly derivable. We will call a defeasible logic semi-strict if strict rules 
may defeat each other in this way. Otherwise, we will say that  a defeasible 
logic is strict. These terms are defined with greater precision in (Nute 1991). 

: Node n is labeled (K, R, ~p+) ,  n has a child labeled (K, R , - ~ - ) ,  there 
is A -~ ~p c R and a substitution 0 restricted to n such that  ~p0 = 
and n has a child labeled (K, R, ~c~0 +) for each c~ E A, and for each 
B ~ X C R and substi tution 7r for n such that  XTr = -,~ there is fl C B 
and a child of n labeled (K,R, @~Tr-). 

There is no corresponding condition S s. Instead, the strong negation of S + 
must be incorporated into whatever condition we have for applying defeasible 
rules. 

In formulating conditions for applying defeasible rules, we must keep in 
mind our motivating examples. Defeasible rules are always defeated by com- 
peting strict rules. They are also defeated by competing defeasible rules or 
defeaters unless they are more specific than their competitors. There are sev- 
eral ways to characterize specificity and some of these are stated precisely 
in (Nute 1991). Here we will present only one form of specificity. 

In showing specificity, we derive the conditions of one rule from the con- 
ditions of another. That  is, we treat  the conditions of the more specific rule 
as the set of literals in a defeasible theory for the purposes of the subderiva- 
tion. However, we use all the rules available in the original theory with the 
exception of those defeasible rules with empty antecedent conditions. 1 Thus, 

we label nodes in proof trees with theories consisting of the antecedents of 
rules and the following subset of the set R of rules in our original theory: 

1The reason we exclude defeasible rules with empty antecedents (presumptions) is that if 
~ is in our theory, then by using this presumption we would be able to show that @~ 
is derivable from (0, R). For example, {~, ~} ~ X would be no more specific than ~ ~ X 
if our rule set contained only these two rules and ~ .  This is discussed more fully in 
(Nute 1991). 
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R ,  = R -  {01Z - :  O[Z R} 

A complication not considered in (Nute 1991) is how we use even-if con- 
ditions in deciding specificity. I propose the following requirements for ap- 
plying defeasible rules with even-if conditions. 

D + Node n is labeled (K, R, @~o+), n has a child labeled (K, R , -~o- ) ,  there 
is AIB =~ r and a substitution 0 restricted to n such that  

1. 90 = ~; 

2. for each a C A, n has a child labeled (K, R, @a0+); 

3. for each F ~ X E R and substitution 7r restricted to n such that  
XTr = =~, there is 7 E F and a child of n labeled (K, R, @77r-); 
and 

4. for each AlE  =~ # C R or A ~,~ # E R, and substi tution p 
restricted to n such that  #p = - ~ ,  either 

(a) there is 5 E A and a child of n labeled (K, R, @Sp-), or 

(b) there is a E A U B and a child of n labeled (Ap, R . ,  @a0-) ,  
and for each 5 C A, there is a child of n labeled ( ( A U  
B)O,R,,@Spa+). 

D e Node n is labeled ( K , R , @ ~ - )  and either n has a child labeled 
(K, R, - ~ + )  or 

1. there is no r C K and substitution 0 restricted to n such that  
r  = ~o; 

2. for each A ~ X c R and substitution 0 restricted to n such that  
X0 = ~o, either 

(a) there is a e m and a child of n labeled (K, R, @a0-) ,  or 

(b) there is B ~ # C R and a substitution ~ restricted to n such 
that  #Tr = - ~  and for each /3 E B, n has a child labeled 

(K, R, @flTr+);and 

3. for each FIA =~ u C R and substitution p restricted to n such 
that  up = ~o, either 

(a) there is 7 e F and a child of n labeled (K, R, ~TP-) ,  or 

(b) there is Z ~ r / c  R and substitution a restricted to n such 
that  r/a = -~o, and for every ~ E Z, n has a child labeled 

(K, R, @(a+),  or 
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(c) there is AIX =v v E R or A -,~ v E R, and substitution 
7- restricted to n such that w- = - ~ ,  n has a child labeled 
(K, R, @AT -+) for each A C A, and either there is A 6 A and a 
child of n labeled ((FU A)p, R, ,  ~AT-), or for each 7 C FU A 
there is a child of n labeled (AT, R, ,  ~Tp+). 

DEFINITION 16 QDe - M U { S + , D + , D e } .  

THEOREM 2 QDe is a defeasible logic. 

7. T h e  e x a m p l e s  r ev i s i t ed  

In this section, we will see how the different examples listed earlier can be 
represented as defeasible theories and what conclusions are derivable in QDe 
for these theories. 

EXAMPLE 1 (NIXON DIAMOND) Let 

K = {Quaker(nixon), Republican(nixon)} 

and 

R = {Quaker(x)~ Pacifist(x),Republican(x) ~Paci f is t (x)} .  

Then (K, R) QDe-t @Pacifist(nixon) and (K, R) QDe-t @~Pacifist(nixon). 

EXAMPLE 2 (TWEETY TRIANGLE) Let K = {Penguin(tweety)} and 

R = {Bird(x) Flies(x), Penguin(x)  Flies(x), 

Then (K, R)}-QDe ~Flies(tweety). 

EXAMPLE 3 Let K = {College(joe)} and 

R = {College(x)~HasJob(x), College(x)~ Adult(x), 
Adult(x) ~ Has Job(x)}. 

Then (K, R)~QDe ~HasJob(joe). 
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EXAMPLE 4 Let K = {College(fred), Job(fred)} and 

R = {College(x)=~HasJob(x), College(x)=~ Adult(x), 
Adult(x) =~ Has Job(x), Has Job(x) =~ PaysTax(x), 

College(x) =~,~PaysTax(x) }. 

Then (R, K) QDe ~ ~PaysTax(fred)and (R, K) QDe ~ @~PaysTax(fred). 

EXAMPLE 5 Let K = {LooksRed(car), UnderRedLight(car)} and 

R = {LooksRed(x) ~ Red(x), {LooksRed(x), UnderRedLight(x)} 
"~Red(x)}. 

Then (K, R)QDe--] @Red(car)and (K, R)QDe-~ @~Red(car). 

EXAMPLE 6 Let K = {DutchSpeaker(hermann)} and 

R = {DutchSpeaker(x) ~ GermanSpeaker(x), 
DutchSpeaker(x) ~ BornInPA(x), BornInPA(x) ~ BornInUSA(x), 

GermanSpeaker(x) =~BornInUSA(x) }. 

Then (K, R)FQDe @BornInUSA(hermann). 

EXAMPLE 7 Let K = {Mormon(joel),Fan(joel)} and 

R = {Fan(x)~ DrinksBeer(x), Mormon(x)=~DrinksBeer(x), 
{ Mormon(x), Fan(x)} ~DrinksBeer(x)  }. 

Then (K,R) [-QDe @~DrinksBeer(joel). 

EXAMPLE 8 Let K = {Mormon(alzina),Mormon(joel),Fan(joel)) and 

R = {Fan(x)=~ DrinksBeer(x),Mormon(x)lFan(x ) =~DrinksBeer(x)}. 

Then (K,R)I -QD e @~DrinksBeer(alzina)and (K,R)I-QD e @~Drinks- 
Beer(joel). 
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EXAMPLE 9 Let K = {Resident(knuckles),Felon(knuckles)} and 

R = {Resident(x)] ~HasJob(x)~ Voter(x), 
Felon(x) ]Resident(x) ~ V o t e r ( x )  }. 

Then (K, R)[-QDe ~Voter(knuckles). 

EXAMPLE 10 Let K = {Odor(water)} and 

R = { =,Potable(water), Odor(water) -,~Potable(water)}. 

Then (K ,R)QDe  ~ @Potable(water)and (K,R)QDe-t  @~Potable(water). 

EXAMPLE 11 (YALE SHOOTING PROBLEM) Let 

K = {Loaded(to), Alive(to), Fired(t1), Next(to, tl), Next(t1, t2)} 

and 

R = {{Loaded(t), Next(t, t')} ::v Loaded(t'), 
{Alive(t), Next(t, t')} ~ Alive(t'), 

{Loaded(t), Fired(t), Next(t, t') } lAlive(t ) =~Alive(t') }. 

Then (K,R) F-QD e @~Alive(t2). 

We include one temporal persistence principle for each "stative" predicate. 
These have the general form 

{F(xl,...,xk, t),Next(t,t')} =~ F(xl,...,xk, t'). 

Causal rules are change rules and normally compete with the persistence 
principle for some stative predicate. They say that if some event occurs at 
some moment, then some state holds at the next moment even if that state 
did not hold before. Causal rules have the general form 

Including the complement of the consequent of the causal rule as an even-if 
condition makes the causal rule more specific than the persistence principle 
governing the stative predicate in the consequent. This solution to the Yale 
Shooting Problem is superior to the solution proposed in (Nute 1990) which 
did not use even-if conditions. 

To our earlier list of examples, we will add one new, artificial example 
that illustrates a peculiarity of QDe. 
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EXAMPLE 12 Let K = {~, 9, {, ~} and let 

Then we get (K ,R)  ~QDe ~X and (K, R) ~QDe ~X. This is because the 
specificity condition built into our proof theory makes each of ~1r ~ X and 
~1 r] ~ X  more specific than the other. Careful examination of the defeasible 
theory that gives rise to this "weak" contradiction shows that it is in fact 
intuitively contradictory. I propose that this is not a fault of the proof theory 
and that any defeasible theory that generates a non-asymetrical specificity 
relation on its own rule set is intuitively defective. Nevertheless, the present 
treatment of specificity for even-if rules is a first, rough approximation that 
may require refinement. 

8. Decidability 

Suppose t is a proof tree, the top node T in t is labeled (K, R, ~+/-) ,  and 
every node in t satisfies some condition in QDe. 

We produce a new proof tree tl from t by the following procedure. We 
traverse t in breadth-first fashion. As we visit each node n, we find a condi- 
tion C in QDe which n satisfies and we prune all children of n not required 
by C. 

There is a limit on the number of children a node in tl can have. This limit 
is determined by the conditions in QDe and by the defeasible theory that 
labels the top node T in tl. By an inductive argument we see that if T is 
labeled (K, R, ~), then every node in tl is labeled by (K, R, r for some wff r 
or by (F, R, ,  r for some wff r and some set of wffs F such that F is either an 
antecedent condition of a rule in R or the union of the antecedent and even-if 
conditions of a defeasible rule in R. Let i = the number of strict rules in R, 
j = the number of defeasible rules and defeaters in R, and m = max{k  : 

A lE  => X e R or A ~ X e R, and k is the number of  members of  A(UE)}. 
Then a node that satisfies D + can have no more than 1 + i + m( j  + 2) 
children. Each of the other conditions in QDe has its own limit. Let w be 
the maximum of these. Then each node in t~ has at most w children. 

Another inductive argument shows that every node in tl is labeled 
(K,R,  r  where r is a wff formed from the predicates and constants 
occurring in (K, R) and ~, or by (F, R, ,  r  where r is as before and F is 
a finite set of literals formed through substituting constants in (K, R) and 
into the conditions for some rule in R. Then since K and R are finite, there 
are finitely many different labels that nodes in t~ can have. Let d be the 
number of possible labels for nodes in tl. 
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We prune tl again using the following procedure. We look to see if tl has 
a branch of length greater than d. If it does, then there must be some pair 
of nodes n and n' in this branch such that n -r n', n is beneath n', and n 
and n' have the same label. Find two nodes like this and replace the subtree 
with top node n' by the subtree with top node n. Clearly, all the nodes in 
the resulting tree still satisfy some condition in QDe. We apply the same 
procedure to the new tree and continue in this way until we have produced 
a tree which does not have any branch longer than d. Call this tree t2. 

We see immediately that t2 can have at most 

d-1 
w i 

i=0 

nodes. Assuming that any condition we might impose on proof trees will 
limit the number of non-gratuitous children a node satisfying the condition 
might have, we get a general result. 

THEOREM 3 (DECIDABILITY) //cE iS a defeasible logic, then there is a func- 
tion fr~ which assigns to each defeasible theory (K, R) and wff ~ an integer 
f r ( K , R ,  ~) such that (K,R)  F-r ~ iff there is a proof tree with at most 
fr~(K, R, ~) nodes whose top node is labeled (K,R,  ~+) and each of whose 
nodes satisties some member of E, and (K, R) r.~ p iff there is a proof tree 
with at most fE(K, R, ~) nodes whose top node is labeled (K, R, ~-)  and 
each of whose nodes satisfies some member of E. 

From this theorem we get decidability since we can in principle construct all 
possible relevant proof trees for a given (K, R) and ~ in finite time. 

For any defeasible theory (K, R) and any wff ~, we can decide whether ~ is 
either derivable or demonstrably not derivable from (K, R) in QDe. But this 
is not equivalent to saying that p must be either derivable or demonstrably 
not derivable from (K, R) in QDe. For example, we have neither (0, {~ =~ 

}) ~-QDe ~ nor (0, {~ ==V qO}) QDe--t ~ .  

9. C u m u l a t i v i t y  

Gabbay (1984) proposed a property for the consequence relation of a non- 
monotonic system to replace the property of monotonicity. This property is 
usually referred to as cumulativity in the literature. A nonmonotonic system 
is cumulative if, whenever ~ and ~ are both nonmonotonically derivable from 
a theory T, ~ is also nonmonotonically derivable from T U {p}. One way to 
interpret cumulativity for defeasible logic is to expect (KU{~}, R) F-QDe ~ r  
whenever (K, R) ~QDe ~ and (K, R) ~QDe @r QDe is not cumulative 



282 

in this sense. Where (K, R) is defined as in Example 12, (K, R) I-QD e ~ 
and (K, R) ~QDe ~"~X, but (K U {)/}, R) qDe ~ ~"X. However, we do have 
the following suite of related results for QDe. 

THEOREM 4 (MONOTONICITY) For any sets K and K'  of literals, any 
sets R and R' of rules, and any literal 99, if (K,R)~QDe 99, then 
( g  U K' ,  R U R') ~QDe 99" 

THEOREM 5 (STRICT CUMULATIVITY) For any defeasible theory (K ,R) ,  
any Ziteral ~, and any wff r iT (g ,  R)~QDe 99 and (K, R)I-QD e //), t h e n  

(g u n) r 

THEOREM 6 (DEFEASIBLE CUMULATIVITY) For any defeasible theory 
(K, R), any literal ~, and any wife, i f ( K , R )  F-QD e ~99 and (/'(, R) t-QD e //), 
then (K, R U {~99}) ~QDe //)" 

There is an important difference in QDe between deriving a literal 
(strictly) and deriving a tentative conclusion, and there is an important 
difference between a fact and a presumption. These differences are reflected 
in our cumulativity results. These results are proved by a straightforward 
induction on the depth of a proof. Notice that since no presumptions occur 
in R. ,  R .  = (R U {:=v99}).. This means that when we add 99 to the literals 
of a theory or add =:v99 to the rules of a theory, the specificity relation does 
not change for the other rules in the theory. And of course a presumption 
will be less specific than any competing rule with a non-empty antecedent. 2 

10. Impl ica t ions  for i m p l e m e n t a t i o n  

Versions of defeasible logic that do not include the current treatment of even- 
if conditions have been implemented as extensions of the logic programming 
language Prolog (Nute and Lewis 1986). Each of these versions of d-Prolog 
(for defeasible Prolog) is a sound but not a complete theorem prover for the 
corresponding defeasible logic. These programs are incomplete because they 
do not use the fact that there is a maximal necessary number of nodes for 
proof trees to limit the exhaustive depth-first search for a proof of a query 
from a theory. 

How can our decidability proof guide the construction of a sound and 
complete theorem prover for defeasible logic? First, notice that we do not 
need to be concerned about the pruning step in our argument that elimi- 
nates gratuitous nodes in a proof tree. Any reasonable theorem prover will 

2Prompted by a discussion with Jiirgen Dix at the conference, this section was added to 
the paper after the conference. 
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only generate nodes that are required by some condition in the logic. The 
important idea in the argument is that if a proof is possible, then there is 
a proof in which no branch has a length greater than some maximum that 
can be computed from the theory and the query. All that needs to be done, 
then, is to keep track of the current level as the theorem prover tries to build 
the proof tree in a recursive, depth-first fashion. The theorem prover must 
fail and backtrack whenever the maximum necessary depth is exceeded. In 
this way, the theorem prover will never engage in a fruitless attempt to con- 
struct an infinitely long branch because it has run into some circularity in 
the theory from which it is trying to construct the proof. This technique 
amounts to a cheap method for loop-checking. 

This method has been implemented so far for strict logic, and efforts are 
cu:rently underway to develop sound and complete theorem provers for a 
large family of defeasible logics similar to the one described here. Decision 
procedures for several versions of defeasible logic should be implemented by 
the time this paper appears. The number defined here as a limit to the 
necessary depth of a proof is both roughly calculated and large. A direction 
for further work is to find limits that will generally be smaller than the limit 
used here. Finding better limits will depend on analysis of the details of 
the defeasible theory upon which the computation will be based. Any limit 
will have to be recomputed whenever facts or rules are added to the theory. 
Another question is whether this analysis of the theory and the associated 
computation of the limit on proofs can be carried out in a modular fashion, 
i.e., in a way that does not require a complete reanalysis of the entire theory 
every time new items are added or deleted. 

As a method for knowledge representation and automated reasoning in- 
volving incomplete or uncertain information, defeasible logics offer an alter- 
native to numerical methods such as probabilistic, certainty factor, or fuzzy 
approaches. They also offer an alternative to other qualitative approaches 
such as circumscription or default logic. I expect that they will prove su- 
perior to these methods for some artificial intelligence applications and that 
they will complement these methods in other applications. The chief dis- 
advantage of the defeasible system described here is its limited expressive 
power. Its chief advantages include its naturalness, its applicability to a 
wide range of problems of the kind that have been cited in the literature, 
and its decidability. The limit on expressive power can be relaxed by per- 
mitting functions, but the price is that the resulting system is no longer even 
semi-decidable. 
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1. I n t r o d u c t i o n  

Mathematical objects and facts are supposedly not concrete but rather ab- 
stract, immutable and impassive, unchanging with times and independent 
of contingencies. Correspondingly, mathematical language makes no use of 
temporal and modal distinctions. Consequently, mathematical logic includes 
among its operators none expressing such distinctions. 

To apply mathematical logic, with just its classical operators of negation, 
conjunction, disjunction, and existential and universal quantification (~, ^, 
v, V, 3), to non-mathematical language, one must resort to regimentation. 
One must imitate the approach to time and motion and to contingency and 
chance taken in mathematical physics and mathematical statistics, where 
change with times and dependence on contingencies are represented by time- 
less and non-contingent relations to certain special index objects, "times" (or 
"instants" or "stages") and "contingencies" or ("cases" or "worlds"). 

For example, something like: 

(1) A man was drowned and then hanged. 

is regimented as something like: 

(2) there [exists] a t and there [exists] a t' such that t[is] 
an index and t' [is] an index and t[is] earlier than t' 
and t' [is] earlier than the present and there [exists] 
an x such that x is a man and x [is drowned] at t and 
x [is hanged] at t' 
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and then as something like: 

(3) 3t3t'(t < fat' < aA3x(FxAGxtAHzt')) 

Here the brackets indicate that all verbs are to be understood as tenseless. 
Analogously, something like: 

(4) A hospital might have been built. 

is regimented as something like: 

(5) There {exists} a u and there {exists} an x such that 
u {is} an index and x {is} a hospital and x {is built} 
in u 

and then as something like: 

(6) 3u3x(FxAaux) 

Here the braces indicate that all verbs are to be understood as moodless. 
In natural language--English will always be taken as the example, though 

most of what is said should apply to other Germanic languages, and much of 
it to other Indo-European languages--temporal and modal distinctions are 
sometimes expressed through such phrases as "at that time" or "in that con- 
tingency", but usually they are expressed noncommittally, without overtly 
quantifying over such index objects as "times" or "contingencies". Such 
distinctions are often expressed through the verbal inflections or auxiliaries 
of past, present, and future tense, and indicative, subjunctive, and condi- 
tional mood. Or they may be expressed through temporal or modal adverbs 
or conjunctions. 

An alternative to regimentation is provided by autonomous logics of tense 
and mood. Their development was partly motivated by nominalistic con- 
cerns, a desire to avoid commitment to such presumably abstract objects as 
indices, and partly motivated by linguistic concerns, a desire to treat modal 
distinctions in a formal language in a way less divergent from the way they 
are treated in natural language. 

Thus temporal logic, developed as a logic of tense, has connectives P 
and 9 c for past and future, "has (sometime) been" and "will (sometime) 
be", and dual connectives 7-/and 6 for "has always been" and "will always 
be". Also modal logic, though originally developed as a metalogical logic, a 
logic of the (epistemic) notion of consistency and the dual notion of validity, 
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has been subsequently interpreted as a mood logic, its operator O and the 
dual operator [5 being understood as expressing instead the (metaphysical) 
notion of possibility in the sense of "might have been" and the dual notion 
of necessity in the sense of "couldn't have failed to be". Both temporal and 
modal logics have been intensively cultivated, along with a variety of related 
intensional logics. 

In tense logic, (1) is turned into something like: 

(7) past tense (there exists a man such that (past tense 
(he is drowned)) and he is hanged) 

and then into something like: 

(8) 

In modal logic, (4) is turned into something like: 

(9) possibly (there exists an x such that x is a hospital 
and x is built) 

and then into something like: 

(10) ~3x(Fx^Gx) 

A series of completeness theorems for temporal and modal logic estab- 
lish that the same arguments are validated by the regimented and the au- 
tonomous approaches whenever both are applicable. The regimented ap- 
proach is, however, applicable to more arguments than the autonomous ap- 
proach: Far more can be formally symbolized using overt quantifications 
over indices, than can be using only the connectives mentioned above, or 
even various supplementary temporal and modal operators that have been 
introduced by their successors. (Equivalence in expressive power with the 
regimented approach can be achieved for the autonomous approach only by 
using certain operators that lack obvious non-committal natural language 
counterparts.) 

Nominalism has been connected with intensional logic in not one but two 
ways. For not only has a desire to avoid commitment to abstract index ob- 
jects motivated the introduction of such logics, but also the desire to avoid 
commitment to abstract mathematical objects has motivated ambitious ap- 
plications of modality, straining the limits of what can be easily expressed 



290 

in the formal languages of mainstream modal logics, thus motivating the 
introduction of novel modal logics. 

For there is a substantial literature devoted to ambitious attempts to es- 
tablish the dispensability of mathematical objects for scientific theorizing 
using modal logic: What is attempted in these applications is to establish a 
strategy for converting a standard scientific theory T involving mathematical 
objects but not modal operators into an empirically equivalent alternative 
theory T* involving modal operators but not mathematical objects. Some- 
times other non-classical logics are brought in instead of or in addition to 
modal logic. 

The issues that arise when such ambitious applications of non-classical 
logic are examined from the standpoint of philosophy of mathematics are nu- 
merous and diverse. They include, along with many other and quite different 
ones, issues about overt versus covert, or surface versus deep commitments; 
and these are of interest not only for philosophy of mathematics, but also 
for linguistics. But aside from all such issues, modal nominalist strategies 
are of interest from the standpoint of philosophical logic, since when uses of 
non-classical, specifically of modal, logics in order to avoid ontological com- 
mitments, especially to abstract objects, are examined, divergences between 
the treatment of modal distinctions in formal and in natural languages are 
encountered. 

In the present note, two modal nominalist strategies, inspired in broad 
outline by strategies in the literature, though not faithful in fine detail to 
them, will be sketched and then examined from the standpoint of philo- 
sophical logic, ignoring issues of philosophy of mathematics. In connection 
with each, divergences between natural language and the formal languages 
of mainstream systems of modal logic will be encountered. Most of these 
have analogues also in temporal logic, but these temporal analogues will not 
be considered explicitly. 

2. F i r s t  s t r a t e g y  

The two strategies to be sketched share several features. First, both start 
with a theory T, the formalization of some standard scientific theory in- 
volving mathematical objects; and both suppose this input theory may be 
assumed to take the following form: T will be a theory based on classical 
logic, say in a version with existential quantification a primitive logical op- 
erator and universal quantification as a defined logical operator; and T will 
be a two-sorted theory, with two styles of variables. One style, x, y, z , . . . ,  
will be reserved for concrete, physical objects of some sort(s) or other(s), 
which for definiteness will be called ponderables. The other style, ~, v, ~, . . . ,  
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will be reserved for abstract, mathematical objects. 
The language of T will have finitely many (non-logical) primitives, all 

predicates (and none constants). Some of these will be of the first kind, 
having places only for variables of the first sort. Some will be of mixed 
kind, having places for variables of both sorts. Some will be of the second 
kind, having places only for variables of the second sort, expressing abstract 
mathematical relations. Formulas of the language of T will be said to be 
of the first kind if they involve only predicates of the first kind; and the 
empirical consequences of T will be expressible by formulas of this kind. 
Formulas will be said to be of mixed kind if they involve predicates of mixed 
kind or if they involve predicates of more than one kind. Formulas will be 
said to be of the second kind if they involve only predicates of the second 
kind, expressing abstract mathematical facts. T will have only finitely many 
(non-logical) postulates (or schemes). 

Since it is widely accepted that enough pure mathematics for scientific 
applications is provided by analysis, the orthodox theory of the real num- 
bers (with the natural numbers as a distinguished subsystem), it will be as- 
sumed that the only primitives and postulates of the second kind are those of 
analysis. (Whether this should be so widely accepted is one of those issues 
pertaining more to philosophy of mathematics than to philosophical logic 
that are being ignored here.) 

Thus typical examples of primitives of the three kinds might be: 

(1) x weighs less than y does 

(2) is how much z weighs [in arbitrary but fixed, though 
here unspecified, units] 

(3) ~ is less than v is 

The leading idea of both strategies will be to end with a theory T*, the 
formalization of an alternative nominalist theory involving modal operators. 
The output theory T* is to have the same primitives of the first kind as T, 
and is to have same formulas of the first kind as consequences as does T, so 
that T and T* will be empirically equivalent. 

The leading idea is to replace those postulates in the original theory that 
assert the actual existence of mathematical objects by some postulates in 
the final theory that will only assert the possible existence of some sort of 
objects. Ontological commitments to mathematical objects, commitments 
as to the actuality of their existence, commitments to the effect that they do 
exist, are to be avoided in favor of what may be called dynatological commit- 
ments, commitments as to the possibility of the existence of objects of some 
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sort, commitments to the effect that various objects of some sort might 
each have existed (and perhaps also by what may be called syndynatological 
commitments, commitments as to the compossibility of existence of objects 
of some sort, commitments to the effect that various objects of some sort 
might all have co-existed). 

But objects of what sort? On the one hand, it seems part of the very 
concept of the abstractness of mathematical objects that for them no dis- 
tinction between actual and possible existence can be made. Hence, the 
objects whose possible existence will be asserted in the replacement theory 
cannot just be the mathematical objects whose existence was asserted in the 
original theory, and arguably cannot be any sort of abstract objects at all. 

On the other hand, interaction within a universal causal system seems part 
of the very concept of concreteness. Hence, if the objects whose possible ex- 
istence will be asserted in the replacement theory are to be concrete objects, 
not numbers themselves but surrogates for them, it must be conceded that 
if those surrogate objects had existed, then the ponderable objects that ac- 
tually exist might not have been just as they actually are: The old objects 
presumably would have been different owing to causal interactions with the 
new objects. 

Hence almost inevitably any modal nominalist strategy will have to, and 
the two strategies to be sketched will, allow for cross-comparisons between 
surrogate objects ~ that there might have been (as they would have been) 
and ponderable objects x that there are (as they are). Such hypothetical- 
actual cross-comparisons are easily expressible and quite common in natural 
language, as when one compares the prison that was built on some site with 
the hospital that might have been built there, had America been more like 
Scandinavia. (Note that this last counterfactual clause itself involves a kind 
of cross-comparison, between how Sweden and its neighbors are and how the 
United States might have been.) So also are hypothetical-hypothetical cross- 
comparisons, as when one compares the hospital that might have been built 
there with the school that might have been built there: These will be needed 
in a strategy that seeks to avoid strong syndynatological commitments, that 
seeks to avoid the assumption that the various surrogates that each severally 
might have existed all jointly might have co-existed. They are not, however, 
easily expressible in the formal languages of mainstream modal systems, and 
will provide a major example of the divergence between common natural lan- 
guages and mainstream formal languages. 

There are several variants of the usual formulation of analysis. The first 
strategy begins by replacing analysis by one of these: The variant in question 
takes as its objects not real numbers, but rather infinite sequences of binary 
digits, which may be construed as numerals for numbers. Replacing the 
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usual formulation of analysis by this variant in T, one obtains a variant T' 
with primitives like: 

(1) 

(2) 

(3) 

x weighs less than y does 

marks how much x weighs 

marks less than v does 

The first modal nominalist strategy to be outlined here assumes that there 
might have existed physically constituted objects construable as function- 
ing linguistically as numerals in the sense of concrete tokens rather than of 
abstract types. 

The first modal nominalist strategy produces an alternative theory T* by 
transforming the theory T' as follows: 

(4) 

(5) 

each existential quantification of the first kind 3x 
is replaced by an actuality quantification 3'x read 
"there actually does exist an x . . . "  

each existential quantification of the second kind 3~ 
is replaced by a possibility quantification 3~ read 
"there possibly might have existed a ~ . . . "  

and primitives F, G, H like (1), (2), (3) above are replaced by actual-actual, 
hypothetical-actual, and hypothetical-hypothetical primitives F", G ~ H ~176 
like: 

(1") 

(2*) 

(a*) 

x (actually) weighs less than y (actually) weighs 

(necessarily) would have marked (if it had existed) 
how much x (actually) weighs 

(necessarily) would have marked (if it had existed) 
less than v (necessarily) would have marked (if it had 
existed) 

To establish the claim that this ultimate T* is empirically equivalent to the 
intermediate T' and hence to the original T, it would suffice to establish a 
metatheorem to the effect that the above replacements transform arguments 
valid classical-logic arguments into valid modal-logic arguments. The logical 
issues involved in this claim will be examined first from an intuitive, natural 
language standpoint, and then from a technical, formal language standpoint. 
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As regards (4), and (1") and (2*), note that what is at issue is solely 
what ponderables exist and what they are like: What ponderables would 
or might have existed if things had been other than as they are, or what 
ponderables that do exist would or might have been like if things had been 
other than as they are, is not at issue. (2*) is an instance of hypothetical- 
actual cross-comparison similar to the hospital-prison example above. The 
qualifying adverb "actually" is optional, actuality being already sufficiently 
indicated by use of the indicative mood in "exists" and "weighs", but it has 
been inserted for emphasis. 

As regards (5), note that what is at issue is solely what tokens might have 
existed, if things had been other than as they are: What tokens do exist is 
not at issue. An assertion of the form, "there might have been something 
such that . . . i t . . . "  or " 3 ~  is an assertion about the possible- 
if-not-actual existence of ordinary sorts of objects, not an assertion about 
the existence of extraordinary sorts of possible-if-not-actual objects: Such 
assertions do not assert the actual existence of anything, any more than the 
assertion that there existed, centuries ago, a man who was drowned and 
then hanged implies that he still exists (presumably as some sort of spook 
haunting the burial mounds of the old city). As regards (2*) and (3*), 
their lack of existential import is emphasized by the insertion of the optional 
qualifying clause "if it had existed". Moreover, while T implies the actual 
co-existence of many numbers, T* implies nothing about the compossible co- 
existence of many tokens. As regards (3"), its lack of co-existential import is 
emphasized by the insertion of optional qualifying clauses "if it had existed" 
separately for each of ~, v rather than jointly for both. (3*) is an instance 
of hypothetical-hypothetical cross-comparison, as in the example above of 
the hospital and the school. 

As regards (2*) and (3*) note also that it is assumed that how a token 
functions linguistically is essential, not accidental, to its identity: If ~ would 
have functioned linguistically differently from how v would have done, then 

would have been distinct from v, even if ~ would have been constituted 
physically very similarly to how v would have been. Moreover, it is only the 
linguistic function, not the physical constitution, of tokens that is at issue. 
Hence it is only essential, and not accidental, features of a token that are 
at issue: It is always a question of what a token (necessarily) would have 
been like, not of what it (possibly) might have been like. The contrasting 
qualifying adverbs "necessarily" and "possibly" are optional, the contrast 
being already sufficiently indicated by the contrast between the auxiliary 
verbs "would" and "might" with "marked", but it has been inserted for 
emphasis. 

These glosses given, one might proceed to attempt the technical devel- 
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opment and intuitive justification of a symbolic logic of the actuality and 
possibility quantifiers 3' and 3 ~ and of actual-actual, hypothetical-actual, 
and hypothetical-hypothetical predicates like F", G ~ H ~176 above, and then 
establish the metatheorem enunciated above. But such a project, though 
feasible, will not be attempted here. Rather, what will be considered here 
will be whether, and if so how, one might attempt symbolize the natural 
language modal notions glossed above in one of the conventional formal lan- 
guages of mainstream modal logics. The choice of an appropriate modal 
predicate logic involves several subsidiary choices. 

First, if one is to obtain a modal predicate logic by combining a modal 
sentential logic with a suitable predicate logic, one must choose an appro- 
priate predicate logic. Classical predicate logic seems not the appropriate 
choice, for there is a divergence between classical predicate logic and natural 
language, in that the former has built-in assumptions of existential import 
absent from the latter in modal contexts. Hence one must choose an alter- 
native predicate logic without built-in assumptions of existential import, a 
free predicate logic (perhaps in a version or variant without built-in assump- 
tions of actual existence but with built-in assumptions of possible existence). 
Indeed, one must choose among several versions of free predicate logic. For- 
tunately, most versions give the same results when applied in the restricted 
situation under consideration in the first strategy, where there are no con- 
stants, and where only with the actual properties of actual objects x, y, z , . . .  
of one sort and the essential properties of hypothetical objects ~, v, ( , . . .  of 
another sort are under consideration. Hence the choice of version need not 
be indicated in detail in the present sketch. 

Second, one must choose an appropriate modal sentential logic to be com- 
bined with free predicate logic. For there are many systems, though the 
important ones differ only in their treatment of iterated modalities. Since 
verbs in natural language can be inflected for mood just once, allowing iter- 
ation of modal operators is itself another divergence from natural language 
(more appropriate when modal logic is interpreted as a metalogical logic 
than when it is interpreted as a mood logic). Fortunately this divergence 
can be partly remedied by adopting the strongest mainstream system, $5. 
For though 25 still allows the introduction of iterated modalities, also allows 
for their elimination, by including rigidity axioms to the effect that a formula 
already modalized is unaffected by further modalization: 

(6) O~p ~ Op 

Third, one must choose appropriate enrichments of the 0, ~-modal  sen- 
tential logic chosen, for the following reason: In natural language, if the verb 
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in a main clause is inflected for some non-indicative mood, one often remains 
free to inflect or not the verbs in subordinate clauses, and the present or ab- 
sence of inflection is usable to express distinctions. To illustrate, contrast: 

If the estate had not been entailed, then the other 
children would have been as well off as the eldest son 
would (then) have been. 

with: 

(7b) If the estate had not been entailed, then the other 
children would have been as well off as the eldest son 
(now) is. 

Since breaking the entail would have equalized the distribution, but not en- 
larged the size, of the inheritance, presumable (7a) is true, and (7b) is false. 
Such distinctions are important in the strategy under consideration. How- 
ever, mainstream formal languages diverge from natural language in that an 
operator applied as the main connective to a sentence automatically governs 
all its subsentences. This divergence can be partly remedied by enriching 
the 0, ~-language with appropriately chosen further operators, notably, an 
operator for restoring the indicative mood in subordinate clauses or subsen- 
tences, the operator @ for "actually" or "now" in the non-temporal, modal 
sense illustrated in (7b). Appropriate axioms, including rigidity axioms like: 

(6') ~@p ~ @p 

must also be chosen, though these will not be indicated in more detail in the 
present sketch. 

Fourth, with the above choices appropriately made, only a start towards 
formalizing the theory T* can now be made: The actuality and possibility 
quantifiers 3' and 3 ~ can be symbolized as @3 and 03.  But then it remains 
to choose an appropriate formalization of actual-actual, hypothetical-actual, 
and hypothetical-hypothetical predicates F " , G  ~ H ~176 like (1"), (2"), (3*) 
above. Mainstream predicate logic treats every two-place predicate as if it 
involved a single transitive verb with its subject and object nouns. This is 
a divergence from natural language where, especially in the case of compar- 
ative predicates, there are often two verbs, to which modal inflections can 
be separately applied. An actual-actual comparative predicate F" like (1") 
above can perhaps be symbolized as @F, and a hypothetical-hypothetical 
predicate H ~176 like (3*) above can perhaps be symbolized as OH, but what is 
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to be done with a hypothetical-actual predicate G ~ like (2*) above? Conven- 
tional systems in the mainstream literature do not allow attaching operators 
[3 and ~ separately to the two places of a predicate! 

Since what are at issue are only predicates each place of which is modalized 
either by "necessarily would" or by "actually does", and since in natural 
language, once one such modalization has been added, no further ones may 
be, one could perhaps simply symbolize the predicates as F, G, H, . . .  and 
add rigidity axioms akin to (6) above: 

(6") VxVy(~Pxy ~ Pxy) 

(and similarly for ~,v-variables). 
When $5 with the @ operator is combined with free logic, and rigidity 

axioms are assumed, the required metatheorem can indeed then be proved, 
though details will be omitted in the present sketch. But this is a devious 
formalization of what arguably ought to be straightforwardly formalizable, 
its deviousness being a measure of the divergence of mainstream formalism 
from natural language. 

3. Second s t r a t egy  

There are many further variants of the usual formulation of analysis. The 
second strategy begins by considering a series of such variants. Variant 
(a) has two styles of variables, one X, Y, Z, . . .  for natural numbers, and 
another ~, v, ( , . . . fo r  sets thereof. Its primitives are the usual order and 
sum and product primitives of arithmetic, and the membership primitive C 
of set theory. Its postulates are the usual postulates of arithmetic, and 
the usual postulates of what may be called elemental set theory: These 
are the eztensionality postulate (sets having exactly the same elements are 
identical), the comprehension scheme (for each formula P, the axiom that 
there exists a set having as elements exactly those elements for which P 
holds), and some appropriate choice axiom or scheme. The key to proving 
that this new theory is (at least) as strong as the old is this: First, natural 
numbers can represent decimal fractions, with 2 ~. 3 v. 5 w representing ( -1)  u. 
v.  10-~; and second, sets of decimal fractions can represent real numbers. 

Variant (b) takes the variables ~ ,v , ( , . . . to  range over dyadic relations 
rather than monadic sets, appropriately changing the extensionality, com- 
prehension, and choice postulates. As to the primitives and postulates of 
arithmetic, only those pertaining to order need be assumed, since those per- 
taining to sum and product become definable and derivable. 

Variant (c) drops the assumption that the variables X, Y, Z , . . . r a n g e  
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specifically over natural numbers. The unspecified objects over which X, 
Y, Z , . . .  range may be called individuals. Also the order primitive and the 
order postulates for that primitive are dropped in favor of a postulate to the 
effect that there exists a progression, a dyadic relation on the individuals 
for which the order postulates hold. This postulate is just one of many, all 
equivalent given an appropriate choice postulate, asserting the infinity of the 
set of individuals. 

Variant (d) takes the variables ~, v , . . .  to range over sets again (but now 
sets of individuals), and adds variables E, T, . . . for  classes in the sense 
of sets of sets of individuals, with a primitive for membership of a set in 
a class in addition to the primitive for membership of an individual in a 
set, and with the postulates of elemental set theory replaced by the exactly 
analogous postulates of elemental class theory. The key to proving that this 
new theory is (at least) as strong as the old is this: A symmetric dyadic rela- 
tion on individuals can be represented by the class of those doubleton sets 
of individuals {X, Y} whose two elements are related. A total order relation 
on individuals can be represented by the class of those sets of individuals 
that are initial segments of the total order. An arbitrary dyadic relation 
on individuals can be represented by a quadruple consisting of a total order 
relation on individuals; a set of individuals, namely, the set of individuals 
that are self-related; and two symmetric relations on individuals, namely, 
the relation X bears to Y if and only if the lower of the two in the total 
order in question bears the original relation to the higher, and the analogous 
relation with low and high reversed. Hence quantification over arbitrary 
dyadic relations can be replaced by fourfold quantification over sets and 
classes. 

Variant (e) modifies the comprehension postulates of elemental set (and 
class) theories so as to disallow the empty set (and class), producing what 
may be called positive elemental set (or class) theory. The key to proving 
that this new theory is (at least) as strong as the old is this" Taking a pair 
of non-void sets ~, v, to represent the empty set {} if ~ is a singleton set and 
to represent the set v otherwise, arbitrary sets can be represented by pairs 
of non-void sets; moreover, this idea can be extended to classes. 

Variant (f) drops the variables X, Y, Z , . . .  ranging over individuals" An 
individual X can be represented by its singleton set {X}. The primitive C 
of membership between individuals and sets is replaced by the primitive C_ 
of inclusion between sets. The postulates of (positive) elemental set theory 
are replaced by the postulates of what may be called (positive) inclusive set 
theory (more usually called the theory of atomic Boolean algebras with a 
completeness scheme). 

Any one of these variants can replace analysis as originally formulated in 
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the original in T, making corresponding changes in the mixed primitives. 
Thus a mixed primitive like: 

(2) ~ is how much z weighs 

would at stage (a) become: 

X represents about how much z weighs [in the sense 
that X is of form 2 u. 3 v. 5 w and ( -1)  u. v .  10 -w is 
how much z weights to the nearest 10 -~ unit] 

At stage (b) this would remain the same, but at stage (c) it would become: 

(2c) [~ is a progression and] X represents, with respect to 
~, about how much z weighs 

which introduces a new place for the relation parameter ~. Accordingly, each 
postulate P of the original T will by stage (c) be replaced by a postulate of 
the form: 

V~(~ is a progression --~ pc(~)) 

At stage (d) there would be further change: 

(2d) [E represents a progression and] X represents, with 
respect to E, about how much z weighs 

and accordingly each postulate P of the original T will by stage (d) be 
replaced by a postulate of the form: 

VZ( = represents a progression --, pa(E)) 

At stage (e) there would be no change, but at stage (f) there would be a 
final change: 

(2f) [= represents a progression in which ~ represents an 
initial segment and] ~ represents, with respect to E, 
about how much x weighs 

Thus T may be replaced by a variant t ~ with primitives like: 
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(1') x weighs less than y does 

(2') represents, with respect to T, about how much x 
weighs 

(3') ~ is included in v 

(4') ~ is an element of T 

with the postulates pertaining to abstract objects being those of positive 
inclusive set theory and of positive elemental class theory, with a postulate 
of infinity. 

Now two non-classical, but also non-modal, logics may usefully be intro- 
duced, mereology and plural logic. 

Mereology treats the primitive: 

(3") ~ is part of v 

as a logical primitive, much as classical logic treats identity as a logical prim- 
itive. Accordingly, it treats certain postulates pertaining to this primitive as 
logical postulates, not counted among the (non-logical) postulates of specific 
theories formulated within the general framework of this logic. No list of 
logical postulates claims or can claim to be complete, but the most usual 
list consists precisely of the exact analogues of the postulates of positive 
inclusive set theory. 

Adopting mereology, then, T' can be replaced by a variant T" in which 
variables ~, v, . . .  range over concrete objects, for definiteness to be called 
bodies, (3")replaces (3'), variables E, T , . . .  range over sets of bodies, and the 
only postulates pertaining to abstract objects are those of positive elemental 
set theory. 

Plural logic allows, in addition to singular quantifiers 3~ or "there exists 
something ~", also plural quantifiers 3 3 ~  or "there exist some things the 
~'s". Predicates may have plural as well as singular places; in particular, in 
addition to the logical primitive ~ = v or "~ is the same as v " there is a 
logical primitive ~ = =  vv or: 

(4'") ~ is one of the v's 

Plural logic treats certain postulates pertaining to this primitive as logical 
postulates, not counted among the (non-logical) postulates of specific theo- 
ries formulated within the general framework of this logic. No list of logical 
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postulates claims or can claim to be complete, but the most usual list con- 
sists precisely of the exact analogues of the postulates of positive elemental 
set theory. 

Adopting plural logic, T" can be replaced by a variant T"' in which the 
variables E, T, . . .  are dropped, quantification over sets of bodies being re- 
placed by plural quantification over bodies, and (4') replaced by (4'"), and 
there are no postulates pertaining to abstract objects, though there is still 
a postulate of infinity, to the effect that there exist infinitely many bodies. 

The (non-logical) primitives of T"' then are just ones like (1') above and 
ones like: 

(2'") v represents, with respect to the ~'s, about how much 
z weighs 

Accordingly, each postulate P of the original T will be replaced in T'" by a 
postulate of the form" 

The second modal nominalist strategy proposes an alternative theory T* 
by transforming the theory T'" as follows: The postulate that there do exist 
infinitely many bodies or equivalently, some bodies the ( 's are nested in the 
sense of forming a progression under the part relation, is replaced by the 
postulate that there might have (co-)existed some bodies the ~'s that were 
nested, O 3 3 ( ~ N ( ~ ) ,  while each postulate P of the original of the original 
T will in T* be replaced by a postulate of the form: 

where P* is obtained from P by transforming it as follows: 

(5) 

(6) 

each existential quantification of the first kind 3x 
is replaced by an actuality quantification 3'z read 
"there now, actually does exist an z . . . "  

each existential quantification of the second kind 3~ 
is replaced by a consequentiality quantification 3+~ c 
read "there then, consequently would have existed a 

. . . ,  (and similarly for plural quantifications 33~c~) 

and primitives F and a like (1') and (2"'), above are replaced by actual- 
actual and hypothetical-actual primitives F" and G+~ 
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(1") x (now, actually) weighs less than y (now, actually) 
weighs 

(2*) v (then, consequently) would have marked with re- 
spect to the ~'s (if they had existed) how much x 
(now, actually) weighs 

In attempting to formalize this second strategy, one issue that arose in 
the attempting to formalize the first strategy no longer arises: One is now 
assuming the compossible co-existence of nested bodies, and the use of 
hypothetical-hypothetical cross-comparisons to avoid syndynatological com- 
mitments is not required. Moreover, one is not assuming the possible exis- 
tence of tokens specifically, but rather only the compossible co-existence of 
bodies generally. 

Inversely, one new issue arises that did not arise in attempting to formalize 
the first strategy. This issue may be illustrated by an example related to 
the inheritance example above. In its temporal version it runs: 

(7) When he was in power, those who (now) criticize him 
(then) praised him. 

In its modal version it runs: 

(8) If he had been in power, those who (now) criticize 
him (then) would have praised him. 

The "now" and "then" in (7) are used in their temporal senses of "currently" 
and "contemporaneously", but are optional, since what they express is al- 
ready sufficiently indicated by the sequence of tenses (past-present-past). 
The "now" and "then" in (8) are used in non-temporal, modal senses of 
"actually" and "consequently", but are optional, since what they express 
is already sufficiently indicated by the sequence of moods (subjunctive- 
indicative-conditional). Just as "then" in the temporal sense marks the 
event of the second clause of the consequent as contemporary with the event 
of the antecedent, so does "then" in the modal sense mark the hypothesis 
of the second clause as consequent upon the hypothesis of the antecedent. 

What is new in the second strategy is that, in addition to the operator 
for restoring the indicative mood in subordinate clauses or subsentences, the 
operator @ for "actually" or "now" in the non-temporal, modal sense illus- 
trated in (8), one needs also an operator for imposing the conditional mood 
in subordinate clauses or subsentences, an operator ~ for "consequently" 
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or "then" in the non-temporal, modal sense illustrated in (8). With such 
operators, (8) could be formalized as something like: 

(9) D(Px ~ @Vy(Qxy ~ ~tRxy)) 

Here @ in effect cancels the modality [3, and ~/ restores it. Similarly, in 
formalizing T*, actuality and consequentiality quantifiers can be symbolized 
as @3 and ~/3. (In the particular examples (7) and (8), it may be possible to 
avoid the use of "then" operators by rearranging the clauses of the sentence, 
but in general, in other, more complex examples, it is not.) Further details 
will be omitted from the present sketch. 

4. A c k n o w l e d g m e n t s  and  conclus ion  

In its logical, though not its other, features, the strategy of w above is 
directly inspired by the strategy expounded in the first half of CHIHARA 
[1990] (who in turn traces the logical features of his work back to work of 
Ernest Adams). Charles Chihara, however, though he regards "worlds" as 
fictitious, in the work cited discusses the logical features of his strategy in 
terms of "worlds", and does not indicate at any length how the discussion 
might or should be reworded in noncommittal natural language. The second 
half of the same work is a survey of the literature of nominalism of the past 
couple of decades, and to it the reader is directed for background on this 
topic in philosophy of mathematics, and references to original sources. 

The strategy of w above is indirectly inspired by the "modal structural- 
ism" of HELLMAN [1989] (a work whose modal aspects are traceable back 
to work of Hilary Putnam, and whose structuralist aspects are traceable 
back to work of Paul Benacerraf). (The structuralism comes in in the above 
sketch at the transition form a theory about natural numbers to a theory 
about objects of some indeterminate sort that form a progression.) Geoffrey 
Hellman, however, seems to assume, contrary to what has been suggested 
above, that many more concrete objects than do exist might have existed 
without the concrete objects that do exist having been affected by them or 
having been other than as they are. As to the non-classical but non-modal 
logics involved, mereology was introduced long ago by Stanistaw Le~niewski, 
and has long played a role in work on nominalism. Plural logic was intro- 
duced much more recently by George Boolos. LEWIS [1991] is a good source 
for each. Moreover this work of David Lewis is the only source for how the 
two can usefully be combined. The appendix to that work contains a trick 
of Allen Hazen (a reduction of "polyadic second-order logic" to "monadic 
third-order logic" ) that was used above in the preliminary transformations 
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of analysis from one version to another (the other transformations that were 
used are folklore among specialists). The standard reference work on inten- 
sional logic is GABBAY ~: GUENTHNER [1984], consisting of survey articles 
on its various branches by several workers active in the field, with references 
to the original literature (including that of temporal logic since its origins 
in the work of Arthur Prior, and that of modal logic since its origins in the 
work of C. I. Lewis). The first-named editor, Dov Gabbay, has been an 
enthusiastic proponent of operators beyond the original P, $-, 7-/, G, and [3, 
~. The subsequent work most important in the present context has been 
that of Harold Hodes, especially HODES [1984], a good source for infor- 
mation on operators like @, and the only source for operators like ~. (This 
work also contains a notable simile likening the relation of these two kinds 
of operators to the relation between the "return" and the "backspace" on 
a keyboard). These operators were not even mentioned in the chapter on 
basic modal logic in the standard reference work cited, not yet at the time 
it was written having been much discussed in the literature. The analogous 
temporal operators were barely mentioned in passing, "now" having been 
introduced earlier by Hans Kamp, and "then" by Frank Vlach, but they 
were not (mea culpa) given the attention they deserved in the chapter on 
basic tense logic. From these sources the state of mainstream literature can 
be judged. 

If the present author had to judge the state of the mainstream l i t e ra tu re -  
had to l is t  the main observations of the present note in order from the 
currently most to the currently least widely acknowledged--the list would 
go something like this: 

Modal predicate logic must . . .  

. . .  be based on free, not classical, predicate logic. 

. . .  be based on a system of modal sentential logic, permitting the elimina- 
tion of iterated modalities. 

. . .  include an indicative-mood, actuality, modal "now", or "return" oper- 
ator. 

. . . inc lude  a conditional-mood, consequentiality, modal "then", or 
"backspace" operator. 

. . .  allow cross-comparative predicates, whose places are separately qualified 
by different modalities. 
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Bertrand Russell, in the first decade of this century, held an unconventional 
view of propositions. He took them to be complex abstract entities resem- 
bling logical formulas in their basic structure, but differing from formulas 
in that they may contain physical objects as constituents. The aim of this 
paper is to give an account of Russell's notion of a proposition during the 
period 1903-06, and to explore the extent to which the logic which coexisted 
with that account of propositions is feasible. 

The period 1903-06 lies between Russell's completion of The Principles 
of Mathematics (Russell 1903) and the beginning of the writing of Prin- 
cipia Mathematica (Whitehead and Russell, 1910). During this time Russell 
worked on a form of type-free logic, which he called the "no-classes theory" 
or "substitutional theory" (Russell 1905b,1906b), as a resolution to his para- 
dox (or "the contradiction", as he called it). Russell's view of propositions 
given in the Principles changed and developed with his work on the para- 
doxes. Our elaboration of Russell's notion of proposition is based on the 
formal evidence of the substitutional theory, as it was worked out in unpub- 
lished manuscripts of 1905-06. This theory is based on Russell's conception 
of propositions as structured non-linguistic entities, and their fundamental 
logical properties. 

Russell's ideas about propositions have come back into favour of late in 
connection with theories of direct reference (Kaplan 1986,1989) and the situ- 
ation theory developed by Barwise, Perry, Etchemendy and others (Barwise 
and Etchemendy 1987). Recent authors, although they have found their 
inspiration in Russell, have not usually claimed to provide a historically 
accurate account of Russell's early ideas about propositions. The recon- 
struction attempted in this paper is intended to be faithful (as far as this is 
possible) to Russell's original intentions. 

*Research partially supported by the Social Sciences and Humanities Research Council 
of Canada. 
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1. C o m p l e x i t y  a nd  c o n s t i t u e n t s  

In the Principles Russell draws the following picture of the universe. It 
consists of terms (synonymously, units, individuals or entities), a very broad 
ontological category including everything that  "may be an object of thought, 
or may occur in any true or false proposition, or can be counted as one"( 1903, 
p. 43). Examples would include: the relation 'loves', unicorns, the centre 
of mass of the universe, the class of bald French kings, as well as ordinary 
tables, chairs, persons and so on. This broad definition of term accorded 
with Russell's view of logic as the general science of reasoning which applied 
to all things whatsoever. Of these terms, some may be logically simple, 
while others are logically complex, containing other terms as constituents; 
in particular, a proposition about a term contains that  term as a constituent 
(1903, p. 45). 

The terms which concern the logician are all of finite complexity; on the 
question of infinitely complex propositions, Russell makes the following re- 
marks (1903, pp. 145-146): 

Now, for my part, I see no possible way of deciding whether 
propositions of infinite complexity are possible or not; but this 
at least is clear, that  all the propositions known to us (and, 
it would seem, all propositions that  we can know) are of finite 
complexity. It is only by obtaining such propositions about in- 
finite classes that  we are enabled to deal with infinity; and it is 
a remarkable and fortunate fact that this method is successful. 
Thus the question whether or not there are infinite unities must 
be left unresolved; the only thing we can say, on this subject, is 
that  no such unities occur in any department of human knowl- 
edge, and therefore none such are relevant to the foundations of 
mathematics. 

This passage shows that  it would be incorrect to interpret a universally 
quantified Russellian proposition as an infinite conjunction; on the contrary, 
it is (on Russell's view) a crucial property of universal quantification that  it 
allows us to express infinitely many facts by finite means. 

During the time he was writing the Principles and while he worked on 
possible solutions to the contradiction, Russell changed his views on the 
constituents of propositions, and indeed, on whether or not a proposition 
itself was an entity. But he held throughout to the view that  physical ob- 
jects were constituents of the propositions about them. In this, his account 
of propositions contrasts sharply with that  of Frege. According to Frege's 
well known account, a linguistic expression expresses a sense, which in turn 
determines the denotation (if any) of the expression. The denotation of a 
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proper name is determined by its sense; the sense of a complete sentence is 
a function of the senses of its parts (Frege 1892). The constituents of the 
sense of a sentence are themselves senses of the (syntactical) constituents 
of the sentences. This is expressed very clearly in a letter Frege wrote to 
Russell on November 13 1904 (Frege 1980, p. 163): 

Truth is not a component part of a thought, just as Mont Blanc 
with its snowfields is not itself a component part of the thought 
that Mont Blanc is more than 4000 metres high. But I see no 
connection between this and what you go on to say: 'For me 
there is nothing identical about two propositions that are both 
true or both false'. The sense of the word 'moon' is a component 
part of the thought that the moon is smaller than the earth. 
The moon itself (i.e. the meaning of the word 'moon') is not 
part of the sense of the word 'moon'; for then it would also be a 
component part of that thought. 

Russell's reply of 12 December 1904 brings out his contrasting position in a 
dramatic way (Frege 1980, p. 169): 

I believe that in spite of all its snowfields Mont Blanc itself is a 
component part of what is actually asserted in the proposition 
'Mont Blanc is more than 4000 metres high'. We do not assert the 
thought, for this is a private psychological matter: we assert the 
object of the thought, and this is, to my mind, a certain complex 
(an objective proposition, one might say) in which Mont Blanc 
is itself a component part. If we do not admit this, then we get 
the conclusion that we know nothing at all about Mont Blanc. 

Russell makes it clear in the passage which follows this quotation that his 
view is founded on the idea that (in the case of proper names at least) 
there is no sense to be distinguished. In the case of a name like 'Socrates', 
there is only the idea (which is psychological) and the denotation; a proper 
name denotes an object without the need for a mediating sense. The same 
motivation led Kaplan to his revival of Russell's account (Kaplan 1989, p. 
483), based on the Principles. 

It is sometimes said (see, for instance, Kaplan 1989, p. 496) that Russell 
abandoned the account of propositions given in the Principles in his paper on 
the theory of descriptions (Russell 1905a). However, Russell did not abandon 
the view with his theory of descriptions, he simply modified it. It should 
be remembered that Russell was not primarily interested in an analysis of 
natural language, as are contemporary writers on theories of direct reference. 
If we suppose that Russell's view of the structure of propositions is designed 
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to explain the way in which language operates, it may seem reasonable that 
when Russell gives up denoting concepts as a counterpart in the structure 
of propositions to the definite descriptions which occur in sentences, he is 
giving up the idea of structured propositions. The theory of descriptions 
abandons the idea that there is a constituent of the proposition expressed 
by the sentence "The King of France is bald" which corresponds to the words 
"The King of France", but it does not follow from this that Russell has given 
up his earlier theory. What he has given up is an analysis which parallels 
language. As we show below, the substitutional theory of 1905-06 cannot 
be understood without adopting the idea that both physical and abstract 
objects can occur as constituents of propositions. 

In the Principles, Russell provides an analysis of propositions considered 
as the objects of thought. The sentences of language may (if we are lucky) 
correspond with our thoughts in such a way as to express them clearly, but 
the structure of thought is the antecedent study. The structured nature 
of propositions which emerges from the account of the Principles does not 
emerge as the second tier of an analysis of language; it exists as an analysis 
of the elements of thought in their own right. Russell changed his views 
about the nature of propositions as a result of internal difficulties in his the- 
ory, especially those engendered by the contradiction. He initially took the 
grammar of ordinary language to be his guide to the structure of proposi- 
tions (1903, p. 42), but as time went on he came to think that the logical 
structure of propositions was less and less like the grammatical structure of 
the sentences expressing them. 

Throughout the period 1903-05, Russell held that objects are paradigms 
of constituents of propositions. Propositions as the objects of belief contain 
the objects of acquaintance about which the belief is held. His original po- 
sition in the Principles included sets and relations among terms; but this 
led to the contradiction. Later modifications took the form of eliminating 
a given type of entity as a primitive element of the system, in favour of 
re-defining it in terms of other, simpler, entities. He eliminated classes in 
favour of propositional functions, denoting concepts (which in the Principles 
included such things as are expressed by the phrase 'any thing') in favour 
of quantifiers. Finally, in the substitutional theory, he attempted a radical 
reduction in which propositions and their constituents are the only primitive 
entities, while classes and relations are defined contextually using an appara- 
tus of substitution. In making these modifications, Russell was not so much 
adopting a metaphysical position as trying out certain logical possibilities to 
see if they would allow the consistent construction of mathematics. While 
certain metaphysical views were tenaciously held by Russell (such as the 
universality of logic) others (such as the ontological status of certain classes 
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of entities) were readily adopted or abandoned according to the logical needs 
of the moment. 

Some writers hold that the idea that physical objects can be constituents 
of propositions is bizarre, or intuitively unacceptable. For example, Peter 
Hylton, in an informative article on the substitutional theory, says of this 
doctrine: 'This view is so counter-intuitive that it may be hard to believe 
that Russell meant it literally, but the evidence that he did so is overwhelm- 
ing' (Hytton 1980, p. 28). However, it is clear that an exactly parallel 
situation holds in standard set theory. In an applied set theory allowing 
physical objects as individuals, the set { Mikhaii Gorbachev, George Bush, 
v/2 } has as constituents both physical objects and an abstract object, all 
of which quite happily coexist as constituents of the set. Clearly, Russell's 
idea is no more (and no less) counter-intuitive than the corresponding idea 
in standard set theory. 

Russell had definite epistemological reasons for holding his view of propo- 
sitions, as the above quotation shows. Discussions of this view often mix 
epistemological and logical issues, even (in some cases) attempting to re- 
define the notion of propositional constituent in psychological or epistemo- 
logical terms (Sainsbury 1986). The view taken here is that the theory of 
propositions and their constituents is purely logical, and that it can be in- 
vestigated without reference to the epistemological arguments offered in its 
justification. We shall therefore not discuss the difficult and controversial 
issues connected with Russell's principle of acquaintance, instead taking the 
basic concepts of Russell's theory as logical primitives. 

2. Russe l l ' s  f ounda t iona l  p ro j ec t  1903-05 

In 1903, Russell began work on emendation of his logical system to eliminate 
the contradiction. Possible solutions to the contradiction were constrained 
by two things: Russell's desire to avoid type distinctions (at least for logical 
entities like propositions), and by the goal of deriving mathematics on the 
basis of this logic. During the period from 1903 to 1906, Russell tried out 
a large number of different approaches, although all of these ended either 
with a contradiction, or the impossibility of deriving arithmetic. Many of 
these approaches survive in Russell's unpublished papers (most of the logical 
papers from this period are to appear in Volumes 4 and 5 of The Collected 
Papers of Bertrand Russell). In the attempts of 1903-04, Russell sought 
to avoid the contradiction by eliminating classes as general abstract terms, 
introducing them only when they could be seen to arise from a particu- 
lar function; he adopted something like Frege's course of values operator, 
defining classes contextually by propositional functions. 
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Unfortunately, these attempts in turn foundered on contradictions, and 
for a time Russell's strategy was to distinguish those functions that led to a 
contradiction, and those that did not. He had various methods of trying to 
draw this distinction during the period 1903-04; at different times he distin- 
guishes 'quadratic' (paradoxical) from 'simple' functions, or 'reducible' from 
'irreducible' functions. The cluster of ideas which employ this general strat- 
egy may be called the zig-zag theory (or, rather, zig-zag theories) in keeping 
with Russell's classification in his paper Russell 1906a; there he says (Russell 
1973, pp. 145-146) that the zig-zag theory is based on "the suggestion that 
propositional functions determine classes when they are fairly simple, and 
only fail to do so when they are complicated and recondite." Russell found 
all of his attempts to carry out these classifications of functions problematic, 
and in 1905 he began exploring the idea central to the substitutional theory, 
namely that neither functions nor relations nor classes should be taken prima 
facie as terms, but that the work they had performed in the construction of 
arithmetic should be taken over by simpler entities. 

The basic idea of the substitutional theory is that classes, relations and 
propositional functions should not be quantified over (i.e. considered as 
terms), but should be eliminated in favour of the notion of a matrix con- 
sisting of a proposition and a constituent of the proposition. For example 
the pair consisting of the proposition "Mikhail Gorbachev is a communist" 
and the man Mikhail Gorbachev can stand for the set of communists. The 
proposition does not have to be true; the designated constituent (Gorbachev 
in this case) simply plays the role of a dummy or place holder. The mem- 
bership relationship can be defined by substitution; an object b is a member 
of the class represented by the pair p, a if the result of substituting b for a 
in p is a true proposition. Russell's intention was to build up the notions of 
classes and functions he required through iterations of this method. If the 
substitution of b for a in p yields q, then Russell writes this as: p(b/a)!q, or 
p/a; b!q. Within this last expression for the proposition, the expression 'p/a' 
is an incomplete symbol for a class. The definition of the number 0 (for ex- 
ample) is obtained by considering the proposition (x)(q).p(x/a)!q. D.,,~ q. 
This says that the result of substituting x for a in p always results in a 
false propostion. Thus (p/a) represents a concept with no instances. On 
the account in the Principles, the number zero is defined as the set of all 
such concepts. In the substitution theory, we represent the number zero by 
the matrix {(x). ~ (p/a;x)}/(p, a), where '(p/a; x)' is a definite description 
standing for "the result of substituting x for a in p". In this way Russell 
hoped to construct a consistent type-free theory which would allow him to 
prove the truths of arithmetic. For further details on Russell's theory, and 
its historical background, the reader should consult Grattan-Guinness 1974, 



313 

1977, Hylton 1980, Landini 1987, 1989. 

The development of the substitutional theory was never completed (it 
underwent several revisions) and it was eventually abandoned, for reasons 
we discuss below. But the basic intuitions underlying the theory seem to 
arise from Russell's understanding of the notion of a proposition. Let us 
take for example the notion of a constituent. In the substitution theory 
Russell uses this concept in the statement of his axioms, writing 'p in q' if 
p is a constituent of q. In fact, as we shall see, in his formal development 
Russell defined the concept of a constituent in terms of the basic four-place 
substitution relation. However, there is a sense in which the concept of 
constituent was a basic and primitive idea in Russell's thinking about the 
substitutional theory. Some of the properties that Russell wanted to prove 
for his notion are plausible properties of a general notion of constituent; 
for example, the relation (p in q) is transitive, and antisymmetric. These 
considerations seem to indicate that Russell had an antecedent conception of 
the structure of propositions which he moulded the substitution theory to fit. 
The present paper adopts these intuitions as primitive in the reconstruction 
of the theory. 

Russell's operation of substitution, although formally resembling the cor- 
responding syntactical operation, is an operation which substitutes objects 
for objects, not syntactical items for other syntactical items. An analogy 
with set theory may be useful here (as in considering other aspects of the 
substitutional theory). In a set theory with a ground type of individuals, 
a mapping defined on the individuals induces a mapping on the sets built 
from those individuals. For example, if a permutation maps a into b, b into 
a and c into itself, then the induced mapping maps the set {a, c} into {b, c}. 
The substitution operation in Russell's theory is an operation of the same 
kind, a purely structural or logical operation which obtains between logical 
entities. 

3. Fo rma l  def in i t ion  of Russe l l i an  p ropos i t i ons  

This section contains a formal definition of Russellian propositions and the 
basic relations between them. The definition employs the more general no- 
tion of propositional form; propositional forms differ from propositions in 
that they can contain free variables. Since the variables in a propositional 
form occupy the positions of objects, it is tempting to think of them as stand- 
ing for arbitrary objects, in the sense of Fine 1985. However, this would be 
contrary to Russell's own philosophy of logic. Russell unambiguously de- 
clares his stout opposition to arbitrary objects in the Principles (1903, pp. 
90-91), and retained this view throughout his philosophical career. It is bet- 
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ter to think of a propositional form as an "incomplete" or "unsaturated" 
object like Frege's functions (Frege 1893, pp. 5-7) in which the variables are 
simply place markers. We have avoided Russell's own terminology "propo- 
sitional function" because he sometimes uses this phrase for what we call 
propositional forms, sometimes for what we would usually call the functions 
determined by these forms (compare Frege's contrast between functions and 
their courses of values). 

In any case, the propositional forms can be considered as intermediate ob- 
jects which are introduced mainly as a convenience in defining propositions; 
they do not form part of the domain of quantification, and so are not truly 
entities. 

We assume as given a non-empty set I of logically simple individuals; 
we use the letters a, b, c , . . . ,  a0, b0, Co, al, bl, c1, . . ,  to stand for such indi- 
viduals. In addition, we assume an infinite set of variables: the letters 
p, q, r, s, t , . . . ,  x, y, z , . . .  are used as variable symbols. In addition, we as- 
sume a set of basic predicates, including a four-place predicate S for sub- 
stitution, and Id, the identity predicate. The logical notation adopted is 
largely that  of Whitehead and Russell 1910, including the use of dots in 
place of parentheses. In the case of identity, we write c~ = ~ in place of 
Id(c~, ~). 

The set of propositional forms built from I is defined recursively as follows: 

1. A variable standing alone is a propositional form; 

2. If E is a k-place predicate, and o~1,..., O~k propositional forms or mem- 
bers of I,  then E(C~l,.. . ,  c~k) is a propositional form; 

3. If c~, ~ are propositional forms or members of I then ~ c~ and c~ V/~ 
are propositional forms; 

4. If a is a propositional form, and v a variable, then (v)a is a proposi- 
tional form; 

5. All propositional forms are obtained by repeated application of the 
preceding four rules. 

A proposition is a propositional form containing no free variables; we denote 
the set of propositions built from I by the expression Prop(I). The class of 
objects is the class Prop(I) U I (recall that  we do not count propositional 
forms as objects). 

It may seem odd that  although we do not count individuals as proposi- 
tions, negations and disjunctions of individuals are propositions. However, 
this represents Russell's own views during this period. His view at this time 
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Figure 1: An atomic proposition 

was that ~ p was always a proposition, even when p was not; it was to be 
interpreted as "p is not true". Here, of course, Russell followed Frege in 
requiring that logical variables range over all conceivable objects, and that 
logical operations should be defined everywhere. 

In view of the fifth condition in the truth definition, any propositional 
form has an associated formation tree, which shows how it is built up from 
the basic elements. We stipulate that a propositional form is uniquely de- 
termined by its formation tree, with the proviso that we identify two forms 
if one can be obtained from the other by change of bound variables. This 
definition of identity of Russellian propositions coincides with that given by 
Alonzo Church (Church 1984). As will be seen below, this "fine-grained" 
explication of Russell's notion of propositional identity receives support from 
some details of the substitutional theory. 

It is useful to identify propositional forms with their formation trees, dia- 
gramming them as trees in which the leaves are labelled either with individ- 
uals or variables, and the interior nodes with predicates or logical operators. 
For example, the proposition expressed by "Alys loves Bertie" could be dia- 
grammed as in Figure 1. In the figure we have shown the predicate "loves" 
as a logical operator rather than an object because in 1905, in contrast to 
the position in the Principles, Russell did not take properties or relations to 
be terms; the aim of the substitution theory was to avoid such an assump- 
tion by the apparatus of substitution. More complicated propositions can 
be diagrammed in a similar way. For example, the quantified proposition 

(x): x V ~ (S(x,  x, x, x) = Mont  Blanc) 

can be represented as in Figure 2. The tree associated with an individual 
consists simply of that individual itself. 
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Figure 2" A universal proposition 

An individual can have multiple occurrences in a proposition. This ini- 
tially seems surprising because although we can create multiple copies of a 
symbol, it is harder to imagine multiple copies of an individual. However, a 
little thought reveals that  the same phenomenon arises in set theory, where 
the number 1 occurs as both the first and second components of the ordered 
pair (1, 1). The solution to the puzzle in the case of propositions is the same 
as in the case of set theory: the concept "occurs in" is to be envisaged as a 
one-many relation both in the case of individuals and complex entities. 

We define an individual or propositional form c~ to be a constituent of a 
propositional form/3 if a is identical with a subtree of/3. If a,/3 are individ- 
uals or propositional forms, then the result of substituting 13 for 7 in c~ is the 
individual or propositional form which results by replacing every occurrence 
of the constituent 7 which satisfies two conditions by an occurrence of/3; we 
write the resulting propositional form as c~(~/7). The conditions are: (1) no 
variable free in 7 is bound in the occurrence of 7 in a, and (2) no variable 
free in/3 is bound in the occurrence of/3 resulting from the substitution. The 
substitution operation can be visualized as a pruning and grafting operation; 
the occurrences of 7 are removed from c~, and replaced by occurrences of/3. 
As a particularly simple case, we can replace one individual by another. For 
example, if Alys and Dora are Russell's first and second wives respectively, 
then Alys(Dora/Alys) = Dora. 

It is an elementary exercise to define the class of Russellian propositions 
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as set-theoretical entities in a version of standard set theory containing indi- 
viduals. In this case, a proposition could be defined as an equivalence class 
of sequences of symbols and individuals, and the constituent relation would 
be defined in terms of the membership relation. This is the course followed 
by Barwise and Etchemendy (1987, Chapter 4), in the more general context 
of Aczel's theory of hypersets. However, we avoid this course here, because 
we wish to emphasize the ontological primacy of propositions; in Russell's 
theory sets and relations are mere faqons de parler. 

4. A t r u t h  def in i t ion  w i t h o u t  q u a n t i f i c a t i o n  

For Russellian propositions not containing variables, the definition of truth 
is unproblematic, and is implicit in the description of the structure of propo- 
sitions given in the preceding sections. Let us state the definition formally. 

We consider only propositions in Prop(I) not containing bound variables. 
For atomic propositions other than substitution and identity propositions we 
may assign truth-values arbitrarily. For the remaining atomic propositions, 
and truth-functionally compound propositions, we assign values according 
to the following rules, where a,/3, 7, 6 stand for objects. 

a. a = fl is true if and only if a and /3 are identical; otherwise a = fl is 
false. 

b. (c~ in/3) is true if and only if c~ is identical with a constituent of fl; 
otherwise (c~ in/3) is false. 

c. S(a,/3, "7, 6) is true if and only if a(/~/7) and 6 are identical. 

d. c~ V/~ is true if and only if c~ is true or/3 is true; otherwise, c~ V/3 is false. 

e. ~ c~ is true if and only if c~ is not true; otherwise, ~ c~ is false. 

In the first three clauses of the truth definition, it is understood that  
identity of complex objects, their constituents and the substitution operation 
are to be construed as referring to the tree structure of the complexes in 
question. Thus, for example, in the first item, if c~ and/3 are propositions, 
then they are identical if the formation tree of fl can be obtained from that  
of c~ by change of bound variables. 

Although individuals are not assigned a truth-value, the complex objects 
constructed from them are; we are following Frege and the Russell of 1905 in 
their insistence that the truth-value assignment function be defined on the 
entire universe of objects (with the exception of simple individuals). So, for 
example, the complex object ~ (Bertrand Russell) has the value True, since 
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the author of A n  Outline of Intellectual Rubbish is not assigned the value 
True (compare Frege 1893, w It follows from this that any propositional 
form which is an instance of a tautology is true under any assignment. 

If a is a propositional form which contains only free variables, then we 
say that c~ is valid if every proposition which results by substituting objects 
for the variables in c~ is true under every assignment. With this definition 
of validity in hand, we can investigate which propositions are valid, and 
compare the results with the evidence in Russell's own manuscripts. We 
adopt Russell's own notational conventions in writing c~(fl/7)!5 or c~!5 for 

V 
6). 

It is easy to check that the following propositional forms are all valid: 

1. p~ 

X!p 2. p~ 

X !q . p~ !r. D .q = r 3. p~ 

4. r i n p . p i n q .  D . r i n q  

5. p i n q . q i n p .  D .p - -  q 

�9 , ( ~  q) 6. a ~ ~ p .  p-~.q. D .  p)-~. 

The propositions given above are among the primitive propositions adopted 
by Russell in an attempt at formalizing an early version of the substitu- 
tion theory, dated December 22 1905 (Russell 1905b). They correspond to 
Russell's primitive propositions "12.21.211.201.24.241.212 (Russell in fact 
lists "12.211 as p~!x, but this appears to be a slip of the pen). The fifth 
proposition is particularly interesting, as it shows that Russell's concept of 
proposition is one which (in contrast to the currently fashionable idea of 
a proposition as a set of possible worlds) does not allow identification of 
logically equivalent propositions. For example, let us add to our language 
constants T and F for constant true and false propositions. Then (T D F) is 
equivalent to F, while (F D F) is equivalent to T. If we identify these equiv- 
alent pairs of propositions, then we obtain: (W in F) and (F in W), hence by 
the fifth proposition, T - F, an undesirable outcome. This observation un- 
derlines the fine-grained nature of Russell's conception of proposition; even 
apparently harmless identifications lead to a logical collapse. 

Our results so far show that (if we confine the analysis to propositions not 
containing quantifiers) the substitutional theory of late 1905 is coherent, 
and that our semantical analysis is in accord with Russell's ideas, in so far 
as they are reflected in the primitive propositions which he set down in his 
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earliest attempt at an axiom system. This is encouraging, and furthermore 
demonstrates that objections to Russell's views directed simply against the 
idea that physical objects can be constituents of propositions are invalid. 
However, in presenting Russell's theory, we cheated a little; we took (a = 
/3) and (a in fl) to be atomic propositions. In fact, in the manuscript of 
December 1905 these are defined from the substitution predicate by means of 
quantifiers. Thus a fully accurate representation of Russell's theory, even for 
the propositions already listed, demands a definition of truth for quantified 
Russellian propositions. As will be seen in the next section, this leads to 
extremely difficult problems. 

5. T r u t h  for quant i f ied  p ropos i t ions  and  a p a r a d o x  

The extension of the definition of truth to Russellian propositions containing 
quantifiers appears initially to be quite straightforward. The following clause 
constitutes the natural extension of our earlier definition. 

f. A proposition (x).a is true if and only if a(~/x) is true for any object/3; 
(x).a is false if a(/3/x) is false for some object ft. 

This amounts (in a sense) to a substitutional interpretation of the quanti- 
tiers, but it should not be confused with the interpretation which usually goes 
under that name. What is now called the "substitutional interpretation" in- 
volves substituting the names of individuals for variables, not the individuals 
themselves (Marcus 1961,1962, Quine 1961, Dunn and Belnap 1968, Parsons 
1971). However, in Russell's scheme, the truth of a quantified proposition 
is evaluated by substituting the objects themselves for the free variable in 
the propositional form obtained by removing the binding quantifier. This 
interpretation is both substitutional (since it is defined by substitution in a 
propositional form), and referential (since it directly involves the objects in 
the universe of quantification). It is misleading to conflate Russell's account 
of quantification with that of the modern writers on substitutional theories. 
Russell is much closer to Quine in his insistence that in quantifying over 
objects we are implicitly referring to the objects themselves, not the names 
(or putative names) of objects. 

In the Russellian interpretation of quantification, it is understood that 
the objects which may be substituted for variables include both the initial 
set of individuals and the complex objects constructed from them by the 
logical operations. Unfortunately, in the absence of type restrictions, this 
interpretation leads to paradox, if we assume that a truth-value can be 
assigned to all Russellian propositions. Russell discovered a basic paradox 
in the original version of his substitutional theory in 1906. Subsequently, he 
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modified the theory in various ways, but in the end was unable to escape 
the paradox. 

Russell's substitutional paradox is most easily explained by starting from 
the assumption that there is an assignment of the values True and False 
to all Russellian propositions which satisfies the conditions ( a -  f ) listed 
above. Let us assume in addition that the set of individuals I contains three 
distinct objects a0, b, c, which we assume to be not logically complex (they 
could of course be physically complex). We define the proposition P0 as: 

b!c . (3p, ~) ~o. - . p -  (3z) .  p~~ !z ~ z. 
a a 

Now let R be the proposition Po(Po~!c/ao) which results from Po by substi- 

tuting Po• for all occurrences of ao in Po. Since we assumed that b, c are 
ao  

not logically complex, the only occurrences of a0 in R are the two displayed 
above, so that R is the proposition: 

b!c b P0 ao 
(~p, ~ )  P 0 -  ~ !~ . - .  p - ,c .  �9 (3z) .  p 

a 0 a a 
!Z .  ~,~Z. 

If the proposition R is false, then any proposition obtained by substitution 
in the propositional form which results by removing the initial quantifiers 
from R is also false. Hence, substituting P0 for p and a0 for a, we find that 
the following proposition is false: 

P0 b ,~ _ poS~ ~ (3z)  P o P ~ 1 8 8  ~ .  . . . ~ . 

ao ao ao 

Since the first conjunct is true, the second is false, so that the proposition 

b!c 
Po P~ ~R. ~ R  

ao 

is false. Since, by the definition of R, the first conjunct is true, ~ R is false, 
that is, R is true, contrary to assumption. However, if R is true, then (by 
our definition of identity for propositions), the only objects p, a which satisfy 
the first conjunct in the matrix of R are P0 and a0, so that the following 
proposition is true: 

(3z) Po P~ b-!c �9 ao  ! Z .  "': Z .  

ao 

However, R is the unique object z satisfying the first conjunct, so that ~ R 
is true. This is a contradiction. 
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The tricky substitution which produces the paradoxical proposition R 
bears a striking resemblance to the similar trick used by GSdel in construct- 
ing his undecidable sentence (GSdel 1931). In fact, the resemblance is not 
accidental, since GSdel discovered the undecidability result by attempting to 
give a substitutional interpretation of quantification over the real numbers, 
which failed because of the emergence of antinomies connected with truth 
and definability like the Liar and Richard's paradoxes (Wang 1981). 

The paradox also bears a resemblance to the contradiction first pointed 
out by Tarski in theories of truth based on quotation-functions (Tarski 1956, 
pp. 159-162), and discussed by Binkley, Linsky, Marcus and Kripke (Bink- 
ley 1970, Linsky 1972, Marcus 1972, Kripke 1976). In her comments on 
the contradiction, Marcus observes that the derivation of the paradox im- 
plicitly violates the requirement for a recursive definition of truth that the 
definiens be less complex than the definiendum (Marcus 1972, pp. 246-247). 
Kripke observes than when this restriction is observed, extension of the truth 
definition to more inclusive languages leads to a theory closely resembling 
Russell's ramified theory of types for propositions (Kripke 1976, p. 368). 

The contradiction revealed by the substitutional paradox is of a funda- 
mental sort; it does not directly involve truth, quotation contexts or self- 
reference, as in other semantical paradoxes. When Russell first faced the 
paradoxes, he thought he could solve the problems posed by them by mak- 
ing ad hoc modifications to a set-theoretical apparatus built upon a logical 
foundation which could be assumed as given. The substitutional paradox, 
in contrast, uses only elementary relations between Russellian propositions 
in addition to basic logical concepts. It led in the end to the radical recon- 
struction of logic in the ramified theory of types. 

6. R u s s e l l ' s  w a y  o u t  

The substitutional paradox compelled Russell to modify his originally rather 
simple theory, making it more and more complicated. In unpublished 
manuscripts of 1906, Russell attempted to evade the contradiction by plac- 
ing restrictions on the substitutions permitted in the theory. The reader 
should consult Landini's recent article for the details of some of these at- 
tempts (Landini 1989); we do not describe them here because they proved 
abortive. 

In a letter (Russell 1907) dated January 22 1907, Russell wrote to Ralph 
Hawtrey: "I forgot to send you the paradox which killed the substitution- 
theory. Here it is." After giving the paradox more or less as it is given 
above, Russell concludes: "In trying to avoid this paradox, I modified the 
substitution-theory in various ways, but the paradox always reappeared in 
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more and more complicated forms." The final solution to the substitutional 
paradox and related antinomies was to be found only in 1907 with the cre- 
ation of the ramified theory of types. Although in its first published version 
(Russell 1908) this theory retains a few traces of the substitutional theory 
from which it arose, it should be considered as a new departure, and not as 
the last version of the earlier attempts. In the final section we consider an 
alternative to ramification. 

7. A par t ia l  t r u t h  p red ica te  for Russel l ian proposi t ions  

Although the ramified theory of types provides a formally satisfactory solu- 
tion to the paradoxes, its adoption went against the grain of Russell's deeply 
held logical convictions, in particular the idea that logic should be universal. 
In the ramified theory the universal quantifier no longer has the unrestricted 
scope which it had in the logic of the Principles, or in the 1905 version of the 
substitutional theory. From Russell's original viewpoint, this can hardly be 
accounted a satisfactory resolution, since it violates the universality which 
in the Principles constitutes the essence of logic. Indeed, it is hard not to 
feel a good measure of sympathy with Russell's opinion that the doctrine 
that propositions are of different types is "harsh and highly artificial" (1903, 
p. 528). 

It is possible to resolve the substitutional contradiction while retaining a 
good deal of the 1905 substitutional theory by adopting some of the tech- 
niques recently used in the theory of truth by Kripke, Gupta, Herzberger 
and others (Kripke 1975, Gupta 1982, Herzberger 1982). Here semantically 
closed languages containing their own truth predicate are constructed by 
allowing the truth assignments to sentences to be partial. The assignments 
are constructed by starting from a collection of basic sentences, and adding 
new sentences by transfinite iteration until a fixed point is reached; the fixed 
point is used to define an assignment (which is necessarily partial, because 
the Liar paradox cannot have a truth-value). 

We can follow essentially the same approach in attempting to reconstruct 
Russell's type-free substitutional theory. In doing this, it is necessary to 
rewrite the truth conditions for the propositional operators in order to ac- 
comodate the partiality of the assignment. Accordingly, we replace the con- 
ditions d. and e. above by the conditions: 

d* �9 a V/3 is true if and only if a is true or/3 is true; a V fl is false if and 
only if a is false and/3 is false; 

e*. ~ a is true if and only if a is true; ~ a is false if and only if a is true. 
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These clauses correspond to the strong senses of the propositional connec- 
tives given by Kleene (Kleene 1952, p. 334). The remaining clauses of the 
truth definition remain as before. 

The existence of a partial truth-value assignment to the set of Russellian 
propositions built from a set of individuals I can now be demonstrated by 
following the construction used in the theory of truth. We assume that  
Russellian propositions are modelled as set-theoretical entities built from 
the individuals in I, so that  Prop(I) forms a set. If X is a subset of the set 
Prop(I) x {0, 1}, we define F(X) to be the union of X and the following 
sets: 

1. { <a = fl, 1): a, fl identical objects} U 
{<a = fl, 0>: a, fl non-identical objects}; 

2. { (S(a,  fl, 7, a(f l /7)) ,  1): a, fl,-y objects } U 
{ {S(a, fl, 7, 6), 0), ~ not identical with a(fl /7)};  

3. {(o~Vfl, 1): (o~, 1 ) e X  or (fl, 1 ) e X } U  
{(a V fl, 0):  (a, 0) e X and (fl, 0) e X}; 

4. {(~ a, 1): {a,O) e X}  U {(,',-, a,O): (o~, 1) e X}; 

5. {((x)a, 1): {a(fl/x), 1) C X, for all objects fl} U 
{((x)c~, 0) :  (a(fl /x),  0} e X, for some object fl}. 

Since F is a monotone operator, it follows by a standard result in the theory 
of inductive definition (Moschovakis 1980, p. 404) that  there is a subset of 
Prop(I) x {0, 1} which is a least fixed point of F, denoted by F ~ Thus 
r(r ) = and F ~176 is the intersection of all subsets Y of Prop(I) x 
{0, 1} satisfying F(Y) C_ Y. Let us call a subset Z of Prop(I) x {0,1} 
consistent if there is no c~ in Prop(I) such that  (c~, 1) e Z and (c~,0 / e 
Z. The operator F preserves consistency, hence since 0 is consistent, and 
consistency is preserved under union, the set F ~ is consistent. It follows 
that  we can define a partial assignment of truth values to Prop(I) by the 
rule: a proposition a has the value True if (a, 1 ) E F ~176 while it has the value 
False if (c~, 0) c F ~176 It is not hard to verify that  this assignment in fact 
verifies the list of modified conditions for truth and falsehood given above. 

We can now compare the results of this revised approach with the evidence 
in Russell's manuscripts. In the assignments constructed by the fixed point 
method, the proposition (x).fl~!fl always has a truth-value, which coincides 
with the truth-value of ,-~ (c~ in fl). Hence, (c~ in fl) can be defined (as in 
Russell's manuscripts) by ,- (x).fl~!fl. Similarly, (c~ =/3)  can be defined as 
(x) x~!fl; this is the definition adopted by Russell in an undated manuscript 

�9 X 

which appears to have been written in 1906 (Russell 1906c). 
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If we define classes contextually in the way sketched by Russell, then we 
find that  the set theory given by this construction contains a universal class. 
Furthermore, it is not hard to see that  the universal class is necessarily 
infinite. The argument for this conclusion in the present setting is a variant 
of the classic arguments of Bolzano and Dedekind (see Russell 1903, p. 357); 
for any object a, the objects ~ a, ~ a, ~ ~  a, ... are all distinct. (Anderson 
in his formulation of Russellian intensional logic (1989) deduces the Axiom 
of Infinity by the same argument.) 

This result is of course one highly desired by Russell; in 1904 he argued 
at length against C.J. Keyser that  the Axiom of Infinity is a t ruth of logic 
(Russell 1904), while in 1906 he gave a proof of it in the context of the 
substitutional theory (Russell 1906d), based on the sequence of propositions 
a = u, (a = u) = u, ((a = u) = u) = u , . . . ,  where a, u are distinct objects. 
With the adoption of the ramified theory of types, the Axiom of Infinity 
was no longer derivable, and Whitehead and Russell had to assume it as 
an explicit hypothesis whenever it was needed in Principia Mathematica 
(although the argument of Anderson mentioned above shows that  the Axiom 
of Infinity is derivable in Church's formulation of Russell's intensional logic, 
even though this logic is based on a ramified theory of types). In the present 
reconstruction we have reproduced some of the key features of Russell's 
theory of propositions of 1905, although at the cost of altering the logic. 
How much of the logicist programme can be reconstructed in this framework 
remains a subject for further research. 
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1. B a c k g r o u n d  

If one wants a good semantic representation of a program over a universe 
of possible total states, then one does well to consider the paths that  are 
associated with c~. Those paths may be divided into two groups: those that  
correspond to complete computations according to the program and those 
that  do not. The latter group can be further divided into two subgroups: 
the finite and the infinite. Thus with each program a one can associate three 
sets of paths, 

= the set of halt paths, 

= the set of infinite paths, 

= the set of fail paths. 

In this way each program c~ defines what we might call a signature (H(a) ,  
I(c~), F(c~)). One might go further and identify programs with the same 
signature. To do so would not be completely justified. To take a trivial 
example, consider an impossible program w- -a  program that  can never be 
carried out. Evidently, H(w) = 0. It is easy to see that  the programs w and 
w; w (and, in general, w; w; . . .  ;w) have the same signature, yet syntactically 
they are different programs. However, the proposed identification seems 
harmless for many purposes or even beneficial. 

Working with paths is complicated. By comparison, what goes on in 
dynamic logic (in the narrow sense of the term) is much simpler. There 
a program a is represented by a binary "accessibility" relation R(a) ,  two 
points x and y being related by R(c~) if there is a computation according 
to c~ starting at x and terminating at y. This relation is readily defined in 
terms of the former paragraph. If p is any path, let us agree to write p(0) 
for the first element of p and p(]) for the last element (if there is one). Then 
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we can define 

R(a)  = {(x, y ) :  3p e H ( a ) ( p ( 0 ) =  x & p(~) = y)}. 

This is simpler than the first modelling on two counts. One is that  of the 
paths in H ( a )  only the start  point and the halt point are retained. The 
other is that  the sets I(c~) and F ( a )  play no rble at all. 

Let us call the two kinds of semantics (both of which would seem to go back 
to Vaughan Prat t )  path semantics and relational semantics, respectively. In 
relational semantics it might seem natural to identify two programs if they 
give rise to the same accessibility relation. However, such identification 
would not be as harmless as it was in path semantics. In the literature one 
sometimes sees the claim that  the formalism of dynamic logic is "capable 
of expressing" operators such as IF  - T H E N  - E L S E - .  It is indeed true 
that  a program IF  A T H E N  Ot E L S E  f l  has the same set of halt paths as the 
program ((?A); ~) + ((?-~A); ~) of dynamic logic ("either first to verify that  
A is true and then to run a, or first to verify that  A is false and then to 
run/T ' ) .  Therefore it is also true that  the two programs determine the same 
accessibility relation in relational semantics, and that,  for any formula C, 
the formula 

[IF A THEN c~ ELSE ~ ] C  - [((?A); a) + ((?-~A);/~)]C 

is valid in that  semantics. Yet the two programs need not be identical in 
terms of path semantics. For example, the trivial program I F  -[- T H E N  .7-]- 

E L S E  .7]- has no fail paths, whereas < x > is a fail path of ((?T); (?T)) + 
((?2_); (?T)), for every point x. 

Suppose now that  one wanted to strike a balance between the sensitiv- 
ity of the path semantics and the convenience of the relational semantics. 
One such compromise, to be studied in this paper, would be to adhere to 
the perspective of dynamic logic in accepting R(a)  as an abstraction of or 
substitute for H(c~) but insist on some compensation for giving up I(c~) and 
F ( a ) .  The minimum compensation would seem to be the possibility of ex- 
pressing the possibility that  a certain program a will always halt if started 
at a certain point x ~ i n  such a case let us say that  x is normal with respect 
to a or that  a is safe at x. This would motivate the introduction of a set 
N ( a )  as a new semantic primitive. In terms of the path semantics that  set 
is readily definable: 

= Vp(p e I( )u - - .  p(0) x)}. 

But the converse does not hold--from a relation R(a)  and a set g((~) one 
is not able, in any interesting case, to reconstruct the sets H(a ) ,  I ( a )  and 
F(~) .  
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By accepting the importance of failure and providing some means for 
discussing it, the new semantics becomes able to handle certain operators 
which are sensitive to the existence or not of fail or infinite paths. One such 
operator is I F  - T H E N  - E L S E  -, and in a planned future paper we hope to 
give an analysis of that  and some related operators. Another example is the 
delta-operator which the author studied in [5] and which is the topic of the 
present paper. The idea was to introduce an operator, 6, taking propositions 
(reporting states-of-affairs) to programs. Syntactically, 6A is a well-formed 
expression (a "term") whenever A is a formula. Semantically, 6A may be 
thought of as the action of seeing to it that  A, or the bringing about that  
A. 

How is one to model the new concept? The suggestion in [5] was to cast 5A 
as the locally maximal reliable way of seeing to it that  A. From the vantage 
point of any particular point, that  a program is a reliable way of seeing to 
it that  A means that  every computation from that  point according to the 
program halts at a point where A holds. Maximality is achieved by viewing 
5A as the "sum" or "union" of all those ways--as the most inclusive way 
under the circumstances of reliably seeing to it that  A. Unfortunately, the 
system presented in [5] is unsatisfactory, something that  has been pointed 
out by Timothy J. Surendonk and S. K. Thomason, independently of one 
another ([7], [8]): the formalism does not properly reflect the motivation 
behind it. The author's own diagnosis is that  the defect in [5] is that  fail 
paths are neglected--only halt paths are taken into account. In other words, 
the simplified perspective of ordinary propositional dynamic logic does not 
work when the delta-operator is added. An example due to Thomason makes 
this very clear: by taking only halt paths into account we invite the unwanted 
consequence that  a; ?A ("first to run a, and then to verify that  A is true") 
must be considered a way of doing A, for every a; for the formula In; ?A]A is 
universally true. The point is that in a situation when a has been completed 
but A is not true, the program a; ?A fails--no halt path is ever forthcoming. 

The motivational details have received more detailed investigation in [6]. 
Here we will restrict ourselves to providing a satisfactory formal semantics 
and giving a provably complete axiomatization of the resulting logic. 

The expressions of our formal language are divided into two distinct cate- 
gories, terms and formulae, which are interrelated in intricate ways. There is 
a denumerable supply of propositional letters, and they all count as formulae 
(our basic formulae). There are the usual Boolean operators (connectives), 
forming formulae from formulae. There are no program letters (in this pa- 
per); the basic terms are the expressions ?A and 5A where A is any formula. 
Moreover, a + /3  and a;/3 and a* are terms whenever a and/3  are terms. 
For every term a, [a] is a "box operator", so [a]A is a formula whenever a 
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is a term and A is a formula. Finally, we introduce a new formula making 
operator OK operating on terms: OK a is a formula whenever a is a term. 
From these remarks a formal definition is readily derivable. We will drop 
parentheses somewhat casually but in ways that  should not invite confusion. 

The special features of this paper are the delta-operator 5, explained 
above, and the new operator OK, explained below. Informally, for OK c~ 
one may read "a is safe" or (colloquially) "a is OK". Operators identical 
or closely related to OK have been studied by other authors under different 
names. Most notably, in [2] Robert Goldblatt introduced an operator t from 
programs to formulae, reading t(a) as "the assertion that  execution of a al- 
ways terminates" ([2] p. 101). Goldblatt 's interest in this operator stemmed 
from his insight that  it is needed in order to formalize E. W. Dijkstra's con- 
cept of 'weakest precondition', described by Dijkstra as "the condition that  
characterizes the set of all initial states such that  activation will certainly 
result in a properly terminating happening leaving the system in a final state 
satisfying a given postcondition" (quoted from [2] p. 90). Suppose that  A is 
a given formula (the postcondition) and a a given term. Goldblatt suggests 
that  the condition Dijkstra calls for--writ ten wp(a, A)--is  to be defined as 
wp(c~, A ) =  t(c~) A [c~]A; or in the terminology of this paper: 

wp(a, A) = OK a A [a]A. 

This suggestion seems clearly right, at least within the framework consid- 
ered here. If so, our work below takes on additional interest. 

2. F o r m a l  s e m a n t i c s  

Let U be a given set of points. By an action over U we mean an element 
a E q3(U x U) x ~U.  The two natural projection functions are denoted by 
R and N, respectively: 

R: V(U x U) x VU , 

N :  q3(U x U) x q3U , 

V(u x u), 
q3u. 

Say that  Ra is the accessibility relation corresponding to a and that  Na is 
the normal region of a (if x c Na we say that  a is safe at x and that  x is 
normal with respect to a). Note that, for every action a, 

a--< Ra, Na >.  

We say that  (A, | | *, ?) is an algebra of actions over U if A is 
a set of actions over U and | and (9 and * are operations on A (binary, 
binary, unary, respectively) and ? is a function from q3U to A satisfying the 
following conditions: 
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(R1) R(a | b) - Ra U Rb, 

(R2) R(~ O b ) -  Ra I Rb, 

(R3) R(~*) - (R~)*, 

(R4) R ( ? S ) -  A T S, 

(N1) 

(N2) 

N(a | b) - Na  N Nb, 

N(a  (~ b) - Na  n {x" Vy((x, y) e Ra :=~ y C Nb)}, 

(N3) N(a*) - (x  " Vy((x, y) E (Ra)*===~ y C Na)}, 

(N4) N ( ? S ) -  S, 

(NR) N~ c {x 3y (z ,  y ) e  Ra). 

Here I stands for relative product and * for the ancestral. We have used A 
for the diagonal set {(x,x) : x  C U} and A T S for the set A n (S x S), 
in other words, {(x,x) : x c S}. More notation: where r is a binary 
relation it is sometimes convenient to use the notation r(x) or rx for the set 
{y:  (x, y) c r}. With this convention conditions (N2), (N3) and (NR) can 
be rewritten in the following more manageable form: 

(N2) 

(N3) 

(NR) 

N(~ O ~) - N~ n { . -  R~(x) c Nb}, 

N ( ~ . ) -  {x . (R~)*(x) c N~), 

Na C {x " Ra(x)  ~ 0}. 

Whenever (A, | | *, ?) is an algebra of actions over U there is another 
auxiliary function of importance, namely, the function D ' ~ U  ~ ~ ( U  x 
U) x ~3U defined as follows: for any S c_ U, D S  = <  RDS,  N D S  >, where 

R D S  

N D S  

- { ( x , y ) ' 3 a E A ( ( x , y ) c R a & x c N a & R a ( x ) C _ S ) } ,  

- {x " 3 y ( x , y ) E  R D S } .  

Let us say that (A, | Q, *, ?) is a D-algebra if the range of D is included 
in A; that is, if D S  E A, for all S C_ U. 

Turning now to logic, let us shift the perspective slightly. We define (U, 
A, | Q, *, ?) as a standard frame if (A, | Q, *, ?) is a D-algebra. As 
usual, a valuation in U is a function from the set of propositional letters to 
~U.  A structure 9Y~- (U, A, | Q, *, ?, V) is a standard model if (U, A, | 
Q, *, ?) is a standard frame and V is a valuation in U. The task of semantics 
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is to provide a definition of the meaning or intension in 83~ of every term 
or formula in the object language; let us write [[a[[ ~ and [[A[] ~ for tha t  
concept, where a is any term and A is any formula (we omit the superscript 
when confusion is unlikely to result). Our definition goes as follows. 

( intl)  IIPII = v ( P ) ,  if P is a propositional letter, 

(int2) IIA A BI I  = IIAII n tlBII, I I~AI I  - -  U - IIAII,  etc., 

(int3) [ l?All-  (A T IIAl[, flAIl) 

(int4) [[bAI] = DlfAll, 

(intb) ll~ + 911 : II~ll �9 11911, 

(int6) II~; ~ [ I -  II~ll o II~ll, 

(int7) [Io~*li = Ilall*, 

(intS) [l[a]A[I = {x :  (R[[a[[)(x) c_ IIA[I}, 

(int9) []OK o~11 = Nllall. 

Notice that  the intension of a formula is a proposition, while the intension 
of a term is an action. I f A  is a formula, we say that  A is true at x if 
x E ]IAII. As usual, a formula is valid in a frame if true at all the points 
of the frame. The completeness problem is to provide an axiomatization of 
the set of formulae valid in all s tandard frames. This problem we will now 
address. 

3. Proposed a x i o m a t i z a t i o n  

Let us say that  a logic is normal if it is closed under the rules 

(MP) if A and A D B are theses, then so is B, 

(RM) if A - B is a thesis, then so is [a]A -[a]B, 

and if it also contains as axioms 

(AX0) all tautologies 

as well as all instances of the following schemata: 

(AX1) [c~](A A B) _= ([a]A A [a]B), 
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(AX2) 

(AX3) 

(AX4) 

(AX5) 

(AX6) 

(AX7) 

(AX8) 

(AX9) 

(AXIO) 

(AXll) 

(AX12) 

(AX13) 

(AX14) 

(AX15) 

(AX16) 

(AX17) 

(AX18) 

(AX19) 

[a]T, 

[a + ~]A = ([a]A A [~]A), 

[a;/~]A - [a][/~]A, 

[a*]m D A, 

[c~*]A D [c~lA, 

d D ([a*](d D [a]d) D [a*]m), 

[?A]B = (A D B), 

[fd]d, 

[fA]B D ([6B]C D [6d]C), 

[fA]B D (d D B), 

OK O~ " t-~ ~ (OK ~ A OK ~3), 

OK Ct;/~ =__ (OK ~ A [Oz] OK /3), 

OK Ct* = [0~*] OK OZ, 

OK ?A -= A, 

OK 5A =< 5A > T, 

OK 6A; 6B D OK ~B, 

OK ~A; ~B D ([6B]C D [~A; ~B]C). 

LEMMA 3.1 The following rules are derivable in any normal logic: 

(RD) If  A = B is a thesis, then so is [fA]C = [~BIC. 

(RN) f f  A =_ B is a thesis, then so is OK ~A - OK ~B. 

We omit the proof but observe that (iX10) and (AXll) are used to prove 
that (RD) holds, while (AX17) ("both ways")is used for (RN). The lemma 
is useful if one wants to establish the derivability of yet another rule, that 
of Replacement of Provable Equivalents: 

THEOREM 3.2 The following rule is derivable in any normal logic: 
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(RPE) I f  A - B is a thesis and C and C' are formulae which differ 
only in one of them having an occurrence of A where the 
other has an occurrence of B, then C - C' is also a thesis. 

We omit the lengthy proof (cf. [6]). 

LEMMA 3.3 A D OK 5A is a thesis of any normal logic: 

Proof. Putting _l_ for B in (AX12) gives us A F-< 5A > T after truth- 
functional simplification. Hence A F- OK 5A, by (AX17). [3 

The class of normal logics is closed under intersection. The smallest nor- 
mal logic is of course the intersection of all normal logics. 

THEOREM 3.4 All theses of the smallest normal logic are valid in all stan- 
dard frames. 

Proof. A full proof is by induction on the length of formal proofs and 
consists in checking all axioms and the two rules. We are content to give 
just two examples. Let ffJ~ = (U, A, @, | *, ?, V) be a standard model. 

(AX12): Suppose that x e 1[[SA]BII and x e I[All. Then, for all y, if 
(x,y) e R[15A[I then y e [IB[I . To show that x e IIB[I it will be enough 
to show that (x,x) e R[]SA[I. Note that ?[[A[[ e A and that ?IIA[[ = 
(A T [[A[[, IIdl[). Hence (x , x )  e RI]?A][ and x e gl[?dll; and, trivially, if 
(x, z) e R[[?A[I, for any z, then z e [[A[[. Consequently, (x, x) e R[[SAI[, as 
wanted. 

(AX18): Suppose that 

(0) x e [IOK 5A; 5BII. 

Throughout this proof, for any formula C, we will move freely and without 
comment from 115CII to DIICII and back. From (0) i t  follows that 

(1) x e NI]SA; 5BII. 

Consequently, 

(2) 

(3) 

x ~ ND[IA[I, 

Vu((x, u) e RD[LAI[ ~ u e ND[IBI[ ). 

From (1) and the definition of D we infer the existence of some element y 
such that  

(4) (x, y) e RDllAll. 
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'By (3) and (4), 

(5) y e NDIIBII. 

From (5) and the definition of D we infer the existence of some element z 
such that  

(6) (y, z) e RDIIBII. 

By (3) and (6), (x,z) r RDIIAIIIRDIIBll. Hence 

(7) (x, z )e  RII~A; 6BII. 

Let w be any element such that  (x, w) C RIIhA; 6BII. Then there is some 
v such that  (x, v) e R[[hAII and (v, w) e RIIhB]]. By the definition of D, 
(v, w) e RDIIBII implies that  w e I[B[I. This argument shows that  

(8) Vw((x, w ) e  RII6A; 6BII ~ x e IIBII)- 

Since 9Yt is standard, lISA; 6BII e A. Therefore, in view of (1), (7) and 
(8), the definition of D yields (x, z) e RDIIBI]. Consequently, x e NDIIB]I. 
But then x C ]]OK 6BII , as we wanted to show. [5 

4. F i s c h e r / L a d n e r  c losure  

Like other proofs in this area, our proof starts with the set of all maxi- 
mal, consistent sets of formulae and then "divides out" by a certain finite 
set �9 of formulae (or "filters" the big collection of maximal consistent sets 
through the finite set ~).  The latter set has to be closed under certain con- 
ditions, named after M.J.Fischer and R.E.Ladner (see [1]). In our case the 
Fischer/Ladner conditions will be these: 

(FL0) If o(A0, . . . ,  An-l) C ~, for some n-ary formula-making 
operator o on formulae, then Ao, . . . ,  An-1 C q2. 

(FLI) If [?A]B C ~, then A c ~. 

(FL2) If [hA]B E ~, then A C ~. 

(FL3) 

(FL4) 

(FL5) 

If [a + fl]A E ~ ,  then [c~]A e �9 and [fl]A C ~. 

If [a;/3]A c ~ ,  then [a][fl]A e ~. 

If [c~*]A e ~, then [c~][c~*]A e ~. 
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(FL6) 

(FL7) 

(FL8) 

(FL9) 

(FL10) 

If OK ?A C ~, then A E @. 

If OK 5A E ~, then A c ~. 

If OK oz q- fl C ~ ,  t h e n  OK o~ C ~I/ a n d  OK fl E ~I/. 

If OK Oz; fl C ~I/, then OK Oz C ~ and [Oz]OK fl E @. 

If OK Oz* E tI/, then [Oz*]OK Oz E tI/. 

Let FL~, the Fischer/Ladner closure of ~, be the smallest extension of 
that satisfies conditions (FL1)-FL10). The main result of this section is 
that FL~ is finite whenever �9 is (Theorem 4.2). In order to conduct our 
discussion at a reasonable level of rigour we now define an ordering of the 
expressions of our object language that can be used as an induction order 
in a proof. The notion to be defined is that of immediate predecessor, for 
which we use the symbol <1. 

(IPO) 

(IP1) 

(IP2) 

(IP3) 

(IP4) 

(IP5) 

(IP6) 

(IP7) 

(IP8) 

(IP9) 

If P is a propositional letter, then there is no expression E 
such that E <1 P; 

A <1 A A B and B <1 A A B; A <1 --A; etc.; 

c~<l a + f l  and fl<l oL+fl; 

c~ <1 a; fl and fl <1 c~;/3; 

c~<:! oz*; 

a <1 [a]A and A <1 [alA; 

A<I ?A; 

A <~ 5A; 

oz<:lOK oz. 

For any expressions E and F, E <1 F only by virtue of one 
of the conditions (IP1)-(IP8). 

Precedence is the transitive closure of immediate precedence. It is clear that 
all and only the propositional letters occurring in an expression precede it. 

LEMMA 4.1 Let E be any expression and Q any propositional letter not in 
E. Then the following conditions are satisfied: 

(i) If E is a formula A, then FL{A} is finite. 
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(ii) If E is a term c~, then FL{[alQ } and FL{oK c~} are both 
finite. 

Proof. The proof, by induction on the complexity of E, is an elaboration 
of the corresponding proof in [1]. Notice that our argument is divided into a 
number of cases corresponding to the clauses in the definition of immediate 
precedence. 

Basic step: E is a propositional letter P. It is clear that {P} is closed 
under the Fischer/Ladner conditions--(FL0) holds trivially and the rest 
vacuously. Moreover, {P} is certainly the smallest set with this property. 
Hence FL{P} = {P}, indeed a finite set. 

Induction step: E is complex. As induction hypothesis, assume that the 
lemma holds for the immediate predecessors of E. There are several cases; 
here we give four examples. 

First suppose that E is a formula that is a Boolean combination of other 
formulae; for example, suppose that E is AAB, for some A and B. Inspection 
shows that 

FL{A A B} = {A A B} U FL{A} U FL{B}; 

for the right hand side is closed under all the rules, and no smaller set is. 
Since A <1 A A B and B <! A A B, the induction hypothesis applies to A and 
to B. Hence FL{A} and FL{B} are finite, and therefore so is FL{A A B}. 
Other Boolean cases are similar. 

For our second example, suppose that E is c~; fl, for some terms c~ and ft. 
Here we encounter a complication that requires new notation. If A and B 
are formulae and Q is a propositional letter, let us write A(B/Q) for the 
formula resulting from A by uniform substitution of B for Q. If E is any 
set of formulae, then let us write E(B/Q) for the set resulting from E by 
uniform substitution of B for Q; that is, the set {A(B/Q): A C E}. Now 
in the present case we have 

FL{[a; fl]Q} = {[c~; fl]Q} u FL{[c~][fl]Q}. 

We claim, omitting the proof, that 

FL{[a][fl]Q} = FL{[alQ}([fl]Q/Q)u FL{[fllQ}, 

remarking only on the importance of the assumption that Q does not appear 
in a. Since a <1 a +  fl and fl <1 a + fl both a and fl are covered by the induction 
hypothesis. Consequently, FL{[a; fl]Q} is finite. Furthermore, 

FL{oK o~; fl} = {OK oz; fl} U FL{oK oz, [oz]OK fl}. 
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By the same argument as before, 

FL{[a]OK fl} = FL{[a]Q}(oK f l /Q)u  FL{oK fl}. 

Hence also FL{oK a; fl} is finite. 
For our third example, suppose that E is a*, for some term c~. Note that 

FL[a*]Q = FL{[a][a*]Q}. 

Hence, since Q does not appear in a, 

FL[a*]Q = FL{[a]Q}([a*]Q/Q)u {Q}. 

Since a <1 a*, FL{[a]Q} is finite, by the induction hypothesis. It follows that 
FL[a*]Q is finite. Furthermore, 

FL{oK a*} = {OK a*} U FL{[a*]OK a}, 

and 
FL{[a*]OK a} = FL{[a*]Q}(OK a / Q ) u  FL{oK a}. 

We just saw that FL{[a*]Q} is finite. Moreover, since a <! a*, FL{oK a} is 
finite, by the induction hypothesis. It follows that FL{oK a*} is finite. 

For our final example, suppose that E is OK c~, for some term c~. Since 
c~ <1 OK a, FL{oK c~} is finite by the induction hypothesis. But this is 
exactly what we wanted to establish in this case. [::1 

THEOREM 4.2 If ~ is any finite set of formulae, then FL~ is still finite. 

Proof. Suppose that �9 = {A0,. . . ,An-1}. Then FL~ = FL{A0} U . . .  U 
FL{A~_I}. o 

5. P r e p a r i n g  for f i l t ra t ion 

Let L be a fixed normal logic. We write UL for the set of all maximal 
L-consistent sets of formulae; we will use lower case letters x, y, z, etc. for 
elements of UL. For each term c~ we define the canonical accessibility relation 
a s  

= {(x, y):  v C ( b l C  e �9 C e y)}. 

We recall the following standard result, in effect due to E.J.Lemmon and 
Dana Scott: 

[c~]C e x iff Vy((x, y) e RL(~) ---> C e y). 
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Let �9 be a fixed finite nonempty set of formulae closed under the 
Fischer/Ladner  conditions. In a natural  way this set induces an equiva- 
lence relation on UL, viz., by the definition x - y iff x N �9 - y N ~.  We 
write 2 for the set {x ' "  x - x'},  the equivalence class of x. It is a fact of 
crucial importance tha t  U t, the set {~" x C UL} of all equivalence classes, 
is finite. Let B C ~  be the set of Boolean combinations of formulae in r  For 
every A C BC~,  let IAI t be the set {2" A c x}. Note tha t  if A , B  c B C ~  
and A - B is a thesis of L, then IAI t - IBI t Note also tha t  for every subset 
S c_ U t there is some A c B C ~  such that  S -  IAI t. 

Our goal in this section is to construct a certain filtration-like structure 
over the space U t, a construction which will lead to completeness. In this 
section we take a first step towards that  construction by defining, for each 
element x, a set PSAFE(~)  of sets of paths start ing at ~. As explained in 
Section 1, our relational semantics is different from the path semantics, but 
even in our cruder models it is possible to define certain paths. 

Informally, let us focus on paths along which action proceeds in such a 
way tha t  there is no need to risk failure. How can one be certain of avoiding 
failure in u t ?  Perhaps by imitat ing safe action in U. Doing C at u in U ~  
running 5C start ing at u - - i s  safe if OK 5C C u; or equivalently, according 
to (AX17), if < 5C > T c u. In other words, doing C at u in U is safe if 
there is some v such tha t  (u, v) C RL(hC).  One might hope, then, tha t  the 
same condition will guarantee the safety of doing C at ~ in U t, except tha t  
for obvious reasons we must require that  C c BC~.  This would then be an 
example of what might be called an "atomic" action tha t  is safe. Presumably 
chains or series of safe atomic actions would also be safe. 

After this informal preamble let us now move on to formal construction. 
First some concepts concerning paths in U t. If p = <  20 , . . . ,  2m > is a path 
and fi is any element in U t, then p~fi is the path < 20 , . . . ,  Zm, ~ >. If p - 

< 2 0 , . . .  , 2  m > and q : <  ~ 0 , . . . , ~  > are paths, then pq is defined if 
and only if Z m  - -  ~0; in tha t  case, pq - <  20 , . . . ,  2m, ~ l , . . . , f i ~  >. Thus 
pq is defined only if p(~) - q(0). Again, if p - <  z 0 , . . . , z m  > and q - 
< z 0 , . . . , z ~  >, we say tha t  p is an initial of q if m _< n; and if m < n we 
say tha t  p is a proper initial of q or that  q continues p. 

For every formula C c B C ~  we define a new binary relation over U t" 

Rt(hc)-  x3y'-  y(x', y') e 

Notice tha t  if C -  C' is a thesis of L, then Rt(hC)  - Rt(hC') .  

We define PSAFE(2)  as the smallest set E of sets of paths in U t tha t  
satisfies the following conditions. First, the one-element set whose only 
member is the one-element path consisting of just r is an element of E, 
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called the trivial element" 

In general, suppose that a E E. Let p be a certain path such that p E a and 
suppose that p(~) - fi, for some u. Let T be a set of paths such that, for 
some formula C E BC~, 

- - { p } )  u { p " v  �9 e R t ( e C ) } .  

Then 7- E E. This completes the definition. 
We make a number of assorted comments. The sequence < 2 > is a path 

starting at 5: representing zero atomic actions. Thus the trivial element 
{< 2 >} defends its membership in PSAFE(2) by playing the r61e of null 
element. By the same token, the inductive step of the definition of PSAFE(2) 
in effect defines a relation of succession: in the situation described we say 
that T is an immedia te  successor of a or that cr immedia te ly  precedes 7. 

Notice that  a E PSAFE(~) only if there are a0 , . . . ,  am such that  a0 - {< 
5: >} and am - a and, for all i < m, ai immediately precedes ai+l. In the 
latter case we say that the sequence < a0 , . . . ,  am > generates  a. We say 
that  a produces A E BCO if A E p(~), for all paths p E a. Later we will find 
it convenient to use the binary relation rel a, defined as follows: 

tel a -- { (2, f]) " 3p E crf/ -- p(~) }. 

Thus, for each a E PSAFE(~) and A E BC@, a produces A if and only if 
Vz((~, 2) E tel a ~ A E z).  

We now prove some technical results that are fairly obvious but which will 
be important later. Without proof we observe that  every set in PSAFE(5:) 
is finite (even though PSAFE(~) itself may be infinite) and that  for every 
set a E PSAFE(2) and every path p E a, p(0) = 2. 

LEMMA 5.1 Suppose  tha t  < a o , . . .  ,am > generates  a, for some  a E 

PSAFE(5:). I f  p E ai, for some  i < m,  then there is some q E a such 

tha t  p is an init ial  o f  q. 

Proof. Make the assumptions of the lemma. The proof is by backward 
induction on i. If i - m the situation is trivial. Suppose that the lemma 
holds for i + 1 and that p = <  2 0 , . . . ,  2n > is a path such that p E ai (whence 
of course 20 = 2). If p E a/+l, then the desired conclusion follows from the 
induction hypothesis. So suppose that p ~ ai+l. Then, by the definition of 
PSAFE(2),  there is some element v and some formula C such that 

p~V E 0i+1. 

Then by the induction hypothesis there is some q E a such that p~V is an 
initial of q. But p is an initial of p~V, hence a f o r t i o r i  an initial of q. [3 
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LEMMA 5.2 Suppose  that  a E PSAFE(2).  Suppose  also that  for some p E a 

there is a nontrivial  set 7- E PSAFE(p(~)). Let  0 - {pq " q E T}. Then  0 E 

PSAFE(2).  

Proof. Make the assumptions of the lemma. Suppose that  < a o , . . . ,  am > 

generates a and that  < To, . . . ,  ~-~ > generates 7. Since ~- is nontrivial, n > O. 
For e a c h / s u c h  that  0 _< i <_ n, define ~i - ( a -  {p})U Ti. Then am - ~o, 
and the sequence < a o , . . . ,  am, ~1, .- . ,  Pn > generates 0. [3 

COROLLARY 5.3 Suppose  that  a E PSAFE(2).  Suppose  also that  for each 

p e a there is a nontriyial  set T(p) e PSAFE(p(~)). Let  0 - { p q ' p  e 

a & q e T(p)}. Then 0 e PSAFE(2).  

Proof. The number of paths in a is finite. The result follows by repeated 
applications of Lemma 5.2. [3 

6. F i l t r a t i o n s  

In the model we are building there will be two kinds of basic actions (not to 
be confused with the atomic actions we have been dealing with above)" those 
of type I?AI t and those of type 1hAl t. The former are defined in agreement 
with the general format adopted in Section 2. If A 6 BC@, then 

RI?AI t - { ( 2 , 2 ) ' A E x N @ } - A T I A I  t, 

NI?AI t - { ~ . A E x N W } - I A I  t. 

On the other hand, if A r BC~,  then Rl?AIt - NI?AIt - 0. 
The relation R I 6 A I t - - n o t  to be confused with the relation R t ( 6 A ) - - i s  

defined as follows. If A E BC~,  then RIhAIt  is defined as the set of all pairs 
(2, Y) such that, for some a EPSAFE(2),  

(i) (2, Y)e  tel a, 

(ii) a produces A. 

If A ~ BC~,  then by definition Rl fA[  t - O. In either case we define 
NlaAI t - { ~  3y(~, 9) e RlaAIt}. Note that  N I a A I t  - 0 if A r BC~.  

We are now in a position to define the structure (U t, A t, | @,*, ?) 
promised above. Define the operations | and @ and * and ? as follows: 

I~t t e t ~ t  t - I ~ + ~ 1  t 

I~ l tG 191 t - I~;~lt, 
( l~l t )  * -  I~*lt,  
?(IAI t) - I ? A I t .  
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Let A t be the set of all ]hit such that  a is a term. It is clear that  A t is closed 
under the operations O, | and ?; therefore, (U t, A t, @, | ?) is a frame. 
The main result of this section is that  it is even s tandard (Theorem 6.3). 

LEMMA 6.1 Suppose that (5:, ~) E Rlalt and ~ e Nlal r 
a E P S A F E ( i )  such that 

�9 Then there is some 

(i) (~, ~ ) e  tel a, 

(ii) Vz((~, z )e  ~el a ~ (~,e)e RIll*). 

Proof. Assume that  (~,9) E RIo~lt and :~ E NIo~lt. The proof is by 
induction on a. 

The basic step consists of two cases. In one a is of the form 6A; this 
case is unproblematic,  so we omit the proof. In the other a is of the form 
?A. The underlying assumption is that  (2, ~) E RI?AI* and 2 E NI?AI*. It 
follows that  2 = ~ and A E x D BC~.  Since U t is finite we can find a formula 
C E B C ~  that  characterizes 2 is the following sense: for all u E UL, 

~ - - ~ i f f C E u .  

Define a - {(2,2) �9 (2,2) E R t ( s c ) } .  As C E BC~,  a E PSAFE(2) .  
Suppose that  [SC]B E x. Since C E x, (AX12) yields B E x. This shows 
tha t  (x ,x)  E RL(hC). Hence (2,2)  E rel a, so condition ( i ) i s  satisfied. 
Take any z such that  (2,2) E tel a; that  is, (2,~) E Rt(5C).  Then there 
is some x' - x and some z' - z such tha t  (z ' , z ' )  E RL(hC). By (AX10), 
C E z', hence 2 -  ~. But (2, 2) E RI?AI*, so condition (ii) is also satisfied. 

In the second part  of the basic step a is of the form 8A; we omit the 
unproblematic proof. 

For the inductive step, assume as the induction hypothesis that  the lemma 
holds for some terms a and/3; we wish to prove that  it holds for a +/3  and 
a;/3 and a* as well. In the first of these cases the proof is straightforward, 
and we omit it. The second case is more problematic. Here the underlying 
assumption is that  (:~, ~) ERla; fli t and ~ E Nla; fll t. It follows tha t  there 
is some u such that  on the one hand (2, fi) E Rla] t and 5: E glal  t and on 
the other (~,~) E Rl/31t and ~ E N]flit. With  the help of the induction 
hypothesis (applied twice) we deduce that  there is some a E PSAFE(~)  and 
some 7 E PSAFE(~)  such that  

(1) (:~, "~)E tel a, 

(2) Vz((~,z) E tel a ' .  (~, z) e Rlalt); 

(3) (~, ~)E r~l ~, 
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(4) Vz((fi, 2) e rel ~- ~ (fi, 2) e RlZlt). 

Let us make some observations. Take any arbi t rary path s E a and suppose 
that  9 - s(~). Then (2, 9) E rel a, so (2, 9) E RIc~it, by (2 ) .  The fact that  

C Nla ;  til t implies that  9 C Nifll t. Hence there exists some element w 
such that  (9, ~)  C RI l l  t. By the induction hypothesis, therefore, there is 
some set T(9)C P S A F E ( 9 ) s u c h  that  

(5) (9, ~) e rel "r(9), 

(6) Vz((v, z) e tel ~ ( v ) ~  (v, z) e Rl~lt). 

We make a stipulation in the special case that  9 - fi: that  ~-(fi) - T. These 
observations show that  we are facing a situation of the kind described in 
Lemma 5.3. Hence 0 e PSAFE(2) ,  where 0 - { p q ' p  E a & q e 7-(p(~))}. 
We must show that  

(Q1)  (2, ~)C rel O, 

(�9 

That (QI) holds follows at once from (I) and (3). As for (Q2), suppose 
that (~, 2) C tel O. Then there is some v such that (y:, ~) E tel a and (~, 2) C 
tel ~-(~). From (2) and (6), respectively, we conclude that (~, ~) E R[a[ t and 
(~, 2) c Ri/31t. Consequently, (~, 2) c R[c~; fl[ t, as we wanted. 

In the third case, the underlying assumption is that (~, ~) C Rla*it and 
E Nia*[ t. Then there is some n and some elements 20,..., 2n such that 

20 - 2 and 2,, - ~ and, for all i < n, (zi, Zi+l) C Rial t  and zi C NIc~it. An 
argument along the lines of the preceding case is now possible; we omit the 
details. [3 

COROLLARY 6.2 For all A c BC~,  DIAl t -15A]  t. 

Proof. First suppose that  (y:, ~) e RDIAI t 
there is some term a such that  

, for some A c BC~.  

(1) (~, ~) e RIo~l*, 

(2) ~ c NI~I t, 

(3) Vz((~, z )e  RIo~lt - ~ ,  z e lAir). 

Then 
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Thanks to (1) and (2), we may infer from Lemma 6.1 the existence of some 
set a E PSAFE(2) such that (2, 9) C rel a and Vz((2, 2) C rel a '.. (2, 2.) E 
RIc~]t). By (3), then, Vz((2 ,2)  c tel a ~ 2. C IAlt) . In other words, a 
produces A. Consequently, (2, 9) E RISAI t. This argument shows that 
R D I A t t  C_ RISAI t. The converse is easily seen to hold, so in fact RDIAI  t = 
RtSAI t. 

We use the result just obtained to complete the proof: NDIA[  t - {~ �9 
3y(2, ~) e RDIA[ t} - {2 �9 3y(2,2) e RISAIt } - NiSAI t. rq 

THEOREM 6.3 (U t, A t, | Q,*, ?) is a standard frame. 

Proof. By Corollary 6.2, A t is closed under the ?-operator. But we must 
also show that condition (NR) is satisfied. In other words, we must establish 
the following claim: for all terms c~, 

e NIo l t 3y(2, e RIo I t. 

But this claim is readily proved by induction on c~. [3 

7. C o m p l e t e n e s s  

At this point let us take stock of the situation. We have seen previously 
(Theorem 3.4) that the axiom system in Section 3 is consistent with respect 
the semantics in Section 2. In this section we will prove the converse: that 
the axiomatization is actually complete as well as consistent. This result 
will following from the following theorem. 

Let 93~ t be defined as the standard model (U t, A t, | | ?, v t ) ,  where, 
for every propostional letter P, 

{{~" P E x) 
v t ( p )  - 0 

if P E ~I/, 

We mark intensions in ~13~ t by a dagger. Let us write ar/~ if the term a 
occurs in some formula in ~; that is, if [a]B E ff~, for some B, or OK a E ~. 

THEOREM 7.1 In the model  ~ t ,  for all formulae A c BC~ and for all terms 

ar/ff~, flAIl t -IAI t and IlaJl t - l a l  t. 

The full proof would be by induction on the complexity of A and c~; the 
induction order laid down in Section 4 can again be used. The basic step is 
when A is a propositional letter; the valuation V t was designed with that 
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step in mind. The inductive step is broken up into a number of cases, most 
of which are straightforward. Two typical examples" 

115Att t (by the definition of intension) 

= DIIAII t (by the induction hypothesis) 

= DIAl t (by Coronary 6.2) 

= I~A I  t 

tlo~ + 911' (by the definition of intension) 

-- IIo~11 t �9 Ilflll t (by the induction hypothesis) 

- Ic~l t �9 191* (by definition of | 

= Io~ + #1 t. 

Rather than giving the proof in full we note that only two cases are prob- 
lematic' formulae of type [a]A and formulae of type OK a. For those, three 
partial results are crucial' 

(A) For all a ~ ,  if (x, y ) e  RL(a)  then (2, ~) e RI~I*. 

(B) For all a, if (2, 9) e RIll* and [a]B e x fl ~ then B e y. 

(c)  If OK O~ C ~ ,  then �9 C Nlal  t if and only if OK Oz C X. 

Given the proof in [4] it is enough to prove (A) and (B)in the special cases 
that  a is of type ?A or 5A. Thus we have our work cut out for us: proving 
those special cases of (a)  and (B) (Lemma 7.3 and Lemma 7.4 below) and 
proving all of (C) (Lemma 7.5). 

Much of the difficulty in proving completeness by the filtration method 
has attached to proving (A) for the case that a is of the form 6A. In fact, 
it was in order to deal with this case that the path construction described 
in Section 5 was introduced. Before proving the desired result, there is still 
one technical lemma to prove. Let us say that a path p is an initial in a if 
p is an initial of some path q C a. 

LEMMA 7.2 Suppose that a C PSAFE(2) and that a produces A, for some 

A E BCffJ. Let p be any initial in a and u an element such that ft = p(~). 
(i) OK 5A C u. (ii) f f  C is a formula such that OK 5C C u M �9 and p~f; is 

an initial in a whenever (~, 9) E Rt(sc ) ,  then OK 5C; 5A C u. 
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Proof. We prove this result by strong backward induction. Make the 
general assumption of the lemma. As the induction hypothesis suppose that  
the result holds for all paths in a of which p is an initial. Two cases. 

In the first case, p has no continuations in a. Then p E a, and so A E u, 
since a produces A. By Lemma 3.3, A D OK 5A is a thesis of our logic L. 
Hence OK 5A E u. This confirms condition (i). For (ii), assume that, for 
some formula C, 

(1) OK 5 6  E u I"1 ~ ,  

(2) Vv((~, ~) E Rt(hC) ~ p '~  is an initial in a). 

As p is without continuations in a, (2) reduces in this case to the condition 
that  Vv(ft, ~) ~ Rt(hC), which in turn implies Vv(u, v) E RL(hC). However, 
together with (1) and (AX17) this yields a contradiction. The conclusion is 
that, in this particular case, condition (ii) holds trivially. 

In the second case, p has at least one continuation in a. Tackling (ii) first, 
again assume that  there is some C such that  

(1) OK (~C E u I"1 ~I/, 

(2) Vv((fi, V) E Rt(hC) ~ p~V is an initial in a). 

Take any w such that  (u, w) E RL(hC). Then (fi, ~) E Rt(hC). Hence by 
(2), p ~  is an initial in a. By the induction hypothesis, then, OK 5A E w. 
This argument shows that  

(3) [5C] OK 5d E u. 

By (1), (3) and (AX14), OK 5C; 5A E u. This establishes part of the lemma. 
The remainder is established by (AX18) by which it follows that  OK 5A E 
~/,. r-1 

LEMMA 7.3 (1) If ?A~I~, then (x, y ) E  RL(7.A) only if (2, ~) E RI?AI t. (1i) 
If 5A~I~, then (x, y) E RL(hA) only if (2, ~1) E R[hAIt. 

Proof. (i) Suppose that  ?dT/~. Conditions (FL1) and (FL6) guarantee 
that  A E �9 and afortiori A E PC@. Assume that  (z, y) E RL(?A). By one 
half of (AX9), x - y and A E x. Hence 2 - ~ and A E x M ~. Consequently, 
(2, ~2) e RI?AI t. 

(ii) Suppose that  5Arl~. By (FL2) and (FL7), A E �9 and a fortiori 
A E BC~.  Assume that (x, y) E RL(fA). Note that  a -  {(2, 2)" (2, 2) E 
Rt(fA)} is a nontrivial element of PSAFE(2) and that  (2, ~) E rel a. Let 
z be any element such that  (2,2) E tel a. Then (2,2) E Rt(fA). Hence 
there are x ' -  x and z ' -  z such that  (x', z') E RL(fA). By (AX10), A E z'. 
Since A E ~, 2 E IAI t. This means that  a produces A. Consequently, 
(~, ~) E RISAI t. rq 
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L E M M A  7.4 (/) Suppose that (~., [I) C RI?AI t, for some A. Then [?AIB C 
x N ~ only if  B C y. 0i) Suppose that (2, [I) C RIhAIt, for some A. Then 
[hA]B c x V1 �9 only if  B c y. 

Proof. (i) Suppose that  (2,9) E RI?AI t. Then 2 - 9 and A C x. 
Furthermore, suppose that  [?A]B c x M ~. By the other half of (AX9), 
B C x. By (FL0), B C ~. Moreover, x -  y. Hence B E y. 

(ii) Suppose that (2, ~) c RIhAIt. Hence A E BC~.  By definition there 
is some set a C PSAFE(2) such that  (2, ~) C tel a and a produces A. Take 
p C a such that  p - <  2o, . . . ,  Zn > and 20 - 2 and 2n -- f/. Assume that  
[hA]B E x N t~. We claim that  

(w [hA]B c z,, for a l l / <  n. 

The proof is by induction on i. For i - 0 it is enough to refer to the 
assumption. For the inductive step, assume for a certain i < n that  

(1) [hA]B C z,. 

There is some C such that  (2i, Zi+l) C R t((~C). Hence there are u and v such 
that  

(2) u -  zi, 

(3) v -  zi+l, 

(4) (u, v) e RL(hC). 

From (1), (2) and the assumption that  [hA]B C �9 it follows that  

(5) [5A]B E u. 

Since < 2,0,..., Zi+l > is also an initial in a we may apply Lemma 7.2: 

(6) OK 5C; 6A C u. 

Hence, by (5), (6) and (AX19), [5C; 5AIB C u. Trivially by (AX4), 
[6C][hA]B E u, whence [hA]B E v by (4). Thanks to (3 )we  may now 
infer that  [hA]B C zi+l, which is the desired conclusion and which ends the 
proof of (w 

It follows from (w that  [hA]B c y. But we already know that  A E y. By 
(AX12), g C y. El 

For the remaining piece, the claim (C), we give the full proof. 

LEMMA 7.5 ff OK Oz C tI/, then 2 E N[a[ t if  and only if  OK Oz C X. 
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Proof. By induction on a. First suppose that  OK ?A E ~.  By (FL6), 
A E ~. Hence A E BC~,  so NI?AIt - ] A ]  t. Consequently, ~ E NI?AIt iff 

E ]AIt iff A E x iff, by (AX16), OK ?A E x. 
Next suppose that  OK 6A E ~. By (FL7), A E ~. First suppose that  

2 E NihAIt.  Then there is some y such that  (2, ~3) E RIhAI t. Consequently, 
there is some a E PSAFE(2)  such that  (2, ~) E rel a and a produces A. By 
Lemma 7.2, OK 5A E x. Conversely, if OK 5A E x, then < 5A > T E x, by 
(AX17). Hence (x, y ) E  RL(hA), for some y. By Lemma 7.3, (2, ~3) E RIhAIt. 
Therefore, 2 E NIhAI t. This completes the basic step. 

Inductive step: assume that  the lemma holds for a and for/3. Three cases. 
First suppose that  OK a + / 3  E ~. By (FL8), OK a E �9 and OK ~ E ~.  
Now, 2 E N i a  + ~I t iff (by definition) 2 E g i a i t  M NI/~lt iff (by the induction 
hypothesis) OK a E x and OK ~ E x iff (by (AX13) OK a +/3  E x. 

Next suppose that  OK a;/3 E ~. By (FL9), OK a E @ and [a]og fl E @. 
Then 2 E g l a ;  Pl t iff (by definition) 2 E NIal t and Vy((2,~) E Rlal* ',- 

E N[/~[ t) iff (by the induction hypothesis) OK a E x and Vy((2,~) E 
Rla[ t ~ OK /3 E y) iff OK a A [a]OK /3 E x iff (by (AX14)) OK a;/~ E x. 

Before we embark on the final leg of the proof, we remind the reader of a 
result in [4]" 

(�82 whenever [a*]B E �9 and Vy((2,~) E (Rla l t )*  ~ ~ E 
IBIt), then [a*]B E x. 

With  this in mind, suppose that  OK a* E r By (FL10), [a*]OK a E ~.  
We have 2 E Nla*l t iff (by definition) Vy((2, ~) E (RIal t )*  ---~, ~ E Nlal  t) 
iff (by the induction hypothesis) Vy((2, ~) E (Rlalt)  * - -~OK a E y) i f f  (by 
(�82 [a*]OK a E x iff (by (AX15)) OK a* E x. 1-1 
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1. M e t h o d  a n d  r e l i a b i l i t y  

At the beginning of his recent book, The Pursuit of Truth, W. V. O. Quine 
asks how it can be that science arrives at accurately predictive theories of 
the world, given the meager inputs it has to work with. 

From impacts on our sensory surfaces, we in our collective and 
cumulative creativity down the generations have projected our 
systematic theory of the external world. Our system is proving 
successful in predicting subsequent sensory input. How have we 
done it? 1 

What kind of answer would be appropriate? In the generous spirit peculiar 
to philosophy, Quine gratefully consigns the matter to others, including neu- 
rologists, psychologists, psycholinguists, evolutionary geneticists, and histo- 
rians of science. He might have included sociologists, anthropologists, and 
archaeologists as well. These disciplines are indeed charged with discovering 
how the brain or the society is actually disposed to do what it does. 

But would such a story answer Quine's original question? What if (con- 
trary to fact) a careful sociological or psychological analysis were to reveal 
that social relations determine what science produces, pretty much without 
any regard to the data? That would in a sense explain how we produced 
what we produced, but it surely would not explain our success: i.e. why 
we arrived at a successfully predictive theory. 2 Similarly, if we stick a small 
physics book into a toaster and depress the handle, the toaster will "dis- 
cover" that branch of science (in a slightly scorched condition) in just a 
minute. But this toaster would not slake Quine's legitimate sense of won- 
der about scientific success. For the toaster (like the scientific society just 

1 (Quine 90), p. 1. 
2Assuming we have succeeded. 
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described) is just "lucky" to have arrived at a correctly predictive theory 
(supposing the inserted physics text is such), for if the laws in the book 
had been very wrong, the toaster method would be very wrong, and would 
remain wrong, no matter  how much more evidence we collect and stuff into 
its other bread-slot. It would never recover and stabilize to a correctly pre- 
dictive theory, or even to a nearly correct one. The toaster happens to be 
right, but it wouldn't ever have been right had things been different from 
what they are, even if we were to give it all the time in the world to correct 
its conclusions. 

The toaster response to Quine's question is unsatisfying because it appeals 
to luck, the poorest of explanations. 3 And if the scientific society turns out 
to be more like the toaster than not, even a complete sociological theory of 
science would not address Quine's question. What  is required is a method 
that  is in some sense guaranteed by its very nature to arrive at a truly pre- 
dictive theory. For if we actually use such a method, then it is guaranteed 
that  we arrive, eventually, at a correctly predictive theory. This explana- 
tion is aimed at success rather than at the production of some particular 
conjecture or other. 

But if we avoid reliance on luck, we must not succumb to the other ex- 
treme of naive foundationalism, in which it is demanded that  the method 
be guaranteed to succeed over all logical possibilities. Every guarantee of 
reliability will require some material assumptions. The very conception of 
inquiry as a process headed for the t ruth presupposes that  there is time, 
that  inputs are received by the scientist, and that  methods can determine 
dispositions to produce outputs in response to arbitrary inputs. Even more 
assumptions, restricting the possible character and order of the data in the 
limit, may be necessary. But some methods are guaranteed to succeed un- 
der weaker material assumptions while other methods require stronger ones. 
The fewer the assumptions behind the guarantee, the better the response to 
Quine's question. To put the matter  in slightly different language, a method 
guaranteed to arrive at a correct theory under weaker material conditions is 
m o r e  r e l i a b l e  than a method whose guarantee demands stronger material 
conditions. 

While methodology can be applied to the explanation of past scientific 
successes, as Quine suggests, there is a more important  task: namely, to 
recommend new and improved methods to those who want to succeed. So 
while Quine's question is aimed at the reliability of actual human inductive 
behavior, it cannot help but lead, upon reflection, to more general, more 
philosophical, and more logical questions such as: do there exist more re- 
liable methods? Are those methods feasible? In what sense of feasibility? 

3Despite the fact that it may be the only true explanation in some cases. 
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Could equally reliable methods converge to the truth as fast or faster? What 
are the minimal assumptions required for reliability concerning a given in- 
ductive problem? Are there complete architectures for induction so that 
every reliably solvable inductive problem is solvable by a method with such 
an architecture? Such questions are exactly the sort with which this paper 
is concerned. 

Between naive foundationalism and free-wheeling naturalism lies a con- 
ception of scientific method that is naturalistic in its frank admission of 
material preconditions on reliability, but logical and normative rather than 
empirical in its analysis of methods and in its demand that the material 
preconditions be minimized. It is the consequences of this conception of 
methodology that I wish to develop in this paper. 

2. C o n f i r m a t i o n  

The point of view just enunciated is by no means universal in the present 
day. Many contemporary methodologists, both in philosophy and in statis- 
tics, do not conceive of scientific method as a reliable process at all. They 
view it as a set of principles of conf i rmat ion ,  or ev ident ia l  suppor t .  
Confirmation theorists are champions of the here-and-now, not of the would 
have been later. The relevant scientific question, according to them, is not 
whether science would have stabilized to a correctly predictive theory, but 
whether our current views are actually confirmed by our actual data, pe- 
riod. Confirmation theorists have tried to prove that questions about the 
process by which a conjecture is generated are necessarily psychological or 
at any event irrelevant to legitimate scientific interests. 4 Regardless where a 
hypothesis has come from, we are told, all we need to do is to check whether 
it is confirmed now. Tomorrow is another day, which we may not live to see. 
Other possible worlds are worlds we do not live in. The scientist and the 
statistician must face his problems here and now, without delay. All of this 
has a nice, practical, down-to-Earth ring to i t - -  until we ask what problem 
it is (other than the problem of stamping hypotheses "confirmed") that con- 
firming hypotheses in the here-and-now solves, and how confirmation solves 
it. 

There is no better indication of the prevalence of this sort of thinking 
than the very next paragraph of Quine's book, The Pursuit of Truth. Here, 
Quine attempts to change the subject from the reliability of man's process 
for producing beliefs to the confirmation of these beliefs on the basis of 
available evidence. 

4(Popper 68), (Hempel 65). 
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Within this baffling tangle of relations between our sensory stim- 
ulation and our scientific theory of the world there is a segment 
that  we can gratefully separate out and clarify without pursuing 
neurology, psychology, psycho-linguistics, genetics, or history. It 
is the part where theory is tested by prediction. It is the relation 
of evidential support, and its essentials can be schematized by 
means of little more than logical analysis. 

One small slip for Quine. One giant leap for methodology. The leap is a 
giant one because confirmation theorists tend either to ignore, to resent, 
or to evade the question of how confirmation contributes to our pursuit of 
t ruth (or at least of correctly predictive theories). For example, the question 
is just ignored by proponents of hypothetico-deductivism, inference to the 
best explanation, instance confirmation, consilience, simplicity, and common 
causes. Some confirmation theorists have at least called for such a connec- 
tion without providing one. 5 Instead, they either argue (sociologically) that  
their theories are good sociological generalizations of historical cases, or (in- 
ductively) that such methods succeeded when used in the past, and hence 
ought to continue to succeed. Those who resent the question claim that  
everybody has first principles, and canons of confirmation are our first prin- 
ciples, so that questions connecting confirmation to reliability are ill-posed 
demands for external justifications of ultimate principles of justification. 6 
Perhaps the most interesting strategy is to exchange the question for an- 
other. Many Bayesians, for example, replace questions of reliability in the 
limit with questions about rational preference orderings over acts in the short 
run. At least they have a clear, alternative view about what confirmation 
is for .  But what it is for is frankly conceded to have nothing to do with 
whether or not a highly confirmed hypothesis is true. 

None of these strategies addresses Quine's intriguing question concerning 
the prospects for reliable inquiry. This is not, however, to say that  they 
are not answers to other, well-motivated questions. The role of institutional 

5,,There is nothing in this book that corresponds to an attempt to show that the methods 
I have described are justified or uniquely rational. There are arguments for the methods, 
arguments that purport to show that the strategy achieves our intuitive demands on 
confirmation relations better than do competing strategies, but these arguments do not 
show that the bootstrap strategy will lead us to the truth in the short run or the long run, 
or will lead us to the truth if anything can, or is required by some more primitive canon 
of rationality. There are such arguments for other confirmation theories, although none 
of them are wholly good arguments; perhaps it would be better to have a bad argument 
of one of these kinds for the bootstrap strategy than to have none at all." (Glymour 81), 
p. 377. Glymour has since taken his own advice: c.f. (Kelly and Glymour 89), (Kelly 
and Glymour 1990). 
6 (Horwich 91). 
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relations in the actual functioning of the actual scientific society is an in- 
teresting sociological topic in its own right. Inductive arguments of future 
success may be in some sense reassuring, if the circle is not too tight. Ev- 
eryone is indeed entitled to his own first principles, so long as they engender 
a fruitful theoretical progeny. The rationality and representation of prefer- 
ence is a rich and interesting field. My point is only that reliability is one 
interesting issue among many, an issue of an especially logical and normative 
character. 

My approach to the logic of reliability draws from c o m p u t a t i o n a l  learn- 
ing theory ,  a body of work more familiar to computer scientists than to 
philosophers. The name may have something to do with that fact. It sounds 
like an empirical study of how people learn; the sort of thing Quine has in 
mind under the rubric of na tu ra l i zed  ep i s temology .  But in fact, it is 
a logical, a p r i o r i s t i c  framework for addressing just the sorts of questions 
about the prospects of reliability that I have portrayed as arising out of 
Quine's question. Reliability and computability are primary concerns rather 
than mere afterthoughts, and thus the methodological pie is cut a bit differ- 
ently by learning theorists than by philosophers or statisticians, as will be 
apparent. 

Learning theory may be traced to philosophical work by Kemeny 7 and 
Reichenbach. s It was developed by Putnam in a response to Carnap's con- 
firmation theory 9 and in independent work in logical theory. 1~ The ideas 
gained popularity among cognitive scientists in the work of the computer 
scientist E. M. Gold, 11 who applied it to the analysis of learnability in Chore- 
sky's linguistic program. From there it was adopted by recursion theorists 
interested in artificial intelligence. 12 It has since developed into a recognized 
sub-discipline of computer science. 13 

3. Re l iab le  hypo thes i s  assessment  

Imagine a debate between Descartes, Newton and Kant concerning the in- 
finite divisibility of matter. Descartes insists that material substance is 
identical with geometrical extension, and hence is infinitely divisible. New- 
ton replies that matter is composed of ultimately indivisible atoms floating 

(Kemeny 53). 
s (Kelly 91b). 
9 (Putnam 63). 
1~ (Putnam 65). 
iX(Gold 67), (Gold 65). 
12 (Angluin and Smith 82). 
13For a sample of recent work, c.f. (Rivest et. al., 89). 
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c u t  no cut c u t  

'~BlnkW Bink! , ~  ~ ~ ~  " " 

Clunk! 

, , , , , , , , , , , , , 

1 0 1 , ~  
, i , , L ,  I I I , , .  , I I I  L I J , I . I l i l l l  

All data presentations = 2 o~ 

in a void. Kant dismisses the proceeding as nonsense, since the question lies 
beyond the scope of all possible experience. 

Let's consider an intrepid scientist who overhears the discussion by these 
luminaries, and who decides to undertake a forthright, empirical approach to 
the question. Our scientist is determined to pursue the following procedure 
for eternity (a foundation is set up to survive him). He has a potentially 
infinite sequence of designs for ever more powerful cutting devices, ranging 
from knives to razors to radiation beams to particle accelerators of ever 
greater extent and energy. He starts out with a small bit of matter. At 
each stage, he takes the smallest bit of matter resulting from his previous 
attempt (whether successful or not) and attempts to cut it with the next 
more powerful device. When the cut succeeds he writes down 1 and when 
it fails he writes down 0. The result is an infinite tape of l 's and O's, which 
we will take as his data. 

Assuming that if a particle is divisible then some cutting device of sufficient 
energy will eventually cut it, we may think of the hypothesis that matter is 
infinitely divisible as the set of all infinite data sequences in which infinitely 
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many l 's  (i.e. cut indicators) occur. 
The scientist r situation is this. He sees ever larger initial segments of 

the infinite data presentation t that  arises in the limit when his experimental 
protocol is followed in the manner described, t is only one of the (infinitely 
many) possible data presentations that  might arise from the experimental 
set-up, for all the scientist knows. "Hume's shower curtain" prevents him 
from seeing the full, infinite, extent of t, or the hidden workings of the 
world that  produce it. For each finite, initial segment a of t, the scientist 
r produces a conjecture as to the truth value of the hypothesis in question, 
where 1 indicates t ruth and 0 falsity. 

- I infinitely~-sequencemanyhas ) actual sequence t ~ ......._...._._~!!ii i i i i~i. 
....... ,.,,~ ~iii! iiiiii~!iiil 

.:!F i#i#~:~ ................................... ~ .............. .~~~ '~  !i!ii!I/!'.!iii!I:.iii 
, "" >~ ,~ '~ iiiiiii!ilii!Iii Hypothesis 

f ~i ' ~ .iill!iiliiiii!iiii!i~ 
'~ ~lil::lll!li!lF .~i~l,~ .~ii!!#illltililr 

~, H .~, .:%1ilIiiI::iil! sci e nti st 
.~, :iii!::::I!Itltli scanning a 
, , 0 .  :i:!:i:i:i:i:i:!:~$i:i!~i:~: l 

Theoretically '~.t~'P"" 
possible 
sequences Hume's  

shower  
curtain 

Conjectures 1 or 0 
to indicate whether or 
not p is in P 

This simple picture frames the ontology of the scientist's position. Now 
we move to the normative concept of reliable success. In logic and in com- 
putation theory, one standard of success is dec idab i l i ty .  A machine M 
decides some set S of objects over some domain just in case the machine 
returns 1 on each domain element in S and 0 for each domain element not 
in S. Decidability has long been taken to have epistemic significance for a 
logical system, for it implies that  eventually one will have the right answer. 
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Decidability does not imply any fixed time by which the correct answer will 
come in. But on the negative side, if no procedure can decide a problem, no 
procedure can decide it quickly enough to suit us, either. 

We can also think of a scientist r as deciding an empirical hypothesis P 
on the basis of some data stream t, where P is some subset of a collection K 
of infinite data presentations representing the prior background knowledge 
of the scientist. When the scientist is guaranteed to stop with the right 
answer after some time, we may think of him as eventually "knowing that 
he knows", and we say that he decides the hypothesis with certainty. 

Scientist r decides w i th  ce r t a in ty  hypothesis P assuming 
knowledge K r for each possible t C K, r eventually stops 
reading t and produces 1 if t C P, and eventually stops reading 
t and produces 0 otherwise. 

P is dec idable  w i th  ce r t a in ty  r there is a scientist r that 
decides P with certainty assuming knowledge K. 

Just as in the case of a decidable proof system, we don't know ahead of 
time when r will find the truth, but r is at least guaranteed to find the truth 
and to know when he has. This is arguably the notion of inductive success 
operative in Plato's discussion of the Meno paradox. ~4 

We cannot always expect logical systems to be decidable by a given type of 
machine. In particular, the validity of first-order logic is not decidable by any 
Turing machine, a fact of importance in the epistemology of mathematics. 
A formal set S is verif iable by machine M just when there is a machine 
M so that M outputs 1 on input x if and only if x E D. It is permitted 
for M to run on forever when x r D. Sets verifiable by Turing machines 
are said to be recurs ive ly  enumerab le ,  and the import of the familiar 
completeness theorem of first-order logic is that first-order logical validity is 
a recursively enumerable (or Turing-machine verifiable) relation. Dually, a 
formal set may be refutable ,  in the sense that some machine returns 0 on 
input D if and only if x C D. 

The analogous notions of hypotheses verifiable or re fu tab le  w i th  cer- 
t a i n t y  are familiar from the philosophy of science. Notice, however, that 
we define these notions, as computer scientists do, in terms of the existence 
of reliable methods rather than in terms of the logical form of the hypoth- 
esis. Thus, unlike the positivists, who identified verifiable hypotheses with 
existentially quantified hypotheses, we are committed to no such thing; for 
if the data is not true and complete, then there may be no scientist who can 
verify an existential hypothesis with certainty. 

14(Kelly and Glymour 91). 
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Scientist r verifies hypothesis P wi th  ce r t a in ty  given knowl- 
edge K , ,  for each possible t c K, r eventually stops reading t 
and produces 1 if and only if t E P. 

P is verif iable w i th  ce r t a in ty  given knowledge K ** there is 
a scientist r that verifies P with certainty given knowledge K. 

Scientist r re fu tes  hypothesis P with ce r t a in ty  given knowl- 
edge K r for each possible t c K, r eventually stops reading t 
and produces 1 if and only if t E P. 

P is r e fu t ab le  w i th  ce r t a in ty  given knowledge K , ,  there is 
a scientist r that refutes P with certainty given knowledge K. 

The similarity between these criteria of scientific success and the corre- 
sponding criteria of computational success is evident. One such similarity 
is that a hypothesis is decidable with certainty if and only if it is both 
verifiable and refutable with certainty, as is readily seen. One important 
disanalogy between inquiry and computation is that formal decidability be- 
comes trivial when computation is read so liberally that arbitrary functions 
are computable. This is not the case for empirical decidability, however, so 
the study of scientists of unbounded computational power is not trivial. 

Empirical decidability with certainty, like decidability of a formal system, 
is a desirable goal, but it is rarely obtainable. More leniently, we may 
demand that the scientist stabilize to the truth without knowing for sure 
when he has done so. 

Scientist r decides hypothesis P in the  l imit  given knowledge 
K ,~ for each possible t c K, there is a time after which r always 
outputs the correct truth value of P. 

P is dec idable  in the  l imit  given knowledge K r there is a 
scientist r that decides P given knowledge K. 

As it turns out, the following, "one-sided" senses of limiting success are 
easier to analyze. 

Scientist r verifies [refutes] hypothesis P in the  l imit  given 
knowledge K , ,  for each possible t C K, t C P It ~ P] if and 
only if after some time, r always outputs 1 [0]. 

P is empi r i ca l ly  verif iable [refutable] in the  l imit  given 
knowledge K ~ there is a scientist r that verifies [refutes] P in 
the limit given knowledge K. 

Decidability in the limit can then be studied as the conjunction of verifia- 
bility and refutability in the limit. 
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4. The  logic of d iscovery 

So far, we have mentioned only problems of hypothesis assessment ,  in 
which the scientist is assigned some hypothesis P to investigate. Such prob- 
lems will be referred to as assessment problems. 

evidence 

hypothesis 

. ~  Test outcome, 
degree of support 

From a broader perspective, the scientist is not interested in finding the 
truth value of a particular hypothesis, for if the correct value is 0, the sci- 
entist may not be able to predict anything. Rather, the scientist receives 
evidence, and his job is to stabilize to some "adequate" hypothesis, where 
adequacy is some desirable relation R holding between infinite data pre- 
sentations and hypotheses. R may be taken to imply truth, verisimilitude, 
sufficient logical strength, informativeness, explanatory power, simplicity, 
or any of the other usual features often listed as theoretical virtues. Such 
problems will be referred to as d iscovery problems.  

evidence ~ ~ hypothesis 

Confirmation theorists like to draw a sharp distinction between the prob- 
lems of discovery and assessment. Assessment is a matter of justifying hy- 
potheses according to logical standards of confirmation. On this view, the 
justificatory relation of confirmation holds or fails to hold as a matter of 
logic, quite independently of the psychological and social currents and ed- 
dies that brought the hypothesis in question to attention. 15 Thus discovery 

15(Laudan 80). 
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is alleged to be a subject for psychologists, rather than for logicians. Per- 
haps Quine's penchant to toss the question of reliability to psychologists is 
a tacit throwback to this well-worn positivistic doctrine. 

The tendency to disparage the logic of discovery is not surprising among 
confirmation theorists, since confirmation theories address the problem of 
assessment, rather than that of discovery; assuming that they address any 
coherent problem at all. But from the point of view of methodological re- 
liability, there is a seamless analogy between discovery and assessment. In 
either case, the question is reliability. Once again, we can define success so 
that the scientist knows when he has it right: 

r identifies an R-adequate hypothesis wi th  ce r t a in ty  given K 
r for each t C K there is a hypothesis h correct for t such that 
after some time, r outputs h and stops. 

An R-adequate hypothesis is identif iable wi th  ce r t a in ty  given 
K ~ some r identifies an R-adequate hypothesis with certainty 
given K. 

Or we can define success in such a way that the scientist eventually stabilizes 
to some particular adequate hypothesis without knowing when. 

r identifies an R-adequate hypothesis in the  l imit given K r 
for each t C K there is a hypothesis h correct for t such that 
after some time, r outputs only h. 

An R-adequate hypothesis is identif iable in the  l imit given K 
r some r identifies an R-adequate hypothesis in the limit given 
K. 

Now we have various notions of success, together with a rudimentary 
model of how data arrives to the scientist. Any specification of these matters 
will be referred to as an inductive p a r a d i g m  16 or set t ing.  A given setting 
admits many different inductive problems.  A discovery p rob lem is given 
by a specification of the adequacy relation R and the background knowledge 
K. An assessment  p rob lem is given by a fixed hypothesis P to investigate, 
together with some choice of K. 

16This term is due to (Osherson et. at. 86). 
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5. Four  levels of rel iabi l is t  m e t h o d o l o g y  

From this general perspective on assessment and discovery, there are three 
fundamental levels at which methodological questions may be posed. At 
level (0) we have questions about success or failure of particular methods in 
a few particular possible worlds. 

(o). Does method r succeed on data presentation t? 

This level corresponds to the usual sort of "historical case analysis" that 
has been popular in recent decades in the philosophy of science. Indeed, P. 
K. Feyerabend's methodological case for "anything goes" rests on the ar- 
gument that a few proposed methodological principles have been disobeyed 
with apparently successful results. 17. In artificial intelligence it was recently 
common to see proposals for "learning machines" recommended on the basis 
of success on one or two standard "test cases". From a reliabilist perspec- 
tive, however, such complaints and recommendations are equally faint. An 
optimally reliable method can make a mistake; an unreliable method like the 
toaster described above can succeed on a few, judiciously chosen examples. 
Neither result tells us much about the overall reliability of the method. 

At level (1), we consider questions specific to a given method, so that the 
only relevant quantifier ranges over the possible data presentations in K. 
Such questions include 

(1): How reliable is method r Is method r more reliable than 
method r Does knowledge K entail that r is reliable? 

The second level of generality focuses on inductive problems rather than on 
inductive methods, and quantifies over methods. Such questions include: 

(2). Is there a reliable method given knowledge K? What 
kind of knowledge K is minimally necessary for reliability 
concerning P? What sense of convergence can reliably be 
achieved given only knowledge K? Is some r optimally 
reliable? 

Optimal reliability is defined relative to weak dominance, so that no method 
succeeds wherever an optimal method succeeds and somewhere else as well. 

Third, we come to the very general sorts of questions that involve quan- 
tification over problems in a paradigm. 

17 (Feyerabend 79). 
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(3): Is there a c o m p l e t e  a r c h i t e c t u r e  for the paradigm? Is 
there a structural characterization for problem solvability 
in the paradigm? Are two given paradigms equ iva len t ,  
or is one more s t r i n g e n t  than the other? 

An i n d u c t i v e  a r c h i t e c t u r e  is is a special way of constructing or present- 
ing inductive methods. An architecture is c o m p l e t e  for a given paradigm 
just in case every problem in the paradigm has a solution of the required 
form. One frequently sees proposed architectures for discovery in which dis- 
covery procedures are to be built out of some sort of test connected to some 
sort of search. For example, Popper proposes the architecture of conjectures 
and refutations as the best possible (and only) architecture for discovery. Is 
it complete? If not, is there a non-trivial, alternative architecture that  is? 
We will return to these questions later. 

A c h a r a c t e r i z a t i o n  of solvability is a structural relation between K and 
P (in the case of discovery problems, between K and R) that  holds when- 
ever a reliable solution to the problem exists. Of course we want to avoid 
triviality, so the structural relation between K and P should not be defined 
in terms of scientists or reliability, but in terms of the respective mathemat-  
ical structures of K and of P. Thus a characterization of this sort may be 
thought of as a reliabilist version of a c o m p l e t e  t r a n s c e n d e n t a l  deduc -  
t ion.  Recall that  for Kant, a transcendental deduction shows some condition 
to be necessary for knowledge. A complete transcendental deduction would 
provide necessary and sufficient conditions for knowledge. If knowledge is 
associated with stability and reliability, then a structural characterization of 
solvability fits this bill; but unlike Kant 's transcendental deductions, these 
depend upon the operative definition of scientific success rather than upon 
the synthetic structure of human cognition. Thus, unlike Kant 's  transcen- 
dental program, this one makes mundanely clear both where transcendental 
deductions come from and how they can be genuine deductions. 

Paradigms are e q u i v a l e n t  when the same problems are solvable in each, 
whereas one is more s t r i n g e n t  than another when the problems solvable in it 
are a proper subset of those solvable in the other. When one paradigm seems 
odd and another seems natural, it is interesting to discover that  they are 
in fact equivalent. Equivalence implies that  in some rarefied methodological 
coin, the two distinct standards of success are equally valuable. Stringency is 
interesting because when our pet problems are unsolvable in one paradigm, 
it is open to us to consider less stringent ones in which it is solvable. 

Nothing prevents methodological questions of higher types, that  quantify 
over paradigms, classes of paradigms, and so forth. But the questions I have 

lSOsherson, Stob and Weinstein (1986) use the term strategy. 
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found most engaging occur in levels (1) through (3) and particularly at level 
(3). 

6. M e t h o d s  and prob lems  

Let us consider some examples of questions at levels (1)- (3), starting with 
the first. Recall our example problem, concerning the assessment of the hy- 
pothesis P that matter is infinitely divisible. Consider the trivial scientist r 
who simply repeats the last entry on the tape. It is easy to see that r refutes 
P in the limit when K is the set of all infinite 0-1 sequences. Moreover, r is 
computable by a two-state finite state automaton, so refutation in the limit 
is especially easy in this case. 

Next, consider the question whether P is decidable in the limit given K. 
This depends entirely on whether P is verifiable in the limit over K, since 
refutability in the limit has already been settled. The answer is negative; the 
proof being a simple diagonal argument. Let r be an arbitrary scientist who 
hopes to succeed. Now consider a demon, who fools the scientist by feeding 
a 1, 0 and then all O's while the scientist says 1, and by feeding 1 while the 
scientist says 0. Either r changes his mind infinitely often or not. If so, then 
since the devil tosses in the pair 1, 0 infinitely often, P is true so r fails, 
contradiction. If not, then r stabilizes to the wrong answer, contradiction. 
Thus no r succeeds, by reductio argument. So we have determined that P 
is refutable but not verifiable in the limit and hence not decidable in the 
limit. This amounts to a fairly tight classification of the intrinsic difficulty 
of the problem, since a trivial finite state machine succeeds at refutation in 
the limit, but cognitive gods cannot succeed at verification in the limit. 

7. A complete architecture for discovery 

Let's leap in abstraction to level (3) and consider the issue of complete 
architectures for discovery. Philosophers tend to analyze scientific inquiry 
into test or confirmation on the one hand and an unregulated module of 
invention or intuition on the other. 

Popper has alleged that the method of bold conjectures and refutations is 
our best and only tool for grasping the truth 19. Observe that the "method" 
of conjectures and refutations is not really a single method; it is a restriction 
on how to construct a method for a given problem, or, alternatively, the set 
of specific methods that are constructed in this way; that is, an inductive 
architecture. 

19 (Popper 68). 
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So what does the architecture of conjectures and refutations amount to? 
If the "generate" part of such a method takes in data, then it is an arbitrary 
discovery method in its own right. But then generate and test architecture 
is trivially complete, for every discovery method is duplicated in reliability 
by itself with a test that  passes anything tacked on the end. Presumably, a 
less trivial architecture is intended. Popper's idea seems to be, indeed, that  
the generator ranks hypotheses by audacity and simplicity without looking 
at the data. Then a consistency (refutation) test that  does use the data 
is applied, and the current output of the generator is replaced by the next 
one when (and only when) the current one fails the consistency test. The 
current, non-discarded output of the generator is then conjectured until it 
is refuted in turn. The order of production by creative intuition may be 
assumed to reflect simplicity, power, or other arbitrary preferences 2~ Such 
procedures have also been recommended by Kemeny, Putnam, and Gold, 
among many others. 

iiiiiiiiiiiii!l!     ,,,,,, .... 
~:.'~ii~ii~i!i~i~iii~.li~i~!ii~..".:~i~ii!ii~; ..... 

current Next! 
~ ! j c ; e a i i v e  iniuiiio nii::i!iii~ ..... data 

! iiiilii!!!i!iii!iiii!!ili!iiii ,iiiiili i!!i!iii!iiiiii!iiiiiililiWiiiiiiiiiiiiiiiiiiii!ili!iiii!iiiiii! 

!i!iiiiiiii!ili!iiiiiiiiiiiiii!iii!i!i!iii! ............ , i 

0 Test standard 

So we take Popper to claim that  this non-trivially restrictive architecture 
of conjectures and refutations is complete, or at least that  no other architec- 
ture is more complete than it is 21. But both claims are false. For suppose 

2~ proposal was made by Kemeny (1953) and was investigated further by Putnam 
(1963). 
21This is shorthand for saying that no other architecture has methods that solve all 
problems solved by conjectures and refutations methods, plus some more that are not. 
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K says that either a finite set of even numbers occurs in the data, or all 
natural numbers will come in the data. Suppose that each set has some 
natural number as an index, and an index is adequate for t just in case it 
indexes the set of numbers occurring in t. Now there are infinitely many 
finite sets of even numbers. But no index of such a set is adequate when 
the truth is that all numbers will be seen. So the generator must generate 
the hypothesis h that all numbers will be seen at some finite time, else the 
method will be wrong when this hypothesis is true. But wherever h is put 
in the enumeration of hypothesis indices, it must precede all but finitely 
many of the indices for finite, even sets. And since h cannot be refuted by 
observing even numbers, the conjectures and refutations method that  uses 
the enumeration in question converges incorrectly to h when the truth is 
that  only some finite set of even numbers occur in the data. But since the 
enumeration produced by "creative intuition" is arbitrary, no conjectures 
and refutations method identifies an adequate hypothesis over all of K. 

Could any method succeed where Popper's architecture fails? Just con- 
jecture the index for the current data until an odd number is seen, and 
then conjecture h. Generate-and-test architecture prevents us from using 
this method, or any method that works. But this fact does not deflate Pop- 
per's proposal unless we come up with an alternative, non-trivial architecture 
that  shows us how to assemble tests and enumerations in a more general, 
and more complete manner. 

There is such an architecture, which, moreover, is demonstrably complete. 
We may refer to it as p r i o r i t y  a r ch i t e c tu r e .  A priority discovery method 
is factorable into a fixed enumeration and test procedure, but now instead 
of a refutation test, we think of the test as verifying each hypothesis in the 
limit. Now it will not do to throw away a hypothesis forever when the test 
says 0, as Popper recommends, for the test may change its mind back to 1 
later. Instead, wp employ an infinitely repetitive enumeration of hypotheses 
and initialize a pointer at the beginning of the enumeration. On evidence a, 
we test the hypothesis currently pointed to on successive, initial segments 
of a, moving the pointer one step to the right each time the hypothesis 
pointed to fails the test. The hypothesis pointed to when all of a is read is 
then conjectured. 22. This architecture is demonstrably complete, 23 and thus 
handles the example which has just been seen to defeat the architecture of 
conjectures and refutations. We conclude that conjectures and refutations 
is neither our best nor our only nor even a very good discovery architecture 
so far as reliability and completeness are concerned. Discovery architec- 

22For a similar method applied to the assessment of first-order hypotheses, c.f. (Osherson, 
et. al. 91) 
23 (Kelly 91). 
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tures must allow for n o n - m o n o t o n e  tests 24, which can be more reliable 
than m o n o t o n e  tests, and such tests require special handling of rejected 
conjectures in light of their ability to vacillate forever if the hypothesis is 
false. 

8. Topologica l  c h a r a c t e r i z a t i o n s  of hypo thes i s  a s se s smen t  

Let us move now to the subject of characterization theorems. We will come 
up with a way of building hypotheses out of data presentations in back- 
ground knowledge K so that the hypothesis is decidable or verifiable in the 
limit or what not just in case it is built up in the appropriate way. Thus, 
the theorems will equate some notion of reliable success on the left-hand 
side with some bound on the complexity of the operation of building up the 
hypothesis from simple building blocks on the right-hand side. The appro- 
priate building blocks and the operations of formation will be different, but 
highly analogous in the alternative cases of ideal (unrestricted) and com- 
putable scientific methods, thus yielding a smooth transition between ideal 
and computationally bounded epistemology. The general approach discussed 
here follows that of Gold (1965) and Putnam (1965). 

The basic hypothesis building block will be called a K-fan.  The K-fan 
with hand le  s is the set of all data presentations in K that extend a finite 
data segment a, and will be denoted by K~. 

Since Ko is a set of infinite data presentations, we may think of K~ as a 
hypothesis, in just the manner that the hypothesis of infinite divisibility was 

24A non-monotone test is one that does not verify or refute with certainty. 
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represented by a set of infinite data presentations in the infinite divisibility 
example above. K~ is clearly empirically decidable, for once we see s in the 
data we know that K~ is correct, and once some deviation from s is seen, 
we know that K~ is incorrect. But this is not the only way to build an 
empirically decidable hypothesis. It is just the most elementary way. 

To build an empirical hypothesis that is verifiable with certainty, we sim- 
ply form some arbitrary (and thus countable) union of K-fans. 

, ,  , ,  , 

black raven 

I I I  
I I  

I I  

black raven 

black raven 

white 

white raven 

.. white raven 

raven 

In the diagram we may think of the endpoint of the handle of each fan 
as something the hypothesis says we will find. Thus, the hypothesis "some 
raven is white" is verified when and only when a white raven is observed. 
On the other hand, we can never be sure that no white raven will be seen. 
Such hypothesis will be said to be K-open. K-closed hypotheses are com- 
plements of K-open hypotheses, and may be thought of as the empirically 
refutable or "universal" hypotheses. In the diagram, the singleton consisting 
of the sequence that runs off to the left, in which only black ravens are seen, 
corresponds to the refutable hypothesis "all ravens are black". K-clopen 
hypotheses are both K-open and K-closed, and are exactly the hypotheses 
that  are empirically decidable over K. 

The topological terminology is not accidental, for K-fans together con- 
stitute a countable basis for the topology on K whose open sets are the 
K-open sets. When K = w W, the resulting topological space is called the 
Ba i r e  space. When K C w ~, we have the Baire space r e s t r i c t e d  to K. 
From this topological perspective, the data presentation in which only black 
ravens occur is a topological l imi t  po in t  of the hypothesis "some raven is 
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white". This may sound strange, unless we recall that points in Baire space 
are actually infinite sequences, and the limit point of a set in Baire space is 
a sequence, each initial sequence of which is in the set. 

r 

Limit point of P 
i i i  i i i i i i l l  f i ii i i ,  i i i i i i i i i ,  

P r r 

. . . . . . . . . . . . . . . . . . . . . .  J 

A standard version of the problem of induction arises when no finite data 
sequence secures the truth of the hypothesis in question. This version of the 
problem of induction can now be viewed as a topological property of hypothe- 
ses relative to background knowledge. It arises when some data presentation 
in the hypothesis is a limit point of the complement of the hypothesis in K, 
or when some data presentation in the complement of the hypothesis is a 
limit point of K -  P. An important role of measure theory in mathematics is 
to smooth out problematic sets by discarding troublesome points (like those 
that give rise to the problem of induction) in a set of measure 0. From this 
point of view, topology, rather than probability theory, is the appropriate 
setting for the analysis of the traditional problem of induction. 

A familiar practice in the branch of mathematics known as desc r ip t ive  
set t h e o r y  25 is to build hierarchies of objects in which to classify their com- 
plexity. The finite Borel hierarchy relative to K may be defined inductively 
as follows: 

E B'K - the K-open sets. 

1-If 'K - -  the K-closed sets. 

Now, for each ordinal n > 1, define 

) - - ] B , K  _ _  the set of all countable unions of elements of iin,_.l.s g 

B,K 
1-I B ' K  - the set of all countable intersections of elements of En_l. 

25 (Moschovakis 80). 
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And for each n >_ 1, define 

af," - N nf 'K. 

Of particular interest to us are the complexity classes li B'K, E B'K and A B'K. 
These complexity classes characterize verifiability in the limit given K and 
refutability in the limit given K, respectively when the scientist is allowed to 
be an ideal agent. 26 A2 B'K characterizes decidability in the limit. I summarize 
in the following diagram the characterizations of the various senses of success 
defined above: 

THEOREM 1. 

l 
m 
m 

Refutable in 
the limit 

Verifiable 
in the limit 

e in 

Refutable 
with certainty 

Verifiable 
with certainty 

• B1, ~ Decidable 
with certainty 

Thus we see in a simple paradigm how reliabilistic motives can yield a sys- 
tematic, "ship-shape" epistemology in which there is a place for everything 
and everything can with mathematical certainty be put into its place. Anal- 
ogous results can be given for the case of decidability with n mind-changes, 
which requires that the method r change its mind at most n times before 
stabilizing to the truth in the limit. 27 

26(Kelly 91). The results are relativized, topological, functional versions of results pre- 
sented independently in (Putnam 65) and (Gold 65). 
27(Kelly 91) 
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The proofs of the characterization theorems all involve the construction 
of complete architectures for hypothesis assessment of the relevant sort and 
may be thought of as inductive completeness theorems for these architec- 
tures. 

9. Tur ing  c o m p u t a b l e  inqu i ry  

The learning-theoretic perspective on induction comes into its own when we 
turn to the inductive powers of computational agents. Bayesian confirmation 
theorists have theoretical problems with the very idea of using a computer, 
since the output of a program on a given input is a fact of arithmetic, and 
an ideally coherent Bayesian should have probability 1 on all such truths to 
begin with. One response is to demand coherence only over some simple, 
problem-specific meta-language over possible outputs of computers. 2s The 
simpler the meta-language that the Bayesian is driven to in order to pre- 
serve coherence in the face of computational limitations, the more trivial 
the constraints imposed by coherence become, unless auxiliary principles of 
direct inference conditional on logical relations are imposed. 29 But even if 
the meta-language is extremely simple, computational complexity can blow 
up in the number of atomic statements in the meta-language. 3~ In sharp 
contrast, the reliabilist approach to induction outlined in this paper starts 
out with notions of scientific success explicitly analogous to the standards of 
success familiar in proof theory and in the theory of computation. This re- 
sults in a seamless analogy between ideal and the computationally bounded 
norms rather than in a radical breach to be bridged by appeal to arbitrary 
and artificial meta-languages. 

The learning-theoretic approach also develops a deep analogy between in- 
duction and computation. We may think of the Turing read-write head as 
a "stupid little scientist", and of the Turing tape as a "data presentation" 
produced by "formal experiments" carried out on the tape by the head. In a 
sense, the localized vision of the read-write head leads to the computational 
bounds posited by Church's thesis just as the localized sensory apparatus of 
the scientist leads to the bounds on reliability that raise Hume's problem. 31 
So from the logical, reliabilist perspective sketched here, Church's thesis and 
Hume's problem are intimately related. That two such fundamental episte- 
mological principles, one from the philosophy of mathematics and the other 

28(Garber 83). 
29e.g. Garber imposes the requirement that P(A I B &B ~ A) = 1. 
3~ consistency in propositional logic is an NP-complete problem. 
31For a rigorous characterization of Turing computability in terms of causal locality, c.f. 
(Gandy 80). 
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from the philosophy of science, should share a common root and structure 
from the reliabilist point of view is itself a fascinating philosophical result. 

Turing tape 
Read-write 
head 

The analogy between Church's thesis and Hume's problem is all the more 
interesting when the two problems are rolled into one by the consideration of 
computable scientists. The characterization theorems look exactly the same, 
except that the relevant notion of complexity is given by the a r i t hme t i ca l  or 
Kleene  h ie ra rchy  rather than by the finite Borel hierarchy. The difference 
between the two hierarchies is that the former starts out with recursively 
enumerable sets rather than with open sets. 32 If one looks inside the charac- 
terization theorem, one sees that computable scientists turn computationally 
hard formal problems (such as the consistency of hypotheses with the data) 
into new, "internal" inductive inference problems studied in parallel with 
the external data presentation. Exactly the same sorts of methodological 
considerations arise for the internal, formal inductive problem and for the 
external, empirical inductive problem. 33 

The logical analysis of computational science raises an interesting range 
of questions that have been examined in detail by Osherson, Stob and We- 
instein. 34 It turns out that since computers cannot handle complex logical 
relations, imposition of logical coherence and consistency norms on the per- 
formance of a mechanical scientist in the short run can have the consequence 
of making him less reliable than some computable scientist violating these 
norms could have been. An example of such a case is consistency: the re- 
quirement that only hypotheses consistent with the data be produced. Thus, 

32Relativization to background knowledge K proceeds just as in tile Borel case. 
33(Putnam 65), (Gold 65), (Kelly 91). 
34(Osherson, et. al., 86). 
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from the reliabilist perspective, we have an inversion of the standard, philo- 
sophical perspective on methodology. The usual sorts of "methodological 
rules" are not thought of as tools for finding the truth,  but as restrictions 
on the scientist's choice of a computational method for inquiry. At best 
such a restriction doesn't hurt the quest for truth, but the imposition of 
such restrictions is often damaging to reliability for computable scientists. 35 
Indeed, this is the case concerning consistency. For a simple example, just 
let hypothesis P state that  the first datum to be encountered is a member 
of the halting problem, and let K = w ~. P is verifiable with certainty by a 
computable method that  tests the index i occurring first in the data for halt- 
ing under increasing time bounds, saying 1 with certainty when the machine 
with index i halts on input i. On the other hand, no computable method 
can be consistent for this problem, on pain of being a recursive solution to 
the halting problem. 

Consider a "Bayesian" scientist who conjectures only hypotheses with 
maximally probable posterior probability. Since posterior probability must 
go to 0 as soon as the hypothesis is refuted by the data, such an agent 
must be consistent in the sense just described. Thus the requirement that  
the conjecture at each stage be maximally probable with respect to some 
probability measure is also restrictive for computational agents. 

10. T h e  e m p i r i c a l  p a r a d o x  of cogn i t ive  sc ience  

The preceding discussion has been somewhat abstract. Let us consider the 
systematic application of learning theoretic ideas to a question familiar in 
cognitive science, namely, whether human behavior could be produced by 
a computational mechanism. Philosophers have at tempted to give meta- 
physical, linguistic, and logical arguments against the computational thesis. 
H. Simon and other exponents of artificial intelligence have claimed that  it 
is an empirical question whether or not cognition is computation, and that  
the evidence is good. For each new and supposedly "inspired" fragment of 
human "intuition", the hackers can come up with a big LISP program that  
seems to duplicate it. Then the mystery disappears. 

H. Dreyfus (1972) has objected that  piece-meal handling of "micro- 
worlds", one after the other, will never add up to a complete, synthetic 
computational account of human behavior as a whole. Or does the question 

35This is one, principled reading of Feyerabend's familiar dictum "anything goes". But 
notice that while it is better to be able to choose among all possible methods than among 
those that satisfy some fixed architecture or methodological constraint, it is false that any 
method is as reliable or as efficient as any other. So in another sense, "not just anything 
goes". 
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Not\a computer.  A computer! 

transcend empirical method, as in the case of infinite divisibility? As it turns 
out, the question has an especially ironic status. 

A hypothesis is se l f -defea t ing  just in case if it is true then it is false: 
e.g. "every sentence with more than two words is false". By analogy, a 
hypothesis P is e m p i r i c a l l y  se l f -defea t ing  for scientists in class S just in 
case one of the following two situations obtains: 

1. If P is true then P is not verifiable in the limit by scientists in S. 

2. if P is false then P is not refutable in the limit by scientists in S. 

For example, "this hypothesis is not verifiable in the limit by scientists in S" 
provides us with a trivial example of an empirically self-defeating hypothesis. 

What  about the hypothesis that human behavior is Turing computable? 
Our experimental setup is this. We feed different strings of inputs to a 
human subject and observe the response. By coding input sequences we can 
treat each such sequence as a natural number and then treat the subject's 
overall behavioral disposition as a recursive function. 36 These input-output 
pairs may be listed on a data tape for our psychologist. Thus, the hypothesis 
that  human behavior is Turing-computable can be represented as the set of 
all infinite sequences that present the graphs of total recursive functions. 
Background knowledge is vacuous, so there is no known restriction on how 

36It might fairly be objected that the scientist could not reliably distinguish between a 
new input sequence and a continuation of an old input sequence, but this only makes the 
problem harder, and we are principally interested in negative results here. 
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such a sequence may come in. With these assumptions we have the following 
results: 37 

PROPOSITION 2 The hypothesis that human behavior is Turing computable 
is not refutable in the limit by us (or by anybody else). 

But we also have an ironic negative result: 

PROPOSITION 3 The hypothesis that human behavior is Turing computable 
is empirically self-defeating for us. 

The situation is this. The hypothesis that human behavior is Turing 
computable is verifiable in the limit by some ideal agent, but the fact that 
we are computable if the hypothesis is true implies that we cannot verify it 
in the limit, since no Turing computable scientist can. 

But we can go somewhat further. A paradox is a statement that is true 
if and only if it is false. The famous example is the liar: "this statement is 
false". A hypothesis P is an empi r i ca l  p a r a d o x  for scientists in class S 
just in case one of the following two situations holds: 

1. P is true ~ P is not verifiable in the limit by scientists in S. 

2. P is false r P is not refutable in the limit by scientists in S. 

Our previous example, "this hypothesis is not verifiable in the limit by sci- 
entists in S" is also an example of an empirical paradox for scientists in 
S. 

The thesis that human behavior is Turing computable is not an empirical 
paradox for us, because a non-computable scientist might not be quite pow- 
erful enough to verify it in the limit. On the other hand, if we assume that 
any non-computable human is at least non-computable enough to solve the 
halting problem, then we have 

PROPOSITION 4 Assuming that uncomputable humans can solve the halt- 
ing problem, the hypothesis that human behavior is Turing computable is 
empirically paradoxical for us. 

So the very first question about cognitive science is hopeless so far as 
getting to the truth about it is concerned. On the other hand, this does 
not mean that the investigation of particular cognitive hypotheses is hope- 
less. A c o m p l e t e  cogn i t ive  t h e o r y ,  viewed as a computer simulation of 
a person's behavior, may be represented as a singleton {t}, where t is an 

37For proofs of results in this section see (Kelly 91). 
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infinite, recursive data presentation. For each complete cognitive hypoth- 
esis {t}, a computable scientist can simply compute each prediction made 
by t and check it against the subject's output, rejecting {t} forever when a 
discrepancy is found. Thus: 

PROPOSITION 5 Each recursive cognitive hypothesis {t} is refutable with 
certainty by a Turing-computable scientist. 

So, perhaps the situation is not so bad after all. Perhaps cognitive scien- 
tists can arrive at a true cognitive theory by checking individual theories and 
tallying their results in some way. But as a matter of fact, they cannot, i/ 
human behavior is Turing computable! Again, there is a self-defeating char- 
acter resulting from the self-referential character of the cognitive hypothesis: 

PROPOSITION 6 The complete cognitive truth is identifiable given the 
knowledge that human behavior is computable, but it is not identifiable 
by any computable scientist given the same knowledge. 38 

But if human behavior is Turing computable then our behavior is as well, 
so we cannot identify the complete cognitive truth even if we were to know 
what we cannot reliably discover, namely, that human behavior is Turing 
computable. Notice the interplay between background knowledge, assess- 
ment, discovery, and self-reference to the scientist in this series of results. 

Our discussion so far suggests that the relevant cognitivistic attitude is 
that human behavior is Turing computable. The psychologist J. R. Ander- 
son 39 has suggested that primitive recursion ought to provide enough re- 
sources for cognitive theory. In this case, the picture looks quite different: 

PROPOSITION 7 The hypothesis that human behavior is primitive recursive 
is verifiable but not refutable in the limit by primitive recursive scientists. 

Thus there is no empirically self-refuting or empirically paradoxical char- 
acter to this more restrictive cognitive hypothesis. This fact is also reflected 
in the prospects for cognitive discovery under this hypothesis: 

PROPOSITION 8 Given the knowledge that human behavior is primitive re- 
cursive, the complete cognitive truth is identiliable by a primitive recursive 
scientist. 

This raises further questions about whether other proposed bounds on 
cognitive power, such as pushdown or finite state automata, are empirically 
self-defeating for us. 

3S(Gold 65) and (Putnam 63). 
39(Anderson 79). 
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11. C o m p u t a b l e  inqui ry  concerning u n c o m p u t a b l e  hypo theses  

One apology for the working hypothesis that cognition is computable is that 
if we are in fact computable, we would have no way to test uncomputable 
hypotheses against the evidence. How does this suggestion hold up? Is it 
necessary for reliable, computable hypothesis assessment that the hypothesis 
in question be effective (i.e. that its predictions be derivable by computer)? 

This question leads us to recognize deeper connections between the logic 
of inquiry and the theory of computation. The basis t heo rems  of recursion 
theory 4~ may be thought of as highly constructive analogues of the axiom of 
choice; a matter apparently far removed from mundane issues in empirical 
methodology. But as a matter of fact, these theorems provide a detailed 
picture of how the computational difficulty of deriving predictions from a 
theory relates to the computational difficulty of determining the truth value 
of the theory on the basis of evidence. That is to say, the basis theorems of 
recursion theory relate a theory's deduct ive  complex i ty  to its induct ive  
complexi ty .  41 For example, a surprising result is that 

PROPOSITION 9 there exist complete cognitive theories that are in a sense 42 
infinitely difficult to derive predictions from, that are nonetheless re&table 
with certainty by a computable scientist given no background knowledge. 43 

Another surprising application is that this fact depends upon the number 
of different kinds of predictions the theory makes. If the hypothesis makes 
only finitely many different kinds of behavioral predictions, it is necessary 
for verification in the limit that predictions be computable. 44 Thus the 
example mentioned in Proposition 9 must involve infinitely many distinct 
predictions. These are precise answers to questions about the subtle balance 
between effectiveness and scientific method that confirmation theorists have 
not even asked. 

12. Conclus ion 

Naturalists study how humans actually produce conclusions, a perfectly in- 
teresting project in its own right. Confirmation theorists probe and regiment 
intuitions about evidential relevance; a project of interest to many. But nei- 
ther of these studies tells us something crucial, namely, how the cognitive 

4o (Hinman 78). 
41 For details, c.f. (Kelly 91). 
a2That is, the function from time to prediction is not definable in arithmetic. 
43 (Kelly 91). 
44 (Kelly 91). 
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processes and regimented intuitions contribute to finding the truth. The 
purpose of this paper has been to exhibit an approach to methodology in 
which the scope of and prospects for reliable and computationally feasible 
inquiry are on center stage; a point of view in which the key decision is 
choosing a method, and in which both the intuitions of confirmation theory 
and the cognitive constraints of naturalism are conceived as side-constraints 
that  merely impede our choice of the best methods for finding the truth. 
From this perspective, the relevant questions are as follows. Can our cur- 
rent methods be improved in their reliability or efficiency? How reliable 
can one possibly be? How should reliable tests be built into reliable dis- 
covery procedures? How badly do various methodological norms prevent us 
from being as reliable as we could have been without them? What  are the 
necessary and sufficient structural conditions for reliable success for differ- 
ent classes of agents with different cognitive powers? What  paradigms are 
equivalent in difficulty? How does computational complexity in hypotheses 
translate into computational complexity in scientific inquiry? Sociology and 
regimented introspection can neither answer these questions nor make them 
disappear. But these questions should be answered, and I have attempted 
to show how a truly logical inductive logic can answer many of them. 
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T A K I N G  N A T U R A L I S M  S E R I O U S L Y  
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Once upon a time, students of scientific method were motivated by a desire 
to found science on some pre-scientific cornerstone. Philosophical observers 
from Descartes to Carnap hoped to uncover a source of pre-scientific cer- 
tainty on which all scientific knowledge could be based. But whatever their 
inherent appeal, such projects have suffered a well-known history of unrelent- 
ing failure. Quine's response has been to note that  this very desire to secure 
scientific foundations is driven by a skepticism that  is itself a product of 
science. Without  rudimentary physical science in the form of common sense 
about medium-sized physical objects, the notion of sensory illusion would 
collapse. '[S]ceptical doubts are scientific doubts, '  he writes, 'Epistemology 
is best looked upon, then, as an'enterprise within natural science. Cartesian 
doubt is not the way to begin. '1 

The proper way to begin, from this point of view, is with the external 
reality of common sense as elaborated by science; in Quine's words, 'The 
naturalistic philosopher begins his reasoning within the inherited world the- 
ory as a going concern. '2 Thus, naturalism: the 'abandonment of the goal of 
first philosophy ... the recognition that  it is within science i t se l f . . ,  that  real- 
ity is to be identified and described. '3 The central epistemological question 
becomes - how does this particular species of primate manage to develop 
such a workable world view? 4- and the methodologist 's proper part of this 
question is the study of how that  primate's scientific hypotheses are related 
to the evidence she cites in their support. 

lW. V. Quine, 'The nature of natural knowledge,' in S. Guttenplan, ed., Mind and Lan- 
guage, (Oxford: Oxford University Press, 1975), pp. 67-81. The quotation comes from 
page 68. 
2W. V. Quine, 'Five milestones of empiricism', in Theories and Things, (Cambridge, MA: 
Harvard University Press, 1981), pp. 67-72. The quotation comes from page 72. 
3Quine, ibid, p. 72, and 'Things and their place in theories', in Theories and Things, 
pp. 1-23, especially p. 21. See also 'Epistemology naturalized', in Ontological Relativity, 
(New York: Columbia University Press, 1969), pp. 69-90. 
4See 'The nature of natural knowledge', p. 68. 
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Quine himself has concentrated much of his naturalized epistemological 
attention on 'the learning of language and . . .  the neurology of perception, '5 
but he recognizes that more than this goes into the development of good 
scientific hypotheses and suggests that '[f]urther counsel is available anec- 
dotally in the history of hard science'. 6 My aim here is to take the counsel 
of some such anecdotes. Along the way, I hope to shed some light on the 
practice of a truly naturalized methodology, but I suspect no one will be 
surprised to hear that my ulterior motive is to explore some implications 
for the philosophy of mathematics. More precisely, I am interested in the 
status of some fairly concrete statements about point sets that turn out to 
be independent of the current set theoretic axioms. But more on this in due 
time. 

So how does this particular species of primate go about confirming a con- 
troversial scientific hypothesis? Among the more startling features of our 
contemporary world view is the belief that ordinary physical objects con- 
sist of largely empty space dotted with small particles too small for us to 
see. Why do we believe this? According to Quine, the molecular doctrine is 
supported by 'a convergence of indirect evidence '7 which he divides into five 
benefits: simplicity, familiarity of principle, scope, fecundity, and agreement 
with experiment. Accepted scientific theories may enjoy these qualities to 
varying degrees - a surplus of scope and fecundity, for example, might com- 
pensate a deficiency in famil iar i ty-  but it is on the basis of these theoretical 
virtues that scientific hypotheses are to be judged. 

The connection with the philosophy of mathematics is first drawn at this 
very general level. A scientific theory with generous portions of the theo- 
retical virtues will often also include a good measure of mathematics: the 
temperature of a gas as a function of time, acceleration as a second deriva- 
tive, the fundamental equations of Maxwell's theory. It seems impossible 
to remove the mathematical component of the theory while preserving a 
sufficiently virtuous version of the physical component. Indeed, as Putnam 
has emphasized, it is often difficult to see how a purely physical version of a 
sophisticated scientific theory can even be stated, s Thus, the required math- 

5'Five milestones', p. 72. 
6 The Pursuit of Truth, (Cambridge, MA: Harvard University Press, 1990), p. 20. 
zW. V. Quine, 'Posits and reality', in The Ways of Paradox, revised edition, (Cambridge, 
MA: Harvard University Press, 1976), pp. 246-254. The quotation is from p. 246, and 
the five benefits are described on p. 247. 
SSee H. Putnam, 'Philosophy of logic', in Philosophical Papers, volume 1, second edition, 
(Cambridge: Cambridge University Press, 1979), pp. 323-357. Hartry Field, in Science 
Without Numbers (Princeton, NJ: Princeton University Press, 1980) and Realism, Math- 
ematics and Modality (Oxford: Basil Blackwell, 1989), argues that it is possible, despite 
appearances, to remove the mathematics from our physical theories. For all their inge- 
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ematics should be accepted along with the physics; the theoretical virtues 
of the theory give us as much reason to believe its mathematical  claims as 
its physical ones. In Pu tnam's  words: 9 

. . .  mathematical  entities [are] indispensable for s c i e n c e . . ,  this 
commits us to accepting the existence of the mathematical  en- 
tities in question. This type of argument stems, of course, from 
Quine, who has for years stressed both the indispensability of 
. . .  mathematical  entities and the intellectual dishonesty of deny- 
ing the existence of what one daily presupposes. 

All this is so familiar as to have passed into the realm of philosophical 
folklore: a hypothetico-deductive justification for physical theories; an in- 
dispensability defense for mathematical  theories. These arguments function 
at an extremely high level of generality, in the rarefied world of scientific the- 
ory T and mathematical  theory M. What  I propose at this point is to lower 
the level of discussion considerably by at tending to a particular historical 
case. In other words, I mean to consult historical anecdote. The case I have 
in mind is the same one Quine touched on above, that  of atomic/molecular  
theory. 1~ 

The notion that  mat ter  is composed of tiny invisible bits goes back to the 
Greeks, but the beginning for the modern atomic hypothesis was Dalton's 
work in the first decade of the 19th century. During this period, Proust 
experimentally verified the Law of Definite Proportions - the proportions 
in which two substances combine do not vary con t inuous ly -  and Dalton 
added the Law of Multiple P r o p o r t i o n s -  the definite proportions in which 
substances combine come in simple integral multiples. (So, for example, 
three grams of carbon combine with four grams of oxygen or with eight grams 
of oxygen, but with no amount in between. And eight is twice four.) Dalton 

nuity, I think his efforts are not successful. (See my Realism in Mathematics, (Oxford: 
Oxford University Press, 1990), chapter 5, and 'Mathematics and Oliver Twist', Pacific 
Philosophical Quarterly 71 (1990), pp. 189-205.) 
9putnam, op. cit., p. 347. Putnam (and Quine) actually speak of the indispensability of 
quantification over mathematical entities, rather than the indispensability of the entities 
themselves, but this degree of precision is irrelevant here. 
l~ of the fascinating details of this case were first brought to my attention by R. 
Miller's discussion in his recent book Fact and Method, (Princeton, NJ: Princeton, 1987), 
pp. 470-482. Grateful as I am for the stimulus, I can't fully endorse Miller's analysis 
of the case in terms of 'topic specific truisms'. For more detailed historical sources, see 
C. Glymour, Theory and Evidence, (Princeton, NJ : Princeton University Press, 1980), 
pp. 226-263, A. Idhe, The Development of Modern Chemistry (New York: Harper and 
Row, 1964), chapters 4 - 8, M. Nye, Molecular Reality, (New York: American Elsevier, 
1972), and the classic J. Perrin, Atoms, first published in 1913, English translation by D. 
Hammick, (New York: van Nostrand, 1923). My account is based on these sources. 
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hypothesized that a sample of an elementary substance is actually made 
up of many tiny identical particles, that these remain unchanged through 
chemical reactions, and that a sample of a compound is made of many 
identical molecules, each composed of an identical combination of atoms 
from the constituent substances. This simple atomic hypothesis explains 
both laws of proportion. 

In the same decade, Gay-Lussac discovered the Law of Combining Vol- 
umes: at a given temperature and pressure, the volumes of gases A and B 
that combine to form a given compound are in simple integral proportions. 
(E.g. Two volumes of hydrogen combine with one volume of oxygen to form 
two volumes of water.) In 1811, Avogadro theorized that equal volumes of 
gas (under similar conditions) contain equal numbers of Dalton's atoms, and 
that many elementary gases consist of diatomic molecules. This embellish- 
ment of atomic theory explains not only the Law of Combining Volumes, 
but also Boyle's Law of 1662 (pressure varies inversely with volume) and 
Charles's Law (gases expand equally when heated equally). 

During the 1820s, various scientists realized that compounds with different 
chemical properties sometimes analyze into the same elements in the same 
proportions. An atomic explanation for this 'isomerism', as it is now called, 
soon followed: the same atoms can combine in different spatial relationships, 
and those spatial relationships influence the molecule's chemical behavior. 
In 1830s, Dumas noticed that a compound losing hydrogen while gaining 
chlorine did so in equal volumes, which led to his Law of Substitution. The 
notion that the substitution took place atom for atom could scarcely be 
avoided. Several decades of clues finally came together in the early 1850s, 
when Frankland added the concept of valence to the developing picture. 

Despite this impressive string of successes, atomic theory during the first 
half of the 19th century was plagued by one very serious dimculty: the prob- 
lem of determining relative atomic weights. Dalton had chosen hydrogen as 
his basis and calculated the relative weight of oxygen by measuring the 
amount of oxygen that combines with a given amount of hydrogen to form 
water. Obviously, no conclusion can be drawn from these measurements un- 
less the chemical formula for water is already known. Dalton overcame this 
obstacle by assuming that the most common compound of two elements has 
a binary molecule, and thus, that water is HO. This simple error points up 
the problem: atomic weights can be calculated from combining weights and 
molecular formulas, and molecular formulas can be calculated from combin- 
ing weights and atomic weights, but the early 19th century chemists knew 
only the combining weights. 

Soon after Dalton, Berzelius devised his own table of atomic weights, based 
on different hypotheses and differing also in the assigned values. By 1820, 
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two new methods were added to this early guesswork: Mitshcerlich's Law of 
Isomorphism (similar crystalline structures result from the same number of 
atoms in the same arrangement) and Petit and Dulong's Law (the product 
of the specific heat and the atomic weight is a constant). Petit and Du- 
long produced another table of atomic weights that differed from those of 
Berzelius and Dalton. And in 1826, Dumas announced yet another method, 
based on his measurements of vapor densities. 

Conflicts between the results achieved by these various methods led Dumas 
to conclude that atomic theory should be banished from chemistry. Though 
he apparently believed in atoms, Dumas came to reject the many hypotheses 
of atomic theory and to abandon the hope that they might produce a table 
of atomic weights confirmable by independent empirical tests. His dramatic 
statement reads: 11 

If I were master, I would erase the word 'atom' from science, 
persuaded that it goes beyond experience; and never in chemistry 
ought we to go beyond experience. 

Despite Dumas's stature, this admonition went unheeded. Compounds con- 
tinued to be analyzed, molecular formulas proposed, and atomic weights 
conjectured. 

Finally, in 1858, Cannizzaro did what Dumas had neglected to do: he 
distinguished carefully between molecule and atom. 12 With this simple clar- 
ification, a steadfast reinstatement of Avogadro's hypotheses, and the as- 
sumption that the smallest quantity of an element occurring in a molecule 
of a compound is its atomic weight, Cannizzaro was able to calculate a con- 
sistent table of atomic weights using vapor densities. He then compared 
these results with those achieved via specific heats, with admirable success, 
thus bringing order to atomic theory after decades of confusion. 

Two years later, in 1860, around 140 of the world's most respected chemists 
convened in Karlsruhe to assess the status of the atomic theory. Cannizzaro 
presented his results, and reprints of his 1858 paper were distributed. Meyer 
describes his reaction as follows: ~3 

The scales seemed to fall from my eyes. Doubts disappeared 
and a feeling of quiet certainty took their place. If some years 
later I was myself able to contribute something toward clearing 
the situation and calming heated spirits no small part of the 

11Quoted in Glymour, op. cit., p. 257. 
12Gaudin had suggested this move back in 1826, but Glymour speculates that Dumas 
overlooked the idea out of a distaste for theory. See Glymour, op. cit., p. 254. 
13Quoted by Idhe, op. cit., p. 229. 
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credit is due to this pamphlet of Cannizzaro. Like me it must 
have affected many others who attended the convention. The 
big waves of controversy began to subside, and more and more 
the old atomic weights of Berzelius came to their own. As soon 
as the apparent discrepancies between Avogadro's rule and that 
of Dulong and Petit had been removed by Cannizzaro both were 
found capable of practically universal application, and so the 
foundation was laid for determining the valence of the elements, 
without which the theory of atomic linking could certainly never 
have been developed. 

Meyer's own contribution, alluded to in this passage, began with his influen- 
tial Die modernen Theorien der Chemie of 1864, which contains one of the 
first hints of the periodic table. In the words of one historian, the solution 
of the problem of atomic weights brought 'the atom into general acceptance 
as the fundamental unit of chemistry'. 14 

Around the same time, with the advent of the kinetic theory of heat, 
the influence of atomic thought spread into physics. In the hands of such 
thinkers as Maxwell and Boltzmann, the kinetic theory flowered, providing, 
among other things, the first calculations of absolute molecular magnitudes. 
Perrin's summary gives the flavor of these results: 15 

. . .  each molecule of air we breathe is moving with the velocity 
of a rifle bullet; travels in a straight line between two impacts 
for a distance of nearly one ten-thousandth of a millimeter; is 
deflected from its course [five billion] times per second . . .  There 
are thirty [billion billion] molecules in a cubic centimeter of air, 
under normal conditions. Three thousand million of them placed 
side by side in a straight line would be required to make up one 
millimetre. Twenty thousand million must be gathered together 
to make up one thousand-millionth of a milligram. 

By 1900, the atomic theory enjoyed all five theoretical virtues in abundance; 
its power and usefulness became more obvious with each experimental and 
conceptual advance. 

At this point, historical anecdote deals a blow: despite the virtues of 
atomic theory, scientists did not agree on the reality of atoms. Though 
some antagonism toward the theory undoubtedly arose from general cultural 
factors - e.g. the rise of social and political 'idealism' at the end of the 19th 

X4Idhe, op. cit., p. 257. 
15j. Perrin, op. cit., p. 82. 
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century 16- a good portion arose inside the scientific community itself. In 
1877, at a meeting of the French Acad6mie des Sciences, Berthelot posed 
the rhetorical question, ' . . .  who has ever seen a gas molecule or an atom? '17 
Behind the rhetoric, and apart from worries about the conception of atoms as 
without parts, Berthelot simply opposed the appeal to entities inaccessible 
to direct experimental verification. Speaking of the early skeptics among 
chemists, Perrin makes a similar point, 

It appeared to them more dangerous than useful to employ a 
hypothesis deemed incapable of verification in the exposition of 
well-ascertained laws. is 

By 1900, the hypothesis probably seemed less dangerous, but the desire for 
a direct test remained. 

As an aside, we should note that a certain distrust of mechanical mod- 
els in general had arisen toward the end of the century, inspired partly by 
Maxwell's success in divorcing his electromagnetic equations from the me- 
chanical models he used to generate them. We've all heard Hertz's famous 
remark, 'Maxwell's theory is Maxwell's system of equations'. 19 The laws of 
thermodynamics, viewed as pure inductive generalizations from experience, 
were viewed by many as a model of scientific method. At one extreme, 
Ostwald proposed 'energetics', the doctrine that atoms are fictions and en- 
ergy is fundamental. While admitting the historical fecundity of the atomic 
hypothesis, he set out to base its consequences on purely thermodynamic, 
experimental considerations. Others, particularly in England, were happy to 
continue using mechanical models, including the atomic theory, to generate 
testable equations, while they dismissed the question of how those models 
might relate to physical reality. 

In any case, as we examine the skeptics's reactions to atomic theory from a 
naturalistic perspective, it becomes clear that the evaluation of this scientific 
hypothesis involved more than attention to the five theoretical virtues. In 
particular, the virtue closest to the favored idea of experimental verification 
must be the fifth - agreement with experiment - but the atomic theory had 
plenty of that. What  it didn't have was some stronger sort of experimental 
success, something more 'direct', something that more conclusively 'verifies'. 
Without this, a sizable minority of the scientific community felt justified in 

16See Nye, op. cit., p. 30. 
17Quoted in Nye, op. cit., p. 7. J. Bernstein attributes a similar remark to Mach in his 
introduction to E. Mach, Popular Scientific Lectures, (La Salle, IL: Open Court, 1986), 
p. xiv. 
18j. Perrin, op. cit., p. 15. 
19Quoted in Nye, op. cit., p. 15. 



390 

withholding assent. To quote Ostwald's influential textbook of 1904: 2~ 

. . .  the atomic hypothesis has proved to be an exceedingly useful 
aid to instruction and investigation, since it greatly facilitates 
the interpretation and use of the general laws. One must not, 
however, be led astray by this agreement between picture and 
reality and combine the two .  

Even those who disagreed admit ted  tha t  such skepticism was legitimate and 
even useful at the time. 21 For a philosopher to insist tha t  the skeptics were 
mistaken because they failed to appreciate the evidential force of the five 
virtues would be an offense against naturalism. 

The resolution of this impasse came soon after the comment of Ostwald 
just  quoted. Describing the work that  led to one of his remarkable series of 
papers published in 1905, Einstein writes: 22 

Not acquainted with the earlier investigations of Boltzmann and 
Gibbs, which had appeared earlier and actually exhausted the 
subject,  I developed the statistical mechanics and the molecular- 
kinetic theory of thermodynamics  which was based on the former. 
My major aim in this was to find facts which would guarantee as 
much as possible the existence of atoms of definite finite size. 

On the basis of his theoretical calculations, Einstein concluded that:  23 

. . .  according to the molecular-kinetic theory of heat, bodies of 
microscopically-visible size suspended in a liquid will perform 
movements of such magnitude that  they can be easily observed in 
a microscope . . . .  If the movement discussed here can actually be 
observed . . .  an exact determination of actual atomic dimension 

2~ by Miller, op. cit., p. 473. 
21See J. Perrin, op. cit., p. 216: 'the sceptical position ... was for a long time legitimate 
and no doubt useful.' 
22A. Einstein, 'Autobiographical notes', in P. Schilpp, ed., Albert Einstein: Philosopher- 
Scientist, (La Salle, IL: Open Court, 1949), volume I, p. 47. Emphasis added. 
23A. Einstein, 'On the movement of small particles suspended in a stationary liquid 
demanded by the molecular-kinetic theory of heat', first published in 1905, reprinted in 
his Investigations on the Theory of Brownian Motion, R. Furth, ed., (London: Methuen 
and Company, 1926). The quotation is from pp. 1-2. In the final sentence, I have 
substituted 'should' for 'had' and 'prove' for 'proved', so that the forward-looking final 
clause will match the rest of the sentence. (For the German, see Nye, op. cit., p. 139.) 
When this passage was written, the prediction had not yet been tested, and Einstein's 
later correspondence with Perrin suggests that Perrin's experiments displayed a level of 
precision Einstein had not thought possible (see Nye, op. cit., p. 147). 
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is then possible. On the other hand, [should] the prediction of 
this movement [prove] to be incorrect, a weighty argument would 
be provided against the molecular-kinetic conception of heat. 

The movement involved in this crucial test might be the so-called Brownian 
motion, but Einstein confessed 'the information available to me regarding 
the latter is so lacking in precision, that  I can form no judgement in the 
matter . '  

Meanwhile, thinkers more familiar with Brownian motion were convinced 
of its relevance. In a series of papers appearing between 1888 and 1895, 
Gouy argued that  Brownian motion was caused by molecular movements 
and that  it offered a potential confirmation of the kinetic theory of heat. In 
a letter written some years later, he remarks 24 

From the historical point of view, one wonders today how the 
great founders of kinetic theory . . . .  have not been able to see 
that  Brownian movement places under the eyes the realisation 
of all their hypotheses! 

The phrase 'under the eyes' is especially conspicuous when compared with 
Ostwald's complaint, published in the same year as Gouy's last paper, 
against the atomists's practice oi ~s 

. . .  disturbing us with forces, the existence of which we cannot 
demonstrate, acting between atoms which we cannot see. 

At an international Congress in 1904, Poincar~, another opponent of atomic 
theory, commented on Gouy's work along similar lines: 26 

If this be so, we no longer have need of the infinitely subtle eye 
of Maxwell's demon; our microscope suffices us. 

Indeed, Born uses the same terms to describe Einstein's work: 27 

The fundamental step taken by Einstein was the idea of raising 
the kinetic theory of matter  from a possible, plausible, useful hy- 
pothesis to a matter  of observation, by pointing out cases where 
the molecular motion and its statistical character can be made 
visible. 

24Quoted in Nye, op. cit., p. 21. 
25Quoted by Nye, op. cit., p. 28. 
26Quoted by Nye, op. cit., p. 38. 
27M. Born, 'Einstein's statistical theories', in Albert Einstein: Philosopher-Scientist, pp. 
163-177. The quotation comes from page 165. 
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Here was the promise of the longed for direct verification, but without ex- 
perimental confirmation, it carried little conviction. 

This task was undertaken by Perrin: 28 

However seductive the hypothesis may be that finds the origin of 
the Brownian movement in the agitation of the molecules, it is 
nevertheless a hypothesis only . . . .  I have attempted to subject 
the question to a definite experimental test that will enable us 
to verify the molecular hypothesis as a whole. 

Perrin based his first experiment on fairly transparent reasoning. Gas con- 
tained in a vertical column is more compressed lower down and more rarefied 
higher up simply due to gravity; the density of oxygen, for example, at 0 ~ 
centigrade, will be reduced by half at a height of five kilometers. Using ex- 
perimental techniques of unprecedented accuracy, Perrin measured the rate 
of ratification of tiny manufactured particles subject to Brownian movement 
in a dilute emulsion. In his own words: 29 

Thus, once equilibrium has been reached between the opposing 
effects of gravity, which pulls the particles downwards, and of the 
Brownian movement, which tends to scatter them, equal eleva- 
tions in the liquid will be accompanied by equal rarefactions. But 
if we find that we have only to rise 1/20 of a millimetre, that is, 
100,000,000 times less than in oxygen, before the concentration 
of the particles becomes halved, we must conclude that the effec- 
tive weight of each particle is 100,000,000 times greater than that 
of an oxygen molecule. We shall thus be able to use the weight 
of the particle, which is measurable, as an intermediary or con- 

necting link between masses on our usual scale of magnitude and 

the masses of the molecules. 

Perrin and his co-workers carried out experiments of this sort on particles 
of various sizes and compositions, suspended in various liquids, in various 
concentrations, and at various temperatures, and the numbers obtained for 
the absolute atomic weights and for Avogadro's number varied only slightly 
(e.g. between 65 • 1022 and 72 • 1022 for Avogadro's number). 

Describing these results under the heading 'A Decisive Proof', Perrin re- 
lates that 3~ 

28j. Perrin, op. cit., p. 88-89. 
29j. Perrin, op. cit., pp. 93-94. 
30j. Perrin, op. cit., p. 104-105. 
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. . .  [i]t was with the liveliest emotion that  I found, at the first 
a t tempt ,  the very numbers that  had been obtained from the 
widely different point of view of the kinetic theory . . . .  Such 
decisive agreement can leave no doubt as to the origin of the 
Brownian movement  . . . .  The objective reality of the molecules 
therefore becomes hard to deny. At the same time, molecular 
movement has not been made visible. The Brownian movement 
is a faithful reflection of it, or, better, it is a molecular motion 
in itself, in the same sense that  infra-red is still light. 

Perrin went on to verify the rest of Einstein's predictions in a series of equally 
well-made experiments. 

Perrin's results were published between 1908 and 1911, followed by his 
masterful popular exposition in Atoms, first published in 1913, and his con- 
clusions were quickly accepted. To cite only the more dramatic reversals, in 
the 1908 preface to the fourth edition of his Outline of Physical Chemistry, 
Ostwald writes: al 

I have satisfied myself that  we arrived a short time ago at the 
possession of experimental proof for the discrete or particulate 
nature of mat ter  - proof which the atomic hypothesis has vainly 
sought for a hundred years, even a thousand years. The isolation 
and measurement of gases on the one hand, which the lengthy 
and excellent works of J.J. Thomson have crowned with com- 
plete success, and the agreement of Brownian movement with 
the demands of the kinetic hypothesis on the other hand, which 
have been proved through a series of researches and at last most 
completely by J. Perrin, entitle even the cautious scientist to 
speak of an experimental proof for the atomistic constitution of 
space-filled matter.  

And commenting at the conclusion of a 1912 conference, Poincare! declared: a2 

. . .  the long-standing mechanistic and atomistic hypotheses have 
recently taken on enough consistency to cease almost appearing 
to us as hypotheses; atoms are no longer a useful fiction; things 
seem to us in favour of saying that  we see them since we know 
how to count them . . . .  The brilliant determination of the number 
of atoms made by M. Perrin have completed this tr iumph of 
atomism . . . .  The atom of the chemist is now a reality. 

31Quoted in Nye, op. cit., p. 151. 
32Quoted by Nye, op. cit., p. 157. 
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A few leading thinkers, most notably, Mach and Duhem, who both died in 
1916, remained opposed to atomism despite the general trend of opinion, a 
fact for which their admirers are still apologizing. 33 

The case of atomic theory strikes me as fascinating and instructive for a 
number of reasons. First, as we've already noted, for many of the scientists 
in this story, the five theoretical virtues by themselves were not enough to 
establish the t ruth of a scientific hypothesis. Indeed, the counsel of this 
historical anecdote presents similar difficulties for many otherwise attrac- 
tive general accounts of scientific method. Thus, for example, if science is 
guided by inference to the best explanation, atomic theory should have been 
accepted after 1860; it was, after all, the best explanation of chemical and 
physical phenomena, and to add the single phenomenon of Brownian mo- 
tion to the list of those explained would not seem to justify such a dramatic 
change in status. The puzzle for such general theories is to distinguish be- 
tween the situation in 1860, when the atom became 'the fundamental unit 
of chemistry', and that  in 1913, when it was accepted as real. For exam- 
ple, some writers try to explain the evidential force of Perrin's experiments 
in terms of the convergence of many very different techniques in their esti- 
mates of Avogadro's number; Perrin lists thirteen in the Atoms. But don't  
the same considerations apply to Cannizzaro's success in 1860, when the 
many different techniques for computing atomic weights were all shown to 
agree? 34 

Another intriguing aspect of this case is the underlying theme of obser- 
vation: first, the objection that  molecules and atoms cannot be seen; then, 
the talk of seeing the random walk of molecules in Brownian motion. Here 
historical anecdote suggests that  van Fraassen-style insistence on observ- 
ability as the measure of reality was once a responsible scientific attitude. 
From the naturalistic perspective, the van Fraassenite errs in holding to this 
requirement on a priori grounds when it has long since been rejected on a 
posteriori, scientific grounds. Indeed, studies of the scientific, as opposed to 
the philosophical, use of the term 'observable' describe a remarkable expan- 
sion of application, so that  nowadays, one reads comments like, 'Of these 
fermions, only the t quark is yet unseen'. 3S Suggestive as this line of thought 
may be, it should be noted that  in their more careful moments, the scien- 
tists in our story would probably use a term like 'experimentally testable' 

33See, for example, L. de Broglie's introduction to P. Duhem, The Aim and Structure 
of Physical Theory, (Princeton, NJ: Princeton University Press, 1954), or J. Bernstein's 
introduction to E. Mach, op. cit. 
34I owe this point to R. Miller, op. cit., along with much of this paragraph. 
35Quoted by I. Hacking in his Representing and Intervening, (Cambridge: Cambridge 
University Press, 1983), p. 182. See also D. Shapere, 'The concept of observation in 
science and philosophy', Philosophy of Science 49 (1982), pp. 485-525. 
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or 'experimentally verifiable' in place of 'observable'. I make no attempt to 
analyze this notion. 

For my purposes here, the most important moral of the story is that the 
scientist's attitude toward contemporary scientific practice is rarely so simple 
as a uniform belief in some overall theory T. For example, Dumas believed 
that atoms exist but ought nonetheless to be excluded from chemistry, while 
Ostwald held atomic theory to be false but nevertheless useful for organizing 
chemical theory. In both cases, we find what is useful distinguished from 
what is true, with some parts of current theory falling under one heading 
and other parts falling under the other. Sometimes, as in the case of atoms, 
an especially potent experiment can move a theory from useful to true; in 
other cases, such as Maxwell's equations, a useful part is jettisoned when 
it has served its purpose; and in still others, such as the practices of the 
English school, parts of unknown truth value can be tolerated indefinitely, 
so long as they yield testable equations. 

So, I take this historical anecdote as counseling us not to view a scien- 
tific practice in terms of a homogeneous theory T, but rather to carefully 
examine the various parts of that practice, to assess the levels of scientific 
commitment in more subtle gradations, to evaluate the bearing of evidence 
on various aspects of theory with more sensitivity to distinctions drawn be- 
tween them by practitioners. The force of this counsel for standard thinking 
in the philosophy of mathematics is obvious: if science is viewed as a patch- 
work of hypotheses, models, approximations and experiments, if epistemic 
status varies from one patch to another, if we resist the temptation to lump 
everything together in one commodious theory T, then the truth of math- 
ematics cannot simply be inferred from its appearance somewhere in the 
scientific fabric. After all, atoms pervaded chemistry well before Perrin. To 
understand how the success of science bears on the truth of mathematics, 
we must look more conscientiously at precisely where it appears in science 
and exactly how it functions there. 

To bring this point home, it is enough to open an elementary physics 
text. In the analysis of water waves, for example, Feynman's introductory 
lectures remark that 'the ocean is considered infinitely deep'. 36 This is a 
perfectly reasonable way to proceed; otherwise, the mathematics would be 
unworkable. But notice that an indispensability argument based on this 
occurrence of mathematics in science would be laughable: we should believe 
in infinity because it plays a role in our best theory of water waves?! Similar 
examples abound. We use real-valued functions to represent such quantities 
as energy, charge and angular momentum, though we know them to be 

36R. Feynman, R. Leighton, and M. Sands, Lectures on Physics, volume I, (Reading, MA: 
Addison-Wesley, 1963), chapter 51, p. 7. 
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quantized; subjects like fluid mechanics are firmly premised on the false 
assumption that matter is continuous. However indispensable they may be, 
none of these applications of continuum mathematics should convince us of 
the reality of the continuum. 

Before developing this point further, let me pause a moment to describe 
a philosophical attitude toward mathematics that is common, though by 
no means universal, among physicists. I call this attitude 'philosophical' 
in the sense of 'non-scientific', that is, to indicate that it isn't backed by 
the sort of detailed empirical evidence these same physicists would cite in 
support of scientific claims. This distinction is somewhat rough-and-ready, 
but nevertheless important for the naturalist: it is the scientific, not the 
philosophical, practice of the scientist that  counts as data for the naturalized 
methodologist. 37 Still, this philosophical attitude is worth noting. 

So, for example, Feynman begins by describing mathematics as the lan- 
guage of physics, but he continues: 3s 

[M]athematics is not just another language. Mathematics is a 
language plus reasoning; it is like a language plus logic. Math- 
ematics is a tool for reasoning . . .  a way of going from one set 
of statements to another . . . .  You state the axioms, such-and- 
such is so, and such-and-such is so. What  then? The logic can 
be carried out without knowing what the such-and-such words 
mean. 

[Mathematics] is evidently useful in physics, because we have 
these different ways in which we can speak of things, and math- 
ematics permits us to develop consequences . . .  For instance, I 
can say that [gravitational] force is directed toward the sun. I 
can also tell you . . .  that the planet moves so that if I draw a line 
from the sun to the planet, and draw another line at some definite 
period, like three weeks, later, then the area that is swung out 
by the planet is exactly the same as it will be in the next three 
weeks, and the next three weeks, and so on as it goes around 
the sun. I can explain both of those statements carefully, but 
I cannot explain why they are both the same . . . .  logic permits 
you to go from one to the other. 

37To put the contrast crudely, we should take the scientist seriously when she says that 
this counts as evidence for that, but not (necessarily) when she claims to be writing down 
thoughts in the mind of God. 
3SR. Feynman, The Character of Physical Law, (Cambridge, MA: MIT Press, 1967), pp. 
40-1, 45, 55. For another example, see A. Leggett, The Problems of Physics, (Oxford: 
Oxford University Press, 1987), pp. 28-30. 
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Mathematics, we're being told, is a mat ter  of what follows logically from 
what. The physicist plugs into this logical grid by expressing his physical 
claims in mathematical  language, after which logic generates consequences 
and interconnections. And again, 

Mathematicians are only dealing with the structure of reasoning, 
and they do not really care what they are talking about  . . . .  But 
in physics you have to have an understanding of the connection 
of words with the real world. 

We might just as well say that  mathematics isn't about anything until the 
physicist interprets it. This at t i tude is encouraged when, as often happens, 

the same bit of mathematics applies to totally different phenomena - as, 
for example, the mathematics of a mass on a spring also works for electro- 
magnetic oscillations - or when a pre-existing piece of pure mathematics is 
pulled off the shelf, as it were, and applied to a concrete situation for the 
first time. 

In philosophical circles, a position like this is often called 'if-thenism'. 
Variations on this theme have been entertained by various well known 
philosophers of mathematics,  among them Russell, who gave it up for Logi- 
cism, and Putnam,  who gave it up for Platonism. 39 According to contempo- 

rary orthodoxy, the strongest objection to if-thenism is an indispensability 
argument: one cannot view science as literally true and mathematics as 
contentless because the very scientific statements one regards as literally 
true cannot be stated without the use of mathematical  vocabulary. 4~ But, 
if we are naturalists, and if scientists treat  parts of their theories as non- 
literal even when they cannot dispense with them, then the inseparability of 
mathematics  from science alone no longer carries the epistemic force the or- 
thodox argument requires. 41 As far as this objection is concerned, if-thenism 
re-emerges as a live option. 

Both this reexamination of if-thenism and our previous examples of bad 
indispensability arguments suggest that  what  needs to be determined is 

39See H. Putnam, 'The thesis that mathematics is logic', in his Philosophical Papers, pp. 
12-42. See also p. xiii. 
4~ H. Putnam, 'What is mathematical truth?' and 'Philosophy of logic', in his Philo- 
sophical Papers, pp. 60-78, and pp. 323-357. 
41As a possible reply to the indispensability argument, Putnam considers 'fictionalism': 
the view that entities of a certain sort are merely 'useful fictions'. This is not unlike the 
pre-Perrinian skeptical attitude toward atoms. Putnam assumes that the only grounds for 
fictionalism are philosophical or theological and thus rejects fictionalism because 'it could 
not exhibit a better method for fixing our belief than the scientific method' (op. cit., 
p. 356). But the counsel of historical anecdote suggests that fictionalism is sometimes a 
proper part of the scientific method itself. 
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whether or not mathematics plays a role in scientihc claims that are taken 
to be literally true. Observers of scientific method suggest that non-literal 
applications or 'models' most often occur within the framework of a more 
general background theory, 42 so perhaps such a general background theory 
is the best place to look for a literal application. 

In contemporary physics, surely General Relativity qualifies as a funda- 
mental theory, to be taken as literally true if anything is. This theory uses 
the mathematics of differential manifolds; indeed it asserts that space-time 
is such a manifold. If this is correct, then there exists, in physical reality, 
a continuous structure, namely, space-time. The real existence of such a 
structure would have profound implications for the foundations of set the- 
ory, in particular, for the status of some independent statements. Thus I 
have finally reached my ulterior goal. Let me say a few words about the 
type of independent statement I have in mind and the bearing of a physical 
continuum on their status. 

Most people are familiar with Cantor's famous Continuum Hypothesis 
(CH), the claim that no infinite set of real numbers has cardinality inter- 
mediate between that of the natural numbers and that~of the entire set of 
reals. To this day, no one knows whether or not Cantor was correct in this 
conjecture, but it has been shown that the question is independent of the 
standard set theoretic axioms (ZFC). Those of an if-thenist persuasion tend 
to take this result as a solution to the problem" the only way to make sense 
of the question 'Is CH true or false?' is to ask 'Does CH follow logically from 
ZFC or does its negation so follow?', and those two questions have been an- 
swered. To pursue the problem beyond this point would be to generate a 
pseudo-problem, much as Ostwald once accused the atomists of doing in 
their pursuit of facts about atoms. 43 On the other hand, those of a Platon- 
istic bent, like G5del, reject this reasoning, insist that ZFC is only part of 
the truth about the real world of sets, and hope that the truth-value of CH 
might one day be settled by the adoption of new set theoretic axioms. 

Now the existence of a physical continuum by itself is not enough to 
provide a determinate truth value to the Continuum Hypothesis, for the 
obvious reason that the CH refers not simply to all reals or points but to 
all sets of reals or point sets. Rather that involving myself in the question 
of which point sets (or space-time regions) General Relativity will require 
over and above the continuum of points itself, let me shift attention to an 
independent question of a more concrete sort. To heighten the contrast with 

42See P. Achinstein, Concepts of Science (Baltimore, MD: Johns Hopkins Press, 1968), 
chapter 7, or M. Redhead, 'Models in physics', British Journal for the Philosophy of 
Science 31 (1980), pp. 145-163. 
43See Nye, op. cit., p. 17. 
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CH, it is worth noting how this other question arose. 
Its roots are in the all-important concept of 'function'. Mathematical his- 

tories tell the story of how the simple notion of a curve or a continuous 
motion developed over the centuries, under pressure from physical problems 
like the vibrating string and heat flow and from foundational problems like 
those of the calculus, to the general idea of a completely arbitrary correspon- 
dence between real numbers. During the 19th century, mathematicians were 
confronted with an ever-weirder series of pathologies, for example, Dirich- 
let's shotgun function - zero on the rationals, one on the i r ra t iona ls -  a 
function nowhere continuous, without derivative or integral. 

Any development this radical is bound to prompt skepticism, and by the 
turn of the century, there was considerable controversy over the propriety of 
this notion of an arbitrary function. The French analysts Baire, Borel and 
Lebesgue hoped to isolate a mathematically responsible fragment from the 
vast sea of non-continuous mappings by defining a hierarchy of functions of 
increasing but manageable complexity. As it turned out, the complexity of 
functions can be defined in terms of the complexity of sets of reals, as, for 
example, a function is continuous if and only if the pre-image of an open 
set is always open. Thus arose a hierarchy of sets of reals, beginning from 
open sets and proceeding via complements and countable unions, namely, 
the Borel sets. 

The Borel sets turned out to be quite well-behaved, but not quite as 
well-behaved as Lebesgue thought. Lebesgue's analyses included a 'trivial' 
lemma to the effect that the projection of a Borel subset of the plane is a 
Borel subset of the line. 44 In fact, the projection of a Borel set can be more 
complex than Borel, but Lebesgue's uncharacteristic error wasn't discovered 
until ten years later, when it was exploited by the Russian school of Suslin 
and Luzin. Projection and complementation lead to a new hierarchy of 
projective sets of reals, more complex than Borel sets, but still fairly well- 
behaved at the lower levels. 

For all its naturalness and quasi-constructive simplicity, this lively research 
program on the properties of manageable sets of real numbers was stalled 
by the 1930s. Consider, for example, the analytically useful property of 
Lebesgue measurability. Measurability for the Borel sets follows from the 
most elementary properties of Lebesgue measure, and the Russians quickly 
established it also for projections of Borel sets and their complements. But 
what about the sets that result from one more application of projection, the 
sets we now call ~ ? The question of their measurability, along with other 
equally straightforward questions, remained frustratingly unanswered. The 

44The projection of a two-dimensional set can be thought of as the shadow it casts on 
one coordinate axis. 
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reason for this dead end became clear only in the decades that followed: 
around 1940, GSdel showed that the measurability of ~ sets could not be 
proved from ZFC, and around 1970, Solovay used Cohen's forcing methods 
to show that their non-measurability could not be proved either. 45 

This question - are ~ sets Lebesgue measurable? -differs from the Con- 
tinuum Problem in a number of relevant respects. First of all, rather than 
making a claim about all sets of reals, it concerns only a small fraction of 
those, the ~ sets. These ~ sets can be defined by simple formulas in- 
volving quantification only over reals, and they can also be characterized by 
the geometrically concrete operations of projection and complementation. 
Thus, if a physical continuum exists, it is hard to see why the space-time 
regions corresponding to ~ point sets would not. As for the question be- 
ing asked about these regions, Lebesgue measurability is a straight-forward 
mathematical concept that arose naturally in development of analysis. By 
contrast, the Continuum Question is about infinite cardinalities, a bold new 
notion introduced into mathematics only toward the end of the 19th century, 
one whose connection with the physical roots of analysis is much more atten- 
uated. Again, if a physical continuum exists, the question of the Lebesgue 
measurability of its ~ regions should be a legitimate one, with a determi- 
nate answer. 

So, the bearing of General Relativity, along with its mathematical concep- 
tion of space-time, on the status of this particular independent question is 
quite straightforward: if this physical theory is literally true, there ought to 
be a fact of the matter about whether or not all ~ regions of space-time are 
Lebesgue measurable. From this perspective, the if-thenist would be wrong 
to dismiss the question as a pseudo-problem; the realist would be justified 
in pursuing a solution. This probably isn't the sort of justification many 
Platonists have in mind - it doesn't involve any non-physical rea l i ty-  but 
it does give content to the problem in a naturalistically untroublesome way, 
that is, without raising questions about the nature of some non-physical 
reality, about our access to it, etc. 

Having established its relevance to the foundations of set theory, let's 
return to General Relativity. We need to know if it should be considered 
literally true, or more particularly, if the mathematics of its treatment of 
space-time should be treated as literally true. To put it most simply: we 
need to know whether or not space-time is really continuous. Notice that 
this is not one of the usual questions raised in philosophical discussions of 
space-time; 46 it is without much recent philosophical history. There are 

4~See my Realism in Mathematics, chapter 4, for references and a more complete 
discussion. 
a6If space-time is relational rather than substantial, the question of whether or not it 
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those, however, who would classify it as unempirical, on the grounds that  

any measurement can be represented by a rational number, so no experiment 
could verify the continuous structure of anything. 

Faced with such a question, as naturalists, our first instinct should be 
to examine the scientific literature for clues, to take once again the counsel 
of history, including, if I may put it this way, the counsel of contemporary 
history. Now I am no physics expert, so my inquiry here has so far been quite 
limited, but I can report a few observations. First, beginning with Einstein, 
there is some ambivalence toward the use of the continuum in fundamental  
physical theory: 47 

Adhering to the continuum originates with me not in a prejudice, 
but arises out of the fact that  I have been unable to think up 
anything organic to take its place. 

This vague unease gives way to real discomfort when mathematical  diffi- 
culties turn up in the theory of the electromagnetic field. In his Lectures, 
Feynman describes the problem this way: 4s 

Now we want to discuss a serious trouble - the failure of the 
classical electromagnetic theory . . . .  the concepts of electromag- 
netic momentum and energy, when applied to the electron or any 
charged pa r t i c l e . . ,  are in some way inconsistent . . . .  There is an 
infinite amount of energy in the field surrounding a point charge 

He describes various efforts to get around this difficulty, then continues "49 

We have already mentioned that  it might be a waste of time to 
work so hard to straighten out the classical theory, because it 
could turn out that  in quantum electrodynamics the difficulties 
will disappear or may be resolved in some other fashion. But the 
difficulties do not disappear in quantum electrodynamics . . . .  It 

is continuous vanishes without being answered. Still, the usual ways of instituting rela- 
tionalism will replace the question of whether or not space-time is continuous with that 
of whether or not fields are continuous, which serves our purposes just as well. See H. 
Field, 'Can we dispense with space-time?', in his Realism, Mathematics, and Modality, 
pp. 171-226, especially section 3. 
47A. Einstein, 'Reply to Critics', in Albert Einstein: Philosopher-Scientist, volume two, 
p. 686. See also A. Fine, The Shaky Game, (Chicago, IL: University of Chicago Press, 
1986), pp. 97-99. 
48R. Feynman, R. Leighton, and M. Sands, Lectures on Physics, volume II, (Reading, 
MA: Addison-Wesley, 1964), chapter 28, pp. 1-2. 
49Ibid, chapter 28, p. 10. 
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turns out . . .  that  nobody has ever succeeded in making a self- 
consistent quantum theory out of any of the modified theories. 
. . .  We do not know how to make a consistent theory - including 
the quantum mechanics - which does not produce an infinity 
for the self-energy of an electron, or any point charge. And at 
the same time, there is no satisfactory theory that describes a 
non-point charge. It's an unsolved problem. 

The problem does not, however, stop the physicist: 5~ 

. . .  it turns out that  it is possible to sweep the infinities under 
the rug, by a certain crude skill, and temporarily we are able to 
keep on calculating. 

Though this method was invented by Feynman himself, he has little affection 
for it: 51 

Schwinger, Tomonaga, and I independently invented ways to 
make definite calculations . . .  (we got prizes for that). People 
could finally calculate with the theory of quantum electrody- 
namics! . . .  The shell game that we play . . .  is technically called 
'renormalization'. But no matter how clever the word, it is what 
I would call a dippy process! 

Finally, he elaborates his suspicion about what is going wrong: 52 

I believe that the theory that space is continuous is wrong, be- 
cause we get these infinities and other difficulties . . . I  rather 
suspect that the simple ideas of geometry, extended down into 
infinitely small space, are wrong. 

Here we find the first hint that continuum mathematics may not be physi- 
cally realized at the quantum level. 

The difficulties become more acute and the hints more explicit and em- 
phatic when physicists try to account for gravity on the quantum scale. 
Davies describes the situation this way: 53 

5~ Feynman, The Character of Physical Law, p. 156. 
51R. Feynman, QED, (Princeton, NJ: Princeton University Press, 1985), p. 128. 
52R. Feynman, The Character of Physical Law, p. 166-167. 
~3p. Davies, 'The new physics: a synthesis', in P. Davies, ed., The New Physics, (Cam- 
bridge: Cambridge University Press, 1989), pp. 1-6. The quotation comes from page 
1. 
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When I was a student in the 1960s . . .  [t]he four fundamen- 
tal forces of nature . . .were  .. ill-understood at the quantum 
. . .  level. Only one of these forces, electromagnetism, had a con- 
sistent [renormalized] theoretical description. The weak force 
could not be properly understood, and many calculations of its 
effects gave manifest nonsense . . . .  The strong force appeared to 
be not a single force at all, but a complex tangle of perplex- 
ing interactions that  seemed to have no simple underlying form. 
Gravitation was dismissed as irrelevant to particle physics, and 
the most strenuous at tempts at providing it with a quantum de- 
scription gave mathematical rubbish for almost all predictions. 

He goes on to explain how, during the 1970s, the weak force was combined 
with quantum electrodynamics (QED), to produce a quantum theory of the 
electroweak force, the success of which inspired development of a theory of 
the strong force, called quantum chromodynamics (QCD). Then 54 

With promising theories of three out of the four of nature's forces 
'in the bag' the conspicuous odd man out is gravitation. Grav- 
itation was the first of nature's forces to receive a systematic 
mathematical description . . .  but it continues to resist a t tempts 
to provide it with a quantum field description . . .  Direct at tempts 
to quantise gravity in analogy with QED soon run into insuper- 
able mathematical problems associated with the appearance of 
infinite terms in the equations. These 'divergences' have plagued 
all quantum field theories over the years, but the gauge nature 
of the other forces enables the divergences in their theories to be 
circumvented. 

In other words, the quantum field theories of the other three forces can 
be renormalized, but quantum gravity resists this 'dippy process'. Davies 
concludes: 

So long as gravity remains an unquantised force there exists a 
devastating inconsistency at the heart of physics. 

So the problem of quantizing General Relativity is an extremely important  
one, but the tricks that  have worked in the past no longer manage to sweep 
the difficulties under the rug. 

Why not? Isham suggests that  the roots of the problem lie in conflicting 
notions of space-time: 55 

54p. Davies, op. cit., p. 3. 
5sC. Isham, 'Quantum gravity', in The New Physics  , pp. 70-93. The quotation comes 
from page 70. 
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. . .  gravitational effects are regarded as arising from a curvature 
in spacetime, and it is the reconciliation of this dynamical view 
of spacetime with the passive role it plays in quantum theory 
that  constitutes the primary obstruction to the creation of a 
satisfactory quantum theory of gravity. 

He continues: 56 

It must be admitted that,  at both the epistemological and onto- 
logical levels, our current understanding of space and time leaves 
much to be desired. In a gross extrapolation from daily experi- 
ence, both special and general relativity use a model for space- 
time that  is based on the idea of a continuum, i.e. the position 
of a spacetime point is uniquely specified by the values of four 
real numbers (the three space, and one time, coordinates in some 
convenient coordinate system). But the construction of a 'real' 
number from integers and fractions is a very abstract mathemat-  
ical procedure, and there is no a priori reason why it should be 
reflected in the empirical world. Indeed, from the viewpoint of 
quantum theory, the idea of a spacetime point seems singularly 
inappropriate: by virtue of the Heisenberg uncertainty princi- 
ple, an infinite amount of energy would be required to localise 
a particle at a true point; and it is therefore more than a little 
odd that  modern quantum field theory still employs fields that  
are functions of such points. It has often been conjectured that  
the almost unavoidable mathematical problems arising in such 
theories (the prediction of infinite values for the probabilities of 
physical processes occurring, and the associated need to 'renor- 
malise' the theory . . .  ) are a direct result of ignoring this internal 
inconsistency. Be this as it may, it is clear that  quantum grav- 
ity, with its natural Planck length, raises the possibility that  the 
continuum nature of spacetime may not hold below this length, 
and that  a quite different model is needed. 

Wheeler goes even further out on this limb: 57 

The spacetime continuum? Even continuum existence itself? Ex- 
cept as an idealization neither the one entity nor the other can 
make any claim to be a primordial category in the description of 
nature. 

56Ibid., p. 72. 
57j. Wheeler, 'Information, physics, quantum: the search for links', in W. Zurek, ed., 
Complexity, Entropy and the Physics of Information, (Redwood City, CA: Addison- 
Wesley, 1990), pp. 3-28. The quotation comes from page 16. 
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Here Feynman's suspicion becomes an outright claim. 

Of course much of this talk must be regarded as speculative, because the 
future shape of a theory of quantum gravity is still unknown, but we see 
here the real possibility that our assumptions about the continuity of space- 
time might have empirical ramifications, and indeed, that they might even 
turn out to be empirically false! Granted, any appeal to indispensability 
considerations to support mathematical claims brings with it an unavoidable 
trace of a posteriority, but it is one thing to allow that a claim is true 
only a posteriori and quite another to face the possibility that  it is an a 
posteriori falsehood. Under the circumstances, it seems best to re-examine 
our consciences by asking what would follow if continuum mathematics were 
actually falsified. 

First, I think we can safely predict that the calculus and higher analysis 
would not disappear from natural science. Just as Euclidean Geometry is 
still indispensable at non-relativistic dimensions, continuum mathematics 
would remain essential in large parts of science, from simple mechanics to 
fluid dynamics. What  isn't obvious is how these falsified but indispensable 
theories should be understood. We are assuming they are not true theories 
of physical reality, and if we set aside the notion of a non-physical reality, we 
must conclude that they are not theories of any independent subject matter, 
and we are left to chose between various versions of anti-realism. 

One such is the if-thenism mentioned earlier: mathematics is the study of 
what follows logically from what. So, for example, we might say Euclidean 
Geometry is the study of what follows from these axioms. Using Tarski's 
complete axiomatization, 5s we can assure that every elementary statement 
ostensibly about Euclidean space comes out with a determinate truth value 
on this reading. But, as we've seen, the situation is different for the contin- 
uum. If we take our theory of the continuum to be what follows logically 
from ZFC, there are questions about the continuum - e . g .  are all ~ sets 
Lebesgue measurable? - that  it makes no sense to ask. 

But set theorists do ask this question, and they look for new axioms to an- 
swer it. Even if we reject (for the moment) the realistic notion that  they are 
looking for new axioms that are true of some independent subject matter, 
if-thenism seems unable to account for the many acknowledged constraints 
on this practice: not any old axiom will do. 59 Another anti-realist position, 
which I'll call fictionalism, may fair better in this regard. The fictionalist 

58See A. Tarski, 'What is elementary geometry?', in J. Hintikka, ed., The Philosophy of 
Mathematics, (Oxford: Oxford University Press, 1969), pp. 164-175. 
59This isn't the only problem with if-thenism, of course. See M. Resnik, Frege and the 
Philosophy of Mathematics, (Ithaca, NY: Cornell University Press, 1980), chapter 3, for 
discussion. (Resnik calls the position 'deductivism'.) 
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replaces the realist's analogy between mathematics and science with a new 
analogy between mathematics and imaginative story telling. Where the 
realist sees the justification of mathematical  claims as analogous to theory 
confirmation in physics, the fictionalist sees the constraints on mathematical  
theorizing as analogous to broadly aesthetic criteria for good story telling. 
Both analogies involve differences as well as similarities: the realist admits 
that  mathematics  uses rigorous deductive reasoning in far greater measure 
than physics does, and the fictionalist allows that  the constraints on math-  
ematical story-telling are tighter, and depend more on the uses to which 
the story will be put, than the familiar aesthetic guidelines for good novel 
writing. 

Wha t  interests us here is that  this version of fictionalism differs from if- 
thenism on the key point: when a statement about  the continuum is shown 
to be independent of our current story of the continuum, this does not mean 
there is no more to be said on the subject. 6~ On the contrary, for the 

fictionalist, an independent question should inspire the mathematician to 
extend the story, which is in fact what happens. And the story cannot be 
continued just any old way; there are good and bad ways to do mathematics.  
The constraints are not purely aesthetic in the usual sense of the term, any 
more than the realist's justification is purely experimental in the usual sense 
of that  term. They depend in part  on what a particular mathematical  theory 
is intended to do, but I won't  try to elaborate here. 61 

I 'm suggesting, then, that  if continuum mathematics were to be falsified, 
the best course might be to adopt a fictionalist approach to our current 
theory of the continuum and to search for an appropriate extension of it 
to settle the independent questions. 62 If, on the other hand, continuum 
mathematics  is literally true, if there is a physical continuum, then we should 
proceed as realists, doing our best to extend our theory by adding new 
true axioms. Now it isn't obvious that  these two approaches would lead to 

the same theory, that  the realist and the fictionalist will apply the same 

6~ fictionalism differs from C. Chihara's mythological platonism (see his Ontology 
and the Vicious Circle Principle (Ithaca, NY: Cornell University Press, 1973), pp. 61- 
75), which is designed to avoid a decision on CH. It also differs from H. Field's fictionalism, 
which takes the indispensability of continuum mathematics at face value and concludes 
that space-time is continuous. 
61See M. Wilson's remarks on the 'hidden essentialism' of mathematicians in his 'Frege: 
the royal road from geometry', Nous 26 (1992), pp. 149-180, and the related work of K. 
Manders referenced there. 
621 don't presuppose that there must turn out to be a unique appropriate extension. But 
'appropriateness' must carry enough bite to rule out such easy answers as: both ZFC + 
CH and ZFC + not-CH are appropriate ways to extend ZFC. If this were enough, set 
theorists would not invest so much energy in devising and evaluating new axioms. 
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methods when they at tempt to add new axioms. If not, then the determina- 
tion of which of these two mathematical methodologies is correct - realist or 
fictionalist - would hinge on the answer to a physical question: is space-time 
continuous? 

I'll leave you to further contemplate this rather odd conclusion at your 
leisure. Should the set theorist wait till the physicist completes a viable 
theory of quantum gravity before deciding which new axioms to adopt? 
If not, why not? Is there a general methodological theorem to the effect 
that realism and fictionalism will lead to the same conclusions? (I doubt 
it.) Is there something wrong with the line of reasoning that brought us 
to this pass? (Probably.) I suspect that the observations compiled here, if 
rearranged and looked at from another angle, might constitute a case against 
the indispensability arguments, or better, a case against the general view of 
mathematics engendered by the indispensability arguments, but I'll leave 
that thought for another day. 63 For now, I only hope to have shown that 
from a naturalist 's perspective, the role of mathematics in science and the 
implications of that role for the foundations of set theory are more complex 
and subtle than has heretofore been appreciated. 64 

63I take this up in 'Indispensability and practice', Journal of Philosophy 89 (1992), 
pp. 275-289 
64My thanks go to Gregory Chaitin, Yoshi Oono and Mark Wilson for references and 
advice on the issues surrounding renormalization and quantum gravity, and to the NSF 
(DIR-9004168) and UCI for their support. 
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R E C E N T  P E R S P E C T I V E S  O N  S I M P L I C I T Y  A N D  
G E N E R A L I Z A T I O N  

P E T E R  M. WILLIAMS 

School of Cognitive and Computing Sciences, University of Sussex 

The problem of generalising induction and its relation to simplicity are long 
standing issues in the methodology of science. These problems, in various 
guises, are familiar to philosophers of science, probabilists and statisticians 
as well as to empirical scientists. Recent developments in computing and 
artificial intelligence have brought them to the fore in a way that  impinges 
directly on issues in the foundations of probability and induction. 

1. N e u r a l  c o m p u t a t i o n  

Neural computation, sometimes called connectionism or parallel distributed 
processing, refers to a type of computing, or to a machine, that  is unlike 
those hitherto in common use. 1 The model was suggested by biological ner- 
vous systems, as its name suggests, though contributions are being made by 
physicists, neurophysiologists and statisticians as well as computer scientists. 

Aleksander [2] points out that  conventional computing is based on algo- 
rithms. These are usually implemented on avon  Neumann style of machine 
(an arithmetic-logic unit operating sequentially on data held in memory) 
and can be considered as representations of human knowledge. This means 
that  conventional computing is restricted to tasks for which humans can find 
an algorithm. Living creatures, however, are not "programmed" by spelling 
out every step in a process but by experience. A child, for example, learns 
to recognise the character A not by an explicit geometric description but 
by being shown a sequence of positive and negative instances. Attempts to 
program a computer to recognise hand written characters by an exhaustive 
system of rules lead to combinatorial explosion as more and more exceptions 
and special cases have to be listed. A better approach is to allow the pro- 
gram or machine to develop its own internal representations of the necessary 

1See [13] for a survey of current theory. 
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concepts and how to apply them. 
One of the motivations of this approach is to gain an improved under- 

standing of human competence in areas where humans currently perform 
better than computers. These relate especially to perceptual and high level 
cognitive abilities. From a practical engineering point of view, however, we 
can take the neural model as a basis on which to design systems aimed at 
performing some very specific task without being concerned whether this is 
exactly how humans perform it. These systems of artificial neural networks 
can combine the advantages of learning by experience with the precision and 
reliability of current computing machinery. 2 

2. Ar t i f ic ia l  neu ra l  n e t w o r k s  

Artificial neural networks consist of a collection of connected processing 
elements. The connections form a directed graph and the network is called 
feed-forward if its graph contains no cycles. We restrict attention to feed- 
forward networks in this paper. A typical network is pictured in Figure 1. 

The network determines a function from input to output. Input values are 
first latched into each of the input units and these are then passed through 
the network to emerge, after internal processing, as outputs at the output 
units. The behaviour of a typical unit is shown in Figure 2. Its output y is 
given by 

y : ~7(~ "F WlYl -F ' ' "  n t- WnYn) 

where Yl , . . . ,  Yn are outputs from similar units or else external inputs, ~ is a 
bias attached to the unit and Wl , . . . ,  wn are weights giving the connection 
strengths between units, a is a thresholding or transfer function having a 
sigmoidal shape. A common choice, which will be used here, is the hyperbolic 
tangent function a(x )  = tanh(x), in which case the output range is between 
- 1  and +1. This can be thought of as expressing the idea that if the total 
weighted input exceeds a certain threshold then the cell fires, otherwise 
not. The non-linearity introduced by the transfer function a is the essential 

2Good examples are the hand-written digit recognition system devised by Le Cun et 
al. [15], currently in use by the US Postal Service, and the system devised by Widrow [18] 
for simulating control of a reversing articulated vehicle. See [12] for further examples. 
Biological nervous systems are relatively slow in their individual processing elements but 
compensate by the use of massive parallelism. One of the goals of neural computing is to 
discover ways in which machines might also store and use experience in a way that exploits 
parallel architectures of a complexity comparable to that found in brains. Although this is 
still some way off, many insights of the neural analogy can be exploited using conventional 
processing architectures. 
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Figure 1: A 3 layer network. The lower layer comprises the input units and the 
upper layer the output units. The middle layer consists of internal or "hidden" 
units. There can be several internal layers. In general the connections between 
successive layers can be arbitrary. 

novelty. If a were the identity function, the overall network function would 
be the composition of linear (affine) mappings would itself be just a linear 
(affine) mapping. 

3. Tra in ing  sets 

Feed-forward networks determine a functional mapping from input to out- 
put. Once the network architecture and transfer function are fixed, the 
mapping depends only on the weights and biases as parameters. Usually 
we have a specified set of input-output pairs that the network is required 
to associate. This constitutes a training set. The aim is to choose suitable 
weights and biases so that the network produces the desired target output 
for inputs in this set. 

If there are m input units and n output units, a training pair consists of a 
pair (x, t) where x -  (Xl , . . . ,  xm)is the input vector and t = ( t l , . . . ,  tn) is  
the target output vector. For an arbitrary choice of parameters, however, the 
actual output vector, y = (y l , . . . ,  Yn) say, will differ from the target output. 
This difference, thought of as an error, can be measured, for example, by the 
Euclidean distance between the actual and target output vectors. Suppose 
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Figure 2: A typical unit. 

there are P such training pairs {(xp, tp):  p = 1 , . . .  ,P} .  Each individual 
pair gives rise to an error Ep with the total mean pattern error given by 

1 P 
E - E , .  

p=l 

In the case of the Euclidean error measure 

1 n )2 
- 

j = l  

where yp = (ypl , . . . ,  Ypn) is the actual output for the input x~. For a given 
training set, the error E = E ( . . . , 0 , . . . , w , . . . )  is just a function of the 
weights and biases. The aim is to choose these so as to minimise E. 

The process of modifying the weights and biases in the network so as to 
minimise E can be thought of as one in which the network "learns" the de- 
sired association. Rumelhart et al. [20] propose a version of simple gradient 
descent. Considered as an unconstrained optimisation problem, however, 
faster methods are available using second-order information, see [5, 3, 25] 
for example. All methods have in common, however, the need to compute 
the gradient of the error function with respect to the variable parameters. 
The algorithm for doing this is referred to as "back-propagation". 

4. E x i s t e n c e  a nd  u n i q u e n e s s  

Given a network architecture and a corresponding training set, one can ask 
(1) whether there exists an assignment of weights to the connections so that  
the network reproduces the association given by the training patterns and, 
if so, (2) whether there exist many such assignments. The first question 
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depends on the resources provided by the network architecture. The an- 
swer is that, provided the network has enough hidden unit, it can learn any 
reasonable mapping. Two layers are sumcient for an arbitrarily close ap- 
proximation, provided enough hidden units are supplied, and the same is 
true for a single layer if the function is continuous, see for example [8, 14]. 
The problem, rather, is that there may be many assignments of weights that 
fit the data. Some may perform well on out-of-sample data and others very 
poorly. The problem is similar to that of polynomial interpolation. A high 
enough order polynomial will fit any set of data points, but it may behave 
erratically in between. 

Consider the following example studied by Denker et al. [9]. A network is 
to be trained to classify sequences of 10 binary inputs according to whether 
or not they contain two or more clumps, where a clump is defined to be a 
consecutive sequence of +l ' s .  Some sample inputs and the intended classifi- 
cations are given in Table 1. There are 1024 possible inputs. If the network 

Input 
. . . .  i - + +  . . . .  

. . . .  I - + - + - - -  

- + + + + + + + + +  

+ + + - - + + - - +  

Output Meaning 
1 clump 
2 clumps 
1 clump 
3 clumps 
0 clumps 

Table 1: Examples of the two-or-more clumps predicate. 

is trained to classify a certain proportion correctly, will it generalise well to 
the "correct" rule on unseen samples? The problem is similar to the familiar 
one of completing a series of which only the first few terms are given. 

This is a case of classification in which both the sample inputs and the 
intended outputs are precise or "noise-free". In applications using physical 
data, relating to mineral exploration or analysis of meteorological data for 
example, both inputs and outputs may be known only with a certain degree 
of error. In such cases, there is the usual risk of overfitting, i.e. of fitting 
not only the signal but also the noise. An overfitted solution is unlikely to 
generalise well beyond the data. This is typical of "ill-posed problems" in 
the sense of [21]. We now review two approaches to stabilising or regnlarising 
the solution. 

5. S t r u c t u r a l  s t ab i l i sa t ion  

By analogy with curve fitting, an attempt can be made to obtain a smooth fit 
by limiting the complexity of the interpolant. A natural measure of complex- 
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ity for polynomials is degree. For feed-forward networks, a straightforward 
measure is the number of free parameters. It turns out that a more suitable 
measure is the Vapnik-Chervonenkis (VC) dimension [23, 22, 1]. In simple 
cases, however, such as a three layer network with a single output unit, these 
roughly coincide. 

5.1. T h e o r y  

Using results of Vapnik and Chervonenkis, Baum and Haussler[4] have shown 
1 that, for 0 < ~ _< ~, 

. . .  if m _> O(---w~ log N) random examples can be loaded on a feed- 
forward network of linear threshold functions with N nodes and 
W weights, so that at least a fraction 1 - ~ of the examples 
are correctly classified, then one has confidence approaching cer- 
tainty that the network will classify a fraction 1 -  c of future test 
examples drawn from the same distribution. [4, p.151] 

Ignoring the constant and logarithmic factors, this suggests that about 10 
times as many examples as weights in the network would be needed to 
achieve an accuracy level of 90%, corresponding to e = 0.9. Conversely 

. . .  for fully-connected feedforward nets with one hidden layer, 
any learning algorithm using fewer than ~t(w) random training 
examples will, for some distributions of examples consistent with 
an appropriate weight choice, fail at least some fixed fraction of 
the time to find a weight choice that will correctly classify more 
than a 1 - e fraction of the future test examples. [4, p.151] 

These results assume that the node functions used are linear threshold func- 
tions, or at least Boolean valued. It has been conjectured that similar results 
fold for continuous real valued functions such as sigmoids. 

The question arises whether these results give a practical guide to regu- 
larisation of network training. The following points are relevant. 

(1) The Vapnik-Chervonenkis uniform convergence theorem assumes that 
the training examples are generated by some probability distribution P on 
a population X. The examples are to be picked at random according to 
some definite probability distribution. Although the results hold for any 
probability distribution, the same distribution must be used for generating 
the training examples as for generating the instances to which the network 
is subsequently applied. In most cases, including ones of current interest, 
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this is certainly not exactly or even approximately true and it is not easy to 
calculate the extent to which this affects the validity of the results. 3 

(2) The bounds provided are broad and inexact. The sufficient condition 
demonstrated for valid generalisation is in fact that m > a2w log a2N. Baum 

E E 

and Haussler comment that 32 is likely to be an overestimate and that no 
serious at tempt has been made to minimise it. Nor do they know if the log 
term is unavoidable. From a practical point of view, however, even a factor 
of 2 can be crucial when training examples are in short supply. 

(3) The necessary condition demonstrated for valid generalisation is spe- 
cific to a three-layer network for which a bound on the VC dimension can 

be calculated. The condition then is that m > 2[~1~-~ where k is the num- -- 32e 
ber of hidden units and n is the number of inputs. For large k and n, the 
quantity 2L~jn is approximately equal to the total number W of weights 
in the network, so that the necessary condition becomes m > w Further- 
more, even this very weak condition has only been proved necessary for the 
worst-case distribution that  is consistent with some function realisable on 
the network. 

Although these interesting results do not yet provide practical numeri- 
cal guides for regularisation, they emphasize that the ratio of weights to 
training examples should be as small as possible consistent with achieving a 
meaningful fit to the data. 

5.2. P r a c t i c e  

In an at tempt to implement the pruning of connections in a network in a 
practical way, Le Cun et a1.[16] have proposed an algorithm for "optimal 
brain damage". It is based on the ideas (i) that connections with small 
weights have the least effect on the training error and can profitably be 
deleted and (ii) that  

a "simple" ne twork . . ,  is more likely to generalize correctly than 
a more complex network, because it presumably has extracted 
the essence of the data and removed the redundancy from it. [16, 
p.604] 

1 2 02E/Ow~ assum- Specifically the saliency of a weight wi is defined to be 7wi 
ing that all parameters are independent. Saliency is a better measure than 
simple magnitude since it is concerned with the exact effect of the deletion 

3Giedymin [10] proposes r andom sampling as a condi t ion for a good test  of a scientific 

hypothesis in replying to an argument of Goodman [11] on simplicity. Unfortunately 
most of the population of interest is necessarily unavailable to random sampling when 
attempting to predict the future. 
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of a weight on the magnitude of the training error. It is proposed that, hav- 
ing chosen an initial network graph, the network should be trained until a 
reasonable solution is obtained. Some connections with low-saliency weights 
should be deleted and the network retrained. This process continues until 
an acceptable balance is obtained between network simplicity and training 
error. This is claimed to give better generalisation with fewer training ex- 
amples needed. 

6. F o r m a l  s t a b i l i s a t i on  

An alternative approach is based on the idea, advocated most notably by 
Tikhonov and Arsenin [21], that an extra term should be included in the 
objective function. This is designed to improve generalisation by smoothing 
the fit. The objective function will then be of the form 

E = O~ED + tiER (c~ > 0, fl _> 0) (1) 

where ED is the data misfit and ER is the regularising term. Both are 
functions of the free parameters. The ratio of c~ to ~ determines the trade- 
off between degree of fit and model complexity. The following discussion of 
choice of regularising term and parameters draws on ideas of Mackay [17] 
and Buntine & Weigend [7]. 

6.1. M a x i m u m  l ike l ihood  e s t i m a t i o n  

To discuss the choice of functions ED and ER and of the regularising pa- 
rameters a and fl, it is useful to recall the interpretation of fitting by least 
squares error as maximum likelihood estimation. 4 Suppose we are trying to 
predict the value of a real-valued quantity t on the basis of data x. The 
data is modelled as deviating from a predicted value y = f(x,  w) by some 
additive noise process 

t = y + u  

where f is the modelling function depending on parameters w. (All quanti- 
ties may be vectors.) If u is assumed to be zero-mean Gaussian noise with 
standard deviation a, the likelihood density for a single observation t is 

1 ( t -  y)2 (2) 
P(t l z, w) - V~-~cr e x p -  2a 2 . 

Suppose now we have a sequence x = {Xl, . . .  ,XN} of data inputs and a 
corresponding sequence of predicted values y = {y~, . . . ,  YN}, where each Yn 

4For references see, for example, [19, Ch.14]. 
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is a function f(Xn, w) of the data inputs xn and the model parameters w. If 
the noise is modelled as independent between data items but with the same 
standard deviation a, the likelihood density of a sequence of observations 
t = { t l , . . . , t g } i S  

N (tn--Yn) 2 N ( tn--Yn) 2 
P ( t  I x, w) c~ I I  exp - = exp - ~ (3) 

n=l 20"2 20"2 " n = l  

Recalling that  each y~ is dependent on the parameters w, maximum likeli- 
hood estimation chooses w to maximise this quantity. This is the same as 
choosing parameters w to minimise 

N 

(t~ - f ( x ~  w ) ) 2  (1/a2) ~ ~ 
n--1 

which can be identified with the first term of (1) for c~ = 1/o 2. 

6.2. T h e  B a y e s i a n  v i e w p o i n t  

From the Bayesian point of view, however, it is not P ( t l x  , w) that  i8 our 
direct concern. Our real concern is with the posterior probability of the 
parameters given the training data, namely P ( w l x  , t). Using Bayes theorem 

posterior ~ likelihood • prior 

we have 

P(w Ix, t) c~ P ( t l x  , w)P(w Ix). (4) 

The first term on the right is already given by (3) so it remains to determine 
P ( w l x  ). This expresses a prior distribution over the possible weights in the 
network. A simple assumption is that  these are distributed independently 
with a zero-mean Gaussian of standard deviation r, independently of the 
data inputs x. If there are W weights in the network this gives 

W W 2 W 2 
(5) P(w I x )  - -  g(w) (x i=lII exp - - - - 2 T  2 - exp - i=IE 2 7 2 .  

Let us assume that  the aim is to choose network weights w that  are max- 
imum a posteriori probable. In that  case we want to maximise P ( w l x  , t). 
This is the same as maximising log P(w]x ,  t) or, equivalently, minimising 
- logP(w Ix, t). Putt ing together equations (4), (3) and (5), the aim is 
therefore to minimise 

N W 
1 2 O~ Z 2 (tn -- Yn) -~- /~ Z I~w i2 (~ - 1/a 2, / 3 -  1 / r  2) (6) 

n = l  i=1 

which is exactly of the form of (1) for this choice of noise model and regu- 
lariser. 
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6 .3 .  C h o i c e  o f  c~ a n d  

The first coefficient c~ = 1/a 2 represents the amount of noise we expect to 
find in the system. In some cases this might be known in advance, though in 
general we shall have little idea of its value. The amount of noise can depend 
on the model. If, for example, the aim is to predict likely gold occurrence 
on the basis of magnetic data alone, every factor that influences the actual 
extent of mineralisation and is not directly correlated with the magnetic 
field is a source of noise. The amount of noise in the system, in this sense, 
cannot be estimated a priori. Only when it is known how well the model can 
be made to fit the data, can we estimate the extent to which other factors 
might be influencing mineralisation. On the other hand, if a sufficiently 
complicated model is adopted, with a large number of free parameters, the 
data can be fitted exactly, suggesting misleadingly that the noise is zero. 
This is where regularisation comes in. However, in order to make use of the 
regularising term we need an estimate of the extent to which the data needs 
smoothing, which is expressed by the value of ~. This cannot be estimated 
a priori until we have an idea of the noise level in the system, and we have 
come full circle. 

Here is a way out. The noise level a is unknown a priori but we may, 
nonetheless, have an opinion about its likely value expressed by a prior 
probability distribution P(a). In that case the quantity P( t  Ix, w) in  (4) 
can be calculated by 

P( t  ] x, w) - f~ P( t  ] x, w, a)P(a Ix, w) da. 

If it is assumed that knowledge of the parameters of the model and the data 
inputs alone does not affect opinions about the noise level, then P ( a l x ,  w) = 
P(a) and the preceding equation simplifies to 

P( t  I x, w) - f~ P( t  I x, w, a)P(a) da. (7) 

What can be said about P(a)? All that is known a priori is that a is 
a positive scale parameter. What is needed is a suitable noninformative 
prior. 5 A commonly preferred prior in such cases is P(a) c< 1/a. In order 
to use equation (7) to calculate P( t  Ix, w) i t  is necessary to know the full 
a-dependency of P( t  Ix, w, a). For the Gaussian model we have 

1 ED 
P ( t l x ,  w,a ) c< ~wexp a2 

5See [6, Sec.3.3] for discussion. 
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where 

N 

- -  l ( t  n y n )  2 ED E -{ -- " 
n = l  

Substituting in (7), and using a change of variable x - ED/a  2 to evaluate 
the integral, gives 

f~ 1 P ( t l x  , w) ~ o.N+ 1 exp - - -  
E D  
~ T do (x ED y/2 (8) 

The same argument can be applied to T, or equivalently ~, to obtain 

P(w I x )  - P(w) - ~ r(w I T-)P(T) dT- oc ER W/2 (9) 

where 

W 
1 2 ER -- E ~wi" 

i=1  

6.4. Revised objective function 

Returning to the Bayes equation (4) and substituting (8) and (9) we have 

P(w Ix, t) c( EDN/2ERW/2. 

The aim is to maximise this a posteriori probability. Taking negative loga- 
rithms, this means that we wish to minimise 

N W 
Q - -~- log ED + ~ log ER. (10) 

Notice that the relative weight of the two terms depends on the ratio of the 
number N of data points to be fitted to the number W of free parameters 
of the model. As the number of training examples N increases for a fixed 
number W of weights, the need for stabilisation diminishes. Conversely, for a 
fixed number of training examples N, the penalty term increases, expressing 
the need for greater stabilisation. 

It is instructive to compare the gradient of E(w)  defined in (1) with the 
gradient of Q(w) defined in (10). The first quantity assumes fixed values for 
a and/3 given in advance. The second has marginalised these away by using 
non-informative priors. We have 

V E  - o~VED -+- ~ V E R  (11) 
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compared with 

N W 
- VED + VER. (12) VQ 

Recalling that a -  1/a 2 a n d / 3 -  1/7- 2, this is equivalent to adapting a and 
7 during the optimisation process by 

o.2_ 2ED _ 1 ~ )2 T2 - 2ER _ 1 w 
- N - - N  ( t n - Y n  , - W - - W  E w 2  

= i = 1  

which are current estimates for the corresponding variances. It is also worth 
noting the relative weights of the two terms in (12). Because of the loga- 
rithms in (10) these now depend inversely on the current values of ED and 
ER. As the misfit ED decreases, less relative importance is given to the 
regularising term ER. 

6.5. A l t e r n a t i v e  e r ro r  models  

The preceding section shows how the error function corresponds to a sta- 
tistical model of the noise and the regularising term to a prior probability 
distribution over the free parameters. Alternatives to the model discussed 
above could be considered. The Gaussian error model is appropriate for 
repeated physical measurements under identical experimental conditions. 
When experimental conditions vary to a greater extent, however, but the 
standard deviation is still independent of the data inputs, a distribution 
with wider tails such as the Laplace distribution may be more appropriate. 6 
This means replacing (2) by 

1 I t -  Yl 
P(t  [ x, w) - ~ exp - ~ .  (13) 

Using the same technique as before with an uninformative prior over A, the 
function now to be minimised in place of (10) is 

W 
Q - N l o g E n  + -~- log ER, (14) 

where 

N 

ED -- E I tn -- Ynl, 
n = l  

assuming that the same quadratic regulariser is used. 

6See, for example, [22, pp.S4-5] and [19, See 14.6]. 
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6.6. A l t e r n a t i v e  r egu la r i se r s  

We have so far assumed the simple sum of squares of weights as the regular- 
ising term. Mackay [17] points out that this implies a prior that  expects all 
weights to have the same typical size. But input and output weights would 
need to be rescaled in response to rescaling of input and output variables, so 
this assumption is inconsistent, i.e. not invariant under appropriate transfor- 
mations. Suppose then that the weights are divided into m exclusive but not 
necessarily exhaustive classes 14;1,..., 14;~, of respective sizes W~,..., Win, 
and that the prior distribution over weights in l/V/ is zero-mean Gaussian 
with unknown standard deviation ~-i (i = 1 , . . . ,  m). Assuming noninforma- 
tive priors for ~'i, the same argument as before shows that the regularising 
term 

W 
log ER 

in (10)or  (14)should be replaced by 

w1 
log ER1 + "'" + - ~  log ERm 

2 

where 

_ _  1W 2 (i - -  1 . m ) .  ERi E -2 ""  
wEWi 

A simple instance is to take m = 2 with 14;1 - output unit weights (all 
weights on a connection inputting to an output unit) and 1422 -- hidden 
unit weights (all weights on a connection inputting to a hidden unit). This 
includes all the connection weights but no biases. From the Bayesian point 
of view, it amounts to imposing a uniform prior on all biases. Another 
reasonable model, in a layered network, would be to partition all connection 
weights by layer, making n -  1 classes for an n-layered network. 

Another approach that has been proposed is to replace the 

7w 

term in (6) by 

-2 1 + w2/w2o (15) 

where Wo is a typical weights size, e.g. w0 = 1. The intention here is to force 
small weights to zero so as to reduce model complexity in line with the ideas 
with Section 5.1.. This has been claimed in [24] to enhance generalisation in 
applications to sunspot time series and currency exchange rates. Although it 
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appears less susceptible to a Bayesian analysis than the quadratic regulariser, 
it corresponds, broadly speaking, to a prior distribution with wider tails than 
the Gaussian. This suggests that a similar result could be obtained by using 

1 7 log(1 + w2/w~), 

corresponding to the Cauchy distribution, in place of (15). Another possi- 
bility, based on the distribution with density 

1 (x_ . )  
f (x) - ~ sech ~ a 

would be to use 

log cosh(w/wo). 

In both cases the regulariser is obtained from the negative logarithm of the 
density. 

7. Application 

These ideas were applied recently to a problem in mineral exploration. The 
aim was to correlate gold occurrence with magnetic field anomalies. The 
training set was obtained from assay values of cores extracted from 341 
drill holes. Elements of the training set consisted of pairs of which the first 
member was a representation of the local magnetic field at the drill hole 
location and the second was a typical assay down the hole. 

Generalising ability was assessed by simple cross-validation. 71 of the 
training samples were extracted to form a test set by removing two geo- 
graphically distinct regions, one of which was known as a result of drilling 
to be rich in ore and the other to be predominantly waste. The drill hole 
assays in these regions were not known to the network at the training stage. 
Questions of interest were (i) whether the trained network would have dis- 
covered the deposits in the favourable region and (ii) whether it would have 
discouraged costly drilling in the unfavourable region. 

Training was carried out both with and without regularisation and was 
continued until a local minimum was reached. The objective function for the 
unregularised network was given by equation (1) with ED as the quadratic 
error measure and/3 = 0. For the regularised network the objective function 
was that of equation (10), again with quadratic measures for ED and ER, but 
with the regularising term divided between output and hidden unit weights 
as described in Section 6.6.. Results are shown in Table 2. Both networks 
score well in the unfavourable region. In the favourable region, however, the 
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Unregularised 
Regularised 

Favourable 
Correct Incorrect 

22 24 
40 6 

Unfavourable 
Correct Incorrect 

23 2 
23 2 

71 
71 

Table 2: Distribution of correct and incorrect classifications of drill holes in 
favourable and unfavourable regions by regularised and unregularised net- 
works. 

unregularised network gives classifications that are no better than chance. 
The regularised network scores equally well in both regions. 7 

8. Conclusion 

The perspective employed in this paper shows promise for understanding 
some familiar problems in the philosophy of science. We have examined 
issues involved in improving generalisation in certain types of neural network 
models. Regularisation techniques illuminate the relation between simplicity 
and generalisation for the models discussed which, although restricted, have 
wide practical application. It can be hoped that empirical concept formation 
and its relation to generalisability will be further illuminated by the ideas 
of neural computation in future. 
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T H R E E  L E V E L S  OF I N D U C T I V E  I N F E R E N C E  

PETER GARDENFORS 

Cognitive Science, Department of Philosophy, University of Lund, Sweden 

1. Th ree  perspec t ives  on observat ions  

One of the most impressive features of human cognitive processing is our 
ability to perform inductive inferences. Without any perceived effort, we 
are prepared, sometimes with great confidence, to generalize from a very 
limited number of observations. 

One of the goals of cognitive science in general, and artificial intelligence in 
particular, is to provide computational models of different aspects of human 
cognition. So how can we mechanize induction? How can we even hope 
to capture the ease and assurance of the human inductive competence in a 
model confined by the thoroughness and strictness of computation? 

It is commonplace that induction is going from single observations to 
generalizations. But this statement loses its air of triviality if one takes 
seriously, as I propose to do, the question of what an observation is. It is 
surprising that this questionhas received very little attention within the 
philosophy of science. 1 The key argument of this article is that there is no 
unique way of characterizing an observation. Indeed, I shall distinguish three 
levels of accounting for observations (or, since all levels may be adopted at 
the same time, they may as well be called perspectives): 

1. The linguistic level: This way of viewing observations consists of de- 
scribing them in some specified language. The language is assumed to be 
equipped with a fixed set of primitive predicates and the denotations of 
these predicates is taken to be known. As will be argued in Section 2, the 
linguistic approach is a central part of logical positivism. 

2. The conceptual level: On this level observations are not defined in relation 
to some language but characterized in terms of some underlying 'conceptual 
space'. The conceptual space, which is more or less connected to perceptual 
mechanisms, consists of a number of 'quality dimensions'. Induction is here 

1One notable exception is Shapere (1982). See Section 4.1. 
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seen as closely related to concept formation. According to the conceptual 
perspective, inductive inferences show prototype effects, in contrast to the 
linguistic perspective which operates on Aristotelian concepts (cf. Smith & 
Medin 1981). 

3. The subconceptual level: Observations are here characterized in terms of 
inputs from sensory receptors. The observations are thus described as occur- 
ring before conceptualization. The inductive process is seen as establishing 
connections between various types of inputs. One currently popular way of 
modelling this kind of process is by using neural networks. 

My main objective in this article is to argue that depending on which ap- 
proach to observations is adopted, thoroughly different considerations about 
inductive inferences will come into focus. 2 In my opinion there is a multitude 
of aspects of inductive reasoning and not something that can be identified 
as the problem of induction. The upshot is that there is no canonical way of 
studying induction. What is judged to be the salient features of the induc- 
tive process depends to a large extent on what an observation is considered 
to be. 

2. The  l inguist ic level 

2.1. Observa t ion  s t a t e m e n t s  and the  r iddles of  i n d u c t i o n  

The most ambitious project of analyzing inductive inferences during this 
century has been that of the logical positivists. According to their program, 
the basic objects of scientific inquiry are sentences or statements in some 
formal or natural language. An observation is a particular type of statement. 
The observational statements are supposed to be furnished to the reasoner 
by uncorrigible perceptual mechanisms. 

Ideally, the scientific language is a version of first order logic where a 
designated subset of the atomic predicates represent observational proper- 
ties and relations. These observational predicates are taken to be primitive 
notions. This means that when it comes to inductive reasoning, all observa- 
tional predicates are treated in the same way. For example, Carnap (1950, 
Section 18B) requires that the primitive predicates of a language be logically 
independent of each other. The advantage of this, from the point of view of 
the positivists, is that induction then becomes amenable to logical analysis 
which, in the purist form, is the only tool admitted. 

However, it became apparent that the methodology of the positivists led 
to serious problems for their analysis of induction. The most famous ones are 

2I cannot talk about three ways of describing observations, because the very notion of 
'describing' presumes the linguistic level. 
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Goodman's  (1955) "riddle of induction" and Hempel's (1965) "paradox of 
confirmation". In G/~rdenfors (1990), I have analyzed these problems using 
the conceptual approach to induction. One conclusion to be drawn from the 
analysis is that  these problems show that  the linguistic level is not sufficient 
for a complete understanding of inductive reasoning. 

2.2. A n  e x a m p l e  f r o m  m a c h i n e  l e a r n i n g  

The most common type of knowledge representation within the AI tradition 
is 'propositional' in the sense that  it is based on a set of rules or axioms 
together with a data base. In this representation, the 'facts' in the data  
base correspond to observations. The rules and the data base are combined 
with the aid of a theorem prover or some other inference mechanism to 
produce new rules or facts. The basic and the derived 'knowledge' is then 
the material on which a planning or problem solving program can operate. 

The propositional form of knowledge representation used in mainstream 
AI is thus well suited to the positivist tradition. And when implementing 
inductive inference mechanisms on a computer, this has been the dominating 
methodology. A rather typical example of the linguistic perspective within 
AI is the chapter on induction in Genesereth and Nilsson (1987). They 
assume (pp. 161-162) that  there is a set F of sentences which constitutes 
the background theory and a set A of data (which is to be generalized). It 
is required that  F does not logically imply A. They then define a sentence 
r to be an inductive conclusion if and only if (1) r is consistent with F [J A 
and (2) the hypothesis r explains the data in the sense that  F U{r logically 
entails A. 3 

In general, Genesereth and Nilsson view inductive inferences as problems 
of concept formation: 4 

The data  assert a common property of some objects and deny 
that  property to others, and the inductive hypothesis is a univer- 
sally quantified sentence that  summarizes the conditions under 
which an object has that  property. In such cases, the problem 
of induction reduces to that  of forming the concept of all objects 
that  have that  property. (1987, p. 165). 

They define a concept-formation problem as a quadruple (P, N, C, A>, where 
P is a set of positive instances of a concept, N is a set of negative instances, 

3Note that this criterion can only be seen as supplying necessary but not sufficient con- 
ditions. For example, for any sentence a such that F logically entails a, it holds that 
-,a V AA (where AA is the conjunction of all elements in A) is consistent with F [.J A and 
F [.J{-~a V AA} logically entails A. 
4For a similar approach, see Michalski and Stepp (1983). 
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C is a set of concepts to be used in defining the concept, and A is a language 
to use in phrasing the definition. 

For example, consider the problem of identifying a class of cards from a 
regular card deck. The language for problems of this kind of problem is 
taken to be a standard first order language with a set of basic predicates like 
'numbered', 'face', 'odd', 'jack', 'four', 'red', and 'spade'. The set P consists 
of those cards we know belong to the class and N consists of the cards we 
know are not members of the class. The 'conceptual bias' C determines 
which among the basic predicates are allowed to be used in forming the 
inductive rule determining the class. For example, only 'numbered', 'face', 
'black' and 'red' may be allowed when describing the rule, so that 'bent' 
and 'played with the left hand', among others, are excluded. A, finally, is 
the 'logical bias' which restricts the logical form of the rule that determines 
the class. For instance, only definitions consisting of conjunctions of basic 
predicates may be allowed. 

Using the notion of a concept-formation problem (P, N, C, A), Genesereth 
and Nilsson develop an algorithm for performing inductive inferences satisfy- 
ing the constraints given by C and A. A central notion in their construction 
is that of the 'version space' for the concept-formation problem which con- 
sists of all rules that are satisfied by all the positive instances in P, but by 
no instance in N. The algorithm works by pruning the version space as new 
positive and negative instances are added. 

Even though AI researchers have had some success in their attempts to 
mechanize induction, it is clear that their methodology suffers from the same 
general problems as the linguistic level in general. The enigmas of induction 
that have been unearthed by Goodman, Hempel and others are applicable 
also to the induction programs in recent mainstream AI. 

Trying to capture inductive inferences by an algorithm also highlights 
some of the general limitations of the linguistic perspective. The programs 
work by considering the applicability of various logical combinations of the 
atomic predicates. But the epistemological origin of these predicates are 
never discussed. Even though AI researchers are not actively defending the 
positivist methodology, they are following it implicitly by treating certain 
predicates as observationally, or at least externally, given. However, the fact 
that the atomic predicates are assumed as granted from the beginning means 
that much inductive processing has already been performed. 

I agree with Genesereth and Nilsson (1987) that induction is one form of 
concept formation, but their sense of concept formation is much too narrow. 
We not only want to know how observational predicates should be combined 
in the light of inductive evidence, but, much more importantly, how the basic 
predicates are inductively established in the first place. This problem has, 
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more or less, been swept under the rug by the logical positivists and their 
programming followers in the current AI tradition. Using logical analysis, 
the prime tool of positivism and AI, is of no avail for these forms of concept 
formation. In brief, the linguistic approach to induction sustains no creative 
inductions, no genuinely new knowledge, and no conceptual discoveries. To 
do this, we have to go below language. 

3. The  concep tua l  level 

What I see as the source of the troublesome cases for the linguistic approach, 
like Hempel's and Goodman's riddles, is that if we use logical relations alone 
to determine which inductions are valid, the fact that all predicates are 
treated on a par induces symmetries which are not preserved by our un- 
derstanding of the inductions: "Raven" is treated on an equal basis with 
"non-raven", "green" with "grue" etc. What we need is a non-logical way 
of distinguishing those predicates that may be used in inductive inferences 
from those that may not. 

There are several suggestions for such a distinction in the literature. One 
idea is that some predicates denote "natural kinds" or "natural properties" 
while others don't, and it is only the former that may be used in inductions 
(cf. Quine 1969 and Gs 1990). Natural kinds are normally inter- 
preted realistically, following the Aristotelian tradition, and thus assumed 
to represent something that exists in reality independently of human cog- 
nition. However, when it comes to inductive inferences it is not sufficient 
that the properties exist out there somewhere, but we need to be able to 
grasp the natural kinds with our minds. In other words, what is required 
to understand induction, as performed by humans, is a conceptualistic or 
cognitive analysis of observations of natural properties. Thus we are back 
at the problem of saying what an observation is, but now on the conceptual 
level. 

3.1. C o n c e p t u a l  spaces 

One of the primary functions of concepts is to structure the perceptual 
sensory inflow into categories that are useful for planning, reasoning and 
other cognitive activities. The concepts we use are not independent of each 
other but can be structured into domains: Spatial concepts belong to one 
domain, kinship relations to another, concepts for sounds to a third, and so 

5 
o n .  

5Cf. Langacker's (1986) use of 'domains' in cognitive semantics. 
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The epistemological framework for a domain of concepts I propose to 
call a conceptual space. A conceptual space consists of a number of quality 
dimensions. I have no exhaustive definition of a what a quality dimension 
is, but must confine myself to giving examples. Some of the dimensions 
are closely related to what is produced by our sensory receptors like space, 
pitch, temperature and color, but there are also quality dimensions that  
are of an abstract non-sensory character like time and dimensions of social 
relations. The dimensions of a conceptual space are taken to be cognitive 
and infra-linguistic in the sense that we (and other animals) can represent 
the properties of objects, for example when planning an action, without 
presuming an internal language in which these properties are expressed. 

The notion of 'space' should be taken in the mathematical sense. It is 
assumed that  each of the quality dimensions is endowed with certain topo- 
logical or metric structures. For example, 'time' is a one-dimensional struc- 
ture which we conceive of as being isomorphic to the line of real numbers. 6 
Similarly, 'weight' is one-dimensional with a zero point, isomorphic to the 
half-line of non-negative numbers. The topological structure of the color 
space is described in Gs (1990). Some quality dimensions have a 
discrete structure, i.e., they merely divide objects into classes, e.g., the sex 
of an individual. 7 

Let us now turn to the problem of identifying observations on the con- 
ceptual level. Using the notion of conceptual spaces, an observation can be 
defined as an assignment to an object of a location in a conceptual space. 
For example, the observation that is described on the linguistic level as "x 
is red" is expressed on the conceptual level by assigning x a point in color 
space. Since natural languages only divide the color domain into a finite 
number of categories the information contained in the statements that  x is 
red is much less precise than the information furnished by assigning x a lo- 
cation in color space. In this sense, the conceptual level allows much richer 
devices for reporting observations. 

3.2. C o n c e p t  f o r m a t i o n  

On the conceptual level one can distinguish between two types of inductive 
processes. One is closely related to concept formation: In G~rdenfors (1990), 

6To some extent the representation of time is culturally dependent, so that other cultures 
have a different time dimension as a part of their cognitive structure. Cf. Gs 
(1992) for a discussion of how this influences the structure of language. 
7Discrete dimensions may also have additional structure as, for example, in kinship or 
biological classifications. The topology of discrete dimensions is further discussed in 
G~rdenfors (1990). 
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I analysed 'natural properties' in terms of conceptual spaces. The key idea 
is that a natural property is identified with a convex region of a given con- 
ceptual space. Via the notion of 'convexity' the topological properties of 
the quality dimensions are utilized. A convex region is characterized by the 
criterion that for every pair Ol and 02 of points in the region, all points 
between ol and 02 are also in the region. The definition presumes that the 
notion of 'between' is meaningful for the relevant dimensions. This is, how- 
ever, a rather weak assumption which demands very little of the underlying 
topological structure. 

On the basis of this criterion of natural properties, it is now possible to for- 
mulate a constraint on induction, which is helpful in solving the conundrums 
of the linguistic approach: 

(C) Only properties corresponding to a convex region of the underlying 
conceptual space may be used in inductive inferences. 

It is only proposed that convexity is a necessary condition, but perhaps not 
sufficient, for a property to count as natural and thus allowed in inductive 
inferences. I argue in Gs (1990) that criterion (C) solves many of the 
problems of induction that appear on the linguistic level. Furthermore, the 
criterion can also be used to explain the prototype effects that are exhibited 
by natural concepts (Rosch 1975, 1978, Gs 1991). 

An assumption that is within reach now is that most basic words in natural 
languages denote convex regions in some conceptual space. (This assumption 
can be made even if we have no idea of what the dimensions are or how their 
topology looks like). From the assumption it follows that the assignment of 
meanings to the expressions on the linguistic level is far from arbitrary. 
On the contrary, the semantics (and to some extent even the grammar) of 
the linguistic constituents is severely constrained by the structure of the 
underlying conceptual space. This thesis is anathema for the Chomskian 
tradition within linguistics, but, as a matter of fact, it is one of the central 
tenets of the recently developed 'cognitive' linguistics, s 

As another sign of the importance of the conceptual level, I submit that 
most of scientific theorizing takes place at this level. Determining the rel- 
evant dimensions involved in the explanation of a phenomenon is a prime 
scientific activity. And once the conceptual space for a theory has been es- 
tablished, theories, in the form of equations, that connect the dimensions 
can be proposed and tested. 9 

8Cf. Lakoff (1987) and Langacker (1986). 
9For a discussion of the role of conceptual spaces in science, see Gs (1990) and 
(1991). 
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3.3. The  origin of qual i ty  d imensions  

The second kind of inductive process on the conceptual level concerns how 
the quality dimensions of the conceptual spaces are determined. There does 
not seem to be a unique origin of our quality dimensions. Some of the dimen- 
sions are presumably innate and to some extent hardwired in our nervous 
system, as for example color, pitch, and probably also ordinary space. These 
subspaces are obviously extremely important for basic activities like finding 
food and getting around in the environment. 

But from the point of view of induction, the dimensions that are learned 

are of greater interest. Learning new concepts often involves expanding 
one's conceptual space with new quality dimensions. 'Volume' is an example 
here. According to Piaget's 'conservation' experiments with five year olds, 
small children do not make a distinction between the height of a liquid and 
its volume. The conservation of volume, which is part of its conceptual 
structure, is something that must be learned. In general, introducing new 

quality dimensions is a much more advanced form of induction than concept 
formation within a given conceptual space. 

A similar process occurs ~ within science. By introducing theoretically pre- 
cise, non-psychological quality dimensions, a scientific theory may help us 
find new inductive inferences that would not be possible on the basis of our 
subjective conceptual spaces alone. As an example, consider Newton's dis- 
tinction between weight and mass, which is of crucial importance for the 
development of his celestial mechanics, but which has no correspondence in 
human psychology. It seems to me that the cognitive construction involved 
in Newton's discovery of the distinction between mass and weight is of the 
same nature as when a child discovers the distinction between height and 
volume. Another example of a scientifically introduced dimension is the 
distinction between temperature and heat, which is central for thermody- 
namics. In contrast, human perception of heat is basically determined by 
the amount of heat transferred from an object to the skin rather than by 
the temperature of the object. 

In order to give another illustration of how the scientific process is helpful 
in constructing the underlying conceptual space, thereby providing an un- 
derstanding of how concepts are formed, I shall briefly present the phonetic 
identification of vowels in various languages. According to phonetic theory, 
what determines a vowel are the relations between the basic frequency F0 of 
the sound and its formants (higher frequencies that are present at the same 
time). In general, the first two formants F1 and F2 are sufficient to identify 
a vowel. This means that the coordinates of two-dimensional space spanned 
by F1 and F2 (in relation to a fixed basic pitch F0) can be used as a fairly ac- 
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curate description of a vowel. Fairbanks and Grubb (1961) investigated how 
people produce and recognize vowels in 'General American' speech. Figure 
1 summarizes some of their findings. 

3K 

2K 

IK 

PREFERRED I 
f IDENTIFIED 
/ I  SELF-APPROVEO 

500 I , ' ' 
20O 250 500 I K 

F, 

Figure 1: Frequency areas of different vowels in the two-dimensional space 
generated by the first two formants. Values in cps. (From Fairbanks and 
Grubb (1961)) 

The scales of the abscissa and ordinate are the logarithms of the frequen- 
cies of/71 and/;'2 (the basic frequency of the vowels was 130 cps). A self- 
approved vowel is one that was produced by the speaker and later approved 
of as an example of the intended kind. An identified sample of a vowel is one 
that was correctly identified by 75% of the observers. The preferred samples 
of a vowel are those which are "the most representative samples from among 
the most readily identified samples" (Fairbanks and Grubb 1961, p. 210). 

As can be seen from the diagram, the preferred, identified and self-ap- 
proved examples of different vowels form convex subregions of the space 
determined by F~ and F2 with the given scales. As in the case of color 
terms, different languages carve up the phonetic space in different ways (the 
number of vowels identified in different languages varies considerably), but 
I conjecture again that each vowel in a language will correspond to a convex 
region of the formant space. 
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The important thing to note in this example is that identifying F1 and 
F2 as the relevant dimensions for vowel formation is a phonetic discovery. 
We had the concepts of vowels already before this discovery, but the spa- 
tial analysis makes it possible for us to understand several features of the 
classifications of vowels in different languages. 

The last examples of how science introduces new quality dimensions for 
concept formation highlight one fundamental problem for this second type 
of inductive process on the conceptual level: Where do the dimensions and 
their topology come from? According to Popper's terminology this kind of 
process belongs to the 'context of discovery'. Within traditional philosophy 
of science, it has in general been thought to be futile to construct a mech- 
anistic procedure for generating scientific discoveries of this kind. However, 
when it comes to human learning and concept formation, the prospects may 
not be so hopeless after all. This will be the topic of next section where 
inductive processes below the conceptual level will be considered. 

4. The  subconcep tua l  level 

4.1. Observa t ions  by recep tors  

In the most basic sense an observation is what is received by our sensory 
organs. In this sense, an observation can be identified with what is received 
by a set of receptors. For human beings, these inputs are provided by the 
sensory receptors, but one can also talk of a machine having observations of 
this kind via some measuring instruments serving as receptors. The receptors 
provide 'raw' data in the sense that the information is not assumed to be 
processed in any way, neither in a conceptual space, nor in the form of some 
linguistic expression. 

Within the philosophy of science, it is important to make a distinction 
between perception and observation. As Shapere (1982) points out, the term 
'observation' plays a double role for the traditional philosopher of science. 
He writes: 

On the one hand, there is the perceptual aspect: "observa- 
tion", as a multitude of philosophical analyses insist, is simply 
a special kind of perception, usually interpreted as consisting 
in the addition to the latter of an extra ingredient of focussed 
attention . . . .  On the other hand, there is the epistemic as- 
pect of the philosopher's use of 'observation': the evidential role 
that observation is suppose to play in leading to knowledge or 
well-grounded belief or in supporting beliefs already attained. 
(Shapere 1982: 507-508) 
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Within the empiricist tradition of philosophy of science, the two uses of 
'observation' have been confounded. However, in modern science it is obvi- 
ous that it is the epistemic aspect of observation that is of importance. As 
Shapere (1982: 508) formulates it: 

Science is, after all, concerned with the role of observation as 
evidence, whereas sense-perception is notoriously untrustworthy 
. . . .  Hence, with the recognition that information can be received 
which is not directly accessible to the senses, science has come 
more and more to exclude sense-perception as much as possible 
from playing a role in the acquisition of observational evidence; 
that is, it relies more and more on other appropriate, but de- 
pendable, receptors. 

Given that we are focussing on the epistemic aspect of observations, let 
us then consider induction on the subconceptual level. How do we distill 
sensible information from what is received by a set of receptors? Or, in 
other words, how do we make the transition from the subconceptual to the 
conceptual and the linguistic levels? These questions indicate the kinds of 
inductive problems that occur on the subconceptual level. 

The basic problem is that the information received by the receptors is too 
rich and unstructured. What is needed is some way of transforming and 
organizing the input into a form that can be handled on the conceptual or 
linguistic level. There are several methods for treating this kind of problem. 
Within psychology, various methods of multidimensional scaling have been 
developed. 

For example, in Shepard's (1962a,b) algorithm, the input data is assumed 
to contain information about the relative distances between n points in some 
unknown space. The distances between the points are not expressed in 
metrical terms, but only given as a rank order of the n ( n -  1)/2 distances 
between the n points. Any such rank order can be represented in a space 
of n -  1 dimensions. Shepard's algorithm starts out from a representation 
in such a space and then successively reduces the dimensionality until no 
further dimensions can be eliminated without a substantial disagreement 
between the rank order generated by the metric assignment and the original 
rank order. For many empirical areas the initial data can be reduced to a 
space with two or three dimensions. 1~ These dimensions can then function 
as a basis for concept formation according to the outline in Section 3.2. 

l~ Shepard (1962b) for several examples of the results of the procedure. 
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4.2. Induction with the aid of neu ra l  ne tworks  

In this subsection a different method for going from the subconceptual to the 
conceptual level will be outlined. The mechanisms for the method are based 
on neural networks. In a neural network, the receptors and the information 
they receive can be identified with a set of input neurons and their activity 
values. This set of values will be called the input vector. In interesting cases 
there is a large number of input neurons which means that the dimensionality 
of the input vector is very high. The purpose of an inductive method at this 
subconceptual level is to reduce the complexity of the input information in 
an efficient and systematic way. 

The neural network model I will be outlining here is based on Kohonen's 
(1988) self-organizing feature maps. The distinguishing property of these 
maps is that they are able to describe the topological relations of the signals 
in the input vector using something like a conceptual space with a small 
number of dimensions. Basically, the mapping can be seen as reducing the 
dimensionality of the input vector. 

A self-organizing feature map is a neural network which consists of an 
input vector that is connected to an output array of neurons. In most 
applications, this array is one- or two-dimensional, but in principle it could 
be of any number of dimensions. The essential property of the network 
is that  the connections between the neurons in the array and the learning 
function are organized in such a way that similarities that occur among 
different4~put vectors are preserved in the mapping, in the sense that input 
vectors that have common features are mapped onto neighbouring neurons in 
the map. The degree of similarity between two input vectors is determined 
by some distance measure (which normally is the standard Euclidean metric, 
but many metrics are possible to use). 

In other words, the mapping from the input vector to the array preserves 
the topological relations while reducing the dimensionality of the represen- 
tation space. The low-dimensional 'feature map' that results as an output 
of the process can be viewed as a conceptual space in the sense of the pre- 
ceeding section. The mapping is generated by the network itself via the 
learning mechanism of the network. In practice, it normally takes quite a 
large number of learning instances before the network stabilizes enough so 
that  further changes can be ignored. 11 

The mechanism is best illustrated by a couple of artificial examples taken 
from Kohonen (1988). In figures 2 and 3 the input vectors were assumed to 

11 New learning by instances that do not follow the previous frequency pattern can always 
change the mapping function. This means that it is impossible to talk about a 'final' 
mapping function. 
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be uniformly distributed over a triangular area. In the network represented 
in figure 2, the output array was one dimensional, i.e., the output neurons 
were arranged along a line. The number of neurons on this line is fixed. Any 
input from the triangular space results in some activities in the neurons in 
this line. Figure 2 shows the inverse mapping of the input vectors which 
resulted in the highest activities of single neurons in the line, where each dot 
corresponds to an output neuron. As can be seen, the mapping preserves 
relations of similarity, and, furthermore, there is a tendency of the line trying 
to 'cover' as much as possible of the surface, in the sense that the distance 
between any point in the surface and the line being as small as possible. 

Figure 2: Distribution of weight vectors on a linear array of neurons. (From 
Kohonen (1988), p. 135.) 

In figure 3, the corresponding network contains an output array that is 
two-dimensional, with the neurons arranged in a square. Figure 3 again 
shows the inverse mapping, indicating which neurons in the input space 
produce the greatest responses in the output square. As can be seen, the 
inverse mapping represents a deformation of the output array that preserves 
topological relations as much as possible. 

Figure 4 shows an example of how the network self-organizes in learning a 
mapping. The initial values of the mapping were selected so that there was 
a random mapping from a circular region of the input triangle to a linear 
array of output neurons. The network was then fed with a number of input 
vectors, randomly selected from the full triangle. The sequence of figures 
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Figure 3: Distribution of weight vectors on a rectangular array of neurons. 
(From Kohonen (1988), p. 135.) 

indicate how the mapping is improved over time, where the numbers below 
the figures represent the number of learning trials. 

These examples are artificial in that we know the initial distribution of in- 
put vectors, which furthermore is of low dimensionality. In real applications, 
the dimensionality of the input space is high and its topology is unknown. 
However, it can be shown, at least when the output array is one-dimensional, 
that the mapping in the limit (i.e., after infinitely many learning instances) 
will preserve as much as possible of the topological structure of the input 

12 space. 
Kohonen's goal in using the maps is not limited to inductive inference 

only but representation of information in general. He writes:" 

Economic representation of data with all their interrelationsships 
is one of the most central problems in information sciences, and 
such an ability is obviously characteristic of the operation of the 
brain, too. In thinking, and in the subconscious information pro- 
cessing, there is a general tendency to compress information by 
forming reduced representations of the most relevant facts, with- 
out loss of knowledge about their interrelationsships (Kohonen 
1988, p. 119). 

12For a more precise statement of this result and a proof see Kohonen (1988), pp. 145-148. 
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Figure 4: Distribution of weight vectors on a rectangular array of neurons. 
(From Kohonen (1988), p. 135.) 

In collaboration with Christian Balkenius, I have started working on a gen- 
eral architecture for a neural network system that utilizes selforganizing lea- 
ture maps to perform inductive inferences. The overall architecture of the 
inductive network is depicted in Figure 5. The input receptors are divided 
into a small number of subsets (in the figure there are two such subsets). 
The purpose of this division is to group together receptors that contain in- 
formation about 'the same' feature, so for example, visual receptors belong 
to one group, auditory receptors to another etc. When the network is ap- 
plied, the decision about how the set of receptors should be grouped must 
be made by the user. But this is about the only thing she has to decide 
except for some parameter settings, the network then performs the rest of 
the inductive inferences. 

The input vectors are then mapped onto one Kohonen surface each. In 
figure 5 these are depicted as one-dimensional lines, but they may as well be 
two- or three-dimensional surfaces. In the figure, there are only two Kohonen 
surfaces, but they may, of course, be more than two depending on how the 
input receptors are grouped into subspaces. One of the surfaces may be a 
purely classificatory space, representing 'names' of the categories that are 
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Figure 5: Architecture of inductive neural network 

identified by the network. ~3 

The Kohonen surfaces are then pairwise connected by asymmetr ic  con- 

nections between the neurons in the two surfaces. The connections are total  
in the sense tha t  each neuron on one surface is connected to all neurons 
on the other surface. The learning rule for these connections functions in 

such a way tha t  the s t rength of the connection cij between a neuron xi on 

one surface and a neuron yj on another  reflects the conditional probabil- 

ity (est imated from the learning examples) tha t  yj be activated given tha t  

x~ is activated. ~4 The connections vary between -1 and +1 and obtain the 

extreme values only when xi and yj are never and always, respectively, ac- 

t ivated together.  In a sense, the network performs implicit computa t ions  of 

the inductive statistics. ~5 

13The linguistic form of the names has, of course, to be provided by the user. 
14The mathematical form of the connections are closely related to Hintikka's (1969, p. 
328) measures of 'evidential support,' in particular the measure defined in his equation 
(27)*. 
15The sense in which neural networks perform implicit statistic inferences can be made 
very precise. For example, see Lippman (1987) for a presentation of some of the results 
connecting least mean square and maximal likelihood solutions to the computations of 
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Once the learning phase has been completed, relating input receptors to 
Kohonen surfaces and these surfaces to each other, it is then possible to 
use the network to classify new objects. By feeding the system with a 
partial input vector, for example, the values for one of the subspaces, the 
network can then compute the expected values for all the other receptors 
and the expected locations for all the Kohonen surfaces. In this way the 
network guesses the unknown properties of the object it has only received 
partial information about. The network is thus able to generalize from earlier 
experience and make inductive inferences using the connections between the 
different Kohonen spaces. 

Christian Balkenius and I have done some preliminary experiments using 
a network with the architecture that has been outlined here. So far, the 
results seem very promising. One example concerns a classification of 44 in- 
dividual parasitical wasps. For each individual the values of twelve variables 
are supplied together with the species name it was assigned by an entomol- 
ogist. These variables represent different kinds of data, some binary, some 
ordinal, and some real-valued. After discussions with the entomologist, we 
divided the input variables into four groups: One consisting of five variables 
on proportions of sizes of various body parts, the second consisting of four 
other morphological variables, the third consisting of three ecological vari- 
ables, and the fourth simply a coding for the species name. Each of these 
four variable groups was mapped onto a one-dimensional Kohonen surface 
(i.e., a line), and the four surfaces were pairwise connected by asymmetric 
connections as described above. 

After training the network by showing it the individual input vectors a 
number of times, it can be tested by feeding in all input variables for a 
particular individual, except for its species categorization and compare the 
output with that of the entomologist. In our tests, the network makes very 
few errors in classifying the 44 wasps. The results are, to some extent, 
dependent on the number of neurons on each Kohonen surface. If we allow 
as many as 50 neurons, which is more than the number of wasps, then 
the network can learn to correctly classify every individual in the sample. 
However, if there are only 20 neurons on the Kohonen surfaces, then it 
correctly classifies 43 out of 44. One can, of course, also feed in data (except 
for names of the species) about individuals that were not present in the 
learning sample. The species names that are produced as outputs from the 
network seem to have a high degree of validity. However, the performance 
of the network still awaits more detailed testing against empirical material. 

The methodology of founding a classification on a large number of numer- 
ical data is similar to so called numerical (or phenetic) taxonomy (Sokal and 

neural networks. 
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Sneath 1963, Ruse 1973) In my opinion, however, the mechanisms behind 
the classifications obtained by the neural network model and their biological 
validity are superior to what is achieved in numerical taxonomy. One essen- 
tial difference is that, as a matter of methodology, all variables are treated 
as having equal value in the process of computing the numerical taxonomy. 
However, even if it may seem that the same holds of the inputs to the neural 
network described above, the variables are implicitly assigned different im- 
portance via the influence they have on the topology of the Kohonen surfaces 
that emerge during the learning period. 

What are then the drawbacks of using neural networks of the type de- 
scribed here for inductive processes? A fundamental epistemological prob- 
lem is that even if we know that the network will generate Kohonen surfaces 
that perform the right kind of job, we may not be able to 'describe' what 
the emerging dimensions represent. Even if we, for example, know that a 
system consisting of four one-dimensional Kohonen surfaces provides a per- 
fect classification of a population of parasitical wasps, this may not help 
us in interpreting the 'meaning' of the surfaces, i.e., what overall features 
of the wasps that they represent. In other words, we may not be able to 
make the transition between the subconceptual level and the conceptual 
level. This kind of level problem is ubiquitous in applications of neural net- 
works for learning purposes. The upshot is that a future theory of neural 
networks must somehow bridge the gap of going from the subconceptual 
level to the conceptual level. We may account for the information provided 
at the subconceptual level in term of a dimensional space with some topo- 
logical structure, but there is no general recipe for determining what is the 
conceptual meaning of the dimensions of the space. 

Other problems concern more methodological issues. How should the in- 
put variables be grouped before they are mapped onto different Kohonen 
surfaces? How does one decide how many dimensions to use in the target 
surface of the mapping from the input variables? These kinds of problems 
are found everywhere in science and they are not particular to using neural 
networks for the classifications. 16 In fact, the methodological problems in- 
volved in the procedure presented here seem to be smaller than the problems 
one encounters for other classification methods. 

5. Conclus ion:  W h a t  is i nduc t ion?  

Where on the three levels that have been described here is real induction 
to be found? The answer is: nowhere and everywhere. The main thesis of 

16For instance, very similar problems would be encountered when applying the multidi- 
mensional scaling methods that were outlined above. 
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this article is that there are several kinds of inductive processes. Depending 
on what perspective one takes on observations, different ways of general- 
izing the observations become relevant. Traditional philosophy of science 
has concealed these distinctions by neglecting the conceptual and subcon- 
ceptual levels. For a complete account of induction, all three levels must be 
mustered. 

What is the relation between the three levels? I hope it has become clear 
from my presentation that I do not view the three levels as being in conflict 
with each other. They should rather be regarded as three perspectives on 
observations that complement each other. Different aspects of inductive 
processes need to be explained on different levels. By disregarding some level 
one restricts the possibilities for understanding the mechanisms of inductive 
reasoning. 

A three-level theory of cognitive representation that is related to the one 
proposed in this paper has been suggested by Harnad (1987) as a way of 
analysing problems in categorical perception. 17 He calls his lowest level 
the iconic representation (IR), "being an analog of the sensory input (more 
specifically, of the proximal projection of the distal stimulus object on the 
device's transducer surfaces)" (Harnad 1987, p. 551). The IRs are analog 
mappings which "faithfully preserve the iconic character of the input for such 
purposes as same-different judgements, stimulus-matching, and copying" (p. 
552). It is obvious that this form of representation corresponds to what I 
have here called the sub-conceptual level. 

The middle level Harnad calls categorical representation (CR). This rep- 
resentation eliminates most of the raw input structure and retains what 
is invariant in the produced categorization: "Whereas IRs preserve analog 
structure relatively indiscriminately, CRs selectively reduce input structure 
to those invariant features that are sufficient to subserve successful catego- 
rization (in a given context)" (p. 553). 

Again, it is clear that this level corresponds to the conceptual level of this 
article. Unfortunately, Harnad says very little about how the categorization 
is acheived, except that it is some kind of filtering process. Furthermore, he 
provides no account of the structure of the categorical representation, with 
the exception that he presumes that categorization is to a certain extent 
context dependent. I believe that it is a strength of the theory of conceptual 
spaces outlined in Section 3 that it has strong, and to a large extent testable, 
implications for categorization and concept formation. 

The highest level in Harnad's triad is symbolic representation (SR), which 
naturally corresponds to the linguistic level of this paper. He introduces 

17This theory was brought to my attention by Paul Hemeren when the present article 
was almost finished. 
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a "description system" (p. 554), the expressions of which assign category 
membership to experiences. The description system presumes that the CRs 
are already labeled: 

Instead of constructing an invariance filter of the basis of direct 
experience with instances, it operates on existing labels, and con- 
structs categories by manipulating these labels, in particular, as- 
signing membership on the basis of stipulated rules rather than 
perceptual invariants derived from direct experience (p. 554). 

Here it seems to me that Harnad is partly falling back on the Aristotelean 
tradition of concept formation. The upshot seems to be a hybrid theory: 

Descriptions spare us the need for laborious learning by direct 
acquaintance; however, they depend on the prior existence of 
a repertoire of labeled categories on which the combinatory de- 
scriptions can draw. Hence symbolic representations (SRs), which 
are encoded as mental sentences, define new categories, but they 
must be grounded in old ones; the descriptive system as a whole 
must accordingly be grounded in the acquaintance system (p. 
556). 

The use of the metaphor "grounded" indicates that Harnad views the three 
representation forms as separate systems. In contrast, the three levels pre- 
sented here are three perspectives on one and the same system. Nevertheless, 
the similarities between mine and Harnad's are indisputable. Since Har- 
nad proposes his three kinds of representations as a tool for understanding 
phenomena of categorical perception, these similarities strengthen the links 
between concept formation and the present analysis of induction. 

It is also worthwhile comparing the three levels of observation and induc- 
tion discussed in this article with Smolensky's (1988) distinction between 
the subsymbolic and symbolic levels in the context of connectionist mod- 
els. In my opinion, his 'subsymbolic level' corresponds closely enough to 
what has here been called the subconceptual level. However, Smolensky 
confounds the symbolic and conceptual levels, is The reason why is simple: 
he is commiting himself to 'High Church Computationalism' by "limiting 
consideration to the Newell/Simon/Fodor/Pylyshyn view of cognition" (p. 
3). One of the central tenets of the symbolic approach is what Smolensky 
formulates as 'hypothesis 4b': 

1SHe even uses the two names: "I will call the preferred level of the symbolic paradigm the 
conceptual level and that of the subsymbolic paradigm the subconceptual level" (Smolen- 
sky 1988:3). 



447 

The programs running on the intuitive processor are composed 
of elements, that is, symbols, referring to essentially the same 
concepts as the ones used to consciously conceptualize the task 
domain (p. 5). 

He then gives the following reason for calling the symbolic level 'conceptual" 

Cognitive models of both conscious rule application and intuitive 
processing have been programs constructed of entities which are 
symbols both in the syntactic sense of being operated on by sym- 
bol manipulation and in the semantic sense of (4b). Because 
these symbols have the conceptual semantics of (4b), I am calling 
the level of analysis at which these programs provide cognitive 
models the conceptual level (ibid.). 

However, there is a different tradition within cognitive science where the 
conceptual level of this paper is given independent standing. For example, I 
believe the theory of conceptual spaces presented in Section 3.1 can be seen 
as a generalization of the state space approach, advocated among others by P. 
M. Churchland (1986a,b), and of the vector function theories of Foss (1988). 
The theory of conceptual spaces is a theory for representing information, not 
a theory about symbol manipulation. (The symbol paradigm that Smolensky 
is referring to is called the 'sentential paradigm' by the Churchlands. 19) 

Even though he fails to identify it as a separate level, Smolensky is well 
aware of this 'vectorial' approach, as can be seen from the following quota- 
tion: 

Substantive progress in subsymbolic cognitive science requires 
that systematic commitments be made to vectorial representa- 
tions for individual cognitive domains . . . .  Unlike symbolic to- 
kens, these vectors lie in a topological space in which some are 
close together and others far apart (Smolensky 1988, p. 8). 

He even recognizes the importance of establishing a connection between the 
subconceptual level and the conceptual level: 

Powerful mathematical tools are needed for relating the overall 
behavior of the network to the choice of representational vectors; 
ideally, these tools should allow us to invert the mapping from 
representations to behavior so that by starting with a mass of 
data on human performance we can turn the mathematical crank 

19Cf. P. S. Churchland (1986) and G/irdenfors (1992) for a discussion of the conflict 
between the two approaches. 
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and have the representational vectors pop up. An example of this 
general type of tool is the technique of mult id imensional  scaling 
(Shepard 1962), which allows data on human judgments of simi- 
larity between pairs of items in some set to be tuned to vectors for 
representing those items (in a sense). The subsymbolic paradigm 
needs tools such as a version of multidimensional scaling based 
on a connectionist model of the process of producing similarity 
judgments (ibid.) 

In conclusion, Smolensky's binary distinction between the symbolic and the 
subsymbolic level is insufficient. We need all three levels of representing 
information that have been presented in this paper to give an adequate 
description of the various inductive processes that are encountered in the 
human realm as well as in the artificial. 
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W H E N  N O R M A L  A N D  E X T E N S I V E  F O R M  
D E C I S I O N S  D I F F E R  

TEDDY SEIDENFELD 

Carnegie Mellon University 

0. I n t r o d u c t i o n  a n d  ou t l ine .  

The "traditional" view of normative decision theory, as reported (for 
example) in chapter 2 of Luce and Raiffa's [1957] classic work, Games 
and Decisions, proposes a reduction of sequential decisions problems to 
non-sequential decisions: a reduction of extensive forms to normal forms. 
Nonetheless, this reduction is not without its critics, both from inside and 
outside expected utility theory. 1 It is my purpose in this essay to join 
with those critics by advocating the following thesis. 

THESIS: Sequential decisions, in extensive form, may lead to different 
outcomes than their non-sequential, normal form versions, in a variety of 
problems where the normal form fails to eliminate some "future" options 
that will not be chosen. 

My plan for this paper is to review the non-equivalence of extensive and 
normal forms in the following contexts and show how the thesis applies 
in each one: 

In section 1, I rehearse the Harsanyi-Selten (1988) argument, applied 
to Game Theory. They use this thesis to distinguish "perfect" from "im- 
perfect" equilibria in extensive forms and show that this distinction is lost 
in the reduction to normal forms. They appeal to a "trembling hands" 
model of players' options to salvage a modified version of the reduction. 

In section 2, I address an ingenious argument, due to M. Goldstein 
(in his [1983] "Prevision of a Prevision") which uses the extensive-normal 
form reduction to constrain a coherent (Bayesian) agent's current beliefs 
about his/her future degrees of belief. In particular, I point out (w 2.1) 

1 See LaValle and Fishburn [1987] for a useful review of the issue for problems involving 
one decision maker. 
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where Goldstein's result leads to excessive use of Bayes' rule for updating: 
Temporal Conditionalization. 2 And I point out (w 2.2) where it precludes 
the use of Bayes' rule in updating finitely additive probabilities. 

Last, in section 3, I report on some relevant consequences of using sets 
of probabilities: Robust Bayesian analysis. In collaborated work with 
L. Wasserman (Statistics, CMU) we investigate a phenomenon we call 
"dilation" of sets of probabilities. This occurs when the set of uncon- 
ditional probabilities for an event are (properly) smaller than the set of 
conditional probabilities for that event (given each outcome of a parti- 
tion). I illustrate how "dilation" leads to a violation of the reduction of 
extensive to normal forms. In w 3.1 and w 3.2 I report some of our work- 
in-progress indicating necessary and sufficient conditions for "dilation". 

1. H a r s a n y i  gz Se l ten ' s  " t r e m b l i n g  hands"  

John Harsanyi and Reinhard Selten (1988) question the adequacy of 
Nash's concept applied to the normal-form version of an extensive form 
game. They deny the equivalence of normal and extensive game forms. 
Instead, they advocate a refined equilibrium concept for extensive form 
games, based on a "trembling hands" model of choice. 

An equilibrium for extensive forms is acceptable, according to their ac- 
count, provided it is robust over small perturbations in choice. One of 
their examples from (1992) beautifully illustrates the difference between 
the two kinds of equilibria. Each player has two pure strategies: In the 
extensive form, player-1 had choice set {a, b} and, provided his/her infor- 
mation set is reached (provided player-1 chooses a), player-2 has a choice 
set {c, d}. In the corresponding normal form, the strategies are {A, B} 
for player-1 and {C, D} for player-2. Payoffs are displayed in the next two 
figures. 

2The analysis of w 2.1 addresses Goldstein's reasons. I. Levi [1987] successfully responds 
to a variety of arguments purporting to show that Bayes' rule is mandatory for updating 
beliefs. 
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Figure 1.1 the extensive form game 
Player-l 's payoff's are listed above Player-2's 
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A 

B 

C D 

-2 

-2 

Figure 1.2 Normal form of the game, above 
Player-l 's payoffs appear in the top-left corners. 

Observe that, corresponding to the normal form Figure 1.2, there are 
two equilibria: the pairs {A, C} and {B, D}. However, the latter in "im- 
perfect" in the extensive form of Figure 1.1, as that requires player-2 to 
(threaten to) play option d in case choice node 2 is reached. Of course, at 
node 2, player-2 maximizes by playing option c instead of d, and player-1 
knows this fact. Thus, the normal form equilibrium, {B, D}, depends, in 
the extensive form, upon ignoring that option D will not be chosen by 
player-2 if player-1 chooses B. To put the point another way, the nor- 
mal form fails to distinguish between the extensive form of figure 1.1 and 
a different game where both play simultaneously, i.e., where player-2's 
information set does not reflect whether or not player-1 chooses a or b. 

In order to avoid "imperfect equilibria", Harsanyi and Selten alter the 
basic moves in a game so that an agent selects one from a set of distribu- 
tions (on pure options). A player chooses a mixed strategy rather than a 



454 

pure option. Figure 1.3 gives the normal form for the "trembling hands" 
perturbated game, where players may choose one of two mixed strategies 
in a perturbed extensive form game (not pictured). 

In the perturbed game, the normal form options given in Figure 1.3 
arise by using a two point distribution, with probabilities ( 1 -  r and 
assigned to each pure option in the corresponding perturbed extensive 
form. 

C* D* 

A* 

B* 

2-Se+4e 2 

2+3e+4e 

1 +e--4e 2 

3_..e_4e 2 

-2+7e--4e 2 

2 _2+9e__4e2 

1-3e+4e 2 

3-5e+4e 2 

Figure 1.3 

In the perturbed versions of the game, this difference between the two 
solutions pairs (which are in equilibrium in game form 1.2) is made ev- 
ident. In the normal form 1.3, only the pair {A*, C*} is in equilibrium. 
The {B*, D*} pair is not in equilibrium since, when player-1 chooses B*, 
player-2 improves his/her (expected) payoff by shifting from D* to C*, 
i.e., D* is not player-2's best response to B*. 

The Harsanyi-Selten point is that "imperfect equilibria" are deficient 
because, in extensive game forms, they require a player to choose an 
outcome which fails to maximize his/her utility. Nonetheless, the suspect 
choice is justified by Nash's criterion of equilibrium in the corresponding 
normal form. In the extensive form of their game, player-2 does not 
maximize utility by choosing option d (if node 2 arises) choice d is 
an idle threat. That move is inconsistent with the assumption that the 
players are utility maximizers and model each other that way. "Trembling 
hands", using sets of "e-mixtures", is Harsanyi and Selten's ingenious 
way of reconstituting the reduction of extensive to normal forms in game 
theory. In section 3, I shall use sets of "e-mixtures" of probabilities to 
defeat the extensive-to-normal form reduction! 

2. T h e  "previs ion  of a previs ion"  (M. Goldstein, 1983) 

Goldstein's result concerns a coherent agent's currents beliefs about his/ 
her future beliefs. It rests on the following, simple (yet suspect), lemma 
concerning sequential decisions. 
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LEMMA (Goldstein). Let (terminal) decision D1 lead to the "penalty" A. 
Suppose, also, there is a (sequential) option 0 to defer the choice between 
"penalties" A and B. Then, on pain of a sure loss, you may not now 
prefer D1 over O. 

His proof (as summarized below), pivots on the extensive-to-normal 
form reduction. 

" PROOF" (reductio): Suppose, now, you prefer D1 to O by an amount 
greater than C. Then you are willing to pay amount C to receive D1 over 
O. But then you suffer the sure loss C as you might just as well have only 
penalty A: first choice O (now), then A (later), rather than the larger 
penalty A + C. 

A+C A B 

D ~ l i t h  ~ / 
penalt~C I later I 

o/ 
nOW , I 

Figure 2.1 the extensive version of Goldstein's argument 

Goldstein's proof uses the reduction of the sequential option 0 to its 
normal form: a choice between penalties A and B. Goldstein compares 
.4 + C and the better outcome A, without concern about what you know 
(now) you will choose "later". The "counterexamples" involve problems 
where you know (now) that were you to opt for O, then later you would 
choose B, which you now find inferior to A + C. 

Next, let Pt(E) denote your (currently unknown) probability for event 
E at the future time t. Let Pnow(E) be your current probability for E. 
And let Pnow (Pt(E)) be your current expectation for the random variable 
Pt(E). The result about your prevision of your (future) previsions is as 
follows. 

THEOREM (Goldstein). Pnow (Pt(E)) = Pnow(E). 3 

PROOF: By the previous lemma on the value of deferred options. 

Let us explore circumstances when this "theorem" fails, when the 
"lemma" fails, because extensive forms do not reduce. 

3A related condition, called the "Principle of Reflection", is reported in van Fraassen's 
[1984] "Belief and the Will". See, e.g., Levi [1987] and Walbott [1991] for discussions. 



456 

2.1 Bayes '  rule  for u p d a t i n g  t e m p o r a l  condi t iona l iza t ion .  

The dynamic version of Bayes' rule is this. 
Suppose B summarizes the evidence acquired between (later) time t 

and now, then 
Pt(')  = Pnow(" l B). 

If this temporal rule were mandatory then, as an extreme case: when you 
don't learn new evidence, you can't just change from one (coherent) distri- 
bution to another. Or, in a slightly different form using Goldstein's result, 
you aren't coherent if you now know that you are about to change your 
previsions from P to pi ~ p,  though you will acquire no new evidence. 
However, in either of these cases the "lemma" does not apply as you are 
not prepared to equate the extensive and normal forms. The "lemma" 
fails to take into account that you know (now) certain choices will be re- 
jected, yet you are asked to contrast such rejected (future) options with 
live current options. 

The sequential argument offered on behalf of temporal conditionaliza- 
tion requires a questionable reduction to a normal form decision. The 
reduction is invalid because, by the agent's current lights, non-options 
are used in the normal form decision in order to show that violating the 
proposed dynamic rule leads to incoherent choices in the guise of a sure 
loss. 

2.2 N o n - c o n g l o m e r a b i l i t y  and  the  ex tens ive  to n o r m a l  fo rm re- 
duc t ion .  

Next, I investigate where Goldstein's theorem precludes the use of 
Bayes' rule for updating. The case involves the use of probabilities which 
are finitely, but not countably additive. Let P be a f.a. probability defined 
on a a-field of subsets of X. Let Ep[] be the P-expectations for bounded, 
measurable functions f.  And let 7r = {hi, h2, . . .  } be a countable partition 
of X. 

DEFINITION (Dubins/de Finetti): Say that P is conglomerable in 7r pro- 
vided that for each bounded, measurable function f ,  inf~ Ep[f I hi <_ 
Ep[f] < sup~ Ep[f ] h]. 

However, each P which is not a-additive suffers a failure of conglom- 
erability for some event E. (See Schervish et al, [1984].) That is, there 
exists an event E, a partition 7r and c > 0 such that 

P ( E l h i )  < P(E) - c ( i =  1 , . . . )  

HEURISTIC EXAMPLE (Dubins, 1975). Figure 2.2 displays the finitely 
additive probabilities for "atoms". To help interpret P, assume that given 
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E, an integer 'i ' is chosen "at random", P ( h  - i ! E )  - O. Given E c, a 
fair coin is flipped until a head appears and the number of flips determines 
i, P ( h  - i l E ~) - 2 -i .  Also assume P ( E )  - P (E  ~) - 1/2, leading to 
the values in Figure 2.2. 

h 1 h 2 hi 

E 0 0 0 

E c 2-2 2-3 2-(i+ 1) 

Figure 2.2 Dubins' example 

P ( E )  - P (E  c) - 1/2, P (hi I E) - 0 and P (hi I E c) - 2 - i  (i - 1 , . . . ) .  

Thus, P (hi) - 2 -(i+1) and P ( E  l hi ) - O. So, 0 - P (E  ] hi) << 
P ( E )  = 1/2 (i = 1 , . . .  ) and we see that  P is not conglomerable in 7r. 

Suppose the agent has P for his/her current personal probability, will 
learn which element of 7r obtains at t, and plans to use temporal  condi- 
tionalization to update at t. Then, Pnow(E)=  1/2 and P t ( E ) =  0. Thus, 
Pnow (P t (E ) )  = 0 # Pnow(E) = .5, and the "prevision of a prevision" the- 
orem fails. Once again, Goldstein's " lemma" is false as the extensive form 
does not reduce to the normal form for decisions involving the random 
variable Pt (E) .  

3. D i l a t i o n  of se t s  of  p r o b a b i l i t i e s  (work with Larry Wasserman) 4 

In this section, I report on a phenomenon we call "dilation", which leads 
in a different way to a non-equivalence of extensive and normal form 
decisions. 

Let 7 ) be a (convex) set of probabilities on algebra A. For an event E, 
denote by P . ( E )  the "lower" probability of E: infv {P(E)}  = P . ( E )  and 
denote by P * ( E )  the "upper" probability of E: supw {P(E)}  = P * ( E ) .  
Let ~ = ( B 1 , . . . ,  Bn) be a (finite) partition. 

DEFINITION: The set of conditional probabilities {P (E I B~)} dilate if 

P. ( E I B i )  < P . ( E )  < P* ( E I B i )  (i = 1 , . . . , n ) .  

4An illustration of what we here call "dilation" was reported by Levi and Seidenfeld 
to I. J. Good in connection with Good's [1966] argument about the value of new 
evidence. That communication prompted Good's [1974] reply. Additional rebuttal is 
found in my [1981], where I link "dilation" with randomization in experimental design. 
A recently published example of dilation, relating to the worth of new evidence, appears 
on pp. 298-299 of P. Walley's [1991]. 
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That is, dilation occurs provided that, for each event (Bi) in a partition 
7r, the conditional probabilities for an event E, given Bi, properly include 
the unconditional probabilities for E. Dilation of conditional probabilities 
is the opposite phenomenon to the more familiar "shrinking" of sets of 
options with increasing shared evidence. 5 

HEURISTIC EXAMPLE OF DILATION 
Suppose A is a highly "uncertain" event. That is P*(A) - P, (A)  ,~ 1. 

Let { H, T} indicate the flip of a fair coin whose outcomes are independent 
of A. That is, P(A,  H) = P(A) /2  for each P C P. Define the event E by, 
E = {(A, H), (AC, T)}. It follows, simply, that P(E)  = .5 for each P C P. 
Then 0 ~ P . (E  ] H) < P. (E)  = P*(E) < P*(E I H ) ..~ 1 
and 0 ~ P . (E  I T ) < P. (E)  = P*(E) < P*(E [ T) ,.~ 1. 

Thus, regardless how the coin lands, the conditional probability for event 
E dilates to a large interval, increasing from a "determinate" value .5. 

This example mimics Ellsberg's (1961) "paradox", where the mixture 
of two "uncertain" events has a "determinate" probability. In different 
terms, event E is "pivotal" over the set 7 ). 

Next, I indicate by example, that extensive forms do not reduce to 
normal forms when dilation is present. 

HEURISTIC EXAMPLE (continued): Consider a sequential (that is, exten- 
sive form) choice between: 

terminal option D1 Win $.75 if E; Lose $1.25 if E c. 
Or, sequential option O observe the coin flip and choose between 

D2 an even money $1 bet on E 
and D3 a "fee" of $.50. 

Thus, option D1 = D2 (an even money $1 bet on E)+$.25 "fee". Fig- 
ure 3.1 illustrates the extensive form problem. [For convenience, hereafter, 
assume dollars are linear in utility.] 

5For discussion of different senses in which a set of conditional probabilities may 
"shrink" with increasing evidence, see Schervish and Seidenfeld [1990]. 



459 

$1 i fE  $1 i fE  

-$1 i fE  c -$.50 -$ l i f E c  

i fE  ~ / -$.50 / 

-$1.75 if E c 

H T 

now 

Figure 3.1 Sequential Decision associated with 
the heuristic example of dilation. 

Observe that  in a pairwise choice between D1 and D2, option D2 (sim- 
ply) dominates option D1. Therefore, in the normal version of this prob- 
lem D1 is not admissible. (D1 fails to maximize expected utility for each 
P c 7).) However, in the sequential (extensive form) problem above, after 
having seen the coin flip, conditional upon either H or T, both choices 
D2 and D3 are (pairwise) admissible according to expected utility consid- 
erations. That  is, for some P E 7 ) D2 has higher expected utility than 
D3 and for other probabilities this inequality reverses. But D3 maximizes 
"security": D3 has a better  "worst" payoff, (-$.50 versus -$1.00) 
or D3 has a higher, minimum expected value (F-minimax). 6 

Thus, anticipating choices that  will be made if the sequential option 
is taken, D3 is the result of choosing O "now". Then, to complete the 
analysis, compare the two "live" options available "now": a choice between 
D1 and D3. But, between these two options D3 fails to maximize expected 
utility for each P c 7 ). Hence, D1, which is inadmissible in the normal 
form, is the (sole) admissible option in the extensive form decision. 7 

6I allude, here, to decision theories like Levi's [1980] where an option is admissible from 
a choice set provided (i) it maximizes expected utility for some probability/utility in 
the agent's set of probabilities and utilities, and (ii) it maximizes a "security" index 
among those options passing the first condition. In the example here, "security" may 
be indicated by a maximum value or by a F-minimax value. 

As an aside, I note that F-minimax requires an extraneous stipulation when sets of 
utilities are used. Specifically, depending upon how a set of utilities is standardized, 
i.e., depending upon which consequences are assigned 0 and 1, different options may 
be declared F-minimax. 
7Of course, even when extensive forms do not reduce to normal forms, "backward 
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Using this example as a template, non-equivalence of extensive and 
normal forms can be manufactured whenever dilation occurs. In the fol- 
lowing two sub-sections, I report on necessary and sufficient conditions 
for dilation. 

3.1 I n d e p e n d e n c e  a n d  d i la t ion .  

Independence is sumcient for dilation. 
Let Q be a convex set of probabilities on an algebra ,4 and suppose we 

have access to a "fair" coin which may be flipped repeatedly: coin-flip 
events are confined to algebra t2. Assume the coin flips are independent 
and, with respect to Q, also independent of events in ,4. Let P be the 
resulting convex set of probabilities on A x C. 8 

THEOREM. If  Q is not a singleton, there is a 2 x 2 table of the form 
(E, E c) x (g,  T) where both: 

P, (E I H ) < P,(E) = .5 = P*(E) < P*(E I H ) 

P,(E I T) < P,(E) = .5= P*(E) < P*(E I T) 

That is, dilation occurs. 

PROOF (sketch): Let A C A be "uncertain" with respect to Q. Use the 
"fair" coin to form event F where P,(F) < .5 < P*(F). Then mimic the 
"Ellsberg" heuristic example, above. [--1 

Independece is necessary for dilation. 
Let P be a convex set of probabilities on an algebra ,4. the next result 

is formulated for subalgebras of 4 atoms: (pl,P2,P3,p4) 

B 1 B 2 

A1 Pl P2 

A2 P3 P4 

Figure 3.2 the case of 2 x 2 tables. 

Define the quantity Sp (A1, B1) = p l /  (pl + p2) (pl +p3)  = P (A1,B1) / 
P (A1)P(B1).  Thus, Sp (A1, B1) = 1 iff A and B are independent under 
P. 

induction" remains a valid sequential decision rule! See my [1988] discussion of this 
issue in connection with decision rules that  abandon the "independence" postulate. 
8The condition involving (J is similar to, e.g., DeGroot 's [1970] assumption of an ex- 
traneous continuous random variable, and is similar to the "fineness" assumptions in 
the theories of Savage [1954], aamsey  [1926], Jeffrey [1965], etc. 
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LEMMA. If ~ displays dilation in this sub-algebra, then 

infT) {Sp (A1, B1)} < 1 < sup/~ {Sp (A1, B1)}. 

PROOF: Direct calculation. 

THEOREM. If 7 ) displays dilation in this subalgebra, then there exists 
P# C 7 ) such that 

S p #  (A1, B1) = 1. 

PROOF: By the lemma, there exists P1 and P2 such that Sp 1 (A1, B1) < 
1 < Sp2 (A1, B1). 

Write Px = xP1 + (1 - x)P2 and note that Sp~ (A1,B1) is a continu- 
ous (quadratic) function of x, with coefficients involving P1 (A1), P1 (B1), 
/92 (A1) and /92 (B1). By the mean value theorem, for some 0 < x < 
1, Sp~ (A1 ,B1)=  1. 

3.2 D i l a t i on  a n d  c - c o n t a m i n e d  mode l s .  

In this subsection, I report additional details about dilation for a par- 
ticular (convex) set of distributions, known as the e-contaminated model. 

Given a probability P and 1 > e > 0, define the convex set 

7)~ = {(1 - e)P + eQ:  Q an arbitrary probability}. 

This "model" is popular in studies of Bayesian Robustness. (See, e.g., 
Huber, 1981.) As before, the following result applies to sub-algebras of 4 
atoms. 

THEOREM ~D e experiences dilation iff 

case 1: if Sp (A1,B1) > 1, 

s > [Sp (A1, B1) - 1] �9 max{P  ( A 1 ) / P  (A2) ; P ( B 1 ) / P  (B2) } 

or 

case 2: if Sp (A1,B1) < 1, 

c > [1 - Sp (d l ,  B1)] �9 max{l; P (d l )  P(B1) /P (d2) P (B2)} 

or 

case 3: if Sp (A1, B1) = 1, 

P is internal to 7 ). 

(I omit the proof of this theorem.) 
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Thus, dilation occurs in the e-contaminated model if and only if P 
is close enough (in the tetrahedron of distributions) to the saddle-shaped 
surface of distributions which make A and B independent. 9 The Figure 3.3 
illustrates the "saddle" of probabilities satisfying P ( A ,  B )  = P ( A ) P ( B ) .  

4. S u m m a r y  

I have discussed three decision contexts where extensive forms do not 
reduce to normal forms: 

1. Game theory The Harsanyi-Selten argument about "imperfect" 
equilibria. 

2. Denying "The Prevision of a Prevision" (M. Goldstein's argument) 
2a involving failures of temporal conditionalization 
2b - -  involving non-conglomerability of finitely additive probability 

3. Dilation of Sets of Probabilities. 

The common reason why there is no reduction for these cases is that  
particular "future" options, which the agent knows (in advance) will no t  

be chosen in the sequential decision are, nonetheless, used as though they 
were feasible options in the normal form. That  is, an option which is 
inadmissible in the normal form may be admissible in an extensive form 
(generating that  normal form). Rival choices which defeat that  choice in 
the normal form turn out to be not feasible in the sequential form. 

~ ! ~ ~ i l  i:!i;iii~ ~::!:!:!i!ii! iii!iii;!~! :: :::.:~! :i:i~::i.iiii!i~i:!~!!ili:~i!i~:! ~iii~ilil ii;iiii 

Tetrahedron showing "saddle" surface of distributions 
which make events A and B independent 

Figure 3.3 

9As a contrast, the Density Ratio model is immune to dilation. Let P be a fixed 
probability defined on the atomic algebra ,4, with "atomic" probabilities denoted Pi. 
The DensityRatio model on ~t, for k >_ 1, ~(P,  k) - {Q : qi/qj <_ k .  Pi/Pj}. 
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A N D R E I  M A R K O V  A N D  M A T H E M A T I C A L  

C O N S T R U C T I V I S M  

N.M. NAGORNY 

Computing Centre of the Academy o.f Sciences o.f the USSR 117333, Moscow 

Andrei Andreevich Markov Jr. (22.9.1903- 11.10.1979) whose contribution 
to mathematical  constructivism is the subject of my paper is undoubtedly 
one of the most outstanding and original mathematicians and logicians of 
our time. He traversed a long and thorny path 1 whose twists and turns 
we shall retrace at least cursorily. His research in the theory of algorithms, 
mathematical  logic and constructive mathematics that  spanned thirty years 
of his life was the height of his scientific career. That  period was marked 
by a clean break with the traditional fundamentals of mathemat ics- - the  
set theory which he had for a long time adhered to, but later vehemently 
opposed. For the sake of brevity I shall call this period the "constructivist" 
period in Markov's career. 

Not only did he obtain over this period a number of first-class concrete 
results (among them the solution of two famous algorithmic problems-- the 
identity problem for semigroups and the homeomorphy problem; the results 
related to the recognition of invariant properties of associative calculi; the 
elaboration of the complexity approach in the theory of algorithms, etc.); 
and not only did he set up a scientific school whose representatives are to 
this day working in different countries. 2 He did over this period conceive a 
new view on mathematics (or at least on its foundations). There is hardly 
any need to explain that  this is a rare achievement for a scientist. 

In our country, on Markov's initiative, the trend of mathematics he in- 
augurated is called "constructivist". In the West this trend is called Soviet 
constructivism. I think it would be fairer to call it Markovian constructivism. 

1Some details concerning Markov's scientific biography can be found in the articles [1-3] 
and in the Preface to the monograph [4]. 
2Belonging to Markov's school are such prominent mathematicians as O.Demuth, 
A.Dragalin, M.Kanovich, B.Kushner, S.Maslov, Yu.Matiyasevich, G.Mints, N.Nepeivoda , 
V.Orevkov, N.Petri, Phan Dinh Dieu, N.Shanin, D.Skordev, G.Tseitin, V.Yankov, 
I.Zaslavskii, and many others. 
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Today, Markovian constructivism holds a legitimate place in mathematics. 
It has opened up a wide field of research. Markov's own views, which were 
an extension and continuation (on a new basis) of the ideas of such brilliant 
thinkers as L.E.J. Brouwer and H.Weyl, raised the discussion on the degree of 
constructivity of the means used in mathematics to a new and higher stage. 
These views also characterize him as a profound and original philosopher. 

Another outstanding Soviet mathematician, Andrei Kolmogorov, a man of 
Markov's age, was Markov's uncompromising opponent in many fundamen- 
tal principles of mathematics. Shortly before Markov's death he spoke at 
the celebrations of the 20th anniversary of the chair of mathematical logic at 
Moscow~ University. That chair was founded by Markov and after his death 
was taken over by Kolmogorov. Speaking of Markov's place in mathematics, 
Kolmogorov put his name next to those of G.Cantor, L.E.J. Brouwer and 
D.Hilbert who, in his words, had felt great responsibility for the state of 
affairs in mathematics as a whole. It would be hard to disagree with such a 
highly competent opinion. 

It must be noted that Markovian constructivism largely took shape in 
the pre-computer era. Now that science and society are getting more and 
more computerized, Markov's work reveals new qualities as a possible source 
of precise formulation of problems which would take into account actual 
computational practice and as a basis for solving such problems. 

Of Markov's achievements in the "constructivist" period I shall dwell only 
on Markovian constructivism. I shall not enlarge on any of his specific 
achievements, however important they may be. 

As a pupil of Markov's and an exponent of his school, I want to express 
my deep gratitude to the Programme Committee of the Eighth Section for 
giving me the opportunity of presenting this paper at the Congress. This, 
no doubt, is an authoritative recognition of Markov's services to science. 
Incidentally, he took an active part in the work of the International Union 
of History and Philosophy of Science as vice-president of the Division of 
Logic, Methodology and Philosophy of Science from 1967 to 1971 and from 
1975 to 1979. 

Before getting down to the main part of my report I shall touch upon the 
difficulties that Markovian constructivism encountered soon after its birth. 
Otherwise it would be hard to appreciate Markov's personal courage in those 
far from simple conditions. 

Markov's switch to constructivism and his first steps in this new field co- 
incided with one of the unhappiest periods in Soviet history. The war had 
just ended. Much of the co antry lay in ruins, and famine stalked the land. 
And yet, contrary to all common sense, public attention was, at the will 
of the Communist Party, focused on ideological matters with their multiple 
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problems. These problems had to be considered from the point of view of 
what was officially dubbed "the genuinely scientific and the only correct" 
doctrine--Marxist-Leninist materialism. This means that every scientist of 
the Soviet Union was required, even if only in words, to profess his adher- 
ence, or rather his allegiance, to this "philosophy". Many sciences were 
crushed by the juggernaut of the so called struggle against idealism. These 
included cybernetics (which was called a "reactionary bourgeois pseudo- 
science"). Mathematical logic also became suspect. By a twist of fate the 
set theory, with its undisputed platonism, was regarded as a materialist, and 
not "idealist", direction in mathematics. This is why, already after his first 
public statements spearheaded against the set theory, Markov was accused 
of "idealism and formalism". In those years such accusations suggested po- 
litical heresy which might have the most dire consequences. Markov was 
attacked not only by Marxist philosophers and ideologists, but even by his 
colleagues the mathematicians who adhered to the traditional principles and 
who, after hearing him, felt distinctly uncomfortable. The heated debates 
that followed were, at least at the beginning, a one-man campaign against 
everybody. It was not only his prestige as a scientist and his temperament of 
a fighter that helped Markov to hold his ground, but also, I think, a stroke 
of good luck. 

With time Markov consolidated his position, but neither he nor his school 
of thought were given the credit and honour they so richly deserved. He 
was never awarded distinctions that are usually accorded to scientists of 
his calibre (in particular he was not elected a full member of the Academy 
of Sciences of the USSR). His university chair was discriminated against, 
and his pupils had a much smaller chance of making the grade than their 
peers. None of them is presently a member of Markov's university chair 
or a fellow of Steklov Mathematical Institute of the Academy of Sciences. 
Some of his pupils trained for new professions, whereas others were forced to 
leave the Soviet Union. It would be no exaggeration to say that in its own 
country Markovian constructivism was among the sciences that fell victim 
to persecution. 

And now I would like to give the reader an idea of the way Markov arrived 
at his views on mathematics, and tell him about some of the more typical 
features of ,Markov's personality which were reflected in these views and 
which made them so natural, consistent, dynamic and convincing. 

Markov was born into the family of the celebrated Russian mathematician 
Andrei Andreevich Markov (Sr.; 1856 - 1922). He spent his early years in 
close contact with his father, a man of strong character, with a keen sense 
of justice, and great civic courage (in Russia he was known for his protest 
against the excommunication of Lev Tolstoy. Markov Sr. demanded that he 
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also be excommunicated together with Tolstoy). Markov Sr. sought to have 
an influence on his son outside the home as well. For example, for some time 
he taught mathematics in the class his son attended. 

The young Markov received an excellent education and absorbed the best 
traditions of the highly cultured environment he grew up in: trust in the lofty 
mission of culture, love of and a sense of responsibility for the advancement 
of science, and high moral principles with a clear set of priorities. 

Markov had faultless artistic taste, a keen sense of humour and a feel for 
language. He was a remarkable stylist and in almost every one of his works 
tackled a different stylistic problem. I think that Markov's urge towards a 
severe and sometimes ascetic style must, for purely aesthetic motives, have 
led him to reject the romantically unbridled freedom of set theory. His spirit 
and his temperament accorded more with the restrained, "syntactic", as it 
were, character of his constructivism and with the economy of the logical 
means involved. 

At sixteen, Markov enrolled at the university, but at the chemistry de- 
partment. Soon after his first scientific publication appeared. However, by 
the end of the second year at the university he realized that he would not 
make a good chemist: he was too temperamental and too impatient to just 
stand by and wait for the completion of a chemical reaction. In his third year 
at the university Markov switched to the physics and mathematics depart- 
merit. He majored in physics and, after graduating, worked for a short time 
at the State Physico-Technical Institute, wrote essays on theoretical physics 
(among them one of the first Soviet work [5] on quantum mechanics), and on 
applied geophysics. In 1925, Markov began his post-graduate studies later 
to become a Fellow at the Astronomy Institute. He published a succession 
of papers on celestial mechanics which retain their significance to this day. 

His research in celestial mechanics gradually moved Markov on to purely 
mathematical problems and here he later tried himself in different spheres 
ranging from the applied (such as plasticity theory [6]) to the abstract (such 
as axiomatic set theory [7]). He made a signal contribution in almost ev- 
ery field that attracted his attention. Among the greatest achievements 
of Markov's "pre-constructivist" period, which lasted until about 1947, are 
his works on the dynamic systems theory, topology, and on the theory of 
topological groups. 

Markov's formation as a mathematician must have taken place at the time 
of the triumph of the Cantorian set theory. He must have used that theory 
in his own research. It must have been the Cantorian theory that largely 
determined the theme of his work. And yet, his mathematical career began 
not just because he had received an education in the field. It was rather the 
career of a man who had studied nature and later embraced mathematics, 
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which was the result of the evolution of his creative interests. In this sense 
he was a naturalist. This also had a certain impact on his approach to every 
problem he worked on. If a theory caught his fancy he sought to give its 
development a certain slant so that  its results would have a clear meaning. 

One of the central mathematical  ideas which actually forced mathematics 
to be an abstract, speculative science is the idea of infinity. This idea occurs 
in mathematics in two varieties: in the shape of so-called "actual" infinity 
and in its more modest version called "potential" infinity. These two varieties 
bring forth characteristic methods of abstracting: the abstraction of actual 
infinity and the abstraction of potential feasibility. We shall discuss them in 
connection with one of Markov's key concepts-- the concept of constructive 
process (see [8, p.4] or [4, p.l]). 

A constructive process, according to Markov, is a step-by-step process 
whereby complexes of symbols are generated, a process that  leads from 
complexes which are adopted as initial complexes to new complexes which 
are formed in accordance with previously formulated rules. The complexes 
generated in the course of constructive processes are called constructive 
objects. Markov considers only the simplest constructive objects, namely 
words. Words are strings of symbols (called letters) picked out of a previ- 
ously chosen collection (called the alphabet). This is a description of this 
process: initially, one letter of the alphabet is taken, after which another 
letter is added to the right of it, then a third letter, etc. 

I would like to emphasize the particular tangibility of the constructive 
objects: we come to understand them through our senses, and not only by 
reason as we do it in the case of sets. 

By unfolding a concrete constructive process we may eventually come up, 
at a certain stage, against a shortage of space, time or material. Abstraction 
of potential feasibility in this case consists in ignoring these obstacles, i.e. in 
allowing us to treat this process as unboundedly extendable. Thus another 
letter can always be added to any word. This means that  by making use 
of this abstraction we pass from objects already generated in the process to 
objects eventually arising in this process (i.e. to possible objects). In a com- 
ment on the Russian translation of A. Heyting's book [9] which came out 
in 1965 under his editorship, Markov speaks about Brouwer's mental con- 
structions, saying that  these constructions are "usually just casts of material 
constructions that  we can see everywhere . . . .  On the other hand mental 
constructions often turn out to be blue prints for material constructions" 
(p.162). He could have said the same thing about constructive processes. 

Having adopted the abstraction of potential feasibility, we make it possible 
to provide a satisfactory, from a constructivist point of view, answer to the 
question of what an assertion of the existence of a constructive object with 
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given properties really means. "In constructive mathematics the existence 
of an object with given properties is considered proven if one has provided a 
way for a potentially feasible construction of an object with these properties" 
([10], p.9). 

As for the abstraction of actual infinity in the given situation, it ignores 
the impossibility of completing the given process. This abstraction looks at 
this process as accomplished and integrates all the generated objects into 
one comprehensive set. The latter is considered an object of the same level 
as its components. 

This abstraction is, undoubtedly, central to the Cantorian set theory. 
However, the validity of its utilization in mathematics has repeatedly been 
questioned. Brouwer and Weyl believed that this abstraction did not meet 
the requirements of intuitive clarity. Hilbert [11] criticized it as not corre- 
sponding to reality: "... das Unendliche ist in der Wirklichkeit nirgends zu 
finden, was fiir Erfahrungen und Beobachtungen und welcherlei Wissenschaft 
wir auch heranziehen. Sollte nun das Denken fiber die Dinge so un/ihnlich 
den Geschehnissen mit den Dingen sein und so anderartig vor sich gehen, so 
abseitig von aller Wirklichkeit?" 

What was Markov's attitude to this abstraction? How did he treat the 
Cantorian set theory in general? As I said earlier on, Markov in his "pre- 
constructivist" period did use set theory. He also adhered to the then gener- 
ally accepted standard of constructing mathematical theories which required 
defining all mathematical concepts strictly in set theoretical terms, and uti- 
lizing traditional Aristotelian logic as their logical apparatus. 

However as time went on, Markov, who right from the start of his math- 
ematical career strove for logical clarity and showed great interest in the 
foundations of mathematics, felt deeply dissatisfied with the groundwork 
upon which mathematics rested at that time. 

Quite naturally, he was worried about the emergence in this groundwork of 
"sinister cracks" ([8], p.42) in the form of antinomies of set theory and the 
absence of any guarantees against the emergence of new antinomies after 
overcoming those already revealed. But he was also dissatisfied with the 
absence of any more or less precise definition of the central set theoretical 
concept, namely the concept of set. In fact, according to the standard just 
mentioned, the result of eliminating from whatever mathematical statement 
all definitions of concepts contained in it turns this into a statement about 
sets. But how is this proposition to be understood when even a definition 
of set is lacking? 

Markov was also greatly disturbed by the fact that several important 
mathematical concepts (such as real numbers) are non-constructively de- 
fined. These non-constructive definitions speak about certain sets, and at 
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the same time ignore the possibility of constructing such sets. The non- 
constructivity of these definitions in turn determines the non-constructivity 
of the basic mathematical theories (such as mathematical analysis) which 
manifests itself in the so-called "pure existence theorems". These theorems 
assert the existence of certain objects with given properties without a clue 
as to how these objects can be found, and without so much as an attempt 
to make these objects tangible in any way (see [12], p.316). Pure existence 
theorems usually emerge out of apagogical proofs, which mainly result from 
the use of the so-called "law of the excluded middle". But the latter, as is 
known, is grounded on the abstraction of actual infinity. 

Markov continues the criticism of his predecessors with regard to this ab- 
straction. However, his whole approach to criticism is different from that of 
Brouwer, Weyl and Hilbert. He notes that it is possible to justify the law 
of the excluded middle as a general logical principle on this basis, and says: 
"The trouble is that this very idea is too fantastic. After all, one is unable to 
think of an infinite, i.e. never ending processas a finished one, without exer- 
cising brute force over our reason which rejects such contradictory fantasies. 
Actually, we wanted to consider infinite processes as finite processes, i.e. 
to abstract ourselves from their infinity" ([8], p.41). Speaking about "pure 
existence theorems" in the study [12] Markov points out that "abstractions 
are necessary in mathematics. However, they must not be exercised for their 
own sake, which would lead to a point where there is no way of getting back 
down to the ground. We must always remember the transition from the 
abstract thinking to praxis as the necessary phase of cognition of objective 
reality by man. When the possibility of such a tradition is very much in 
doubt, we should reconsider the use of old abstractions and replace them 
with new ones" (p.315-316). 

In their sharp criticism of the set theory L.E.J.Brouwer [13,14] and later 
H.Weyl [15] looked for a positive way out of the crisis. They saw it in the 
building up of mathematics without using the abstraction of actual infin- 
ity. Brouwer's programme (his intuitionism) consisted in the building up of 
mathematics on the basis of "mental mathematical constructions". Brouwer 
showed that the study of such constructions requires a special logicwhich 
would be different from Aristotelian logic. He outlined the contours of this 
intuitionistic logic which, among other things, rejected the law of the ex- 
cluded middle as a general logical principle. 

Undoubtedly, Brouwer's intuitionism turned out to be a major event in 
mathematics, philosophy and logic. 

Markov fully accepted the critical part of the intuitionistic programme. 
His view on the law of the excluded middle, as he himself put it "came very 
close to Brouwer's point of view" ([8], p.44). However, he was not satisfied 
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with the positive part of the programme: "Choice sequences (in Brouwer. 
- N.N.) are not constructive objects and they could hardly be 'looked at' 
without using the abstraction of actual infinity" ([8], p.45). 

Markov closely followed major developments in foundations of mathemat- 
ics. Quick to respond to anything new, he readily appreciated the signifi- 
cance of the first steps made by the theory of algorithms. He discerned not 
only the technical tools it offered for solving a number of famous algorithmic 
problems, but also the general logical and architectural perspectives which 
they opened in the foundations of mathematics. Markov thought highly of 
Church's Thesis which asserted the possibility of making more precise the 
general, somewhat vaguely formulated idea of algorithm. He appreciated 
the significance of that thesis which foresaw the part that it would play in 
constructive mathematics. The largely empirical justification of Church's 
thesis seemed quite convincing to Markov the naturalist (Markov compares 
the status of this thesis to that of the Law of the Conservation of Energy; 
see, for instance, [4, p.108]). Due to Church's Thesis, the study of algorithms 
boiled down to a consideration of constructive objects (and even just words) 
of a certain type. 

Markov was greatly impressed by S.C.Kleene's work [16] which first came 
out in 1945. Later Markov said on many occasions that this article had 
exercised great influence on the evolution of his own views on the problems 
of foundations of mathematics. It was at that time that Markov turned to 
constructive mathematics once and for all. In 1947- 1948 only two papers 
by him were published that pertained to set theoretical mathematics. Those 
were his last publications within the framework of this mathematics, 

In later years Markov seldom and reluctantly spoke about his activities 
in the "pre-constructivist" period and said that there were things in them 
that he could no longer understand (which was his way of saying that he 
judged them fallacious). This explains why young colleagues thought him 
an expert par excellence in mathematical logic. 

So, what does Markov's programme for mathematics consist in? 
Markov suggests that: 

1. Constructive mathematics should deal exclusively with constructive 
objects. 

2. These objects should be treated only within the framework of potential 
feasibility abstraction, the abstraction of actual infinity being banned. 

3. The term "algorithm" should be understood in a precise way (in the 
light of Church's thesis). 
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4. Due to the nature of the allowed objects (item 1) and abstractions 
(item 2), the understanding of mathematical statements should be 
based upon specially conceived constructive logical principles. For 
instance, the existence of an object with a given property should signify 
the possession of a way yielding a potentially feasible construction of 
an object with this property. 

5. The used apparatus of logical deduction should be based upon a con- 
structive logic that would exclude the provability of pure existence 
theorems. Such a logic should be free, in particular, from the so-called 
"Law of the Excluded Middle" (viewed as a general logical principle). 

6. One should accept apagogical proofs of statements of the form: "al- 
gorithm f halts when applied to input x" (the so-called "Markov's 
Principle"; see, for instance, [4, p.348- 350]). 

Remarks :  

To i tem 1. 

1.1. The restriction set by this item means that the concepts of con- 
structive mathematics are to be defined, as they arise, in terms 
of constructive objects. Let us observe that the concepts of set 
theoretical mathematics were defined in terms of sets. 

1.2. Markov considers but the simplest constructive objects, namely 
words. 

To i t em 3. The precise notion of an algorithm currently used in Markov's 
school is his own concept of Normal Algorithm, very attractive as, a 
research as well as a didactic, tool. Relatively few are those who are 
aware that this notion raised from research on the identity problem 
for semigroups, precisely, from the search for a satisfactory rendering 
of its solution. 

To i tems 4 and 5. At the beginning of his "constructivist" period Markov 
adopted a semantics inspired by Kleene's realizability (the already 
mentioned paper [16]). However, if one tried to rely upon such a 
semantics for a systematic building up of constructive mathematics 
which should comprehend the theory of algorithms, one would fall into 
a vicious circle, as realizability is itself based upon the precise notion 
of algorithm. To overcome this difficulty as well as those aroused by 
the urge to understand the meaning of implication, Markov devised 
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the so-called graded semantic system (see for example, [17]). This was 
intended to provide a framework for the developement of constructive 
logic, theory of algorithms and specific mathematical theories in their 
interconnection. Having no space to dwell any longer upon this sub- 
ject, I shall simply observe that while working on his system Markov 
developed a slant towards intuitionism which he had kept away from 
before, at the beginning of his constructivist period. 

To i t em 6. Markov convincingly shows that his principle can be justified 
without using the abstraction of actual infinity. So, this principle is 
compatible with item 2 of Markov's programme. 

In spite of its sobriety the sketched Markov's programme provides a frame- 
work in which many important parts of mathematics can be built up con- 
structively. Mathematical analysis happens to be the most thoroughly de- 
veloped area in Markov's school. Markov laid down its foundations in 1954 
in the inaugural paper [18]. A suggestive result from the latter will be men- 
tioned below. Basic concepts and a few chosen facts concerning constructive 
analysis can be found in Markov and Nagorny's monograph [4]; a system- 
atic treatment in B.Kushner's book [19]; a detailed survey of results in this 
area being Kushner's paper [20]. Here I shall confine myself only to a few 
illustrations. 

(a). We may introduce natural numbers as words built up from the symbols 
0 and 1 which have the form 

0 01 011 0111 01111 
(zero) ( o n e ) ( t w o ) ( t h r e e ) ( f o u r )  

and so on. 

It is obvious how to define a constructive process generating these 
words. 

(b). By adding to the natural numbers all the words of the form - N ,  where 
" -"  is a new letter and N is a natural number, we get the integers. 

Examples: 0111 ( t h r ee ) and -0111  (minus three). 

(c). By adding to the integers all the words of the form M/N,  where "/" is 
a new letter, M is an integer, N is a non-zero natural number, we get 
the rational numbers. 

Examples: 011 ( two) , -0111 (minus three) , -011/0111 (minus two- 
thirds). 
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(d). A normal algorithm (encoded in a proper way by a word) is called 
a constructive sequence of rational numbers if, being applied to any 
natural number, it produces a rational number. 

(e). A pair of algorithms (encoded in a proper way by a word) is called 
a constructive real number if the first algorithm is a constructive se- 
quence of rational numbers and the second effectively estimates the 
rate of convergence of this sequence. 

For such constructive real numbers one can define in some natural way 
the relations of order and equality as well as arithmetical operations. 

(f). A normal algorithm (encoded in a proper way by a word) is called a 
constructive real function if it satisfies the following properties: 

(i): If it halts when applied to a constructive real number, then it 
produces a constructive real number; 

(ii): If it halts when applied to a constructive number, then it halts 
when applied to every constructive real number equal to this; 

(iii): If it halts when applied to two equal constructive real numbers, 
then it produces equal constructive real numbers. 

In Markov's paper [12] (see also [181)it is shown that no constructive 
real function can be discontinuous, i.e. that  no real function can have 
a constructive discontinuity at any point. 

Later in 1959 G.S.Tseitin [21] obtained a final result in this direction 
by showing that  every constructive real function is in fact continuous. 

(g). C a u c h y ' s  m e d i u m  value  t h e o r e m .  It plays an important role in set 
theoretical mathematical analysis. This theorem implies that, given 
any continuous function assuming values of the opposite sign on the 
extremities of an interval, there exists an x in this interval such that  
f ( x )  = 0. This is a typical "pure existence theorem" which does 
not yield any method of finding the required x. It is worth noting 
in this connection that there are no satisfactory numerical methods 
of solving the equation f ( x )  = 0 for sufficiently large classes of sign 
changing functions f.  Constructive analysis throws light upon this 
state of affairs. It happens that the following three theorems hold 
(G.S.Tseitin [22]): 

(I). Given any continuous constructive real function f assuming values 
of opposite sign on the extremities of an interval, it is not true 
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that f ( x )  is different from 0 for all constructive points x in this 
interval. 

(II). There is no normal algorithm such that, being applied to any f of 
this sort, would produce a constructive real number x such that 

f ( x )  = 0 .  
However, the following theorem holds: 

(III). There exists a normal algorithm which, being applied to any 
pair f ,  s, where f is a function of the considered sort and c is 
a positive rational number, produces a constructive point x such 
that I f (x) l < ~. 

So, no uniform method can extract enough "information" from any 
continuous constructive real function f changing sign in order to find 
a solution to the equation f ( x )  = O. It is possible, however, to find 
uniformly by f and c a constructive point x such that If(x)l  <_ ~. 

Let us observe that this is just the problem solved in practice. 

It is worth noting that the proof of (III) requires the use of Markov's 
Principle (the 6th item of Markov's programme). 

(h). Specker ' s  Example .  This is essentially a "constructive counterex- 
ample" to the well-known Weierstrass theorem, asserting that any in- 
creasing bounded sequence of real numbers converges to a limit. 

Inspired by Weierstrass' "pure existence theorem" a mathematician 
could eventually succeed in finding the limit of this or that specific 
increasing bounded sequence. However, as follows from Specker's con- 
struction [23], he will fail to achieve this result every time. In fact, 
E.Specker exhibited an increasing bounded constructive sequence of 
rational numbers which does not converge to any constructive real 
number. Specker's example sets up an essential obstacle: no ingenuity 
would secure the computing of such a number. 

An experienced specialist in numerical methods should, of course, have 
a strong feeling for the examples described here. However, we believe that 
the possibility of expressing this feeling in the form of precise mathematical 
assertions is undoubtedly an outstanding achivement of Markovian construc- 
tivism. 
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C O N T R I B U T I O N S  T O  T H E  H I S T O R Y  O F  

T H E  C L A S S I C A L  T R U T H - D E F I N I T I O N  

JAN WOLEIQSKI 

Jagiellonian University, Institute of Philosophy, Krak6w, Poland 

1. I n t r o d u c t i o n  

Although truth belongs to the family of crucial philosophical categories, 
writing its general history still remains a serious challenge for historians 
of philosophy. Also historical accounts of particular truth-theories are 
rather fragmentaric. Since the classical (also called "the correspondence") 
theory of truth has become the most popular and influential among all 
hitherto proposed answers to the philosophical problem of truth, a lack of 
its written history is especially strange, more than in the case of its various 
rivals; this theory maintains, roughly speaking, that truth consists in a 
relation of correspondence (agreement, adequacy or conformity) which 
holds between so called bearers of truth (judgements, ideas, thoughts, 
propositions, statements or sentences) and reality. 

This paper presents a sketch of how the gap could be filled with respect 
to the classical concept of truth (CCT for brevity). It is just a sketch which 
by no means pretends to any completeness. The history of the classical 
(as well as every other) theory of truth requires taking into account at 
least four points, namely 

(A) statements which have been explicitely intended as definitions (or 
other explications) of CCT; 

(B) formulations which could be interpreted as definitions (or other ex- 
plications) of CCT, independently of the intentions of their authors; 

(C) the philosophical environment of formulations collected under (A) and 
(B); it is especially important for cases falling under (B); 

(D) criticism of CCT and its defences against raised objections. 

I would like to touch each of (A)-(D) but my principal goal is to con- 
tribute to (A) and (B). 
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Although the theory which is the subject of this paper goes back to 
the ancient Greeks, its presently used labels are rather new. The term 
'correspondence' in the context of truth theory was introduced by Russell 
(see Russell 1910, 1912). However, Russell himself did not use (at least 
in his earlier works) the term 'the correspondence theory of truth';  in his 
book from 1984 (written in 1913), he distinguishes (see p. 149): theories 
which define truth by a correspondence, pragmatism and the coherence- 
theory. Certainly, the label 'the correspondence theory of truth '  was in- 
vented under Russell's influence but it is difficult to say who employed 
it for the first time. The same concerns its German counterpart, namely 
'Ads der Wahrheit '  which became popular in the 1930s. 
Also there are difficulties as far as the matter  concerns where and when 
the expression 'the classical theory of t ruth '  has appeared in philosophy. 
Anyway, this name is very common among Polish philosophers (see (27) 
below). 

2. Aletheia in old G r e e k  (see Boeder 1958) 

Leaving out the full etymology of aletheia (which for instance has led 
Martin Heidegger to far reaching claims concerning the concept of t ruth  

"truth as openness"), let me note that this word was used in old Greek 
(especially in early Greek poems) in dialogical situations which involved 
knowing and asking persons. This use was neither predicative nor attribu- 
tive; the word occurs together with so called (in Latin terminology) verba 
dicendi. Then, aletheia referred neither to abstract statements nor to 
things in itself but rather to locutions asserting something about concrete 
cases. To produce an aletheia (that is, to say "something true") meant to 
tell someone "how it is" with reference to a concrete object. 

3. Aletheia in t he  P r e - S o c r a t i c s  

There are only very few fragments of the Pre-Socratics in which something 
is said on truth. Most of them are metaphorical or of a secondary impor- 
tance. This is probably a reason why historians of philosophy are normally 
not attracted very much by the theory of t ruth in the Pre-Socratics; for 
instance, the index of subjects in G. S. Kirk, J. E. Raven and M. Schoefield 
1957 does not contain the word ' truth' .  Some philosophers try to derive 
(e.g. Herbertz 1913) certain consequences for the Pre-Socratics' account 
of t ruth from their more general epistemolological views, like direct or 
naive realism. ~ So interpreted the Pre-Socratics, or rather some of them, 
especially Democritus, are presented as seeing the nature of t ruth in 'an 
agreement of thought and being'. A very similar view is also attr ibuted 
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to Parmenides for his famous statement "[...] for the same thing is for 
conceiving as is for being" (cf. Coxon 1986, p. 54). Some authors (see for 
instance Krapiec 1959) regard this statement as the first strict account of 
the idea of an intentional relation between thought and its object. 

I think that we are not able to derive any substantial theory of truth 
from the fragmentaric and cryptic texts of the Pre-Socratics. These re- 
constructions which appeal to their general standpoints have no confir- 
mation in more concrete statements. In particular, no fragment on truth 
occuring in preserved texts of pre-Socratic philosophers might be liter- 
ally translated with the help of such words as 'agreement', 'adequacy' or 
'correspondence'. 

Fortunately, grammarians (see Boeder 1958) have established several 
important facts for our problem. Namely, the Pre-Socratics extended 
the use of aletheia in such a way that it was no longer limited only to 
concrete dialogical situations. Aletheia (as referring to statements of a 
sort) for pre-Socratic philosophers is primarily an amount of a knowledge 
(conceived much more abstractly than in the Homeric era) consisting in a 
relation of a knowing person to a related object of knowledge. Thus, the 
statement 'snow is white' belongs to aletheias just because snow is white. 
A more sophisticated description of this usage of aletheia might consist in 
an appeal to a relation of correspondence between a statement and what 
is stated in it. However, the point is that no such appeal is involved in 
pre-Socratic "semiotics" concerning aletheia. 

The observations made by grammarians show at least two things. First- 
ly, the Pre-Socratics used aletheia in a more depersonalized way than their 
pre-philosophical precedessors. Secondly, this more abstract treatment of 
aletheia must be considered as an essential step toward its predicative use. 

4. P l a t o  

Two principal fragments by Plato on truth are these (cf. Jovett 1953): 

(1) Socrates: Come now, tell me this. Do you call anything "speaking 
truths" and "speaking falsehoods"? 
Hermogenes: I do. 
Socrates: So there would be such things as true and false speech? 
Hermogenes: Certainly. 
Socrates: So that which speaks of things that are, as they are, 
would be true speech? And that which speaks of them as they are 
not, would be false speech? 
Hermogenes: Yes ( Cratylus 385 b). 

(2) Stranger: And the true one states about you the things which are 
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(or the facts) as they are. 
Theatheus: Certainly. 
Stranger: Whereas the false statement states about you things 
different from the things that are. 
Theatheus: Yes. 
Stranger: And accordingly states things that are not as being. 
Theatheus: No doubt. 
Stranger: Yes, but things that exist, different from things that exist 
in your case. For we said that in the case of everything there are 
many things that are and also many that are not. 
Theatheus: Quite so (Sophist 263 b). 

There are many points in both quoted fragments which require com- 
ments. Especially, we can ask how Plato sees relations between being 
and existence. However, without entering into this very difficult problem, 
we clearly observe that Plato links truth, existence (being) and predica- 
tion. His account of truth is abstract personal parameters play only a 
secondary role in the explanations offered by Socrates and the Stranger. 

5. A r i s t o t l e  

Almost everybody knows that it was Aristotle who proposed the classi- 
cal (or correspondence) theory of truth for the first time. However, the 
fact that his writings contain different and often mutually non-equivalent 
statements on truth is less recognized. This is a sample of Aristotelian 
explanations concerning the concept of truth (cf. Ross 1924, Acrill 1963): 

(3) To say of what is that it is not, or of what is not that it is, is false, 
while to say of what is that it is, and of what is not that it is not, 
is true (Metaphysics 1011 b); 

(4) The fact of the being of a man carries with it the truth of the 
proposition that he is; and the implication is reciprocal: for if a 
man is, the proposition wherein we allege that he is, is true, and 
conversely, if the proposition wherein we allege that he is is true, 
then he is. The true proposition, however, is in no way the cause 
of the being of the man, but the fact of the man's being does seem 
somehow to be the cause of the proposition, for the truth or falsity 
of the proposition depends on the fact of the man's being or nor 
being (Categories 14 b); 

(5) But since that which is in the sense of being true or is not in the 
sense of being false, depends on combination and separation, and 
truth and falsity together depend on the allocation of a pair of 
contradictory judgements; for the true judgement affirms where 
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the subject and predicate really are combined, and denies where 
they are separated, while the false judgement has the opposite of 
this allocation (Metaphysics 1027 b); 

(6) [...] he who thinks the separated to be separated and the combined 
to be combined has the truth, while he whose thought is in a state 
contrary to that of the objects is in error (Metaphysics 1051 b); 

(7) It is not because we think truly that you are pale, that you are 
pale, but because you are pale we who say this have the truth 
(Metaphysics 1051 b); 

(8) Propositions correspond with facts (Hermeneutics 19 b). 

The formulation (3) is usually taken as Aristotle's official definition of 
truth. Now (4) repeats the content of (3) but adds that being is in a sense 
more basic for truth than an assertion which is qualified as true. The two 
statements are not equivalent because neither does (4) follow from (3) 
nor does the reverse entailment hold. Statements (5) and (6) introduce 
an explicit ontological parameter, namely combination and separation; 
these statements seem to be equivalent (or at least "nearly" equivalent). 
On the other hand, there is no direct entailment from (5) (or (6)) to (3) 
or (4), and back. 

Perhaps one might say that Ca is b' is true if and only if the relation 
which holds between referents of a and b is mapped by the relation holding 
between a and b, and false if the mapping is not the case. If we decide 
to label mapping as 'combination' and not-mapping as 'separation', we 
obtain something very close to (5) and (6). And if we look at combina- 
tion as correspondence and separation as non-correspondence, (5) and (6) 
become popular formulations of the classical definitions of truth. 

The statement (7) seems to exemplify previous explanations, particu- 
larly (3). Finally, (8) explicitly speaks about facts and correspondence 
but it is only a marginal remark made by Aristotle when he considered 
the celebrated sea-battle problem. Hence, there are no sufficient reasons 
to treat (8) as a serious proposal to define the concept of truth. 

If we take (3) as Aristotle's official truth-definition (and, a fortiori, as 
the first mature explanation of CCT), then other Aristotelian formula- 
tions should be understood rather as more or less auxiliary comments 
than proper definitions of truth. The point is very important because no 
idea of correspondence is directly involved in (3). Although, as my previ- 
ous remarks show, 'combination' can be replaced by 'correspondence' but 
nothing forces us to dress Aristotle's truth-theory into "correspondence 
talk". In fact, (3)-(7) may be explained without any reference to such 
ideas as correspondence, agreement, adequacy or conformity; recall that 
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(8) is only a marginal remark. I think that the best understanding of 
what is going on in Aristotle's theory of truth consists in looking at (3) as 
something which is very closely related to (1) and (2). Then if we think 
of Plato's philosophy of truth as a further step in the tradition begin- 
ning with old Greek poems and continued by the Pre-Socratics, Aristotle 
should also be considered in the same way. Under this assumption, (3) 
schematically says how to answer the question: how is it? Although Aris- 
totle supplements (3) with considerable ontological equipment, his main 
intuition concerning the concept of truth seems very simple. 

6. Schoolmen  

Various explanations by Peter Abelard of the concept of truth offered in 
his Logica Ingrediendibus lead to (see De Rijk 1956, p. LIV) 

(9) the sentence p is equivalent with 'p is true' if and only if p is the 
case. 

Clearly, (9) anticipates the semantic definition of truth but it was not 
properly understood in the Middle Ages (nor later). 

The most famous medieval explication of the concept of truth comes 
from Thomas Aquinas. His formulation is this: 

(10) Veritas est adequatio intellectus et rei, secundum quod intellectus 
dicit esse quod est vel non esse quod non est (De Veritate 1,2). 

The passage which begins with the word secundum, is simply a repeti- 
tion of Aristotle's main formulation (see (3) above). But the first part of 
(10) veritas est adequatio intellectus et rei is an obvious addition 
to Aristotle, actually related to (5) or (6). Usually, (10) is quoted/in its 
simplified version limited to its first part: yeritas est adequatio intellectus 
et re/; in fact, this shortened formula is the most popular wording of the 
classical truth-definition. However, everybody who employs this simpli- 
fied record of CCT as "Aristotelian", must remember that it is certainly 
not Aristotelian to the letter. The question whether and to which extent 
it is Aristotelian in spirit requires special investigations that exceed the 
scope of this paper. So I restrict myself to some remarks on adequatio 
intellectus et re/. 

One can link the meaning of adequatio in (10) with the second (Aris- 
totelian) part of this formula. However, Thomas Aquinas also uses such 
terms as conformitas, correspondentia and conyenientia to explain his un- 
derstanding of CCT. It suggests his adequatio expresses (or at least might 
express) contents which is not quite reducible to Aristotelian intuitions. 

What is going on in the first part of (10)? There are several possible 
answers. Let me indicate three. Firstly, veritas est adequatio intellectus 
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et rei may be regarded as a counterpart of (5) or (6). Secondly, the fact 
that the adequatio-formula opens Thomas' definition seems to suggest 
that he changed the centre of gravity in the Aristotelian truth-theory in 
such a way that adequatio, correspondentia, conformitas or conyenientia 
became crucial ideas in defining truth. Thirdly, the adequatio-formula 
was invented by the Schoolmen to capture intuitions concerning truth in 
a simple way; the Schoolmen very much liked brief formulations. It is 
very difficult to decide today which interpretation (I am very far from 
claiming that my three cases exhaust all possible interpretations of (10)) 
is correct with respect to Aquinas' original intentions. However, the next 
development of Thomism rather followed the second interpretation. For 
instance, Suarez says that yeritas transcendentialis signiticat entitatem rei, 
connotondo cognitionem seu conceptum intellectus, cui talis entitas con- 
formatur vel in quo talis res representatur (Disputationes metaphysicae, 
8, 2.9). The content of (3) is completely absent in Suarez. He proposes 
instead an analysis of truth with the help of the concept of representa- 
rio and seems to assume that a conformitas (adequatio, correspondentia) 
holds between thoughts and their objects. That is what I mean by "chang- 
ing the centre of gravity". Most post-medieval thinkers adopted this route 
in their thinking on truth and tried to explain how adequatio should be 
understood. 

It is now proper to introduce an important distinction (see Wolefiski 
and Simons 1989), namely that of weak and strong concept of correspon- 
dence. If the concept of correspondence is goverened by (3) (or similar 
statements), we are dealing with correspondence in the weak sense. On 
the other hand, Suarez's approach employs correspondence in the strong 
sense. I am inclined to regard the distinction of the two concepts of corre- 
spondence as fairly crucial for the history of CCT. Thus, we must always 
ask which concept of correspondence is used in particular truth-theories 
because many difficulties with interpreting philosophers' view on truth are 
rooted in their view of the distinction in question. As far as the matter 
concerns the concept of correspondence, it has been explained by notions 
like sameness, similarity, model, picture, co-ordination, isomorphism or 
homomorphism (see some definitions listed in section 9 below). 

Let me finish this section with some historical remarks (see Gilson 1955). 
Thomas Aquinas notes that his definition of truth is derived from Liber 
de det~nitionibus by Isaac Israeli; Aquinas also refers to Avicenna in this 
context. However, adequatio does not occur in Israeli's truth-definition 
which (in Latin version) is this: Et sermo quidem dicentis: yeritas est 
quod est, enuntiatiyus est natura yeritatis et essentiae ejus, quonian i11ud 
sciendum quod est res, yera est; est yeritas nonnisi quod est; this formula is 
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fairly Aristotelian. Avicenna in his Metaphysics says (in Latin translation) 
that veritas [...] intelligitur dispositio in re exteriore cure est ei aequalitas; 
the last word suggests the strong sense of 'correspondence'. It was William 
of Auvergne who introduced the term adequatio in philosophy for the first 
time. He refers (in De uniyerso) to Avicenna in the following way: [...] 
et hoc [intentio veritas] ait A vicenna, est adequatio orationis et rerum. 
Then William adds that the truth is adequatio intellectus ad rein. In 
Albertus Magnus' treatise De bono we find that t ruth is adequatio re/ 
cure intellectu. Then comes (I0). 

(11) 

(12) 

(la) 

(14) 

(15) 

(16) 

(17) 

(is) 

7. M o d e r n  ph i lo sophy  f rom t h e  R e n a i s s a n c e  to  K a n t  

Veritas auterm enunciationis seu iudicii nihil aliud est quam con- 
formitas ore factae aut iudicii mente peracto cum ipsa enuntiata 
seu iudicata (Gassendi, Syntagma philosophiae Epicuri I, 1); 

[...] mot veritd, en sa propre signification, denote la conformitd de 
la pensde avec l'objet (Descartes, A letter to Mersenne, 1639). 

Truth is the marking down in words the agreement or disagreement 
of ideas as it is [...] [Signs] [...] contain real truth when [...] are 
joined, as our ideas agree, and when our ideas are such as we know 
are capable of having an existence in nature but by knowing that  
such (Locke, An Essay Concerning Human Understanding, IV, V, 
w 

Those propositions are true which express things as they are; or 
t ruth is conformity of those words or signs, by which things are 
expressed, to the things themselves (Wollaston, The Religion of 
Nature Delineated, I). 

Idea vera debet convenire cum suo ideato (Spinoza, Ethica, axiom 
VI); 

Contentons nous de chercher la veritd dans le correspondence des 
propositions qui sont dans l'esprit, avec les choses dont il s'agit 
(Leibniz, Nouveaux Essays, IV.5, w 11). 

Veritas est consensus iudicii nostri cum objecto seu re representata 
(Wolff, Philosophiae rationalis sire logica, w 505); 

Die Namenklgrung der Wahrheit, dass sie ngmlich die Uberein- 
stimmung der Erkenntnis mit ihren Gegenstande sei, wird hier 
geschenkt und vorausgesetzt (Kant, Kritik der reinen Vernuft, 
a 58). 

These samples show that philosophers who represented radically dif- 
ferent epistemological views used the formula "truth consists in confor- 
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mity (agreement) of thought with its object" to express their own truth- 
theories. This is a surprise because we know that they did not share 
the same views on truth. The Cartesian account of truth is much better 
captured by his statement that verum est quod clarae ac distinctae per- 
cipio which expresses the main tenet of the evidence theory. Spinoza and 
Leibniz belong to the family of coherentists; Wolff is a fairly Leibnizian 
philosopher who defends his master against various objections. Kant is 
famous for his strong attack on CCT. Only Gassendi, Locke and Wollas- 
ton are genuine correspondists in this company. Thus, the correspondence 
formula was used in the 16th and 17th centuries as a convenient scheme 
for recording very different, often mutually conflicting, intuitions on truth. 
However, independently of differences in particular cases, the concept of 
correspondence has a constant element in all formulas (11)-(18), namely 
it occurs in its strong meaning. So the distance between (11)-(18) and 
(3) is rather far. 

8. T h e  N i n e t e e n t h  c e n t u r y  

Bernard Bolzano's semantic approach to the concept of truth is perhaps 
from the contemporary point of view the most interesting contribution 
to CCT in the 19th century. Although interesting, it was not influential 
because Bolzano's work was not appreciated in a proper way at that time; 
to some extent, Bolzano's fate resembles that of Petrus Abelard. 

Several important criticisms of the classical theory of truth appeared 
in the 19th century. Jacob Friedrich Fries advanced Kantian objections 
in this way: "We cannot, as is usually done, speak of truth as opposed to 
error by saying that truth is the correspondence of a representation with 
its object. We can only say that the truth of a judgement is its correspon- 
dence with the immediate cognition of reason in which it is grounded. [... ] 
The general meaning of truth is only the internal agreement of mediate 
cognition with the immediate. This immediate recognition possesses its 
truth from its sheer presence of reason" (Fries, 1989, p. 31; the German 
original was published in 1805). This passage contributes to how Kant 
understood correspondence and, moreover refreshes some traditional ob- 
jections against CCT (stated as far back as by ancient sceptics) by point- 
ing out that there is no truth-criterion if truth is conceived as conformity 
of our knowledge with transcendental reality. 

Franz Brentano (who himself defended a kind of evidence theory of 
truth) raised other objections against the classical theory of truth (see 
Brentano 1930). For him, the adequatio-formula leads to a fundamental 
misinterpretation of Aristotle's conception of truth. Moreover, Brentano 
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(19) 

(2o) 

argued that this formula raises serious difficulties of its own, independently 
of its historical relation to Aristotle or any other author. The difficulties 
are these: 

(a) Let A be a sentence and F A a fact corresponding to A. To assert 
that A corresponds to F A one must use a sentence B which says that 
A corresponds to F A. However, it raises the question of correspondence 
of B to F B and so ad inf ini tum. For Brentano, the outlined argument 
shows that the correspondence theory of truth is inevitably burdened by 
regressus ad inf ini tum. 

(b) If truth consists in correspondence with existing reality, we must ask 
what negative existentials, for instance, the statement 'Pegasus does not 
exist' correspond to. 

(c) For Brentano, every logical tautology may be translated into a neg- 
ative existential statement. So we encounter the problem of truth for 
tautologies. 

Independently of Brentano, also Gottlob Frege (see Frege 1892, 1918) 
and Francis Bradley (see Bradley 1914) raised the regressum objection. 
Moreover, for both Frege (truth is not definable for him) and Bradley (he 
defended a coherence-theory), each theory of truth based on the concept 
of correspondence must admit what has been called a Great Fact to which 
all true propositions correspond. However, Frege and Bradley maintained 
that this is an obvious absurdity because the correspondence theory re- 
quires that if a proposition is true, it corresponds not to the whole reality 
but to a particular fact. 

Nevertheless, the correspondence theory of truth was fairly popular 
among philosophers in the 19th century. Let me mention three German 
definitions (though the respective books were published after 1900, they 
expressed thoughts "belonging" to the 19th century): 

Die Wahrheit unserer Erkenntnis ist die, Ubereinstimmung unserer 
Urteile mit der Wirklichkeitswelt; da unsere Urteile riickschreitend 
bis auf Sinneseindriicke zuriickfiihren so ist die Wahrheit unserer 
Erkenntnis schliesslich auch die iibereinstimmung unserer Vorstel- 
lungen und Sinneseindriicke mit der "Wirklichkeit" (Mauthner 
1902, p. 360). 

Ungesucht bietet sich die alte aristotelische Antwort dar, die bis in 
die gegenwart herein ihr ansehen behauptet hat: das Urteil misst 
sich, indem es wahr sein will, an der Wirklichkeit iibereinstimmen. 
Die Unhaltbarkeit dieser Definition fiillt indessem in die Augen, 
sobald man ihr nun ihre genaue Fassung, gibt. Nicht yon einer 
Ubereinstimmung des Urteils, sondern nur yon einer Ubereinstim- 
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(21) 

mung des Urteilsgegenstands mit der Wirklichkeit kann die Rede 
sein. In der Tat ist dies der genuine Sinn der aristotelischen Wahr- 
heitstheorie (Maier 1926, p. 223). 

Materiale [Wahrheit] ist, ganz allgemein, "Ubereinstimmung" 
(Konformit/it) des Denkens mit den Sein. Es gibt aber zwei Arten 
der Materialen [Wahrheiten]: a) Empirisch-immanente [...]. Hier 

. .  

bedeutet die "Ubereinstimmung" yon Denken und Sein [...] nicht 
die Abbildung u. dgl. des Sienden im und durch das Denken, son- .. 
dern Ubereinstimmung des Einzelurteils mit der methodisch geset- 
zen ReMit/it, die in einem System von Wahrnemungs- und Urteils- 
notwendigkeiten sich darstellt [...]. b) Metaphysische [Wahrheit] 
ist die /~lbereinstimmung des Denkens mit der absoluten Wirk- 
lichkeit [...]. Auch hier kann von einen "Abbilden" keine Rede 
sein, sondern die "/s bedeutet hier ein mehr oder 
weniger treffendes "Nachkonstruieren" der transzendenten Wirk- 
lichkeits-Verh/iltnisse in immanenten, begritttichen Symbolen 
(Eisler 1930, pp. 450/451). 

In fact, the definitions (19)-(21) are attempts to adjust the correspon- 
dence theory (in the strong meaning of correspondence) to Kantian ob- 
]ections; this tendency is especially evident in Maier's case who attributes 
correspondence in its strong sense to Aristotle. Eisler's views are par- 
ticularly interesting in this context. His Dictionary summarizes German 
philosophical experience at the end of the 19th century. Reading his ex- 
planations, we can clearly see how difficult it was to explain words like 
'Konformit/it' or 'Ubereinstimmung'. These key words are put in quotes 
or surrounded by phrases like 'mehr oder weniger'. 

9. T h e  T w e n t i e t h  c e n t u r y  

(22) 

(23) 

(24) 

Every judgement is a relation of mind to several objects, one of 
which is a relation; the judgement is true if the relation which is 
one of the objects relates to the other objects, otherwise it is false 
(Russell 1910, p. 156). 

The belief is true when the objects are related as the belief asserts 
that they are. Thus the belief is true when there is a certain com- 
plex which must be a definable function of the belief, and which 
we shall call the corresponding complex, or the corresponding fact 
(Russell 1984, p. 144). 

A judgement that uniquely designates a set of facts is called true 
[...] the concept of truth was almost always defined as an agree- 
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(25) 

(26) 

(27) 

ment between thought and its object or, better, between judge- 
ment and what is judged [...] here is no doubt that this definition 
expresses a correct conception. But which conception? [...] the no- 
tion of agreement, in so far as it is to mean sameness or similarity, 
melts away under the rays of analysis, and what is left is unique 
coordination. It is in the latter that the relationship of true judge- 
ments consists, and all those naive theories according to which our 
judgements and concepts are able in some fashion to "picture" re- 
ality are completely demolished. No other sense remains for the 
word "agreement" than that of unique coordination or correspon- 
dence (Schlick 1974, p. 61; the German original was published in 
1918). 

4.011 A proposition is a picture of reality [...]. A proposition is a 
model of reality [...]. 

4.022 [...] A proposition shows how things stand if  it is true [...]. 
4.05 Reality is compared with proposition. 
4.06 Propositions can be true or false only by being pictures of 

reality (Wittgenstein 1922). 

The propositional function p is true is simply the same as p (Ram- 
sey 1978, p. 45; the first edition of Ramsey's papers was published 
in 1931). 

We should like our definition to do justice to the intuitions which 
adhere to the classical Aristotelian conception of truth (see (3) 
above J . W . ) .  If we wish to adapt ourselves to modern philo- 
sophical terminology, we could perhaps express this conception by 
means of the familiar formula: 

The truth of a sentence consists in its agreement with (or corre- 
spondence to) reality. 

(For a theory of truth which is to be based upon the latter formu- 
lation the term "correspondence theory" has been suggested.) 
[...] we could possibly use for the same purpose the following 
phrase: 

A sentence is true if it designates an existing state of affairs. 

However, all these formulations can lead to various misunderstand- 
ings, for none of them is sufficiently precise and clear (though this 
applies much less to the original Aristotelian formulation than to 
either of the others; at any rate, none of them can be considered 
a satisfactory definition of truth. It is up to us to look for a more 
precise expression of our intuitions [...]. 
Thus, if the definition of truth is to conform to our conceptions, it 
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(28) 

(29) 

(30) 

(31) 

must imply the following equivalence: 

The sentence "snow is white" is true, i f  and only i f  snow is white 
(Tarski 1944, pp. 342/343). 

[...] we arrive at a definition of t ruth and falsehood simply by 
saying a sentence is true if  it is satisfied by all objects, and false 
otherwise (Tarski 1944, p. 353). 

Reverting to the analysis of truth, we find that in all sentences of 
the form 'p is true', the phrase 'is true' is logically superfluous. 
When, for example, one says that the proposition 'Queen Anne 
is dead' is true, all that one is saying is that Queen Anne is dead. 
Thus, to say that a proposition is true is just to assert it, and to say 
that it is false is just to assert its contradictory. And this indicates 
that the terms 'true' and 'false' connote nothing, but function in 
the sentence simply as marks of assertion and denial" (Ayer 1946, 
pp. 117/118). 

An atomic sentence [...] consisting of a predicate followed by an 
individual constant is true if and only if the individual to which 
the individual constant refers possesses the property to which the 
predicate refers (Carnap 1947, p. 5). 

I accept the commonsense theory (defended and refined by Alfred 
Tarski) that t ruth is correspondence with facts (or with reality); 
or, more precisely, that a theory is true if and only if it corresponds 
to the facts (Popper 1972, p. 44). 

The combination 'it is a fact that '  is vacuous [...] 'It is a fact that  
snow is white' reduces to 'Snow is white'. Our account of the truth 
of 'Snow is white' in terms of facts has now come down to this: 
'Snow is white' if and only if snow is white. [...] Here, as Tarski 
has urged, is the significant residue of the correspondence theory of 
truth. To attribute t ruth to the sentence is to attribute whiteness 
to the snow. Attribution of truth to 'Snow is white' just cancels the 
quotation marks and says that snow is white. Truth is disquotation 
(Quine 1987, p. 213). 

The formulations (22)-(31) present a considerable variety of definitions 
intending to capture the classical intuitions. We can preliminary divide 
these proposals into three groups: 

(a) strong correspondence definitions (Russell, Wittgenstein, Schlick, per- 
haps Popper); 

(b) semantic definitions (Tarski, Carnap); 

(c) redundancy and disquotational definitions (Ramsey, Ayer, Quine). 
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It is interesting that in (a) and (c) we find a reference to Tarski 
Popper does it in the group (a) and Quine in (c). There is an irony 
here because Popper and Quine defend with help of Tarski those formu- 
lations which he regarded as wrong. For Tarski, (30) is simply obscure 
but disquotational and redundancy theories have difficulties with a proper 
analysis of the following statement: logical consequences of true sentences 
are true. 

Both Schlick and Tarski criticize traditional versions of the classical 
truth-definition but they do it in radically different ways: Schlick tries 
to strenghten the concept of correspondence, Tarski entirely abandons 
the concept of strong correspondence in favour of something that perhaps 
could be called 'semantic correspondence' (satisfaction by all objects). 

I think that the concept of semantic correspondence is a very good ex- 
plicatum for the concept of weak correspondence. Now, if (3) is to be 
interpreted via weak correspondence, the semantic theory of t ruth has an 
obvious philosophical import as a modern realization of Aristotelian intu- 
itions. This view is opposite to Max Black's very often quoted statement: 
"[...] the neutrality of Tarski's definition with respect to the compet- 
ing philosophical theories of truth is sufficient to demonstrate its lack of 
phi losophical  relevance" (Black 1948, p. 63). Let me remind you that  the 
formula veritas est adequat io  inte l lectus  et rei has been employed (see sec- 
tion 7. above) by competing philosophical theories of t ruth but, as far as 
I know, nobody has considered it as devoid of "philosophical relevance". 
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N O T E S  O N  T H E  V A L U E  O F  S C I E N C E  

LARS BERGSTR()M 

Stockholm University 

It is generally believed that  science is a good thing. (I use the term "science", 
in this paper, to include not only the natural sciences, but also the social 
sciences and the humanities.) Many people--including most s c i en t i s t s -  
take it for granted that  scientific knowledge is valuable for its own sake. In 
addition, scientific research has very important  social effects, and I think the 
predominant view is that  while some of these may be bad or neutral, the 
total impact of science on society is positive rather than negative. After all, 
we do spend a lot of money on science, and scientists have a lot of prestige 
in our society. This might be explained by the assumption that  most people 
think that  science is valuable. But is the belief true? Is science, on the 
whole, good or bad? This is the problem I want to discuss in the present 

1 
paper. 

Everyone would agree that  so far science has had some positive as well as 
some negative effects. For example, it has given us electricity, which may 
be used to make our lives more comfortable, but it has also given us terrible 
weapons, which may one day put an end to our very existence. Einstein 
once described the situation as follows: 

Penetrating research and keen scientific work have often had 
tragic implications for mankind, producing, on the one hand, 
inventions which liberated man from exhausting physical labor, 
making his life easier and richer; but on the other hand, intro- 
ducing a grave restlessness into his life, making him a slave to 
his technological environment, and- -mos t  catastrophic of all 
creating the means for his own mass destruction. 2 

1 This paper partly derives from a talk given in January 1990 to a seminar on "Humanistic 
Aspects of Scientific and Technological Progress" at the Institute of Philosophy of the 
USSR Academy of Sciences in Moscow. I am grateful to the participants for many helpful 
comments. I also wish to thank Hans Mathlein, TorbjSrn Ts and Jan Osterberg of 
Stockholm University for comments on the first written version. 
2Albert Einstein, "A message to intellectuals" (1948), p. 148, in Ideas and Opinions, New 
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Most people would accept this statement. However, there may be some 
disagreement over other alleged effects of science. For example, some people 
may claim that only certain natural sciences, like physics, chemistry, and 
biology have negative effects, and that other sciences, e.g. the humanities, 
have only good effects, in addition to being valuable for their own sake. 
Rousseau, on the other hand, makes no such distinctions when he claims, 
in his famous first Discourse  of 1750, that "our minds have been corrupted 
in proportion as the arts and sciences have improved" .3 He says that the 
sciences "generate idleness" and contribute to "the destruction and defama- 
tion of all that men hold sacred". 4 Rousseau's ideal is Sparta, which is "as 
famous for the happy ignorance of its inhabitants, as for the wisdom of its 
laws", and which is also "eternal proof of the vanity of science" .5 This view 
is very far from being generally accepted. 

In order to make an overall evaluation of science, it seems that one would 
have to do two things. First, one would have to decide what the positive 
and negative aspects of science are. Second, one would have to weigh these 
positive and negative aspects against one another and decide whether or not 
the positive aspects outweigh the negative ones. 

Different people may come to different conclusions here. A majority be- 
lieves that the positive aspects prevail, but there are also some dissidents. 
For example, in a note from 1947, Wittgenstein writes: 

It isn't absurd [... ] to believe that the age of science and tech- 
nology is the beginning of the end for humanity; that the idea of 
great progress is a delusion, along with the idea that the truth 
will ultimately be known; that there is nothing good or desirable 
about scientific knowledge and that mankind, in seeking it, is 
falling into a trap. It is by no means obvious that this is not how 
things are. 6 

A similar, but even stronger thesis has been advanced by Michael Dummett. 
He says that 

it seems to me indisputable, with hindsight, that we should be, 
on balance, far better off than we are if, in 1900 or in 1920, 
all scientific research had come to a permanent stop. With the 

York: Crown Publishers, 1954, pp.147-51. 
3jean Jacques Rousseau, "A Discourse on the Moral Effects of the Arts and Sciences", 
in The Social Contract and Discourses , translated with introduction by G.D.H. Cole, 
Everymans's Library, London: Dent, 1968, p. 123. 
aSee ibid., pp. 131-2, 135-6. 
5Ibid., p. 126. 
6Ludwig Wittgenstein, Culture and Value, Oxford: Blackwell, 1980, p. 56. 
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experience of what happened, we have little reason to doubt that  
the net practical result of future research will be increasingly 
disastrous. 7 

It seems to me that  the pessimism expressed by Wittgenstein, Dummett ,  
and others ought to be taken seriously. It is not obviously correct, but it is 
not obviously wrong either. 

1. Science  a n d  knowledge .  

The main argument for engaging in scientific activities is that this is a w a y -  
and perhaps the only way, or the best waymof gaining knowledge. And 
knowledge, in turn, is supposed to be valuable, either intrinsically or extrin- 
sically (instrumentally) or both. 

However, contrary to popular opinion it might be argued that scientific 
work does not really give us much knowledge. I am taking it for granted, 
then, that knowledge (in a strict sense) has to be true and justified. This is in 
accordance with the standard account of knowledge, s If I know that  p, then p 
is true and I am justified in believing that p is true. Now, it seems clear that 
science produces theories. So, if science produces knowledge, the theories in 
question have to be both true and justified. But several influential positions 
in modern philosophy of science seem to imply that science cannot or may 
not produce theories which are both true and justified. Let us consider some 
of these positions. 

(1) Popper. According to Karl Popper there is no criterion of truth. 9 Even 
observational statements may be mistakenmmainly because "all observation 
involves interpretation in the light of our theoretical knowledge" 1 0  and 
there can be no inductively valid inference from observational statements 
to theories. A given scientific theory may happen to be true, but we never 
have any good reason to believe that it is true. We are never justified in 
believing that a theory is true. Our so-called "knowledge" merely consists of 
conjectures: "even if we hit upon a true theory, we shall as a rule be merely 
guessing, and it may well be impossible for us to know that it is true". 11 

7Michael Dummett, "Ought research to be unrestricted?", Grazer Philosophische Studien, 
vol. 12/13 (1981) p. 292. 
8See e.g. the article "Knowledge and belief" in P. Edwards (ed.) The Encyclopedia of 
Philosophy, New York and London: Macmillan and The Free Press, 1967, vol. 4, pp. 
345-52, esp. p. 345. 
9See e.g. Karl R. Popper, Conjectures and Refutations, New York and London: Basic 
Books, 1962, p. 28. 
1~ p. 23. 
11ibid., p. 225. 
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Popper sometimes seems to imply that  we have some knowledge, as e.g. 
when he says that  "by far the most important  source of our knowledge-- 
apart  from inborn knowledge--is tradition". 12 But in such cases he seems 
to be using the term "knowledge" in a loose or weak sense. What  is referred 
to as "knowledge" in this sense may very well be false and unjustified. For 
all we know, it might still have some value, but it is certainly not knowledge 
in the strict, standard sense. Knowledge in the strict sense is impossible 
according to Popper. 

(2) Kuhn. According to Thomas Kuhn, a theory cannot even be true. 
Kuhn seems to hold that  the term "true" has only intra-theoretic appli- 
cations, and that  there is no sense in which one theory may be a better 
approximation to the t ruth than another. ~3 Hence, on Kuhn's view, we can- 
not know that  a theory as a whole is true or approximately true. It may still 
be possible to know some things, but it seems that  Kuhn is rather pessimistic 
about the epistemological potential of science. 

Of course, this does not mean that  Kuhn is pessimistic about the value 
of science. He believes that  some theories are better than others--according 
to criteria which are internal to science--and that,  in general, later theories 
are better  than earlier ones. 14 His position is also compatible with the view 
that  the scientific enterprise is useful and/or  valuable for its own sake. It is 
just that  any value it may have must be independent of our coming to know 
the truth. 

(3) Quine. One of W.V. Quine ' smos t  well-known theses is that  theories 
are underdetermined by all possible observations. 15 But if theories are un- 
derdetermined in Quine's sense, it seems that  we can have no real evidence 
for them. Whatever observation would be counted in favour of a given the- 
ory counts equally in favour of some completely different theory. There is 
always more than one "best explanation" of any given set of data. Hence, 
we can never know that  a given theory is true. Our evidence can never single 
out our own theory from a set of rival theories. 

Quine is still willing to say, of any theory that  he himself accepts, that  
it is true. There is nothing objectionable about this, for by saying that  a 

12Ibid., p. 27. 
13See e.g. Thomas S. Kuhn, "Reflections on my critics", in Imre Lakatos and Alan Mus- 
grave (eds.) Criticism and the Growth of Knowledge, Cambridge: Cambridge University 
Press, 1970, pp. 321-78, esp. pp. 264-6. 
14See e.g. ibid., p. 264. 
15For a recent formulation of the underdetermination thesis, see W.V. Quine, Pursuit of 
Truth, Cambridge, Mass.: Harvard University Press, 1990, pp. 95-102. For a discussion 
of the thesis and further references, see Lars BergstrSm, "Quine on underdetermination", 
in R. Barrett and R. Gibson (eds.) Perspectives on Quine, Oxford: Blackwell, 1990, pp. 
38-52. 
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theory is "true", Quine just expresses his acceptance of it; in his own words, 
"to call a sentence true is just to reaffirm it". 16 Maybe he would even be 
willing to say, of theories that  he accepts, that  he knows that  they are true. 
By saying this he would merely express his acceptance of the theories in 
question and perhaps also his belief that this acceptance is "justified" in 
some sense. 17 However, the theories in question may still be false. And, 
more to the point, underdetermination still seems to rule out the possiblity 
of justification in the sense of a good reason for believing that  the theories 
are true. If Quine is right, there seems to be no room for knowledge in the 
strict sense. There may be perfect coherence within one's total theory of 
the world, but underdetermination seems to guarantee that  there would be 
equally perfect coherence within some completely different total theory. 

(~) Instrumentalism. Another threat to scientific knowledge is instru- 
mentalism. According to instrumentalism, scientific theories are neither true 
nor false; instead, they are tools which may be used to predict future occur- 
rences. Tools may or may not be useful, but they do not tell us anything 
about the nature of reality. Tools do not tell us anything at all. We may 
be able to use a given theory for predicting what will happen under certain 
conditions, but the theory does not tell us why this will happen. Hence, if 
instrumentalism is right, the common belief that science gives us knowledge 
about the world is to a large extent mistaken. 

A similar conclusion can be arrived at from the assumption that the ac- 
ceptance of a theory consists in the belief that the theory is empirically 
adequate. This may be combined with the view that theories are true or 
false. The point is that the acceptance of a theory does not involve the 
belief that what the theory says about theoretical (non-empirical) states 
and events is true. An account of this kind has been developed by Bas van 
Fraassen. is In so far as scientific theories are only meant to be accepted in 
this way, science gives us no knowledge about the unobservable features of 
the world. Of course, it may still give us knowledge concerning the observ- 
able world. But I think most people believe that  science tells us more than 
that. 

(5) The pessimistic induction. If you reject instrumentalism and adopt 
a realist conception of scientific theories, you are faced with another ar- 
gument against the possibility of scientific knowledge. For the history of 

16W.V. Quine, "On empirically equivalent systems of the world", Erkenntnis, 9 (1975), 
pp. 313-28, esp. p. 327. 
17See W.V. Quine, Quiddities, Cambridge, Mass.: Harvard University Press, 1987, pp. 
108-10. Quine also points out that the concept of knowledge "does not meet scientific 
and philosophical standards of coherence and precision", ibid., p. 109. 
18See e.g. Bas C. van Fraassen, The Scientific Image, Oxford: Clarendon Press, 1980, p. 
12. 
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science seems to suggest that every theory which is accepted by the scien- 
tific community at some time will be rejected sooner or later. One possible 
explanation of this is that there are so many ways in which a theory may be 
wrong and only one way in which it can be right. This point is stressed by 
Rousseau in the following passage: 

What a number of wrong paths present themselves in the investi- 
gation of the sciences! Through how many errors, more perilous 
than truth itself is useful, must we pass to arrive at it? The 
disadvantages we lie under are evident; for falsehood is capable 
of an infinite variety of combinations; but the truth has only one 
manner of being. 19 

If we learn about the nature of reality by trial and error--as Popper 
suggests 2~ and if the nature of reality is very complicated, it is only to 
be expected that our theories are mostly wrong. It has even been held that 
no theory will be accepted for more than two hundred years. 21 A similar 
judgement has been expressed by a leading sociologist of science as follows: 

After all, the majority of all the theories which scientists have 
ever put forward have been rejected as false or misconceived, and 
the majority of the findings which they have reported have been 
forgotten. Scientific knowledge has an extremely short lifetime. 
The knowledge routinely accepted and used in any scientific field 
is on the whole extraordinarily recent: scarcely any fields make 
use of materials more than a few decades old, and such older 
material as is used is very rarely accepted just as it stands. Yet 
because we place such trust in it now, many people have diffi- 
culty in seeing that our present knowledge is likely to be treated 
in three or four generations much as we ourselves treat the knowl- 
edge of three or four generations ago. 22 

In other words, all scientific theories may well be false. If this is so, it seems 
that science produces (useful) delusions rather than knowledge. 

(6) Interpretations. Instrumentalism is perhaps a plausible account of 
many theories in the natural sciences. It is less plausible in the humanities 
and the social sciences. Theories within these latter areas cannot so easily 

1~ "Discourse", pp. 130-1. 
2~ e.g. Popper, Conjectures and Refutations, pp. vii and 312-3. 
21See W.H. Newton-Smith, The Rationality of Science, Boston, London and Henley: 
Routledge, 1981, p. 14. 
22Barry Barnes, About Science, Oxford: Blackwell, 1985, p. 66. 
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be regarded as tools for prediction. There is not much prediction within 
these sciences--and even less successful prediction. However, theories in the 
humanities and the social sciences are often regarded as "interpretations" ,23 
and such interpretations are sometimes held to be neither true nor false. 24 
If this is right, interpretations do not express or contain knowledge. 

The upshot of all these considerations, then, is that science may produce 
much less knowledge than is ordinarily assumed. From the point of view of 
those who believe that  science is valuable because it produces knowledge, 
this is bad news. 

2. K n o w l e d g e  a n d  ignorance .  

However, for the sake of argument, let us now accept the more normal view 
that science has given us a lot of knowledge. In any case, most of us would 
agree that science has provided us with much low-level empirical knowl- 
edge and technical know-how which is amazingly reliable. Nevertheless, it 
is paradoxical that science has also increased our ignorance in many ways. 

The point may be put this way. As science progresses, more things are 
known, but at the same time each person knows less of what there is to know. 
Scientific progress has led to an extreme specialization and fragmentation of 
the scientific enterprise. 25 Even so, the literature within any given special 
field is unsurveyable. I think it is fair to say that for almost every important 
scientific problem it is completely impossible to find out what has been 
written about it. Even before the Second World War the situation was 
desperate. J.D. Bernal reports that there were 33.000 different scientific 
periodicals in 1934. 26 Maybe there are ten times as many today? Or more? 
The rate of growth is truly terrible! For example, Bernal also tells us that  the 
number of entries in the Biological Abstracts had grown from 14.506 in 1927 
to 21.531 in 1934. That  is approximately a 50% increase in only seven years. 
In general, it has been estimated (in the 1960s) that for at least two or three 
centuries, "the crude size of science in manpower or in publications tends 

23See e.g. Charles Taylor, "Interpretation and the sciences of man", The Review of 
Metaphysics, vol. 25 (1971), pp. 3-51. 
24See e.g. Joseph Margolis, Art and Philosophy, Atlantic Highlands, N.J.: Humanities 
Press, 1980, Ch. 6, and Lars Bergstr5m, "Explanation and interpretation of action", 
International Studies in the Philosophy of Science, vol. 4 (1990) pp. 3-15, esp. pp. 13-4. 
25For example, it has recently been reported that "A catalogue of fields of study at 
German universities at present lists more than 4000 fields", see Martin Carrier and Jiirgen 
Mittelstrass, "The unity of science", International Studies in the Philosophy of Science, 
vol 4 (1990)pp. 17-31, esp. p. 17. 
26j.D. Bernal, The Social Function of Science, London: Routledge, 1939, p. 117. 
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to double within a period of 10 to 15 years". 27 
Already in 1939, Bernal claims that  

The result is frightening. 

it has become impossible for the average scientific worker, who 
does not wish to devote the major part of his time to reading, to 
keep up with the  progress in his own field. 2s 

This was over 50 years ago. Today the situation is certainly much worse. 
Of course, much of what is written is not worth reading, but this is a poor 
consolation, for in order to know what is worth reading, one has to read 
everything. This may not be strictly true, but it is at least sufficiently true 
to present us with a genuine problem. Quine puts the point as follows: 

The mass of professional journals is so indigestible and so little 
worth digesting that  the good papers, though more numerous 
than ever, are increasingly in danger of being overlooked. 29 

Quine is referring primarily to philosophical journals, but I am inclined to 
believe that  the same is true in most or all fields. For some years I have had 
the habit of asking professors from various disciplines, whom I happen to 
meet, whether they would agree that  something like 75% of the research done 
in their own field is bad or uninteresting. So far everyone has agreed to this. 
It is also confirmed by Bernal, who claims that  scientific publications are 
"of very unequal value; a large proportion of it, possibly as much as three- 
quarters, does not deserve to be published at all" .3o So, a large percentage of 
the scientific work which is published is bad or boring or both, and possibly 
the percentage of bad work is larger the more that  is published. 31 

A related point is this. Partly because of the increased specialization, 
and partly because of scientific progress, scientific theories have become in- 
creasingly difficult to understand. Most people may be able to grasp the 
principles behind the steam engine, for example, but only a small minor- 
ity understand the functioning of a laser or a computer. Quantum theory 
is certainly more difficult than Newtonian mechanics. Hence, it may be 
safely assumed that  educated people have never before been as ignorant of 

27Derek J. de Solla Price, Little Science, Big Science... and Beyond, New York: Columbia 
University Press, 1986, p. 5. However, as Barry Barnes points out, "the rate of scientific 
growth has fallen off very markedly since the early 1960s", Barnes, About Science, p. 5. 
2SBernal, The Social Function of Science, p. 117. 
29W.V. Quine, Theories and Things, Cambridge, Mass.: Belknap Press, 1981, p. 197. 
3~ The Social Function of Science, p. 118. 
31The last point is also supported by Quine. He says that new journals "were needed by 
authors or articles too poor to be accepted by existing journals", Theories and Things, 
p. 196. 
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the science of their time as they are today. This is also true of the scien- 
tists themselves. Something like this is suggested by Kuhn in the following 
passage: 

Is it not possible, or perhaps even likely, that  contemporary sci- 
entists know less of what there is to know about their world than 
the scientists of the eighteenth century knew of theirs? Scientific 
theories, it must be remembered, attach to nature only here and 
there. Are the interstices between those points of a t tachment  
perhaps now larger and more numerous than ever before? 32 

In addition, there is also the mechanism that  the more one knows about 
something, the more sceptical one becomes of various theories and ideas in 
thc field in question, and the more one becomes aware that  one really knows 
very little. 

Hence, my general conclusion is that  because of the scientific progress, 
there is more ignorance than before. If ignorance is bad, this is an unfortu- 
nate effect of science. 

3. T h e  intrinsic value of  scientific k n o w l e d g e .  

If knowledge is good, then either it is good in itself, or it is good as a means 
to something else. Its value is either intrinsic or ext r ins ic~or  both. I shall 
discuss the extrinsic value of knowledge in sections 4 and 5. In this section, 
I shall consider the question of whether knowledge is good for its own sake. 

I guess most scientists would answer this question in the amrmative. The 
claim that  knowledge is valuable for its own sake is perhaps especially pop- 
ular among people who work in areas where economically or socially useful 
applications are rare or nonexistent. But it also seems to be accepted within 
more "useful" disciplines. 

So, the claim is widely accepted. But is it true? It is hard to say with 
certainty, but it seems to me that  we have no reason to believe that  it is 
true and some reason to believe that  it is false. 

In order to support the claim that  knowledge is intrinsically good, we 
might refer to the fact that  people do desire knowledge for its own sake. aa 
This is the argument that  is usually given, in so far as any argument is 

32Thomas S. Kuhn, "Logic of Discovery or Psychology of Research?", in Lakatos and 
Musgrave (eds.) Criticism and the Growth of Knowledge, pp. 1-23; the quotation is from 
pp. 20-1. 
aaSuch an argument reminds one of Mill's "proof" of the Principle of Utility in Chapter 
4 of his Utilitarianism, see J.B. Schneewind (ed.), Mill's Ethical Writings, New York and 
London: Collier, 1965, pp. 308-15. An argument of this kind is also suggested by Richard 
Brandt. He writes: "There is prima facie support in our attitudes for the intrinsic worth 
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given. But it is not a good argument. In the first place, it is doubtful 
whether anyone really desires knowledge for its own sake. Rather, what 
people desire is the state of affairs that they themselves know the answer to 
some particular question or questions. And what a scientist typically desires 
for its own sake (if anything) is probably something even more specific, viz. 
that  he himself be the discoverer of the answer to some question. In general, 
we do not desire the state of affairs that someone at some time knows the 
answer, or that mankind dicovers it. 

Secondly, once we realize that people desire very different and very specific 
knowledge-states, we can also appreciate the fact that most people are com- 
pletely indifferent to most knowledge-states. In most cases, people do not 
even desire that  they themselves know the answers to scientific questions. 
Barry Barnes puts the point this way: 

Most people see science, quite rightly, as an activity beyond their 
understanding. And very many have in any case not the slightest 
interest in understanding it: many of the most popular newspa- 
pers and magazines devote more space to astrology and horo- 
scopes than they do to natural science and its results. 34 

Similarly, most people cannot care less about the latest scientific news about 
the use of adverbs in Shakespeare's plays or the causes of inflation in Yu- 
goslavia in 1970-75. In fact, I want to suggest that everyone is completely 
indifferent to most knowledge-states, and that most knowledge-states are 
not desired for their own sake. 

However, it might be claimed that there are exceptions to this general 
rule. For example, it has been suggested by Richard Brandt that  there are 
certain pieces of knowledge that we desire for everybody. Brandt writes: 

Yet it does seem that  there are certain kinds of knowledge we do 
wish everyone to have~no t  isolated bits, as if there were value in 
memorizing paragraphs from Keynes on economic theory, with- 
out understanding what they mean, but systems of knowledge: 
the understanding of the physical and social world, of man's na- 
ture, of science and the evidence for scientific theory, and so on. 
These we wish all to have. That  we do so is doubtless part of 
the basis for advocating a "liberal" education and requiring ac- 
quaintance with certain fields of knowledge. Nor is the reason 

of knowledge; we do seem to want at least some knowledge on its own account", see 
R.B. Brandt, Ethical Theory, Englewood Cliffs, N.J.: Prentice-Hall, 1959, p. 335. For 
counter-arguments and further references, see Lars BergstrSm, "On the value of scientific 
knowledge", Grazer Philosophische Studien, vol. 30 (1987) pp. 53-63. 
34Barnes, About Science, p. 20. 
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for this simply tha t  we wish everybody to have some common 
areas about  which he can converse with other people. ~5 

Well, maybe this is something we do wish. However, I very much doubt 
tha t  it is something we want for its own sake. I think that  those of us who 
want it would agree, on reflection, that  we want it as a means to some more 
hedonistic value, such as well-being. We believe tha t  people need some kind 
of world-view, and tha t  they are bound to be frustrated if their beliefs about  
the observable features of their surroundings are radically mistaken. But it 
is not essential tha t  their beliefs are true. For example, Newton's mechanics 
would do fine for physics, even if it is not strictly true. In fact, it might not 
mat te r  much if our high-level theoretical beliefs were completely false, as long 
as our low-level empirical beliefs are approximately true. Moreover, different 
systems of belief may be quite acceptable in different cultures. Knowledge 
in a strict sense is not necessary. 

Thirdly, even if some knowledge-states really are desired for their own 
sake, it does not follow that  these states are intrinsically good. (Neither, 
of course, does it follow that  all knowledge-states are intrinsically good.) It 
does not follow logically, for according to Hume's Law evaluative conclusions 
do not follow logically from factual premisses. But it does not follow induc- 
tively either, for the intrinsic value of knowledge does not consti tute the best 
explanation of the intrinsic desire for knowledge. Rather,  one can assume 
that  the desire is best explained in either of the following two ways: (1) the 
intrinsic desire for knowledge may have survival value, 36 or (2) knowledge 
may often be desired as a means to something else, and there is a psycho- 
logical mechanism to the effect that  what  is often desired as a means will 
easily come to be desired also for its own sake. 37 

Moreover, we cannot argue tha t  knowledge is intrinsically good in virtue 
of some axiological principle to the effect tha t  what  is desired for its own 
sake is good in itself. For there seem to be many counterexamples to such a 
principle: some people may desire money, or fame, or power, and so on for 
its own sake, but we would not like to conclude from this tha t  money, fame, 
and power are intrinsically good. 

At this point, someone might say tha t  even if knowledge as such is not 
intrinsically good, the pursuit  of knowledge is. In other words, if we make 

3~Brandt, Ethical Theory, pp. 337-8. 
36Notice, though, that desiring knowledge for its own sake may not have survival value 
under all circumstances. (For example, curiosity killed the cat.) More importantly, even 
if curiosity has had survival value in human history so far, it may not have survival value 
in the future, since technological conditions have changed quite a lot. 
37 See e.g. Charles L. Stevenson, Ethics and Language, New Haven: Yale University Press, 
1944, pp. 193-8. 
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the usual distinction between science as a process and science as a product, 
we can see that it is the former, rather than the latter, that has intrinsic 
value. Notice, that this version of the doctrine avoids the objection that the 
product of science is often ignorance or error rather than knowledge. Perhaps 
it is also more in accordance with Aristotle's conception of the intellectual 
virtues as the most important constitutents of eudaimonia (happiness or 
human flourishing), which in turn is the supreme good. 3s As before, the 
claim that scientific activities are intrinsically valuable cannot be supported 
by reference to our desires, but it is perhaps more plausible in itself than 
the corresponding claim for knowledge. 

However, it seems to me that there are at least three considerations which 
tend to make one sceptical of both versions of the doctrine. In the first 
place, it seems somewhat ethnocentric to believe that scientific knowledge 
and/or the pursuit of such knowledge is intrinsically good. There are many 
cultures in which science is not regarded as important. Indeed, the majority 
of mankind is probably not at all interested in science. It may be that every 
culture needs some form of "intellectual" enterprise. (This may even be true 
by definition.) But one may think of various alternatives to science here, 
such as religion, music, story-telling, magic, gardening, poetry, painting, 
chess, astrology, Hermann Hesse's Glasperlenspiel, and so on. It is hard to 
see why science should be intrinsically better than any of these. On the 
other hand, if all these activities are intrinsically good to the same degree, 
then there is nothing special about science: its value, as compared to that 
of its alternatives, has to be judged exclusively by its external results. 

Secondly, those who claim that knowledge or the pursuit of knowledge is 
intrinsically good are usually themselves scientists or intellectuals. It is ob- 
vious that they have a vested interest in this doctrine. They have something 
to gain from propagating it. Scientists are privileged in our society. There- 
fore, they need to justify their life-style, both to themselves and to those 
who pay for it. Moreover, scientists are usually the sort of people who are 
culturally influential. This is quite sufficient as an explanation of why the 
doctrine is so widely accepted. This explanation also seems to undermine 
the plausibility of the doctrine. 

Thirdly, it is possible to construct plausible counterexamples to the idea 
that knowledge or the pursuit of knowledge is good in itself. For example, 
suppose that Ivan has a fatal disease that will kill him within a few weeks. He 
is in bed, and the only thing he can do is to watch television. There are two 
alternatives: on one channel there is a series of rather good movies, on the 
other channel there are good educational programmes. The movies will give 
him a lot of pleasure, the educational programmes will give him somewhat 

3SSee Aristotle, Nichomachean Ethics, VI. 
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less pleasure but much more knowledge. Ivan prefers to watch the movies. 
However, if knowledge or the pursuit of knowledge were intrinsically good, he 
ought to watch the educational programmes, since this would produce more 
intrinsic value. Moreover, and for the same reason, if he does not watch 
the educational programmes of his own free will, his wife ought to persuade 
him to do so (other things being equal). But this seems quite absurd. It is 
certainly all right for Ivan to watch the movies, and to enjoy his last weeks 
as much as possible. Therefore, neither knowledge as such, nor the pursuit 
of knowledge, is intrinsically good. 

4. The  effects of science. 

If my argument so far is correct, we may now disregard the idea that science 
or knowledge is valuable for its own sake. If it has any value at all, this must 
be purely extrinsic. The value of science must depend exclusively upon the 
value of its effects or consequences. Moreover, I shall assume that the only 
effects that are relevant here are those which somehow affect the welfare or 
happiness of sentient beings. In the present context, this assumption seems 
quite reasonable. 

Science has many different effects which are relevant to the welfare of 
sentient beings. Notice that some relevant effects have already been touched 
upon in sections 1 and 2, for states of knowledge and ignorance may in turn 
affect people's welfare. The intended effects of science are described by J.D. 
Bernal as follows: 

Science as an occupation may be considered to have three aims 
which are not mutually exclusive: the entertainment of the scien- 
tist and the satisfaction of his native curiosity, the discovery and 
integrated understanding of the external world, and the applica- 
tion of such understanding to the problems of human welfare. 39 

This sounds reassuring, but it must be remembered that science also has 
effects which are not intended. Some of these may not even be predictable. 
And the value of science depends upon all its effects, whether they are in- 
tended (or predictable) or not. 

This might be disputed. It is often suggested by scientists that they them- 
selves are only responsible for the scientific quality of the theories that they 
produce, and, in particular, that they are not responsible for the effects of 
each practical application of those theories. Scientists take pride in good ef- 
fects of applications of their theories, but they are much less willing to accept 

39Bernal, The Social Function of Science, p. 94. 
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responsibility for bad effects which are unintended or unpredictable. Simi- 
larly, it might be held that the value of science is independent of unintended 
or unpredictable effects. 

I myself do not accept the view that scientists are responsible only for the 
intended effects of what they do. But even if we were to accept this view, 
it seems clear that we may still insist that the value of science depends 
upon unintended and unpredictable effects as well. To some extent, this 
is also agreed to and even stressed by people who argue that science is 
valuable. It is often pointed out that the future applications of basic scientific 
research is always to a large extent unpredictable, but that in many cases 
such research turns out to be extremely useful. This is regarded as an 
argument for the positive value of basic researchnparticularly in cases where 
practical applications cannot be imagined. Similarly, I would say, negative 
effects of science and its applications are relevant to the overall value of 
science, even if they are unpredictable. 

In any case, it would be completely arbitrary to claim that the instru- 
mental value of science depends upon the good consequences of scientific 
activity (such as improved health and more efficient communications, and 
so on) but not upon bad consequences (such as nuclear and chemical war, 
pollution, bad TV programmes, and so on). 

The effects of science are of course very varied. In order to approach 
an answer to the question of whether they are, on balance, good or bad, I 
suggest that we consider them under the following five headings (where we 
start with the first of the aims mentioned by Bernal): entertainment, power, 
health, security, and education. 

(1) Entertainment. Scientific research can be quite entertaining. Scien- 
tists typically enjoy solving problems, and they can also derive satisfaction 
from studying the work of other scientists. In fact, Bernal considers the 
idea that the ultimate justification of science is that it is "quite an amusing 
pastime", and he goes on to say that this attitude, "though rarely admitted, 
is actually extremely widespread among scientists, particularly those in the 
safer and more comfortable positions". 4~ There is probably some truth in 
this. Moreover, some parts of science are also entertaining to non-scientists 
and non-specialist. (In many cases, this presupposes popularization.) 

On the other hand, I think nearly everyone would agree that a lot of science 
is extremely boring, and that a lot of it is in fact completely unintelligible to 
the non-specialist. Scientific work can also be rather tiresome and unreward- 
ing. I would suggest that, on the whole, modern science has comparatively 
little value as entertainment. As far as I can see, it is quite possible that 
alternative activities like alchemy, literature, religion, music, gardening, and 

4~ p. 97. 
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the game of trivial pursuit might be equally or more entertaining. 
It must not be forgotten, of course, that science also has more indirect 

effects which have to do with entertainment. The application of science 
has given us technological inventions like radio, television, aeroplanes, per- 
sonal computers, motor cars, tape recorders, gramophone records, and so 
on, which can be used for our entertainment. The impact of science in this 
respect is indeed overwhelming. And we certainly do enjoy all these techno- 
logical gadgets. However, in the last analysis it may very well be doubted 
whether they have made us happier than we would have been without them. 
Maybe they have just changed our social habits, and provided us with al- 
ternative means of enjoyment. It is not at all clear that the institution of 
science can be justified on the ground that it provides entertainment. 

(2) Power. By increasing our knowledge of the world, we automatically 
increase our power over it. This is a classical idea, which goes back primarily 
to Francis Bacon. But there are different kinds of power. In fact, what 
Bacon seems to have had in mind here is just what Bernal refers to as the 
application of scientific understanding to the problems of human welfare. 
Bacon writes as follows: 

It will not be amiss to distinguish the three kinds and as it were 
grades of ambition in mankind. The first is of those who desire 
to extend their own power in their native country; which kind 
is vulgar and degenerate. The second is of those who labour to 
extend the power of their country and its dominion among men. 
This certainly has more dignity, though not less covetousness. 
But if a man endeavours to establish and extend the power and 
dominion of the human race itself over the universe, his ambi- 
tion (if ambition it can be called) is without doubt both a more 
wholesome thing and a more noble than the other two. Now the 
empire of men over things depends wholly on the arts and sci- 
ences. For we cannot command nature except by obeying her. 41 

Unfortunately, the first two kinds of ambition are all too common, and I 
think Bacon would have had to agree that science can be used to satisfy 
those as well. But this is not what science is for, according to him. In 
another place he writes: 

For what is at stake is not merely a mental satisfaction but the 
very reality of man's wellbeing, and all his power of action. Man 
is the helper and interpreter of Nature. He can only act and 

41Francis Bacon, Novum Organon, 129. Quoted from Benjamin Farrington, Francis Ba- 
con. Philosopher of Industrial Science, London: Macmillan, 1973, p. 7. 
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understand in so far as by working upon her he has come to per- 

ceive her order. Beyond this he has neither knowledge nor power. 
For there is no strength that  can break the causal chain: Nature 
cannot be conquered but by obeying her. Accordingly these twin 
goals, human science and human power, come in the end to one. 
To be ignorant of causes is to be frustrated in action. 42 

This view of science more or less originates with Bacon. Before him, the 
pursuit  of t ru th  was not in general regarded as a means to the improvement 
of the conditions of life for mankind. 43 After him, of course, similar ideas 
were central to the Enlightenment. 

No one would deny that  science has in many ways increased our power 

in Bacon's sense. However, three further points should be noticed here. In 
the first place, there seem to be many scientific disciplines which have not  

been of much use to mankind in the way Bacon aimed at. Examples of 
such disciplines might be theology, astronomy, philology, political science, 
fundamental  particle physics, archaeology, musicology, futurology, topology, 
philosophy, zoology, and the history of art and literature. 44 

Secondly, the power over nature that  science has given us is used very 
selectively. It has often been pointed out tha t  knowledge is more commonly 
used for the benefit of the few than for the benefit of all, 45 and Bernal 
goes even further when he says that  "science is being used mainly for the 
enrichment of the few and the destruction of the many".46 I will say more 
about  this below. 

Thirdly, it seems that  there is something about  scientific progress itself 
which may, at least in some important  cases, reduce our power over nature. 
For scientific progress seems to lead to larger and more complex systems 

42Francis Bacon, The Great Instauration, Part 6. Quoted from Farrington, Francis Bacon, 
p. 91. 
43See e.g. Farrington, Francis Bacon, p. 5. 
44This list of examples might be disputed. I shall not try to argue for it here. Let me just 
give the following quotation, which concerns one of the least obvious and most expensive 
items on the list: "The cause cdl~bre at present is the study of the fundamental particles of 
matter in high energy nuclear physics. This is of great interest academically~ physicists 
are agreed on that. On the other hand, it is also a very expensive field of research, because 
enormous accelerators are required to bring particles to high enough energies. There 
are no signs of any useful applications emerging from knowledge of these fundamental 
particles. It is important to be quite clear that this really means exactly what it says: no 
use can even be envisaged", F. R. Jevons, The Teaching of Science. Education, Science, 
and Society, London, 1969, p. 75. For a similar, but more recent judgement, see Barnes, 
About Science, p. 27. 
45Compare e.g. Harold D. Lasswell, "Must science serve political power?", The American 
Psychologist, vol. 25 (1970), pp. 117-123, esp. p. 117. 
46Bernal, The Social Function of Science, p. 97. 
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of economy and technology, and it is far from clear that science can tell 
us how best to achieve our ends within such systems. The experts very 
often disagree when it comes to matters which are relevant to important 
decisions concerning economic policy and large-scale technology. 47 It seems 
reasonable to assume that the greater the socio-political impact of a given 
decision, the higher is the probability that the experts will disagree and 
that their views will be influenced by political considerations and by their 
personal and economic relations to various organizations in society. The 
debates concerning nuclear power, the greenhouse effect, and the transition 
from socialism to market economy in former socialist countries illustrate 
this. 

So, the situation is not as simple as Bacon might have thought. As regards 
our power to improve our conditions of life it seems that science has been only 
partly beneficial. In particular, let us briefly consider two main dimensions 
or indicators of human well-being, viz. health and security. 

(3) Health. For some people today, the health situation is of course very 
much better than it was for most people before the age of science. The 
progress of medical science has had the effect that many diseases have com- 
pletely disappeared in certain areas, and that many of the remaining ones 
can be treated with excellent results. The infant mortality rate has de- 
creased, and the average length of life has increased. In particular, this is 
true in the rich countries. 

On the other hand, the situation is obviously much worse in the poor 
countries, where there is also a severe lack of medicine and effective health 
organizations. Thus, for example, around 40.000 children die every day in 
the world, and at least half of them could have been saved by quite simple 
means (polio vaccine, etc). Moreover, if some diseases have disappeared, 
others have replaced them, and some are even caused by the very techno- 
logical progress which is in turn based on science. There is a shortage of 
food and clean water in many areas, and the environment is polluted almost 
everywhere. This affects people's health in a negative way. And while it is 
true that the average length of life has been increased in many countries, it 
is also true, even in the rich countries, that the quality of life is often rather 
bad for old people and for sick people who are kept alive by artificial means. 

If we think about the state of health of sentient beings, we should also 
note the fact that a great many animals are made to suffer as a result of our 
technological progress. Whole species are extinguished or at least severely 
threatened and reduced by changes in the environment brought about by 
us, and every year hundreds of millions of animals are killed, often in very 

47See e.g. Dorothy Nelkin (ed.), Controversy. Politics of Technical Decisions, Beverly 
Hills and London: Sage Publications, 1979. 
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painful ways, in scientific research. 4s 

In short, it is not at all obvious that  the average level of health of sen- 
tient beings has been improved as a result of the scientific development. It 
seems quite possible to me that  it is rather the other way round. Moreover, 
there is really no indication that  the situation can be improved by further 
scientific and technological progress. We already have the knowledge and 
the technological means to help the sick and the starving, but we do not use 
them. Perhaps it is, and will remain, politically impossible to do so. 

(~) Security. It is possible that  we feel more secure when we know more 
about the causes of events and about human nature, and when we do not 
believe that  we are at the mercy of gods and evil spirits. Again, we are 
more secure when we can protect ourselves against wild animals, illness, and 
natural  disasters like floods and thunderstorms. Science can be useful here. 
Thereby it contributes to a higher level of security, which in turn increases 
our welfare. 

Science can also help us to defend ourselves against other people. As 
science has developed, the police have been provided with more efficient 
techniques, involving e.g. weapons, information storage systems, and a de- 
veloped technology of surveillance. Similarly with the armed forces used for 
national defense. 

On the other hand, obviously, the production and distribution of arms 
and other military technology also reduces security in many cases, and it 
has led to a lot of suffering and death. It seems that  the number of wars in 
the world per year has been more or less constant during the rise of science, 
but that  the average number of people killed in wars increases drastically 
with time. For example, 0.8 million people were killed in 92 wars in the years 
1820-1859, 4.6 million were killed in 106 wars in the period 1860-1899, and 
42.5 million were killed in 117 wars in the period 1900-1949. If the trends are 
extrapolated, it turns out that  virtually 100 per cent of the world population 
will be killed in wars before the year 3000. 49 Of course, science has played an 
important  role here. Without  science, it would simply not be possible to kill 

4SSee e.g. Richard D. Ryder, "Speciesism in the laboratory", in Peter Singer (ed.), In 
De/ence of Animals, Oxford: Blackwell, 1985. Ryder says: "It has been estimated that 
between 100 million and 200 million animals die in laboratories around the world each 
year" (ibid., p. 79). Another commentator says that "the total number of laboratory 
animals now used throughout the world anually is 200 to 250 million. The United States 
accounts for about 100 million of these animals as follows: 50 million mice, 20 million rats, 
and about 30 million other animals, including 200,000 cats and 450,000 dogs"; see Bernard 
E. Rollin, Animal Rights and Human Morality, Buffalo, N.Y.: Prometheus Books, 1981, 
p. 91. 
49See Robin Clarke, The Science of War and Peace, London: Jonathan Cape, 1971, pp. 
10-12. 
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so many people. And a very large proportion of scientific research has indeed 
been directed towards the development of weapons systems. For example, 
in the United States most of the economic resources used for research and 
development in recent decades has been used for military purposes. 5~ 

Besides, the application of scientific theories has created new environmen- 
tal problems. For example, there are dangerous emissions from the chemical 
industry, there is radioactive waste from nuclear power plants, and so on. 
This tends to make our existence less rather than more secure. 

(5) Education.  Scientific research and higher education go together. Each 
presupposes the other. The scientific community will die out if it does not 
reproduce itself and make itself respected in the rest of society, and higher 
education will become scholastic and boring if it is not intimately related 
to research. Moreover, it might be held that a high level of education is 
essential to the welfare of a population. Education will make people better 
equipped to solve problems, to communicate with others, and to learn from 
the experiences of earlier generations. It may be suggested that science has 
increased our freedom. It has provided new opportunities for action, and it 
has made it easier for people in general to choose the alternatives that they 
really want. 

In this way, science may indeed have had beneficial effects. Moreover, this 
particular function of science is not restricted to natural science. Many of 
the human and social sciences may be even more useful in this particular 
respect. For example, to people in general, disciplines like economics and 
philosophy are probably more useful than physics and geology. 

On the other hand, higher education may also generate new inequalities 
and preserve old ones. Scientists and educated people are privileged in our 
society. (Indeed, it seems quite likely that science as we know it would cease 
to exist if scientists were not privileged.) Besides, even if people's freedom 
has been increased in some respects, because of the development of science, 
it also seems to have been reduced in certain other ways. Harold Lasswell 
puts the point as follows: 

If the earlier promise was that knowledge would make men free, 
the contemporary reality seems to be that more men are manipu- 

D~ 1950 and 1985, 65-70% of federal research and development funds were chan- 
neled through the Department of Defense, only 1-3% through the NSF [National Science 
Foundation]. (If one includes the Department of Energy, whose major focus is nuclear 
weapons, and the National Aeronautics and Space Administration, which is under heavy 
contract to the military, the military-related totals go even higher.)" Carl Mitchum, 
"The Spectrum of Ethical Issues Associated with the Military Support of Science and 
Technology", in Ethical Issues Associated with Scientific and Technological Research for 
the Military, edited by Carl Mitcham and Philip Siekevitz, The New York Academy of 
Science, New York 1989, pp. 1-9, p. 4. 
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lated without their consent for more purposes by more techniques 
by fewer men than at any time in history. 51 

In other words, even if a high level of education is desirable in many ways, 
there are certain aspects of it which are not desirable. 

5. The  overall extr insic  value of science.  

What I have discussed above are the effects of past science. Past science may 
be defined as the totality of all scientific activities which have taken place 
in the world so far. (I have not yet been concerned with future science and 
its effects; this will be the subject of section 6 below.) Let us now consider 
the question of whether the overall extrinsic value of past science is positive 
or negative. 

This question may be interpreted in different ways. For example, it may 
be taken as (1) the question of whether the total consequences of past science 
are on the whole good or bad or indifferent. Or it may be (2) the question of 
whether these total consequences are better or worse than the consequences 
of some alternative to past science. Finally, it may be (3) the question of 
whether the total consequences of past science are better or worse than the 
consequences of that particular alternative to past science that would in fact 
have taken place if none, or very few, of the activities within past science 
had occurred. Of these three interpretations, (3) is the most interesting 
one. Our attitude towards science should depend upon our answer to this 
question. Moreover, I shall stick to the idea above that value is determined 
by the relative welfare of sentient beings. 

However, if we reflect upon this formulation of the problem, we can see 
that it is far beyond our power to answer it in an intersubjectively reliable 
way. Even if we had access to a normatively acceptable, quantitative, and 
operational definition of "welfare", the combined resources of all scientific 
disciplines would not be sufficient to provide a reliable answer. The question 
of whether the psychological well-being of human beings, or of sentient be- 
ings in general, is favourably affected by past science seems to be a factual 
question. But science cannot solve it. It involves interpersonal (and "inter- 
organism") utility comparisons, large-scale conterfactual conditionals, and 
completely unsurveyable initial conditions which science cannot handle. 

Sixty years ago, John Dewey expressed a similar scepticism concerning 
the future impact of science on society as follows: 

Externally, science through its applications is manufacturing the 
conditions of our institutions at such a speed that we are too be- 

51Lasswell, "Must science serve political power?", p. 119. 
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wildered to know what sort of civilization is in process of making. 
Because of this confusion, we cannot even draw up a ledger ac- 
count of social gains and losses due to the operation of science. 
But at least we know that  the earlier optimism which thought 
that  the advance of natural science was to dispel superstition, 
ignorance, and oppression, by placing reason on the throne, was 
unjustified. Some superstitions have given way, but the mechan- 
ical devices due to science have made it possible to spread new 
kinds of error and delusion among a larger multitude. The fact 
is that  it is foolish to try to draw up a debit and credit account 
for science. 52 

What  Dewey says here is, I think, correct in many ways. However, his con- 
clusion should be resisted. We should at least try to "draw up a debit and 
credit account" for science. We must realize that  this cannot be done in 
a scientifically reliable way, but this is no excuse for ignoring the question. 
Science is too important  an element of our culture to be taken for granted 
without criticism. Our att i tude towards science must be based upon per- 
sonal judgement, and this judgement can at best be made in awareness of 
arguments and considerations of the kind exemplified in section 4 above, 
concerning the effects of science. 

My own judgement, for what it is worth, is that  past science is prob- 
ably not extrinsically good. We would have been better off without it. 5a 
In general, when its effects are beneficial, they are beneficial only to small 
minorities which are already quite well off. For example, the products of 
military science are useful mainly to arms dealers and superpowers. Other 
technology based on natural science is useful to industrialists and share- 
holders, and it also yields economic profit to other citizens in the highly 
developed countries. Social science may be useful to political elites by help- 
ing them to control the masses and to legitimize the policies preferred by the 
elites. (Of course, much social science is critical of political elites, but this 
makes it even more useful as a harmless token of tolerance and freedom in 
the society.) The humanities, finally, are usually regarded as fairly useless, 
at least if we disregard the personal satisfaction which they may give to some 
of the very few people who are actually working within these disciplines. 

The thesis that  past science is not extrinsically good is also reinforced by 
the following considerations. Science has produced technology, which has to 

~2John Dewey, Philosophy and Civilization, Gloucester, Mass.: Peter Smith 1968, p. 319. 
5aQuite possibly, many people in the rich countries today would find life intolerable if 
they were moved, miraculously, back to the 17th or 18th century. But this does not show 
that humanity is happier now than it used to be. Nor does it show that humanity is 
happier now than it would have been without science. 
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some extent improved our material conditions of life (such as health, security, 
and so on). However, psychological well-being is not a simple function of 
such material conditions. It is more dependent upon the extent to which 
expectations are satisfied. And technological progress does not guarantee 
the satisfaction of expectations. Indeed, it may have the opposite effect. 
Nicholas Rescher puts the point as follows: 

There is what might be called the Fundamental Paradox of 
Progress: progress produces dissatisfaction because it inflates 
expectations faster than it can actually meet them. And this is 
virtually inevitable because the faster the expectations are met, 
the faster they escalate. ~4 

Moreover, it seems clear that  the extrinsic value of science should be 
taken to depend upon psychological well-being rather than upon material 
conditions of life. From a normative point of view, the latter are relevant 
only if they affect the former. Health, wealth, security, and power are not 
intrinsically valuable. They are only valuable as means to pleasure and 
happiness. 

It is often pointed out that  scientific and technological research is needed 
in order to neutralize or remove undesirable effects of scientific and techno- 
logical research. More sophisticated weapons are needed to counteract the 
sophisticated weapons already in existence. New energy systems must be 
deviced in order to prevent or reduce pollution of the environment. And so 
on. Similarly, it might be held, higher education is required in order to avoid 
alienation and apathy among ordinary people in scientifically and techno- 
logically advanced societies. This means that  a high level of education in a 
population is perhaps best thought of as an antidote against the bad effects 
of science. In short, it might turn out that  the main use of science nowadays 
is to protect us from the bad effects of science. 

This point has some relation to the much discussed question of the ra- 
tionality of science. Some philosophers think that  the development of sci- 
ence is governed by a series of rational choices on the part of the scientific 
community. 55 But even if each individual choice is rational, the enterprise 
as a whole may be irrational or non-optimal. Individual choices may be 

5aNicholas Rescher, "Technological Progress and Human Happiness", p. 19, in Unpopular 
Essays on Technological Progreess, Pittsburgh: University of Pittsburgh Press, 1980, pp. 
3-22. 
55See e.g. Newton-Smith, The Rationality of Science. For the view that rationality 
is not very common and not very desirable in science, see e.g. Lars BergstrSm, "Some 
remarks concerning rationality in science", in Risto Hilpinen (ed.), Rationality in Science, 
Dordrecht, Boston, and London: Reidel, 1980, pp. 1-11. 
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rational relative to the internal aims of science, but if past science has left 
us worse off it seems irrational from the point of view of humanity. 

6. P r o s p e c t s  for t h e  f u t u r e .  

If I am right, science has not been a good thing so far. What  about  the 
future? The first point to be noted here is that  future science is to a large 
extent unpredictable. 56 And if the content of future science is unpredictable, 

so are its effects. It is easy to suppose that  the future will be like the past. 

But such an induction is extremely risky. Most of us may take it for granted 
that  science will continue to grow as before, but there is really no justification 
for such a belief. There may be a saturation limit to the growth of science. 5~ 
In fact, we may be close to such a limit right now. And if there is stagnation, 
there may also be decline. This possibility is recognized by Bernal: 

The continued existence of this insti tution of science is in general 
far too easily taken for granted; because science in its association 
with industry has in the past made such enormous progress, it 
is assumed that  this progress will automatically continue. In- 
trinsically, however, there is no more justification for contin- 
ued progress in science than for continued progress in industry. 

. . .  We have seen, in the course of history, institutions grow up, 
stagnate, and die away. How do we know that  the same will not 
happen to science? 5s 

In any case, even if past science has been extrinsically bad, this may not be 
true of future science. However, it is hard not to be pessimistic. Michael 
Dummet t  makes the following prediction: 

For it seems to me evident that ,  were the option a live one, there 
exist overwhelming grounds for bringing all scientific research to 
a halt. Of no reseach is it possible to foresee what applications 
will be made. Even so intelligent a man as Rutherford is re- 

ported to have thanked God that  his research was practically 

useless; but we have no excuse for making a similar mistake. 

56This point is stressed e.g. by Karl Popper in the "Preface" to The Poverty of Histori- 
cism, London: Routledge, 1961. 
57,,in its typical pattern, growth starts exponentially and maintains this pace to a point 
almost halfway between floor and ceiling, where it has an inflection. After this, the pace 
of growth declines so that the curve continues toward the ceiling in a manner symmetrical 
with the way in which it climbed from the floor to the midpoint", de Solla Price, Little 
Science, Big Science, p. 18. 
58Bernal, The Social Function of Science, p. 11. 
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All that we can say with confidence is that, of the scientific re- 
search carried out within any given future period, much of it will 
have applications, some of them quite unexpected, and that, of 
these applications, most of those that yield unqualified benefits 
for mankind will either be unexploited or, at best, used to en- 
hance the lives only of people in the wealthy nations, while some 
will, for certain, be used to create as yet unimagined dangers and 
horrors. 59 

I think Dummett is wrong when he says that this prediction can be made 
"with confidence" and that we know this "for certain", but the content of his 
prediction may very well be right. It seems to me that if well-informed people 
disagree on the validity of Dummett 's prediction--as they can be expected 
to do--their  different views are caused mainly by different personality traits. 
Some people are optimists and some are pessimists, and this is all there is 
to the disagreement. 

Dummett is probably right that we cannot bring all scientific research to 
a halt--except, of course, by starting the last world war. However, we might 
be able to discourage and reduce certain kinds of research by re-allocating the 
available economic resources to other disciplines or to non-scientific projects. 
As a rule of thumb, we might even assume that the more "useful" (in a 
conventional sense) a given field of research is considered to be, the more 
dangerous it is, and the less money should be invested in it. In particular, 
it may be a good thing to invest less money in disciplines which tend to 
generate technological applications. Some of the money spent in this way 
could instead be absorbed by the humanities, which are fairly harmless. 

It is sometimes said that curiosity is part of being human, and hence that 
if we stop doing science, we stop being human. But this is mainly rethoric. 
In conclusion, three points may be noted. First, we can be curious even 
if we are not scientists, and even if there is nothing like modern science 
around. Second, even if we continue to do science, we can concentrate upon 
the more harmless disciplines. Third, many people are not curious in the 
sense of being interested in science, but we should not conclude from this 
that they are not human. 

59Dummett, "Ought research to be unrestricted?", p. 291. 
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How might we find a good framework for thinking about the psychol- 
ogy of morals? Recent advances in evolutionary theory may help, I want 
to suggest. Over the last few decades, biologists have developed ways of 
thinking that were suggested by Darwin, but that needed much theoretical 
clarification. Darwin's own most pertinent writing, in his book The Ex- 
pression of Emotion in Man and Animals (1872), by now reads strangely, 
as a mixture of brilliant observations, hypotheses, and speculations, on 
the one hand, and theoretical blunders on the other. George Williams 
(1966) helped get the current wave going by warning against facile "good 
of the species" arguments in explanations of animal behavior. William 
Hamilton (1964) pioneered in developing rigorous mathematical models 
of the evolution of behavior. John Maynard Smith (1974, 1983) showed 
how game-theory could be applied to the genetic evolution of behavioral 
propensities. As a result of this and much other work, the evolution of 
behavior has now become a medium-scale interdisciplinary field of study. 
And its successes, I think, suggest new ways of thinking about moral 
thought and motivation in human beings. 

Evolutionary thinking about human behavior is immensely controver- 
sial, of course, and treating morality evolutionarily has been especially 
controversial. There is a lot of chaff to sort from the wheat on both sides 
of these debates. This threshing, though, will not be a business of mine 
here. Instead of jumping into these controversies, I shall be laying my 
own speculations on the table, and making a few comments as I go. 

1 This work was supported by a John Simon Guggenheim Memorial Foundation Fellow- 
ship. 
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1. A c c e p t i n g  n o r m s  

In 1990 I published a book called Wise Choices, Apt Feelings: A Theory 
of Normative Judgment. It is mostly a book of moral philosophy, not of 
moral psychology. It contained, though, speculations on moral psychology 
and the genetic evolution of human moral propensities. Let me review 
these speculations and add some thoughts. 

My speculation centers on a special psychological state which I call 
"accepting a norm". This is a state I am in when I think, for instance, 
that  it makes most sense to get lots of sleep before delivering a lecture, 
or when I think that  it doesn't  make sense to be angry at the critic who 
finds a major  flaw in my argument. I accept a norm that  says to get lots 
of sleep, or I accept a norm that  says not to be angry at critics who make 
good points against my favorite theses. My speculation is, first, that  there 
is such a state as accepting a norm, and that  this state is an important  
one in the human psychic makeup. 

When I speak of such a state, I suppose that  genetically programmed 
psychic mechanisms underlie it. These mechanisms were shaped by nat- 
ural selection in the course of human evolution. They were shaped by 
selection pressures to do certain things that  promoted reproduction; these 
jobs are the biological functions of the mechanisms. 2 

The mechanisms at work in human norm acceptance, then, have bio- 
logical functions. I speculate that  their chief biological function is one of 
coordination, in a special, game-theoretic sense of the term. These mech- 
anisms coordinate the actions Of different people through two chief ten- 
dencies; I call them "normative discussion" and "normative governance". 
In normative discussion, people tend to avow the norms they accept, and 
tend to be influenced toward accepting the norms that  others avow. The 
upshot is a tendency toward consensus in the norms discussants accept. 
By "normative governance", I mean a motivation to act in accordance 
with the norms a person accepts. Combine normative discussion with 
normative governance, and everyone will tend to act in accordance with 
the same norms. Normative discussion tends toward consensus on norms, 
and normative governance then tends toward everyone's acting on those 
norms. Thus actions are coordinated. Normative discussion and norma- 
tive governance combined tend to coordinate actions. 

Some commentators have mistaken this hypothesis for a group selection 
account: that  we are evolved to coordinate our actions because doing 
so is good for the group. I should stress that  I mean no such thing. 
Whether  anything that  should be called group selection is important  in 

2See Wright (1973) and Symons (1979), 10-14. 
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the evolution of behavior is a dicey question. The experts agree, though, 
that no facile move from the good of the group to the selection of a 
characteristic is going to work. My own explanation at tempts no such 
move; mine is an individual selection account. It is meant to work within 
Dawkins' framework of thinking about advantages to a selfish gene (1976; 
1982, Ch. 2). 

It was Thomas Sche|]ing (1960, Ch. 2) who developed the broad notion 
of coordination I am appealing to. He showed how coordinating one's 
actions with the actions of those around one is often greatly to an indi- 
vidual's advantage. Many examples are familiar enough; think of driving 
on the left or driving on the right. Coordinated people don't bump into 
each other--whether  they coordinate to the left or to the right. Each, 
given the actions of others, does best for himself if he conforms to the 
system. This parable, Schelling showed, expands to encompass a great 
deal in human affairs. 

Biologists have applied this pattern to the affairs of creatures on down, 
in order of simplicity, at least as far as spiders. Pecking orders are one 
example. Various arrangements are possible: I might defer to you over 
food, or you defer to me, or we might share the food peacefully. Suppose 
neither of us can overpower the other at low risk. Then if I am disposed to 
defer to you, and you are disposed to peck at me if I don't, then I am doing 
as well as I can, given your dispositions. The same goes if I am disposed to 
peck and you are disposed to defer. Either way, we avoid a ruinous fight 
over who gets the food. Game theorists call these two outcomes alternative 
Nash equilibria: A Nash equilibrium is a combination of propensities to 
action such that each, given the propensities of the others with whom he 
is interacting, does at least as well with that propensity as he could with 
any other. 

John Maynard Smith (1974, 1983) called a variant of this--or  its evolu- 
tionary analogue--an evolutionarily stable strategy. When strategies are 
evolutionarily stable, then each individual has genetic propensities that 
constitute the best available response to the propensities of the others. 
Each individual's propensities are individually advantageous, given the 
propensities of the others. And so explanations in terms of evolutionarily 
stable strategies invoke individual selection, not group selection. Coordi- 
nation does benefit the group, it may be, but this is not what explains 
the propensities' being naturally selected. They are selected because of 
the benefit each individual derives, given the propensities of the others. 

This talk of "advantage", "good", and "benefit" has a fairly precise, 
technical meaning. I am talking of increases in prospects for reproduction 
--we might say, one's expected number of great-grandchildren. This, 
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of course, is not what advantages and benefits are in the usual senses 
of these terms, and so we have to keep the figurative, technical senses of 
these terms straight from their ordinary senses. For increases in prospects 
for great-grandchildren, let me use the term "selective advantages". This 
term, then, I appropriate as a technical one. Selective advantages may 
not be advantages in any ordinary sense of the term. It might be to the 
selective advantage of the male praying mantis to be eaten by his mate 
after he impregnates her, since he thereby nourishes his young. That 
doesn't mean that he likes it, or that being eaten is good for him. The 
relation between selective advantages and the sorts of things we regard as 
advantages will be complex. The two will tend to be the same, but they 
will not be entirely coincident. 

I have been running through evolutionary commonplaces; now let me 
return to my own evolutionary speculation. Human affairs are far more 
complex than pecking orders. They were far more complex, all indications 
are, even among hunting-gathering proto-human populations. Genetic 
selection in these populations left us with the human genetic propensities 
we have today, and our large brains may result from the complex social 
demands of proto-human life--demands that can make differences of life 
and death, and big diferences in reproductive opportunities. In all human 
groups we know today, people spend enormous quantities of thought and 
energy on courtship, sex, and marriage. They spend enormous quantities 
of thought and energy on various matters of property, such as division 
of the hunt, gifts, and establishing entitlements. Everywhere people tend 
their social relationships, and often they engage in rivalries that extend 
to feud and war. The complexities of human life and their connection 
to matters of life and death and reproductive opportunities are especially 
vivid in groups that live in anarchy, without strong, effective governmental 
control of killing, property, and the like. Then, conflicts and quarrels 
always threaten death. Even, though, when force and violence are rare, 
they stand in the background. Whom a man could mate with without 
risking severe consequences is almost always a highly social matter. 

My speculation is that as proto-human social life became more complex, 
simple systems like pecking orders and territoriality became inadequate to 
the job of coordination. More powerful mechanisms of coordination were 
needed. Now human evolution included the evolution of a capacity for lan- 
guage, and language allowed for more complex and powerful coordinating 
mechanisms. Capacities for language no doubt conferred many different 
kinds of selective advantages on our ancestors, but some of the impor- 
tant ones, I suggest, must have been matters of the kinds of coordination 
language made possible. 
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Language allows a group to share representations of absent situations. 
Discussants can share responses to a situation they are not in right here 
and now--past  situations, expected situations, hypothetical cases, and 
even fictions. Discussants can rehearse coordinated responses together, 
and so coordinate their actions when similar situations arise in the future. 

One way to do this is by what I am calling normative avowal. People 
might discuss, say, the conflict between a younger and an older man, and 
say "Let the younger man defer." If they all accept this imperative, then in 
similar situations in the future, older men will tend to insist on deference, 
and younger men will tend to defer. Their actions will thus tend to be 
coordinated, and mutually threatening quarrels will be avoided. 

Another way normative discussion can coordinate actions is by coordi- 
nating peoples' feelings about actions. Conversants may come to agree, 
say, that  theft by stealth is shameful. They avow norms that  say to feel 
ashamed of secret stealing, and to disdain anyone they learn has tried 
secretly to steal something. Then any of them, faced with an opportunity 
for secret theft, will be deterred by the feelings the norms he accepts tell 
him to have. And that  may well be a good thing for him, because others 
accept norms that  say to have disdainful feelings toward him if he prac- 
tices secret theft, and so they will act badly toward him if they learn that  
he has done so. 

I place morality in this second pattern: Actions being coordinated by 
norms for feelings. Moral norms coordinate feelings of indignation. We 
can think of indignation as a form of anger~anger  governed by norms 
one accepts as impartial. Moral norms also coordinate feelings of anger 
with feelings of guilt. A person can feel guilty about his own actions, 
and others can feel angry at him over them; norms can coordinate these 
first-person feelings of guilt with others' feelings of anger. The prospect 
of guilt deters, and guilt can also motivate a person to placate anger and 
make amends. Coordinated guilt and anger can thus coordinate actions. 
To think an act morally reprehensible is to accept norms that  tell the 
person who did it to feel guilty for having done it, and tell others to feel 
impartially angry at him for having done it. 

2. R e a l i s m ,  mora l i t y ,  m o t i v a t i o n s  

My sketch of the speculations in my book has been quick. I now want 
to ask how well grounded they are likely to be. I realize the drawbacks 
of armchair empiricism, but I think that  at this point we can still get 
somewhere by asking ourselves questions. Given what we know, I want to 
ask, what is most likely to be right in this speculation, and what is most 
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likely to be wrong? 

Some features of my story strike me as hard to doub t~a t  least once 
we start looking at human affairs with a story like this in mind. Human 
life is intricate, and at all stages of human evolution, life has been full of 
coordination problems. 

Feelings are the work of genetically evolved emotional mechanisms, and 
these mechanisms have evolved to respond to the social environment with 
refined heuristics. By heuristics, I mean schemes of response that were 
selectively advantageous for our ancestors--not always, but often enough 
to promote their reproductive prospects on average. One crucial kind of 
selective advantage lay in various ways that feelings made for social coordi- 
nation. Talk interacted with feelings, and important psychic mechanisms 
made for this interaction. They were shaped accordingly by natural selec- 
tion. Scolding and criticism, complaint, praise, gossip, stories, ceremony, 
ora tory~al l  of these are widespread in human life, perhaps universal. All 
of them combine language with feelings. It would be amazing if all this 
talk and feeling were idle in human affairs, or if it were not the work of psy- 
chic mechanisms intricately adapted to the range of social circumstances 
our ancestors faced. 

These broad generalities I find hard to doubt. I find it hard to doubt 
that they are crucial to explaining human capacities for moral reasoning 
and moral motivation. On the other hand, my specific story of human 
morality is no doubt far too simple and schematic. The human brain 
is immensely complex, and no short story of an aspect of its workings 
is likely to be right. Natural selection is amazing in the devices it can 
design. It can optimize responses to complex problems without having 
to understand them. This optimization has its limits, to be sure. Think, 
though, of a bird's wing, and contrast it with what most of us could design 
as a flying device. 

My own schema was very simple: People avow norms for action and for 
feelings. They are influenced by the avowals of others. They tend to act 
and feel according to the norms they accept. Feelings tend toward actions. 
Contrast this with real human life, or with the intricacies of dialog, feeling, 
and action in any piece of fiction that we would find worth hearing. We 
don't know how life was in hunting-gathering groups when they had the 
run of the rich portions of the earth, but we do have available to us 
elaborate accounts of somewhat primitive conditions. Icelandic sagas, for 
instance, tell of an anarchic agricultural society in harsh country (Miller, 
1990). At least one ethnographer has studied oratory among horticultural 
headhunters (Rosaldo, 1973). These accounts amply confirm the intricacy 
of language, feeling, and action in human life, and the high stakes involved. 
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In short, then, on the one hand I am confident that  in human beings, 
there are refined, genetically coded psychic mechanisms that  make for 
significant interactions among language, feelings, and action. On the other 
hand, I can't  claim to have good hypotheses about what these mechanisms 
are like. My talk of avowal and mutual influence may be a helpful first 
approximation, but clearly it will need refinement. My account of what 
gets avowed should be taken with even more caut ion--as  I'll try to explain. 

What  gets avowed, I suggested, is norms--often norms for feelings. 
Norms are imperatives of a kind, so my schema would have us saying 
to each other, "Feel such-and-such a way about so-and-so." Obviously, 
very little of human talk sounds much like that. What  I can seriously 
hypothesize, then, is not that  we are adapted to use language that  fits my 
schema directly. We can use such language, but mostly we don't, and our 
ancestors may not have used it at all. 

The power I can claim for my schema is one of translation. We can say 
confidently, I claim, that  one central aspect of human and proto-human 
life is language directing feelings and actions. I hypothesize fur ther--and 
this the more risky speculat ion-- that  these connections of language to 
feeling and action can be represented by an austere language of norms, 
feelings, and actions. Much of the talk that coordinates human actions, 
I hypothesize, can be helpfully translated into talk of advisable actions 
and warranted feelings. The translation displays the ways these kinds of 
language are tied to motivation. 3 

Sometimes the translations will be quite direct. When we call something 
shameful, we mean pretty directly that  it warrants shame on the part of 
the person who did it. When we call a state of affairs sad, we mean pretty 
directly that  sad feelings toward it would be apt. Indeed Latin has a 
whole verb form that fits this pattern. 

Sometimes the translation will be more distant. Moral philosophers 
have written much, in recent years, about "thick concepts", concepts that  
both respond to fairly specific features in the world, and direct feeling 
and action. 4 One question we should be asking about thick concepts is 
this: What  kinds of mental mechanisms stand behind our capacities to 
use them? These mechanisms somehow connect features of a situation 
to feelings and actions in response. My serious hypothesis is that  this 
interplay can be perspicuously represented by my austere language of 
norm, feeling, and action. 

Crucial aspects of human language are not best interpreted simply as 
representing straightforward states of affairs, but as regulating and coordi- 

3See Chapter 5 of my book (1990). 
4See Williams, 1985, 140-52; Wiggins, 1987, Chs. 1, 3; McDowell, 1988. 
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nating feelings and actions. We need some way of displaying the patterns 
of regulation. A language of norms, feelings, and actions will do this job, 
I am hypothesizing. I doubt that it will do more ambitious psychological 
jobs, such as giving the true structure of a language of thought that is 
always involved in such regulation. 

Let me now scrutinize my talk of mutual influence and consensus. It 
too is no doubt far too simplistic. Sometimes we are influenced, and 
sometimes we resist influence stubbornly. We can be influenced in some 
directions with ease, and in other directions only with great difficulty. I 
did say a little in my book about these matters, but we need to know 
far more. Psychic mechanisms assess whether to be influenced by a given 
group or person in a given direction. What  heuristics do these mechanisms 
employ? 

From the game-theoretic structure of bargaining situations, we might 
speculate about two kinds of mechanisms. One kind assesses what one 
can get away with. Another kind assesses whom to accept as models. 

First, then, assessing what one can get away with. Much of human and 
animal life involves what game theorists call bargaining situations. Domi- 
nance hierarchies illustrate some of their simplest aspects, and so perhaps 
they can help us understand some of the design features of the psyche 
of a highly social animal. In a pecking order, how best to act depends 
partly on one's prowess, and partly on others' expectations. Dangers be- 
ing equal, it is better to be higher in a pecking order than lower. On the 
other hand, in the short term at least, it is dangerous to try to advance in 
a pecking order. And if birds below one do seriously try to advance, it is 
even dangerous to defend one's place. This kind of situation lends itself 
well to mathematical modelling, using either analytic techniques or com- 
puter simulation. It illustrates some of the factors that must have been 
present in the more complex situations proto-humans must have faced. In 
short, we can say this: Coordination brings great advantages, and if those 
were the only advantages involved, no bird would ever challenge another 
for its place in a pecking order. These advantages, though, are not the 
only ones involved, and so at times it is advantageous to upset a scheme 
of peace and coordination, in hopes of a more advantageous position in a 
revised scheme of coordination. 

A few comments about what I have been saying. "Advantage" as I am 
using the term should be understood as selective advantage, as genetic fit- 
ness, as expected reproduction. And the question to ask is not, directly, 
what course of action holds out most advantageous prospects. The ques- 
tion is what heuristics will tend to work advantageously, on average, in 
the run of situations the animals are in. Questions like these should sug- 
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gest hypotheses about human beings. What psychic mechanisms stand 
behind such things as noble bearing, dignified bearing, and menial bear- 
ing? What mechanisms stand behind gestures of dominance, equality, and 
submission, and the language of challenge and obedience? Understanding 
pecking orders helps us understand some of the demands these mecha- 
nisms are shaped to meet. 5 With human beings, though, things will be 
more complex than in pecking orders. Human bargaining is not only a 
matter of what one does, but also of what one says. One can claim a 
more advantageous position with words, one can seize it openly, or one 
can take advantages in secret. We need to think about what mechanisms 
could advantageously govern one's words~the norms one accepts, in my 
schema~and what mechanisms could advantageously govern the match 
or mismatch between words and actions. 

Also with human beings, alliances are crucial. Two-person game theory 
can tell us something about human life, but most study of humanity needs 
many-person game theory~and  that, we know, is a far messier subject. 
A person's individual powers have some bearing on the alliances he can 
make, but often what matters are such things as family ties and badges 
of affiliation. There is much to be explored, here, about why even distant 
kinship often matters in human life, and why human beings devote so 
much heed and effort to such things as clothing, styles of language, and 
rituals. 

That brings me to the question of modelling one's style and behavior 
on others. Lore and experience suggest that people are very selective 
in whom they will imitate, whose actions, style, and words they will be 
influenced by, and whose they will dismiss. Boyd and Richerson (1985) 
cite a report of an agricultural assistance program in Pakistan. Selected 
farmers were encouraged to use fertilizer and high-yield grain, in hopes 
that neighbors would observe their success and emulate them. At first 
things went as hoped. Then the farmers with modern techniques grew 
so prosperous that they started wearing clothing that came below their 
knees. At that point, their bare-kneed neighbors stopped emulating their 
methods. Boyd and Richerson's suggestion is that we have mechanisms 
that assess who is relevant~on the basis, partly, of lifestyle--and then 
assess who, among relevant people, are successful and what they do. They 
offer a mathematical model of the selective advantages of having such 
mechanisms of discriminating imitation. It may be better to imitate those 
who are successful and who are like oneself, than to analyze why some ways 
of life lead to success and some do not. The analysis may be too complex 
and fallible; a somewhat crude heuristic of finding models and imitating 

5See Nisbet t  and Ross (1980) on human  heuristics in this sense. 
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them may work better. 

I have been touching on some of the kinds of things that must com- 
plicate my simple pattern of avowal, influence, and acting on what one 
avows. What  emerges, I hope, is a strategy for investigation. Suppose that 
human action is a matter  of psychic mechanisms that respond to cues and 
that lead to action. Ask what kinds of mechanisms would do well in im- 
portant game-theoretic structures. Then look for indications that such 
mechanisms might be at work in human affairs. These mechanisms, I am 
suggesting, will include tendencies to avow, to be influenced, and to act 
on what one avows. There will be refined mechanisms, though, for assess- 
ing whom to be influenced by, in what directions. There will be refined 
mechanisms for assessing how personally advantageous a set of norms one 
can get away with avowing. And there will be refined mechanisms for as- 
sessing whether to act on one's avowals. Even a sketchy understanding of 
the game-theoretic structure of recurrent human interactions will suggest 
kinds of psychic mechanisms we might expect to find in human beings. 

3. M o r a l i t y  

How does all this bear on human morality? Morality in a narrow sense, I 
suggested, we could understand as consisting in norms for guilt and anger. 
This identification is somewhat arbitrary; there are various features of our 
own everyday morality that we could take as its defining features. But 
there are advantages to thinking of morality as centering on blame. A 
person is to blame for something he did, it seems fair to say, if he and 
others can reasonably blame him for it. We can think of guilt as the feeling 
of self-blame, and anger as the second or third party feeling of blame. 

Now if we delineate narrow morality as I have proposed, then a moral 
psychology will be a psychology of norms for guilt and anger. Or rather, 
we should speak of a moral social psychology, since people work out what 
norms to accept in interaction with each other. A social psychology of 
morality will be successful if it explains the psycho-social dynamics of 
normative discussion and normative governance. In particular, it will deal 
with discussion that can be well translated as developing norms for guilt 
and anger. It will explain what sorts of norms, if any, people are likely to 
accept for guilt and anger in various different kinds of circumstances. It 
will discover what psychic mechanisms are involved, and how they interact 
to produce moral convictions. It will also explain why, often, people avoid 
the kinds of actions they think would warrant guilt and anger, and under 
what circumstances they are most likely nevertheless to do things they 
would condemn. 
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It is open to question, though, how significant morality is in the narrow 
sense I have proposed delineating. Even if my proposal does point to 
crucial features of morality as we know it, it still might be that morality as 
we know it is peculiar to modern Europe and its cultural offshoots. That 
would mean, among other things, that whatever the genetically coded 
psychic mechanisms are that make for moral thinking and motivation, 
these mechanisms are adapted to doing something else. 

Science provides a good parallel. Modern science started as a peculiarly 
European development, though like many features of European culture 
it has now spread globally. It would not make sense, then, to look for 
genetically coded psychic mechanisms adapted to doing science. It would 
make sense, though, to ask what psychic mechanisms are involved in doing 
science, and what those mechanisms were shaped by evolution to be able 
to do. It might be likewise with morality. 

Still, even if morality narrowly conceived has been rare among human 
groups, morality in broader senses is clearly widespread. An interplay of 
language, action, and feelings about actions is found everywhere I have 
heard anything about. It may be universal that such talk, and the motiva- 
tions that attach to it, play a crucial role in adjusting human interactions. 
If we suppose that morality, in the narrow sense I have proposed, is pecu- 
liarly modern European, then the picture we should accept is this. What  
is peculiar to Europe is a reliance on guilt and anger as the feelings called 
on to play a central regulative role. Europeans have identified these feel- 
ings, cultivated them, and elaborated norms for them. This involves the 
workings of psychic mechanisms biologically adapted to coordinate human 
actions. In special cultural circumstances, though, these mechanisms work 
in special ways. 

Is narrow morality, then, really peculiar to modern Europe and its cul- 
tural offshoots? This is a big question, and I am in no position to begin to 
tackle it. Much needs to be done to investigate what features of European- 
influenced morality are special, and what features are widespread or uni- 
versal. I have not been trying to answer these questions, but to suggest 
one way of formulating them. 

Let me glance, though, at a few scattered indications. Sometimes the 
rules of other cultures will strike us as strange and bizarre, but they are 
accepted as moral requirements--or so many observers are inclined to 
say. In anarchic tenth century Iceland, open killings and raids on prop- 
erty were assessed as glorious at times and imprudent at times, but there 
was no general moral condemnation of these acts of affront or domina- 
tion. Secret killings and thefts, in contrast, were regarded as ignominious 
(Miller, 1990). The African Ik whom Colin Turnbull studied shocked him 
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in many ways, but stuck to the rule that food must be shared with all 
those present. That did not mean that the Ik were generous to each other, 
but that they went to great lengths to be alone when they had acquired 
meat (Turnbull, 1972). 

Are these rules, strictly speaking, moral rules? I don't know. It would 
be marvelous if ethnographic psychologists could tell us more about them. 
How are rules like these taught or shared? What is the developmental 
psychology of their uptake? What are the emotional flavors of criticism, 
blame, and the like to be found among exotic peoples? To what lengths 
are standards of conduct elaborated in discussion, criticism, quarrels, ora- 
tions, and the like? More information on these scores could begin to in- 
dicate whether the criticisms ethnographers identify as moral are tied to 
feelings like guilt and anger, or have some other kind of sanction. 

We can be confident that some aspects of modern European morality 
will turn out to be universal among humanity, and that others will be more 
or less peculiar. I have proposed a schematization of European morality 
that might help us pose the right questions. Like any schematization, it 
is bound to oversimplify European ethical life. It may, though, point to 
some of the chief features of the thought, discussion, and motivation of 
modern Europeans on which European moral terminology and theories 
have fastened. If so, it may give us a way of asking what role, if any, 
those features play in human life in general. 

4. Conc lud ing  r e m a r k s  

From a social psychology of judgments of right and wrong, nothing follows 
directly about what things really are right or wrong. The same goes for 
evolutionary hypotheses. Judgments may be correct or incorrect, for all 
psychological or evolutionary theories of their origin tell us. Such theories 
may have some legitimate bearing on questions of right and wrong, but 
the bearing will be complex and indirect. All this would be a long story. 

Return, then, to evolutionary moral psychology, and let me finish with 
a few methodological remarks: I have been working within a scientific 
world picture, but I have not been claiming anything like good scientific 
levels of proof for my speculations. I don't think, though, that we should 
confine ourselves to thoughts that could be proved or refuted. Science 
does not jump from a void in thought and discussion to well confirmed 
theories. It does not progress from one clearly testable hypothesis to 
another. We need to alternate looking at evidence and thinking about 
where the evidence might be leading us. 

Sometimes evolutionary hypotheses do attain a high degree of credibil- 
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ity. Eventually, we might hope, hypotheses about the evolution of human 
capacities for moral judgment will attain this status. Already, I think, we 
have good evolutionary hypotheses about some other aspects of human 
psychic capacities. I have in mind, for instance, some of Donald Symons' 
work in his book The Evolution of Human Sexuality. 6 I have not at- 
tempted the kind of search of the literature that could begin to make my 
hypotheses credibly scientific, and to refine them in light of the evidence. 
But my hope is that against the background of the rough hypotheses I 
have been setting out, such a survey would be rewarding. 

Success in this realm is not a matter of decisive tests. We have it 
to a high degree when the evidence fits a coherent, plausible evolutionary 
picture, and does so much better than we could expect it to fit any equally 
coherent and plausible alternative. This ambition, I think, will sometimes 
be attainable. We can observe some of the outcomes of past evolutionary 
histories. Often we can have a good enough idea of what kinds of selection 
pressures must have been at work. All this can sometimes let us infer with 
fair confidence what must have happened in the distant past. 

The degree of justified confidence we can attain will vary from topic 
to topic. Making unreasonable demands for standards of proof can stifle 
promising investigations. We should make sure that we demand no stan- 
dards of proof that would forbid our saying that fish gotta swim and birds 
gotta fly, and that wings and fins are adaptations. In addition, though, we 
should not disdain thought about human evolution that is far less certain 
than these things are, as long as we recognize the degree of uncertainty. 
We should, of course, subject evolutionary speculations to vigorous anal- 
ysis and criticism. We should distinguish loosely supported speculation 
from hypotheses that fit extensive evidence, and distinguish these from 
hypotheses where a careful work has been done to eliminate alternative 
hypotheses. Our goal, though, should not be to weed out all uncertainty 
or to close down speculation. It should be, rather, to identify the most 
promising lines of investigation, and to assess our degrees of knowledge 
and ignorance. 

When we think about human beings, to be sure, we have to recognize 
the dangers. Evolutionary pseudo-science has been exploited to horrible 
ends. I don't think the cure, though, is to demand complete certainty in 
all permissible evolutionary thinking about humanity. We aren't going to 
go through life as if we thought we knew nothing of what human beings are 
like or could be like--and other kinds of thinking can lead us astray too. 
Most of the cure for human brutality isn't a matter of rules of evidence 
at all. Part of the cure, though, is to be skeptical of everything to the 

6Symons (1979); see also Daly and Wilson (1988). 
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degree that it warrants skepticism. 
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In this paper I will deal with some conceptual issues in arguing for an 
ethics of science and technology as a species of professional ethics. My 
argument will start with the crisis of conscience scientists have experi- 
enced since the explosion of the first atomic bomb in Hiroshima. These 
experiences, in my view, refuted the established model of science as a 
value-free pursuit of t ruth or self-governing activity independent from its 
social and cultural context. In the second, third and fourth sections I will 
argue that obligation, virtue and just distribution of resources should be 
the essential aspects of the ethics of science and technology. In the con- 
clusion, I will argue that the ethics of science and technology as a species 
of professional ethics is the only way out of conflict between professional 
autonomy and social control by a scientific community's self-regulation of 
its own conduct. In this paper technology is classified as applied science, 
science mainly refers to natural sciences but does not exclude human and 
social sciences. 

Value  confl icts  a n d  m o d e l  of science 

Since 1945 there has been three major events by which many scientists 
were so shocked that they experienced a crisis of conscience and felt it 
necessary to reflect on their own activities. 

The first is the explosion of the first atomic bomb in Hiroshima. It 
shows that, as B. Baumrin [3] points out, "a scientific theory which had 
begun in philosophical nursings and scratchings on paper had culminated 
in the terrible deaths of thousands". 

The second is the trial in Neuremberg in 1945. This event revealed that 
scientific research which aims at the discovery of the impersonal t ruth of 
universe could be proceeded in such an inhumane way that it violated 
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fundamental human rights and killed innocent people. 
The third is the sudden discovery of the silence in spring ~ the world- 

wide environment pollution which threatens human existence on this plan- 
et and even puts its very existence at stake. 

These major events, among others, caused many scientists and lay peo- 
ple to be seriously concerned with the social consequences of their research 
results, the impact of their application on society, humanity and ecology, 
as well as the scientific conduct. Those concerns that are laden with value 
conflicts or ethical dilemmas could be listed as follows: 

(1) Concerns about risks 

There are some research activities that are themselves dangerous because 
of the materials employed or produced which are risky to human health, 
such as radioactivity in the research of high-energy physics, or pathogenic 
microorganisms in the research of molecular biology. Biochemists at 
Ashilomar adopted a self-imposed moratorium on recombinant DNA re- 
search in fear of unknown pathogenic microorganisms escaping from lab- 
oratories. The Three Mile Islands and Chernobyl accidents revealed the 
possible catastrophic consequences of nuclear generators. Let alone such 
products as PCBs, freon, and even excessive release of CO2 which have 
proved harmful to human health or human environment. 

(2) Concerns about misuse 

Research results can be misused to cause harm to some part of a pop- 
ulation or to society as a whole. Scientists worried that the results of 
research on the relationship between race and IQ would be misused to 
support racism, the discovery of centers in brain controlling behaviour and 
the results of genome mapping be misused to control human behaviour. 
Many technological applications that seemed a blessing to mankind when 
first introduced became threats when their use became widespread. For 
a well-known example, DDT was employed to eliminate disease-carrying 
pests and raise agricultural productivity, but it also threatened ecological 
systems, including the food chains of fishes, birds and eventually human 
beings. And the use of psychotropic drugs to treat children with learn- 
ing disabilities or hyperactive children has already led to misuse in many 
cases. 

(3) Moral concerns 

Scientists are sometimes challenged that the knowledge they acquire might 
create a danger by undermining human values or threaten the founda- 
tions of public morality. For example, does Darwinism undermine the 
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religious values cherished by many Americans? Does Mondal-Morgan's 
biology, Virchow's cellular pathology and Wiener's cybernetics undermine 
the ideological values of dialectical materialism in a socialist country? It 
was feared that Frankenstein-like monsters would be created from science 
and technology and get rid of human control or even enslave their own 
creators human beings violating the beliefs about free will and self- 
determination. Let alone that the practice of abortion, the use of fetal 
tissues, the research on embryos, and even the use of RU 486 (abortion 
pill) etc. are thought to violate moral and legal principles by 'killing' an 
innocent 'human being' if the upper limit of human life was set at the be- 
ginning of conception. People have worried that reproductive technology 
such as contraception, artificial insemination, in vitro fertilization, surro- 
gate mothers, and embryo transfers etc. would undermine the traditional 
structure of marriage and family. And the use of prenatal sex selection 
has already jeopardized the balance of the sex ratio in China which could 
in turn cause a series of social problems. 

(4) Concerns about equity 

The research results and the application of science and technology may 
benefit some part of a population and burden or harm others. Prenatal 
research led to a technology which can save the life of a very low birth 
weight (say, 500 g.) newborn at the expense of half a million US Dollars. 
Sophisticated life-supporting technology can prolong the life of comatose 
patients, those in a persistent vegetative state, and terminally ill at the 
expense of unbearable burden on others and society without improving 
their quality of life. And all researchers need grants from governments 
or private foundations. For each researcher it seems that the more the 
better. Thus arises the problem of just allocation of resources. 

(5) Concerns about individual rights 

In biomedical, psychological and social research some experiments have 
to be done on human subjects. In these experiments, subjects will be 
exposed to harm in order to benefit society as a whole, or their confidential 
information will be revealed to the researcher. So voluntary informed 
consent has to be obtained from human subjects. Otherwise, the rights to 
privacy and self-determination of these subjects will be violated and their 
interest be infringed upon [5, 15]. Scientists worried that the knowledge 
of reproductive bio-medicine would be applied to construct such a world 
as that described by A. Huxley in his Brave New World in which not only 
the traditional structure of marriage and family is destroyed, but also the 
individual rights are systematically violated. 
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Value conflicts are involved in all these concerns; the interest of re- 
searchers, the progress of knowledge in the given discipline made by the 
research, benefit to people or society from the research, burden or cost of 
the research on society, harm caused by the research itself or the appli- 
cation of its results to part of the people, interest and rights of human 
subjects, impact of its application on other social, economical, political or 
cultural factors of society, and on human environment and ecology. Sci- 
entists gradually became aware that they have to balance all these values 
concerned to make decisions about their actions. 

Value conflicts led scientists to moral dilemmas in many cases. Moral 
dilemmas arise when there is a conflict between two obligations ~ both 
ought to be fulfilled, but only one can be fulfilled. When the progress 
of some knowledge is in many people's interest but the acquisition or 
application of this knowledge will cause harm to some people what 
ought the researcher to do? There is a conflict between the obligation of 
benefiting people by the research and the obligation of doing no harm to 
people. 

The fact that scientists are increasingly aware of the social implication 
of scientific research and the potential misuse of scientific knowledge has 
refuted the established model of science, according to which science is 
characterized as a value-free pursuit of t ruth or a self-governing activity 
independent of its social and cultural context. 

It was argued in [16] that this model of science could be derived from 
R. Merton's [13] values or rules of the scientific game, which make up the 
ethos of modern science and serve as a guide for its practitioners: univer- 
salism, communalism, disinterestedness, and organized scepticism. The 
point is open to discussion. However, these values are mainly concerned 
with the internal aspect of scientific knowledge. Indeed, some of them 
suggest that science is operative in a context of individual sovereignty. 
An example is the value 'disinterestedness'. A colleague [9] interpreted 
it as 'selfishlessness'. I doubt this interpretation to be closer to what is 
meant by Merton. Even so it is hard to define what 'selfishlessness' means 
in the given context. Does it require a scientist to do research without any 
personal concerns or only without harm to others? So this interpretation 
seems to be irrelevant here. Rather, 'disinterestedness' is to be interpreted 
as arguing for a science for the sake of science, a science without concerns 
about its utility. A science for the sake of science, or a science in the ivory 
tower is a myth in modern society. And it is this value which has affinity 
with the established model of science. 

This model ignored the fact tha t  the interaction between science and 
society, and the process of integration of science into society at large 
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have been more explicit and intensified since the end of the Second World 
War. On the one hand, as D. Nelkin [16] points out, the technological 
sophistification of research requires considerable dependence on external 
funds, which in turn leads to a social process of collectivization and instru- 
mentalization of science, inevitably implying less disinterested research in 
a context of personal autonomy or individual sovereignty. Institutional 
and societal pressures force scientists in a tightened economy to select 
research questions based less on disinterested judgements of intrinsic sci- 
entific merit than their institutional and social needs. They also have 
to take into account the public concern about the ethical implication of 
research [16]. 

On the other hand, the interval between the result obtained in research 
and its application is considerably shorter than before, and it may be more 
probable than before that scientists can anticipate, even if they cannot 
precisely predict, the potential application of their research through many 
links between them. These factors make it more explicit that scientific 
research is not a neutral, value-free, merely cognitive activity within a 
self-sufficient system. 

It is plausible when B. Vitale claimed the demystification both of the 
concept of science as the neutral pursuit of truth and the image of sci- 
entists as priests of t ruth [21]. According to the established model of 
science, scientists are described as people who are members of an elite in 
society, capable of possessing some sort of omniscience, and it is believed 
that what is good for them is good for society. As B. Vitale argues, at the 
end a beautiful picture of scientists is constructed as priests of t ruth and 
guardians of people's welfare. This image does not take into account the 
fact that scientists have to be dependent on external support, so they and 
the ruling class need each other. As B. Vitales points out: "The power of 
the ruling classes is strong, and scientists oscillate between their interest 
in knowledge and their interest in power, prestige and privileges, leaning 
rather heavily towards the latter" [21]. 

The refutation of the established model of science will have some impor- 
tant implications for the ethics of science and technology. First, we have 
to answer the following questions: As far as the end-product of science 
is concerned, whether or to what extent the scientist ought to be held 
responsible for the consequences of her/his discovery? As far as scientific 
conduct and method are concerned, how ought he/she to proceed with hu- 
man experimentation? Those questions lead us to a theory of obligation 
for scientists as an essential part of the ethics of science and technology. 
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Obl iga t ion  

In conformity with the established model of science, the traditional theory 
of scientists' obligation is that scientists' job is discovering and inventing, 
and so they would bear no responsibility for the application of their work. 
For example, P. N. Bridgeman argued that a scientist should never bear 
the responsibility for any application of his work relying on the fact that 
the harm resulting from scientific work arises not at the point of research 
but at that of industrial manufacture [3]. This argument can be countered 
as follows: First, risks can appear in the process of research itself, e.g. 
high-energy physical research and biological research. Secondly, in some 
cases the cost of research is very high, but the cost of manufacture is 
rather low, so control of research is often more practical than is control of 
industry [3]. 

Another argument for the traditional theory of scientists' obligation is 
that science is good, the pursuit of scientific knowledge is a good activity 
in its own right, and even better since scientific knowledge is an absolute 
good apart from its consequences. 

In the counter-argument some sociologists went too far in arguing that 
science seems a vice in the sense that they discovered that individual 
scientists are 'all-too-human', that the life of the scientific community can 
be portrayed as a career oriented power struggle, and scientific research is 
used by the members as a main tool in their ruthless self-promotion and 
careerism. It is hard for me to agree with them. But what does it mean 
that an activity is good? Does it mean that if an activity is good, its 
products are always good? Can a good activity give rise to a thoroughly 
undesirable product? And it is hardly possible to absolutely separate the 
acquisition of knowledge from the application of knowledge. Knowledge is 
to be tested in practical applications as well as in laboratory experiments. 
Moreover, resources available to scientists in a society is limited, and the 
limited resources ought to be given priority to be allocated to the solution 
of pressing social problems and the promotion of the common good. Even 
if the resources are sufficient, not all that can be done ought to be done. 
What can be done is a scientific or technological judgement. What ought 
to be done is a moral or ethical judgement. As B. Baumrin [3] argues, "if 
scientists choose to justify their choice of engaging in disinterested science 
on basis of its being pleasant for them, or its beauty or its self-fulfillment, 
then to ask for social support for their activity is facetious". Instead, as 
J. Neilands [14] points out, "the research scientists have the responsibility 
for misdirected technology, simply because it is we who preside over the 
wellsprings of knowledge in this area". For example, both arms race and 
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environmental pollution arise from technology, which in turn, is rooted 
in scientific research. "It is part of the inevitable 'peril and promise' of 
science" [14] that researchers of basic science cannot escape responsibility 
for these two evils. 

So, as J. Ravetz [19] argued, the goal of science is not only one, but 
two, by which it is made legitimate: the attainment of the True and the 
production of the Good. The production of the Good includes acquiring 
knowledge in a moral way, and applying knowledge to benefit people and 
society. The realms in which these goals are attained are Cosmos and 
Humanity. Or, in F. Bacon's phraseology, 'light' and 'fruit' are two goals 
of science. It was F. Bacon's claim that the moral value of the pursuit 
of scientific knowledge came from the value of the general social utility 
promoted by its achievements. The crisis of conscience which was expe- 
rienced by scientists during the event of Hiroshima or others implies the 
refutation of the traditional theory on scientists' obligation. At least, they 
thought this theory was inadequate. 

This inadequacy was reflected also in the argument for the transition 
from the philosophy of knowledge to the philosophy of wisdom made by 
N. Maxwell [12]. He argues that according to the philosophy of knowl- 
edge, the basic aim of science is to produce 'reliable, objective, factual 
knowledge' (p. 16). Most scientists seem to believe that this can be 
achieved only if that aim is pursued independently of psychological, soci- 
ological, economic, political, moral and ideological factors and pressures. 
But Maxwell believes that many members of the scientific community see 
the internal moral order in relation to large humanitarian enterprises, the 
general betterment of the quality of human life. On this humanitarian or 
Baconian view, the connection is simple, by providing mankind with ob- 
jective truths scientific community contributes to the humanitarian aim. 
And Maxwell tries to subsume under the one 'philosophy of wisdom' both 
the morality of a science directed to the resolution of human problems, 
and the attitude to science as a road to a deep understanding. 

If we accept the thesis that scientists have the obligation not only of 
attainment of the True, but also of production of the Good, we are forced 
to make judgements about what kinds of knowledge should be pursued 
or given priority to be pursued, and how knowledge should be applied. 
These are moral or ethical judgements. Science is what is, ethics is what 
ought to be. One cannot derive an 'ought' from an 'is', or vice versa. 
What can be done scientifically and technologically does not amount to 
what ought to be done morally or ethically. 

The conscience of scientists is more strongly expressed in the movement 
to accept greater responsibility for the use of their knowledge in which 
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scientists are playing multiple roles, such as advisors to policy-makers, 
consultants to governments and private enterprises, expert witnesses in 
courts, social critics, popularizers of science, advocates for community 
groups, etc. In recent years Chinese scientists stepped forward to argue 
against the proposed 'Three Gorges Project', in which the upper reaches 
of the Yangtze River will be dammed to build a huge hydraulic power 
plant. Many Chinese scientists expressed their great concerns about the 
potential disastrous social and ecological consequences of this project, 
and forced the policy-makers to postpone their decision [4]. These roles, 
intrinsic to the scientific enterprise, contradict the expectation of disin- 
terested research and the image of neutrality. It was plausible to argue 
as B. Baumrin does [3], that doing disinterested science or science for 
the sake of science and justifying that activity in terms of its benefit to 
mankind are both immoral in the sense that they break the duty to be 
honest and give rise to avoidable deleterious consequences. 

Vir tue  

Knowledge is power. Modern science and technology have the great and 
awesome power of changing the social, economical and cultural pattern 
and the structure of life including food, clothing, shelter and transporta- 
tion, and even birth, age, illness and death. To provide the Good with 
science it is necessary to have norms to control and optimize the social 
uses of scientific knowledge and resources. It was argued that scientific 
activities were best characterized in Merton's values mentioned above in 
which cognitive norms as well as ethical norms are implied [9]. The norms 
which are implied as ethical are inadequate. Morality cannot naturally 
flow from cognitive norms. And ethical norms need to be made from these 
values. But even if we did have ethical norms, it is not sufficient. 

Now fraud in science has become a pandemic spread all over the world. 
Even reasearchers in esteemed institutes or famous scientists commit fraud. 
In our country, a favourite scientist, who is at the top of the power struc- 
ture, played a leading role in the fraud of using falsified data to advocate 
parapsychology or justify a stupid policy which led to catastrophic con- 
sequences. The cases of fraud in science are absolutely not few, but we 
do not know if they were simply episodes that will drift into the history 
of science as footnotes, or the top of an iceberg. Anyway, fraud gravely 
damages the image of science and scientists. Some scientists blame the 
problem on the external pressures on science, and others on the moral 
deterioration of the society at large. 

The epidemic of fraud in science can be explained only by the combi- 
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native effect of internal and external factors. The current reward system 
are external reward oriented. The incentives to scientists are money, pres- 
tige, power and fame. As C. J. List [10] points out, internal rewards are 
self-caused, and external rewards are other-caused. External  rewards are 
limited and socially arranged, contingent upon the existence of institu- 
tions that  control and distribute them. As for internal factors one is the 
weakness of cultivating virtues in scientists since the tradit ional virtue- 
oriented ethics has been replaced by modern norm-oriented ethics. 

As A. MacIntyre [11] pointed out, "virtue is an acquired human quality, 
the possession and excercise of which tend to enable us to achieve those 
goods which are internal to practices and the lack of which effectively 
prevents us from achieving any such goods". Virtues, such as justice, 
courage and honesty have to be accepted as necessary components of 
scientific practices. For example, a scientist should have courage enough 
to propose a bold, novel theory, should be honest in testing her/his theory, 
and should be just in comparatively assessing her/his theory and others' 
competitive theories. Faust who sold his soul to the devil is no longer the 
model of a good scientist. It is these virtues in which the norms of science 
must be grounded. The mere existence of norms, cognitive or ethical, is 
insufficient to deter fraud in science [10]. As Confucius once argued: If a 
man has no virtue, what has he to do with norms? [1] 

There are some arguments against virtue-oriented ethics [20]. The 
proper virtue set is not obvious, the proper set of virtues for a part icular 
role is not obvious, virtue theory can lead to wrong acts, virtue theory is 
unnecessary in science or technology that  is practiced among people who 
are essentially strangers. These counter-arguments seem plausible. In a 
pluralist society it is not easy, if not impossible, for people to agree on 
which virtues should be possessed. However, as Confucius claims, human 
natures are similar, only nurture makes them apart.  Otherwise, how can 
we sit here to discuss the topic we are all interested in? And it does not 
follow from the fact that  the proper set of virtues is not obvious that  we 
cannot get nearer and nearer to the proper set of virtues on the basis of 
practical experiences. 

As for the relationship between a virtuous character and right acts, it is 
true that  there is no direct, necessary relation between them, and there is 
no guarantee that  any act of a virtuous man is necessarily or unavoidably 
right. However, we can say that  it is more probable for a person with a 
virtuous character than for a person with a vicious character to do right 
acts. And it is not the case that  virtue is unnecessary in science and 
technology in a world of "strangers". Our planet is becoming smaller and 
smaller. The beneficiaries or victims of an application of your discovery 
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or invention may be strangers you never met before, may be your relatives 
or even yourself. In any practice if we want to achieve higher standards of 
excellence, we must possess and exercise some virtuous character traits. 
Last but not least, virtue ethics is not designed to replace normative ethics. 
They are complementary to each other. It is implausible to suppose that  
they are incompatible so that  if we accept one we have to reject the other. 
Both of them are needed to achieve higher standards of excellence. 

As for the countermeasure to deter fraud in science, together with 
the cultivation of scientists' virtuous character, the institutional external 
reward-oriented system must be reformed. Scientists should be promoted 
to attain the self-caused internal rewards obtained only by scientists who 
possess virtues and observe norms. 

D i s t r i b u t i v e  j u s t i c e  

Scientists who are engaged in scientific practice as an institutional activity 
have to deal with problems of just distribution of benefits and burdens on 
the parties concerned. Among others, it is uncontroversial that  decisions 
have to be made on the allocation of resources at macro-, meso- and 
micro-levels on the basis of the balance of different or even incompatible 
values. 

The ethical problem of resource allocation at macro-level is that  among 
the resources available to a society or country, how much is proper to 
be allocated to the department of science and technology, and among the 
resources available to the department of science and technology, how much 
is proper to be allocated to each group of disciplines or basic research, 
theoretical research and applied research etc. 

What  is 'proper '? 'Proper '  does not mean that  the resources allocated 
to science are 'the more, the better ' .  Science and tecnology as a depart- 
meat of the national economy are interrelated and interdependent with 
other departments such as agriculture, industry and especially education. 
So at macro-level we have to balance the needs of different departments 
of the national economy to set a proper proportion of resources to be 
allocated to science and technology for optimizing their development in 
a given country at a given time. It is the same with the relationship 
between basic research, theoretical research, applied research and devel- 
opment within science and technology. 

The ethical problem of resource allocation at meso-level is that  among 
the resources available to an institution, how much is proper to be allo- 
cated to each section or unit that  is affiliated with the institution. 
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The ethical problem of resource allocation at micro-level is how to prop- 
erly use the resources available to a scientist. 

It is admitted that there is an interdependence between different disci- 
plines, or different departments in an institute or different groups managed 
by a scientist. Over-allocation of resources to a discipline is not necessar- 
ily good to the discipline itself, as well as mal-allocation to a discipline 
is not necessarily good to other disciplines, because all disciplines depend 
on a coordinate development with one another. In Confucian phraseol- 
ogy, 'Perfect is the Mean', or going too far is as bad as not going far 
enough [2]. There are many cases in China in which much resources were 
allocated to an incompetent scientist in one department, who, however, 
was very competent to boast her/his achievement to the decision-maker 
in resource allocation and got excessive funds for her/his research at the 
expense of her/his colleagues' interest. This is immoral in two senses, 
the first is to violate the duty to be honest by deliberately exaggerating 
her/his achievement beyond normal error. The second is that her/his 
conduct led to unjust allocation of resources. 

Science as p rofess ion  

There has been very little talk about science as a profession. It has been 
argued that science is not a profession because of its unique characteristics 
distinctive from typical professions like medicine and law. Now let us 
look for a while at the characteristics of typical professions, and examine 
whether there is any essential difference between science and them [6] [2]. 

First, members of typical professions provide personal services to indi- 
viduals with whom they have a special professional relationship, namely 
clients, patients, parishoners or students in law, medicine, divinity or uni- 
versity faculty, and this relationship is, in some respect, very close and 
intimate. It seems that for scientists there are no such personal services 
to individuals and no such intimate relationship with them. However, nor 
do some lawyers or doctors provide personal services and have intimate 
relationship, such as the lawyer employed by a corporation, or the epidemi- 
ologist working in public health administration. On the other hand, some 
scientists, such as psychologists or geneticists who provide councelling 
services could have personal and intimate relations with their clients. 
Because of institutionalization, professionals are often in a tripartite re- 
lationship with their clients and employers, such as client-lawyer-office 
or court, patient-physician-hospital, parishioner-minister-church, student- 
university faculty member-administration. It is this tripartite relationship 
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which sometimes puts the professional into moral dilemmas when there is 
an incompatible conflict between the obligation to her/his client and the 
obligation to her/his employer. Scientists who are employed by govern- 
ment or private enterprises share with other professionals the tripartite 
relationship between their employers and bearers of the consequences of 
their research results. The only difference between them is that for sci- 
entists there is no personal relationship with the bearers of consequences. 
The question is whether this difference is wide enough to make science a 
non-profession. If scientists provide counselling services they will enter in 
personal relationship with the bearers of consequences. On the basis of 
what has been said above the difference between science and a so-called 
typical profession is rather in degree than in kind. Science may be at the 
one end of the profession continuum. 

Second, these professions traditionally control the services they offer, 
the standards of evaluation of these services, and the qualification for 
membership in the profession. This seems to hold for science and technol- 
ogy. However, all professions are now undergoing the pressure of external 
control. There is no exception for science. In China scientists complained 
of the intervention in evaluation of research results from 'omnipotent' of- 
ficials, journalists or even writers, and in the United States physicians 
complained of the control of their services by insurance companies. The 
sophistication of equipment in science, medicine and university faculty 
makes these professions vulnerable to intervention and control by exter- 
nal powers. 

Third, the members of these professions often assume the role of moral 
arbiters of what is morally good for their clients and even of what is 
morally good for society. Scientists assume the same role. As we argued 
in the previous section, scientists have the obligation to tell their employ- 
ers, people and society which kind of knowledge should be pursued with 
limited resources and how to apply the knowledge. However, for scien- 
tists and other professionals this role is limited, because of complexities 
it is often not clear what is morally good for their clients or society. This 
moral role should be played in cooperation with colleagues from other 
disciplines, especially those from human and social sciences. 

Fourth, all these professions provide a body of theory which affects 
practice and forms a professional culture. When lay people enter into a 
relationship with a professional in an institutional framework, they go to a 
new and strange place, where people speak a different language and have 
strange manners and values. This puts lay people at a disadvantage, they 
are outsiders, weak and unequal, and therefore necessarily dependent on 
the good will of the professionals. This holds completely for science. 



549 

Fifth, these professionals represent the ~lite and belong to the upper 
social class, superior in education, intelligence, wisdom and authority, 
and they are moral superiors too, and expected to have a sense of honour, 
and to devote themselves to the welfare of others. Scientists are the most 
superior among them. In China, even if the salary of a scientist may be 
lower than that  of a factory worker, and far much lower than that  of a 
private merchant, her/his  social status is the highest. In a survey to young 
people recently made in China, among the responses to the question of 
'what is your most preferable profession?' the first is 'scientist' and the 
second is 'physician'. 

Sixth, many professions possess an ethical code. But science has none. 
That  does not mean that  science is not a profession. Possessing an ethical 
code may not be the characteristic of a profession, but the result of being 
classified as a profession. If a scientific community feels the need or is 
determined to possess an ethical code, they will have one. 

I should like to add one more argument.  The relationship between 
clients and professionals is characterized as a fiduciary one in all these 
typical professions in which trust or trustworthiness is the unique feature 
[17]. As early as in the 1960's M. Polanyi [18] claimed that  in understand- 
ing scientists' s tatements  we must make the 'fiduciary transposition' .  As- 
sertions of fact must be transposed into the 'fiduciary mode'.  They are 
to be read not as 'This is true'  but as 'Trust me when I say that  ...'. 
To adopt the fiduciary mode is itself a fiduciary act. Recently R. Harrd 
argued [7] that  science is not just an epistemological but also a moral 
achievement, and the scientific community exhibits a model or ideal of ra- 
tional co-operation set within a strict moral order (p. 1). He claims that  
science is a cluster of material  and cognitive practices, carried on within a 
distinctive moral order, whose main characteristic is the trust  that  obtains 
among its members and should obtain between that  community and the 
large community with which it is interdependent,  and at the heart of the 
morality with which the scientific community practices is the commitment  
that  the products of this community shall be t rustworthy (p. 6). Science 
shares this characteristic with other professions. 

In any case there is no adequate reason to preclude science from the 
professions. 

Scientists may refuse to accept the notion of science as a profession, 
because this notion implies codes and certificate procedures. They are 
accustomed to informal collegial control and concerned about individual 
sovereignty. Scientific societies have tradit ionally been more concerned 
with promoting 'good science' than with controlling the actions of their 
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members. They thought that the norms of scientific honesty are suffi- 
cient without codification. However, it follows from what has been ar- 
gued above that the norms of scientific honesty are not sufficient. The 
problem is that if scientists and their community do not come to regulate 
their activities by themselves, they will not be able to resist the exter- 
nal pressures intruding on scientific autonomy. Self-regulation is the only 
path avilable to scientists for the retention of autonomy. The voluntary 
self-imposed moratorium on recombinant DNA research adopted by bio- 
chemists at Ashilomar, though it might be overcautious in retrospective, 
can be seen as an attempt to avoid outside intervention. So ethics of 
science and technology as a kind of social control can be reconciled with 
professional autonomy by a scientific community's self-regulation of its 
own conduct. 
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I n t r o d u c t i o n  

The aim of this paper is to present a new paradox for Type Theory, which 
is a type-theoretic refinement of Reynolds' result [24] that  there is no set- 
theoretic model of polymorphism. We discuss then one application of this 
paradox, which shows unexpected connections between the principle of ex- 
cluded middle and the axiom of description in impredicative Type Theories. 

1. M i n i m a l  a nd  p o l y m o r p h i c  h i g h e r - o r d e r  logic 

1.1. M i n i m a l  h i g h e r - o r d e r  logic 

1.1.1. A presentation of the system 

We assume known simply typed lambda calculus (see for instance [31. ) The 
lambda-terms will always be considered up to r The types of 
minimal higher-order logic consist of one basic type o and function types 
of the form a ~ / 3 .  The terms of minimal higher-order logic are those of 
simply typed-lambda t e r m s -  constants, variables, abs t ract ions-  with the 
usual type constraints. Write a : ~- to mean "a is of type 7." The only 
constants are the constant ~ of type o ~ o 4  o, and for each type T, the 
constant V~ : (7---, o ) ~  o. A proposition is a term of type o. 

We write r  r f o r ~  (r r and Vz".r for V~(Ax.r The application of a 
to the successive arguments h i , . . . ,  b, is written a(bl , . . . ,  bn). The notation 
[a/x]b stands for the substitution of the term a for the variable x in b. 

We define inductively when a proposition r is entailed by a finite set F 
of propositions, notation F ~ r A proposition is provable or true iff it is 
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entailed by the empty set of propositions. This is given by the rules. 

r  

r e r  
( H Y P )  

r u { r 1 6 2  
r F r 1 6 2  ( A B S )  

F 1 - r 1 6 2  F l - r  ( M R )  
I ' F r  

s I- Vx~.r 
F t-- [x/t]r ( I N S T )  

s 1 6 2  

F F Vx~.r ( G E N )  

In the rule ( I N S T ) ,  t is a term of type a, and in the rule (GEN) ,  it has to 
be assumed that x ~ does not appear free in any proposition of F. 

1.1.2. Definition of other logical connectives 

It is possible to define other logical connectives. This fact was in essence 
already known to Russell [25], at least for negation and conjunction. 

• = vr176162 -o 
= Ar176162177  " o ~ o  

T = Vr176162 =~ r "o 
A = ~ r 1 6 2 1 6 2 1 6 2  �9 o - ~ o ~ o  
v = ~ r 1 6 2 1 7 6 1 6 2 1 6 2  . o ~ o - - , o  

9~ = A P ~ . V S ~  =~ 5) =~ 5 �9 (7 ~ o) - ,  o 

Often, we shall not write explicitely the type of a bound variable when 
it can be infered. For instance, the definition of 9~ will also be written 
,~P.V&(Vx.P(x) ~ 5) =~ 5" (T ~ o) ~ o. 

1.1.3. Church's higher-order logic 

The original logic of Church [3] was formulated for classical logic and had 
a ground type of individuals. Yet another difference was the introduction 
of a description operator (another version contains an extensionality axiom 
and the axiom of choice). It is possible to interpret classical higher-order 
propositional logic in minimal higher-order logic (see [111). 
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1.1.4. Semantics 

Minimal higher-order logic has a direct set-theoretic semantics. Each type 
denotes a finite set: the type o a set with two elements {T, F}, and the 
function type operator is interpreted as set-theoretic exponentiation. The 
constants ~ ,  V, are then interpreted following the usual truth-table laws 
of boolean logic. By induction, it is seen that  a provable proposition gets 
the value T under this semantics. This insures the consistency of minimal 
higher-order logic, that  is, there are propositions that  are not provable. For 
instance, the proposition _1_= Vr176162 gets the value F, and hence cannot get 
a proof. 

Such a semantics is not faithful to the intuitionistic character of minimal 
higher-order logic. Topos theory provides various intuitionistic interpreta- 
tions [13], which fail however to reflect the definitional equality on proposi- 
tions. 

1.2. P o l y m o r p h i c  h i g h e r - o r d e r  logic 

1.2.1. Second-order lambda calculus 

Second-order lambda-calculus has been introduced independently by Girard 
[10] and Reynolds [22]. One motivation is to provide a syntax for polymor- 
phic (or generic, or uniform) procedure. Typically, the identity operation is 
of type c~--, c~, where c~ is arbitrary, and such an operation behaves "uni- 
formly" in c~. It is quite difficult however to describe precisely this notion of 
uniformity, as it is shown by the paradox we will present. 

The types of second-order calculus are either type variables, written c~, 
~ , . . . ,  or function types cr ~ 7, or product types IIc~.7. For instance, the 
type of the polymorphic identity is IIc~.c~ ~ c~. 

A closed type is a type without free type variables. 

The syntax of the terms of second-order lambda calculus is the one of sim- 
ply typed lambda-calculus, extended with type instantiation a{T}: [C~/T]a, 
where a is a term of type Ha.a, and type abstraction Ac~.a : Ha.a,  where a 
is a term of type a. For this rule, the type variable c~ should not appear free 
in the type of the term variables of a. 

For instance, the polymorphic identity id = Aa.Ax".x is a term of type 
A = IIc~.c~ ~ c~. Notice that  it is possible to intantiate id on its own type 
id{A} : A ~  A, and to apply the result to id, getting id{A}(id): A. 
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The/%conversion of typed lambda-calculus is extended with type fl-con- 
version 

[ lda" 

For instance, the term id{A} is convertible to the term AxA.x, and hence 
id is convertible to id{A}(id). 

1.2.2. A presentation of the system 

We consider second-order lambda calculus with one ground type o, one con- 
stant =~: o ---, o---, o, and, for each closed type ~-, one constant V~ : (T ---, O) ---, O. 
Terms are always considered up to conversion. As above, we write r =~ r for 
=# (r r  and Vx".r for V~(Ax.r A proposition is a term of type o. 

We define exactly as in minimal higher-order logic when a proposition is 
entailed from a finite set of proposition, with the inductive clauses (HYP) ,  
(ABS) ,  (MP),  ( I N S T )  and (GEN),  and when a proposition is provable. 
We get an extension of minimal higher-order logic, called polymorphic higher- 
order logic. 

1.2.3. An example of a derivation 

Here is a simple example that  shows the expressive power of polymorphic 
higher-order logic. We define: 

N = T Ia .  oz - - ,  (oL - - ,  ol) ~ o~ 

0 = Ao~.Ax'~.Af'~.x �9 N 

S - A n m . A ~ . A x ~ . A f ~ - ~ . f ( n { a } ( z , f ) )  �9 m - ~ m  

E~ = Ax ~, y~ .VP~ .P(y )  ~ P(x) �9 T --, T --* o 

The term E~ is called Leibniz's equality over the closed type T. The proposi- 
tions expressing that  E~ is an equivalence relation over T are directly provable 
[26]. Notice next that  if we define 

P -  AnN.n{o}(_L, Ar176 �9 N ~ o  

then we have the conversion 

P(O) - _L "o 
P(S(x)) - T "o 
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and, from this, it follows that  the proposition VxN.--,EN(O, S(x)) is provable. 
This proposition expresses the fourth Peano axiom for arithmetic. 

2. A t y p e - t h e o r e t i c  r e f i n e m e n t  of R e y n o l d s '  theorem 

2.1. A heu r i s t i c  p r e s e n t a t i o n  of R e y n o l d s '  theorem 

Reynolds' theorem [24, 21] states that there is no set-theoretic model of 
second-order lambda-calculus. We do not need here to detail the notion of 
"set-theoretic model" required in order to make this statement precise. But 
we will however give some comments in order to motivate the argument of 
the next section. 

Since there is no set of all sets, there is a problem in interpreting set- 
theoretically second-order lambda-calculus. However, in [23], Reynolds con- 
jectured that there is a nontrivial set-theoretic model where the function 
operator is interpreted as set-theoretic exponentiation. The idea was that, 
in interpreting a product of a family of sets (Ax), indexed over all sets, we 
consider only families ax C Ax that  are "uniform", with a strong enough 
notion of uniformity so that the collection of uniform families is small enough 
to be considered as a set. 

Let us motivate this conjecture by some concrete examples. For the type 
A - 1-Ia.a ~ a ,  the idea is to consider only "parametric" families (tx), with 
tx E X x. One definition of parametricity expresses the notion of "represen- 
tation independence" (cf. [23])" for all sets X and II, if R c_ X x Y, and 
R(x, y) then we shall have R(tz(X), ty(y)). It is then the case that  there is 
only one "parametric" family, which corresponds to the polymorphic iden- 
tity. Indeed, given a set Y, and y C Y, we can always take for X the singleton 
set {0}, and R the relation holding only between 0 and y. If (tz) is para- 
metric, we shall have R(0, ty(y)) which implies ty(y) = y. In this way, the 
type 1-Ia.(~ ~ a gets interpreted by a singleton. 

For the type N - IIc~.c~ ~ ( c ~ c ~ ) - - , a ,  the condition of uniformity of a 
family (tx) becomes: for all sets X and Y, if R C_ Z x Y, if R(a, b) and 
for all x r X, y r Y, R(x, y) implies R(f(x) ,g(y)) ,  then we shall have 
R(tx(a, f ) , tr(b,  9)). It is then the case that  if (tx) is parametric, there 
exists a fixed integer n0 such that  tx(x,  f )  - fn~ for all set X, x e X 
and f r X x. This integer no is t~(0, S) where S is the successor function. 
Indeed, given a set Y, and b C ]I, g c YY, we let R _C w x Y be the relation 
holding between n and y r Y only if y - gn(b). If (tx) is parametric, we 
shall have R(no, tg(b, g)) which implies ty(b, g) - gnO(y). In this way, N gets 
interpreted essentially by ~v. 
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Such an argument is directly generalised to any type of second-order 
lambda-calculus determined by any algebraic signature: the type gets in- 
terpreted essentially by the initial algebra of this signature. This is shown 
in [23]. 

It is then natural to look for the case of a signature that  has no set- 
theoretic initial algebra, and the simplest example is the signature with only 
one constructor that  maps elements of B (Bx) into elements of X, where B 
is a fixed set. This leads to the consideration of parametric families for the 
type Y I a . ( ( ( a ~ - ) ~ - ) ~ a ) - ~ a ,  where v is a fixed type, and to Reynolds' 
proof in [24]. 

2.2. A t y p e - t h e o r e t i c  f o r m u l a t i o n  

The intuitive arguments of the previous section cannot be formulated in 
polymorphic higher-order logic. Indeed, the uniformity condition involves 
in general a quantification over all sets, and we have no quantification over 
type variables in polymorphic higher-order logic. Instead, we will express it 
as a kind of "induction principle" over a given type. 

We first consider the following expressions. Given a type expression a, we 
let ~ (a )  be (a ~ o)--, o. 

Ao 
r 
iter 
intro 
match 

= 

= Aa, fl.Af.)~z.Au.z(Ax.u(f(x))) �9 Ha, ~.(a-~ ~ ) ~  r~(a)~ O(fl) 
= Aa.Af .Au.u{a)( f )  �9 Ha . ( r  ~ a) ~ Ao ~ a 
- Az.Aa.Af.f(r a}(i ter{a}(f) ,  z)) �9 r  
- iter{r162162 Ao} (intro)) " Ao-*r 

All these definitions can be done in second-order lambda-calculus. The term 
r expresses that  the map a~ , (I)(a) can be seen as a "functor", and the 
term iter expresses some kind of "weak initiality" of A0 w.r.t, this "functor". 
This corresponds to the functor T(X)  - 2 (2x) in set theory, and we are 
going to build in polymorphic higher-order logic what would be an initial 
T-algebra (see [21]). 

If a is a type, we write Rel(a) the type a ~ a ~ o .  If E :  Rel(a), we say 
that  E is a relation on a. Let us say that  a relation is a partial equivalence 
relation iff it is provably symmetric and transitive. 

If we have f : a - - ,  ~, E relation on a and F relation on ~, let us write 
morphism(E, F, f)  the proposition Vx, y~.E(x, y) =~ F( f (x) ,  f(y)).  We say 
that  f is a morphism between E and F if, and only if, the proposition 
morphism(E, F, f)  is provable. If furthermore g : /3 ~ a is a morphism 
between F and E, we say that the pair (f, g) is an isomorphism between E 
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and F if, and only if, both propositions Vx, y.E(x, y ) ~  E(x, g(f(y)))  and 

Vx, y.F(x, y ) ~  F(x, f (g(Y))) are provable. 

The next definitions associate to the types o and Ao a relation that  is 
provably a partial equivalence relation. 

= = Ar r162 =~ r A (~ =~ r �9 Rel(o) 
sym - Aa.AE.Vx, y.E(x, y) ~ E(y, z) �9 1-Ia.Rel(a) ~ o 
trans - Aa.AE.Vx, y, z.E(x, y) ~ E(y, z)=~ E(x, z) �9 IIc~.Rel(c~)~ o 
per = Ac~.AE.sym{c~}(E)A trans{a}(E) �9 IIc~.Rel(a)--~o 
power - Aa.,kE.,k f , 9.Vx, y.E(x, y ) ~  f (x) - g(y) 

�9 IIa.Rel(c~)~ Rel(a --, o) 
r = Ac~.IE.power{c~--.o}(power{a}(E)) �9 Ilc~.Rel(a)~ Rel(~(a)) 

The term 02 extends the action of a , > O(a) to relations over types. 
The term per{a}(E) represents the fact that  E is a relation symmetric and 
transitive on the type a. 

It is direct to show: 

LEMMA: if E is a partial equivalence on the type 7-, then power{T}(E) is a 
partial equivalence relation on the type r---, o. 

We introduce next a term that  represents the intersection of all relations E 
on Ao that  are partial equivalence relations and such that  intro is a morphism 
between r {Ao }(E) and E. 

E0 - Ax, y.VE.per{A0}(E) =~ morphism(r E, intro) 

::, E(x, y) " Rel(Ao) 

Since these two properties of a relation on A0 are closed under intersection, 
we have: 

LEMMA" the relation Eo is a partial equivalence relation on Ao, and intro is 
a morphism between 02 {Ao}(E0) and E0. 

The relation Eo can be seen as a construction in polymorphic higher-order 
logic of the initial T-algebra of the functor T(X)  - 2 (2x). 

LEMMA" the term match is a morphism between r and E0; fur- 
thermore (intro, match) is an isomorphism between Eo and r 

For this, we essentially follow the usual argument that  the morphism parts of 
initial T-algebra are isomorphisms (see [21] and the references given there). 

THEOREM" Polymorphic higher-order logic is inconsistent. 
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That is, all propositions are provable, or alternatively, 2_ is provable. This 
follows directly from the lemmas, and the usual intuitionistic proof of Can- 
tor's theorem, that there cannot be onto maps from a set to its power set 
(see for instance [19]). 

This argument has been checked and found using a computer, and the 
formal proof is presented in [7]. 

2.3. C o n n e c t i o n  w i th  G i r a r d ' s  p a r a d o x  

In [11], Girard considers essentially the extension of polymorphic higher- 
order logic with quantification over type variables (called "system U") and 
proves that a form of Burali-Forti paradox holds for this extension. The 
question of the consistency of polymorphic higher-order logic (called "system 
U-")  is then raised and left open. The theorem above solves this question 
negatively. 

Reynolds' argument, as it is presented in [24] can be directly formulated in 
the system U, but not in polymorphic higher-order logic, because the notion 
of parametricity used there is defined with a quantification over set variables. 
The idea of replacing this quantification by an "induction principle" appears 
also, independently, in the framework of topos theory in a paper of A. Pitts 
[19]. 

In [5], a slight simplification of Girard's argument is presented. We have 
not been able however to formulate a "Burali-Forti" like paradox in poly- 
morphic higher-order logic, that is, we have not seen if it was possible to 
avoid the quantification over type variables used in [11, 5]. 

3. App l i ca t i on  to i m p r e d i c a t i v e  type theory 

3.1. I m p r e d i c a t i v e  t y p e  t h e o r y  

Impredicative type theory has been introduced in [4] and is analysed in [6]. 
We will not present in detail this type theory, but limit ourselves to a short 
description. 

Impredicative type theory is a direct expression of the principle of "propo- 
sitions-as-types" and "proof-as-objects" for minimal higher-order logic. In 
order to stress this aspect, we represent by Set the type of propositions, 
that are now thought of as intuitionistic sets (the set of their proofs). The 
objets of type Set are themselves considered as types. We let a "small type", 
or "set" be a type that is also an object of type Set. The basic operation 
is the dependent product, written (IIx : A)B(x) of a dependent family of 
types B(x) (x : A) over a type A. The basic feature of impredicative Type 
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Theory is that small types are closed by product. If B(x) :Set (x : A), then 
(I-Ix : A)B(x) :Set. The theorem of Reynolds shows that it is impossible to 
think of the present sets as sets in the sense of Zermelo-Skolem-Fraenkel. 

This basic feature is the main difference with Martin-Lhf's logical frame- 
work, as presented in [18]. Otherwise, these systems are quite similar. In 
particular, a fundamental role is played by the notion of context, which is a 
finite set of typed variables declaration. This notion is also a basic notion 
of Automath, and we refer to the article [2] for an intuitive description of 
contexts. 

If A and B are types, we let A ~ B be the product of the constant type 
family B over the type A. In the case where A and B are small types or sets, 
we write it also A =~ B. Minimal higher-order logic has a direct interpretation 
in impredicative type theory: o gets interpreted by Set, and a proposition 
gets interpreted by a small type, which represents the type of its proofs. For 
instance, the proposition T = Vr162 =~ r is interpreted by (1-IX : Set)X =~ X. 
The rules of inference (HYP), (ABS), (MR), (INST) and (GEN) are then 
a consequence of the general principle that a proposition is true if, and only 
if, its corresponding type of proofs is inhabited. For instance, the usual proof 
of T is the polymorphic identity (AX : Set)(Ax :X)x over intuitionistic sets. 
We will use the same notations for logical connectives introduced in minimal 
higher-order logic, suitably reinterpreted in the framework of impredicative 
Type Theory. 

The "truth table" semantics of minimal higher-order logic described above 
is directly extended to a model of impredicative Type Theory where a type 
is interpreted as a finite set, and a small type as a set that has at most one 
element. Let this model be the proof irrelevance model, so called because it 
forgets proof objects. This terminology is inspired by [2]. 

3.2. Defini te  descr ip t ions  and excluded middle  

3.2.1. Proof irrelevance 

The principle of proof irrelevance is 

(1-[A : Set)(1-[x, y:  A)EA(x, y). 

It states that any set (or intuitionistic proposition) has at most one element 
w.r.t. Leibniz's equality. Since Leibniz's equality is the weakest possible 
notion of equality, in the sense that if E is an equivalence relation on A, 
then EA(X, y) implies E(x, y), the principle of proof irrelevance implies that 
any set has at most one element w.r.t, any notion of equality over this set. 
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3.2.2. The principle of definite description 

Let A be a set, and r : Set ( x :  A). As in minimal higher-order logic, 
we let ( 3 x :  A)r be (1-IX : Set)[(Hx : A)[r =~ X and we let 
(3!x: A) r  Set be the term 

(3x:  A)[r (17Iy : A)[r y)]]. 

This expresses that there exists one and only one element satisfying r where 
the equality on A is Leibniz's equality. The principle of definite descriptions 
is 

(HA, B :  Set)(1-IR : A ~ B ~ Set)[(1-Ix : A)(3!y : B)R(x, y)] 

=v [(3f:  A ~ B)(YIx : A)R(x, f(x))] 

This principle appears in the system of Church [3], in the form of a descrip- 
tion operator ~. The motivation comes from Russell's work on denoting (see 
[27, 26]). 

3.2.3. Excluded middle 

The last principle we shall consider is the principle of excluded middle. 

(HA: Set)A V-~(A). 

The extension of Martin-Lhf's set theory with this principle has been consid- 
ered by J. Smith in [29]. It is direct to check that this principle is equivalent 
to 

(HA: Set)-~(-~(A))=~ A. 

3.3. An application 

We can now state the application of the inconsistency of polymorphic higher- 
order logic. 

LEMMA: The set 

(:If :  o-~o--.o)(IIx, y : B) T(f (x ,y) )  - [T(x)=~T(y)] (IMP).  

and, for each set A, the set 

( 3 f :  (A ~ B ) ~  B) (nP  : A ~ B )  T ( f ( P ) ) -  [(I-Ix: A)T(P(x))] (UNIVA). 

are inhabited. 
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PROOF: We show only how to build a proof of (IMP); the case of (UNIVA) 
can be solved in a similar way. 

If x :  B, we let T ( x ) :  Set be EB(X ,true), F ( x ) :  Set be EB(X ,false), and 
B(x) :  Set be T(x)V F(x). 

Notice that if we have B(Zl), B(z2) and T(Zl) -- T(z2), then we have 
also EB(Zl, z2). Indeed, the axiom -~(EB(true, false)) rules out the case T(zl), 
F(z2) and the case F(Zl), T(z2). If T(Zl) and T(z2), then EB(ZI , z2), because 
Leibniz's equality is symmetric and transitive. Similarly, if F(Zl) and F(z2), 
then E B (zl, z2). 

This can be expressed in intuitive terms as the fact that the operator 
T(z) (z :B) is "one-to-one" on elements of B that satisfy the predicate B. 

For getting a proof of (IMP), we build a proof of a stronger statement 

( 3 f :  o ~  o ~  o)(Ilx, y :  B) B(f(x, y)) A [T(f(x, y)) - [T(x) ~ T(y)]]. 

This follows from the principle of definite description and 

(fix, y :  B)(3!z : B) B(z)A [T(z) _= IT(x)=~ T(y)]I. 

This is a direct consequence of the axiom -~(EB(true , false)), and of the princi- 
ple of excluded middle. Indeed, by the principle of excluded middle, we have 
T(x) =~ T(y) or -~(T(z)=~ T(y)). In the first case, we can choose z = true, 
and in the second case z = false. Furthermore, we have seen that the axiom 
-~(EB(true , false)) implies that the operator T(z) (z : B) i s  one-to-one on 
elements of type B that satisfies the predicate B. [--1 

THEOREM: In impredicative type theory extended with excluded middle, the 
principle of definite description implies the principle of proof irrelevance. 

PROOF: We place ourselves in the context 

F - B:Set,  t rue:B,  false:B, h:-~(EB(true ,false)), 

and we build a proof of 2_ in this context. 
It will then follow from the principle of excluded middle that E B (true, false) 

is derivable in the context 

B :Set, true: B, false: B. 

Hence, the principle of proof irrelevance is derivable in the empty context. 
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First, we give a way to interpret each closed type of polymorphic higher- 
order logic by a set of impredicative Type Theory. We interpret the type of 
propositions o by the set B, and in general a type of polymorphic higher-order 
logic will be interpreted as a set, interpreting the function type operator as 
exponentiation on sets and the product over type variables as the product 
over set variables. For instance, the type YIc~.c~ ~ c~ is interpreted as the set 
(1-IX : Set)X ~ X. 

Next, we consider a fixed derivation of the absurd proposition in poly- 
morphic higher-order logic. In this derivation, we have used only a finite 
number of universal quantification over a finite number of closed types. Let 
A1, . . . ,  An : Set be an enumeration of the translation of those types in im- 
predicative Type Theory. Consider then the context F extended by 

f0" B ~ B---, B, h0" (lIx, y" B) T(fo(x,  y)) - [T(x)=~ T(y)], 

and for each set Ai, 

f ~ ' ( A ~  B ) ~ B ,  h~" (IIP �9 A ~ B )  T ( f ~ ( P ) ) -  [(Hx "A~)T(P(x))]. 

In this extended context A, We can translate the given proof of the absurd 
proposition into a construction of a term of type l .  For this, we interpret 
=~ as fo, and each universal quantification by one of the term fi. 

By this way, we get a construction of type A_ in the extended context A. 

Using the lemma, we get a proof of ( I M P ) ,  and of (UNIVA1), 
. . .  ,(UNIVA,,). This allows us to transform this derivation of _L in the ex- 
tented context A into a derivation of _1_ in the context F. i-1 

4. Re l a t ed  resul ts  and  p rob lems  

4.1. Looping combina to r s  

The inconsistency of polymorphic higher-order logic, or even of the system 
U of [11], entails, by direct translation, the existence of a non normalisable 
term in a type system with a type of all types (see [16, 5, 12]). The existence 
of a fixed-point combinator in such a type system is an open problem since 
[16]. The article [12] contains a proof, using computers in an essential way, 
that shows the existence of a family of looping combinators, that is, a family 
of terms Yn " (X  " Type)X ~ X such that Y n ( X , f )  - f ( Y n + l ( X , f ) )  (X  " 
Type, f �9 X --, X). The fact that we get a family of looping combinators, and 
not a fixed point combinator seems to be closely connected to the well-known 
"mismatch" in the representation of destructors for recursively defined types 
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represented in second-order lambda-calculus (as presented for instance in 
[17]). But the author has not been able to make this connection precise. 

The existence of a family of looping combinators entails the undecidability 
of type checking for a type system with a type of all types. In [9], the 
existence of a family of looping combinators is derived from A-translation 
in polymorphic higher-order logic. 

In [8], it is shown that it is possible to build such a fixed-point operator 
in the presence of a the well-founded type operator of Martin-LSf [15]. 

4.2. S t rong  exis tence  

The results about excluded middle in impredicative theory were first ex- 
pressed as consequence of the inconsistency of the system U of Girard, which 
extends polymorphic higher-order logic with quantification over type vari- 
ables [6]. It was then shown that it is possible to interpret system U in the 
context 

B: Set, E :  B---~Set, ~: Set--B,  H :  (X:  Set) X -- E ( ~ ( X ) ) .  

Hence, it is possible to derive 2_ in this context. The author does not know 
any "direct" derivation of _1_ in this context. 

A consequence of this is the fact that, in presence of a strong existence 
operator [15] added to impredicative Type Theory, the principle of excluded 
middle implies the principle of proof irrelevance. A different proof, somewhat 
more direct and based in a different idea than Reynolds', has been given by 
S. Berardi, and checked in the proof checker LEGO of R. Pollack. 

The present result, which concerns the principle of definite descriptions, 
generalises and was motivated by a result of G. Pottinger [20]. 

4.3. Cons i s t ency  and independence  resul ts  

S. Berardi has shown by a model theoretic argument that the axiom of de- 
scription, and hence the axiom of choice, is not provable in impredicative 
Type Theory (personal communication.) A "syntactic" version of this model 
is described in [1]. It is similar to the proof irrelevance model, but the inhab- 
ited sets are interpreted instead by the set of all untyped lambda terms. This 
also models the principle of excluded middle, but not the principle of proof 
irrelevance. It shows that the principle of proof irrelevance is independent 
of excluded middle. 

In [28], a purely proof theoretic argument shows the consistency of a 
context implying classical arithmetic, where the set of integers is interpreted 
as a small type. 
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4.4. Related results in category theory 

The results about excluded middle seem to have some connections with the 
two following results in category theory. Both are described in Lambek and 
Scott's book on categorical logic [13]. 

The first one is Diaconescu's theorem, that in a topos, the axiom of choice 
implies the principle of excluded middle. The analysis of the proof given 
in [13] reveals an essential use of the extensional equality, and this result 
does not seem to be easily interpretable in Type Theory, where the equality 
between propositions is definitional [18]. 

The second one is Joyal's result, that says that any "boolean category" 

is trivial (see [13], page 67). In this case also, this result does not seem to 
be easily interpretable in Type Theory, because the equality on proofs is 
definitional [18]. For instance, it is not the case in general that a set _I_-~ A 
has only one element w.r.t, definitional equality, but the fact that it has 
only one element for the extensional equality is used in an essential way in 
the proof presented in [13]. 

Conclusion 

We hope to have shown that the study of paradoxes in Type Theory is a rich 
topic. Quite characteristic is the use of computers in the process of checking, 
and analysing such paradoxes [1, 5, 12]. However, the feeling of the author 
is that we have only superficially yet explored this question, and that a more 
basic understanding of the nature of paradoxes connected to impredicativity 
is still missing. Nontrivial results in this direction may bring a new light on 
the status of the "reducibility axiom", a question raised almost one century 
ago [26], and left essentially open since then. 
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T A K I N G  F O R M A L I S M  S E R I O U S L Y  

EDWARD NELSON 

Department of Mathematics, Princeton University 

Almost all mathematicians believe that  the natural numbers exist. How 
would the world be different if numbers suddenly ceased to exist? Share 
with me a fantasy: we open our morning newspaper to find a report with a 
banner headline, "Numbers Vanish !--Early last night the natural numbers, 
so called because they have always been found in nature, suddenly disap- 
peared. Mathematicians have expressed stunned despair. Without  numbers, 
they say, they can no longer prove theorems. Numbers are the foundation 
of science and technology, and without them humanity will soon revert to 
barbar- (continued on an inside page)." 

This is nonsense. The newspaper could still put marks 2, 3, etc., on the 
inside pages for ease of reference. Machines could still function as before. 
And we mathematicians could continue to put marks on paper, just as before, 
and hopefully submit them to editors of mathematical journals. We do not 
need the natural numbers. 

Some would maintain that  the natural numbers exist of necessity and 
could not disappear. This is a religious belief that  I do not share. 

Formalism is that  view of the foundations of mathematics which maintains 
that  the natural numbers and other mathematical entities do not exist, that  
mathematics is the manipulation of marks according to specified rules. For- 
malism is associated with the name of David Hilbert, but Hilbert did not 
take formalism seriously. For him, it was a tactical device in his skirmishes 
with the intuitionists, designed to enable mathematicians to continue to 
dwell in Cantor's paradise. 

In this talk I shall outline what I believe are the consequences of taking 
formalism seriously. 

W r i t i n g  c o r r e c t  p roofs  

There is a gap between the professions of formalists and mathematical  prac- 
tice. Few mathematical  works contain full proofs that  obey in detail explic- 
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itly formulated rules. This has been too tedious, both for the author and 
the reader. But since the dawn of mathematics in Greece it has been a wor- 
thy ideal. Mathematics is a highly social endeavor, and although we may 
dispute with each other questions of priority or questions of value, through 
the centuries we have str iven~with a remarkable measure of success~for 
common standards of what constitutes a correct argument. More than the 
practitioners of any other discipline, mathematicians judge work by com- 
monly held criteria. But it is a frequent occurrence for incorrect results to 
be published, and it is even more frequent for results to be published with a 
serious gap in the argument. And when a truly important result is claimed, 
several mathematicians may spend weeks checking the proof. 

With the advent of digital computers, this will soon begin to change, and 
it will change radically during the lifetime of many of those present. There 
will be a central data bank of theorems, arranged hierarchically to facilitate 
search by mathematicians attempting to prove new theorems. Interactive 
programs will be developed to help us construct fully formalized proofs, and 
when these are submitted they will be verified and entered into the data 
bank with the name of the inventor and date of construction. 

For my own purposes, I am constructing a proof checking program called 
qed, written in Larry Wall's perl language. It is a primitive program, but 
it has some features that I believe more sophisticated programs will share. 
I am speaking about programs for mathematical reasoning as distinguished 
from mathematical computation. 

Such a program should have two levels: a very rapid verification program 
for fully formalized proofs and a hierarchically structured interactive search 
program. 

The verification should exploit duality. Each logical operator should be 
encoded by a single byte, and there should be a byte for affirmation (the 
dual of negation) so that the negation of any formula can be achieved simply 
by translating each logical operator byte into its dual. 

Every step of every proof should be an argument by contradiction. Sup- 
pose that A1, . . . ,  An is a list of formulas that have been proved, or are 
assumed as hypotheses in a deduction, and we want to deduce A. Then we 
adjoin --A to the list and for each formula on the list we look to see whether 
it or its negation is a subformula of some other formula on the list; if so, 
we make the appropriate reduction by the laws of the propositional calculus 
with equality. This can be done very rapidly. If we find a contradiction, then 
A has been deduced. But if we do not find a contradiction, our work may 
not have been wasted: each formula on the reduced list is a consequence of 
assuming --A as a hypothesis, and the argument can be continued. 

There are many levels of search involving an exponentially large world 
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of possibilities. By necessity, such searches are time consuming. The most 
primitive level of search is for the appropriate terms to substitute for the 
free variables in a theorem. This is usually routine, as in applying the 
commutative law x . y  = y .  x to conclude that a + b. c = a + c. b, but sometimes 
it involves insight, as in applying the Liouville theorem "f is a bounded 
entire function implies f is a constant" to the function l i p  where p is a 
polynomial without roots. As the years pass, more and more sophisticated 
searches will be programmed into computers. But good mathematics is the 
fruit of deep personal and cultural experience. Digital computers and people 
have different search skills, and a fruitful program will involve an interactive 
partnership. 

Q u e s t i o n i n g  C h u r c h ' s  thes i s  

0 is a numeral; if n is a numeral, then Sn is a numeral. Thus the numerals 
are 0, SO, SS0, SSS0, and so forth. Numerals are used to count things. 

An effectively computable function is a program that for any numerals as 
arguments terminates in a finite number of steps and yields a numeral as 
value. This is a somewhat vague concept, but the concept of a recursive 
function is precisely formalizable; Church's thesis is that the two concepts 
are equivalent. 

For example, 

x + 0 = x, (1) 

+ s y  = s ( ~  + y), (2) 

z .  0 = 0, (3) 

x.  Sy = ( x . y ) + x ,  (4) 

z ~ - so ,  (5) 

x sy = x y. x, (6) 

x ~ 0 = SO, (7) 

z ~ S y  = z ~ (8) 

give constructions of addition, multiplication, exponentiation, and superex- 
ponentiation as recursive functions. 

No at tempt to construct an effectively computable function that is not 
recursive has been successful; Church's thesis has withstood challenges from 
above. But we can challenge it from below: how do we know that every 
recursive function is effectively computable? 

Computer scientists agree that the dividing line between functions com- 
putable in practice and those not computable in practice lies roughly between 
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multiplication and exponentiation. But I want to discuss computability in 
principle, as nearly as I can recall the meaning that I used to think I under- 
stood by the phrase "in principle". 

The finitary dogma asserts that every recursive function is effectively com- 
putable; that is, it asserts that for any variable-free term made up from 0 
and function symbols representing recursive functions, such as 

sso (sso (ssssso)), 

if we apply the rules of construction sufficiently often we end up with a 
numeral. 

Finitists have verified this for simple cases. In other cases they may give 
up, but they know that if only they persisted long enough the computation 
would terminate. If asked how long that is, their answer would be: roughly 
the number of the numeral I am computing. 

Spoiled children throw temper tantrums; they have verified in simple cases 
that this gets them what they want. In other cases they may give up, but 
they know that if only they persisted long enough they would get what they 
want. If asked how long that is, their answer would be: until I get what I 
want. 

In saying this, I am casting no aspersions on those who hold opinions 
different from mine; I am simply expressing my opinion that finitism is a 
self-validating belief system for which there is no evidence, and which may 
very well be incorrect. 

Let us examine the finitary dogma more closely. In general, the logical 
terminology and notation used in this talk are those of Shoenfield 1967. 
Let T be a strong theory, one that formalizes contemporary mathematics. 
Assume that T is consistent. Let ~" be the theory obtained by adjoining 
to T a new unary predicate symbol r and the axioms 

r (9) 
r r (10) 

These axioms express the idea of counting, parallel to the metamathematical 
definition of a numeral, and the intended meaning of r is "x is equal to 
a numeral". Let F be a recursive function, say of two variables, formalized 
in T. Can we prove in T a theorem expressing the idea that if x and y are 
numerals, then F(x, y) is equal to a numeral? 

Even for addition, we cannot prove in 

g r r + y). (11) 

To see this, take a non-standard model of T (i.e., one in which the natural 
numbers contain a non-standard ~) and interpret r as signifying that x 
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is less than u plus some standard natural number. Then we have (9), (10), 
and r but not r + u), so (11) is not provable in T. 

Let us try another approach. Can we find an inductive formula A of 
(i.e., a formula such that a(0) and A(x) ~ A(Sx), and consequently a(n)  
for every numeral n, are theorems of T) such that 

A(x) u A(y) -~ r y)) (12) 

is a theorem of T? If so, then we can say that we have proved that if x and y 
are numerals then F(x, y) is equal to a numeral. 

For addition we can let A be the formula r given by 

vy[r -~ r + x)] 

and for multiplication we can let A be the formula r given by 

vy[r ~ r ~)]; 

see Chapter 5 of Nelson 1986. But the proofs of (12) for addition and 
multiplication use the associativity of these operations, and exponentiation 
is not associative. 

In fact, the following metatheorem is proved in Chapter 18 of Nelson 1986 
(though not formulated in quite this way): 

If  F is the exponential function, there does not exist an inductive for- 
mula A of T such that (12) is a theorem of T. 

In other words, the only way to prove that the exponential of one numeral 
by another is equal to a numeral is to beg the question, by postulating for 
the formalization of the concept "x is equal to a numeral" some property 
going beyond the original concept of counting. It is interesting that the 
dividing line for demonstrable computability in principle is the same as that 
for computability in practice. 

This result should give finitists pause. Finitism is the last refuge of the 
Platonist. 

Seek ing  a contrad ic t i on  

Robinson's theory Q (see R. M. Robinson 1950) is the theory whose nonlog- 
ical axioms are 

Sx r 0, (13) 
S z = S y  ~ x = y ,  (14) 

(1)-(4), ~ d  
r 0 -~ 3y[sy = z]. (15) 
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This may be reformulated as an open theory Q0 by introducing a function 
symbol P (for predecessor) and replacing (15) by 

x ~ 0 ~ SPx = x. (16) 

Robinson's theory is the simplest theory in which one can do nontrivial 
mathematics. It is essentially Peano Arithmetic without induction. 

There are several consistency proofs for Q. The most familiar is the infini- 
tary argument that the natural numbers are a model for Q. But in a world 
from which numbers have vanished this carries no conviction. 

There is also a finitary consistency proof. The first point is that Q0 is 
quasi-tautologically consistent. This means that it is impossible to derive 
a contradiction in the theory without using quantifiers. More precisely, let 
Q~ be the formal system with the same language and nonlogical axioms 
as Q0 but with no quantifiers and with instance and quasi-tautological con- 
sequence as rules of inference; then Q~ is consistent. There is certainly a 
finitary demonstration of this. I believe that this is in fact true, and that 
a demonstration of this assertion can be given that will convince the most 
skeptical of formalists. The second point is that the consistency of Q follows 
from this by the Hilbert-Ackermann theorem; see Shoenfield 1967. This is 
a finitary algorithm for eliminating quantifiers from proofs. But it relies 
on the finitary dogma; specifically, that superexponentiation is effectively 
computable. For one who has put aside credence in the finitary dogma, this 
proof also carries no conviction. 

Taking formalism seriously entails regarding the consistency of Q as an 
open problem. It would be solved if one could derive a contradiction in a 
theory interpretable in Q. This is what I am working on now. 

Seeking a d e m o n s t r a b l y  consis tent  m a t h e m a t i c s  

Who would have believed ten years ago that it is possible, in a theory for 
which there is a finitary consistency proof, to do modern mathematics? Yet 
that is what Nelson 1986 and Nelson 1987 together accomplish; see the 
description of Q* in the last chapter of Nelson 1986. In Nelson 1987, modern 
ideas of stochastic processes find direct expression, liberated from the heavy 
weight of Cantorian set theory. This is made possible by using a small 
portion of Abraham Robinson's nonstandard analysis (Robinson 1974). 

It is an open problem to develop a formal system that is demonstrably-- 
without appeal to the finitary dogma--consistent, and yet is powerful enough 
for modern mathematics. A candidate for such a system is Q* but with only 
bounded quantifiers permitted. 
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The phrase "foundations of mathematics" is a static architectural image. 
I prefer to think of mathematics as a growing tree. Rather than construct 
foundations, the formalist can study and nourish the roots of this tree. By 
taking a fresh look at the way good mathematics is actually done, we may 
find to our surprise that it is demonstrably consistent. 

A p e r s o n a l  n o t e  

The talk I actually gave at the Congress was entitled "A formalism for 
developing interactive programs". The chairman of the session was Per 
Martin-LSf. He was quite surprised to hear me present, with enthusiasm and 
in total ignorance, a primitive version of his own intuitionistic type theory 
which he had invented at least twelve years previously. My subsequent 
embarassment was assuaged by Martin-LSf's graciousness, and we agreed 
that the event had a strongly comical apect. I hope at some point to make a 
contribution to this beautiful field, but only after I have done my homework 
by studying the literature. 

B i b l i o g r a p h y  

EDWARD NELSON, 1986 Predicative Arithmetic, Mathematical Notes No. 32, Princeton 
University Press, Princeton, NJ. 

EDWARD NELSON, 1987 Radically Elementary Probability Theory, Annals of Mathemat- 
ics Studies 117, Princeton University Press, Princeton, NJ. 

ABRAHAM ROBINSON, 1974 Non-standard Analysis, Rev. ed., American Elsevier, New 
York. 

R. M. ROBINSON, 1950 An essentially undecidable axiom system, Proc. Int. Cong. 
Math., Cambridge, MA, Vol. I, 729-730. 

JOSEPH R. SHOENFIELD, 1967 Mathematical Logic, Addison-Wesley, New York. 



Logic, Methodology and Philosophy of Science IX 
D. Prawitz, B. Skyrms and D. Westerstlhl (Editors) 
�9 1994 Elsevier Science B.V. All rights reserved. 579 
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O F  I N T U I T I O N I S T I C  M A T H E M A T I C S ?  

RICHARD TIESZEN 

Department of Philosophy, San Josd State University, San Josd, USA 

How should we understand the philosophical basis of intuitionistic math- 
ematics late in the Twentieth Century, some 25 years after the death of 
Brouwer? I believe this is an important question because there are insights 
in intuitionism that are found nowhere else in the philosophy of mathe- 
matics, insights that  ought to be preserved, clarified and extended. Chief 
among these is the idea that  a proof is a mental construction. The idea 
that a proof is a mental construction already distinguishes intuitionism 
from other philosophical views of mathematics like (ontological) platon- 
ism, nominalism, and formalism. There are also many philosophical prob- 
lems that can be raised for intuitionism and I intend to discuss some of 
them below. I shall first briefly consider some views on the question that  
are found in the literature on intuitionism. I shall then argue for what 
I take to be a good working answer to the question, an answer which I 
think is in the tradition of Brouwer and Heyting but which can be used 
to clarify their views and to defend some of the key philosophical insights 
of intuitionism. 

1. A b r i e f  s u r v e y  of v iews on t h e  q u e s t i o n  

For Brouwer the philosophical basis of intuitionist mathematics was to 
be found in the concept of intuition. In particular, Brouwer portrayed 
intuitionism as abandoning Kant 's  apriority of space but adhering all the 
more resolutely to Kant 's  idea of time as an a priori form of intuition. 
Brouwer describes the basic intuition upon which mathematics is founded 
in a number of places in his writings. In "Intuitionism and Formalism" 
[Brouwer 1912], for example, he describes it as follows: 

This neo-intuitionism considers the falling apart of moments of 
life into qualitatively different parts, to be reunited only while re- 
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maining separated by time, as the fundamental phenomenon of the 
human intellect, passing by abstracting from its emotional content 
into the fundamental phenomenon of mathematical thinking, the 
intuition of bare two-oneness. 

Brouwer often notes the role of memory in retaining earlier life moments 
while the succession of life moments continues. He says that it is introspec- 
tively realized how this basic operation of mathematical construction, this 
intuition of two-oneness, successively generates the finite ordinal numbers, 
inasmuch as one of the elements of the two-oneness may be thought of as 
a new two-oneness, and the process may then be repeated indefinitely. 
Also important for Brouwer's view of the role of this basic intuition is the 
claim that (i) what has meaning in mathematics is derived from the ba- 
sic intuition and (ii) that mathematics is a languageless activity of mind. 
Many of Brouwer's comments suggest a very strong separation of thought 
from language. This figures into Brouwer's conception of how the basic 
intuition of mathematics can provide a foundation for mathematics that 
is exact and free from error and misunderstanding. In "Weten, willen, 
and spreken" [Brouwer 1933], for example, Brouwer says that 

... the languageless constructions originating by the self-unfolding 
of the primordial intuition are, by virtue of their presence in mem- 
ory alone, exact and correct; ... the human power of memory, 
however, which has to survey these constructions, even when it 
summons the assistance of linguistic signs, by  its very nature is 
limited and fallible. For a human mind equipped with an unlim- 
ited memory, a pure mathematics which is practiced in solitude and 
without the use of linguistic signs would be exact; this exactness, 
however, would again be lost in an exchange between human beings 
with unlimited memory, since they remain committed to language 
as a means of communication. 

On the basis of comments like these it appears that the certainty that 
is supposed to be guaranteed by founding intuitionism on intuition is 
certainty for the ideal mathematician only. The actual, practicing math- 
ematician does not have such certainty, nor does there appear to be any 
intersubjective certainty for Brouwer, since the expression of mathemati- 
cal ideas needed for communication is always imperfect. The separation 
of thought from language leads to the charge that Brouwer's notion of 
intuition and the concept of meaning it supports is thoroughly solipsistic. 
Insofar as Brouwer's view is solipsistic I think it clearly deviates from (or is 
inconsistent with) the Kantian view of intuition that he invokes elsewhere, 
and to deleterious effect. I shall come back to this later and argue that 
Brouwerian solipsism is philosophically untenable. In any case, I think it 
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is fair to say that Brouwer did not have a philosophically sophisticated 
conception of intuition. 

Heyting's work adds an interesting and important new dimension to 
the discussion of the foundations of intuitionism. His 1931 address on 
the intuitionistic foundations of mathematics is especially rich in philo- 
sophical content [Heyting 1931]. In the address Heyting explained and 
defended the intuitionistic viewpoint by suggesting that we view mathe- 
matical propositions as expressions of intentions, in the sense of Husserl's 
theory of intentionality. "Intentions" in this sense not only refer to states 
of affairs thought to exist independently of us but also to experiences 
thought to be possible. Heyting then identifies proofs, as mental construc- 
tions, with fulfillments of intentions. In the 1931 address he goes on to 
describe the meaning of the logical constants of the intuitionistic proposi- 
tional calculus in these terms. Martin-LSf, in his lectures on the meanings 
of the logical constants [Martin-LSf 1983-84], has said that Heyting did 
not just borrow these terms from Husserl but that he also applied them 
appropriately. I agree, but in agreeing with Martin-LSf's remark I think 
we are at the same time committing ourselves to the need for the kind 
of clarification and extension of the philosophical views of Brouwer and 
Heyting that is called for by Heyting's identification. I discuss this below. 
Note, by the way, that Heyting does not use the term "intuition" in his 
description but anyone who knows Husserl's philosophy knows that the 
concept of intuition is defined in terms of the fulfillment of intentions. So 
in identifying proofs with fulfilled (or fulfillable) intentions Heyting too 
holds that intuitionism is founded on the evidence provided by intuition, 
only now Heyting has invoked a much more sophisticated and philosophi- 
cally developed conception of intuition than had Brouwer. This concept of 
intuition also forms part of an elaborate theory of meaning, but one that 
is different from Brouwer's in several important respects. In particular, I 
shall argue for a theory of meaning that is not solipsistic. 

Martin-Lgf's views on the philosophical basis of intuitionistic mathe- 
matics are similar to Heyting's. In his 1983-84 lectures on the theory of 
meaning, for example, Martin-LSf says that 

... the proof of a judgment is the evidence for it ... thus proof is 
the same as evidence ... the proof of a judgment is the very act 
of grasping, comprehending, understanding or seeing it. Thus a 
proof is, not an object, but an act. This is what Brouwer wanted 
to stress by saying that a proof is a mental construction, because 
what is mental, or psychic, is precisely our acts ... and the act is 
primarily the act as it is being performed, only secondarily, and 
irrevocably, does it become the act that has been performed. 
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Martin-Lhf's comments emphasize the intuitionistic view that a proof 
is a cognitive act or process before it is an object, an act or process in 
which we come to see or intuit something. In his discussions of Hey- 
ting's Husserlian interpretation [Martin-Lhf 1983-84, 1987, 199?] of the 
logical constants Martin-Lhf has been more careful than some writers to 
distinguish between proof as an act or process and proof as an object. 
We might say that proof as an object is constituted, in its most primitive 
form, in an act of proof by virtue of the kind of retention in memory 
that Brouwer emphasizes in his descriptions (see [Tieszen 1989], pp. 99- 
111). Also, Martin-Lhf's system of intuitionistic type theory in [Martin- 
Lhf 1984] use four basic forms of judgment, among which are the two that 
"S is a proposition" and "a is a proof (construction) of the proposition 
S". Martin-Lhf notes that one can read these, equivalently, as "S is an 
intention (expectation)" and "a is a method of fulfilling (realizing) the 
intention (expectation) S", respectively. Thus, one can understand his 
system as a formalization of features of the informal concepts of inten- 
tionality, intuition and evidence. 

In a somewhat different vein, Troelstra and van Dalen, in their two- 
volume book Constructiyism in Mathematics [Troelstra and van Dalen 
1988], have argued that since the perfect introspection that Brouwer pos- 
tulates for the ideal mathematician is simply not accessible to us we must 
look elsewhere for the philosophical foundations of intuitionism. They 
suggest that 'informal rigor' (in Kreisel's sense) is the main source of 
mathematical knowledge in intuitionistic mathematics. As Kreisel de- 
scribed it [Kreisel 1967], the idea of informal rigor is that we obtain def- 
initions, axioms or rules by analyzing intuitive notions as precisely as 
possible and putting down their properties. Kreisel thought the general 
idea applied equally well to realist or idealist conceptions of mathematics. 
In idealist conceptions one supposes that the intuitive notions are related 
to thought or cognition instead of to a mind-independent, external world. 
The general form of the view of Troelstra and van Dalen that intuitionis- 
tic mathematics is based on informal rigor therefore amounts to the idea 
that we attempt to rigorously analyze intuitive concepts concerning var- 
ious cognitive acts, structures and abilities instead of analyzing intuitive 
concepts concerning a mind-independent, external world. Their view is, 
I think, clearly consistent with the views of Heyting and Martin-Lhf. In 
Heyting's work we already have the idea that in intuitionism we are to 
focus on intentions insofar as they refer to experiences thought to be pos- 
sible, and this is distinguished from focusing on the reference of intentions 
to states of affairs which are thought to exist independently of us. The 
view of Troelstra and van Dalen also has the same form that is involved in 
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understanding Martin-L5f's intuitionistic type theory as a formalization 
of features of the informal concepts of evidence, intuition and intention- 
ality. Thus, I would argue that founding intuitionistic mathematics on 
the idea of informal, rigorous concept analysis in the sense of Troelstra 
and van Dalen is not at all incompatible with the above-mentioned views 
of Heyting and Martin-LSf. In fact, the general form of all these views 
is remarkably similar to what is called for in parts of phenomenological 
analysis. 

Let us now turn briefly to Dummett 's views. Dummett has written 
more on the philosophical basis of intuitionism than anyone in recent times 
[Dummett 1975, 1976, 1977, 1991]. Prawitz, Sundholm and many others 
have discussed and elaborated on Dummett 's  arguments [see especially 
Prawitz 1977, 1978, 1980, and Sundholm 1983, 1986]. In his argument 
for rejecting classical logic in favor of intuitionistic logic Dummet takes 
the philosophical basis of intuitionism to lie in considerations involving 
the philosophy of language and, in particular, the theory of meaning. In- 
deed, Dummet argues that there is no way to approach these questions 
independently of or prior to investigations in the philosophy of language. 
Dummett 's  view is that the theory of meaning underlying intuitionism is, 
roughly, Wittgenstein's theory that meaning is determined by use. To say 
the meaning of a mathematical statement is exhaustively determined by 
its use is to say that the meaning of a statement cannot contain anything 
which is not fully manifest in the use of the statement. If two people 
agree completely about the use to be made of a statement they agree 
about its meaning. 'Undertanding' consists of knowledge of meaning in 
this sense. Prawitz, it should be noted, has modified the claim that mean- 
ing must be fully determined by observable uses of sentences. He suggests 
instead that "the samples of use with which we are presented never com- 
pletely determine the meaning but only enable us to form some theories 
or hypotheses about the meaning" [Prawitz 1977]. This leads him to for- 
mulate an adequacy condition on meaning theories that is weaker than 
Dummett 's  requirement that implicit knowledge is to be fully manifest in 
behaviour. 

Dummett contrasts his view with the view that the meaning of a propo- 
sition is determined by its truth conditions. The problem with the latter 
view of meaning, which is essentially the view embodied in classical two- 
valued logic and also in platonism, is that it gives us a notion of meaning 
which is not recognizable by us, or which transcends our knowledge or 
understanding. It cannot be a view on which meaning is fully determined 
by use. The argument for this claim is based on the fact that, in general, 
truth is not decidable. In particular, a platonist theory of meaning re- 
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quires us to have an understanding of quantification over infinite domains 
but this transcends our capacity to recognize statements which quantify 
over infinite domains as true. Suppose the meaning of an undecidable 
statement ~ is given by its truth-conditions and we know the meaning of 
(I). How could this knowledge be manifested? Not by giving a proof or 
disproof of ~. The best we could do is to paraphrase or restate (I), but 
that does not give the meaning of (I) except to someone who already knows 
it. Knowledge of the meaning of a mathematical statement could not, on 
pain of an infinite regress, consist solely of explicit verbalizable knowledge, 
of the ability to state or to paraphrase the meaning of a statement, for 
then it would be impossible for anyone to learn a language who was not 
already equipped with a fairly extensive language. Knowledge of mean- 
ing must ultimately be implicit,  and the ascription of implicit knowledge 
requires saying in what the full manifestation of the knowledge consists. 
There must be observable differences between the behaviour or capaci- 
ties of someone who is said to have such knowledge and someone who is 
said to lack it. Thus, the truth-conditional view of meaning underlying 
classical logic and platonism cannot give substance to the idea of having 
implicit knowledge of what the condition for the truth of a mathematical 
statement is, since there can be nothing which constitutes a manifestation 
of such knowledge. 

Dummett ' s  argument is framed by views about how language would not 
be learnable if meaning were not fully determined by use, for if there were 
some kind of meaning that transcended the use made of an expression then 
we would have to say that someone might have learned a language and 
behaves in every way as if he had learned and yet does not understand, or 
understands incorrectly. Such a view would make meaning private, ineffa- 
ble. It would be inconsistent with the idea that meaning is communicable 
and with mathematics as a social enterprise. Dummett  also does not 
want to be understood as a radical conventionalist, as was Wittgenstein, 
about what counts as correct use of mathematical statements. Another 
important component of Dummett 's  argument is his rejection of meaning 
holism, i.e., of the view that nothing less than the total use of language 
determines the meaning of an individual statement. Dummett  argues 
that the theory that meaning is determined by use would rule out revi- 
sionism in logic and mathematics if meaning holism were correct, because 
in that case the question of justifying deductive practices cannot really 
arise. Much more could be said about these matters than we have space 
for here. 
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2. P u t t i n g  i n t u i t i o n  back  in to  i n t u i t i o n i s m  

The view of the philosophical basis of intuitionism that  I shall argue for 
is different from Dummet t ' s  view in some important respects, although it 
can incorporate parts of Dummett ' s  argument. It is, I believe, consistent 
with the views of Heyting, Martin-LSf, and Troelstra and van Dalen. I 
would like to say that it is also different from Brouwer's views in some 
ways, although it is still in the Kantian spirit of founding intuitionism on 
intuition. 

Dummett  of course points out that in his argument for rejecting classical 
logic in favor of intuitionistic logic he is not concerned with the exegesis 
of intuitionistic writings or with how well his account jibes with the views 
of the intuitionists themselves. I think this goes without saying since 
elements of the Wittgensteinian theory of meaning that  Dummett  takes as 
the philosophical basis of intuitionism are really quite alien to intuitionism 
as it has traditionally been expounded. What  happens on Dummett ' s  
account, for example, to the distinctive idea in intuitionism that a proof is 
a mental act in which we can come to see something, or to have evidence 

for a judgment? Not too surprisingly, it disappears. While Dummett  
distances his position from classical behaviorism it is nonetheless true 
that on his account of intuitionism the entire vocabulary of cognitive acts, 
processes and abilities in fact disappears, or in some cases is reinterpreted, 
after Wittgenstein, in terms of observable practices and abilities. The 
distinction between inner and outer phenomena vanishes, along with the 
very basic distinction between act and object. So much then for Martin- 
LSf's description, cited above, of a proof of a judgment as the mental act 
of 'grasping', 'comprehending', 'understanding' or 'seeing' the judgment. 
I think this shift is also a source of the objection raised by Troelstra and 
van Dalen that they do not see how the formulation of axioms based on 
the process of informal rigor, such as their own formulation of axioms for 
lawless sequences, fits into Dummett ' s  theory ([Troelstra and van Dalen 
1988], p. 851). 

Of course one of the things that disappears along with the idea of mental 
acts and processes on Dummett ' s  approach is any philosophical objection 
to intuitionism based on solipsism or subjective idealism. But I shall 
argue that  Dummett  goes too far here, that  we can perfectly well keep the 
distinction between inner and outer phenomena without succumbing to 
the pitfalls of solipsism. Dummett ' s  account of intuitionism, on the other 
hand, contains no theory of intentionality, fulfilled intentions and evidence 
of the sort that  Heyting appeals to. It has no theory of mathematicians as 
cognitive information processors, of the structure of cognition, of mental 
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acts and meaning, of mental representation, of the content of mental acts, 
of implicit or qualitative content, of consciousness, and the like. I think, 
however, that if proof is really to be understood as either a cognitive 
act or as an object of an act then these notions must figure into our 
understanding of the philosophical basis of intuitionism. Thus, I will 
argue that the philosophical basis of intuitionistic mathematics is best 
understood along the lines suggested by Heyting's 1931 address. I shall 
distinguish several key components of this view and then indicate how they 
can be used to enrich the philosophical understanding of intuitionism and 
also to defend intuitionism as a philosophy of mathematics. 

The first component of the view is that mathematical propositions are 
to be understood as expressions of intentions, in the sense of a theory of 
intentionality [Tieszen 1989, 1991]. Intentionality is the characteristic of 
"aboutness" or "directedness" possessed by various kinds of mental acts. 
The intentions of acts can be determined by "that"-clauses in attributions 
of beliefs and other cognitive acts to persons, as in propositions of the form 
"M believes that ~". M's intention here is expressed by ~. Note that this 
view of expression entails a philosophy of language and also, as we shall 
see in a moment, a theory of meaning. Thus, I do not wish to suggest, as 
against Dummett ,  that a philosophy of cognition is independent of and 
anterior to a philosophy of language. The two are intertwined and may 
stand or fall together. However, there is not only one kind of philosophy 
of language or meaning. Witness, for example, the subtle interactions 
between the study of language, meaning and cognition in treatments of 
transformational grammars, in the semantics of propositional attitudes, 
and in what has come to be called propositional atti tude psychology. 

The second component of the view is that mathematical intentions can 
either be fulfilled or not, or even partially fulfilled, by additional acts car- 
ried out through time. Intentions can also be understood as expectations 
that can either be realized or not. When an (empty) intention is fulfilled 
then the object intended in an act is actually seen. That is, we have di- 
rect evidence for it. If the intention is fulfillable then it is possible to find 
the object intended. So, following Heyting, a proof or a construction in 
intuitionistic mathematics is a fulfilled (or fulfillable) mathematical inten- 
tion. A fulfilled intention is an intention for which we possess evidence. 
The intention/fulfillment relation can also be understood in terms of Kol- 
mogorov's interpretation [Kolmogorov 1932] of propositions as problems 
or tasks and proofs as solutions, and in terms of Martin-LSf's suggestion 
that we view empty intentions as specifications and fulfillments as pro- 
grams that satisfy those specifications [Martin-LSf 1982]. I want to argue, 
however, that something crucial to the intuitionistic view that mathemat-  
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ics is the precise part of human thinking would be lost if these alternative 
explications were not understood in terms of a theory of intentionality. 
This means, for example, that  we ought not to immediately identify ful- 
fillments, understood as programs, with programs computable by Turing 
machines. There might be a difference between machine computability 
and human computability and we do not want to ignore the problematic 
status of Church's Thesis in intuitionistic mathematics. 

The third component is that  intentional acts are responsible for mean- 
ing or interpretation in the sense that  strings of signs, noises, and so on 
would not be taken to have meaning, value, or significance if there were 
not intentional systems in the universe. This does not mean, as its de- 
tractors sometimes claim, that  a person must always consciously, as it 
were, perform some mental act in order to understand a string of signs. 
It is a crude caricature of the view to suppose that  there is first some 
completely uninterpreted sign configuration, and then someone performs 
a mental act which bestows sense upon it, whereupon it is understood. 
Rather, we normally understand the meaning of expressions quite auto- 
matically and prereflectively. The point is rather that  it is a condition for 
the possibility of meaningfulness that there be individuals in the universe 
that have cognitive states that are characterized by intentionality. That  
is all that  is meant by saying that  mental acts are involved in meaning or 
understanding. 

The fourth component I would like to mention is that  mathematical  
statements can be meaningful even if they are not fulfilled or are not ful- 
tillable. We have constructions for some mathematical  intentions but not 
for others. But surely we can understand the meaning of a statement in- 
dependenntly of knowing its t ruth value, for as Frege and Husserl remind 
us, and as Brouwer may have failed to recognize, we must not confuse lack 
of (intuition of) reference with meaninglessness, nor even logical inconsis- 
tency with meaninglessness. But the kind of distinction between meaning 
and reference implied by these remarks is not part of the Wittgensteinian 
theory of meaning that  Dummett  takes as the basis of intuitionism. In 
saying this I do not of course wish to deny that  fulfilled mathematical  
intentions have a more determinate or explicit meaning than empty inten- 
tions. Fulfilled mathematical  intentions provide more information about 
the object or state of affairs in question, including specific numerical or 
computational meaning that  is otherwise lacking. 

Now let us fill in somewhat the view of the philosophical basis of intu- 
itionism that is associated with these points. Of particular concern, vis- 
g-vis Dummet,  is whether the intuitionistic emphasis on proof as mental 
construction can be preserved and defended. Dummett  has argued that  
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if meaning were not fully determined by observable uses of sentences we 
would have to say that someone might have learned a language and be- 
haved as if she had learned and yet does not understand. Language would 
not be learnable if meaning were not fully determined by observable use. 
Meaning would be private, and ineffable, which is inconsistent with the 
possibility of communication and with the social character of mathemat-  
ics. These arguments, however, are far from being decisive. First, I do 
not see any problem with saying that someone can appear from observable 
uses of sentences to have learned a language but in fact does not under- 
stand the language. Perhaps the simplest way to see this in recent times 
is through the type of argument John Searle gives about Chinese syntax 
manipulators [Searle 1980]. The person or machine in Searle's argument 
interacts with others in Chinese and passes the test for understanding Chi- 
nese based on the criterion of considering all possible observable uses of 
sentences, but does not understand a word of Chinese. What  is missing? 
Intrinsic intentionality. Hilary Putnam has made arguments about the 
evolution of "perfect actors" to also show that observable linguistic be- 
havior does not suffice to determine understanding or meaning [Putnam 
1965]. It can be argued that observable behavior or practice generally 
underdetermines what we know or understand. We see this in linguis- 
tics, perception, mathematics, and elsewhere. Compare, for example, our 
linguistic performance and our linguistic competence. 

Now, because observable practice in using sentences underdetermines 
our knowledge or understanding, and does not suffice to explain it, we 
must make an inference to unobservable, inner processes or structures to 
fill in the explanation. This is a pattern of reasoning that goes back to 
Kant and is now used widely in linguistics, cognitive science and artificial 
intelligence studies. The role of informal rigor in intuitionism, if it is to 
be the source of mathematical knowledge, must evidently be to unfold 
and clarify our knowledge of these cognitive processes or structures. On 
this view there is no reason to expect a direct correlation between a set 
of observable linguistic behaviors and the structures of a semantic theory, 
where these structures may be cognitively real. This is not, of course, to 
say that there is no correlation of any kind. Surely there is some relation- 
ship between our internal cognitive states and our observable linguistic 
behavior, but it would not do to suppose that we know enough about 
the relationship at this point in time to simply substitute the latter for 
the former. This seems to be especially true in the case of mathematics, 
where our thinking appears to have much more complexity, subtlety or 
nuance than it does in some of our other cognitive or practical endeavors. 
Observable linguistic behavior in mathematics, one might believe, is just 
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too coarse to do justice to this complexity, except perhaps at the level of 
pebble arithmetic. The pattern of reasoning we are invoking establishes 
a distinction between inner and outer phenomena, but not in a way that  
makes meaning private, non-learnable, non-communicable or non-implicit. 
Why not? The answer is straightforward: because human beings are so 
constituted as to have at least some isomorphic cognitive structure, which 
is what makes learnability and communicability possible. 

In other words, the intuitionistic idea that  a proof is a mental act of 
construction can be defended against the charge of incoherence on the 
following grounds, which are basically Kantian. We start by taking the 
science of mathematics as a social enterprise as given and then at tempt  
to deduce the kinds of cognitive structures that  are necessary to make it 
possible. On such a view there can be no philosophical defense of a solip- 
sistic notion of proof, if solipsism is the position that  there could be proofs 
that  are in principle understandable to only one person. The rejection of 
solipsism does not, however, entail that  there has to be intersubjective 
agreement at all times on all mathematical statements. Nonetheless, we 
have an explanation of how it is possible for there to be intersubjective 
agreement in at least elementary parts of mathematics and the explana- 
tion implies that the concept of a proof, as a fulfilled intention, is not 
solipsistic, and that  it need not involve introspection. Thus, I argue that  
speaking of a proof as the fulfillment of an intention for a particular math- 
ematician depends on the possibility of fulfillment of the same intention 
for other mathematicians. 

I freely admit that  this view of proof contrasts sharply with some of 
Brouwer's remarks. In the early Leyen, Kunst en Mystiek, for example, 
Brouwer says that  even in logic and mathematics "no two persons will 
think the same thing in the case of the fundamental notions" [Brouwer 
1905]. Brouwer's viewpoint, however, fails to do justice to the fact that  
the science of mathematics, and intuitionism itself, exists as a social en- 
terprise, that different people make contributions to it at different times 
and places. So I agree with Dummett  insofar as he is pointing out that  
Brouwer's solipsism, so construed, is philosophically indefensible but, un- 
like Dummet,  I do not jettison the-'idea of proof as an act of mental 
construction. I do not want to dispose of the act/object  distinction, nor 
of some version of the meaning/reference distinction and of the view of 
epistemology that  goes with it. 

Several logicians have suggested that perhaps Dummett ' s  view of the 
philosophical basis of intuitionism is, after all, consistent with the view 
I have presented thus far, or that  Dummett ' s  is a complementary view, 
for Dummett  is simply emphasizing the external or observable aspects 
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of acts while I am emphasizing the internal aspects. On the other hand, 
some other logicians have felt that the views expressed above are definitely 
inconsistent with Dummett ' s  views. I have been inclined to agree with 
the latter position, but perhaps further philosophical analysis is needed. 

The other main point I want to discuss is one which bothers many lo- 
gicians and mathematicians when the subject of intuitionism arises, and 
that is the question of the relation of intuitionistic to classical mathe- 
matics. In particular, I wish to ask how we should understand classical 
mathematics from an intuitionistic standpoint. In The Elements of Intu- 
itionism and "The Philosophical Basis of Intuitionistic Logic" Dummett  
is interested in developing an argument for showing that the classical 
way of construing mathematics is "incoherent and illegitimate", that  it is 
"unintelligible". He is concerned to find grounds for the revision of math- 
ematical practice, and his argument is not favorably disposed toward an 
eclectic position on this issue. 

Now I shall argue that there is a sense in which classical mathematics 
need not be construed as incoherent, illegitimate or unintelligible for an 
intuitionist, although it may be so construed if it is taken to do justice 
to mathematical knowledge. In order to grasp this let us first recall a 
response Dummett  has made to a defense of platonism. Dummett  has 
argued that human practice is simply limited and there is no extension of 
it, by analogy, that will give us an understanding of the capacity to run 
through an infinite totality. Meaning must be derived from our capacities. 
It cannot be derived from a hypothetical conception of capacities we do 
not have. To think otherwise only shows the extent to which illusions are 
involved in understanding our own language. It has of course been pointed 
out by Crispin Wright and others that one of the problems with this ar- 
gument is that intuitionism is committed to some of its own rather strong 
idealizations of human practice, so that someone who took the limitations 
of our capacities seriously, like a strict finitist, could direct a similar line 
of reasoning to Dummett ' s  own position [Wright 1982]. Thus, a strict 
finitist might argue that there is no extension of our practice which, by 
analogy, will give us an understanding of an effective procedure which 
is not feasible, according to some measure of computational complexity. 
Meaning cannot be derived from a conception of hypothetical capacities 
that transcends feasibility. Does this show that intuitionism is incoherent 
and unintelligible? I believe it no more shows this than Dummett ' s  ar- 
gument shows that classical mathematics is incoherent and unintelligible. 
But it does show us that something is amiss in Dummett 's  conception of 
how meaning is connected with idealizations of practice, especially as this 
is supposed to figure into the difference between basing meaning on use 



591 

and basing meaning on t ru th  conditions. 

On the Husserlian view of intentionality and meaning invoked by Hey- 
ting, we are to view mathemat ica l  s ta tements  as expressions of intentions, 
as expectations, or as problems. It is just that ,  as intuitionistic (weak) 
counterexamples show us, we have reason to believe that  some of our ex- 
pectations, understood in their full generality, will never be realized. But 
I do not see why intuitionists or even strict finitists need to deny that  
general logical principles like P V -~P, or universal quantifications over 
infinite domains, can function in our experience as regulative ideals in a 
Kant ian sense. That  is, P V ~ P  can be viewed as an expectat ion of what 
should be the case at a research point lying at infinity, a kind of postu- 
lation of reason that  reflects a natural  tendency of human cognition, no 
mat te r  how much we may try to suppress it. Then we can think of intu- 
itionistic mathemat ics  as an expression of the view that  we k n o w  far less 
about objects than we can r e a s o n  about on a classical model of reasoning. 
We are inclined in our reasoning to postulate certain closure conditions, 
forms of completeness or of "perfection" which cannot be verified in in- 
tuition. We try to complete the incomplete. But, at the same time, this 
can be useful because in the process we come to grasp and measure the 
degree and defects of the incomplete. If Kant 's  view is correct then reg- 
ulative ideals drive scientific research and problem solving. For example, 
they induce mathematicians,  including intuitionists, to work toward the 
solution of open problems with the expectation tha t  a solution is to be 
found, although the source of the expectation is now taken to be imma- 
nent to cognition and is not derived from the idea of a mind-independent 
realm of truths,  as it might be for an ontological platonist. For P V ~ P  
to have this kind of meaning is of course not the same thing as having 
an intuitionistic proof tha t  P V --P. On the other hand, it does not fol- 
low that  classical mathemat ics ,  with its a t tendant  notion of "meaning as 
determined by t ru th  conditions", is unintelligible or incoherent, provided 
we now view it as postulat ing ' t ru th '  as an absolute or regulative ideal, 
analogous to the abstract ion from a finite bound on computat ion involved 
in the intuitionist 's  own conception of acceptable mathemat ica l  reasoning. 

Intuitionists owe us at least an explanation of the origins of classical 
mathematics ,  if not of its s tatus and significance, and on the view just 
described we have such an explanation. An intuitionist can ask about 
the conditions for the possibility of classical mathematics ,  and the answer 
will come in terms of some aspect of our cognitive makeup, some function 
involving the effort to complete the incomplete, to a t ta in  a kind of "cog- 
nitive closure". Par ts  of mathemat ica l  practice will be a product of this 
cognitive makeup, and in those parts where our idealizations are especially 
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far-flung lie the possibilities of antinomies, paradoxes, or illusions. Just 
as traditional rationalistic metaphysics existed, so parts of mathematical  
practice that  cannot be constructively justified actually exist. There is, 
nonetheless, a foundation in our cognitive structure for classical mathe- 
matics and classical mathematics cannot be meaningless to us. In this 
way we can explain classical mathematics as a part  of human practice to 
which different mathematicians in different times and places make contri- 
butions. The non-constructive meaning of mathematical  statements also 
need not be construed as private, non-learnable, non-communicable, or 
non-implicit because, as I am construing intuitionism, humans are so con- 
st i tuted as to have at least some isomorphic cognitive structure, which 
is what makes learnability and communicability possible. Humans are 
bound to project their knowledge beyond their actual, even possible ex- 
perience, but there is intersubjective agreement in doing this, even if the 
specific views that  result from doing it are sometimes different. 

Thus, intuitionists can say of classical mathematics that  it constitutes 
an illegitimate and perhaps even a dangerous extension of what we can be 
said to know about objects, but that  it is cognitively inevitable and does 
serve some purpose in human affairs. It is just that  intuitionism calls for a 
kind of experiential verifiability not found in classical mathematics.  This 
boils down to the fact that  the kind of "grounding in experience" called 
for in constructive mathematics generally gives us a foothold in reality, a 
standard, and a common, "objective" basis for mathematics.  There is a 
core of elementary mathematics on which the views of mathematicians of 
quite different philosophical persuasions overlap, and this core is construc- 
tivist. Intuitionism loses none of its substance in making the point that  
we need to be careful in saying that  we "know" classical mathematics,  in 
making the point that  we do not really "know" something that  results 
from striving for cognitive closure when doing so could lead to illusions. 1 

lI would like to thank the many LMPS IX participants with whom I discussed this 
paper for their comments, and especially Susan Hale, Geoffrey Hellman, Per Martin- 
LSf, Dag Prawitz, Hilary Putnam, Michael Resnik, SSren Stenlund, GSran Sundholm, 
and Dirk van Dalen. 
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1. I n t r o d u c t i o n  

In science we strive to integrate our experiences, observations, and exper- 
iments into a single explanatory framework - 'a theory of everything'. Of 
course this goal has not been achieved, and probably never will be. What 
we have instead are the partial descriptions provided by biology, chemistry, 
physics, etc., and, within these, the various subfields such as fluid mechan- 
ics and quantum mechanics. The different areas of study do not fit tidily 
together. Particular difficulties arise when a more general description is 
supposed to encompass an older, less general, one, usually by providing a 
microscopic explanation of its principles. It is hoped that a less general 
theory can thus be 'reduced' to a more general one. But this comfortable 
picture is often spoilt by certain classes of higher-level, or 'emergent', phe- 
nomena which are well described by the older theory but obstinately refuse 
to emerge from the supposedly encompassing one. 

To illustrate the point with a familiar example, consider life. Is it con- 
tained in, or implied by, SchrSdinger's equation for the 10 23 electrons and 
nuclei in an organism, plus rules for incorporating the environment? I sus- 
pect that most scientists, especially physicists, would, if pressed, answer yes, 
but be uncomfortable. The discomfort stems from a dilemma. We know that 
writing down the Schr5dinger equation and gazing at it is not a promising 
strategy for finding a cure for AIDS, or learning why we do not live for ever. 
But we feel that invoking something else, outside physics, at a fundamental 
level, is mysticism. Somehow, life might emerge from physics in some limit 
(possibly involving increasing complexity), but we have no clear idea how to 
convert this dream into science. 

Of course this problem of reduction has been studied a great deal by 
philosophers. Sometimes the discussion centres on the conflict between the 
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two views summed up by the terms 'correspondence' and 'incommensura- 
bility': in brief, two theories correspond if one can be deduced as a special 
case of the other, and are incommensurate if their foundations are logically 
incompatible. My intention here is to present an idea which seems to cap- 
ture an essential aspect of the problem of reduction of emergent phenomena 
and which goes some way towards dissolving the antinomy between incom- 
mensurability and correspondence, but which has not to my knowledge been 
considered by philosophers. I will confine myself to reductions of theories 
within physics, but of course hope that the idea could eventually prove 
useful in grander contexts such as the reduction of biology to physics (or 
chemistry). 

To begin, realise that theories in physics are mathematical; they are for- 
mal systems, embodied in equations. Therefore we can expect questions of 
reduction to be questions of mathematics: how are the equations, or so- 
lutions of equations, of one theory, related to those of another? The less 
general theory must appear as a particular case of the encompassing one, as 
some dimensionless parameter - call it ~-  takes a particular limiting value. 
A general way of writing this scheme is 

encompassing theory ~ less general theory as 5 ~ 0 (1) 

Thus reduction must involve the study of limits, that is asymptotics. The 
crucial question will be: what is the nature of the limit ~ ~ 0? We shall 
see that very often reduction is obstructed by the fact that the limit is 
highly singular. Moreover, the type of singularity is important, and the 
singularities are not only directly connected to the existence of emergent 
phenomena but underlie some of the most difficult and intensively-studied 
problems in physics today. 

There is one aspect of the study of limits in physics which has attracted 
the attention of philosophers, beginning with Berkeley, that I will not be 
considering here, even though there are interesting and subtle points still to 
be brought out. This centres on the fact that the limit 5 = 0 is always an 
idealization; in any actual situation, 5 is always finite. Instead of discussing 
this important matter, which involves the relation between the world and 
our models of it, I shall remain firmly in the realm of theory. 

Before proceeding to examples, I must disambiguate an irritating termino- 
logical orthogonality. Philosophers consider the less general theory as being 
'reduced by' the encompassing theory, because the latter employs principles 
that are more elementary to explain more phenomena [1]. Physicists, how- 
ever, find it more natural to think of the reduction as occurring the other 
way, that is by the more general theory 'reducing to' the less general one as 

--, 0 because the less general one is a special case (thus the function cos 0 
'reduces to' 1 as 0 ~ 0). 
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2. Singular limits and emergent phenomena 

Here are six examples of the scheme (1) in physics, together with the meaning 
of the dimensionless parameter 5. 

m special relativity ~ Newtonian mechanics, 5 = L,/c. 

m general relativity ~ special relativity, 5 = Gm/c2a. 

m statistical mechanics ~ thermodynamics, 5 = 1/N. 

m viscous (Navier-Stokes) flow ~ inviscid (Euler) flow, 
= 1~Re = 7]/pa~,. 

m wave optics ~ ray optics, 5 = )~/a. 

m quantum mechanics ~ classical mechanics, 5 = hiS. 

Here the meaning of the symbols is as follows, u : speed of body; c: light 
speed; G: Newton's gravitational constant; m: mass of body; a: typical 
linear dimension of body; N: number of particles; Re: Reynolds' number; 
r/: viscosity; p: density; ~ :wavelength; h :  Planck's constant; S: typical 
classical action. 

Reduction in its simplest form is well illustrated by the first example. 
Every physics student learns that one form of the connection between the 
encompassing theory of special relativity and the less general theory of New- 
tonian mechanics is contained in the 'low speed' series expansion 

152 152 v / 1 - 5 2 - 1 - ~  - ~  + . . .  (2) 

The left side represents special relativity, and the right side is a convergent 
Taylor series whose first term represents Newtonian mechanics. Mathemat- 
ically, special relativity is analytic in 5 at 5 = 0, so that the limit is unprob- 
lematic (the hyper-relativistic limit 5 = 1 is singular, but that is a different 
matter). 

My main point will be that this simple state of affairs is an exceptional 
situation. Usually, limits of physical theories are not analytic: they are sin- 
gular, and the emergent phenomena associated with reduction are contained 
in the singularity. Often, these emergent phenomena inhabit the borderland 
between theories. 

To begin, consider the third example, namely the reduction of thermo- 
dynamics by statistical mechanics as the number of particles (N = 1/5) 
increases to infinity (the 'thermodynamic limit'). Standard arguments [2] 
involving large-N asymptotics show that for a fluid the thermodynamic 
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equation of state, e.g. the pressure P(V, T) as a function of volume and 
temperature, can (in principle and to a large extent in practice) be derived 
from the principles of statistical mechanics and a knowledge of the forces 
between the atoms. But the reduction runs into difficulty near the critical 
point Pc, V~, Tc, where the compressibility ~ = [-V(OP/OV)T] -1 is infinite. 
The problem is to find the form of the divergence of ~ as T ~ T~. This is 
a power-law, whose exponent is wrongly given by otherwise useful models 
such as the Van der Waals theory. 

The reason for the difficulty is fundamental, and only after a decade of 
concentrated effort was it clarified, and techniques developed for the correct 
calculation of 'critical exponents'. Thermodynamics is a continuum theory, 
so reduction has to show that  density fluctuations arising from interatomic 
forces have a finite (and microscopic) range. This is true everywhere ex- 
cept at the critical point, where there are fluctuations on all scales up to 
the sample size. Thus at criticality the continuum limit does not exist, cor- 
responding to a new state of matter  [3]. In terms of our general picture, 
the critical state is a singularity of thermodynamics, at which its smooth 
reduction to statistical mechanics breaks down; nevertheless, out of this sin- 
gularity emerges a large class of new 'critical phenomena', which can be 
understood by careful study of the large-N asymptotics. 

A particularly vicious example, at the cutting edge of applied mathematics 
nowadays, is the fourth on the above list, namely the mechanics of a fluid 
a~its viscosity is decreased or its speed is increased (so that  5 gets smaller). 
Exact solution of the Navier-Stokes equation for smooth flow down a pipe, 
driven by a pressure difference A P  , predicts that  the mass flow rate is 
proportional to A P  . For small 5, however, experiment shows a rate close 
to v / ~ P  . The reason is that  the predicted flow is unstable, and the true 
flow is not smooth but disorderly, that  is, turbulent. In turbulence [4-6], 
instead of viscous dissipation vanishing smoothly as 5 ~ 0, the dissipation 
concentrates onto a set of zero measure which is fractal in form. Again 
the limit 5 ~ 0 is singular, and out of the singularity emerges an important  
phenomenon, namely turbulence, whose mathematical nature is still far from 
u~'derstood. 

3. Q u a n t u m  a n d  classical  m e c h a n i c s  

Now we come to the examples I shall discuss in most de ta i l -  not because 
they are more fundamental than the others but because they lie closest to 
my own research interests [7] - namely the reduction of ray theory (e.g. geo- 
metrical optics) to wave theory, and (closely related) of classical to quantum 
mechanics. Here, singular limits abound, even in the simplest problems, as 
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the following example shows. 
A wave (of light, sound or water, for example) travelling along the x-axis 

with speed v can be represented by 

r - cos { 27r ( x -  vt) (3) 

In the ray limit (where for example geometrical optics provides a consistent 
and serviceable description of, for example the operation of telescopes and 
cameras), we have A ~ 0. But this limit is singular! ~ is non-analytic at A = 
0, so that it cannot be expanded in powers of A ; instead, this wavefunction 
oscillates infinitely fast and takes all values between - 1  and +1 infinitely 
often in any finite range of x or t. Only if we consider the wave intensity, 
corresponding to ~2, and average over a small interval corresponding to 
the finite resolution of a detector, do we get the finite and smooth result 
corresponding to the intensity of the system of parallel rays corresponding 
to (3); often it is convenient to average over time (reflecting the fact that 
for light or sound the wave frequency is too high to measure directly): 

1 
-~- = - (4) 

Now consider the superposition of two such waves, with speeds v and - v ,  
giving 

cos{ (x 
and the time average 

+ cos { 2~ (~ + . t ) } _ ~ _  _ 2 cos { 2~x _5__ } cos { ~2~ } ( 5 )  

(r - 2cos2 { 2~x --~-} (6) 

This describes a spatially fixed interference pattern such as that produced 
by a double slit. Again there is a powerful singularity at A = 0. To eliminate 
it requires an extra average, this time spatial, and then we obtain 

Thus to obtain from wave theory the simple fact that in ray theory two 
beams of intensity 1/2 add to give intensity 1, with no interference, requires 
a double average over a mathematically pathological function. 

Having seen that interference is associated with a cos 2 (1/A) singularity in 
the ray limit, we now examine the anatomy of other sorts of wave singular- 
ity. An interesting case occurs when waves reach places that rays do not. 
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Examples are the outside of a glass-air interface within which total internal 
reflection occurs, the dark side of a rainbow, and the thin layer of air near 
a hot road in which mirage reflections are seen. In the ray limit, the wave 
and its intensity are zero, but there are nevertheless waves present, whose 
amplitude is typically 

{- func t ion  of x } 
r c< exp )~ (8) 

Again this is singular, and cannot be expanded in a power series in A (all 
terms are zero). 

An important role is played by the transition between these two sorts of 
singularity (cos2{1/~} and exp{-1/~}) .  (This is somewhat analogous to the 
transition T through T~ in thermodynamics, for large N.) The transition 
happens across a caustic, which is an envelope of a family of rays (a gen- 
eralized focal surface in space, or line in the plane), marking the boundary 
between regions with different numbers of rays. In the simplest case, the 
regions have two rays and no rays corresponding to the 'interference' and 

.~  

'penetration' regimes represented by (6) and (8). A caustic is a collective 
phenomenon, a property of a family of rays that is not present in any individ- 
ual ray. Probably the most familiar example is the rainbow. The singularity 
across a caustic must interpolate between (6) and (8). How this happens 
was first elucidated by Airy in 1838 as part of an attempt to understand 
supernumerary rainbows, that is oscillations on the lit side of the bow, in 
the intensity of light of a given colour. It was necessary for him to invent a 
new function Ai(z), oscillatory for z < 0 and decaying for z > 0. In terms 
of Ai(z), the wave across a caustic has the form 

1 Kx  

In this transition, the emergent phenomenon is the fringe pattern associated 
with a caustic: in the ray limit A ~ 0, its intensity grows as A -~/3, and the 
spacing of the fringes shrinks as A 2/3. 

Caustics can themselves have singularities, whose classification is the 
province of catastrophe theory [8]. At such places, the envelope of rays 
is itself singular. These singular envelopes are decorated with wave pat- 
terns r whose )~ --. 0 singularities (shrinking fringe spacings and diverging 
intensities) depend on the geometry of the catastrophe. Such 'diffraction 
catastrophes' have intricate and beautiful structures [9,10], and constitute 
a hierarchy of nonanalyticities, of emergent phenomena par excellence. The 
patterns inhabit the borderland between the wave and ray theories, because 
when A is zero the fringes are too small to see, whereas when A is too large the 
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overall structure of the pattern cannot be discerned: they are wave fringes 
decorating ray singularities. 

Quantum mechanics is a particular wave theory, whose corresponding ray 
theory is classical mechanics, and where Planck's constant h plays the role of 
wavelength A (through De Broglie's relation A = 27rh/p where p is momen- 
turn). Its relation to classical mechanics should be through the semiclassical 
limit h ~ O. When the limit is not singular, we have the correspondence 
principle: quantum observables tend to their classical counterparts as h ~ 0. 
Usually, though, the limit is singular, and then the correspondence principle, 
while often a useful guide [7], is too crude to be a substitute for mathemat-  
ical asymptotics. From the analogy with other sorts of waves we expect 
that  the nonanalyticities and emergent caustic phenomena described above 
will occur in quantum mechanics, and these have indeed been seen in the 
scattering of electrons, nuclei and atoms. In addition, the h -~ 0 limit is 
enriched by another limit, which is fundamental, namely the long-time limit 
t ---. c~. 

There are several reasons to study the long-time limit in conjunction with 
the semiclassical limit: 

m Spectra of atoms and molecules involve the quantized energies of 
these systems when in stationary states. These are states that  persist over 
infinite time, so their semiclassical study - spectra near the classical limit - 
inescapably involves t ~ c~ too. 

m Experiments on atoms traversing strong oscillating fields begin to 
probe the combined h ~ 0, t -~ c~ limit. 

m It is only after infinite time that  chaos may occur in the classical or- 
bits. Chaos [11, 12] is unpredictability arising from exponential sensitivity to 
initial conditions in a bounded region. Therefore any at tempt  to study how 
classical chaos is reflected in the semiclassical limit of quantum mechanics 
( 'quantum chaology' [13, 14]) must evidently involve t ~ c~ as well. 

The essential point is that  the two limits do not commute: taking the 
classical limit first, and the long-time limit second, leads to a different result 
from taking the limits in the reverse order. Such a clash of limits implies a 
singularity at the origin of the plane with coordinates h, 1/t. One way to 
try to resolve the clash is to take both limits at once, in a controlled way, 
i.e. 

h ~ O, t --, ~ ,  ht - r = constant (10) 

In the one case where it has been possible to take the combined limit ex- 
plicitly [15], for a system whose classical dynamics is trivial, analysis shows 
that  the point h = 1/t  = 0 is truly a 'dragon's lair' , so singular that  the 
behaviour exhibits a fantastic complexity which depends on the arithmetic 
n~ture of T. 
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When the classical orbits are chaotic, the clash of limits generates some re- 
markable emergent phenomena. I will briefly describe just one:the statistics 
o[spectral fluctuations. Consider a bound quantum system, that is one with 
a discrete spectrum of energy levels, and ask about the distribution of these 
levels in the semiclassical limit. The simplest fact about the levels is that 
as h ~ 0 they get closer toge ther -  their mean spacing is proportional to 
h N, where N is the number of freedoms. This must happen, because in the 
classical limit the levels form a continuum. (It is worth pausing to remark 
that this particular passage to the limit provides a nice illustration of the 
'incommensurability' and 'correspondence' approaches to reduction. In the 
first, it is emphasized that for any finite h ,  however small, the spectrum is 
always discrete: the classical continuum is never reached, and so cannot be 
said to be logically contained in the semiclassical limit. On the other hand, 
when h is sufficiently small the inevitably finite resolution of any spectro- 
scopic measuring device means that the results of all observations will be the 
same as if the spectrum were continuous, and the correspondence principle 
can be said to apply.) 

Now imagine looking at the set of levels with a microscope [14] whose 
power is proportional to the mean level density, thus generating a rescaled 
spectrum consisting of a set of numbers whose mean density remains con- 
stant as h ---, 0. What is the statistical nature of the fluctuations of this 
set of numbers about its (unit) mean density? The answer is remarkable: 
apart from trivial exceptions, the fluctuations are universal [14, 16], that is, 
independent of the details of the system and dependent only on whether the 
orbits of its classical counterpart are regular or chaotic. Paradoxically, the 
spectral fluctuations are those of a sequence of random numbers (Poisson 
distribution) when the classical motion is regular, and are more regularly 
distributed (exhibiting the level repulsion characteristic of the eigenvalues 
of random matrices) when the classical motion is chaotic. We are beginning 
to understand this quantum universality [7] in terms of semiclassical asymp- 
totics: it arises from a similar universality in the distribution of long-period 
classical orbits. 

Universality of the spectral fluctuations is a novel qualitative phenomenon 
emerging from quantum mechanics in the combined semiclassical long-time 
limit. It was not predicted by analysis of the SchrSdinger equation, but was 
discovered in numerical experiments (and later seen in real experiments) 
motivated by some physical arguments. Nevertheless SchrSdinger's equa- 
tion does contain it, albeit well concealed behind some very tricky (and 
incompletely explored) asymptotics. 
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4. D ive rgen t  series 

So far, we have considered only the leading-order behaviour in the parame- 
ter 5 whose vanishing describes how the encompassing theory reduces to the 
less general one. In those cases where any sort of mathematical treatment 
was possible, the leading-order behaviour was quite complicated (cf. equa- 
tion (9)), and this of course reflects the singular nature of the limit. But 
determination of the leading order is only the first step: a complete treat- 
ment requires understanding the series consisting of all the correction terms 
- usually involving powers of 5. The determination of such series is still in 
its infancy, but it has been carried out for certain of the simpler problems 
of wave physics described in w 

The most important characteristic of such series, and one which almost 
certainly extends to all series associated with singular reductions, is that 
they diverge. This was one of the factors prompting a re-examination [17] of 
the mathematics and physics of divergent series. The main results reinforce 
earlier indications [18] that the divergent tail, conventionally discarded as 
mathematically meaningless, contains important information in coded form. 
When decoded, these tails not only enable the function being expanded to 
be approximated to previously unequalled levels of accuracy but also de- 
scribe physical effects, associated with the reduction that the asymptotics 
is attempting to describe, which are qualitatively different from those con- 
tained in the leading terms. Examples are the exponentially weak births of 
rays beyond caustics [19] and the generation of transitions between quantum 
states [20] in the adiabatic limit of slow driving. 

It seems clear that these ideas, and further developments of them, must 
be involved in any complete description of how the less general theory is 
embedded in the structure of the encompassing theory. 

5. Conc lud ing  r e m a r k s  

Even in what philosophers might regard as the simplest reductions, between 
different areas within physics, the detailed working-out of how one theory 
can contain another has been achieved in only a few cases and involves so- 
phisticated ideas on the forefront of physics and mathematics today. This 
is because in all nontrivial reductions the encompassing theory is a singular 
perturbation (parameterised by 5) of the less general one. The singularities 
are reflected in the quantities of the encompassing theory being nonanalytic 
at 5 = 0, and the nonanalyticities describe emergent phenomena in the bor- 
derland between the theories. As examples of these phenomena I described 
thermodynamic critical behaviour in fluids, fluid turbulence, interference 
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patterns decorating optical caustics, and the chaology-dependent statistics 
of energy-level fluctuations in quantum mechanics. 

It should be clear from the foregoing that  a subtle and sophisticated un- 
derstanding of the relation between theories within physics requires real 
mathematics, and not only verbal, conceptual and logical analysis as cur- 
rently employed by philosophers. One can hope that  these ideas generalize 
beyond physics (for example to the reduction of biology or chemistry). This 
would mean that  the problem of theory reduction would itself have been 're- 
duced', to the mathematical  asymptotics of singularities. From the evidence 
so far, the task will be far from easy, and will require the development of 
new physical ideas and new mathematical  concepts and techniques. 

Finally, I would be the first to admit that  the ideas explored here lack 
precision in several respects, and have not been presented in their final form. 
I hope they will benefit from the attention of philosophers. 

R e f e r e n c e s  
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A r e a l i s t i c  i n t e r p r e t a t i o n  o f  q u a n t u m  m e c h a n i c s  is i m p e r a t i v e  

By and large, working scientists are unabashed realists, they stubbornly be- 
lieve that there is a real external world. For many theoreticians, this belief 
is the only raison d'etre of physical theories. They would like to have a 
description of how, fundamentally, the world is. But many popular pre- 
sentations tell us that quantum mechanics is not compatible with realism. 
If this view would be true we would be in real trouble. Scientists take no 
thought of abandoning quantum mechanics since it is probably the empir- 
ically best confirmed scientific theory. In spite of many counter-intuitive 
quantum-theoretical predictions, there is not a single well-performed experi- 
ment which contradicts quantum mechanics. Certainly, there are open ques- 
tions, but no flagrant contradictions between theory and experiment. On the 
other hand, we cannot abandon realism since the very confirmation of quan- 
tum mechanics is based on the acceptance of everyday realism. In the early 
days, quantum mechanics has been considered as a theory of the microworld, 
and most scientists did not realize that they cannot consistently adopt dif- 
ferent ontologies for the microworld and the everyday world of laboratory 
instruments. Nowadays we cannot any longer take this position because 
we know that quantum mechanics is valid also for mesoscopic systems-like 
DNA-molecules with biochemically important quantum properties and ge- 
netically important classical properties. Since no scientist is willing to give 
up some kind of realism in the domain of laboratory experience, we really 
have to care for a realistic interpretation of quantum mechanics. 

The philosophical notions about quantum mechanics held by many philoso- 
phers and theoretical physicists are incompatible with the actual practice of 
the working scientist. The lack of a well-founded philosophical discourse 
on quantum mechanics has harmful consequences in research and in teach- 
ing. Nevertheless, quantum theory is by no means in a state of crisis. The 
problem is only that many scientists and most philosophers are not familiar 
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with the modern technical developments of quantum mechanics, and there- 
fore they still try to solve conceptual problems of quantum theory- like the 
theory of the measuring process- in terms of old-fashioned Hilbert-space 
quantum mechanics which is valid only for finite closed systems. Strictly 
speaking, such systems do not exist. Since all material systems are inex- 
tricably coupled to the electromagnetic and to the gravitational field, even 
"reasonably isolated" finite systems do not exist. This does not mean that it 
is not instructive to study the fiction of closed systems, but one should not 
confuse tentative investigations and the full-grown theory. In this sense, no 
exegesis of the writings of Niels Bohr, Werner Heisenberg and other pioneers 
will lead to a satisfactory solution of the conceptual problems of contempo- 
rary quantum mechanics. 

I would like to advocate to investigate carefully 

(i) what we mean by realism, and whether we should expurgate 
objectionable ideas taken over from realism as understood in 
classical physics. 

(ii) what we mean by quantum mechanics from a contemporary 
point of view, and whether philosophically important features 
in our understanding of quantum physics have changed in the 
last sixty years. 

The  C a r t e s i a n  split ,  the  d e a t h  of a t o m i s m  and  the  l imi ta t ions  of 
c o n t e m p o r a r y  science 

Classical physics and a large part of contemporary science rest on Descartes' 
idea that nature is intrinsically divided into two parts: mind (res cogitans) 
and matter (res eztensa). In addition, it is a tacit assumption of all engi- 
neering and experimental sciences that nature can be manipulated and that 
the initial conditions required by experiments can be created by interven- 
tions using means external to the object under investigation. That is, we 
take it for granted that the experimenter has a certain freedom of action 
which is not accounted for by first principles of physics. Man's free will 
implies the ability to carry out actions, it constitutes his essence as an ac- 
tor. Without this freedom of choice, experiments would be impossible. The 
framework of experimental science requires this freedom of action as a con- 
stitutive though tacit presupposition. Traditionally, free will is understood as 
something belonging to the spiritual world, therefore contemporary science 
cannot dispense lightly with Cartesian dualism. 

Many scientists and philosophers praise quantum mechanics as the fun- 
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dament of modern physics, molecular chemistry and molecular biology, but 
rarely it is stressed that quantum mechanics also put an end to atomism. The 
historical idea that the material world is already structured by some kind 
of interacting 'elementary systems' is in sharp contradiction to the struc- 
ture suggested by quantum mechanics. According to quantum mechanics, 
the material world is a whole, a whole which is not made out of parts. If 
one agrees that quantum mechanics is a serious theory of matter, then one 
cannot adopt the classical picture of physical reality with its traditional 
metaphysical presuppositions. In particular, the nonseparability and nonlo- 
cality of the material world and its holistic features are not compatible with 
the ontology usually adopted in classical physics. 

The experimentally well-confirmed holistic character of the material world 
casts severe doubts upon the consistency of the Cartesian separation of the 
material reality from the spiritual one--this idea may well be radically in 
error. Nevertheless, present-day experimental science still requires an epis- 
temological dualism of subject vs. object. It is true that quantum theory 
has clearly put in evidence the limitations and the narrowness of today's 
scientific conception of reality, but the often heard statement that quantum 
mechanics has already given up Cartesian dualism is unfounded. In every 
experimental investigation of a quantum system, the measuring apparatus 
is described positively in terms of classical or engineering physics. In quan- 
turn physics man's consciousness does not enter the physical discourse in any 
other way than in classical physics. In the words of Wolfgang Pauli: "Die 
alte Frage, ob unter Umsts der psychische Zustand des Beobachters den 
s materiellen Naturverlauf beeinflussen kann, findet in der heutigen 
Physik keinen Platz" [1]. In fact, contemporary quantum mechanics-as it 
is used by all experimentalists-is still in a kind of "peaceful coexistence" 
with Cartesian dualism. That does not mean that the Cartesian separation 
is not misconceived and that we should not try to create a non-Cartesian 
science. However, today's physics is ill-disposed and technically incapable to 
start such a project. At present, it would be science fiction to link quantum 
events to conscious events, or trying to incorporate a representation of con- 
scious processes into physical representations of brain processes. Since there 
is no sound theory which includes consciousness in the realm of physics, I 
prefer to acknowledge that there is a gap in the reasonings of present-day 
science. In this sense, all physical theories at our disposal are essentially 
incomplete theories: they are incapable to deal with the complementarity of 
matter and spirit. 

Contemporary quantum mechanics requires an engineering approach with 
a division into a part "which sees" and a part "which is seen". According to 
the formalism of quantum mechanics, this cut is context-dependent and not 



612 

identical with the Cartesian cut. The Cartesian separation would require an 
intrinsic separation of the whole reality into res extensa and res cogitans, 
while engineering quantum mechanics requires a contextual subject-object 
tensor-product decomposition of the whole reality such that there are no 
Einstein-Podolsky-Rosen-correlations between the observed object and the 
observing tools. This requirement is a precondition of experimental science. 
In the formalism of algebraic quantum mechanics, it implies that the ob- 
serving tools have a representation as classical quantum systems 1. In all 
engineering applications of quantum mechanics, the conscious human ob- 
server is a part of the "observing tools" so that the experimenter can be 
regarded as a "detached observe~' in the sense of Bohr [2]. Inasmuch as 
the Cartesian cut is put within the classical domain, a direct conflict be- 
tween quantum theory and the Cartesian ontology is avoided. This is in 
accordance with the modern experimental techniques where the observing 
and recording devices are often completely automated to the extent that 
the role of the human observer is reduced to simple acts of cognition of 
the numeric displays of classical measuring instruments. Hence the free will 
and the awareness of the observing scientist play exactly the same role they 
have in classical physics and engineering science. Also, in the cosmolog- 
ical or biological evolution there are objective happenings, encodings and 
registrations which are independent of the existence of beings having a con- 
sciousness. For these reasons, we conclude that in general the irreversible 
transmutation from possibilities to facts cannot depend on anthropogenic 
preparation and registration procedures, or on the consciousness of a human 
observer. 

R e a l i s m  

The historical Copenhagen view does not present quantum mechanics as a 
universal theory, it presupposes observational tools, but does not describe 
them quantum-mechanically. According to the Copenhagen view, quantum 
mechanics gives just the rules to calculate the probability of quantum events, 
but does not describe the events themselves. This attitude was reasonable 
in the pioneer years of quantum mechanics since at that time the mathe- 
matical tools for describing open systems and their interactions with the 
environment were not available. In order to analyze modern experiments of 
molecular science and the phenomena of molecular biology from a quantum- 

1A quantum system is said to be classical if its algebra of observables is commutative. 
Note that every classical quantum system depends on Planck's constant. The existence 
of contextual classical quantum systems has not to be postulated, but is a consequence 
of a proper mathematical codification of quantum mechanics. 
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mechanical point of view, the Copenhagen view is not sufficient. In molecular 
and mesoscopic science we need a theory which is universally valid in the 
whole molecular domain, including systems of mesoscopic and macroscopic 
dimension, having both quantum and classical properties, and which can 
describe individual dynamical processes in an objective way. 

Since the atomistic view of classical physics is very different from the 
holistic view of quantum mechanics, it is plain that the traditional notion of 
reality used in classical physics and the notion of reality required in quan- 
tum theory clash. But these notions only clash because philosophers were 
not careful enough in their attempts to give an explication what we could 
mean by realism. A number of views of traditional realist philosophy is 
incompatible with the results of modern science. 

Many formulations of what realism asserts are so vague that it is difficult 
to evaluate their claims in the domain of science. Often such formulations 
are unnecessarily coupled with unfounded assumptions about the structure 
of the material world. For example, it has been said that in a realistic inter- 
pretation the theoretical terms genuinely refer (maybe in some approximate 
way) to objects existing in the world. Such a characterization is inadmissible 
since it makes a specific assumption about the physical structure of the world, 
namely that the world consists or is built out of well-defined and indepen- 
dently existing objects. From the viewpoint of modern quantum theory, any 
a priori identification of "material objects" (presumably tacitly supposed to 
be well-localized in physical space) with "material reality" is unacceptable, 
since-whatever the precise meaning of "material objects" may be-we have 
to expect that such systems are entangled by Einstein-Podolsky-Rosen- 
correlations, so that they have no individuality. Quantum mechanics does 
not describe 'things as they really are' since, according to this theory, there 
are no things in an absolute sense. Even macroscopic objects are correlated 
by Einstein-Podolsky-Rosen-correlations. A description corresponding to 
our inborn pattern-recognition mechanism and common-sense conceptions 
is possible only if such Einstein-Podolsky-Rosen-correlations are declared 
as irrelevant. Such a demand is not unreasonable because without abstrac- 
tions there is no science. Every scientific description depends on the decision 
which effects we consider to be relevant and which effects we decide to ignore. 
Nevertheless, quantum mechanics allows a conteztual realistic interpretation, 
provided we do not claim that matter is made out of elementary particles 
(like electrons). We have to use the more judicious formulation that the 
material reality can be described-under appropriate circumstances-in terms 
of elementary systems. Yet it is an objective property of the material reality 
that it can manifest itself under pertinent experimental conditions in a way 
that is best described in terms of elementary systems. 
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In scientific theories, the problem of realism is the question of the ontologi- 
cal status of the material reality while it is not observed. Since the existence 
of an external reality is not provable with the means available to science, we 
have to consider realism as a purely metaphysical regulative principle, free 
from any experimentally testable physical content, and without presuppos- 
ing a particular compartmentalization of the material world. Furthermore, 
the investigation of the role of potential and actualized properties of physi- 
cal objects is the business of physics, not of philosophy. In classical physics 
we are allowed to posit that all potential properties are always actualized 
but a priori there are no reasons to assume that such a convention is always 
logically possible. 

The scientific problem is not to prove the existence of an independent 
reality, but to show that an appropriate regulative principle concerning a 
reality existing independently of human experience is useful and compatible 
with the formalism of a fundamental scientific theory like quantum mechan- 
ics, together with all experimental results. Moreover, the concept of realism 
should not be combined with structures taken over from classical physics 
or with specific physical ideas like atomism, localizability, separability, or 
determinism. I will adopt the following characterization of realism: 

(i) There exists a material world which is independent of our 
awareness of it. 

(ii) Our knowledge of the material reality depends also on occur- 
rences external to our consciousness. 

(iii) Physical theories refer to some intrinsic aspects of the material 
reality. 

Note that in this characterization, realism does neither assert nor deny the 
existence of any kind of objects. Furthermore, it is not denied that some 
features of the observable aspects of the material reality may be due to 
our mental organization. In fact, we have to expect that common-sense 
descriptions of the outer world always depend on the psychic properties of 
the observer. 

In the framework of theories which include the engineering domain, it is 
most reasonable to add the following regulative principle: 

If  a universally valid physical theory is restricted to the domain 
of engineering science, then the adopted realistic interpretation 
should cure grano salis give the every-day realism of the engi- 
neering world. 
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Q u a n t u m  m e c h a n i c s  of mesoscop ic ,  m a c r o s c o p i c  a n d  o p e n  s y s t e m s  

Practical quantum mechanics-as used by the working scientists-is not based 
on a rigorously specified axiomatization but on some not too well defined 
'first principles' and a bunch of working rules. The historical Hilbert-space 
formalism-as introduced by yon Neumann [3] in his book of 1932-is limited 
to locally compact phase spaces. That  is, this theory is restricted to strictly 
closed systems, and does not, for example, allow a mathematically proper 
description of the interaction of a charged particle with its electromagnetic 
field (which is a system having infinitely many degrees of freedom). As a 
consequence, the axiomatic Hilbert-space formalism does not include gen- 
uinely irreversible processes or the possibility of symmetry breakings. An 
important instance of the breakdown of a fundamental physical symmetry is 
the emergence of classical observables, that  is, observables which commute 
with all observables and behave like observables in classical mechanics 2. Von 
Neumann's Hilbert-space codification is based on the Stone-von Neumann 
uniqueness theorem for the representations of the canonical commutation re- 
lations. It is a simple corollary of this theorem that  for finitely many degrees 
of freedom there exist no spontaneous symmetry breakings and no classical 
observables. No philosophical conclusions can be drawn from the fact that  
the traditional Hilbert-space codification cannot explain these features. The 
resolution is almost trivial: The uniqueness theorem by Stone and von Neu- 
mann says that symmetry breakings and classical observables are impossible 
in this unnecessarily restricted codification. That  is, von Neumann's Hilbert- 
space formalism is not an adequate codification of quantum mechanics con- 
sidered as a universally valid theory. Its straightforward generalization-the 
Fock-space quantum field theory-is theoretically inconsistent. Clearly, one 
should not try to conceive a realistic interpretation of quantum mechanics 
on the basis of a codification which is unable to explain mesoscopic and 
macroscopic physics. Fortunately, there is no reason to identify quantum 
mechanics with the historical Hilbert-space or Fock-space codifications. 

If we consider quantum mechanics as universally valid in the atomic, 
molecular, mesoscopic and engineering domain, then we have to require 
that  a proper mathematical codification of this theory must be capable 
to describe all phenomena of molecular and engineering science. Already 
rather small molecules can have classical properties, so that  a classical be- 
havior is not a characteristic property of large systems. The existence of 
molecular superselection rules and of molecular classical observables is an 

2Note that the classical aspects of quantum systems have nothing to do with the limiting 
behavior when Planck's constant h can be regarded as "small". Classical quantum systems 
depend in an essential way on Planck's constant but nevertheless obey the laws of classical 
mechanics. 
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empirically well-known fact in chemistry and molecular biology. The chi- 
rality of some molecules, the knot type of circular DNA-molecules, and the 
temperature of chemical substances are three rather different examples of 
molecular classical observables. Such empirical facts can be described in an 
ad hoc phenomenological manner, but it is not so easy to explain these phe- 
nomena from the first principles of quantum mechanics. A universally valid 
theory of matter has not only to describe but also to explain why the chiral- 
ity of biomolecules (like the L-amino acids, the D-sugars, lipids, or steroids) 
is a classical observable. The reality of this breakdown of the superposition 
principle of traditional quantum mechanics on the molecular level is dramat- 
ically demonstrated by the terrible Contergan tragedy which caused many 
severe birth defects. Contergan was the trade name of the drug thalidomide 
(3-phtalimido-2,6-dioxopiperidin, C13H10N204) which exists in two enan- 
tiomeric forms. The left-handed stereoisomer of thalidomide is a powerful 
and maybe safe tranquilizer, but the right-handed isomer is a teratogenic 
agent, causing disastrous physiological deformities in the developing embryo 
and foetus [4]. 

In the engineering domain, quantum theory must in principle be able to 
provide a description of measuring instruments and of our general experi- 
mental laboratory equipment. Therefore, a full-grown codification of quan- 
turn mechanics must include the successful engineering theories like classical 
point mechanics, chaotic nonlinear dynamical systems, continuum mechan- 
ics, hydrodynamics, classical stochastic processes, thermostatics including 
phase transitions, Maxwell's electrodynamics, Newton's gravitation. In the 
mesoscopic domain manifestations of both quantal and classical properties 
at one and the same object are nothing out of the ordinary, but they cannot 
be understood by some "correspondence rules"; their description requires 
a full-blooded theory which includes both traditional quantum mechanics 
and classical mechanics as special cases. For example, DNA-molecules-the 
material carrier of genetic information- possess important properties which 
definitely require a quantum-mechanical description, e.g. its photochemical 
reactivity. On the other hand, every DNA-molecule has a tertiary structure 
which is manifestly classical, and biologically important for the mechanism 
of genetic recombination. Moreover, circular DNA-molecules may be knot- 
ted, and there are enzymes which can change their knot-type. The knot-type 
of a DNA-molecule is an example for a classical property which cannot be 
explained by any variant of a "correspondence principle". Molecular biol- 
ogy is a rich source for such mixed quantal-classical systems. Enzymes act 
as molecular measuring devices and require a classical behavior for their 
function. The immune system is a molecular quantum system with an only 
classically describable memory, warranting the individual molecular iden- 
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tity. In order to understand such systems, one needs a theory of matter 
which can describe both the quantal and the classical properties of single 
individual objects. Since the cross-over from quantum to classical behavior 
is not given by Bohr's correspondence principle, one of the most important 
theoretical problems in molecular quantum mechanics is the correct analysis 
of the interaction of an individual, small, non-isolated quantum object with 
its environment and with classical degrees of freedom. 

In every scientific investigation we divide the universe into an object sys- 
tem and its environment-which is all the rest. The environment acts as 
background which is indefensibly neglected in historical quantum mechanics. 
The idea of a physical object without an environment is an outrageous and 
incongruous abstraction. Eddington, in his posthumous book Fundamental 
Theory, called attention to the inevitability of considering the background: 
"The environment must never be left out of consideration. It would be idle 
to develop formulae for the behaviour of an atom in conditions which imply 
that the rest of matter of the universe has been annihilated. In relativity 
theory we do not recognise the concept of an atom as a thing complete in 
itself. We can no more contemplate an atom without a physical universe 
to put it in than we can contemplate a mountain without a planet to stand 
on" [5,p.13]. Therefore, the abstract structure of a tough-minded theory 
must be rich and complex enough to describe the essential features of the 
environment of an object under study. 

A complete, mathematically rigorous and empirically correct theory of 
open quantum systems and of mesoscopic and macroscopic quantum sys- 
tems is still a great desideratum, but it seems that most mathematical tools 
are available in terms of algebraic quantum mechanics. Algebraic quantum 
mechanics is not a new, but just a physically and mathematically correct 
formulation of quantum theory; it is nothing else but a proper codification 
of the basic principles of quantum mechanics. No ad hoc modifications, no 
hidden variables, and no quantization procedures are necessary. Algebraic 
quantum mechanics encompasses all kinds of physical systems, e.g. finite 
systems (with a locally compact phase space) and infinite systems (whose 
phase space is not locally compact). There is a dramatic difference between 
the behavior of finite and infinite systems. According to the uniqueness 
theorem by Stone and von Neumann, finite systems have a unique Hilbert- 
space representation while infinite systems have infinitely many physically 
inequivalent W*-representations which account for the stupendous complex- 
ity of observable phenomena in nature. 

In the framework of algebraic quantum mechanics, it can be proven that, 
in general, open quantum systems undergo symmetry breakings and possess 
classical observables. Contextual classical observables are emergent in the 
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sense that they are generated by the algebra of intrinsic observables together 
with a new contextual topology, but they are not functions of the intrinsic 
observables [6-10]. A typical example for an emergent classical observable 
is the temperature of systems in thermal equilibrium. It turns out that 
the contextual classical part of a dynamical quantum system is always a 
stochastic dynamical system, it depends in an essential way on Planck's 
constant but nevertheless obeys the laws of classical mechanics. In addition, 
the emergence of classical observables does not depend on the macroscopic 
character of the system under investigation, already rather small molecules 
can have classical properties. 

Endophys i ca l  and  exophysica l  descr ip t ions  

Certainly, present-day quantum mechanics is not the ultimate theory of 
matter. But even if we had a truly universal ultimate theory it would not 
give us all the information we need to describe an observed phenomenon. 
That is, the statement "universally valid" cannot be literally correct since 
a language which encompasses everything would have to be semantically 
closed, and hence engender antinomies. The impossibility of a complete 
description is not a flaw of the theory but a logical necessity. Every theory 
which attempts to describe its own means of verification is necessarily self- 
referential. In order to avoid paradoxes of self-reference, we need an at least 
two-leveled theory where the second level represents the metatheory which 
must be formulated in another language, a so-called metalanguage. This 
metalanguage has to be essentially richer than the language of the basic 
physical theory. If the two languages would be identical (or translatable 
into each other) we would have a semantically closed language with self- 
referential sentences [11, 12]. So we have to split the world into two parts, 
the observed part and the observing part. Our description depends on this 
cut but this cut cannot be derived from any kind of an ultimate theory. 
Hence the language of a hypothetically posited universal theory can at most 
describe a part of the full reality, perhaps even only a tiny area. Traditionally, 
the physical sciences exclude the subject of cognizance from their enquiry. 
No known physical theory deals with the reality of man in his freedom. 

In the following I adopt the working hypothesis that quantum mechan- 
ics in its algebraic codification is universally valid in the atomic, molecular, 
mesoscopic and non-cosmological macroscopic domain. Our confidence in 
the trustworthiness of quantum mechanics as a fundamental physical theory 
is in an essential way based on its confirmation by laboratory experiments. 
That is, both the validity of engineering physics and the feasibility of ex- 
perimenters having free will is presupposed, and not derived from the first 
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principles of quantum theory. I do not assume that consciousness or free will 
can be reduced to physical properties of the organism such as brain states. 
All ideas of choice and purpose must be included in the relevant regulative 
principles which are not derivable from physical first principles. Clearly, 
such regulative principles play a central role in our picture of the world. 
These postulates lead to the necessity to distinguish between endophysics 
and exophysics. This helpful distinction has been made by Otto RSssler 
[13] and David Finkelstein [14, 15]. Probably misusing their ideas, I adopt 
nevertheless their way of speaking: 

A strictly closed physical system without any concept of an 
observer is called an endosystem. 

If the endoworld is divided into an observing and an observed 
part, we speak of an exophysical description. 

The world of the observers with their communication tools is 
called an ezosystem. 

Note that endophysics is different from exophysics. All fundamental uni- 
versally valid first principles we know refer to strictly closed systems, hence 
belong to endophysics. They are supposed to be universally valid, but they 
are not operational. Strictly speaking, there is nothing outside an endosys- 
tern. The endophysical description is a view without perspective, it is God's 
panorama, a "view from nowhere". 

Already the formalism of quantum mechanics predicts that quantum sys- 
terns like electrons, atoms or molecules are always entangled with the rest of 
the world, so they cannot be possible candidates for individual entities which 
"really exist". Provided we accept quantum theory as a holistic theory, a 
consistent variant of scientific realism cannot postulate an independent ex- 
istence of building blocks like strings, quarks, electrons, atoms or molecules. 
We construct building blocks to describe matter from a particular point of 
view, but the world is not made out of some building blocks. This insight is 
not in contradiction with the view that quantum mechanics is a story about 
what there really is. Objectivity does not reside in transcendental entities 
like molecules, atoms, electrons or quarks, these are just manifestations of 
the material reality. On a fundamental level, we have to emphasize different 
aspects like symmetries. 

First principles are not natural laws but fundamental ideas. To a certain 
extent it is a matter of taste what we consider as first principles and what 
as pragmatic working rules. As far as possible and appropriate, first prin- 
ciples should be context-independent. For that reason, first principles are 
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always extravagantly remote from our every-day experience. All popular 
first principles refer to situations with high intrinsic symmetry. Experience 
tells us that symmetry is an effective criterion for selecting first principles 
so we adopt the view that maximal symmetry is a typical characteristric 
of an endophysical first principle. Such fundamental symmetries are, as 
a rule, not manifest in the everyday domain. So it is necessary to break 
these symmetries, as clearly recognized by Pierre Curie [16]: "C'est la dis- 
sym6trie qui cr6e le ph6nom~ne". That is, genuine endophysical symmetries 
are directly inaccessible by experience, they can empirically be found only 
by exophysical symmetry breakings. On that account we consider all laws 
or rules showing broken symmetries to be contextual and belonging to a 
particular ezophysical description. For example, for endophysics we posit a 
bidirectional deterministic time evolution distinguished by a time-inversion 
symmetry, while the arrow of time of most exophysical descriptions mani- 
rests a broken time-inversion symmetry. 

Quantum endophysics cannot predict what happens in a physical experi- 
ment, since in an endoworld there is not yet any concept of observing tools or 
observers. It is a strictly deterministic theory, set up to describe the reality 
existing independently of human observations. Note that the fact that quan- 
turn endophysics is deterministic does not imply that it is determinable by an 
internal or an external observer. The endophysical description refers to an 
immanent ontology, it pictures an independent reality in a non-operational 
way. Every operational description of the world requires the transition from 
the endophysical to an ezophysical description by introducing a cut between 
the observed and the observing part. The exophysical description refers to 
the empirical reality in the sense of d'Espagnat [17, 18]. Yet, the endophys- 
ical first principles are not sufficient for a characterization of exosystems 
since every exophysical description depends not only on first endophysical 
principles but also on the choice of the cut. This fact does not imply that 
we cannot go from endophysics to an exophysical description, but that for 
such an enterprise we need additional regulative principles. Every exophys- 
ical description is therefore contextual and at most weakly objective (in the 
sense of an intersubjective agreement of observers choosing the same cut). 

The inverse problem is building up a picture of the world independent 
of the perceiving subject from experimental data, or in our terminology, a 
logically consistent reconstruction of conjectured endophysics from the op- 
erationally accessible exophysical descriptions. The theoretical construction 
of an endophysically immanent ontology can be considered as a realization 
problem. That is, we are asking for an ontically interpreted theoretical struc- 
ture which, together with appropriate regulative principles, allows us to de- 
rive all legitimate exophysical description of all aspects of the material reality 
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encompassed by the basic theory. This realization problem is, in the main, a 
consistency problem. If it has a solution, it has many solutions. We can re- 
duce this nonuniqueness by some minimality requirements (Ockham's razor) 
and by adopting an ontology whose restriction to the engineering domain 
gives the realism almost universally adopted in classical physics. Therefore, 
endophysics never can be a literally true story of what the world is like. An 
endophysical conception of reality must be compatible but cannot be derived 
from empirical data. In the words of Albert Einstein: " 'Being' is always 
something which is mentally constructed by us, that is, something which we 
freely posit (in the logical sense). The justification of such constructs does 
not lie in their derivation from what is given by the senses. Such a type 
of derivation (in the sense of logical deducibility) is nowhere to be had, not 
even in the domain of pre-scientific thinking. The justification of the con- 
structs which represent 'reality' for us, lies alone in their quality of making 
intelligible what is sensorily g iven . . . "  [19, p. 669]. 

On i n t e r p r e t a t i o n s  

An interpretation always refers to a logically consistent and empirically well- 
confirmed theoretical formalism. That is, we assume that we have a mathe- 
matically rigorous codification of a physical theory (the 'formalism'), a rain- 
imal interpretation of the theory which allows an operationalization and an 
empirical verification of the theoretical predictions. We adopt the following 
definition: 

An interpretation of a physical theory is characterized by a set 
of normative regulative principles which can neither be deduced 
nor be refuted on the basis of the mathematical codification and 
the minimal interpretation. 

Since theories are not determined by their empirical consequences, we have 
some freedom for choosing an interpretation. First of all, we distinguish 
between epistemic and ontic interpretations. Epistemic interpretations re- 
fer to our knowledge of the properties or modes of reactions of systems "as 
we perceive them", while ontic interpretations refer to the properties of the 
"object in itself", regardless of whether we know them or not, and inde- 
pendently of any perturbations by observing acts. An ontic interpretation 
of quantum mechanics makes assertions about values possessed by observ- 
ables. A realistic world view demands an individual ontic interpretation 
of quantum endophysics, it is intrinsically objective but not operational. 
The operationalistic view requires an exophysical epistemic interpretation, 
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and usually works with a statistical description. By a proper choice of the 
regulative principles, one can get a contextually objective and operational 
exophysical description of quantum reality. 

To be sure, an ontic interpretation of quantum mechanics does refer only 
to a fictitious theoretically immanent reality, and not to the ultimate reality. 
But under the working hypothesis-which nobody really believes-that quan- 
tum mechanics is a universally valid theory, an ontic interpretation allows 
us a consistent way of speaking as if we would refer to reality. 

I n d i v i d u a l  and  s t a t i s t i ca l  desc r ip t ions  of q u a n t u m  s y s t e m s  

Both individual and statistical descriptions of material reality are possible, 
but the appropriate mathematical formulations are fundamentally different. 
Moreover, a coherent statistical interpretation requires an individual inter- 
pretation as a backing. In classical theories this requirement is automatically 
fulfilled since the convex set of all statistical states is a simplex so that a 
unique decomposition of every mixed state into pure states is warranted. 
In quantum theories, a mixed state has many feasible realizations in terms 
of pure states so that it is not at all clear what the conceptual meaning 
of a statistical state is. On the other hand, a complete individual inter- 
pretation is always in terms of ontic states, mathematically described by 
pure states. The solution of the equation of motion for this pure state re- 
quires a knowledge of the initial conditions of all degrees of freedom of the 
whole environment. From an experimental point of view, this information 
is never available so that we are forced to introduce an epistemic state by 
some kind of optimal estimate of the initial conditions of the environment. 
This procedure leads to a well-defined mixture in terms of ontic states, hence 
to a conceptually well-defined statistical state. These statistical states are 
epistemic states, they refer to our knowledge of the ontic state. 

The usual mathematical formalism of quantum mechanics refers to a sta- 
tistical description, and one would be ill-advised to use this mathematical 
formalism also for the individual description. The mathematical ]ormalism 
required for an individual description is different from the formalism required 
for a statistical description. In classical point mechanics, the usual individ- 
ual description is given in terms of a symplectic phase space $2, where the 
individual state of the system at time t is given by a point wt of ~2. According 
to Gelfand's representation [20, p.16], there is a one-to-one correspondence 
to the algebraic description in terms of the C*-algebra C~(~)  of continuous 
functions on ~ which vanish at infinity. In this algebraic description the 
individual states are given by the extremal elements of the dual of C~(~) .  
The statistical description of the same mechanical system can be formulated 
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in terms of probability densities, that  is of positive and normalized elements 
of the Banach space L~(X?). The dual of this Banach space is the W*- 
algebra L~(s of bounded Borel-measurable functions on /2 ,  and is called 
the algebra of bounded observables. Just as in classical point mechanics, the 
individual description of an arbitrary quantum system can be given in terms 
of an appropriate separable C*-algebra A, where the individual states are 

represented by the extremal elements of the dual A* of A. The statistical 
description of a quantum system has to be given in terms of an appropriate 
W*-algebra 3d with a separable predual 34 , .  In quantum mechanics the 
algebras A and 34 are in general noncommutative. In the special case of 
commutative algebras we speak of classical quantum systems, and we can 
represent these algebras as in historical classical mechanics by A = C~(f2) 
and 34 = L~(~2), where A/l, = L~(s 

O n t i c  i n t e r p r e t a t i o n  of  e n d o - q u a n t u m  m e c h a n i c s  

While quantum phenomena require a radical revision of our ideas about  
physical reality, they do not prevent us from accepting a reasonable realistic 
individual interpretation. For this we do not require any kind of hidden 
variables, faster-than light influences, or an exotic continuously splitting 
many-worlds description. Quantum mechanics does not force us to give up 
realism, but it forces us to distinguish carefully between potential and actu- 
alized properties. It is a misconception (though one surprisingly widespread 
among philosophers and scientists) that  physical quantities have to be t ruth-  
definite. A popular working rule of pragmatic quantum mechanics says that  
"an observable has no value before a measurement ''a. This is in contrast to 
the usual metaphysical commitment  of classical mechanics that  every ob- 
servable has a value at all times. This commitment  cannot be transferred 
to quantum mechanics since there is a theorem saying that  for a full set 4 of 
states of a C*-algebra .4, a hypothetical at t r ibut ion of definite t ru th  values 
to all elements of .4 requires that  .A is commlltative 5. However, instead of 
a positivistic renouncement we can adopt the intrinsic, internally consistent 

3Of course, a positivist would not say so much. For example, Reichenbach adopts the 
following definition" "In a physical state not preceded by a measurement of an entity u, 
any statement about a value of the entity u is meaningless" [21]. 
4A set S of states on a C*-algebra ,4 is said to be full if an element A of A satisfies A _> 0 
if and only if p(A) >_ 0 for all p E S. 
5The relevant basic theorem is due to Misra [22]" A C*-algebra A (different from the 
complex numbers) admits a dispersion-free state if and only if it has a nontrivial norm- 
closed two-sided ideal I such that the quotient algebra A/Z is commutative. This theorem 
implies that in traditional quantum mechanics there are no states which are dispersion- 
free for all observables. 
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ontic interpretation that at every instant there is a maximal set of truth- 
definite observables. A truth-definite observable possesses a value-whether 
we know this value or not, is at this stage of the theoretical discussion entirely 
irrelevant. This point of view corresponds exactly to the usual interpreta- 
tion of classical point mechanics, where the ontological question of 'having 
a value' is clearly separated from the entirely different question how to get 
empirically some information about this value. 

The natural referent for quantum endophysics is a single system. A sta- 
tistical interpretation of quantum mechanics presupposes the existence of an 
external measuring system with a classical irreversible dissipative behavior, 
so that it is a topic of quantum exophysics. Therefore, a statistical interpre- 
tation of quantum endophysics makes no sense, but a non-operational and 
intrinsically nonprobabilistic individual ontic interpretation is possible in a 
logically consistent way. Algebraic quantum mechanics allows to give a pre- 
cise definition of an ontic interpretation which is free of inner contradictions. 
In algebraic quantum mechanics, quantum endophysics is characterized by a 
C*-algebra +4 of intrinsic observables. The referent of an endophysical ontic 
interpretation of quantum mechanics is the whole universe of discourse. The 
intrinsic potential properties describe independently of any observation what 
is physically real, they are represented by the selfadjoint elements of the C*- 
algebra A of intrinsic observables. The intrinsic ontic state of an object at 
time t is characterized by the set of all intrinsic potential properties which 
are actualized at the instant t. That is, the intrinsic potential properties 
characterize the object, while the actualized intrinsic properties characterize 
the ontic state of the object. An ontic state can be represented by a positive 
linear functional and is characterized by the fact that there are no other 
linear functionals with the same collection of actualized observables. It can 
be proved that there is a one-to-one correspondence between the ontic states 
of an object and the extremal, normalized positive linear functionals on ,4 
(the so-called 'pure states'). 

Mathematical supplement 
A selfadjoint operator A C ,4 is said to be dispersion-free with 
respect to a state p E ,4* if p(A 2) = p(A) 2. In this case, the 
observable A is said to possess the value p(A) with respect to a 
state p. The set of all observables on which a state p E ,4* is 
dispersion-free, is called the definite set ~Pp of p [23], 

~Pp "- {A c A I A -  A*, p(A 2) - p(A)2}. 

The complex span Ap of the definite set ~Pp 

Ap := {A + / B  I A, B e ~p} 



625 

is a C*-algebra with the property [24] 

Ap := {A e A I p ( A B ) =  p ( B A ) =  p(A)p(B) for all B e A}. 

We require that  Ap is a maximal set of observables which at some 
instant t possess values, that  is we require that  the definite set 
~Pp is maximal in the sense that  

~Pp C_ D~ for some state ~ C A* implies p = ~. 

If A is a C*-algebra with identity and with no one-dimensional 
representation, then a state p on ,4 is pure if and only if its 
definite set T~p is maximal [25]. 

The ontic interpretation of a dynamical C*-system presup- 
poses that  at every instant t c R there is a maximal definite 
set Dt of observables. The corresponding complex span At C_ A 
defines a unique C*-homomorphism Pt :.At ~ C which we in- 
terpret as a valuation map for the observables that  are actualized 
at the instant t. Any observable A C At possesses at time t the 
dispersion-free value pt(A). The functional Pt has a unique state 
extension to an extremal, normalized positive linear functional 
on the C*-algebra ,4 [24]. This uniquely given pure state is called 
the ontic state of the C*-system at the instant t. 

That  is, ontic states are represented by (and identified with) pure states. 
It follows that  an intrinsic potential property represented by an observable 
A C fl, is actualized at time t if and only if pt(A 2) = {pt(A)} 2 where the 
extremal normalized positive linear functional fit C A* represents the ontic 
state at time t. This delineation fixes the ontology of quantum endophysics. 
Our reference to an independent reality makes only sense as a theoretical 
construct. The intrinsic ontic interpretation is a strongly objective theory 
in the sense of d 'Espagnat  [18] since in the first place it makes no reference 
to observers or probabilities. It may describe reality in itself but not the 
phenomena we observe. The restriction of this ontic interpretation of alge- 
braic quantum mechanics to the classical part of the system 6 corresponds 
to the generally adopted realistic individual interpretation of the traditional 
classical physical theories. Hence the adopted immanent ontology is not rad- 
ically different from the ontology traditionally accepted for classical physical 
theories. 

6The classical part of a C*-system with the C*-algebra A is given by the center Z(A) of 
A. The C*-system with the commutative C*-algebra Z(.A) is a classical quantum system. 
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Ep i s t emic  i n t e r p r e t a t i o n  of e x o - q u a n t u m  mechan ics  

A theory which describes observable phenomena cannot keep the human 
means of data processing out of consideration, but these means are not de- 
scribed by the C*-algebra of intrinsic observables. The observables which 
describe the outcomes of measurements are context-dependent, they are rep- 
resented by positive operator-valued measures of the W*-Mgebra A4 of con- 
textual observables. This algebra is not intrinsically given but can be con- 
structed from the context-independent C*-algebra ,4 by a faithful Hilbert- 
space representation ~(A) C_ B(?-/) of ,4 by specifying a new contextual 
topology by selecting a folium of contextually preferrend intrinsic states. 
The weak closure of the C*-algebra ~(A) acting on the Hilbert space 7-I 
is W*-isomorphic to the W*-algebra A4 of contextual observables. In this 
contextual description, the statistical states are represented by the normal 
positive linear functionals on the W*-algebra A4. 

The W*-algebraic formalism describes the empirical reality, it is context- 
dependent hence only weakly objective, in the sense that for a given context 
there is intersubjective agreement 7. While the nonoperational individual and 
ontic interpretation is fully deterministic and intrinsically richer than an ex- 
ophysical statistical description, any of the possible operational exophysical 
statistical descriptions is necessarily contextual but without exceptions irre- 
ducibly probabilistic. The primary probabilities of quantum mechanics [26] 
manifest themselves only in the interaction with external classical systems. 

Our ability to describe the world cannot go farther than our ability to iso- 
late objects. A realistic operational description of quantum systems is possi- 
ble if and only if there are no Einstein-Podolsky-Rosen-correlations between 
the object system and the observing system. Only if we can abstract delib- 
erately from these factually existing Einstein-Podolsky-Rosen-correlations, 
we can investigate the material world by compartmentalization. A realis- 
tic description of an individual quantum system is possible if and only if 
there are no Einstein-Podolsky-Rosen-correlations between the object sys- 
tern and its environment. Therefore I adopt the following definition of an 
object [27-32]: 

An object is defined to be an open quantum system, interact- 
ing but not Einstein-Podolsky-Rosen-correlated with the envi- 
ronment. 

It follows that objects are exactly those quantum systems for which at every 

7The same is true for the quantum-logics approach. The corresponding orthomodular 
lattice is given by the projection lattice of the contextual W*-algebra. A representation- 
independent description (corresponding to the C*-algebra of intrinsic observables) does 
not exist in quantum logics. 
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instant a maximal description in terms of pure states is possible. An object is 
something having individuality and potential properties, so that we can inter- 
pret a pure quantum state of an object as an individual state. Here the no- 
tion of an 'individual state' refers to a mode of being, describing exophysical 
characteristics existing independently of any observation, while the notion of 
a 'pure state' refers to a merely mathematical concept, meaning an extremal 
positive linear functional on the algebra of observables. Note that the exo- 
physical individual state depends on the breaking of the holistic symmetry 
of the world by division and abstraction. Over and above, every exophysical 
description requires a tensor-product decomposition but such a decomposi- 
tition is not God-given. The usual Hamiltonian tensor-product structure 
refers to bare particles and to bare fields whereas the object-environment 
tensor-product structure refers to contextual dressed entities. A contextual 
quantum object appears as an object not in spite, but because it interacts 
with its environment. In particular, classical properties are the result of 
the interaction of an object with its environment. Without an appropriate 
background the concept of a quantum object makes no sense. 

It would be unreasonable to expect that the dynamics of an exosystem is 
governed by a Hamiltonian or a bidirectionally deterministic time evolution. 
This dynamics cannot be postulated but has to be derived from the intrinsic 
endophysical time evolution. In an exophysical description, it is in principle 
possible to eliminate the environmental variables and to write down the dy- 
namics of an individual object in terms of the object observables alone. In 
general, this reduced dynamics is given by a stochastic and state-dependent 
equation of motion. Both the stochastic behavior and the state-dependence 
have not to be put in by hand, but they can be derived from the fundamental 
linear endophysical dynamics. The chaotic behavior arises from the initial 
values of the unobserved degrees of freedom of the environment, resulting 
in a stochastic classical force acting on the object. If the spectral distribu- 
tion of the autocorrelation of this force is absolutely continuous, then the 
environment forgets the initial conditions completely so that the stochastic 
force is usually completely nondeterministic. The state-dependence is due to 
feedback effects from the polarization of the environment by the quantum 
object. If the dynamics of this individual quantum object can be represented 
in terms of the irreducible Hilbert-space formalism, then the dynamics of the 
ontic state can be representend by a trajectory ~ ~ ~t of the state vector 
whose time evolution is given by a nonlinear stochastic integro-differential 
equation for the state vector ~t. In particularly simple models, one gets a 
nonlinear stochastic SchrSdinger equation in the sense of It6. 

All objects we discuss in empirical science are contextual objects, their 
existence depends both on the environment, and on the abstractions we 
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are forced to make in every scientific discussion. It is a theorem of algebraic 
quantum mechanics that an object exists only if its environment is classical s. 
The meaning of the notion 'classical' depends, however, on our abstractions 
and is therefore context-dependent. That is, in a quantum world there 
are no intrinsic context-independent objects besides the whole universe of 
discourse. Contextual objects are abstraction-dependent, but they are not 
free inventions. They represent pat terns  of reality, yet they are not  building 
stones of reality. Elementary or composed "particles" like electrons, atoms 
or molecules are not primary but rather secondary and derived. Electrons, 
atoms or molecules do not simply exist, they appear only under special 
conditions-they are contextual  systems. 

In order to go from the universally valid endophysical description to a 
contextual exophysical description, one has to introduce in addition regula- 

tive pr inciples  like the Baconian rejection of the existence of final processes, 
our presupposed freedom to create initial conditions, or the feasibility of 
"detached observers". The chosen observational tools determine a certain 
context which in algebraic quantum mechanics is characterized by a new 

topology in the space of  the in tr ins ic  states 9. An exophysical description of 
contextual objects cannot give us complete knowledge of the endophysical 
independent reality. Contextual objects depend on the contextually selected 
topology but are independent of a human consciousness, they are real relative 

to the chosen context. An exophysical description is neither absolutely true 
nor absolutely false, bu twe  may say that it is correct relative to the chosen 

way of  describing reality. Yet exophysical descriptions are not unique, they 
depend on the neglect of some really existing Einstein-Podolsky-Rosen- 
correlations. Therefore there are always different exophysical descriptions 
which according to purely endophysical criteria are logically equivalent. No 
single exophysical description reveals the whole independent reality with its 
non-Boolean event structure but projects some aspects of this reality onto 
a Boolean context. The material reality has many complementary Boolean 
descriptions, each being valid from its own perspective. There is only one 
reality, yet there are many legitimate viewpoints, hence many equally legit- 
imate but complementary descriptions of nature. 

s Theorem: Let A and B be two C*-algebras and C = A | B their minimal tensor product. 
Every pure state V on g is of the form V = a | 13 for some pure states a of A and ~ of 
]3 if and only if either A or B is commutative ([20], theorem 4.14). This theorem implies 
that a nonclassical open C*-system is an object if and only if its environment is classical. 
Clearly, every classical C*-system is an object. 
9This new topology is different from the intrinsic C*-topology and can also be character- 
ized by a/olium of preferred states which in turn characterize the normal states of the 
W*-closure of the associated Hilbert-space representation. 
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C o n c l u s i o n s  

Except from the fact that  present-day physics has nothing to say about the 
relation between matter  and spirit and is not in the position to avoid the 
Cartesian split, one of the most important open problems of nonrelativis- 
tic quantum theory is the proper description of individual open quantum 
objects in interaction with their environment. This is mainly a problem of 
mathematical physics, not of philosophy. If we are able relinquishing unten'  
able presuppositions and if we accept the holistic structure of the material 
reality, the philosophical problems associated with quantum mechanics are 
not radically different from those of science in general. It is not realism 
that is refuted by quantum mechanics, but atomism and the idea of the 
existence of context-independent objects. The context-dependence of every 
description of reality is inevitable, even in classical physics; it is enforced 
by Tarski's theorem which implies the necessity of an ezophysical metalan- 

guage. Due to entanglement effects, individual quantum objects are always 
abstraction-dependent entit ies.  Contextual objects represent patterns of re- 
ality, yet they are not building stones of an independent reality. According 
to quantum theory, a consistent variant of scientific realism cannot postulate 
an independent existence of building blocks like quarks, electrons, atoms or 
molecules. The non-Boolean event structure of quantum reality forces us to 
give up the classical idea that  all potential properties of a quantum object 
can be actualized at the same instant. The nonseparability and nonlocality 
of the material world are not compatible with the ontology adopted in clas- 
sical physics. Due to its holistic nature, quantum reality is more elusive and 
leads to an amazing variety of complementary descriptions. 
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I want to use this occasion to make some remarks of a rather general kind 
about  the character of our knowledge in physics. I do this with some diffi- 
dence: I run the risk that  what I shall say may seem- -may  indeed be-- largely  
platitudinous. But there are some points that  seem to me important ,  even if 
obvious; and also seem, even if obvious, to be not widely recognized, or not 
held firmly in view, in current philosophical discussion; so I have decided 
that  the risk is worth taking. 

That  already has something of the air of the introduction to a sermon; 
sanctimoniousness may be another risk. But let me nevertheless hazard a 
rough diagnosis of the reason why some things tha t  are (in my view) true, 
important ,  and obvious tend to get lost sight of in our discussions. I think 
"lost sight of" is the right phrase: it is a mat te r  of perspective, of directions of 
looking and lines of sight. As at an earlier t ime philosophy was affected by a 
disease of sys tem-bui ld ing-- the  dsprit de syst~rne against which a revulsion 
set in toward the end of the last century--so  it has (I believe) in our own time 
been affected by an excess of what might be called the gsprit de technique. 
I see this as having two chief kinds of manifestation. One has to do with 
details: a tendency both to concentrate on such mat ters  of detail as allow 
of highly formal systematic t rea tment  (which can lead to the neglect of 
impor tant  mat ters  on which sensible even if vague things can be said), 1 and 
(on the other hand), in t reat ing mat ters  of the lat ter  sort, to subject them to 
quasi-technical elaboration beyond what,  in the present state of knowledge, 
they can profitably bear. The second principal manifestation lies in the way 
we treat  the efforts of our forebears and contemporaries: namely, we often 
discuss their work less in the hope of drawing instructive insight from it than 

1Wittgenstein's famous aphorism, "Was sich iiberhaupt sagen ls ls sich klar sagen," 
although inspiring is unfortunately false; for the maxim he bases on it I would propose a 
more modest one: not "Wovon man nicht reden kann, dariiber mug man schweigen," but 
"Wovon man nichts beleuchtendes zu sagen finder, darfiber schweige man lieber!" 
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as a source of doctrines to analyze, contrast, elaborate, or destroy--in any 
case, to serve as material for the further exercise of technique. 

Of course I do not think that such is the deliberate practice of philosophers; 
nor do I intend to devote this talk to the presentation of an indictment. But 
let me say just a little more about the matter in general; for it seems to me 
to present certain instructive ironies. 

In the first place, what I have described can be characterized rather pre- 
cisely as a species of scholasticism--which is about as far as may be imagined 
from what the advocates of a new spirit of philosophy intended to stimu- 
late. In so far as the word "scholasticism," in its application to medieval 
thought, has a pejorative connotation, it refers to a tendency to develop 
sterile technicalities--characterized by ingenuity out of relation to fruitful- 
ness; and to a tradition burdened by a large set of standard counterposed 
doctrines, with stores of arguments and counterarguments. In such a tra- 
dition, philosophical discussion becomes something like a series of games 
of chess, in which moves are largely drawn from a familiar repertoire, with 
occasional strokes of originality--whose effect is to increase the repertoire 
of known plays. This was especially unfortunate in the later middle ages, 
when (in particular in natural philosophy) potentially very fruitful new ideas 
were introduced--which, however, remained as mere curiosities among the 
opinions of the commentators on the physics of Aristotle. 2 

On the other hand, what I am speaking of can also be regarded as itself a 
kind of dsprit de syst~me: "local," one might say, and technical, in contrast 
with the global and "romantic" mentality of the nineteenth-century "sys- 
tems." Among the unfortunate results of such practice is the frustration of 
that hope which so signally characterized our predecessors earlier in this cen- 
tury: the hope for a cumulative and progressive philosophy, to the advance 
of which many workers would contribute in collaboration among contempo- 
raries and development by successors. Of course, in reaction to that hope of 
our predecessors, it is now vigorously contended in some quarters not only 
that  the hope for philosophy was a delusion, but that science itself lacks the 
cumulative and progressive character that had been presumed for it. These 
doctrines, so far as they concern science, seem to me absurd; I shall therefore 
not say very much on the subject--al though I shall say a little, because the 
absurdity of such a view of science is one of the things I consider important 
even if obvious. But if it is conceded that science makes progress, it might 
still be questioned whether philosophy does or can. One of the main theses 
I want to defend, with examples, is that  philosophy indeed has made very 

2Cf. on this subject the very instructive account in Clavelin 1968, ch. 2; especially 
Clavelin's evaluation of the general character and limitations of the natural philosophy of 
the fourteenth-century schools of Oxford and Paris (pp. 121ff.). 
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important progress, but that  this is seriously obscured by what I have called 
problems of perspective. 

Now, philosophical progress that  is not recognized as such by practising 
philosophers is clearly progress of a precarious sort; so--acknowledging that  
my diagnosis may be incorrect--I  hope it will seem at least forgivable, be- 
lieving as I do, that  I should come to you to proclaim that  the sky is not 
falling. 

The first serious platitude I want to present is this: If Wittgenstein's early 
standard of clarity is impossible to meet; if the hopes of the logical empiri- 
cists for a philosophy built up with the rigor and exactness of mathematics 
upon a basis that  is--if  not entirely secure epistemologically--at least en- 
tirely precise in both structure and content, have failed; and if nonetheless 
we do not wish to abandon the at tempt  to achieve such clarity as is possi- 
ble, or wish to abstain from the use of rigorous techniques where they are 
fruitful, then there is an obvious rough distinction that  we ought never to 
lose sight of in philosophical work: namely, what I shall just call the dis- 
tinction between presystematic and systematic considerations. Accordingly, 
I emphasize now that  in speaking of the "structure" of our knowledge in 
physics, I am using the crucial words very broadly: I do not presuppose an 
exact notion of "structure," and in applying the vague presystematic notion 
to "our knowledge in physics," I am construing the word knowledge in a 
wide and ambiguous sense. The reflections I am proposing have as their 
object (a) our knowledge in physics as an achieved result: knowledge as the 
knowledge we have of X; (b) our knowledge as susceptible of justification or 
defense--that is, as involving a structure of "evidence" for its asserted con- 
tents; and (c) knowlege--science--as (to appropriate a word of Isaac Levi's) 
an enterprise: an activity aimed at increasing our knowledge in sense (a), by 
means appropriate to the constraints of (b). But, again, this is a presystem- 
atic description, and I neither promise nor threaten you with even a sketch 
of an actual theory under these three heads. 

With regard to the structure of our achieved knowledge in physics, there 
is a point that  struck me with great force many years ago, in the course of 
my own at tempts to learn something of the subject. To present it to you, it 
will be useful to refer to an early a t tempt  of Carnap's to give a schematic 
view of the structure of physical knowledge; I quote from his retrospective 
description in the Schilpp volume: 

In an article on the task of physics [1923] 3 I imagined the ideal 
system of physics as consisting of three volumes: The first was 
to contain the basic physical laws, represented as a formal axiom 

3The reference is to the article CARNAP 1923. 
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system; the second to contain the phenomenal-physical dictio- 
nary, that is to say, the rules of correspondence between ob- 
servable qualities and physical magnitudes; the third to contain 
descriptions of the physical state of the universe for two arbitrary 
time points. From these descriptions, together with the laws con- 
tained in the first volume, the state of the world for any other 
time-point would be deducible,.., and from this result, with the 
help of the rules of correspondence, the qualities could be de- 
rived which are observable at any position in space and time. 
(CARNAP 1968, p. 15.) 

This is familiar logical-empiricist doctrine of the earliest vintage, and it 
foreshadows much of what continued to be Carnap's view of the matter (of 
course, the implied Laplacian determinism would not have been maintained 
after the development of quantum mechanics); in particular, the crucial 
distinction between the "observational" and the "theoretical" could not be 
more emphatically posed than in this image of the separate volumes. Car- 
nap immediately remarks: "The distinction between the laws represented as 
formal axioms and the correlations to observables was resumed and further 
developed many years later in connection with the theoretical language." 

The issue now familiarly associated with that distinction is that of the 
"theory-dependence" of observations. As a subject for philosophical com- 
mentary, this issue continues to present virtually limitless opportunities; and 
I have felt the temptation to expatiate on the matter here to some degree. 
But I ask myself, how much profit is now to be gained from such discussion? 
The matter has been very widely treated. One may hope to put a point 
more trenchantly than has been done before, perhaps even to find a new 
turn of argument; but hardly, by subtle technical analysis, to effect a real 
transformation of the subject. 

Instead of something subtle, I want to suggest something crude. In Car- 
nap's Platonic myth of the three volumes of physics, consider what the first 
and second volumes might look like. I submit that there is no difficulty at all 
in envisaging the first. Carnap says that it is to contain "the basic physical 
laws, represented as a formal axiom system." I should not wish to insist 
on the notion of logical formality, which seems to me to have been overem- 
phasized by the logical empiricists; so let me just substitute the phrase, "a 
mathematical system." It would be inappropriate to demur that we do not 
possess a mathematical formulation of all "the basic physical laws"~or even 
a unified mathematical formulation of all the basic physical laws we know~ 
because Carnap is explicitly presenting what I have just called a "myth": 
an image of "the ideal system of physics." The first volume is conceived 
simply as having the form of a treatise on theoretical physics. There are 
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many such treatises in existence, some of them very good indeed; and it 
is even possible to learn branches of theoretical physics by reading them. 
This is what I discovered in my student days: I had a strong desire to gain 
a real understanding of the theory of relativity, both special and general, 
and after some frustrating attempts came to try Weyl's great work on the 
subject, Raurn-Zeit-Materie (WEYL 1923)--from which I had earlier been 
deterred by a remark I had read of Leon Chwistek's, to the effect that Weyl's 
book was spoiled by an objectionable philosophy (CHWISTEK 1948, p. 3). 
The book was a triple revelation for me: it put the physical principles of 
the special and general theories of relativity--and also, as a preliminary, 
those of Maxwellian electrodynamics--in what seemed to me an astonish- 
ingly clear light; it opened my eyes to a new perspective on mathematics; 
and, in the process (in view particularly of the fact that the idiosyncrasies 
of Weyl's philosophy in no way obstructed these clarifications), it altered 
my conception of what the philosophy of physics could be. At any rate, this 
is one example among several in my experience of a book that reasonably 
resembles Carnap's ideal first volume (of course restricted to a more modest 
scope), and that succeeds not only as a systematic formulation but even as 
a pedagogical instrument. 

When we turn to Carnap's second volume, the situation is drastically 
different. Carnap says the "phenomenal-physical dictionary" it contains is 
to make it possible to derive, from the data in the third and the laws in 
the first, "the qualities . . .  which are observable at any position in space and 

t ime."  But nothing remotely like this exists, for however restricted a domain 
of physics. I shall return to the point; but for now I should like to consider a 
less demanding alternative to that dictionary: granted that it is possible to 
learn the principles of parts of theoretical physics from books in which those 
principles are presented in a systematic mathematical framework, is it anal- 
ogously possible to learn corresponding parts of ezperirnental physics? My 
own experience has been that it is at the least very much harder. My belief is 
that it is, in practice today (that is, with the help of the existing literature), 
very nearly impossible: I have never found a single book on experimental 
physics comparably instructive with those I have found on physical theory. 
My suspicion is that it may be impossible even in principle. It is hard, but 
possible, to learn theory by self-study from books; it is surely much harder 
to learn experimental techniques without a teacher to help one acquire skills; 
but what I suspect to be impossible is to learn the principles of experiment 
without actual experience with the relevant instruments.  

That may seem banal; but what strikes me is that it stands in odd con- 
trast with our cliches about the theory-dependence of observation. In a 
famous passage Duhem said that, in the case of physics, "it is impossible to 
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leave outside the laboratory door the theory that we wish to test" (DUHEM 
1954, p. 182). Technical assistants, however, can be taught to perform ex- 
periments, and to report the results of those experiments in usable form, 
without teaching them the theories those experiments are designed to test. 
In any case, my point is that, whether or not bringing the theory inside the 
laboratory door is necessary, it is certainly very far from sufficient. 

Now it seems to me that this has a rather interesting consequence, not 
only for the logical empiricist view of the structure of physical knowledge, 
but for post-positivist views as well: in a certain sense, in my opinion (here 
and elsewhere too), the critique of logical empiricism by its opponents has 
fallen off center. My own view is that in the rough sense Carnap was willing 
to adopt from the time he abandoned the more primitive versions of the 
empiricist thesis, there is no great difficulty in defining an "observational" 
vocabulary: an "observation-language" in Carnap's sense is the language in 
which we ordinarily conduct the business of daily life, and the only theory 
it is dependent upon is the theory that there are ordinary objects 4 with 
such properties as we habitually ascribe to them. There are also systems 
of concepts of the sort that constitute the framework of fundamental phys- 
ical theories; so, referring again to my example, I may say that a book like 
Raum-Zeit-Materie demonstrates the existence of theoretical vocabularies 
distinct from the observational. Thus I argue, on the basis of these crude 
and banal considerations, that Carnap was right to make and to emphasize 
this distinction. I also believe that his philosophic career consists to a con- 
siderable degree in a series of genuinely instructive attempts to do better 
justice to the character of the distinction. But I think too that there was 
a fundamental bar to success along any of the routes Carnap essayed. For 
he always assumed that "the observation language" is more restricted than, 
and included in, a total language that includes an observational part and a 
theoretical part, connected by deductive logical relations. And this, I think--I  
do not say by virtue of some basic principle I can identify, but simply, at the 
present time, de facto--is not the case: there is no department of fundamen- 
tal physics in which it is possible, in the strict sense, to deduce observations, 
or observable facts, from data and theory. So I suggest that the principal 
difficulty is not that of how to leave the theory outside the laboratory door, 
but that of how to get the laboratory inside the theory. 

Well, how do we do it? For of course we do put theory and experiment 
in relation to one another; otherwise it would be impossible to test theories, 

4In delivering this address, I interpolated here, with a gesture at the apparatus in question, 
the words: "including such objects as microphones"--anticipating an objection that might 
be raised, and indeed was raised during the discussion period, concerning this point; see 
the Supplementary Note at the end. 
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and impossible to apply them. It would also, I should add, be impossible 
to understand a theory, as anything but a purely mathematical structure-- 
impossible, that is, to understand a theory as ~ theory of physics--if we 
had no systematic way to put the theory into connection with observation 
(or experience). This has been taught us not only by the philosophers we 
usually call empiricists, but also (for instance) by Kant: "Gedanken ohne 
Inhalt sind leer, Anschauungen ohne Begriffe sind blind" (KANT 1781/7, 
p. 51/75). So it might be asked of me--and I did in fact ask of myself--how 
I succeeded in learning any physics from Weyl's book. 

The short and simple answer is that Weyl first of all connects his exposi- 
tion of the new theories he expounds with older physical theories I already 
knew something of, and secondly describes--I shall say "schematically," and 
return to comment on this word later--a few experiments that bear critically 
upon the theories he is developing. But that reply is not very instructive, 
without some indication of (a) how this is done at all, in view of the diffi- 
culties I have claimed lie in the way of drawing logical inferences between 
theoretical statements and observational ones, and (b) how--or to what 
extent--it suffices to establish "physical understanding" (Kantian Inhalt) 
for a theory. To enrich the discussion of all this, I want to turn to a much 
earlier physical theorywnot just to an earlier "paradigm," but to what may 
be called the grand archetype of all that we call physics: namely, the theory 
presented in the first and third books of Newton's Principia. I am going 
to try to say, in brief compass, what this theory (roughly speaking, in our 
own terms, the conjunction of Newtonian mechanics and Newtonian the- 
ory of gravitation) is, as a theory of a mathematical structure discernible 
in the world of phenomena, of observations, of experience--and to do so in 
a way that adheres to the basic conceptual framework introduced by New- 
ton himself; and also to say something about how both what I have just 
called the "conceptual framework," and the theory formulated within it, 
were discovered--or "invented"--by Newton. (Thus I mean to touch upon 
another aspect of the "structure" of physical knowledge: the question of its 
advancement, or knowledge as an enterprise.) 

Newton tells us in the preface to the Principia that he is proposing in it a 
certain "method of philosophy" (that is, of natural philosophy: of physics). 
This method consists in investigating the phenomena of naturemin particu- 
lar, of motions--with a view to determining what Newton refers to both as 
"the forces of nature," and "the natural powers"; and it involves the working 
hypothesis that all natural phenomena result from the action of such forces. 
Newton says: "[A]ll the difficulty of philosophy seems to consist in this, from 
the ph~enomena of motions to investigate the forces of Nature, and then from 
these forces to demonstrate the other ph~enomena." He goes on to say that 
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in the first two books--whose character he describes as "mathematical"-- 
general propositions are developed to facilitate this end, and that in the 
third book, containing the theory of gravity, he gives an example of such 
investigation. And he adds, in an expanded statement both of the program 
he is advocating and of the standing he attributes to it in philosophy: 

I wish we could derive the rest of the phmnomena of Nature by 
the same kind of reasoning from mechanical principles. For I am 
induced by many reasons to suspect that they may all depend 
upon certain forces by which the particles of bodies, by some 
causes hitherto unknown, are either mutually impelled towards 
each other and cohere in regular figures, or are repelled and re- 
cede from each other; which forces being unknown, Philosophers 
have hitherto attempted the search of Nature in vain. But I hope 
the principles here laid down will afford some light either to that, 
or some truer, method of Philosophy. (NEWTON 1729, vol. 1, 
third and fourth pages of the Author's Preface [pages unnum- 
bered].) 

I have quoted this passage so often that to do so may seem a mannerism 
on my part; but it continues to strike me, in its clarity, economy, and what 
I may call its philosophical truth of method, as not only instructive but a 
shining example. 

The passage does however demand some explication. Let me call your 
attention to one phrase that deserves to be puzzled over. Newton says that 
he suspects the phenomena of nature all depend upon "certain forces, by 
which the particles of bodies, by some causes hitherto unknown," are urged 
either towards or away from each other--thus what we call "central forces." 
But is there not one "by" too many here? Should not the forces themselves 
be called the causes? What sense does it make to speak of a force "by which, 
by some cause, bodies are impelled"? Or as an alternative, may it not be 
appropriate to drop the perplexed notion of cause altogether, expecting the 
theory itself (including its empirical interpretation, however such interpreta- 
tion is managed) to give an adequate explication of the systematic, technical 
concept of "force," without any need to cloud positive science by such a 
metaphysical notion as "cause"? 

Hold that question for a while in suspension; I want first to describe how, 
as I see it, Newton actually proceeded in the development of his theory, and 
to give an account of the actual system he propounds. (Of course this must 
be in significant measure speculative; and within the constraints of such a 
paper as this, necessarily sketchy.) 

At the time of the investigation that gave us the Principia, Newton had 
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good reasons for regarding accelerations as of critical significance in the 

interactions of bodies. 5 In fact, nearly two decades earlier Newton had 
already understood this point well enough to motivate a calculation of the 
acceleration of the moon, a derivation from Kepler's so-called third law of 
the implied relation among accelerations (assuming uniform circumferential 
speeds in circular orbits), and a comparison, on the basis of his result, of 

the moon's acceleration with that  of falling bodies on the earth (cf., e.g., 

WESTFALL 1980, pp. 151-152). But in 1684 he did something very much 
more far-reaching. 6 By a purely mathematical ,  kinematical, analysis he 

demonstrated,  in effect, tha t  the so-called three laws of planetary motion of 
Kepler 7 are equivalent to the following pair of propositions: 

1. Each of the bodies in any one system (that  is: planets around the 

sun; satellites around a planet) has, at each instant of its motion, an 
acceleration tha t  is a function of position relative to the central body 
alone: namely, having its direction towards that  central body, and with 

a magni tude that  varies inversely as the square of the distance from 
the central body. (In particular, then, in each such system there is a 

well-defined field of acceleration, and the acceleration is independent 
of any special characteristics of the particular planet or satellite.) 

2. In the course of the motion, each body remains within a bounded 
distance from its center of accelerations, s 

5Notably: Galileo's propositions (by then well-confirmed) about the motion of bodies 
in free and oblique fall, and of projectiles; the more elaborate application of Galilean 
principles to constrained motion under the influence of weight in Huygens's great work 
on the pendulum clock; the successful application of notions derived--once again--from 
Galileo's theory of fall to the phenomena described as "centrifugal force." (For a brief 
account of Huygens's investigations as providing significant background for Newtonian 
mechanics--a background cited by Newton in his scholium to the laws of motion in the 
Principia--see STEIN 1990a, pp. 20-26.) 
6For a fairly detailed analysis of Newton's argument for universal gravitation see STEIN 
1990b. 
Not so called by Newton: he does refer the "harmonic law" for the primary planets to 

Kepler; and he records the law of areas for the primary planets, and the harmonic law for 
the satellites of Jupiter (in the second edition, also for those of Saturn) among the results 
established by astronomical observations (without explicit reference to Kepler). As for 
the law of ellipses, Newton does not admit this at all into his catalogue of results secured 
by observation. 
SBesides compressing the formulation of this result, I have drawn certain inferences that 
Newton does not make explicit, but does make use of (and which can be justified on the 
basis of his theorems). 

The second of the two propositions above is needed to exclude the case of open orbits 
(parabolic or hyperbolic)--to exclude them, that is, not (of course) from occurring in 
nature, but from the scope of Kepler's laws. 
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This result is easy to understand, and it is familiar: "Ah, yes!" the sopho- 
more will say, "the law of gravi tat ion-- /know that; so that's how Newton 
got it!" But of course no: this is not the law of gravitation at all; it is only 
how Newton began to "get it." What he did next (and had already thought 
of in the 1660's) was to apply his result to the moon, on the assumption 
that if the position of the moon were made to vary away from its actual 
orbit, it would continue to "explore," as it were, the same inverse-square 
acceleration-field about the earth that it does in its actual orbital motion; 
and in particular, he calculated what that acceleration would be at the sur- 
face of the earth. The result agreed well with the observed acceleration of 
falling terrestrial bodies (or rather, with the value of that acceleration de- 
rived by Huygens from his careful observation of pendulums). And Newton 
concluded that the acceleration of falling bodies and that of the moon are 
effects of "the very same force" (NEWTON 1729, vol. 2, p. 217 [in the proof 
of Prop. IV, Book III]), or (as he puts it elsewhere) that they are manifes- 
tations of one and the same "active Principle" or "general Law of Nature" 
(NEWTON 1730, p. 401). Since the effect familiar in terrestrial bodies is 
called that of "weight" ~ "gravity" --this "active principle," "natural power," 
or "force of nature" is called by Newton the force of gravity. 

Still, that is only a word: what is the alleged "principle" or "general law of 
nature"? Two things are clear enough from what I have already rehearsed: 
(1) If the line of thought is correct, then the principle in question must 
assign to any body subject to it, under given relevant circumstances, an 
acceleration that is independent of that particular body, and depends only 
upon its geometrical situation (relative to those " relevant circumstances"); 
for this characteristic, inferred for the existing motions from the observed 
phenomena, has already been assumed in arriving at the identification of 
the force on the moon with terrestrial weight. (2) By the same token, it is 
clear that the principle must involve accelerations directed towards certain 
centers, with magnitudes that vary inversely with the square of the distance 
from those centers. 

None of this is especially subtle (although of course the mathematical 
analysis that underlies it was pathbreaking for both its methods and its 
results); and the conclusion that Newton had uncovered a new "principle" 
of the kind so far characterized was greeted at the time with acclaim and 
no serious controversy. But for Newton that was not the last or the most 
crucial step. At this point I want to indulge in some speculation about his 
state of mind. 

As I see it (judging both from the actual sequence of propositions and argu- 
ments in the Principia, and from the evidence of the circumstances surround- 
ing the development of the work), Newton asked himself two interrelated 
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perhaps not clearly distinguished--questions: (a) What can be the cause 
of such an effect as these inverse-square centripetal accelerations, affecting 
both the planets and all earthly bodies? (b) If there is a principle that  
certain bodies are affected by inverse-square accelerations directed towards 
certain other bodies as "centers"; and if among those centers are the sun, 
the earth, Jupiter, and Saturn, and among the bodies affected are all the 
planets (towards the sun), all the satellites (towards their planets), and all 
terrestrial bodies (towards the earth); can one arrive at any conclusion as to 
which bodies in general are centers of such acceleration, and which bodies 
in general are subject to i t - - towards which centers? 

It is at this point, I should argue, that  the new method of philosophy was 
born. Let me contrast Newton with Huygens. Huygens read the Principia, 
admired it enormously, but thought that  just here Newton went wrong. 
Huygens himself had a ready answer to the questions I have just put. To 
the f irs t--what  can be the cause?--his answer was that  "the philosophy of 
the present day" (which is to say, "modern physics") teaches us that  the 
causes of all natural effects are to be sought in the impinging of matter  
upon matter  (cf., e.g., HUYGENS 1690, pp. 2-3); and so a motion of some 
kind of ambient medium must be conceived that  can give rise to a pressing 
of bodies towards a center. He had already proposed a theory of weight 
based on such a hypothesis; and now concluded from Newton's results that  
one must investigate further just what kind of motion of the medium could 
produce an inverse-square variation of the force. To the second question, his 
answer was much simpler: there is, he said, absolutely no evidence that  there 
are any other centers of such acceleration than the ones already identified-- 
except that  one will naturally generalize, and say that  every star and every 
planet is a center of the sort. Thus it is precisely about the stars and the 
planets that  one should assume the existence of ambient matter  in such a 
state as to produce this effect. 

What  Newton did reflected, in contrast, what might be called a respect- 
ful skepticism about the demands of "the philosophy of the present day." 
He had devoted most of the second Book of the Principia to an analysis 
of the behavior of fluid media and of bodies moving through fluid media; 
and had concluded that  there are insuperable obstacles to any a t tempt  to 
reconcile the observed motions of planets, satellites, and comets, with the 
existence of any such medium of appreciable density occupying the inter- 
planetary spaces. He did not say that  he quite despaired of a "mechan- 
ical explanation" --i.e. , one in terms of the impinging of bodies upon one 
another--of  the astronomical phenomena; but he did say that  one ought not 
to build positive conclusions in physics on the demand that  such explana- 
tions be forthcoming. So he reflected upon the situation without any regard 
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for the mechanical "hypotheses." On the other hand, he allowed himself 
an extremely bold--one might almost say, a reckless--use of a principle he 
had extracted from results of work in mechanics by several investigators, 
including Huygens and himself. This is the principle of the conservation of 
momentum, discovered by Huygens as a true substitute for the false princi- 
ple of conservation enunciated by Descartes, but never placed by Huygens 
in a central theoretical position; a principle to which Newton, emphasizing 
as he did acceleration as a fundamental parameter of natural processes, gave 
the form (actually somewhat more restrictive) of the third law of motion. In 
particular, Newton argued thus: If body A is subject to (here using my own 
term rather than Newton's) an "acceleration-field" directed towards body 
B, of magnitude dependent only upon position, then what Newton calls 
the "motive measure" of the force on A is the product of its mass by this 
acceleration--thus the "motive force" (at a given position) is proportional 
to the mass of the body acted upon. According to the third law of motion, 
there must be an equal and opposite motive force on something--in the or- 
dinary formulation, which is Newton's own, on whatever exerts that force 
on A. What does? This Newton explicitly, repeatedly, emphatically says he 
does not claim to know. And yet he takes the step--this is what I have 
"almost" called reckless--of asserting that there is an equal and opposite 
force exerted upon the "central" body B. 

This postulate, together with some simple qualitative considerations, led 
Newton inescapably, in a very few steps, to the law of universal gravitation: 
that is, to the conclusion that the answer to question (b) above is that 
all bodies are subject to the "principle" of gravitation and that all bodies 
are centers of gravitational acceleration-fields. (That the "motive measure" 
of the force is directly proportional to the mass of the body acted upon is 
equivalent to the proposition that the "accelerative measure" is independent 
of that body; that the motive force is also proportional to the mass of the 
gravitational center follows from the third law of motion--so that, as Newton 
emphasizes, there ceases to be any difference in status between the two 
bodies concerned: one is dealing with an interaction, whose participants 
enter it symmetrically. That the force is inversely proportional to the square 
of the distance is a conclusion already reached; and the law is formulated 
in a way that is complete and perfectly general [cf. the fuller discussion in 
STEIN 1990b].) 

This is not to say that the gravitational principle is established by the ar- 
gument I have outlined; only that it is found--"invented," as the seventeenth 
century would say--by that argument. More is found as well: namely, the 
terms of the Newtonian program; it remains to put that into a systematic 
framework. 
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But I have not yet given Newton's answer to question (a): what can be the 
cause of such an effect as this--a  universal attraction between all particles of 
matter? Huygens, believing in the necessity of "mechanical" causes, thought 
it clear that nothing could cause such an effect; and, seeing no evidence for 
universal gravitation, rejected it on those grounds. Newton's answer is rather 
subtle. He says: "The cause of gravity is what I do not pretend to know. ''9 
But he is certainly interested in the question; he adds that he wants more 
time to consider it, and of course he did eventually publish a speculation 
about it (NEWTON 1730, pp. 350ff. [Book 3, Query 21]). He amplifies his 
view most significantly near the end of the long final Query in the third 
Book of the Opticks, in his fullest discussion of his conception of a force of 
nature. He had been attacked for reintroducing, in his theory of gravity, the 
much-deplored "occult qualities" of the scholastics, by assuming an "occult" 
cause of the universal attraction. His answer is that he regards his own 
"active Principles" or forces "not as occult Qualities,. . .  but as general Laws 
of N a t u r e . . .  ; their Truth appearing to us by Ph~enomena, though their 
Causes be not yet discover'd"; and concludes: 

To tell us that every Species of Things is endow'd with an occult 
specifick Quality by which it acts and produces manifest Effects, 
is to tell us nothing: But to derive two or three general Principles 
of Motion from Phenomena, and afterwards to tell us how the 
Properties and Actions of all corporeal Things follow from those 
manifest Principles, would be a very great step in Philosophy, 
though the Causes of those Principles were not yet discover'd: 
And therefore I scruple not to propose the Principles of Motion 
above-mention'd, they being of very general Extent, and leave 
their Causes to be found out. (NEWTON 1730, pp. 401-402.) 

There is evidence--which I find convincing--that Newton had in fact aban- 
doned all belief in the traditional "mechanical" causation as ultimate. If I am 
right, the correct reading of his words here is this: When we have found such 
principles of motion as Newton's program envisages, and as he has given an 
example of in the law of gravitation, we have (ipso facto) discovered some- 
thing about what one calls "causation." In any given case, such a principle 
may have underlying deeper (e.g., "mechanical") causes; and this is a proper 
subject of inquiry. Then again, it may not; for the ultimate cause (in New- 
ton's view)--"the very first Cause, which certainly is not mechanical"--is 
the direct legislative action of God (whose laws are self-executing): which 
we may immediately translate, simply, as "the ultimate constitution of na- 
ture." And Newton's words in the preface, referring to his hope to "afford 

9Letter to Bentley, 17 January 1692(o.s.)/3(n.s.); see TURNBULL 1961, p. 240. 
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some light either to that, or some truer, method of philosophy," bear two 
interrelated meanings: first, he hopes that the principles laid down in the 
Principia will facilitate the investigation of nature, either by the means he 
has suggested or by some modification in which those principles are still of 
use; second, he hopes that those principles help to explicate the constitution 
of nature, whether or not they prove adequate to its ultimate constitution. 

As to the principles themselves, the mathematical structure they involve 
is reasonably clear (although there are certain important ambiguities, as I 
shall explain in a moment). Newton found it impossible to codify dynam- 
ical theory without presupposing the structures he calls "absolute time" 
and "absolute space." So we have--in our own te rms~the  four-dimensional 
manifold of space-time, given with the product structure: S x T, where S is 
a three-dimensional Euclidean space and T a one-dimensional affine space. 
We also need to posit a further "space," which I shall call B, the set of "bod- 
ily points"; this must have the structure of a measure space--the measure, 
following Newton, we call mass. The postulate that all the phenomena of 
nature depend upon configurations and motions of bodies takes the form of 
the assumption that the entire history of nature is represented by a mapping 
from the Cartesian product B x T into S: the kinematical history. There 
is a problem about the finer specification of the space B (for example, to 
demand that B have the structure of a differentiable manifold is appropri- 
ate to some classical contexts, but highly inappropriate to others). Newton 
himself considered it "probable," he tells us, that matter consists ultimately 
of rigid indivisible particles; this implies that B is a disconnected topological 
space, each of whose connected components has the structure of a compact 
three-dimensional metrically Euclidean manifold with boundary, and that 
the kinematical mapping is, for each instant t of time, isometric. 

A related subtlety concerns the further requirements to be placed on the 
kinematical map. Newton would not suppose this map to be everywhere 
smooth with respect to the time as argument--for he would expect occa- 
sional (although, he tells us, very infrequent) impacts of the rigid funda- 
mental particles. At any rate, it is immediate that wherever this mapping 
is smooth, it determines (for each bodily point at each such instant of time) 
the associated velocity and acceleration vectors; and--subject to suitable 
conditions on the structure of B and of the kinematical mapping as a func- 
tion of its body-point as well as its time argument--it  is also clear that one 
will be able to define a motive force (or force-density, or force-measure: most 
generally, a "force-distribution") over such points of B at such times. 

But that concept of motive force, which differs from a purely kinematic 
concept only in that it involves the mass as a coefficient, is not Newton's 
central notion of force; the framework so far described does not define a 
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Newtonian mechanical system. (Indeed, the third law of motion has made 
no appearance yet.) To complete the account requires a new concept, which 
carries its own--"extra-systematic" if not presystematic--marginal gloss: 
namely, the concept of what Newton calls a "force of nature." His own way 
of putting it (only a little paraphrased) is this: the motive measure of the 
force on a body a t  a given time is the resultant of a system of what he calls 
"impressed forces" (the set may be infinite--even continuous, so that the 
"resultant" becomes an integral); each of these component impressed forces 
is the ezercise upon the body in question of a "force of nature" (this is the 
connotation of his term "impressed force": the "impression" upon a body 
of a "natural power"). But the forces of nature are to be known through 
general laws of nature (as Newton says, an example of this is given in the 
third Book of the Principia--the first example of the kind ever discovered, 
the "invention" and "proof" of which, I am suggesting, is what motivated 
Newton to elaborate this conceptual framework itself). And these laws-- 
the search for them is the proposed "method of philosophy"--are to take 
the form of laws of interaction between pairs of bodies, in which each body 
enters symmetrically in the sense of the third law. 

So the specification of a Newtonian system requires the specification of the 
structure of the space B of bodily points and the specification of a set of laws 
of interaction of the indicated type; the motive force-distribution associated 
at any instant with the actual motion is to be the vector-sum of all the 
impressed force-distributions at that instant. Newton hopes that a small set 
of laws of interaction will suffice for an account of all of nature: "To derive 
two or three general Principles of Motion from Phmnomena, and afterwards 
to tell us how the Properties and Actions of all corporeal Things follow from 
those manifest Principles, would be a very great step in Philosophy." 

Now, something a little odd has happened in my own argument. We were 
considering the question of how to get the laboratory (or observatory)--the 
phenomena--into the theory. My discussion of Newton has largely been a 
discussion of how Newton got from phenomena to theory. I have described 
the theoretical framework--corresponding, as I put it, to Carnap's "first 
volume"--and have provided an extra-systematic commentary on the devel- 
opment, the motivation, and thus in a certain sense the intended "meaning," 
of this abstract theoretical structure (which itself is constituted by certain 
spaces and certain mappings or functions). The dialectic, one might say, has 
moved from phenomena to pure forms; and this seems, as I have said, to be 
opposite to the direction we were concerned with. 

A closely related point is that we left Newton's theory of gravitation in a 
peculiar condition. In describing Newton's own path to that theory, I said 
that he took a very questionable turn, and that the argument by which he 
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found the law of universal gravitation is not an argument that genuinely 
establishes the law--or establishes that there is any principle at all of uni- 
versal attraction. (I hope it is clear that Huygens's objections were very 
sane and reasonable.) How, then, does--or did--Newton's theory really get 
"established"? 

Again I shall have nothing startlingly new to tell you about this. Let me 
first confront the radical objection that the theory did not get established 
that no theory ever gets established. You will not expect me to settle this 
issue; and I do not want to quarrel over mere words: in this case, what "estab- 
lished" should mean. I want to take for granted that we do not now believe 
Newton's theory of gravitation to be a correct general theory; that we do 
now believe that there is a "universal principle" of gravitation (and, indeed, 
we place it among the "fundamental forces"); and that we also believe--with 
enormous confidence--that Newton's theory is a very accurate approxima- 
tion for a very wide range of applications, in which indeed it is our only 
usable theory: applications that include planetary astronomy (the recent 
solar eclipse occurred right on the dot) and such space-travel as has so far 
been accomplished. (By the way, having studied Newton, I was very much 
struck at the time of the first moon-landing in 1969 that after nearly three 
centuries Newton's experiment of bringing, not indeed the moon itself, but 
at least a piece of the moon, down to the earth's surface and weighing it was 
to be performed. Of course the whole space program relies crucially upon 
the law of gravitation in the management of space vehicles. And--despite, 
let me say, the views either of Popper or of anti-cumulativists~no one then 
thought that gravitational theory was being put to the test: no one at the 
time had any doubt at all that the law of gravitation was going to work 
properly; all anxiety concerned either the adequacy of the engineering or 
the firmness of the moon's surface.) 

Next a point bearing on the question of the theory and the laboratory: 
it is hardly possible to maintain that the theory of universal gravitation 
was established by testing it in the laboratory. Cavendish's experiment, for 
example, can certainly not be regarded as having established the theory. To 
be sure, it was impressive confirmation of Newton's theory when Cavendish 
was able to demonstrate the existence of an otherwise unsuspected force 
between two bodies; but that the force in question was gravitational in 
nature--in origin--in other words, was "caused" by the same principle that 
is responsible for weight--could not conceivably have been even surmised 
from the experiment in the absence of the theory (here indeed the theory 
could not be "left outside the laboratory door"!). (One should add that 
the experiment also made a capital contribution to the content of theory by 
allowing a determination of the gravitational constant--on the assumption, 
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of course, that the Newtonian theory was correct and that the Cavendish 
force was gravitational.) 

Obviously, then, the really central evidence must be astronomical; and 
this, I suppose, as I have said, is no great surprise. It would be of some in- 
terest to consider just how astronomical evidence--which, after all, consists 
in observations of rather special, mostly rather large, bodies--could possi- 

bly support such an astonishing proposition as Newton's (we forget, I think, 
just how extravagant a proposition it is, because we have been taught from 

childhood that it is sowit becomes even a kind of mark of our enlightenment 
to believe it). But I have to paint here with a broad brush, so I set this ques- 
tion aside, and just consider how any evidence at all gets connected with the 
abstract mathematical framework I have sketched--once again apologizing 
for the obviousness of the answer I shall give. 

Let me underscore the point that there can be no thought of deducing 
observations within that framework. To do so in the strict sense, one would 
need to have a physical theory of the actual observer, and to incorporate it 
into the Newtonian framework. I certainly do not want to say that there is 
a reason "in principle" why such a thing can never be done, for any pos- 
sible (future) physical framework; but everyone knows that Newton could 
not do it, and that we--in the best versions of our own physics--cannot do 
it. Even waiving the theory of the observer, it is clear that all astronom- 
ical observations are intermediated by light; therefore, to deduce anything 
like observations, one would have to include the theory of light within the 
framework. Moreover, the light traverses the earth's atmosphere, and is 
usually received through a telescope; so we need the theory of atmospheric 
refraction and the theory of the instrument also--we are in the vicinity of 
the problem of the systematic treatise on experimental physics. In actual 
fact, the experimental physics is treated separately as a discipline in its own 
right, that is partly an art: an affair of both knowledge and manipulative 
and perceptual skill. But the possibility of connecting this art with the the- 
ory is closely connected with a certain possibility within the mathematical 

structure that is the theoretical framework: using a word I have introduced 

earlier, the possibility of representing experiments, and of representing the 
observer, "schematically." Kant used the word "schematism"--in a way I 

confess to finding rather obscure--for a process that intermediates between 

concepts of the highest abstractness (his "pure concepts of the understand- 
ing") and sensible contents; my use of it here is vaguely similar (but I hope 
not obscure): where Kant speaks of "schematizing the category to the man- 
ifold of intuition," I want to speak (as it were conversely) of "schematizing 
the observer within the theory"; but the intention is analogous: to secure 

empirical content--content within experience--for an abstract structure. 
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Fancy talk, but a simple idea that will be found perfectly familiar. One 
represents the observer within the spatio-temporal framework by a world- 
line (or a system of world-lines). Putting in--for the gravitational theory of 
the solar sys tem~the  world-lines of the planets and satellites, as calculated 
from suitable initial data, one can then determine at each instant all the 
relevant angles between lines drawn from the observer to the bodies of the 
system (including, if the theory is properly handled, with the earth repre- 
sented as an extended body and its rotation treated systematically, lines 
from the observer to terrestrial landmarks). As a first approximation, such 
lines are treated as lines of sight. With more sophistication on the obser- 
vational side, the results are turned over to the experts in observational 
astronomy, who will take such account as they are able to of atmospheric re- 
fraction, of aberration of starlight, and so on. But so far as the fundamental 
theory is concerned~or rather, so far as mathematically defined structures 
and rigorous arguments are demanded~the "schematic" representation of 
observers, experiments, and observations, is, I believe, as far as we know 
how to go. 

Let me suggest a few further reflections upon and consequences of all this. 

First, in the account I have given, the distinction between what is purely 
mathematical and what is not has certainly played a central role~closely 
related to the distinction I have argued we really do need between observa- 
tional and theoretical "languages." That there is indeed such a distinction, 
and that it is of fundamental importance, is one of those things that seem 
to me quite obvious. But it is often denied. It is denied, for instance, by 
Quine, who (in contrast to Carnap) sees here a "continuum" within which 
no sharp boundaries can be drawn. This, I submit, is simply wrong. New- 
tonian mechanics, in its application to the empirical world, is a theory that 
gives very good results in a very wide domain, but that can no longer be 
defended as correct without restriction both as to domain and as to degree of 
precision. On the other hand, Newtonian "rational" mechanics, as a purely 
mathematical theory, stands on an unshaken footing and continues to offer 
a field for useful and deep rigorous investigations. That is the distinctive 
nature of mathematics, qua mathematics: it is, as such, not about the given, 
natural world. 

Second, important modifications both of Newtonian space-time theory and 
of Newtonian dynamics are possible within classical physics: It is well known 
that the product structure of space-time as S • T is demonstrably inappro- 
priate to the theory-- that  it can and should be replaced by the structure 
of a four-dimensional affine manifold, with an affine "time-projection" and 
a three-dimensional Euclidean structure on the associated space of vectors 
with time-projection zero. (Of course one then has to change the description 
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of the kinematical mapping: it goes from B x T into space-time, commut- 
ing with the projection onto T.) Within that structure, velocity vectors are 
no longer definable; but acceleration vectors are, and therefore also motive 
forces~the reformulation of the theory is unambiguously determined, and 
its correctness is demonstrable from the original formulation (with the help 
of the principle of Galilean relativity--proved by Newton as a theorem). 

As to the other modification, it is even more familiar: A whole series 
of classical investigators, including Lagrange, Gauss, Hamilton, and Jacobi, 
found alternative ways of formulating the dynamical law of a Newtonian 
system. These formulations are not all equivalent; rather, they all general- 
ize a certain common domain, and generalize it in different directions. And 
the generalizations have very important physical significance; for example, 
the Maxwellian electromagnetic field is not representable as a Newtonian 
system, but is representable as a Lagrangian or Hamiltonian one. But of 
course, Lagrange and Hamilton were consciously building upon and trans- 
forming Newton's principles. The result is a transformation of the concept 
of a "natural power" or "force of nature": such a force is now to be given, 
not by a law of motive force characterizing action-reaction pairs, but (for 
instance) by a Hamiltonian function. This surely deserves some recognition 
as a remarkable fulfillment of Newton's hope: that his principles might "af- 
ford some light, either to [his own], or some truer, method of philosophy." 
The fulfillment becomes all the more remarkable when one considers that, 
although Newtonian forces have little place in our own most fundamental 
physics, Hamiltonian and Lagrangian functions~or operators--are at the 
heart of those theories. 

This brings me to another general point. It has been my experience that 
many philosophers balk at what they may think of--perhaps quite j u s t l y~  
as the rather "Platonic" notion of "general principles~or laws--of motion" 
as having in some sense a kind of "reality" and even "efficacy": "What can 
it mean," I have been asked in connection with Newton, to t a lk~as  Newton 
quite explicitly does--of a 'force of nature' as a law of nature?" It is surely 
important to note that that is exactly the way physicists do talk today: when 
one says that, at the fundamental level, there are "four forces" (or fewer than 
four, in the light of the unifications that have been made or proposed), that 
has nothing to do with Newtonian "impressed motive forces," but it has 
everything to do with laws of nature, forms of interaction, Hamiltonians. It 
might be rejoined that this is an interesting sociological fact about physicists, 
but that it cuts no philosophical ice. I said in another context that I do not 
claim to give reasons of philosophic principle, but to call attention to what 
seem to me obvious but important facts  that deserve philosophers' attention; 
and this is another one. It is not just a question of how physicists talk: it 
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is a question of what, de facto, in the history of physics to date, has tended 
most to persist as stable (and, it appears, reliable) in what we think we 
know about the world. One of the things that have persisted is the more 
or less far-reaching and more or less precise (but, in application, always 
approximate) correctness of theories as applied to domains of phenomena; 
another is the "forms"--more precisely, certain aspects of the forms--that  
are characterized by what Carnap called "frameworks." 

In fact, if we ask, say, of the physics of the end of the seventeenth century, 
what of all it told us about the world we can still regard as "true" or as having 
proved itself "real," the answer is--I use the word yet again--striking: Not 
Newton's hard particles, not Leibniz's material continuum, not Huygens's 
ether--indeed, hardly anything to which most philosophers would accord 
"ontological" status. (In particular, of course, not "space." If one reflects 
on what quantum field theory has told us about the characteristics of the 
only thing in the physical world that can be regarded as "empty" or "pure" 
space, its difference from anything earlier centuries conceived is startling 
indeed.) And of fundamental processes: no impacts of atoms, no pressures 
of continuous media, no immediate and instantaneous actions at a distance-- 
indeed, no instants at all! And yet, although Huygens's ether has gone, the 
"form" of the propagation of light to which he contributed a first crude sketch 
is still discernible in the theory of electromagnetic waves, and through that 
theory--again transformed--in the quantum theory of electrodynamic and 
optical processes. One could go on in this vein; I hope I am right in thinking 
that the point really is obvious, and only needs to have attention called to 
it; I must come to an end, and there are still some things to say. 

First, I want to mention the issue of the "incommensurability" of theories. 
That is a metaphorical term; in an appropriate interpretation, the doctrine 
may be true. But in any case, one does compare theories--as, of course, 
the analysis first developed by the Greek geometers allows one to compare 
magnitudes that are (technically) called "incommensurable"; and in so far 
as forms discernibly persist through the transformation of our theories, such 
comparisons form a most vital part of science. If we make the assumption 
that the human race will survive for another millennium, and in circum- 
stances conducive to the advance of knowledge, then I should predict with 
great confidence--not that quarks and leptons will continue to be regarded 
as the most basic particles (I don't predict the contrary--I am perfectly 
agnostic); not that quantum field theory, or general relativity, will retain 
its fundamental role (on this point, I would hope very much for a radical 
advance)--but that the forms of these theories will be clearly discernible in, 
clearly related to, the structures of whatever theories supersede them. 

The second point has to do with a special bearing of the crude account I 
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have given upon the "structure" of our knowledge in the sense of epistemol- 
ogy: it is the simple remark that our understanding of our own relation to the 
world is mediated by our ability to place ourselves, however "schematically," 
within our conception of the course of nature. And it is a very interesting ex- 
ercise, within the successive frameworks of Newtonian space-time (without 
absolute space--so that "geometrical" relations hold only among simulta- 
neons events, and space is as it were constantly evanescent) and special 
relativity (in which, by contrast there is no such thing at all as simultane- 
ity), to consider the epistemology of "geometrical knowledge." It is possible 
not only to see interesting parallels, as well as contrasts, between the two 
accounts, but to draw rather instructive conclusions about the way in which 
our "intuitions" of space and time relate to--and presumably result from 
our experience of the "real" physical structures. (For a discussion of this 
point, see STEIN 1991, pp. 155-162.) 

One would like to say a similar thing about quantum mechanics--par- 
ticularly in respect of what it tells us about the structure of causation, and 
our "intuitions" of causation. But this we cannot do. In this theory, we 
just do not know how to "schematize" the observer and the observation. 
This is a quick way to characterize what I regard as still the basic unsolved 
philosophical problem of "interpreting" the theory: on a previous occasion, I 
have expressed the view that "the difficulties [quantum mechanics] presents 
arise from the fact that the mode in which this theory 'represents' phenomena 
is a radically novel one" (STEIN 1989, p. 59). In other words, here the 
difficulty of getting the laboratory inside the door of the theory is of a 
new--and I think still not understood--order. 

And on that unresolved dissonance I close. 

SUPPLEMENTARY NOTE: 

Two questions raised during the discussion at the Congress deserve to be 
noted. 

One of these concerned the point made in the paper concerning the place 
of "observation" within a theory: it was asked whether, instead of the notion 
there sketched of the "schematized observer," one could not as well--and in 
closer accord with traditional (e.g., logical empiricist) terminology--speak 
of an "idealized" theory of the observer. 

To this suggestion I have no serious objection; and I hope it is apparent 
in the paper itself that I acknowledge a great debt to the logical empiricists, 
and especially to Carnap, for helping me to clarify my own thoughts about 
physics. But it has to be understood that the "idealization" involved is an 
idealized theory of the observer in, so to speak, a Pickwickian sense. For in- 
stance, in the astronomical example given above, the observer is represented 
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("ideally" or "schematically") merely by a space-time locus. The observa- 
tional astronomer will infer something about the manipulations to make of 
the telescope in order to point it so as to receive light from a particular 
star or planet--but this inference is not one that can be made within the 
theory that incorporates the "idealized observer," because the manipula- 
tions in question are not even describable in the language of that theory--if 
they were, a good part of the "idealization" would have been removed ("de- 
idealized"). Moreover, it should be noted that to be able to infer, even 
"ideally," that under certain circumstances an observation will be made, one 
would have to include in the ideal theory terms that distinguish conscious 
from unconscious states of the observer, open from closed eyes, directions 
of looking, etc. (and noted, in particular, that "ceteris paribus" is not an 
expression that lends itself to deployment in the context of mathematical 
argumentation!). Thus unlike, say, the "theory of ideal gases," which does 
include notions such as temperature, volume, and pressure, central to the 
study of actual gases, the "theory of idealized observers" would perforce omit 
those notions that are crucial to the characterization of actual observations. 
Once this point is well understood, the choice of the word "schematized" or 
"idealized" is immaterial. 

The second question concerned the conjunction of my remark that "techni- 
cal assistants. . ,  can be taught to perform experiments. . ,  without teaching 
them the theories those experiments are designed to test," and the closely 
related claim, expressed just afterwards, that "an 'observation-language' in 
Carnap's sense is the language in which we ordinarily conduct the business 
of daily life, [etc.]." It is of course true that technical assistants--and the 
expert experimenters they assist--need to be masters of a technical disci- 
pline, which will include a vocabulary unknown to most of us in "ordinary 
life." In referring at that point of my talk to the microphone as an example 
of such an "ordinary object" (with "ordinary properties" that we habitu- 
ally ascribe to them), I had just this consideration in mind. For what the 
experimenter needs to be expert in is how to recognize and use the rele- 
vant instruments; and these--with their properties (including what might 
be called quirks: their idiosyncrasies and the pitfalls involved in using them, 
the "other things" that are not always "equal" )--become familiar (and even 
"ordinary") in the course of training and use. The microphone is an example 
of an instrument that has become familiar to most people in the course of 
the past century or so, although no such thing existed a century and a half 
ago. But the training and familiarization required for expertness in experi- 
mental physics today typically does not require a deep study of fundamental 
physical theories; and, conversely, most theorists today would be lost in a 
laboratory. (Note that to say this is not to take a stand on the question 
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of the degree of specialization, in experiment or theory, that  is desirable in 
the education of a physicist. But the state of affairs that  actually obtains 

clearly has implications for the structure of the knowledge we actually have 

in physics.) 
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1. A q u e s t i o n  o f  m e t a b i o l o g y  

From time to time, we run into discussions of a specific kind and into 
questions and answers such as the following: 

- In a discussion on Nessie: Can you guarantee that  there is no 
dinosaur left in Loch Ness? Whereupon the answer might well be: 
Well, to guarantee the non-existence of an animal transcends the 
limits of biology. 

- In a discussion on Descartes' machine theory of organisms: Do we 
really know that  animals feel pain? Does such a claim not go across 
the limits of biology (or of natural science, of empirical science, of 
science in general)? 

- In discussions on man's place in nature: The evolutionary ladder, 
the phylogenetic tree, the traditional "scala naturae", or simple 
complexity considerations, show that man is superior to all other 
living systems (and all the more to inanimate systems). Do we, 
in making such evaluative statements, again trespass the limits of 
biology? 

- As a final example, take the question: Are we obliged to preserve 
on earth as many species as possible? Can such an obligatory claim 
be justified by biology, or does that  go beyond the limits of biology? 

In all these cases we seem to run into "the limits of biology", into areas 
where biologists are no longer competent. What  are these limits? 

Questions such as these, though posed by biologists, are not genuinely 
biological questions; at least, they are not answered by way of biological 
methods, let's say, by outdoor observations or by experiments in a biosci- 
entific laboratory. Questions as to the character of a discipline are rather 
part of metascience, here of philosophy of science. Hence our considera- 
tions will be less biological than metabiological. 



660 

2 .  W h e r e  t h e  l i m i t s  d o n ' t  l i e  

In trying to specify where the limits of biology do in fact lie, it might be 
worthwhile first to point out where they do not lie. 

The limits of biology do not lie where, for some time, they have been 
supposed to lie: biology is not imperfect physics. Philosophy of science has 
started mainly from physics as the paradigmatic science and was tempted 
to extend the standards developed there to all sciences. From this per- 
spective, biology could indeed appear as a rather dubious discipline: 

- The set of its objects and, therefore, the area of applications is 
markedly smaller than that of physics and of physical laws. 

- Biological laws are much more difficult to find than physical ones. 

- Most biological laws seem to allow for exceptions, they are not 
universally valid even in the field of competence of biology. 

- Explanations are less compelling, and many evolutionary facts 
don't admit of any explanation at all. 

- Predictions are difficult, in some cases even completely impossible. 

- Therefore biological theories can be confirmed, but hardly refuted. 

- According to Popper's criterion of falsifiability a good empirical 
theory must be prone to being refuted by experience biology, 
and first of all evolutionary biology, would offer nothing but at 
metaphysical research programme. 

- Biological theories are less mathematized and less axiomated than 
physical ones. 

If this characterization were correct and taken seriously, the limits of 
biology would be determined by the degree to which it meets the standards 
of physics. Seen from this perspective, biology would appear as a rather 
questionable science. This perspective, however, is not the only possible 
one, and, above all, not the only correct one. What could prevent us from 
turning the table and looking at physics as "lifeless", as "dry", as poor 
in details, or as awfully abstract? If measured by the numerosity of its 
object classes, biology is even superior to physics. 

By this symmetrization, I don't propose the opposite evaluation, but 
rather caution against such ratings in general. Only then shall we be able 
to see and to value the methodological autonomy of biology. And only 
then will we be able to properly assess the limits of biology. 
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3. D i f fe ren t  k inds  of l imi ts  

A discipline may be limited in several ways: There might be 

- theoretical-cognitive limits 

- limits of curiosity 

- practical-technical limits 

- ethical-moral limits 

("What can we know?"), 

("What do we want to know?"), 

("What can we do?"), 

("What are we allowed to do?"). 

These limits are not independent of each other. We may distinguish 
them though not separate them. What  we produce, change or prevent, 
very much depends on our knowledge; and technical progess is, vice versa, 
a pace-maker for scientific progress. And very often moral limits are 
recognized and felt only if knowledge and power have reached a certain 
threshold. This entanglement notwithstanding, we shall try to treat our 
four questions separately. 

We might also ask to what extent the limits of biology are, at the same 
time, limits of physics, of natural science, of empirical science, of science 
in general, or of any rational enterprise. It would turn out that  most 
limits of biology apply to, are even characteristic of, all science. But we 
won't dig too deeply into that problem. 

4. Does  b io logy offer c e r t a i n  k n o w l e d g e ?  

We might as well extend this question to the more general one whether 
there is certain knowledge at all. Since we shall deny that  question, we 
need not consider biology separately. 

For centuries, people were convinced that  certain knowledge existed. 
Many pathways seemed to lead there: holy scriptures or religous dogmas, 
divine revelation or Platonic vision, evident axioms or valid inferences, 
innate ideas or synthetic a priori judgements, experience and reason, ob- 
servation and experiment, induction or deduction. 

At all times, however, there were also sceptics questioning the possibil- 
ity of certain knowledge. More and more roads to knowledge were found 
uncertain, subjective, or impassable. Nowadays, the appeal to superhu- 
man authorities appears irrational and dogmatic; intuition and evidence 
cannot be guaranteed to be intersubjective; and sensory illusions and mass 
psychoses would depreciate our sensory evidence even if it were intersub- 
jective. Logic and mathematics are structural sciences that  owe their 
certainty as far as they exhibit such certainty at a l l -  precisely to the 
fact that they don't even try to describe the world. Success and corroba- 
tion don't warrant truth, since occasionally even error may lead to success. 
Inductive inferences are not necessarily truth-preserving; supposed laws 
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of nature often prove to be false; and synthetic a priori judgements don't 
seem to exist. 

The arguments for or against the existence, or at least the possibility, 
of unshakable knowledge cannot be presented here. 2500 years of episte- 
mological critique, however, seem to teach one thing: certain knowledge 
about the world doesn't exist. Whenever we try to find definite proofs, 
ultimate foundations or final justifications, we find ourselves caught in the 
notorious Munchausen trilemma, this triple impasse of logical circle, infi- 
nite regress and dogmatic break-off. Knowledge in the traditional sense, 
certain knowledge about the world, ultimate foundations are utopian 
ideas; all approaches to realize them have failed with sobering regular- 
ity. 

Biology can't help that. As all science is fallible, preliminary, tentative, 
or hypothetical, biological knowledge is likewise. From this insight we 
should not, however, conclude that scientific knowledge, being uncertain, 
was just speculative and therefore worthless. Between certainty and mere 
speculation there is a wide spectrum. Philosophy of science tries hard to 
specify criteria by which theories should be judged and by which rational 
theory choice is rendered possible. Here necessary and desirable criteria 
may be distinguished. Necessary features of a good theory in empirical 
science are non-circularity, consistence, explanatory power, testability and 
test success; desirable are, in addition, simplicity, applicability and oth- 
ers. Though all these criteria are not sufficient to secure the certainty of 
scientific hypotheses once dreamed of, they can nevertheless serve to mark 
out scientific hypotheses as admissable and successful, even as reliable or 
trustworthy. 

5. Wil l  b iology ever  be  c o m p l e t e d ?  

Certainty and completeness are different properties. Even if biology does 
not yield certain knowledge, it could still solve all its problems by prelim- 
inary answers. But even that will never be the case. 

Objects of biology are not only plants and animals living now, but also 
all their phylogenetic forerunners. Therefore, a complete biology should 
embrace not only descriptions of what there is, but a reconstruction of 
phylogeny as well. How and why did those highly complex organisms 
which we find now and which we represent ourselves originate? How did 
every species, every organ, every tissue, every function, in short every 
organismic trait come into being? And why? All that  would have to be 
asked and answered by a complete biology. 

But there are two million different living species, and even they rep- 
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resent, according to serious estimations, only one percent of all species 
which ever existed on earth. To describe and to explain phylogeneti- 
cally two hundred million species with so many traits and combinations 
of traits this is evidently a task that can't ever be performed. A phy- 
logenetic explanation not only requires a description of the evolutionary 
path following which a specific trait originated, not only all initial and all 
intermediate steps, it must also exhibit the prevailing selective conditions, 
the species- and gene-preserving functions of all such traits including again 
their respective initial and intermediate stages. 

Thus, biology will never be complete in this sense. This is true even if 
physics should come to such a closure. This fundamental incompleteness 
of biology might be looked at as an advantage or as a disadvantage: as 
an advantage because, for biologists, the stuff from which questions are 
made ("der Stoff, aus dem die Fragen sind") will never be exhausted, as a 
disadvantage because research in biology is a Sisyphean task. Meanwhile 
at least, it doesn't seem that the science of life could become boring. 

6. Does  biology prov ide  u l t i m a t e  exp lana t ions?  

One of the most important aims of science is to give explanations. Ex- 
planations of what? Explanations of all facts which seem to be in need 
of explanation. Now, what are explanations? Occasionally we are told, 
to explain something means to reduce it to something familiar. This is 
not always true. Sometimes and these are just the great moments of 
science scientists frame new, so far unheard of, hypotheses by which 
they then manage to explain either new facts, or facts well-known but 
hitherto unexplained. Thus, Thomas Hunt Morgan explains many facts 
of inheritance by using Johannsen's new concept of 'gene' and, above that, 
by framing new hypotheses with regard to such genes. And Watson and 
Crick, by introducing the so far unknown or at least unidentified dou- 
ble helix, are able to explain the observations of X-ray diffraction and 
many more findings. Such explanations are then reductions to something 
unknown. 

Known or not obviously every explanation not only contains what 
is explained (the explanandum), but also something by which it explains 
(the explanans), something to which the explanandum is reduced. The 
explanatory part mostly a combination of general laws and special 
initial and boundary conditions may then, on its part, become the 
object of why-questions, hence of deeper explanations. Obviously, there 
may exist chains, nets, and hierarchies of explanations in which one or 
more elements serve the purpose of explaining others. 
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May such a chain, may such a net end somewhere in a natural way? 
An infinite continuation is impossible for practical reasons. And an ex- 
planatory circle making recourse to facts which were already found to need 
explanation themselves, would be logically fallacious, a typical vicious cir- 
cle. An ultimate explanation, then, would be one whose explanans neither 
needs nor allows for further why-questions. (In philosophy of nature, we 
could also ask for an ultimate cause, for a cause which doesn't have or 
need any further cause as if, for instance, it could be its own cause (causa 
sui).) 

There is, however, no fact and no factual claim where the why-question 
would make no sense. Ultimate explanations are therefore impossible, and 
biology cannot supply them either. It may be that we are not interested 
in a further explanation; it may be that we don't succeed in finding it 
although we are interested; and it may be that the explanandum is purely 
accidental and therefore unexplainable. For whatever reason we have no 
further explanation ultimate explanations do not exist. 

And yet, biologists talk about "ultimate causes"! How come? The 
meaning of 'ultimate' is quite different here. Ultimate causes in this sense 
are opposed to proximate causes. Proximate causes are, as a rule, phys- 
iological me&anisms, and proximate explanations make clear how on 
the physiological level a trait is realized or a function is performed. 
An organismic trait is an ultimate cause if it has survival value for the 
organism (or for its genes), if it enhances its fitness, if it is functional. 

Whereas physics doesn't care for functions, biology does. Thus, we may 
say ~ paradoxically enough - -  that although there are no ultimate expla- 
nations in any science, in biology there are. This is due to the ambiguity 
of 'ultimate'. It would be preferable to use the word 'teleonomic' and 
to talk about teleonomic explanations. But since Julian Huxley proposed 
the ult imate/proximate distinction and since Ernst Mayr made it popular, 
there is little hope that biologists will change their vocabulary. 

7. Are  t h e r e  facts  u n e x p l a i n a b l e  by b io logy?  

We did stress that with respect to every fact the question "why?" is 
perfectly legitimate. From this pervasive legitimacy it does not follow 
that we always know the answer. Are there facts which are described, but 
not explained, by biology? Such facts do indeed exist. We may divide 
them into three groups. 

The first group comprises facts which are explained not by biology but 
by another discipline. Thus, not only search physicists into the origin 
of stars, but likewise biologists search into the origin of living systems. 
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However, whereas physicists give a physical answer to their star question, 
biologists don't get a biological answer to their life question. Genetics and 
developmental biology, it is true, explain (tentatively) how from individu- 
als new individuals arise, and the theory of evolution explains (tentatively) 
how from species new species arise. But how the first organisms could or 
did arise, they don't explain. They are unable to do so because they 
presuppose the existence of living systems, of species, of life. Evidently 
the first living systems could not originate from living systems (because 
then they would not have been the first ones), but only from non-living 
systems. And to non-living systems the laws of biology do not, of course, 
apply yet. Therefore, the origin of life can and will be explained, if at all, 
only by physics and chemistry. In view of the usual and useful division 
of labor between biology and physics (on which later), this limitation of 
biology is easily understood and easily tolerated. 

The second group of unexplained facts embraces chance events and 
their consequences. Chance events have no causes and, therefore, no ex- 
planations. (The phrase "this can only be explained by chance" must, if 
permitted at all, be understood metaphoricMly.) It is true that chance 
events are, as a rule, not completely lawless; they obey statistical laws. 
Such laws are, however, applicable only to whole classes of events. They 
cannot explain singular events. 

In biology chance events play a constitutive role. The immensely large 
number of existing species, and even the totality of all living systems hav- 
ing once existed or existing now, is still forbiddingly small compared to 
the number of all the different organisms which could exist in principle. 
From the huge spectrum of possible living systems only a minute fraction 
will be realized even in the farthest future. How are the systems to be 
realized selected from the domain of the possible ones? We know that this 
selection occurs under the constitutive influence of several chance factors: 
undirected mutations, fluctuations of population size, random recombina- 
tions of genes. Thus biological systems always exhibit accidental aspects 
which cannot be described, explained or predicted by deterministic or 
probabilistic laws. Therefore, the limits of repeatability, explainability 
and predictability are much narrower in biology than in physics. That 
evolutionary biology could not make testable predictions at all (as, fol- 
lowing Popper, some people claim) is, however, not true. 

The third group of unexplained facts has been discovered only recently. 
This is the behavior of chaotic systems. A system is called chaotic if ar- 
bitrarily small alterations of the initial conditions may lead to completely 
different behavioral results. This is also possible in deterministic systems 
(deterministic chaos), especially if the system exhibits, as organisms usu- 
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ally do, feedback and hence nonlinear behavior. Since every measurement 
is inaccurate to a certain degree, the future of a chaotic system is not 
always predictable and very often not even explainable afterwards. Just 
as if nature wanted to compensate for that, chaotic systems open up the 
chance that, despite their fairly chaotic behavior, they might still be de- 
scribed or even understood, at least qualitatively, by deterministic laws. 
Thus, paradoxically enough, even chaos brings order to biology! 

Chaotic behavior could prevail in cell-to-cell contacts, in embryogene- 
sis and, more generally, in morphogenesis, in protein interactions, in the 
formation of patterns, especially of spirals (sunflower, pine cones, leaf ar- 
rangements), in the formation and perturbation of physiological rhythms, 
in processes in the brain and in the central nervous system, as well as in 
some illnesses, e.g. in cancer, and finally in whole ecosystems with their 
characteristic stability problems. 

8. Limi ts  of u n d e r s t a n d i n g ?  

The concept of understanding has many facets. 

We may, first of all, understand linguistic expressions: words, sentences, 
theories. We understand a word if we know its meaning. (We don't define 
'meaning' here.) We understand a sentence if we know the words occurring 
in it and if we know which relation it establishes between them, hence if 
we know, what it claims, states, commands, forbids, asks, and so on. We 
understand a theory of empirical science, e.g., the theory of heredity, if 
we understand its main concepts and propositions and if we know which 
problems it solves and to what degree it solves them better, or worse, than 
competing theories. It is obvious that for these kinds of understanding 
there may be limits; however, they do not particularly concern biology 
and will not be further discussed here. 

Apart from linguistic expressions, we also try to understand real sys- 
tems. For non-living systems, 'understanding' is essentially synonymous 
with 'explanation'. I understand an object, e.g., a carbon atom, if I know 
its special properties, and if I can describe and explain these properties, 
especially its structure and its behavior. Sometimes, however, we also 
want to know how a carbon atom comes into being, perhaps even how it 
can be manufactured. I understand a process, e.g., a sun eclipse, if I know 
how and why it occurs and why it occurs that way and not differently. 

In living systems, we must add to these properties their functional traits. 
I understand blood circulation if I (cannot only explain it, but if I also) 
know what it is good for, which function it has, how it secures or enables 
the organism's survival. In that sense we may also understand plants 
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and animals. Here again, the limits of understanding coincide with the 
limits of explanation (functional explanations included). And complete 
understanding where nothing would be left to a s k -  is as unat tainable 
as are ul t imate explanations. 

In the interhuman area, however, we use a still more ambitious concept 
of understanding. To understand a human being obviously means more 
than to know and to explain his or her traits, his coming into being or her 
life-serving functions. We know about ourselves that ,  over and above all 
that,  we do have ideas, memories, intentions, motives, feelings, emotions. 
There, we have direct access at most to our own mental  states and pro- 
cesses. We are, nevertheless, ready to ascribe such "mental life" to other 
humans as well. Therefore, I understand a human being only if I also 
know her inner states, especially her feelings and motives. I understand 
his actions if I know his motives, that  is, if I know the wishes and aims 
that  made him act. Sometimes, we even feel that ,  in order to understand 
somebody, we should duplicate his or her feelings. 

Doubtless this understanding has limits. Sometimes, we don't  even 
understand ourselves. It is even more difficult to put oneself, so to speak, 
into the thoughts and feelings of other people, to have, in a verbal sense, 
fellow-feeling, com-passion, or sym-pathy. Strictly speaking, we can never 
know for certain what another person is feeling or thinking, not even 
whether she feels or thinks at all. At any rate, we cannot prove it. But, 
as we know, I cannot even prove, to you or to me, that  I existed already 
yesterday. Therefore, from these considerations no specific limit follows 
for interhuman understanding. It can always be increased and improved 
upon. 

9. Do  we u n d e r s t a n d  a n i m a l s ?  

The motives which induce us to impute feelings and ideas to other human 
beings, all lie in their behavior: in their gestures, in their facial expres- 
sions, in their nonverbal utterances, and of course in what they say. In 
doing that  we make the obvious conjecture that  if their behavior is similar 
to ours, similar inner states and processes are at work. This inference by 
analogy is, as we surely know, not conclusive; it is, nevertheless, one of 
the scientist 's s tandard tools. In the case of interhuman behavior, it is so 
natural  and subjectively inevitable that  Karl Biihler and Konrad Lorenz 
liked to speak of a Du-Evidenz (the evidence of the thou): We cannot help 
seeing in our human vis-a-vis another person with intentions, thoughts, 
and feelings. 

Quite independently, this inference by analogy is strongly supported by 
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our knowledge about our biological relatedness and about the similarity of 
our brains and nervous processes. Since there a r e -  due to age, sex, race 
or culture varying degrees of similarity, our understanding of fellow- 
man and fellow-women reaches varyingly far. 

In a weaker form these arguments apply to our relation with animals. 
It is true, they cannot talk to us, they don't communicate with us in 
our language; but there are even human beings where this is not possi- 
ble, and, what is more, language is not the only access to others, hence 
not always necessary. With animals we share the environment, with the 
higher animals moreover a long evolutionary past. Our sense organs and 
central nervous systems are phylogenetically related and therefore simi- 
lar to varying degrees. The longer our common history is, the later the 
phylogenetic ramification has taken place, the greater are our similarities 
and, therefore, the chances for sym-pathy, for understanding. 

There is no serious doubt, then, that higher animals may suffer and feel 
pain. In discussions about experiments with or cruelty to animals, about 
keeping animals in cages or hens in batteries, the problem is not whether 
animals may suffer; we think we know that, and as biologists we think we 
can show (though not prove!) and explain it. Therefore we must check 
how we may diminish or prevent such suffering. Here again the biologist, 
especially the neurobiologist, is qualified: (s)he can judge whether an 
experiment with animals will sufficiently advance our knowledge, whether 
a simpler organism would do, whether a living animal is really needed, 
whether there is a more considerate treatment, whether narcosis, local 
anesthesia, or nerve cutting might bring relief to the animal. First of all, 
however, it must be clear whether and how far we are ready to put up 
with animal suffering in view of our other goals and values. This ethical 
or moral question cannot be answered by the methods of biology alone. 
Nevertheless, the biologist's knowledge and competence plays a decisive 
role in such a discussion. 

10. L imi t s  of cur ios i ty?  

Curiosity and playfulness are vital drives in higher organisms, especially in 
man. They are essential because they make individual learning possible. 
Thus, environmental conditions and, even more important, environmental 
changes to which genetic programming could never prepare us, are eas- 
ily mastered. Curious and playful are, first of all, the youngsters. Man, 
however, distinguishes himself from all animals by staying curious and 
open to the world up to his greatest age. Looked at from ethology, man 
keeps a typical juvenile trait even as an adult. (Therefore Konrad Lorenz, 



669 

borrowing from zoology, liked to use the term "neoteny".) 'Homo ludens' 
(Huizinga) is not the only appropriate characterization of man, but nev- 
ertheless quite to the point. Even science owes its existence to human 
curiosity. And since there will be human beings again and again, who 
want not only to learn known facts, but to discover new things, human 
curiosity in this sense is without limits. 

Biologists, however, are wont to think in cost-benefit relations. Even 
if our curiosity is unlimited, it may cost more and more to satisfy this 
curiosity. In fact, scientific progress becomes more and more expensive. 
Scientific discoveries may be likened to the treasures of the soil: Nearly 
all raw materials which could easily be gained have been used up by 
now, especially those on the surface of the earth. In order to get more 
of them, we must dig deeper and deeper. Likewise, in science nearly all 
simple discoveries have been made such that further progress needs more 
and more education and more and more technical tools. Therefore it 
could perfectly well happen that the satisfaction of our curiosity would 
not compensate for the respective costs. In his book "The paradoxes 
of progress", the molecular biologist Gunther Stent calls this effect the 
"principle of diminishing return". Economists know that phenomenon 
as "marginal utility". Even in biology with its inexhaustible wealth of 
unsolved problems it could happen that we stop fundamental research, 
not for moral reasons but for cost-benefit considerations. This crucial 
point is far from being reached, and it is even impossible to say exactly 
where it is situated. Moreover, it may be shifted by changing practical 
needs and by the extension of our technical abilities. But it certainly 
exists. 

11. L imi t s  due  to  useful  d iv is ion of l abor  

As we have seen, biology has a richer spectrum of questions than physics. 
We could as well express this fact by saying that physics limits itself 
in its questions. That organismic structures support the survival of an 
individual, of its genes, or of a species, and that they are useful in that 
sense, cannot, of course, escape the physicist. Even so, physics does not 
use or introduce concepts like function, utility, fitness: they are reserved 
to biology. The reason is not that physics couldn't say anything about 
organisms. The physical laws are not restricted to non-living objects. If 
an organism could violate the law of gravitation or the conservation of 
energy then these laws would be false; they are claimed to be universally 
valid. 

This, then, is the decisive difference between physics and biology: phys- 
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ics investigates all systems, non-living and living ones, and it searches 
for laws which apply to all these systems. Those phenomena, hoewever, 
which are found only with organisms, and those laws which apply only to 
them, are traditionally reserved for biology. One limit of biology which 
is historically conditioned lies in the fact that it does just not care for 
non-living systems. 

This limit, however, is not fixed once and for all. For, which systems 
are alive, or even better, which systems are said to be alive, is itself 
dependent on new discoveries and useful conventions. When it was found 
out recently that RNA molecules may replicate biochemists were still free 
to regard these molecules either as living (because they can replicate) or as 
non-living (because they don't evolve to higher systems). Language and 
intuition cannot anticipate such a decision because they are not "tailored" 
for such borderline cases. 

A similar division of labor as that between physics and biology (or more 
precisely: between chemistry and biology) obtains between biology and 
psychology. Again it is impossible to draw a sharp line between these two 
disciplines: When comparative ethology was still in its beginnings, it was, 
tellingly enough, called 'animal psychology', operating precisely in the 
open area between biology and psychology, hence in the former no man's 
land between the natural sciences and the humanities. It is, however, 
usual and suitable that biology restricts itself to scientific methods and, 
thereby, to such traits which are common to all or many organisms, traits 
which can be objectified and which can be investigated without intro- 
spection (although the latter might be useful even there). Just as physics 
investigates and applies to living systems, biology also investigates or- 
ganisms with conciousness (including man), but no mental phenomena 
as such. Yet again such concepts as conditioned reaction, learning, ag- 
gression, or the existence of a discipline like psychobiology, show that a 
rigorous borderline between biology and psychology does simply not exist. 

12. Limi ts  due  to wise se l f - l imi ta t ion 

Obviously, biology as a natural science and even more general: as an 
empirical science excludes certain questions which are asked elsewhere. 
Questions as to the purpose of the universe, to the goal of being, to the 
meaning of life, to a creator or ruler of the world, to the roots of validity, 
or to moral justifications, are not only not answered in biology: they are 
not even posed there. Inside empirical science, questions are legitimate 
only if they concern facts and if they have at least a chance to be answered 
in the framework of the methods of empirical science. 
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Again, the borderline is not sharp. In fact, the methods of empirical 
science, its material and mental tools, its aims and claims, its domains of 
competence and of application, have drastically changed in the course of 
time. Isaac Newton (1643-1727), the creator of physics as a science, is 
still convinced that from time to time God must fix the planetary system 
in order to preserve it from instability and collapse. The French physicist 
Maupertuis (1698-1759) interprets the newly discovered extremal princi- 
ples of mechanics as scientific evidence for the activity of a wisely planning 
creator and as a physical instantiation of Leibniz' thesis that this world is 
the best of all possible worlds. And far into the 19th century, the stunning 
adaptation of organismic structures is looked upon as a visible sign of an 
ordering hand. Not until Charles Darwin (1809-1882) is this "teleological 
proof for the existence of God" dismantled, the observed adaptation of 
organisms now being explained from inside biology, first of all by natural 
selection. 

Thus, whereas the borderlines between biology and the neighboring sci- 
ences - -  physics, chemistry, and p s y c h o l o g y -  are blurred more and more, 
the borderlines between biology and metaphysics, biology and theology, 
biology and ethics, have become even sharper. It was finally recognized 
that the relations supposed or at least hoped for did just not exist and 
that the empirical sciences owe their success to this very self-limitation. 

Thus the claim appears reasonable that the empirical sciences have been 
successful by fine-tuning both the admissible questions and the meth- 
ods permitted in answering those questions. All this does not mean, of 
course, that the disciplines characterized here as different and separable, 
had nothing to do with each other. To the peculiar relation between 
biology and ethics we shall come back. 

13. Limi ts  of feasibi l i ty? 

There is no doubt that the quest for power is besides pure curiosity 
the main motive for the scientist. Often enough, practical needs, pos- 

sible applications, technical progress, "social relevance", determine the 
interests of scientists and, first of all, of their financiers. 

Nevertheless, man can obviously not do all he wants to do (quite in- 
dependently of the question whether he can desire what he wants to do). 
Where are the limits of feasibility, where do they lie in biology? 

One important limit is set by the laws of nature. Laws of nature are 
(or describe) regularities in the behavior of real systems. They tell us 
what, under specified conditions, will happen. Other kinds of behavior 
are then, given the same conditions, impossible. Therefore, we may as 
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well interpret the laws of nature as impossibility statements: the law 
of energy conservation implies the impossibility of a perpetuum mobile; 
from the law of entropy increase it follows that heat cannot "of itself" 
pass over from cold to warm; and according to Nernst's heat theorem 
(the third law of thermodynamics), it is impossible to reach the absolute 
zero of temperature. Similarly it is, according to Hardy-Weinberg's law, 
impossible to eliminate a recessive hereditary disease by removing all pure 
disease carriers. Since, however, all knowledge is preliminary and fallible, 
we cannot exclude such possibilities with absolute certainty. Even a law 
such as the conservation of energy, well-tried, never refuted and intimately 
interwoven with all empirical science, could in principle turn out to be 
false. Thus, even claims to the impossible are endowed with the proviso 
of possible error. 

On top of that, many claims to the impossible have turned out to be er- 
roneous in the history of science. Thus it was claimed that man could not 
live above 3000 meters (Cauchy), that the chemical composition of stars 
could never be found out (Comte), that aeroplanes should be impossible 
(Siemens), that rockets could not accelerate in empty space (New York 
Times), that organic substances could not be synthesized from inorganic 
ones (vitalism), and so on. All these assertions on supposed impossibili- 
ties, on supposed limits of feasibility, were found to be erroneous. 

This negative score should warn us. We may confidently declare impos- 
sible whatever contradicts the laws of nature; what is, however, possible 
or impossible inside the framework of natural laws, is quite difficult to de- 
termine. Will it be possible to clone human beings? To grow a mammal 
completely outside a placenta? To synthesize a whole organism from inan- 
imate matter? To decode completely the human genome and to modify it 
deliberately? To cure hereditary diseases, to eradicate AIDS, to prevent 
cancer? There are no laws of nature which would exclude in principle 
such possibilities. Our knowledge is limited, especially our knowledge 
about the future of our knowledge and of our abilities. 

In the long run, however, the decisive question will not be what we are 
able to do, but what we are allowed to do. 

14. Bio logy  as a "sc ience  of t h e  c e n t u r y "  

"Die Jahrhundertwissenschaft" ("The science of the century") is the title 
of a book by the German historian of science Armin Hermann. As we 
might expect he presents physics as the most important science of our 
century. Physics was indeed decisive for the first half of our century. In 
1900, Max Planck laid the foundations for quantum theory, possibly the 
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greatest revolution physics has ever seen. The first half of our century 
ends with the use of nuclear reactors on the one side, of nuclear weapons 
on the other. 

For the second half of our century, however, biology seems to be the 
dominant science. In 1952, Watson and Crick find the double helix, and 
molecular biology has made unforeseen progress since. And again we 
feel that  the second half of our century also ends with rather ambivalent 
progresses, this time of applied biology. 

In 1978, another German author, Jost Herbig, opens a book on genetic 
engineering with the following words: "Biology has reached the critical 
stage of a science: it is constructing nature. The age of synthetic biology 
has now begun." Perhaps it is this what makes a science a science of the 
century: it constructs nature? Then we could even predict the sciences of 
the next, of the 21st century: the neurosciences. Will they also construct 
nature, will they change human beings, will they create brains, will they 
become synthetic sciences? And will there then ensue another bad awak- 
ening? Sciences of the century seem to distinguish themselves by being 
highly celebrated at the beginning and deeply damned at the end. How 
come? 

The answer is, I suppose, very simple. For thousands of years, man 
could not do much more than was allowed. In the last centuries, however, 
the natural sciences developed very fast, even explosively in our century. 
Along with human knowledge human power increased; whereas what was 
permitted did not change essentially. Thus, human power by far outgrew 
what was allowed, and this is a qualitatively new situation. 

For centuries, it seemed quite unobjectionable for a researcher to satisfy 
without restraint her thirst for knowledge. The purity of science virtu- 
ally consisted in ranking t ruth above all and not caring for applications. 
Indeed, as long as there were no dangers combined with it, t ruth rightly 
could be seen as the upmost good. Warning hints as the biblical tree of 
knowledge, the magician's apprentice in Goethe's poem, or Mary Shelley's 
Frankenstein, could be at tr ibuted to a far future. 

This has now changed. The knowledge of mankind has opened new 
possibilities which go far beyond the satisfication of urgent needs. We 
create means and tools that  can be used for the weal and woe of mankind. 
(S)he who nowadays strives just for truth, is looked at as irresponsible. 
Thus, science meets with limits which formerly were known but not felt. 
What  should we do about that? 
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15. Bio logy  does  no t  s u p p l y  m o r a l  n o r m s  

It would certainly be wrong to forbid all research whose results could 
possibly be misused. We can say quite clearly and shortly what then 
would remain of science: nothing. Even mathematics can be applied, and 
even the prime numbers, innocent as they seem to be, are of practical and 
even of military use in modern coding systems. 

It would also be misguided to look for values and for norms in the em- 
pirical sciences themselves or to try to derive them from scientific findings. 
Pure norms cannot be gained from pure facts. If you try to do it anyway, 
you commit the naturalistic fallacy. From the fact alone that a specific 
behavior has come out from and has been successful in evolution, it does 
not follow, for instance, that it were good or right. What is natural is not 
automatically right. 

That descriptive statements alone are not sufficient to yield normative 
ones, has been thoroughly investigated by logicians and has been shown 
with sufficient rigor. As we have stressed already, biology, and science in 
general, owe their success to their self-restriction to the factual and to the 
fine-tuning of their questions to what is methodically attainable. Being 
an empirical science, biology is not able to investigate or to yield moral 
norms; they simply do not lie in its task domain nor in its competence. 

Even those norms scientists normally adhere to in their research activity 
are not sufficient for a general ethical orientation. It is true that  the 
"ethos of science" is exemplary in several respects: it asks you to aim at 
truth, at objectivity, at precision, it requires symmetrical argumentation, 
criticizability, internationality, and so on. It is, however, only a partial 
ethos which is not sufficient for the regulation of personal or political 
relations. That 's  no wonder: the upmost value of the ethos of science is 
knowledge; for this it is suitable, and here it is successful. Other values 
like justice, liberty, or love, are just irrelevant to the ethics of science. 
Thus moral norms can be gained neither from the results nor from the 
normative behavior of the natural scientist. Having stressed this, and 
having identified another limit of biology, we could stop right here. But 
we want to go one step further. 

Man as a social being is absolutely dependent on social norms. Where 
can, where should he take them from? Should they be supplied or even 
prescribed to him by others? Should he listen to the priest, to the philoso- 
pher, to the lawyer, to the politician? Can someone outside tell the gene 
technologist what (s)he should or should not do? 

This way is sometimes comfortable, but not advisable. The slogan of 
enlightment is self-thinking. It is all right to listen to the arguments of 
others; but decisions are everyone's own matter. Yet a responsible decision 
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needs both factual knowledge and moral orientation. Where do they come 
from, and how do they interact? 

16. Fac t s  a n d  n o r m s  

From facts alone no norms can follow. Therefore a biologist, searching 
for practical directives will not get along with biology alone. Without 
factual knowledge, however, things don't work either; it is for this very 
reason that  normative approaches starting from "purely" philosophical 
positions tend to be far from the mark, being too general, too abstract, 
too ivory-towered. 

What  we need are, first of all, one or several basic norms. They are, 
on their part, not justified; ultimate justifications (of norms) are no more 
feasible than ultimate explanations (of facts). We may hope, however, to 
meet with unanimous approval for such basic norms. This assent cannot 
be extorted by way of argument; it can only be stated. From these basic 
norms more norms are derived by adding factual knowledge. 

An example might illustrate that point. Suppose we had come to com- 
monly accept the following norm as basic: "We should take care that  
future generations are not worse off than we are!" (This may be debated; 
but we must start somewhere.) This norm alone does not prescribe any 
specific action. Now factual knowledge will inform us that  the world pop- 
ulation is increasing and that  with growing world population the living 
conditions will deteriorate. (This may again be debated; our issue here 
is, however, not the correctness of factual claims, but rather their role in 
the gaining of moral norms.) Combining now our basic norm with our 
pertinent factual knowledge, we may derive the norm that we should not 
multiply further. In combination with additional knowledge about the 
possibilities of birth control (especially about contraception) more, and 
more concrete, norms can be derived. 

Both parts basic norms and facts are indispensable here for the 
derivation of norms. Therefore the interplay of facts and norms should 
not be seen additively, such as if every term of the sum could already offer 
something. It should rather be interpreted multiplicatively: if one of the 
two factors is nil, the "product" is also nil we have nothing then. Only 
if both elements are combined in an adequate manner, the result can be 
"positive". Of course, there are more possibilities to combine elements 
constructively: we may multiply matrices, or cross-breed animals. Multi- 
plication is, however, the simplest model for the cooperation of facts and 
norms and for their being dependent on each other. 
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This consideration should make clear what the scientist's genuine contri- 
bution to the establishing of norms consists in: (s)he provides the factual 
knowledge necessary for the derivation of more norms from basic ones. 
Both this knowledge and these basic norms are indispensable. And only 
our insight into the moral limits of biology enables us to see in its true 
light the constitutive role of biology even for ethical-moral issues. 
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The vivid terms, "Top-down" and "Bottom-up" have become popular in 
several different contexts in cognitive science. My task today is to sort 
out some different meanings and comment on the relations between them, 
and their implications for cognitive science. 

Mode ls  and  me thodo log ie s  

To a first approximation, the terms are used to characterize both research 
methodologies on the one hand, and models (or features of models) on 
the other. I shall be primarily concerned with the issues surrounding top- 
down versus bottom-up methodologies, but we risk confusion with the 
other meaning if we don't pause first to illustrate it, and thereby isolate it 
as a topic for another occasion. Let's briefly consider, then, the top-down 
versus bottom-up polarity in models of a particular cognitive capacity, 
language comprehension. 

When a person perceives (and comprehends) speech, processes occur in 
the brain which must be partly determined bottom-up, by the input and 
partly determined top-down, by effects from on high, such as interpretive 
dispositions in the perceiver due to the perceiver's particular knowledge 
and interests. (Much the same contrast, which of course is redolent of 
Kantian themes, is made by the terms "data-driven" and "expectation- 
driven"). 

There is no controversy, so far as I know, about the need for this dual 
source of determination, but only about their relative importance, and 
when, where, and how the top-down influences are achieved. For instance, 
speech perception cannot be entirely data-driven because not only are the 
brains of those who know no Chinese not driven by Chinese speech in 
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the same ways as the brains of those who are native Chinese speakers, 
but also, those who know Chinese but are ignorant of, or bored by, chess- 
talk, have brains that will not respond to Chinese chess-talk in the way 
the brains of Chinese-speaking chess-mavens are. This is true even at 
the level of perception" what you hear - -  and not just whether you notice 
ambiguities, and are susceptible to garden-path parsings, for i n s t a n c e -  is 
in some measure a function of what sorts of expectations you are equipped 
to have. Two anecdotes will make the issue vivid. 

The philosopher Samuel Alexander, was hard of hearing in his old age, 
and used an ear trumptet. One day a colleague came up to him in the 
common room at Manchester University, and attempted to introduce a 
visiting American philosopher to him. "THIS IS PROFESSOR JONES, 
FROM AMERICA!" he bellowed into the ear trumpet. "Yes, Yes, Jones, 
from America" echoed Alexander, smiling. "HE'S A PROFESSOR OF 
BUSINESS ETHICS!" continued the colleague. "What?" replied Alexan- 
der. "BUSINESS ETHICS!" "What? Professor of what?" "PROFESSOR 
OF BUSINESS ETHICS!" Alexander shook his head and gave up: "Sorry. 
I can't get it. Sounds just like 'business ethics' !" 

Alexander's comprehension machinery was apparently set with too 
strong a top-down component (though in fact he apparently perceived 
the stimulus just fine). 

An AI speech-understanding system whose development was funded by 
DARPA (Defense Advanced Research Projects Agency), was being given 
its debut before the Pentagon brass at Carnegie Mellon University some 
years ago. To show off the capabilities of the system, it had been attached 
as the "front end" or "user interface" on a chess-playing program. The 
general was to play white, and it was explained to him that he should 
simply tell the computer what move he wanted to make. The general 
stepped up to the mike and cleared his throat which the computer 
immediately interpreted as "Pawn to King-4." Again, too much top-down, 
not enough bottom-up. 

In these contexts, the trade-off between top-down and bottom-up is a 
design parameter of a model that might, in principle, be tuned to fit the 
circumstances. You might well want the computer to "hear" "Con to 
Ping-4" as "pawn to King-4" without even recognizing that it was mak- 
ing an improvement on the input. In these contexts, "top-down" refers to 
a contribution from "on high" from the central, topmost information 
stores - -  to what is coming "up" from the transducers or sense organs. 
Enthusiasm for models that have provision for large top-down effects has 
waxed and waned over the years, from the euphoria of "new look" the- 
ories of perception, which emphasized the way perception went "beyond 
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the information given" in Jerry Bruner's oft-quoted phrase, to the dys- 
phoria of Jerry Fodor's (1983) encapsulated modules, which are deemed to 
be entirely data-driven, utterly "cognitively impenetrable" to downward 
effects. 

David Marr's (1982) theory of vision is a prime example of a model 
that stresses the power of purely bottom-up processes, which can, Marr 
stressed, squeeze a lot more out of the data than earlier theorists had sup- 
posed. The issue is complicated by the fact that the way in which Marr's 
model (and subsequent Marr-inspired models) squeeze so much out of the 
data is in part a matter of fixed or "innate" biases that amount to pre- 
suppositions of the machinery - -  such as the so-called rigidity assumption 
that permits disambiguation of shape from motion under certain circum- 
stances. Is the rigidity assumption tacitly embodied in the hardware a 
top-down contribution? If it were an optional hypothesis tendered for the 
nonce by the individual perceiver, it would be a paradigmatic top-down 
influence. But since it is a fixed design feature of the machinery, no actual 
transmission of "descending" effects occurs; the flow of information is all 
in one inward or upward direction. Leaving the further discussion of these 
matters for another occasion, we can use the example of Marr to high- 
light the difference between the two main senses of "top-down". While 
Marr, as I have just shown, was a champion of the power of bottom-up 
models of perception (at least in vision), he was also a main spokesper- 
son for the top-down vision of methodology, in his celebrated three-level 
cascade of the computational, the algorithmic and the physical level. It is 
hopeless, Marr argued, to try to build cognitive science models from the 
bottom-up: by first modeling the action of neurons (or synapses or the 
molecular chemistry of neurotransmitter production), and then modeling 
the action of cell assemblies, and then tracts, and then whole systems 
(the visual cortex, the hippocampal system, the reticular system). You 
won't be able to see the woods for the trees. First, he insisted, you had 
to have a clear vision of what the task or function was that the neural 
machinery was designed to execute. This specification was at what he 
called, misleadingly, the computational level: it specified "the function" 
the machinery was supposed to compute and an assay of the inputs avail- 
able for that computation. With the computational level specification in 
hand, he claimed, one could then make progress on the next level down, 
the algorithmic level, by specifying an algorithm (one of the many log- 
ically possible algorithms) that actually computed that function. Here 
the specification is constrained, somewhat, by the molar physical features 
of the machinery: maximum speed of computation, for instance, would 
restrict the class of algorithms, and so would macro-architectural features 
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dictating when and under what conditions various subcomponents could 
interact. Finally, with the algorithmic level more or less under control, 
one could address the question of actual implementation at the physical 
level. 

Marr's obiter dicta on methodology gave compact and influential ex- 
pression to what were already reigning assumptions in Artificial Intelli- 
gence. If AI is considered as primarily an engineering discipline, whose 
goal is to create intelligent robots or thinking machines, then it is quite 
obvious that standard engineering principles should guide the research 
activity: first you try to describe, as generally as possible, the capacities 
or competences you want to design, and then you try to specify, at an 
abstract level, how you would implement these capacities, and then, with 
these design parameters tentatively or defeasibly fixed, you proceed to the 
nitty-gritty of physical realization. 

Certainly a great deal of research in AI probably the bulk of it 
is addressed to issues formulated in this top-down way. The sorts 

of questions addressed concern, for instance, the computation of three- 
dimensional structure from two-dimensional frames of input, the extrac- 
tion of syntactic and semantic structure from symbol strings or acoustic 
signals, the use of meta-planning in the optimization of plans under vari- 
ous constraints, and so forth. The task to be accomplished is assumed (or 
carefully developed, and contrasted with alternative tasks or objectives) 
at the outset, and then constraints and problems in the execution of the 
task are identified and dealt with. 

This methodology is a straightforward application of standard ("for- 
ward") engineering to the goal of creating artificial intelligences. This is 
how one designs and builds a clock, a water pump, or a bicycle, and so it 
is also how one should design and build a robot. The client or customer, 
if you like, describes the sought for object, and the client is the boss, 
who sets in motion a top-down process. This top-down design process 
is not simply a one-way street, however, with hierarchical delegation of 
unrevisable orders to subordinate teams of designers. It is understood 
that  as subordinates at tempt to solve the design problems they have been 
given, they are likely to find good reasons for recommending revisions in 
their own tasks, by uncovering heretofore unrecognized opportunities for 
savings, novel methods of simplifying or uniting subtasks, and the like. 
One expects the process to gravitate towards better and better designs, 
with not even the highest level of specification immune to revision. (The 
client said he wanted a solar-powered elevator, but has been persuaded, 
eventually, that a wind-powered escalator better fits his needs.) 

Marr's top-down principles are an adaptation, then, of standard AI 
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methodology. Another expression of much the same set of attitudes is 
my distinction between the intentional stance, the design stance and the 
physical stance, and my characterization of the methodology of AI as the 
gradual elimination of the intentional through a cascade of homunculi. 
One starts with the ideal specification of an agent (a robot, for instance) 
in terms of what the agent ought to know or believe, and want, what 
information-gathering powers it should have, and what capacities for (in- 
tentional) action. It then becomes an engineering task to design such an 
intentional system, typically by breaking it up into organized teams of 
sub-agents, smaller, more stupid homunculi, until finally all the homun- 
culi have been d i s c h a r g e d -  replaced by machines. A third vision with 
the same inspiration is Allen Newell's distinction between what he calls 
the knowledge level and the physical symbol system level. It might seem 
at first that Newell simply lumps together the algorithmic level and the 
physical level, the design stance and the physical stance, but in fact he 
has made the same distinctions, while insisting, wisely, that  it is very im- 
portant for the designer to bear in mind the actual temporal and spatial 
constraints on architectures when working on the algorithmic level. So far 
as I can see, there is only a difference in emphasis between Marr, Newell 
and me on these matters. 

What all three of us have had in common are several things: 

(1) stress on being able (in principle) to specify the function computed 
(the knowledge level or intentional level) independently of the other 
levels. 

(2) an optimistic assumption of a specific sort of functionalism: one 
that  presupposes that the concept of the function of a particular 
cognitive system or subsystem can be specified. (It is the function 
which is to be optimally implemented.) 

(3) A willingness to view psychology or cognitive science as reverse 
engineering in a rather straightforward way. 

Reverse engineering is just what the term implies: the interpretation 
of an already existing artifact by an analysis of the design considerations 
that must have governed its creation. 

There is a phenomenon analogous to convergent evolution in engineer- 
ing: entirely independent design teams come up with virtually the same 
solution to a design problem. This is not surprising, and is even highly 
predictable, the more constraints there are, the better specified the task 
is. Ask five different design teams to design a wooden bridge to span a 
particular gorge and capable of bearing a particular maximum load, and 
it is to be expected that  the independently conceived designs will be very 
similar: the efficient ways of exploiting the strengths and weaknesses of 
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wood are well-known and limited. 

But when different engineering teams must design the same sort of thing 
a more usual tactic is to borrow from each other. When Raytheon wants 
to make an electronic widget to compete with General Electric's widget, 
they buy several of GE's widget, and proceed to analyze them: that 's 
reverse engineering. They run them, benchmark them, x-ray them, take 
them apart, and subject every part of them to interpretive analysis: why 
did GE make these wires so heavy? What are these extra ROM registers 
for? Is this a double layer of insulation, and if so, why did they bother with 
it? Notice that the reigning assumption is that all these "why" questions 
have answers. Everything has a raison d'etre; GE did nothing in vain. 

Of course if the wisdom of the reverse engineers includes a healthy help- 
ing of self-knowledge, they will recognize that this default assumption of 
optimality is too strong: sometimes engineers put stupid, pointless things 
in their designs, sometimes they forget to remove things that no longer 
have a function, sometimes they overlook retrospectively obvious short- 
cuts. But still, optimality must be the default asssumption; if the reverse 
engineers can't assume that there is a good rationale for the features they 
observe, they can't even begin their analysis. 

What Marr, Newell, and I (along with just about everyone in AI) have 
long assumed is that this method of reverse engineering was the right way 
to do cognitive science. Whether you consider AI to be forward engi- 
neering (just build me a robot, however you want) or reverse engineering 
(prove, through building, that you have figured out how the human mech- 
anism works), the same principles apply. 

And within limits, the results have been not just satisfactory; they 
have been virtually definitive of cognitive science. That is, what makes a 
neuroscientist a cognitive neuroscientist, for instance, is the acceptance, 
to some degree, of this project of reverse engineering. One benefit of this 
attitude has been the reversal of a relentlessly stodgy and constructive 
attitude among some neuroscientists, who advocated abstention from all 
"speculation" that could not be anchored firmly to what is known about 
the specific activities in specific neural tracts with the result that they 
often had scant idea what they were looking for in the way of functional 
contribution from their assemblies. (A blatant example would be theories 
of vision that could, with a certain lack of charity, be described as theories 
of television ~ as if the task of the visual system were to produce an inner 
motion picture somewhere in the brain.) 

But as Ramachandran (1985) and others (e.g., Hofstadter ~ see Den- 
nett, 1987) were soon to point out, Marr's top-down vision has its own 
blind spot: it over-idealizes the design problem, by presupposing first 
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that one could specify the function of vision (or of some other capacity of 
the brain), and second, that this function was optimally executed by the 
machinery. 

That is not the way Mother Nature designs systems. In the evolutionary 
processes of natural selection, goal-specifications are not set in advance 
problems are not formulated and then proposed, and no selective forces 
guarantee optimal "solutions" in any case. If in retrospect we can identify 
a goal that has been optimally or suboptimally achieved by the evolution- 
ary design process, this is something of a misrepresentation of history. 
This observation, often expressed by Richard Lewontin in his criticism of 
adaptationism, must be carefully put if it is to be anything but an attack 
on a straw man. Marr and others (including all but the silliest adapta- 
tionists) know perfectly well that the historical design process of evolution 
doesn't proceed by an exact analogue of the top-down engineering pro- 
cess, and in their interpretations of design they are not committing that 
simple fallacy of misimputing history. They have presupposed, however 

and this is the target of a more interesting and defensible objection 
that in spite of the difference in the design processes, reverse engineering 
is just as applicable a methodology to systems designed by Nature, as 
to systems designed by engineers. Their presupposition, in other words, 
has been that even though the forward processes have been different, the 
products are of the same sort, so that the reverse process of functional 
analysis should work as well on both sorts of product. 

A cautious version of this assumption would be to note that the judi- 
cious application of reverse engineering to artifacts already invokes the 
appreciation of historical accident, sub-optimal jury-rigs, and the like, so 
there is no reason why the same techniques, applied to organisms and 
their subsystems, shouldn't yield a sound understanding of their design. 
And literally thousands of examples of successful application of the tech- 
niques of reverse engineering to biology could be cited. Some would go 
so far (I am one of them) as to state that what biology is, is the reverse 
engineering of natural systems. That is what makes it the special science 
that it is and distinguishes it from the other physical sciences, 

But if this is so, we must still take note of several further problems 
that make the reverse engineering of natural systems substantially more 
difficult than the reverse engineering of artifacts, unless we supplement it 
with a significantly different methodology, which might be called bottom- 
up reverse engineering or, as its proponents prefer to call it: Artificial 
Life. 

The Artificial Life movement (AL), inaugurated a few years ago with a 
conference at Los Alamos (Langton, 1989), exhibits the same early enthu- 
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siasm (and silly overenthusiasm) that accompanied the birth of AI in the 
early 60's. In my opinion, it promises to deliver even more insight than 
AI. The definitive difference between AI and AL is, I think, the role of 
bottom-up thinking in the latter. Let me explain. 

A typical AL project explores the large scale and long range effects of the 
interaction between many small scale elements (perhaps all alike, perhaps 
populations of different types). One starts with a specification of the little 
bits, and tries to move towards a description of the behavior of the larger 
ensembles. Familiar instances that predate the official Artificial Life title 
are John Horton Conway's game of Life and other cellular automata, and, 
of course, connectionist models of networks, neural and otherwise. It is 
important to realize that connectionist models are just one family within 
the larger order of AL models. 

One of the virtues of AL modeling strategies is a simple epistemic virtue: 
it is relatively easy to get interesting or surprising results. The neurosci- 
entist Valentino Braitenberg, in his elegant little book, Vehicles: Experi- 
ments in Synthetic Psychology (1984), propounded what he called the law 
of uphill analysis and downhill synthesis, which states, very simply, that 
it much easier to deduce the behavioral competence of a system whose 
internal machinery you have synthesized than to deduce the internal ma- 
chinery of a black box whose behavioral competence you have observed. 
But behind this simple epistemological point resides a more fundamental 
one, first noted, I think, by Langton. 

When human engineers design something (forward engineering), they 
must guard against a notorious problem: unforeseen side effects. When 
two or more systems, well-designed in isolation, are put into a super- 
system, this often produces interactions that were not only not part of 
the intended design, but positively harmful; the activity of one system 
inadvertently clobbers the activity of the other. By their very nature 
unforseeable by those whose gaze is perforce myopically restricted to the 
subsystem being designed, the only practical way to guard against unfore- 
seen side effects is to design the subsystems to have relatively impenetrable 
boundaries that coincide with the epistemic boundaries of their creators. 
In short, you attempt to insulate the subsystems from each other, and in- 
sist on an overall design in which each subsystem has a single, well-defined 
function within the Whole. The set of systems having this fundamental 
abstract architecture is vast and interesting, of course, but and here is 
AL's most persuasive theme it does not include very many of the sys- 
tems designed by natural selection! The process of evolution is notoriously 
lacking in all foresight; having no foresight, unforeseen or unforeseeable 
side effects are nothing to it; it proceeds, unlike human engineers, via 
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the profligate process of creating vast numbers of relatively uninsulated 
designs, most of which, of course, are hopelessly flawed because of self- 
defeating side effects, but a few of which, by dumb luck, are spared that 
ignominious fate. Moreover, this apparently inefficient design philosophy 
carries a tremendous bonus that is relatively unavailable to the more effi- 
cient, top-down process of human engineers: thanks to its having no bias 
against unexamined side effects, it can take advantage of the very rare 
cases where beneficial serendipitous side effects emerge. Sometimes, that 
is, designs emerge in which systems interact to produce more than was 
aimed at. In particular (but not exclusively) one gets elements in such 
systems that have multiple functions. 

Elements with multiple functions are not unknown to human engineer- 
ing, of course, but their relative rarity is signaled by the delight we are 
apt to feel when we encounter a new one. One of my favorites is to be 
found in the Diconix portable printer: This optimally tiny printer runs 
on largish rechargeable batteries, which have to be stored somewhere: in- 
side the platen or roller! On reflection, one can see that such instances 
of multiple function are epistemically accessible to engineers under vari- 
ous salubrious circumstances, but one can also see that by and large such 
solutions to design problems must be exceptions against a background 
of strict isolation of functional elements. In biology, one encounters quite 
crisp anatomical isolation of functions (the kidney is entirely distinct from 
the heart, nerves and blood vessels are separate conduits strung through 
the body), and without this readily discernible isolation, reverse engineer- 
ing in biology would no doubt be humanly impossible, but one also sees 
superimposition of functions that apparently goes "all the way down". 
It is very, very hard to think about entities in which the elements have 
multiple overlapping roles in superimposed subsystems, and moreover, in 
which some of the most salient effects observable in the interaction of 
these elements may not be functions at all, but merely byproducts of the 
multiple functions being served. 

If we think that biological systems and cognitive systems in partic- 
ular are very likely to be composed of such multiple function, multiple 
effect, elements, we must admit the likelihood that top-down reverse en- 
gineering will simply fail to encounter the right designs in its search of 
design space. Artificial Life, then, promises to improve the epistemic po- 
sition of researchers by opening up different regions of design space and 
these regions include the regions in which successful AI is itself apt to be 
found! 

I will mention one likely instance. A standard feature of models of cog- 
nitive systems or thinkers or planners is the separation between a central 
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"workspace" or "working memory" and a long term memory. Materials 
are brought to the workspace to be considered, transformed, compared, in- 
corporated into larger elements, etc. This creates what Newell has called 
the problem of "distal access". How does the central system reach out 
into the memory and find the right elements at the right time? This is 
reminiscent of Plato's lovely image of the aviary of knowledge, in which 
each fact is a bird, and the problem is to get the right bird to come when 
you call! So powerful is this image that  most modelers are unaware of 
the prospect that  there might be alternative images to consider and rule 
out. But nothing we know in functional neuroanatomy suggests anything 
like this division into separate workspace and memory. On the contrary, 
the sort of crude evidence we now have about activity in the cerebral 
cortex suggests that  the very same tissues that  are responsible for long 
term memory, thanks to relatively permanent adjustments of the con- 
nections, are also responsible, thanks to relatively fleeting relationships 
that  are set up, for the transient representations that  must be involved in 
perception and "thought". One possibility, of course, is that  the two func- 
tions are just neatly superimposed in the same space like the batteries in 
the platen, but another possibility at least, an epistemic possibility it 
would be nice to explore - -  is that  this ubiquitous decomposition of func- 
tion is itself a major mistake, and that  the same effects can be achieved 
by machinery with entirely different joints. This is the sort of issue that  
can best be explored opportunistically the same way Mother Nature 
explores by bottom-up reverse engineering. To traditional top-down 
reverse engineering, this question is almost impervious to entry. 

There are other issues in cognitive science that  appear in a new guise 
when one considers the difference between top-down and bottom-up ap- 
proaches to design, but a consideration of them is beyond the scope of 
this paper. 
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1. F rom propos i t ions  to p rocedures  

At the core of standard logic is the notion of a declarative sentence, whose 
truth conditions in varying situations are the prime target of investigation. 
Of course, actual linguistic communication involves transient discourse and 
cognitive change, but this dynamics remains an 'extrinsic' feature of the use 
that is made of logical propositions. But gradually , a reversal of priorities is 
taking place in the literature, and many authors have focused instead on the 
potential for information change inherent in propositions. There are different 
sources for this trend (which can be traced as an undercurrent far back 
into this century). In particular, in linguistics, dynamic information flow 
occurs at various levels. In categorial parsing, categories serve as procedures 
acting on each other consecutively to produce sentence meanings (Moortgat 
1988, van Benthem 1991), at the sentence level, processing of anaphoric 
dependencies involves shifting variable assignments, quite like the workings 
of imperative computer programs (Barwise 1987, Groenendijk & Stokhof 
1991), and finally, discourse has an obvious dynamic global structure with 
a sequential game-like character (Hintikka 1973, Hintikka & Kulas 1983). 
Taken together, these observations suggest that natural languages are more 
like programming languages, serving various cognitive purposes, than like 
standard declarative formal languages. This view reflects a more general 
move in contemporary philosophy, away from static 'knowledge' to dynamic 
'cognition', putting cognitive procedures like updating, retraction or revision 
of information at centre stage (G/~rdenfors 1988, Harman 1985) rather than 
static representational structures. (Of course, such an interest in cognitive 
change still presupposes some account of standard cognitive content.) In 
other words, one is moving from 'extrinsic' dynamics to 'intrinsic' dynamics 
at the core of a logic of information flow. 

The purpose of this paper is to put forward a general perspective on these 
matters, inspired by dynamic logic in computer science (Harel 1984), and 
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then to identify some salient general logical issues emerging behind many 
specific systems for linguistic and general cognitive purposes published so far. 
Notably, our 'procedural turn' leads to a reappraisal of traditional notions 
like 'logical constant' and 'valid inference', while also raising new issues of 
'logical architecture'. We shall consider both a very general procedural logic 
and various possible specializations, showing that traditional methods of 
analysis still apply, when given an appropriate new twist. Our presentation 
follows the main lines of van Benthem 1991, Part VI (to which we refer 
for many details in what follows), while adding some further refinements 
and results obtained in the meantime. We shall not propose any specific 
system for performing the new cognitive tasks, but rather concentrate on 
foundational issues concerning their design. 

D y n a m i c s  wi th in  classical logics 

An immediate entry to procedural thinking takes its departure from any 
basic text book in standard logic. Consider Tarski's well-known definition for 
truth of a formula r in a model M = (D, I) under some variable assignment 
a. Its atomic clause involves a static test whether some fact obtains, but 
intuitively, the clause for an existential quantifier 3x involves shifting an 
assignment value for x until some verifying object has been found. But then, 
we may also make the latter process explicit, by assigning to each formula a 
binary relation consisting of those transitions between assignments a which 
result in its succesful verification. Moreover, eventually, other components 
of the truth definition admit of dynamization too. For instance, shifting 
interpretation functions I are involved in ambiguous discourse (van Deemter 
1991) or questioning, and eventually, shifting model structures M make sense 
too in the dynamics of domain change across sentences (Westersts 1984). 
One immediate question arising on this point of view is how to interpret the 
standard logical constants. Some stipulations seem clear: for instance, most 
people would agree on letting conjunction stand for sequential 'composition' 
of transition relations, while disjunctions would amount to some kind of 
'choice'. But we shall analyze the options in a more principled way later on. 

Another point of departure from standard logic lies in what are the best- 
known classical information-oriented model structures, namely the possible 
worlds models for intuitionistic logic proposed by Kripke. Here, worlds stand 
for information states, and the intuitive picture is that of a cognitive agent 
traversing such states in the quest for knowledge. Again, intuitively, intu- 
itionistic formulas refer to transitions in this information pattern. E.g., to see 
that -~r holds, one has to inspect all possible extensions of the current state 
for absence of r As before, this dynamics may also be made an explicit part 
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of the logic, by creating a system of cognitive transitions, such as 'updates' 
taking us to some minimal extension where a certain proposition has become 
true. Standard intuitionistic logic is then a forward-looking system, of Dutch 
mathematicians who never forget and never err, whereas ordinary mortals 
will display a zigzagging traveling pattern of cognitive advances and retreats, 
including 'downdates' and 'revisions'. Providing an explicit dynamic system 
here may even be viewed as taking the original 'constructivist' motivation 
to its logical conclusion. 

Dynamics  of inference 

Finally, let us take a look at what this dynamic view of logic would mean 
for the archetypal inferential setting: 

P 1  ~ �9 �9 P n  

C 
conclusion C follows from premises P1. . .  Pn 

What is the sense of this when all propositions involved are procedures 
changing information states? One natural explanation would be as follows. 
The premises of an argument invite us to transform our initial information 
state, and then the resulting transition has to be checked to see whether 
this 'warrants' the conclusion (in some suitable sense). Later on, we shall 
give a number of ways in which this may be made precise. For the moment, 
one consequence of this view needs to be pointed out. If the sequence of 
premises is a complex instruction for achieving some cognitive effect, then 
its presentation will be crucial. The sequential order of premises matters, 
the multiplicity of their occurrence matters, and each premise move has 
to be relevant. And this will bring us into open conflict with even the 
most basic 'structural rules' of standard logic (allowing us to disregard such 
aspects in classical reasoning). Think of meeting a date, where one has all 
the right moves available: flowers, tickets, sweet talking, kisses, and imagine 
the various ways in which successful seduction might fail by Permutation of 
actions, Contraction of identical actions, or Monotonic Insertion of arbitrary 
additional actions. Of course, in certain settings, deviations from classical 
reasoning will be slight, for instance, when all premise actions correspond 
to tests, or steady updates. But in general cognition, our information may 
be more complex, with the information prior to inference also containing 
retractions ("no, forget about A after all") or qualifications ("unless B, that 
is"). And then, a more delicate dynamic logic becomes imperative. 
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2. Gene ra l  dynamics" relational algebra and arrow logic 

Relational algebra as procedural logic 

Underlying many specific systems of dynamic logic is the usual mathematical 
concept of a 'state space' 

(S, {Rp l P e P}). 

States may range here from cognitive constructs such as assignments or 
sets of possible worlds to real physical situations. Over these, there will be 
an 'atomic repertoire' of basic actions that can be performed, such as shifting 
the value in some register, adding or removing a world, kicking some round 
object. What atomic actions are appropriate depends on the particular 
choice of states, of course. Moreover, in particular settings, certain broad 
constraints on possible actions may be imposed from the start. For instance, 
updates are often assumed to satisfy a principle of 'idempotence': repeating 
them is unnecessary, that is Vxy : Rxy ~ Ryy. (This makes updating 
different from physical activities like kicking, or explaining something to 
one's students.) 

On top of the atomic repertoire, which is taken for granted, there is a 
'procedural repertoire' of various operations for creating compound actions, 
which we use for designing our programs or plans. Examples of such proce- 
dural operations are sequential composition, choice, iteration, but the liter- 
ature also knows more exotic proposals. One example is the negation test 
of Groenendijk & Stokhof 1991, which reads as follows: 

-~R = {(x,x) lfor no y, (x,y) e R}. 

Another case are the directed functions of categorial grammar, whose pro- 
cedural force is as follows: 

A \ B  = {(x,Y) l for each z with (z, x) e A, (z,y) e B }  

B/A = {(x,Y) l for each z with (y, z) e A, (x,z) e B }  

Of course, the basic choices made may also influence our freedom here. For 
instance, if all admissible actions are to be idempotent, then composition 
need not always be a safe combination, while choice or iteration do preserve 
idempotence. 

What is happening here is a move from a standard Boolean Algebra of 
propositions to a Relational Algebra. The standard procedural repertoire in 
relational algebras is as follows: 

Boolean operations -(complement) N (intersection) U (union) 
Ordering operations o (composition) v (converse) 
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with a distinguished diagonal relat ion/k standing for the sweet achievement 
of 'dolce far niente'. (At the other extreme, the Boolean structure also 
provides a universal relation T of 'random activity'.) These operations are 
definable in a standard predicate logic with variables over states: 

- R  : )~xy. -1Rxy 
R N S : )~xy. Rxy A Sxy 
R U S : ,~xy. Rxy V Sxy 
R o S : ,~xy. 3z(Rxz  A Szy) 
R v : )~xy. Ryz  

The expressive power of this formalism shows in that  it can define many 
other proposed procedural operators. In particular, 

-~R : A n - ( R o T )  
A \ B  : - ( A  v o - B )  
B / A  : - ( - B O A  v) 

The literature on Relational Algebra contains many results concerning ax- 
iomatization of valid identities between such relational expressions, as well 
as expressive power of various choices of operators (see N~meti 1991). Some 
of these become relevant to our general procedural logic, as will be shown 
below. 

M o d a l  a r r o w  logic a n d  c a t e g o r i a l  g r a m m a r  

In the long run, existing Relational Algebra would not be our favourite 
candidate for analyzing dynamic logic. Transition relations record rather 
little about the internal structure of processes, and some more delicate form 
of 'process algebra' (Milner 1980) will probably be needed sooner or later. 
Moreover, there are a number of mathematical complications in the subject 
as it exists, having to do with an insistence on set-theoretic relations con- 
sisting of ordered pairs. But intuitively, dynamic relations rather seem to 
consist of 'transitions' or 'arrows' as objects in their own right. Therefore, 
our preference would be to use a more abstract Arrow Logic (van Benthem 
1989, Venema 1991). This may be viewed as a modal logic over 'arrow 
frames' 

(W,C ,F , I )  

with a set W of 'arrows', a ternary relation C of 'composition', a binary 
relation F of 'conversion' and a unary predicate I for 'identical arrows'. 
The basic truth definition then explains the notion M, x ~ r (formula r 
holds for the arrow x), so that  formulas will describe sets of arrows, i.e., 
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'transition relations' in the new sense. For instance, some key clauses will 
be as follows: 

M , x ~ A N B  
M , x ~ A o B  

M , x ~ A  v 
M , x ~ A  

iff M,x  ~ A and M, x ~ B 
iff there exist y, z such that Cx, yz and 

M,y ~ A and M,z  ~ B 
iff there exists y such that Fxy and M, y ~ A 
iff Ix. 

Arrow Logic is a minimal theory of composition of actions, which may 
be studied completely by well-known techniques from Modal Logic (cf. also 
Roorda 1991, Vakarelov 1991). Standard principles of Relational Algebra 
then express certain constraints on arrow patterns, which can be determined 
in the usual style through 'frame correspondences' (van Benthem 1985). For 
instance, an algebraic law like (A U B) v = (A v U B v) is a universally valid 
principle of 'modal distribution' on arrow frames, but (AN B) v - (A v N B v) 
expresses the genuine constraint that the conversion relation F be a partial 
function, whose idempotence would be expressed by the modal axiom A vv - 
A. For technical convenience (and no more), we shall assume henceforth that 
there is an idempotent (and hence injective) conversion function f available 
in arrow frames. 

It may be of interest now to see what dynamic content is expressed by some 
basic categorial laws of natural language. Here is a sample, demonstrating 
the use of modal correspondence techniques. 

PROPOSITION. 

A.(A\B)  ~ B 
(B/A)oA ~ B 

expresses that Vxyz �9 Cx, yz ~ Cz, f (y)x 
expresses that Vxyz " Cx, yz ~ Cy, x f (z). 

Together, these two principles express the basic 'rotations' that can be 
made in composition (e.g., they imply the familiar law Vxyz �9 Cx, yz 
C f ( x ) , f ( z ) f ( y ) ) .  

Proof. In its arrow transcription, the first categorial principle has the modal 
form (A o-~(A v o-~B)) ~ B. Consider any arrow frame satisfying the 
stated constraint on its composition relation C. Let the antecedent (A o 
-~(A v o-~B)) be true at x (under some valuation), and suppose that B fails 
at x. By the truth definition for o, there exist arrows y, z with Cx, yz, A 
true at y and -~(A v o-~B) true at z. But Cx, yz implies Cz, f(y)x,  and 
we have A v true at f (y)  (by the truth definition for v and idempotence of 
f) ,  -~B true at x. Therefore A v o-~B is true at z: which is the required 
contradiction. Conversely, suppose that our categorial law holds in a frame. 
Consider any situation Cx, yz. Define the following valuation V on the 
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relevant proposition letters: V ( A ) =  {y}, V ( B ) =  W -  {x}. Evidently, B 
fails at x, and hence so does the modal antecedent A o -~(A v o -~B). That 
is, either A must fail at y (which is impossible by the definition of V) or 
-~(A v o -~B) fails at z. Then there must be u, v with Cz, uv, A v true at u, 
-~B true at v. As A is only true at y, injectivity of f implies that  A v can 
only be true at f(y),  whence u = f(y). As B is only false at x, also v = x. 
But then we have Cz, f(y)x,  as desired. 

The second categorial equivalence may be proved in the same manner. But 
there is a more general observation to be made. Both categorial principles 
shown above exhibit a special form: they are so-called 'Sahlqvist formulas' 
in this binary modal logic. This may be seen by rewriting, e.g., the first to 
(A o -~(A v o ~B)) A -~B --+ Z, or equivalently to (A o -,(A v o B)) A B --+ _k, 
where the antecedent has its positive occurrences of A, B only in 'existential 
surface positions'. Thus the 'substitution algorithm' of van Benthem 1985 
applies, which produces first-order corresponding conditions automatically 
(cf. also Venema 1991 for this technique). For instance, in this particular 
case, the formula generates a prefix Vxyz : Cx, yz ----~, and a substitution 
'A = {y}, B = {x}' which produces exactly the above frame condition. [:] 

Which frame conditions on C and f are expressed by further categorial 
laws, such as Geach Composition or Montague Raising? A precise proce- 
dural counterpart for the basic 'Lambek Calculus' of categories has been 
determined in van Benthem 1992A (the above notations suffice). Thus, 
the above dynamic reading of the catgorial operations translates categorial 
logics into natural corresponding arrow logics. The precise effect of this 
translation across the total landscape of Categorial Grammar remains to be 
investigated. 

One could also reverse the perspective here, trying to embed Arrow Logic 
into a Lambek Calculus with operators \, /, o, suitably enriched with 
Boolean operators --1, A, V and an 'identity constant' id. Its deductive prin- 
ciples are the obvious union of categorial and Boolean laws, together with 
some suitable axioms concerning id. For instance, one possible rendering of 
relational conversion is as follows: 

R v = ~(R\~id).  

In this way, procedural principles also acquire categorial content. Here is an 
illustration: 

The procedural principle (R U S) v = (RvU S v) translates into the 
equivalence 

~((R V S)\~id)  ~ " ~(R\~id)  V ~(S\~id) .  



700 

The latter exemplifies a derivable law of the Boolean Lambek Calculus, 
viz. 

(A V B ) \ C  , ~ (A\C)  A (B\C).  

�9 The procedural principle R vv = R translates into a less straightfor- 
ward categorial law concerning id. For instance, one half would state 
essentially that --,(("R v'' o~R) A id). 

Thus, there exists an evident duality between categorial logics and procedu- 
ral logics, whose further exploration must be foregone here. 

Conclusion. Relational Algebra is a useful paradigm for bringing out general 
options of design for procedural systems of logic. Nevertheless, some more 
abstract framework like Arrow Logic will be desirable eventually. Either 
way, procedural logic may be studied using standard semantic tools from 
Modal Logic. 

3. Logical cons tan ts  as ope ra to r s  of control  

Logical constants in standard logic are the key operators forming new propo- 
sitions out of old ones. In dynamic logic, logical constants will be the key 
operators of control, combining procedures. Now, much of the recent lit- 
erature still has a conservative bias, in that the only issue raised is 'what 
the standard logical constants mean' in a dynamic setting. But in fact, the 
latter allows for finer distinctions than the standard one, so that there may 
not be any clear sense to this question. Thus, it has to be analyzed on 
its own merits. For instance, standard 'conjunction' really collapses various 
notions: sequential composition, but also various forms of parallel compo- 
sition. Likewise, standard 'negation' may be either some test as above, or 
merely an invitation to make any move refraining from some forbidden ac- 
tion ("anything, as long as you leave your father alone"). And also, there 
will be natural logical operators in the dynamic setting which lack classical 
counterparts altogether, such as conversion or iteration of procedures. 

Logical i ty as p e r m u t a t i o n  invariance 

Nevertheless, there is a general perspective relating the two notions. Intu- 
itively, 'logical' operators do not care about specific individual objects in- 
volved in their arguments. This is also true for procedural operators. What 
makes, say, a complement - R  a logical negation is that it works uniformly on 
all 'arrow patterns' R, in contrast to a negative social operator like 'Dutch' 
whose action depends on the content of its relational arguments ("Dutch 
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dining" means making one's guests pay for themselves, "Dutch climbing" is 
running to the top ahead of one's companions just at the finish). The com- 
mon mathematical generalization involves invariance under permutations 7r 
of the underlying set of relevant individuals (here, states): 

�9 Declarative propositions denote unary properties / sets of states, and 
hence propositional operators satisfy 

Y,...)] = 

�9 Dynamic procedures denote binary relations / sets of ordered pairs of 
states, and hence procedural operators satisfy the same schema: 

s , . . . ) ]  = 

A procedura l  h ie ra rchy  

This mathematical condition still leaves a host of possible relational oper- 
ators. To get a finer view of the options, a more 'linguistic' perspective 
may be taken, scrutinizing the form of definition for relational operators. 
For instance, the earlier examples had definitions in a first-order language 
having variables over states and binary relation letters for procedures. Now, 
one reasonable measure of complexity is the number of variables essentially 
employed in such a defining schema, which tells us what is the largest con- 
figuration of states involved in determining the action of the operator. For 
instance, intersection of relations employed only two variables, whereas com- 
position involved three. And the resulting 'finite variable levels' provide an 
obvious Procedural Hierarchy of complexity against which we can measure 
proposed procedural operations. (Of course, some infinitary version of the 
first-order language will be needed to include operators like iteration and its 
ilk.) Here are some facts about this hierarchy, provable using model-theoretic 
Ehrenfeucht-Fraiss~ games: 

P ROPOSITION. 

�9 The usual similarity type of Relational Algebra is functionally com- 
plete for all relational operators with a three-variable defining schema. 

�9 Each n-variable level has a finite functionally complete set of operators. 

�9 There is no finite functionally complete set of algebraic operators for 
the whole procedural hierarchy at once. 
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Even finite-variable layers still contain a host of less plausible operators, 
through contrived definitions. But then, further constraints may be imposed, 
say of some reasonable computational character. One example is the well- 
known condition of 

Continuity O( . . . ,  U~e~ R~,...) = U~ei O( . . . ,  R~,...). 

This forces the operation to determine its values 'locally', by inspecting 
single transitions (using the fact that R = U{{(x ,y )}[Rxy}) :  

PROPOSITION. 

�9 Each continuous operation can be written in an existential form (dis- 
played here for the two-argument case O(R, S) only) Axy. 3zu(Rzu A 
3vw(SvwA 'Boolean combination of identities in {x, y, z, u, v, w) ')). 

�9 For each fixed arity, there are only finitely many continuous permuta- 
tion-invariant relational operators. 

Examples of continuous operations are Boolean intersection and union, as 
well as relational composition and converse. A non-example is Boolean com- 
plement. 

Continuity in this strong form rules out too much, although it does de- 
scribe a special 'natural kind' of logical operator. (Belnap 1977 proposes a 
weaker notion of 'Scott continuity' admitting more candidates.) Therefore, 
other 'computational' constraints on logicality of procedural operators be- 
come of interest too. First, logical constants should not generate 'unfeasible' 
transitions: 

Feasibility Transitions for defined relations must be reachable through 
some finite sequence of basic actions. 

Like Continuity, this rules out complement, while accepting conjunctions, 
disjunctions or compositions of procedures. 

Next, Feasibility can be strengthened by a constraint which illustrates a 
broadly applicable line of thinking. Consider the important notion of 'simu- 
lation' of one process via another, which is crucial to computation. One well- 
known candidate for this purpose is 'bisimulation' in the usual sense of hav- 
ing a relation C between states in two transition models (S, {Rpl p E P}), 
(S', {R'pl p C P}) satisfying the following back-and-forth clauses" 

�9 if xCx', zR~y, then there exists some y' with yCy', z'R~y' 

�9 i fxCx' ,  "~' ' x ttpy, then there exists some y with yCy', xRpy 

Logical constants should not 'disturb' such connections: 

Simulability Any simulation for basic actions must automatically be 
one for complex actions defined by logical constants. 
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Logicali ty and s imula t ion  

With bisimulation in the ordinary sense as a measure of process equivalence, 
the effect of Simulability will be to rule out essentially all but the 'regular 
program operations' U (Boolean union), o (composition),* (infinitary Kleene 
iteration), together with the following functions of 'domain' O and 'counter- 
domain' -~O: 

O(R) = Axy. x = y A 3 z R y z  

~O(R)  = Axy. x = y A-~3zRyz .  

(The latter is the earlier 'test negation'. Note that in fact, OR is defineable 
as -~R. )  This amounts to the repertoire of Propositional Dynamic Logic 
(cf. Section 5 below), couched in purely relational terms. A straightforward 
induction shows that all 'regular modal procedures' defined in this way have 
the required property vis-/~-vis bisimulations. Moreover, here is one kind 
of converse result (disregarding infinitary matters), adapting an observation 
from the modal folklore: 

PROPOSITION. Two states x, y in two finite transition models M1, M2 
(respectively) can be connected by some bisimulation between Mr, M~ iff 
they belong to the domains of the same regular modal procedures. 

Proof. The new direction is from right to left. Define a binary relation C 
between the state domains of M1, M2 by setting 

u C v iff u, v belong to the domains of the 
same regular modal procedures. 

It suffices to show that C is a bisimulation. So, assume that uCv and 
consider any R-successor u' of u in M1, where R belongs to the atomic 
repertoire. We have to find some R-successor v' of v matching u I in C. 
Suppose now that each of the finitely many possible R-successors v I of v in 
M2 fails to do the job. That is, there is some regular modal procedure 7r 
with either u' C domain(Tr) and v' ~ domain (Tr) (1), or vice versa (2). But 
then, consider the following procedure: 

R composed with all OTr of case (1) and all -~Tr of case (2). 

This is a regular modal procedure with u in its domain, and hence so is v. But 
this will require the existence of some R-successor of v in M2 distinct from 
all v' above: a contradiction. (Unions of procedures have dropped out of the 
definition here, because of the symmetric form of the preservation condition. 
Compare also the next Subsection on the pure {-1, o} repertoire.) [::1 

This result expresses a kind of 'maximality property' for regular modal op- 
erations with respect to Simulability. More sophisticated characterizations 
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may be found as well, without the restriction to finite models, using the 
preservation theorems for bisimulation invariance found in general Modal 
Logic (van Benthem 1985; cf. also Section 6). 

Ana lyz ing  special  r epe r to i r e s  

Whatever the most general notion of procedural 'logicality' may be, there 
are at least natural subkinds, such as the earlier continuous operators. Con- 
versely, with special sets of operators from the literature, one can try to 
determine their specific semantic characteristics. An example is the proce- 
dural repertoire {-~, o} of Groenendijk & Stokhof 1991. This seems more 
special than the regular modal operations, in that there is no union of pro- 
cedures. Nevertheless, the difference is a more delicate one. Again, this 
is seen most clearly in a two-level propositional modal logic, having both 
propositions and procedures in its language: 

The operations -~, o are both regular, and they suffice to embed the 
propositional component into the procedural one via the test mode ?" 

?(r A r = ?(r162 
?(~r = ~?(r 

?(< ~ > r = ~ ( ~ o ? ( r  

Thus, at least at the level of propositions or their corresponding tests, this 
repertoire provides all Boolean operations, including union. 

�9 Adding an explicit operation of union U to the {-~, o} repertoire results 
only in addition of outermost unions of {-~, o} programs, because of 
the valid equivalences 

(R u S )o  T = (R o T ) u  (S o T) 

R o (S u T) = (R o S) u (R o T) 

~(R u S) = ~ (R)o  ~(S). 

These two observations establish a virtual equivalence between a standard 
finitary propositional dynamic logic and a relational algebra based on the 
above two operations. 

Next here is a case of a genuinely different repertoire. In order to exclude 
unions (i.e., procedural 'choice') more radically, the following semantic char- 
acteristic may be used. Consider a 'direct product' of two transition models, 
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whose domain is the Cartesian product of the state sets, with this stipulation 
for its atomic repertoire: 

(z,x')R(y,y') iff xRy and x'Ry'. 

Arbitrary products may be defined in the same manner. Then, it is easy to 
show that  

�9 All procedures formed from atomic ones using only the repertoire 
{~, o, n} are invariant for direct products in the sense of the above 
equivalence; whereas the latter may fail for W and --. 

The reason is that, more generally, all first-order formulas constructed 
from atoms {Rxy, x = y} using A, 3 are invariant for direct products. A 
further admissible construction here is the universal quantifier V: but this 
does not seem to make much sense procedurally, and may be ruled out, e.g., 
by insisting on the earlier Continuity. 

Without  proof we state a sample outcome of an earlier model-theoretic 
analysis here, using binary operations for convenience. 

�9 The logical procedural repertoire satisfying Continuity plus Product 
Invariance consists of all operations definable by the following schema: 

Axy. 3zu(Rzu A 3vw(SvwA 'conjunction of identities in {x, y, z, u, v, w}')). 

Finally, a semantic analysis of special atomic repertoires may be of in- 
terest too. For instance, in the above-mentioned paper, basic actions 7r 
are all 'propositional tests' or 'random assignments', satisfying the identity 
7r o 7r = 7c. Moreover, these are both symmetric relations. (These particular 
properties are not preserved by the procedural repertoire {-7, o}, but others 
are.) Algebras over special kinds of binary relation have also been studied 
in the recent mathematical literature (cf. N6meti 1990). 

Conclusion. Logical constants in procedural logic are its basic operators of 
control, whose structure is much richer than that  found in standard logic. 
The art is now to bring out further intuitions of logicality so as to motivate 
natural finite bases. For the latter task, ordinary model-theoretic analysis 
is still a useful tool. 

4. Var ie t i e s  of in fe rence  

The standard explication of valid inference demands 'transmission of truth':  
"in every situation where all premises are true, so is the conclusion". And 
with classical propositions, this is a most reasonable basic option (although 
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natural modifications have been proposed since for heuristic purposes in Ar- 
tificial Intelligence, witness Makinson 1991). If one wants to approximate 
the standard style in a dynamic setting, then the following seems appropri- 
ate. Each procedure may have its 'fixed points', being those states at which 
it loops (the state already 'satisfies' the goal of the procedure, so to speak). 
Thus, we can formulate a 

classical style: "in all models, each state which is a fixed point for all premises 
is also a fixed point for the conclusion"" 

fix(P1) I"1 . . .  f"l fiX(Pl) C_ C P' . . . . .  Pn ~ ' � 9  0 C 

0 
But there is also a genuine 

dynamic style: "in all models, each transition for the sequential composition 
of the premises must be admissible for the conclusion"" 

P1o...oPnC_C P1 Pn 

0 0 0  

And some people prefer a compromise between the two styles" 

mixed style: "first process all premises consecutively, then test if the conclu- 
sion is satisfied by the resulting state"" 

range(P1 o . . . o  Pn) C_ fix(C) P1 Pn 

Thus, there appears to be a genuine variety of dynamic styles of inference, 
reflecting different intuitions and possibly different applications. 

C a p t u r i n g  styles via s t ruc tu ra l  rules 

One way of defining a basic 'style of inference' is through its general prop- 
erties, expressed in the usual 'structural rules'. For instance, the above 
classical style has all the general properties of standard inference: 

X---~, D Y , D , Z  ==~ C 
x ,  P~, P2, Y --~ C 
x , P , Y , P , Z - - >  C 
x , P , Y , P , Z ~ C  
X , Y  ---> C 

/ C ~ C Reflexivity 
/ I/, X, Z ==v C Cut Rule 
/ X, P2, P1, Y ~ C Permutation 
/ X, P, II, Z ~ C Contraction 
/ X, Y, P, Z ~ C Contraction 
/ X, P, Y ==~ C Monotonicity 

By contrast, the dynamic style satisfies only Reflexivity and Cut. Indeed we 
have several representation results: 
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P ROPOSITION. 

�9 {Monotonicity, Contraction, Reflexivity, Cut} completely determine 
the structural properties of classical inference 

�9 {Reflexivity, Cut} completely determine dynamic inference. 

By way of illustration, we prove the second result in more detail. Let 
us look at models in which the 'propositions' involved in our sequents are 
interpreted as arbitrary binary relations, while a sequent is 'true' if the above 
inclusion holds for the composition of its premises in its conclusion. Then 
there is an obvious notion of semantic consequence A ~ a among sequents: 
truth of all sequents in A should imply that of or. 

PROPOSITION. Reflexivity and Cut completely axiomatize valid conse- 
quence among dynamic sequents. 

Proof. Evidently, Reflexivity and Cut are valid on the above semantic inter- 
pretation. Conversely, suppose that some sequent a cannot be derived from 
a set A using these two principles. Then let all finite sequences of basic 
syntactic items occurring in sequents be our underlying state set, and define 
the following map * taking basic items to binary relations: 

C* = {(X, XY)  IY ~ C is derivable from A using Reflexivity and Cut} 

Then we have that, for sequents X = X1 , . . . ,  Xn, 

X ~ C i s d e r i v a b l e f r o m  A iff X ~ o . . . o X ~ C _ C * .  

'If'. By Reflexivity, X1 ~ X1 , . . . ,  Xn ~ Xn are all derivable from A. 
Therefore, the pairs (<>,  X1), (X1,X1X2),...,  (X1 . . .Xn- I ,X1 . . .  Xn-lXn) 
belong to X~ , . . . ,  X~, respectively. So, (<>,  X) is in the composition of the 
consecutive premise relations, and hence it belongs to C*. But then, by 
definition, X ~ C is derivable from A. 
'Only if'. Consider any sequence of transitions according to the successive 
premises: (X, XY1) (Y1 ~ X1 derivable), (XY~,XYIY2) (Y2 ~ X2 deriv- 
able), etcetera, up to Yn ==* X~. Then, n successive applications of Cut 
to the derivable sequent X :- C will derive I/1... Yn ~ C, and hence 
(X, XY1.. .  Y~) is in C*, by the definition of *. 

The required counter-example now arises by observing that every sequent 
in A is derivable from it and hence true under the intended relational inter- 
pretation, whereas the original nonderivable sequent a has become false, rn 

But new religions need not be defined by merely listing which old dogmas 
they accept or reject. Their point may be precisely that these old dogmas are 
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too crude as they stand. Inferential styles may in fact modify standard struc- 
tural rules, reflecting a more delicate handling of premises. For instance, the 
mixed style has none of the above structural properties (counter-examples 
are easy to produce), but it does satisfy 

Left Monotonicity X 1----> C / P, X ----5, C 
Left Cut X ~ D Y , X , D , Z  ~ C / Y , X , Z  =:~ C 

These principles even characterize this style of inference: 

PROPOSITION. {Left Monotonicity, Left Cut} completely determine mixed 
inference. 

Proof. It suffices to give the recipe for the main representation involved. 
This time, the following map ~ from syntactic items to binary relations will 
work: 

C ~ = { (X ,X)  IX  --5, C is derivable } U {(X, XC) I all sequences X}. 

What may be shown now is the following equivalence: X ,~ C is derivable 
iff it is valid under this interpretation in the mixed style. 
'If'. The pairs ( < > , X l ) , . . . ,  ( X I . . . X n - ~ , X l . . . X n - l X n )  belong to the suc- 
cessive premise relations. Because of mixed validity then, (X, X) must be 
in C ~, which can only mean that X =:~ C is derivable. 
'Only if'. Here is an example, with n = 4. Consider the following sequence 
of 'mixed' transitions for the premises: 

(U, UX1), (UX1, UXIX2), (UXIX2, UXIX2) (with UXIX 2 ~ X3) , 

(UXIX2, UXIX2X4). 

Then we have X l . . . X  4 ~ C (by assumption), UXI . . .X  4 ~ C (Left 
Monotonicity), UX~X2X4 ~ C (Left Cut, using UX~X2 ==, Xa). That 
is, the final pair of objects (UXIX2X4, UX1X2X4) is in C ~. n 

Switch ing  styles 

Having different inferential styles available also raises a new issue. How are 
these styles going to co-exist? In particular, it is natural to ask whether 
reasoning according to one style may be systematically reduced to reasoning 
via another. Here a connection emerges with the earlier topic of logical 
constants. Often, one inferential style can be 'simulated' inside another, 
through the addition of suitable logical operators. One example is the above 
classical style. Let us introduce a relational fixed point operator (I) sending 
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relations R to their diagonal 1xy. (Rxy A y = x). Then we have the evident 
equivalence 

P1, . . . ,  Pn imply C classically if and only if 
(I)(P1),..., (I)(Pn)imply (I)(C) dynamically. 

In the opposite direction, however, there is no similar formula-wise faithful 
embedding from the dynamic style into the classical style. The reason is that 
such an embedding would import the Monotonicity of the classical style into 
the dynamic one (adding translations of dynamic premises would not disturb 
the classical translation of a dynamic inference). Still there may be more 
global kinds of embedding that do the trick, translating whole sequents at 
once (van Benthem 1992B has a survey of various possibilities). 

Another form of interplay between structural rules and logical constants 
arises as follows. One may wonder whether certain structural behaviour can 
be licensed, not for all propositions, but for special kinds only (cf. Girard 
1987). For instance, in the dynamic style, let O be some operator that is to 
admit of arbitrary monotonic insertion: 

X,Y---~, C / X,O(P),Y---~, C. 

It is easy to show that this can be the case if and only if O(P) is a 'test' 
contained in the diagonal relation. Here is a slightly less trivial result: 

PROPOSITION. An operator 0 allows unlimited contraction if and only if 
for all P, O(P) is either empty or it contains the diagonal relation. 

Proof. 'Only if'. If O(P) is empty, then compositions including it are empty, 
and hence the conclusion of Contraction holds vacuously. If O(P) includes 
the identity relation, then any relation Y dynamically implies both Y o O(P) 
and O(P) o Y, whence Contraction holds too. 
'If'. Suppose that O(P) allows unlimited contraction under the dynamic 
interpretation of sequents. If O(P) is not empty, then there exist x, y 
with xO(P)y. Consider any state z. Let R be {(y,z)}. The sequent 
O(P),R, O(P) ~ O(P)o R o O(P) is dynamically valid, and hence by 
Contraction, so is O(P), R ~ O(P)o R o O(P). Hence (x, z) must be in 
O(P) o R o O(P), which can only be the case if zO(P)z, rn 

Conclusion. There are different natural styles of dynamic inference, ex- 
emplifying various clusters of structural rules, that can be determined via 
representation theorems. What we need now is some 'abstract proof theory' 
telling us what clusters are especially natural or useful. Moreover, reductions 
between inferential styles may be investigated, as a means of understand- 
ing the systematic connections between the various options that exist for 
reasoning. 
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5. Logical a rch i t ec tu re  

Combining statics and dynamics  

Standard propositions and dynamic propositions both have reasonable moti- 
vations. Therefore, there seems little to choose between. Indeed, it is better 
not to choose at all. Actual inference is a mixture of more dynamic sequen- 
tial short-term processes and more standard long-term ones, not necessarily 
working on the same representations. And then, both kinds of system would 
actually have to be around. In that case, a two-level logical architecture 
arises: 

Boolean modes Relational 
~ p r o p o s i t i o n s  ~ .. .~ procedures 

Algebra projections Algebra 

In this picture, the connections between the two levels have become essen- 
tial components in their own right. There will be 'modes' taking standard 
propositions P to procedures with that content, such as 'updating' to make 
P true, or 'testing' whether P holds already: )~P.)~xy. P x  A y = x. Run- 
ning in the opposite direction, there will be 'projections' assigning to each 
procedure R a standard proposition recording some essential feature of its 
action, such as the earlier fixed point operator (I) seeing in which states R 
is already satisfied, or the taking of a set-theoretic range: )~R.)~x. 3 y R y x ,  
seeing where R might still lead. 

Thus, we have acquired several new kinds of operators which may be 
analyzed from a logical point of view, just as much as the preceding ones. 
This is in fact a quite general phenomenon. If logical architecture becomes 
important, in systems having several logical calculi at the same time, then 
there is also an issue of what may be called 'logical management': what is 
the structure of the possible connections? 

T y p e - t h e o r e t i c  analysis 

Despite this diversity, there is also a clear mathematical uniformity. Most 
of the earlier techniques used in analyzing logical constants make sense for 
the new categories of operators too, when viewed in a suitable type-theoretic 

perspective. For instance, test or range functions are both 'permutation- 
invariant' in an obvious extended sense. Moreover, both of them are 'con- 
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tinuous' in that they commute with arbitrary unions of their arguments. All 
possibilities of this kind can be classified by previous reasoning: 

FACT. 

�9 The only permutation-invariant continuous modes are those definable 
by a schema of the form 

AP.Axy. 3z(Pz  A 'Boolean Condition on {=,x,  y, z}' ). 

'Test' is one example here: &P.)~xy. 3z(Pz  A z = x = y). All other 
possibilities are simple variations. 

�9 The only permutation-invariant continuous projections are those de- 
finable by a schema of the form 

AR.Ax. 3yz(Ryz  A 'Boolean Condition on {=,x,  y, z}' ). 

'Fixed Points' is one example here: /~R.)~x. 3yz(Ryz  A x = y = z), 
and so are 'Domain' (AR.Ax. 3yz(Ryz  A x = y)) and 'Range'. The 
other options are again simple variations. 

Another management question concerning projections is whether there 
exists some map from procedures to statements preserving all relevant logical 
structure. In particular, one might expect that composition of procedures 
will reduce to conjunction of the corresponding statements. But here, a 
negative result arises (van Benthem 1986): 

FACT. 

�9 There is only one logical Boolean homomorphism from procedures to 
propositions, namely the diagonal fixed point map (~. 

The proof is based on a recipe for 'deflating' (logical) Boolean homo- 
morphisms in a type ((a,t), (b,t)) to arbitrary (logical) maps in the 
type (b, a), and then counting the mathematical possibilities there. 

�9 (~ does not transform o into N: 

(D({(1, 2)) o {(2, 1)}) = {1} -~ 0 = (D({(1, 2))) n (D({(2, 1))). 

This issue is related to one raised earlier. The two-level system has inference 
going on both between propositions and between procedures. Say, proposi- 
tions have standard inference and procedures the earlier dynamic inference. 
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Then, we want to see whether one mechanism can be related systemati- 
cally to the other. One direction here is easy: standard inference may be 
simulated within the dynamic style using the test mode ?: 

P1, . . .  ,Pn ~da~s C iff ?(P1), . . . ,  ?(Pn) bdyn?(C) �9 

In the opposite direction, say, the fix point operator 'fix' will not work, for 
reasons explained earlier: a similar reduction would make dynamic reasoning 
monotonic. 

S ta t ic  t rac ing  of dynamic  p rocedures  

But we can also analyze the situation somewhat differently, using a well- 
known concept from computer science. Let us trace a procedure through 
propositions describing successive images of sets of states under its action. 
Define 'strongest postconditions' as follows: 

SP(A, R) = R[A]. 

Likewise, there are 'weakest preconditions': 

WP(R,A) = R-I[A]. 

Then, we can reduce dynamic validity as follows: 

PROPOSITION. R1, . . . ,  Rn bdyn '-~ if and only if SP(A, R1 o.. .  o Rn) bclass 
SP(A, S) for arbitrary sets A. 

Proof. The 'only if' direction follows from the definition of bdyn and the 
monotonicity of SP in its right-hand argument. The 'if' direction follows 
by considering any pair (x, y) in R1 o . . .  o Rn, and then applying the second 
condition to the set A = {x}. n 

Now, it becomes of interest to have a good way of computing weakest 
preconditions and strongest postconditions. Here are some inductive clauses: 

SP(A, n o S) = SP(SP(A, R), S) 

WP(R o S, A) = WP(R, WP(S, d)) 
SP(A, R u S) = SP(A, R) V SP(A, S) 

WP(R u S, A) = WP(R, A) V WP(S, A) 
SP(A, R v) = WP(R, A) 

WP(R v, A) = SP(A, R) 
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This calculation may be extended to cover the earlier regular modal opera- 
tions of 'domain' O and 'counter-domain' 9 0 ,  with clauses such as 

SP(A , �9  

SP(A,  ~O(R)) 

W P ( O ( R ) , A )  

WP(-~�9 

= A A W P ( R , T )  

= A A - ,WP(R,  T) 

= A A W P ( R , T )  

= A A -~WP(R, T) 

There are no obvious inductive clauses, however, for intersection or comple- 
ment of programs (let alone, homomorphic behaviour). For instance, we do 
not have 

'SP(A,  R N S) = SP(A,  R) A SP(A,  S)'. 

This situation may again be understood by the earlier type-theoretic anal- 
ysis. SP and W P  are transformations from the type of relations to that of 
functions from statements to statements: i.e., they live in the intensional 
type 

((s, (s, t)), ((s, t), (s, t))), 

having definitions, respectively, 

,~R.AA.Ax. 3y(Ay A Ryx) and AR.AA.Ax. 3y(Ay A Rxy). 

In principle, the type ((s, t), (s, t)) has more room than (s, t) to acommodate 
relations (indeed, SP is a bijection between relations and continuous maps 
from sets to sets). Again, we can analyze this larger class of transformations 
for its most interesting logical inhabitants, and then we find an explanation 
for the above poverty: 

PROPOSITION. 

�9 The only logical homomorphisms in the type of SP  are those defined 

from sets and individuals to pairs of individuals. 

�9 The latter are all 'products' of two logical maps from sets P and indi- 
viduals x to individuals, of which there are essentially just two: 'right 
projection' to x and 'definite description' tx. P (in case P is a single- 
ton) 

Proof. This may be shown again by the earlier recipe of 'homomorphic 
deflation', now from type ((s, (s, t)), ((s, t), (s, t))) = ((s.s, t), ((s, t).s, t)) to 
((s, t).s, s.s), followed by an analysis of invariant candidates. El 
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Conclusion. It is possible, and desirable, to have logical architectures com- 
bining both dynamic and standard inferential styles. This is also a key idea 
in dynamic logic as found in computer science. What we add here is 'manage- 
ment' as a separate concern: one wants to see to which extent independent 
reasoning inside the various levels can be related, and for that purpose, the 
connections between the two levels become independent objects of logical 
study in their own right. Logical uniformity in exploring this wider domain 
is guaranteed by taking a suitable type-theoretic perspective. 

6. Further informational s t ruc ture-  dynamic  modal logic 

Cogni t ive  p rocedures  over in format ion  p a t t e r n s  

The notions and issues introduced so far are purely procedural, and have 
nothing to do with information per se. A modest basic step introducing 
more informational structure consists in endowing state spaces (now thought 
of as patterns of information states) with the inclusion relation also found 
in models for intuitionistic or relevant logics: 

(s, c ,  I p e P)).  

Then, new notions emerge in all components of the earlier architecture, such 
a s  

�9 a new propositional operator 

Oup(P) - ikx. 3y(x C_ y A Py)  'upward modality' 

�9 a new procedural operator 

forw(R) - Axy, (Rxy  A x C_ y) 'forward part' 

�9 a new projection 

rut(R) - ,kx. 3y(x C_ y A 3zRyz)  'future domain'. 

In particular, new modes may be defined creating dynamic procedures out 
of standard propositions. Some prominent examples are as follows: 

)~P.)~xy. x C y A Py  
,kP.)~xy. x C_ y A Py  A -,3z(x C_ z C y A Pz)  

'loose updating' 
'strict updating' 
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Moreover, going through the information pattern in the opposite direction, 
there are two obvious counterparts for processes of 'cognitive retreat" 

AP.Axy .  y C_ x A ~ P y  
AP .Axy .  y C_ z A ~ P y  A ~3z (y  C z C_ z A -~Pz) 

'loose downdating' 
'strict downdating' 

Note that downdating is not a converse of updating. The proper duality is 
this: 

downdate(P, C_) = update(~P, _D). 

This formalism is rich enough to perform all cognitive tasks covered in the 
well-known system of Ggrdenfors 1988. In particular, procedures of 'revision' 
may be described by combination of updates and downdates. Here is another 
example. Possibly counterfactual conditional statements A ~ B are often 
explained via the Ramsey Test: "Assume the antecedent. If this leads to 
inconsistency, make a minimal adjustment in the background theory so as 
to restore consistency. Then see if the result implies the consequent". In our 
models, this procedure becomes: "Downdate strictly with respect to -~OA. 
Then update strictly with respect to A. Finally, check if B holds." 

Exp lo r ing  d y n a m i c  m o d a l  logic 

One useful general calculus in this case will be some system of dynamic logic 
serving as a common generalization of standard modal logic and the earlier 
relational algebra. That is, the language will have standard propositional 
and modal operators 

{~, A, V, Oup, Odown} 
as well as the usual relational repertoire 

{-- ,  N, U, o,V , / k }  

plus suitable modes 

{test, loose and strict updates as well as downdates} 

and projections 
{fixed point, domain, range}. 

This also contains the usual weakest preconditions <Tr> P via the definition 
dom(Tr o ?(P)). 

There are various connections between these operators, witness valid iden- 
tities like 

C_ = upd(T) A = ?(T) 
upd(P) = c o?(P) range(~) = dom(Tr v) 
Oup(P) - dom(upd(P))  fix(Tr) - dom(/kNTr) 
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But we are not after a least redundant version of this modal system S42, 
which may be viewed as a dynamic version of the standard modal logic 
$4. The universal validities of this logic form a general theory of cognitive 
processes. Notably, one can study various combinations of updating and 
downdating, noting that" 

�9 upda te (P )o  u p d a t e ( P ) =  update(P) 

�9 and the same holds for strict updates, and for downdates 

�9 an update followed by a downdate need not be idempotent, witness a 
situation like .-~P ~ .-~P .P  

The system also handles various earlier notions of inference. E.g., the 
dynamic variant P I , . . . ,  P~ ~dyn C amounts to validity of the implication 
<P1 o . . .  o P~> q , <C> q. And more complex relations between cognitive 
processes can be formulated too, such a s  [71-1] < 71- 2 > (~ (process 71" 1 'enables' 
process 7r2 to achieve result r 

There are some obvious technical questions concerning this dynamic ver- 
sion of the standard modal logic $4. By general reasoning, its set of uni- 
versal validities must be recursively enumerable (due to the embedding into 
first-order logic presented below). De Rijke 1992 presents a complete axiom- 
atization using a slightly stronger formalism including a 'difference operator' 
D ("truth in at least one different state"). Then, characteristic deductive 
principles are definitory axioms for the main modes, such as 

(q A ~Dq) ~ (< strict-upd(P) > A ~ O~p(A A P A Ddown(~down q ~ -~P))). 

Moreover, there is the issue whether the system is decidable. Modal $4 has 
the latter property, full relational algebra over arbitrary relations does not" 
but what about this intermediate case, which handles only special updating, 
downdating and test relations? ~ 

Without going into deductive detail about dynamic modal logic, one can 
analyze the characteristic properties of some modes and projections in direct 
semantic terms (assuming that the operators on propositions and procedures 
already have their standard interpretation)" 

PROPOSITION. 

�9 'Test' is the only permutation-invariant continuous operator satisfying 
the principles 

?(P) _< A �9 
?( - .P)  - A ~ - ? ( P )  ** 

1 Edith Spaan and Maarten de Rijke have settled this question in the negative, by reducing 
$4 -satisfiability. an undecidable tiling problem to 2 
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Proof. By Continuity, it suffices to determine the behaviour of 'test' on sin- 
gleton arguments {x}. And since test values are subrelations of the diagonal, 
by . ,  it suffices to specify the individual states in the image. By permutation 
invariance, there are only four basic options here: {x} itself (1), {Y lY  ~ x} 
(2), the unit set (3) and the empty set (4). Moreover, the choice will be made 
uniformly for all states x, again by permutation invariance. Now, outcome 
(4) would result in any test relation being empty: which contradicts **. 
Outcomes (3) and (2) may also be ruled out, by observing that they would 
allow for two distinct sets {x}, {y} to have overlapping test values, whence 
some value ?(--P) would not be disjoint from ?(P): another contradiction 
with **. Thus, only the standard interpretation (1) remains. D 

A similar kind of argument characterizes a key projection: 

PROPOSITION. 

�9 'Domain' is the only permutation-invariant continuous operator satis- 
fying the principles 

d o m ( ? ( P ) )  - P 

aom(O) = 0 

d o m ( R  o S )  - d o m ( R  o 

As before, dynamic modal logic allows us to reduce dynamic behaviour of 
regular procedures to static propositions, via 'weakest preconditions' such 
as: 

WP(?(P),  A) = P A A 
WP(upd(P),  A) - Oup(P A A) 
WP(downd(P), A) - Odown(-'P A A) 

In order to describe the strict variants, a more complex modal language 
is needed over information patterns, employing two well-known 'temporal' 
operators UNTIL and SINCE which may be defined by suitable combinations 
of test, update and domain (de Rijke 1992)" 

WP(strict upd(P), A) - UNTIL(P A A,-,P) 
WP(strict downd(P), A) - SINCE(~P A A, P). 

$4 2 is only at the bottom end of a ladder of dynamic modal logics. This 
observation brings us to an even broader formalism over information models. 

Dynamic  modal  logics as f ragments  of f irst-order logic 

As in standard modal logic, there is a straightforward translation from the 
new dynamic propositions and procedures to unary and binary formulas in 
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a standard first-order predicate logic over partial orders of states with unary 
predicates: 

(p)* Px  
(~r ~(r 
(r A r (r A (r 
(<>u~r ~y(x c_ y A [y/x](r 
(~down(~)* ~y(y g X A [y/x]((~)*) 
(?P)~ x - y A Py 
(upd(P)) ~ x C_ y A By 
(strict upd(P)) ~ x C_ y A By A -~3z(x C z C y A Pz) 
(downd(P)) ~ y C_ x A By 
(strict downd(P)) ~ y C_ x A-~Py A -~3z(y C z C_ x A -~Pz) 
(A)~ z - y  
(-~)~ ~(~)~ 
(~1 n ~-~)~ (~-,)~ A (~-~)~ 
(~, o ~)~ 3z([zly](~l)~ A [zlx](~)~) 
(~.v)~ [y/x, ~/y](~-)~ 
(~x(~))* [x/y](~)~ 
(dom(Tr))* 3y(Tr)~ 

As the first-order theory of partial orders with monadic predicates (an 
elementary class of models) is recursively enumerable, so is our dynamic 
logic $4 2. And the same holds for any first-order reducible strengthening 
thereof. 

This brings us to a general question of logical design. Modal logics, 
whether 'static' or 'dynamic', may be viewed as fragments of a full first- 
order logic over information patterns. And the question is what kinds of 
fragment are natural for present purposes. Now, several earlier observations 
may be brought to bear. First, the above translation may be seen to involve 
essentially only three variables over states in any formula. Thus, one view of 
the matter would be to have a full three-variable fragment, considering all 
unary and binary first-order formulas r 7r(x, y) constructed using only 
the three variables {x, y, z}. This establishes a certain 'harmony' between 
the minimal procedural repertoire found in Relational Algebra and the three- 
variable {Since, Until} language which has been so prominent in temporal 
logic. (Conversely, this harmony also amounts to a kind of 'functional com- 
pleteness' for the dynamic part, which should be strong enough to achieve 
everything expressible in the static part.) Basically, what we are studying 
here is the behaviour of cognitive procedures whose action can be described 
using configurations of no more than three states at any one time. That is, 
we can specify goal states, while imposing conditions on intermediate states 
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encountered en route. 
This three-variable fragment also has a purely semantic characterization 

(van Benthem 1991), in terms of the following notion. A 'k-partial isomor- 
phism' between two first-order models is a family of partial isomorphisms of 
size at most k satisfying the usual Back and Forth properties for addition of 
new objects on both sides up to length k. Moreover, restrictions of partial 
isomorphisms in the family are to remain inside it. The relevant result is 
this 

THEOREM. A first-order formula having its free variables among {xl,  . . . , xk } 
can be written using these variables only (free or bound) if and only if it 
is invariant in passing from one model and assignment to another model 
related to it by some k-partial isomorphism PI and using a PI-matching 
sequence of objects for the new assignment. 

Specialization to the case k = 3 then describes one very natural dynamic 
modal logic. But there is another, related perspective too. Upon closer 
inspection, translations of the above {Since, Until} language turn out to 
involve only part of the full three-variable first-order formalism. This point 
is even clearer with the basic modal language, which describes a special 
fragment of the two-variable first-order language over its models, having 
all quantifiers restricted to relational successors and predecessors, with only 
unary atoms. There is an independent semantic characterization of the latter 
fragment too (cf. van Benthem 1985), using an earlier semantic notion: 

THEOREM. A unary first-order formula r is equivalent to the translation 
of a basic modal formula if and only if it is invariant for standard bisimula- 
tion. 

In the earlier terms, one now restricts attention to 'process simulation' via 
partial isomorphisms where the next choice in the Back and Forth moves is 
restricted to successors or predecessors of the previous selection. Moreover, 
comparisons between matching states concern only atomic propositions. 

Inspection of the proof for this preservation theorem and its predecessor 
shows that there is a recurring pattern here. The crucial step in all cases 
runs as follows: 

Finite sequences of objects up to some fixed length in two suit- 
ably saturated models (e.g., finite ones, as in an earlier argument) 
are 'connected' if they satisfy the same formulas in the restricted 
fragment under consideration. Then it is shown how this connec- 
tion is in fact an appropriate relation of 'bisimulation' between 
the two models. 
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This is the precise spot where expressive power of the language and semantic 
strength of bisimulation meet, suggesting a general 'recipe' for generating 
preservation results. Here are some illustrations, whose purpose is mainly 
to give an impression of the general method. 

At level k - 2, there are basically two options for the above connection. 
The first has arbitrary Back and Forth moves from single state matches to 
matched state pairs, and the appropriate formalism needs a strong projection 
operator to ensure this: 

Ax. 3y~(x, y) Domain 

If one also insists that matched pairs generate two matched individuals, then 
two modes are needed" 

Axy. r ~xy. r Raising 

Finally, in order to ensure that matched sequences are truly (partial) iso- 
morphisms, the formalism needs all Boolean operations, as well as relational 
conversion and identification of arguments. (One might economize on this 
repertoire, though, by weakening the requirements on 'partial isomorphism'.) 

The second main option is to have Back and Forth clauses demanding 
extension by new individual matchings only, looking at C_-successors and 
C_-predecessors. Then essentially, just two weakened versions of the domain 
projection are needed: 

~x. 3y(x c_ y A r /~x. 3y(y C_ x A r Modality 

At level k - 3, the proper one for the above dynamic logic, similar options 
emerge. One notion congenial to the intended procedures might be called 
'Path Simulation" 

There is a restriction-closed matching between individual states 
and pairs of states satisfying the following Back and Forth con- 
ditions" 

�9 for matched states x, y, selecting a C_-successor or C_-pre- 
decessor z in either model produces an admissible matching 
xz, yu or vice versa with some C_-corresponding state u on 
the opposite side. 

�9 for matched pairs xy, zu, selecting a state v in between 
(along C_ ) leads to a C_-corresponding selection w on the 
opposite side, generating admissible matchings xv, zw and 
vy, wu (or vice versa). 

PROPOSITION. The complete first-order formalism for invariance under path 
simulation contains atoms {Px, x C_ y}, all Boolean operations, restricted 
modal existential quantifiers 3y(x C_ yAT~(x, y)), 3y(y C_ xA~(x, y)) (that is, 
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domains of the earlier 'forward' and 'backward' parts of 7r ), as well as a new 
binary modal quantifier 3z(x C_ z C_ y A 71-l(X , z) A 71"2(Z , y))  ('betweenness'). 

Again this outcome may be varied, with weaker versions of simula- 
tion capturing restricted 'unary' quantifiers such as 3y(z c_ y A r and 
3z(  c_ z c y A r 

Conclusion. Dynamic modal logics are a joint generalization of standard 
intuitionistic or other information-oriented logics and relational algebra, en- 
compassing most recent 'cognitive logics' for information processing. There 
is no single preferred such system, but options for design may be laid out in 
terms of invariance for 'bisimulation', used as a flexible model-theoretic tech- 
nique. These logics provide a simple natural 'completion' of constructivist 
thinking, which can still be studied by standard modal techniques. 

7. Towards  more  real is t ic  sys t ems  

All information modelings considered so far have been concerned with tran- 
sitions in the internal cognitive space of one agent. A general logical ar- 
chitecture for cognition will have to be extended in at least the following 
ways. 

First, more sensitive notions of 'process' are to be introduced to get at 
finer dynamic phenomena. Examples are the 'failure paths' of Segerberg 
1991, the 'full trace models' of Vermeulen 1989 or the 'process algebra' of 
Milner 1980, Bergstra & Klop 1984. These approaches may be developed in 
the general logical style advocated here. 

Another finer perspective concerns computational complexity. For in- 
stance, the above 'modes' are ways of testing or realizing standard proposi- 
tions that may still be of vastly different complexities. What we want is some 
understanding of 'minimal cost' for modes with respect to different standard 
propositions, allowing us to compare them. One relevant viewpoint here is 
that of 'semantic automata'  (van Benthem 1986), which may be viewed as 
procedural mechanisms checking truth conditions of standard constructions, 
in particular, various quantifiers. (First-order quantifiers are of finite-state 
complexity, while computing higher-order ones may involve push-down stor- 
age. Moreover, even among first-order quantifiers, e.g., "some" is cheaper 
than "one".) One could devise similar 'graph automata' operating on the 
above inclusion patterns of information states. Basic moves are steps along 
C_ or atomic tests ?(p), and then, one would want to make comparisons as 
to complexity of search for various tasks. 

Then, the physical world environment is to be brought into the picture 
if 'real correctness' of cognitive procedures is to be formulated. There are 
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various proposals to this effect in the recent literature, witness Kamp 1979, 
1984 about the triangle 'languagenrepresentation--real world' or Barwise 
1991 on 'information links' between various abstract and concrete informa- 
tional systems. The least that should be done to this effect in our case is the 
introduction of a real world structure in addition to the pattern of informa- 
tion states, with suitable links between these. For instance, one might work 
with some distinguished 'actual world' in ranges of possible worlds, with 
some suitable relation of 'instantiation' linking possible worlds to informa- 
tion states. This will enable us to formulate real correctness of cognitive 
procedures, for instance, by letting the real world be among the possible 
instantiations of the states along some trajectory in a cognitive state space. 

Also, real cognition usually involves the interplay of various agents. This 
brings in the interplay between different cognitive spaces (and a real world 
environment). On the modal strategy advocated here, one would need dis- 
tributed environments as in Halpern & Moses 1989, again with an appropri- 
ate general perspective on logical architecture and management. Interest- 
ingly, earlier game-theoretical approaches to logic and cognition, like that of 
Hintikka 1973, had this multi-agent perspective all along. 

Finally, cognitive activity is certainly not restricted to the standard busi- 
ness of 'interpretation' and 'inference'. It also involves planning, learning, 
guessing, querying or searching vis-s patterns of cognitive states in a real 
world environment. These activities too, with their salient structural prop- 
erties, will have to be brought eventually within the compass of a genuine 
logic of information flow. 
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I n t r o d u c t i o n  

Linguistics, like Gaul, is traditionally divided into three parts, syntax, 
semantics, and phonology 1, the latter being presumably concerned with 
the sound aspect of language. The issues we plan to discuss in this paper 
concern phonology directly and the other two branches indirectly. We 
take phonological theory to be about the world, about reality, and thus 
about certain items in the world certain "particulars," as metaphysi- 
cians 2 might put it - -  whose existence is attested to by the fact that  people 
speak. What  is the nature of these "particulars"? In the first part of our 
talk, we will address that  question. Our answer will be that  phonology is 
about concrete mental events and states that  occur in real time, in real 
space, have causes, have effects, are finite in number, in other words are 
what metaphysicians would call "concrete particulars" closely linked to, 
but distinct from those described by traditional phoneticians. In the sec- 
ond part of our talk we will consider a very different answer, according 
to which phonology is about types, a certain species of abstract, causally 
impotent, non-spatio-temporal entities, possibly infinite in number, and 
distinct from real live utterances. Phonology, like the rest of linguistics, 
is normally expounded as if it were about types. But does this mean that  
the discipline is committed to there being such abstract entities as types? 
We will argue that  it isn't. 

In the course of our discussion we will use some technical notation but 
we will keep it to a minimum and will explain it as we go. We will also talk 
from within a framework that  some linguists may reject. That  can't  be 
helped. Linguistics is in constant flux and full of controversies. Nothing 
of real interest in it is conclusively established once and for all and to 
everybody's satisfaction. 

~ authors received support from SERC Research Grant no. GRF/42003 during the 
preparation of this article. 
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On  t h e  n a t u r e  of t okens  

A. T h e  phono log ica l  r e p r e s e n t a t i o n  of a t o k e n  

Let us begin by thinking about spoken tokens. And to fix ideas, let us 
focus on a very specific one, the one that  I, the speaker 3, will now produce: 

(1) The merchant sold shelves. 

That  token is now history! Only time travel could enable us to ever 
hear it again. It could, of course be duplicated, but it itself is gone 
forever. We'll come back to the fact that  it could be duplicated, but 
let us forget about that  right now. Let us concentrate on the specific 
event that  happened a few seconds ago. We will refer to it as event (1) 
since we won't be able to display it again. 

Actually many things happened when event (1) occurred. That  is why 
it could be studied by more than one discipline and be analyzed differently 
by each. So, for instance, noises happened, and event (1) therefore could 
be investigated under acoustics and given an acoustical analysis. Bodily 
movements happened, and event (1) could therefore be studied under 
motor behavior and given an articulatory analysis. Brain and neurological 
events happened, and (1) could be looked at under neurology and given 
a neurological analysis. And so on. 

However we exhibited event (1) to illustrate a phonological event that  
is an event that  can be examined in the light of phonological theory and 
given a phonological analysis. 

What  would such an analysis tell us about (1)? 
Well, let us look at how phonologists would represent (1) in the notation 

of phonology. 
They would represent it as follows (the dots represent lines that  we omit 

for present purposes): 

(2) 

(2.b) 

{[~o], Art . . . }  + {[mort font ] ,  Noun . . . } +  

{Q, Sing . . . }  + {[ss l ] ,Vb. . .}  + {Q, Past . . . } +  

{[fslf], Noun . . .  } + {Q, P lu r . . .  } 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  �9 

{[8o], Art . . . }  + {[mort font ] ,  Noun . . . } +  

{Q, Sing . . .  } + {[ sol ] ,Vb. . .}  + {Q, Past . . . } +  

{[fslv], Noun . . . }  + {Q, P l u r . . . }  

(2. c) ~iomo ~ t fn t so ld f s l vz  
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In other words, they would represent it as a sequence of lines, a "deriva- 
tion". Each line would purport  to stand for some fact about  (1), and the 
ordering would purport  to stand for further facts about it. 

What  kind of facts? 

We are going to go through the derivation step by step to answer tha t  
question. But before doing so, we want to describe the general character 
of that  answer. 

My production of event (1) was an action. Like other actions, it was 
therefore brought about by a distinctive kind of mental  set something 
we will call an "intention". But this term, as we use it, is not to be taken 
altogether literally. We use it to refer to a familiar kind of purposive 
mental  stance. Think of someone aiming a rifle at a target.  Tha t  person 
moved and positioned limbs, head, eyes, etc. in certain ways. But more 
went on. After all, the movements were not made accidentally, or by way 
of checking whether the barrel is in line with the butt .  The person was 
set psychologically in a distinct way, i.e. had distinct intentions. More 
specifically, a person who aims a rifle has certain effects in mind, plans 
moves in ways calculated to achieve those effects, and, crucially from our 
point of view, has the intellectual capacity to select those effects and to 
devise the gestures that  achieve them. The uttering of (1), like the aiming 
of a rifle, also required a distinctive mind set, distinctive intentions on my 
part,  intentions that  I could not have formed without certain pre-existing 
intellectual capacities. Of course, I had many intentions when I produced 
it: I intended to give you an example, I intended to be understood, I 
intended to produce a sentence that  you have probably never heard before. 
But only some of my intentions account for the fact that  I pronounced (1), 
that  (1) was an action of pronouncing something in a language I know, in 
my idiolect of English. Those intentions are the kinds of facts about (1) 
that  we take (2) to represent. 

B.  T h e  las t  l ine of  t h e  d e r i v a t i o n  

Let us now look at the last line of the derivation (2), that  is (2.c). 

(2.c) could be construed as a phonetic transcription of the utterance 
(1). Formally it is a string of letters from an alphabet in which each 
letter tradit ionally stands for a speech sound 4. Speech sounds are not 
unanalyzable entities. They are rather  complexes of (phonetic) features. 
Thus each letter in (2.c) stands for a particular complex of features. In 
(3) we have given a partial  list of the feature composition of some of the 
component sounds of English. 
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(3) 

p b m f v  t d n s z  k g  
. . . .  e + . . . .  e + continuant 

+ + nasal 
- +  + - +  + - +  - +  voiced 

labial coronal dorsal Major articulator 

You will readily notice that the three sets of consonants in (3) differ from 
each other in that each involves action by a different major articulator; 
i.e. [pbmfv] is produced with active involvement of the lips; [tdnsz], with 
that of the tongue blade or coronal articulators; and [kg], with that of the 
tongue body or dorsal articulator. It is the major articulator that stops 
the air flow from out of the mouth in [-continuant] sounds, but allows it 
in the sounds that are [+continuant]. 

In addition to the major articulators the production of consonants in- 
volves other articulators as well. In particular, the consonants [m] and 
In] are produced with a lowering of the velum, which allows air to flow 
through the speaker's nasal cavities exciting thereby the resonances of 
these cavities. In all other consonants, the velum is raised, no air flows 
through the nasal passages and their characteristic resonances are not 
excited. This information is reflected by the pluses and minuses in the 
second line of (3). The third line reflects the behavior of the vocal cords. 
It is the vocal cords that implement the feature [voiced]. They vibrate 
in [+voiced] sounds such as [bmvdnzg] and they are stationary in the 
[-voiced] consonants [pftsk]. 

We said a moment ago that (2.c) could be construed as a phonetic tran- 
scription, that is, as a record of articulator movements and positionings. 
However that is not the way we construe it! We construe (2.c) as standing 
for a series of intentions that generated those movements. Each letter in 
(2.c) stands for such an intention, and each of these intentions called for 
an arrangement of articulators in the expectation of distinctive auditory 
effects. Each was also the intention to act so as to produce a specific 
English speech sound, and thus required a capacity that I acquired when 
I acquired English. 

Consider, for instance, the [m] in (2.c). It represents an intention (at 
the time) that called for simultaneously closing my mouth at the lips, 
lowering my velum, adjusting the stiffness of my vocal folds, and thereby 
producing a sound "m". That is why the feature notation is appropriate. 
However it does not represent an intention that merely called for going 
through all that gymnastics and produce the sound "m". I could have 
intended that much without intending to produce an English sound, for 
instance while intending to hum a tune, or imitate a cow, or express mild 
surprise. The 'm' in (2.c) represents an intention to act so as to produce 
a specific English speech sound, a token of the phoneme /m/ .  And I 
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could not have formed that intention, that mind set, had I not acquired 
English 5 . 

The other letters in (2.c) stand for similar intentions to utter speech 
sounds in (1). Let us call them "phonetic intentions6. '' What  (2.c) repre- 
sents is therefore totally unlike what an oscillograph hooked to a micro- 
phone might have recorded, and this not only because some information 
recoverable from oscillograph records such as loudness, rate of speaking, 
fundamental frequency and other characteristics of the speaker's voice 
cannot be inferred from (2.c), but crucially because it stands for a differ- 
ent kind of event altogether. (2.c) stands for the occurrence of phonetic 
intentions. Oscillographs hooked to microphones record the occurrence of 
noises. 

But why not construe (2.c) as standing for the actions that produced 
the noises rather than for mere intentions? The symbols, after all, were in- 
troduced in the discipline for that purpose! We have at least two reasons. 
The first is conceptual. (2.c), as we shall see in a moment, represents the 
result of a mental computation. And we don't think that actions can be 
the results of such computations. Results of computations have content. 
(2.c) characterizes a content that was executed, but need not have been 
executed 7. The second is empirical. When we execute a speech action we 
take into account and correct for all sorts of momentary impediments and 
conditions. (2.c) says nothing about such corrections. It only contains 
linguistic information and takes into account only linguistic knowledge. 
As a description of the articulator actions it might be false. So we use the 
traditional symbols, but we don't subscribe to their standard interpreta- 
tion s . 

C. T h e  first l ine of  t h e  d e r i v a t i o n  

Let us now turn to (2.a), the first line in the derivation. It represents an- 
other series of intentions responsible for event (1), namely, the intentions 
to use certain words, e.g. the noun 'merchant', the verb 'sell' marked 
for past tense, etc. in a certain order. This is reflected, for instance, in 
(2.a) by the clustering of phonetic symbols into larger bracketed word-like 
units. 

Forming the intention to produce (1) clearly required that I know the 
words I used, and that I retrieve them from memory. So before discussing 
in more detail how (2.a) relates to (1), let us look at how some linguists 
represent knowledge of words. 

None of us is born with the knowledge of the words of our native lan- 
guage. That children learn words as they develop is obvious and moreover 
massively documented, and we all know that the process goes on through 
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life: most of us have only recently acquired such words as intifada, glas- 
nost, scud. The proposition that an essential part of learning a language 
consists in storing in one's memory (something representable as) a list of 
words, something we will call "the vocabulary", is therefore one of the 
most securely founded in all linguistics. 

Many words that any speaker of English knows are complex in the sense 
that they incorporate affixes of various kinds. We illustrate this in (4). 

(4) (4.a) 

(4.b) 

(4.c) 
(4.d) 

shelv-es, child-ren, bough-t, sol-d 

pre-dis-pose, un-happy, in-secure 

un-poison-ous-ness, ex-pre-sid-ent, contra-in-dic-ate-d 

kibbutz-im, hassid-im 

In linguistics the term "stem" is used to designate the element to which 
an affix is added and the term "morpheme" is used as a cover term for both 
affixes and stems. Like stems, affixes too must be learned and committed 
to memory (eft (4.d)). 

A speaker's knowledge of morphemes can thus be represented as a list 
of items containing information about each morpheme stored in memory. 

What information? 
Obviously information about its meaning, its functional structure, and 

the thematic roles it assigns. Also about its lexical category, i.e. whether 
it is a noun, verb, preposition, adjective, conjunction. And certainly in- 
formation pertaining to how the morpheme is pronounced, that is, phono- 
logical information. All this can be thought of as encoded in a "complex 
symbol", made up of elements that stand for meaning, lexical category, 
etc. The markers pertaining to how the morpheme is pronounced are of 
particular interest to us here. We will refer to them as the "identifying 
index". The vocabulary as a whole can be thus represented as a long list 
of such complex symbols, each of which contains, among other things, an 
identifying index 9. 

We now turn to the information in identifying indices. 
Most morphemes take on the same phonetic form regardless of syntac- 

tic and/or morphological contexts. Thus the verb hint shows up in the 
phonetic form representable as [hint] whenever uttered. So that string of 
phonetic symbols is used as its identifying index. 

Other morphemes assume different phonetic forms depending on syn- 
tactic and/or morphological contexts. For instance, the stems sell and 
shelf were pronounced differently in (1) than in the following utterance: 

(5) The merchant sells a shelf. [sel] [f elf] 
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The identifying index of such stems is also a string of phonetic symbols, 
namely [sol] and If slf] in the two cases at hand. We will come back to 
why those particular strings. 

Some morphemes, notably the English plural and past tense affixes, not 
only assume different phonetic forms in different contexts, but these forms 
can be utterly dissimilar, and sometimes they don't appear phonetically 
at all! 

So note what happens to the plural affix in the following cases: 

(6) cat/s, child/ren, kibbutz/im, alumn/i, stigma/ta, geese, moose 

and to the past tense morpheme in the following 

(7) bake/d, playe/d, dream/t, sol/d, sang, hit 

Halle (1990) has dubbed morphemes like the Plural and Past Mor- 
phemes which behave in this very irregular fashion "abstract morphemes" 
and he has used 'Q', a symbol that has no direct phonetic interpretation, 
as their identifying index 1~ 

With all this in mind, let us look again at (2.a). 
(2.a) is a sequence of complex symbols each made up of an identifying 

index and other grammatical markers, all copied from the vocabulary. 
What facts about event (1) does (2.a) represent? 
(2.a) as we said before represents the intention to use certain words, but 

we can now be more explicit. (2.a) represents the fact that (1) besides 
being produced by my phonetic intentions in (2.c) was also produced 
by my intention to use the words retrieved from my vocabulary whose 
identifying indices (and lexical category) appear in (2.a). 

But what are the phonetic symbols doing in (2.a)? Take the initial 
'm' in the identifying index of 'merchant'. Does it represent an intention, 
already present at that stage so to say, to produce a token of the phoneme 
/m/?  Offhand that may seem reasonable. But consider then the 'c' in 
the identifying index of 'sell'. It can't stand for an intention to produce a 
token of the phoneme/~/ .  No such intention was executed in producing 
(1). Could I have changed my mind between the times I picked the words 
and pronounced them? That strikes us as a cute but vacuous idea, too 
literal minded about our use of "intention". As we see it, the role of the 
phonetic symbols in (2.a) and in (2.c)is very different. In (2.a) they play 
a computational role. Formulae such as (2.a) have two functions. On 
the one hand they model an event, represent aspects of that event. On 
the other hand they are used to compute other formulae in the formalism 
of our theory. Phonetic symbols appear in (2.a) essentially to simplify 
computations within the theory. In (2.c) they have that role but they 
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also represent phonetic intentions. These roles, though connected, are 
different. 

Note that in the vocabulary phonetic symbols could not stand for in- 
tentions either. The vocabulary is not a representation of intentions, but 
of knowledge. But its formulas too enter into computations. 

D. The  second line of the  derivation 

Let us now look at (2.b). 
(2.b) stands between (2.a) and (2.c). It is like (2.a) except that some of 

the phonetic symbols in the identifying indices have been changed. Unlike 
(2.c) it is partitioned, contains syntactic categories labels and occurrences 
of Q. 

What facts about event (1) does (2.5) represent11? 
It represents a stage between the formation of my intentions to use 

words, i.e. my intentions represented by (2.a) and the formation of my 
phonetic intentions, i.e. my intentions represented by (2.c). Unlike (2.a) 
and (2.c) it does not represent intentions at all, though it does represent 
a mental set of sorts. 

Remember events (1) and (5), the actual utterances? In the earlier one 
I pronounced the verb one way and in the later one I pronounced the same 
verb very differently. The facts underlying the difference can be surmised 
from a vast body of evidence though they also happen to coincide with 
common beliefs. I know English and that means that I have not only ac- 
quired words, but have also acquired rules. In producing these utterances 
I applied appropriate rules, and this led to different pronunciations of the 
same verb. 

(2.b) stands for a stage in the application of these rules. 
We can even tell what stage. 
As noted before, the verb sell and the noun shelf appear in two distinct 

guises in different utterances. Specifically the verb sell undergoes a vowel 
change in the past tense, and the noun shelf undergoes a change of the 
final consonant, in the plural. In other words, in producing these words 
we invoke something like the rules in (8). 

(8) a. Before [Q,Past] the stem vowel is [o] in the verbs sell, tel l , . . .  
b. Before [q, P1] the stem-final consonant is [+voice] in the nouns 
house, knife, life, wife, shelf, mouth , . . .  

(2.b) then represents a stage after the application of (8). 
(8) are not the only rules I applied to produce (1). I also applied rules 

to pronounce the morphemes represented by Q in (2.a). Halle (1990) has 
argued that the relevant rules are statable roughly as follows: 
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(9) Q / n /  in env. X 

/ im/  inenv. Y - -  

/ i /  in env. Z 

/ t a /  in env. U 

r in env. V 

/z /  in env. 

Plural if X is child, o x , . . .  

Plural if Y is kibbutz,  hasid, . . .  

Plural if Z is alumn-, rad i - , . . .  

Plural if U is stigma, schema, . . .  

Plural if V is mouse, m o o s e , . . .  

Plural 

(10) Q ~ r in env. X Past if X is sing, wr i t e , . . .  

/ t a /  in env. Y -  Past if Y is buy, dream, m e a n , . . .  

/ d /  in env. Past 

So (2.b) also represents a stage before the application of those rules! 
But what do the phonetic symbols in (2.b) represent? For that matter, 

what do they represent in the statement of the rules? The answer here is 
as before. They play a role as symbols in the formal computations of the 
theory. We conjecture that they also stand for something specific in the 
production of (1), but if they do, what they stand for is not something 
clearly understood at this time. 

This double role assigned to phonetic symbols, we should point out, has 
a shortcoming: it slights certain important phenomena. So, for instance, 
it does not show that between the formation of (2.a)'s referent and (2.c)'s 
referent a kind of transubstantiation occurred through which mnemonic 
elements were converted into articulatory ones. 

On the  nature  of  types  

So far we have concentrated on a single and unique event, the utterance 
of (1). We have done this because we hold that phonological theory, in 
so far as it purports to advance knowledge at all, is about such events 
and about the mental conditions responsible for their occurrence. Those 
are the sorts of things to which it is ontologically committed, or, as some 
followers of Quine would put it, those are the kinds of things over which 
it quantifies. 

Our position may strike some as prima facie implausible, as simply 
conflicting with too many practices of phonologists. 

Thus phonologists never mention or try to explain unique events like 
(1). Their papers and texts mention words, phrases, sentences, phonemes, 
i.e. types, abstract entities outside time and space, devoid of causal his- 
tories and causal consequences. They don't mention utterances, events, 
or mental states. And though phonologists do sometimes elicit tokens, 
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they do so only to obtain data about types. That is presumably why they 
rely on statements which abstract from whatever is peculiar to tokens 
and clearly fit types. In fact, most phonologists would probably not inter- 
pret (2) as about (1), the utterance produced umpteen minutes ago. How 
could they? How many have ever heard of that utterance! They would 
implicitly take (2) as about a type possibly attested by something like (1) 
but attestable as well by other tokens, for instance by the one that I now 
produce 

(11) The merchant sold shelves. 

And that last token, as Leibniz's indiscernability of identicals tells us, 
is not only numerically distinct from (1), since it occurred at a different 
time, but is also numerically distinct from its type, which does not occur 
in time at all. 

Furthermore, phonologists, like all grammarians, strive for theories that 
neither undergenerate nor overgenerate, theories that predict some items 
and exclude others. But the relevant items could not be tokens! If they 
were, any phonological theory, no matter how absurd, could always be 
trivially confirmed. Imagine, for instance, a theory which predicts that 
the following is in my language 

(12) The plmotpfu sell yesterday many shelf. 

I would have confirmed that theory simply by having produced the token 
(12)! What is more, every theory of any interest would be demonstrably 
false since it would predict an infinite number of tokens for each person, 
whereas the total number of tokens is bound to be finite. Life is short! 
Even the most loquacious of us, no matter how long they live, will shut 
up forever at some point! 

That may all be true, nonetheless, we don't believe that there are types! 
And so phonology can't be about types. We admit (on empirical grounds) 
internalized grammars, but those exist as mental attributes of concrete, 
specific human individuals. We admit (on empirical grounds) internal- 
ized vocabularies, but those too exist as mental attributes of concrete, 
specific human individuals; and we admit token events (again on empiri- 
cal grounds) but those are spatio-temporally located concrete events like 
(1). But types, we think, belong, with useful fictions like virtual optical 
images, in the null class. 

We can't prove that there are no types. The notion is surely not self- 
contradictory, or even incoherent. Bromberger (1989) has argued that it 
is a coherent and even useful one. We just don't see any reason to think 
that there are any. And we don't accept that phonology provides any 
evidence for them, or must presuppose their existence. 
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On the other hand, we do believe that  phonology provides overwhelm- 
ing evidence that  tokens cluster into scientifically significant types. Tha t  
does not imply that  there are types besides tokens (not even as sets, or 
mereological sums of tokens, though such sets and sums may well exist). 
But it is sufficient to justify most of the practices we have mentioned and 
to make sense of the demand that  theories should neither overgenerate 
nor undergenerate.  

We will now explain that  position in more detail. 

Instead of producing (1) when I did, I could have produced a very 
different token. In fact, to fix ideas, here I go: 

(13) Two elephants study in Uppsala. 

And we could now go on and produce a derivation analogous to (2) 
for this new token. It would be a different derivation from (2). The 
last line, the first line, the intervening lines, the rules invoked, the items 
said to represent morphemes retrieved from lexical memory, all would 
be different. However the two derivations would have one crucial thing in 
common: they would incorporate answers to the same questions. Different 
answers, but the same questions. 

In other words, event (1) was open to the questions: Wha t  morphemes 
were intended? What  was the representation of these morphemes in mem- 
ory? What  art iculatory gestures were intended? What  rules were invoked 
in the course of the formation of these intentions? and so on. (2) pro- 
vides the answers to these questions 12. The last token (13) was open to 
the same questions. Its derivation would also provides answers to those 
questions, but the answers would be different. As we just said, different 
answers; the same questions. In fact all spoken token events are open to 
these questions. Some share exactly the same answers. Token event (1) 
and the token event (11) do. Others don' t  share the same answers. To- 
ken events (1) and (13) don't .  Token events that  share the same answers 
are the ones we classify as being of the same type. Those that  don't ,  we 
classify as being of different types. 

Tha t  is all there is to talk of types, as far as we are concerned. But 
that  is quite a lot, as we will now show. 

Note, for instance, that  each token holds specific answers to these ques- 
tions. We are unmit igated realists about this. We take the fact that  each 
token holds the specific answers it does to each of these questions to con- 
st i tute t ruths  about the world, not some artifact of our way of looking at 
things. It is a t ru th  about the world that  the answer to "what was the first 
intended articulation underlying the production of (1)?" is "vibration of 
the vocal cord (i.e. [+voice]), constriction of the mouth  cavity partially 



736 

open (i.e. [+continuant]) etc." just as it is a t ruth about the world that 
the answer to "How much does Sylvain Bromberger weigh?" is "175 lbs". 

Note furthermore that we also take it as a t ruth about the world 
and a very different sort of t ruth but not an artifact of our way 

of looking at things, that (1) has the property of holding such answers 
at all. We might put this somewhat more technically. It is a t ruth 
about the world that event (1) had the determinable property of hav- 
ing intended morphemes. And it is a t ruth about the world that  each 
spoken token also does. Other events, even events with acoustic prop- 
erties, don't  have that property. Noises made by our coffee pot, or 
coughs for instance, don't have it. That fact is of the same order as 
the fact that swinging pendula have periods which standing rocks don't, 
that  positive numbers have square roots, which trees don't, that  the 
manuscript from which we are reading has a certain weight, which the 
ideas we are expressing don't. Determinable properties, by the way, like 
period, square root, weight, and so on, are a kind of property presup- 
posed by what-questions such as "What is the period o f . . .  ?", "What 
is the square root o f . . .  ?", "What is the weight o f . . .  ?" Objects that 
don't  have the property hold no answer to the corresponding question. 

(1), (5), (13),  and other tokens are, of course, open to many questions 
besides the ones answered in derivations such as (2). They hold answers for 
instance to "At what time was it uttered?", "Where was it uttered?" If we 
were to use those to compare tokens as to type we would end up with very 
different typological clusters. But we don't use those. We use questions 
that  define the field of phonology. That may sound more selfrighteous 
than we intend, so let us put what we have in mind differently: we use the 
questions that make phonology as a theoretical field possible. That there 
are such questions, by the way, is also an empirical t ruth about the world! 

An analogy that we have used elsewhere, taken from elementary chem- 
istry, may be helpful here. Think for a moment about a sample of water, 
a real sample that you have "experienced" as they say in California. That 
sample, like our tokens, is open to a number of questions: "Where was 
it situated when you experienced it?", "Who owned it?", "What did you 
do with it?" that are of no scientific interest. But it is open to others 
that are of scientific interest, such as "What is its boiling point?" "What 
is its freezing point?" "What is its molecular weight?" Other samples of 
stuff get the same answers to these last questions. They comprise all and 
only samples of water. Still other samples, though open to the same ques- 
tions, get different answers. They comprise all and only the samples of 
other distinct substances, e.g. samples of gold all share one set of answers, 
samples of mercury share another set of answers, samples of sulfuric acid 
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share yet another set, and so on. And still other samples of stuff don't  
hold answers at all to these questions. Pieces of sausage, for instance, or 
handfuls of mud, or buckets of shoelaces. These don't make up samples 
of a substance at all! The scientifically interesting questions collect bits of 
stuff into samples of substances. Not all bits of stuff. Some bits of stuff. 

But what makes these questions scientifically interesting? 
That  should be obvious: the fact that  their answers conform to law- 

like, or at least computable, relationships. There are law-like, or at least 
computable, relationships, between boiling points, freezing points, and 
molecular weights. A theory can therefore be constructed on the back of 
these questions. And a certain att i tude can be acquired. For instance, 
that  these samples constitute a "natural" domain, a domain that  includes 
some (water, gold, mercury, etc.) but excludes others (sausage, mud, shoe 
laces); and that  these samples have features that  demand similar explana- 
tions. Of course these atti tudes are warranted only if certain facts obtain, 
i.e. certain law-like relationships actually hold. For all we once knew, the 
world might have been otherwise. 

A similar story, we believe, applies to utterances. Each utterance is 
open to a multiplicity of questions. The scientifically interesting ones are 
those whose answers across tokens stand in law-like, computable relation- 
ships to each other. As we noted before, that  there are such questions, if 
there are, is a fact about the world. An interesting fact. We believe there 
are 13. If we didn't  we would not spend time on linguistics. And we believe 
that the questions we characterized as defining the domain of phonology 
are among these questions. If we didn't we would not pursue phonology 
as we do. All of that  then is implicated in our talk about types. And 
none of it requires us to hold that  there are types over and above tokens. 

We want to stress one crucial further fact about questions of scientific 
interest. They are not all given, they are not part of ordinary common 
sense, they must be smoked out, discovered, and their discovery can be an 
achievement more revolutionary than the discovery of a new phenomenon. 
Newton, for instance, discovered many things about the world, but his 
most important discovery (outside of optics) would not have been possi- 
ble without the discovery that  physical bodies have mass. That  was the 
discovery of a new kind of question (and dispositional property), revolu- 
tionary because answers to it turned out to stand in marvelous computable 
relation to other questions (e.g. "What force is required to accelerate such 
and such one foot per second per second?"). Aristotle, a very good sci- 
entist, did not have the concept of mass, and therefore could not have 
wondered what the mass of the moon was, could not even know that he 
did not know what the mass of the moon was, and, of course, could not 
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have fathomed that the answer to that question was related in systematic 
ways to the answer to other questions about the moon. Celestial mechan- 
ics was beyond even his imagination! 

The questions that make phonology possible also had to be discovered. 
And their discoverers are the heroes of our field: Panini, Rask, Bopp, 
Saussure, Jakobson, Chomsky. Without them phonology would still con- 
sist of pedantically collecting odd curiosities. But the work of discovering 
the right questions is far from finished! 

As we mentioned at the very outset, utterances form a natural domain 
with other noises, the domain of acoustical theory. To deny this would be 
like holding that elephants, because they have a sex life, are not, like rocks, 
physical objects subject to the laws of mechanics! On the other hand to 
deny that utterances constitute an autonomous domain, the domain of 
phonology, would be like holding that because elephants are subject to 
the laws of mechanics, like rocks, they have no sex life! And to deny a- 
priori that there are systematic relationships between these two domains 
would be like denying a-priori that there are systematic relationships be- 
tween the mass of elephants and the character of their sex life. Maybe 
there are. And some may even be surprising. 

We can now tell what we make of the fact that (2), though about (1), 
contained no information about time, speaker, etc. and could have served 
for (11) as well. (2) contains only answers to questions of interest from the 
position of theoretical phonology. It could serve for any token that holds 
the same answers to those questions. However nothing in this requires 
that there be types besides tokens. Talk of types then is just a fa0on de 
parler 14. 

But that still leaves us with the requirement that phonological theory 
should not overgenerate or undergenerate. How do we construe the pro- 
hibition against overgeneration? Realistically: no phonological theory is 
true of the world that generates derivations (combinations of answers to 
questions, like (2)) to which no token in our language (i.e. produced as 
(1) was produced) can conform 15. Phonological theories may not ignore 
constraints on the production of tokens that are imposed by the internal- 
ized rules and vocabulary. There is still no need to assume types. 

What of the prohibition against undergeneration? We construe that 
also realistically: no phonological theory can be true of the world that 
can't generate derivations to which tokens in our language (i.e. produced 
as (1) was produced) could  conform. Phonological theories may not pre- 
sume more constraints on the production of tokens than are imposed by 
internalized rules and vocabulary. There is again no need to assume types. 

Our construal of these principles is stated with the aid of modalities (ex- 
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pressed by "could") which vex many semanticists. But that  is no reason 
to admit types. We find admission of types unenlightening as substitutes 
for these modalities, and at least as vexing. 

Two final comments. 
Some people may object to our way of looking at phonology on the 

grounds that  it construes phonology as about performance and not about 
competence 16. If they mean that  we view phonology as about processes 
in real time responsible for the occurrence of tokens, they are right about 
our view. But we don't  see this as an objection. If they mean that  we 
view phonology as having to take into account contingencies of produc- 
tion over and above those traceable to knowledge of language, then they 
misconstrue our view. We don't. 

Some will object that  we have loaded phonology with unwarranted as- 
sumptions. Do speakers "really" retrieve morphemes from their memory, 
invoke rules, go through all these labors when speaking? We think they 
do. In fact we would like to know more about how they do it. We may 
be mistaken. Time will tell. But intuition won't. Clearly speakers are 
not aware of performing such actions. But then we perform many actions 
like zombies (to borrow a phrase from Ned Block). That  is how we learn 
language, recognize faces, and solve most of our problems. 

Some will object that  our outlook leaves out entirely that  tokens are 
not only uttered but are also recognized. That  is indeed a big hole in our 
account so far. But it calls for another paper, not abstract types. 

Let us then return to the topic of our title the ontology of phonology. 
What  must the "furniture of the world" include if phonological theory, 
as we conceive it, is to have a chance of becoming true of that  world? 
It is a long list: agents, tokens, phonetic intentions, minds with vocabu- 
laries and rules, articulators, and so on, in complicated interrelations. It 
does not have to include types. And if, perchance, the world does include 
types, phonology has nothing to say about them 17. But then, probably 
no branch of linguistics does. 
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NOTES 

1. We are grateful to Ned Block, Nancy Bromberger, George Boolos, Noam Chomsky, 
Leonard Clapp, Alec Marantz, Wayne O'Neil, Jean Michel Roy for comments on 
previous drafts of this paper. 

2. See Bromberger and Halle (1989) on why phonology is fundamentally different from 
syntax and semantics. 

3. T h o u g h  many philosophers of language have views on empirical linguistics, few, if 
any, have given serious attention to phonology. Recent anthologies and books on 
the philosophy of language either don't  mention phonology at all, or at best per- 
functorily restate crude and outdated notions on the subject. This is somewhat 
surprising since the facts that  phonology studies are critical as objects of speech 
perception or outputs of speech production. But for these facts, there would be no 
syntax or semantics of natural languages besides sign languages (also neglected by 
philosophers), and philosophers deliberating about such languages would have to be 
silent. 

There are a number of explanations for this neglect. To begin with, recent philoso- 
phers of language generally belong to an intellectual tradition that  admits no essen- 
tial differences between natural languages and some of their contrived extensions. 
This was pointed out a long time ago by Strawson (1950), though he had other 
shortcomings in mind. Philosophic discussions thus generally abstract not only from 
differences between English, German, Japanese, and other natural languages, but 
also from differences between these languages and notational systems used in math- 
ematics, logic, physics, chemistry, biology, linguistics, etc. Such notational systems 
do have a syntax (albeit usually one that  has very little in common with the syntax 
of natural languages), a semantics, and a pragmatics, but happen to have no phonol- 
ogy. Their minimal units are normally ideographs which encode word-like units 
rather that  phonetic or even orthographic o n e s -  open to many phonologically un- 
related pronunciations (if pronounceable at all). Nothing in such notational systems 
corresponds to the phonologies of natural languages, and nothing about them can 
thus be captured in an overarching phonological doctrine linked to the overarching 
semantic and syntactic doctrines studied by philosophers. So it is not surprising 
that  though Frege and his successors include signs in their Sign-Sense-Nominatum 
triad, they have nothing of interest to say about signs as things uttered and heard. 
Even philosophers who focus primarily on natural languages belong to that  tradition 
and don't  discriminate between aspects peculiar to real languages, i.e. articulated 
languages whose primary tokens necessarily vanish as soon as produced, and aspects 
peculiar to conventional notational systems with characteristically enduring tokens. 

Furthermore, philosophers generally seem to believe that  there can't  be anything 
of philosophic interest about phonology. This at t i tude flows naturally from the pre- 
vious one. The ideographs used by scientists are adopted through open and explicitly 
published conventions that  determine everything true of them qua signs. Since they 
are also semantically word-like, their subsegments have no autonomous status and 
raise no philosophic problems. How could there be anything of philosophic interest 
about the shape of simple numerals, or about the horizontal segment in an inverted 
A in a quantifier, or in the vertical line of the F for force? It is easy to pass from 
this outlook to the view that  there can't be anything philosophically challenging 
about the spelling of words, and thence to the view that  there can't be anything 
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philosophically challenging about  their pronunciat ion.  And isn' t  phonology "just" 
about  pronunciat ion? 
Wha teve r  the explanat ion for philosophers '  neglect of phonology, we think tha t  it 
has a cost. To begin with, we think tha t  it is a mistake to lump all lexical systems 
together  as forming some kind of na tura l  family. It blurs too many  differences, and 
a t ten t ion  to phonology can highlight impor tan t  ones. Fur thermore ,  we th ink tha t  
no theory  about  the relation between na tura l  language signs and their referents (or 
their meaning) can be t rus twor thy  tha t  nonchalant ly  takes signs for granted.  Fi- 
nally, we think an adequate  unders tanding  of the ontology of language - -  of the 
objects  whose existence const i tutes  the reality of language - -  must  include an ad- 
equate  conception of the objects  investigated by phonology. More specifically, an 
adequa te  conception of language must  check our tendency,  when we reflect about  
language, to slip thoughtlessly between talk about  individual  u t te rances  and talk 
about  types, as if such slips were always innocuous and easily fixed ways of avoiding 
pedantry.  Spoken tokens are t rans i tory  events tha t  occur in t ime and space, tha t  
can be perceived, tha t  are shaped by their speaker 's  occurent  intentions, and tha t  
are subject  to norms fixed in their speaker 's  menta l  make-up.  Types  - -  if there  are 
types - -  are abs t rac t  entities, neither in t ime nor in space, devoid of casual histories 
or causual  consequences; hence beyond perception.  T y p e s -  if there  are types 
outdis tance  tokens. Tokens and types if there  are types - -  are thus u t te r ly  dif- 
ferent. Conflating them is bound to lead to confusions and incoherence. But  giving 
each its due, and unders tanding  their connection, won ' t  be possible unless we see 
how the type- token distinction fares in phonology, a topic which we discuss in what  
follows. 

4. We use the first person singular to ment ion Sylvain Bromberger  as producer  of tokens 
displayed during the  talk in Uppsala  and use the first person plural  to ment ion 
ourselves, the two authors.  We use italic font to indicate displayed spoken tokens. 
Readers  of the paper  should thus keep in mind tha t  the lines in italic point to 
episodes which they can no doubt  imagine but  which took place in Uppsala  when 
this paper  was orally presented.  

5. The fact tha t  the u t te rance  consists of sequences of discrete sounds is the insight on 
which all a lphabet ic  writ ing systems are based. It may therefore appear  to be self- 
evident.  Yet when we last asked our colleagues working on the au tomat ic  analysis 
of speech, we were told tha t  no one has yet found a reliable mechanical  procedure  
tha t  can segment any a rb i t ra ry  u t te rance  into its const i tuent  sounds. 

6. Compare  with the availability of click sounds as phonemes to speakers of Bantu ,  but  
only as noises to speakers of English. 

7. For a related position see Libermann,  A. M. and Matt ingly,  I. G. (1985) (1989) and 
Bromberger ,  S. and Halle, M. (1986). 

8. Elsewhere we have called this kind of intentional  content  a "score", to mark  the 
analogy with a musical score, something tha t  can be executed through motions, 
but  need not be executed,  and often is not. Inner  discourse probably  stops at the 
format ion of such "scores". 

9. Our in terpre ta t ion  of event (1) commits  us to the occurrence of the menta l  events we 
call intentions over and above acoustical events and ar t icula tory  events. We present 
some of our reasons in Bromberger ,  S. and Halle, M. (1986). 

10. In talk about  identifying indices we must  take care to distinguish between what  we 
presume to be "in the mind" of the knower and its representa t ion in the nota t ion 
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of our theory. We use the term "identifying index" to refer to the representation in 
the notation of the theory, not what is "in the mind". 

11. Other elements in the lexicon may also lack specific phonological content, e.g. PRO, 
empty complementizers, case, expletives, etc. yet not be represented by a complex 
symbol that  includes any identifying index like Q. Whether or not some morpheme 
must be represented with an identifying index like Q or no identifying index at all is a 
contingent matter to be settled on empirical grounds. Halle's proposal is not that  we 
adopt a convention for the sake of giving all complex symbols a common format. It 
embodies the claim that  all unarticulated morphemes are not phonologically equal. 

12. Some things we have said so far could be put in Austinian terminology (as in Austin 
(1975)). 
(2.a) modeled the formation of a phatic intention, that  is, the intention to pro- 
duce what Austin called a phatic act, "the uttering of certain vocables or words 
. . .  belonging to and as belonging to, a certain vocabulary, conforming to and as 
conforming to a certain grammar". (We leave out "i.e. noises of certain types" 
as misleading.) (2.c) modeled a phonetic intention, i.e. the intention to produce 
what Austin called a phonetic act, "the act of merely uttering certain noises" (The 
"merely" is unfortunate!). (2.b) then models a stage in a mental process through 
which the phatic mental set gets transformed into the phonetic mental set. 

13. Strictly speaking, to provide these answers it would have to be supplemented with 
references to the rules, as it was in the course of our discussion. 

14. The law-like computable relationships are those that  govern the production of utter- 
ances. Not all utterances, but only of utterances produced by invoking rules and a 
lexicon. We can, of course, produce utterances without such invocation. The crucial 
fact, not revealed by simple common sense, is that  we can produce utterances that  
do invoke them. 

15. We ourselves resort to this fa(;on de parler even in this paper, when, for instance, 
we speak of morphemes, phonemes, etc. 

16. Admittedly this answer requires elaboration. For instance, it seems to avoid com- 
mitment to phonological types at the price of commitment to types in the notation 
of the theory. We think that  this appearance can be dispelled, but to do so would 
require a long discussion of theoretical formalisms. In any case, we are not claiming 
that  there are no abstract entities at all. We are claiming that  phonology is not 
about types. 

17. See for instance Geoff Lindsay and John Harris (1990). 

18. Chomsky, in a number of writings e.g. Chomsky (1985), distinguishes between two 
conceptions of language (i.e. of the objects amenable to scientific linguistics): (a) 
a conception of language as an (infinite) set of expressions (signs) or of expressions 
paired with meanings, what he calls "E-language" (Actually he subsumes a num- 
ber of different conceptions of language under E-language, only one of which takes 
language as a set of types.); (b) a conception of language as a mind/brain state at- 
tained under certain contingencies (including exposure to other speakers) and made 
possible by certain innate brain/mental  organizations, what he calls "I-language". 
He has demonstrated serious shortcomings in all the studies of language offered so 
far that  are based on an E-language concept, and has urged approaches based on 
the I-language concept. Our paper shares his conviction that  I-language is a more 
appropriate object for scientific study. This is not an accident: we came to our 
position largely through reflections on his. 
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When we give examples of two-place predicates in teaching first-order 
predicate logic it is possible to follow Arthur Prior (see, e.g., Prior 1956, 
p. 85) and use transitive verbs, so that  

(1) Trevor admires Sally 

is an instance of F x y ,  with 'admires'  replacing F.  
frequent to use examples like 

But it is far more 

(2) Arabella is the mother of Dan 

in which the predicate is made up using a noun and a preposition, most 
likely the preposition 'of'. The noun 'mother '  on its own, occurring in a 
sentence like 

(3) Arabella is a mother 

appears to be semantically a one-place predicate such that  (3) means that  
Arabella is the mother of someone. No doubt for the purposes of logic no 
harm comes from treating 'is the mother of' as a single two-place predicate 
and 'is a mother '  as a distinct though related one-place predicate, despite 
the danger illustrated by the favourite sophistic conundrum, 

(4) That  dog is yours 
That  dog is a father 
.'. That  dog is your father 

but if we are in the business of providing a logical t reatment  of the ex- 
pressions of natural  language then we can hardly rest content. The facts 
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illustrated in (2) and (3) come from English, but as far as I am aware they 
are common to Indo-European languages, and I do not consider myself 
to be addressing an issue peculiar to one language. Nevertheless I shall 
restrict myself to English. If we take seriously the apparent fact that  'of 
Dan'  is a prepositional phrase then we will want the relation between (2) 
and (3) to be exactly analogous to that  between 

(5) Tha t  is the house at Pooh Corner 

and 

(6) Tha t  is a house. 

The difficulty of maintaining this analogy has led most semantical the- 
ories to treat  (2)/(3) as a quite different phenomenon from (5)/(6).  While 
what I say may not be enough to settle the issue I shall at least be able to 
provide a formal framework within which the parallel can be maintained, 
so that  we can no longer offer as a reason for the disanalogy tha t  no se- 
mantics could treat  (2) and (3) like (5) and (6). As motivation for this 
t rea tment  consider some facts noticed in Partee 1989. Consider 

(7) The enemy is well-supplied. 

If we are in Wellington's army then the enemy is the French. But if we 
are in Napoleon's army it is the British and their allies. In (7) there is no 
preposition and yet it seems nevertheless that  the context has to supply 
a point of view to judge who is the enemy. But it is not just context 
which does this; rather,  as with most positions in a sentence which have a 
value filled by context, the position sometimes plays the role of marking 
a bound variable. Partee 's  example is 

(8) Every soldier faced an enemy. 

(8) could certainly mean that  each of Wellington's soldiers faced a (French) 
enemy soldier, while each of Napoleon's soldiers faced a (British) enemy 
soldier. There is no single context which supplies the enemy. 

The problem with all these cases is that  the noun in question appears 
to have the same syntax whether it occurs as part  of an explicit relational 
s ta tement  or not. So the problem is how to accommodate a semantical 
property which is not mirrored in the syntax. This kind of problem is not 
new, and it has a long-standing solution by means of the use of semantical 
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indices. The clearest examples are modal and tense logics. In a temporal 
language the sentence 

(9) It is now four o'clock 

does not express a fixed once-and-for-all proposition. If it did it would 
either be necessary or impossible. It expresses what some have called an 
open proposition. This is a function from times to (closed) propositions, 
where these latter may be thought of as sets of worlds. And even these lat- 
ter have been thought, as in Montague 1974, p. 153, to be functions from 
worlds to truth values. (And a temporal but non-intensional language 
could treat propositions as functions from times to truth values.) 

What can those who favour an extensional language do? In the early 
days the fashion was to consider only what Quine 1960b, p. 193f, calls 
'eternal sentences' and refuse to give a definite meaning to sentences like 
(9). But another course, favoured by Taylor 1977, is to treat (9) as an 
open sentence with a free variable having the form 

(10) It is four o'clock at t. 

Since (10) contains a free variable it does not have a fixed truth value but 
only satisfaction conditions. It is true for the assignments to t which give 
it four o'clock, and false otherwise. The difference between (9) and (10) 
is not semantic, it is just that what (10) puts into the syntax (9) 'hides' 
in the semantics. The use of semantical indices is to keep relativity out of 
the syntax. What I propose to do therefore is see how we might explain 
the semantics of (2) and (7) using semantical indices. 

In part III of Cresswell 1990 I shewed how to express quantification 
in a propositional language using sequences of individuals as semanti- 
cal indices and operators of the kind considered in Quine 1960a, Kuhn 
1980 and others. This language is as powerful as an intensional predi- 
cate language with two-place generalized first-order quantifiers operating 
on predicates made by A-abstraction. Such languages can be considerably 
more powerful than ordinary first-order languages since they may contain 
two-place 'quantifiers' like most, which are known to be inexpressible in 
ordinary first-order languages. 

The syntax of a propositional language /2 is extremely simple. The 
atomic symbols are of two kinds 

(i) Simple sentence symbols 
(ii) For each n, a set (possibly empty) of n-place sentential functors. 
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We may impose the requirement that there be only finitely many atomic 
symbols. The usual restrictions apply to ensure that all the atomic sym- 
bols are distinct, and that none is itself a sequence of other symbols. Thus 
we have what Montague 1974 p. 225 calls a disambiguated language. Some 
authors like to relax this restriction but I will not. The rules for generating 
complex symbols are equally simple: 

FR1 Every simple sentence symbol is a well-formed formula (wff). 

FR2 If 5 is an n-place sentential functor and c~1,.. . ,  c~n are n wff, not 
necessarily distinct, then 5c~1... a,~ is a wff. 

Since /2 contains no bound variables there is no distinction between 
closed and open wff. For that reason the word 'sentence', sometimes 
used for closed wff, could have been used in place of wff. Provided that 
we know, for each functor 6, how many places it has, and provided the 
functor precedes all its arguments there is no need for parentheses. It is 
sometimes convenient, however, to place a functor between its arguments. 
Thus we have (a D fl) rather than D c~fl. If this is done parentheses 
become necessary. For realistic syntax it is perhaps better to think of 
wff as trees, or to represent them as having a somewhat more complex 
set-theoretical structure as I did in Cresswell 1973, but for the issues of 
this paper the wff can be those and only those sequences of the symbols 
of s which can be generated by FR1 and FR2. 

But although s has a simple syntax it has a complex semantics. In chap- 
ter 13 of Cresswell 1990 1 motivated propositional languages by first intro- 
ducing languages with generalized quantifiers operating on A-expressions 
and then proving that the propositional language was equally powerful. 
Here I will present the semantics directly. I will, however, make a simpli- 
fication. The principal purpose of Cresswell 1990 is to shew that natural 
language requires the power of full quantification over possible worlds, 
and the propositional languages introduced in Part III had as semantical 
indices not only sequences of individuals but also sequences of worlds and 
sequences of times. In this paper I shall use only a sequence of individuals, 
though s will still be an intensional language and truth will be relative 
to a world and a time. An interpretation for s will be a triple (W, D, V}. 
Let W be the class of all world-time pairs and D the class of 'things'. I 
say 'things' rather than 'individuals' only to make clear that D is what- 
ever we quantify over, whether it is metaphysically an individual or a 
higher-order entity. It is my belief that reference to higher-order entities 
need not require a higher order syntax. Though again, for the purposes 
of this paper, nothing is lost by taking D to consist solely of individuals, 
whatever they are. The final member of an interpretation for L: is a func- 
tion V which connects expressions of L: with their meanings. The idea is 
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that  the meaning of every sentence is a set of triples of the form (w, u, a / ,  
where w C W,u  E D and a is a sequence such that  for 1 < n, a(n) E D. 
(Alternatively we could let u -  a(0) and let the triple be replaced by a 
pair (w, a). The role of a(0) is rather special, so I have here signalled it 
separately rather  than use a(0) as I did in Cresswell 1990.) Call the set 
of all such sets of triples P,  for proposition, though in the sense of open 
proposition introduced in Cresswell 1973 if a C P then a is the value 
of a sentence of s V must satisfy the following: 

(a) For atomic sentence c~, V(c~) e P 
(b) For n-place functor 5, V(5) is a function w such that  for a l , . . . ,  

an C P, w ( a l , . . .  ,an) C P 
(c) For complex wff 5C~l...C~n, V (SC~l. . .an) - V (5) (V (c~1) , . . . ,  

I promised you a complex semantics. But I have delivered simplicity. 
The complexity comes when we see how this apparently simple seman- 
tic framework deals with what in s tandard t reatment  requires a complex 
syntax. 

First look at a predicate. Syntactically in s admires would be a wff. 
V(admires) would therefore be a set of triples of the form (w, u , a ) .  In 
particular it would be that  set a such that  (w, u, a) c a iff a(1) admires 
a(2) at w. Now admires is semantically a two place predicate, but when we 
use it in a sentence we are usually interested in dealing with its arguments 
one at a time. Thus in the s tandard example 

(11) Everyone admires someone 

it makes a difference whether we first form the predicate 'admires some- 
one' and then let 'everyone' apply to this, or first form the predicate 
'everyone admires'  which then 'someone' applies to. Of course 'everyone' 
must operate on a(1) while 'someone' operates on a(2). In English some 
of this is indicated by word-order, but other languages use case-endings 
and at the underlying logical level we need a way of indicating this ex- 
plicitly. This is where the second term of the (w, u, a / triple comes in. It 
marks the 'evaluation individual',  which indicates what is currently being 
abstracted on. We require a family of abstraction operators. For each n, 
Absn is a one-place sentential functor with the following semantics: 

(12) V(Absn) is the function w such that  for a C P,  and any (w, u,a) 
triple, (w, u, a) e w(a) iff {w, u, a (u /n )}  e a, where a(u/n) is just 
like a except that  a (n)  - u. 
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I hope you will agree that  now the complexity is forthcoming. The idea 
is this. When thinking of the predicate admires from the point of view of 
its first argument we are thinking of it as Absladmires, for that  is true 
of a given u relative to w and a, iff u admires a(2),  because (w, u, a) E 
Y(Absladmires) iff (w, u,a(u/1)) E V(admires), iff u admires a(2) in w. 
And (w, u, a) E Y(Abs2admires) iff a(1) admires u in w. We can express 
the semantics of everyone and someone as 

(13) V(everyone) is the function w such that  for a E P,  (w,u,a) E 
w(a) iff for every person v E D, (w, v, a) E a. 

(13a) V(someone) is the function w such that  for a E P,  (w, u, a) E w(a) 
iff there exists a person v E D such that  (w, v, a) E a. 

It should be clear that  nothing in the semantical framework for s pro- 
hibits 'quantifiers' of any number of places operating with virtually no 
constraints. Thus, if 'most '  means 'more than half' then 

(14) (w,u,a} E V(most) (a,b) iff there are more v E D such tha t  
(w,v,a) E a and (w,v,a) E b than there are v E D such that  
(w, v, a) E a and (w, v, a) ~ b. 

Wha t  makes us call these 'quantifiers' is simply that  they 'abstract '  on 
the second term in the triple. For any u, v, E D and a E P, (w, u, a) E 
V(eyeryone)(a) iff (w, v,a) E Y(everyone)(a). This is analogous to the 
way a s tandard quantifier binds its variable. We'll now apply this to (11) 
showing how to get all four possible meanings: 

(15) Vx3y x admires y 

(16) 3yVx x admires y 

(17) Vy3x x admires y 

(18) 3xVy x admires y 

I don' t  claim that  these are equally natural  readings of (11) (though I 
did claim on p. 91f of Cresswell 1973 that  they are all possible) but they 
are all things we might want to express. I n / :  they can be expressed as, 
respectively, 

(19) everyone Abs l someone Abs2 admires 
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(20) someone Abs2 everyone Absl admires 

(21) everyone Abs2 someone Absl admires 

(22) someone Absl everyone Abs2 admires 

If you think of Abs I as a nominative case marker and Abs2 as an accusative 
case marker you can see that  (19)-(22) exhibit a natural  structure for 
inflected languages. I will go through (19). 

One of the features of s is that  its wff represent not only those ex- 
pressions which are complete sentences in the surface language but other 
expressions like nouns and verbs as well. Indeed, as I argued on p. 226 
of Cresswell 1990 the syntactic freedom offered by s as an underlying 
logical language frees natural  language syntax from heavy semantic con- 
straints and enables it to develop autonomously to a much larger extent 
than truth-conditional semantics has in the past permitted. Where r as 
a wff of s represents a context-independent sentence and I will as- 
sume that  (11) depends on times and worlds but not on other contextual 
features, even though quantifiers are frequently restricted by context 
then whether or not a particular (w, u, a) C V(19) should depend only on 
w and not on u or a. And the result we want is that  (w, u, a) E V(19) iff 
in world/ t ime w everyone admires someone. 

iff 

(w, u, a) C V(19) iff for every person v C D: 

(w, v, a) C V(Absl someone Abs2 admires ) 

(w, v ,a (v /1 ) )C  V( someone Abs2 admires) 

iff there exists a person s E D such that  

(w, s, a(v/1)) e V(Abs2 admires) 

iff 

(w, s, or(v~1, s/2)) E V(admires) 

iff v admires s in w. And this is the meaning we require. In s proper 
names also are one-place functors, so that  e.g., (w, u, a I E V(Arabella)(a) 
iff (w, Arabella, a) C a. 

All this has been by way of preamble to the problem of dealing with 
nouns like mother and enemy. I will begin by looking at an analysis of (8), 
in the sense in which it means that  every soldier faced an enemy of that  
soldier, in a language with generalized quantifiers taking as arguments 
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complex predicates obtained by A-abstraction. In such a language soldier 
will be a one-place predicate and enemy a two-place predicate. Then I 
will shew how to express this meaning in an indexical language s in which 
there is no syntactic difference between these two words both will be 
sentence symbols but the relativity appears in the semantics. In a 
language with A-abstraction (7) becomes 

(23) every (Ax soldier x)(Ax an (Az enemy zx)(Az faced xz)) 

In (23) every and an are both interpreted as two-place quantifiers every as 
universal and an as existential. I realize that in the case of an this is almost 
certainly not completely faithful to an adequate semantic treatment. (See 
the discussion in chapter 10 of Cresswell 1988 of work by Hans Kamp 1983, 
and Irene Heim, 1983.) I will also not make any reference to the proper 
analysis of the past tense of faced and will pretend that the sentence is 
simply true or false in any given possible world. The interpretation of 
(23) is standard. (See for instance Cresswell 1973 pp. 135-139 or chapter 
13 of Cresswell 1990.) 

In order to see what is going on in the interpretation of (23) think of 
the phrase 

(24) (Ax an (Az enemy zx)(Az faced xz)) 

as obtained by the combined operations of abstraction and identification 
of x and y in the expression 

(25) an (Az enemy zx)(Az faced yz) 

In s this means using a pair of abstraction operators and (24) becomes 

(26) AbslAbs2 an (Absl enemy )(Abs2 faced ) 

(23) then becomes 

(27) every (Absl soldier )(AbslAbs2 an (Absx enemy )(Abs2 faced )) 

I have inserted brackets into (27) to make its structure clear but if you 
remember that in/2 every and an are two-place functors, Absl and Abs2 
one-place functors, and soldier and faced sentence symbols, the bracketing 
is not in fact required. The meanings of Absl and Abs2 are given in (12), 
the meaning of faced (ignoring its tense) is, mutatis mutandis, just as 
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for admires described above, every and an would be the appropriate 
generalizations to the two-place case of everyone and someone: 

(28) u, c 
(w, v, a) C b 

V, (every)(a, b) iff for every v such that(w,  v, a) e a, 

(29) (w, u, a) e V (an)(a, b) iff there is at least one v such that  
(w ,v , a )  e a and (w ,v , a )  e b. 

For soldier we have, assuming that  it is not a relative noun, 

(30) (w, u, a> e V(soldier) iff a(1) is a soldier in w. 

Notice that  in this case it would have been simpler just to have (w, u, a / 
E V(soldier) iff u is a soldier in w. Then we need not have had Absl 
soldier in (25) but could have used only soldier. This is connected with 
the fact that  in (23) (Ax soldier x) is equivalent to soldier. However, 
this simplification is restricted to those simple sentence symbols which 
are semantically one-place predicates. It would thus be unavailable for 
relational nouns like enemy, to say nothing of more complex predicate 
expressions, whether realized as nouns or as verb phrases. Since there 
seems to be no syntactic marking of relational nouns it is bet ter  to assume 
that  Absl would always be used and that  the first argument of even non- 
relational nouns be a(1). 

The final thing to do for the evaluation of (27) is to treat  enemy 

(31) <w, u,a) e V(enemy) iff a(1) is an enemy of a(2) in w. 

Now to (27): 

(w, u, a) e V(27) iff for every v C D such that  (w, v,a) e V(Absl soldier), 
(w, v, a ) e  V(26) 

And (w, v,a) e V(Absl soldier) iff (w, v,a[v/1]) e V(soldier), iff v is a 
soldier in w. So all we have left to shew is that  (w, v, a) C V(26) iff in w, 
v faced someone who is an enemy of v in w. 

Now by two applications of V(Abs~), (w, v, a) E V(26) iff 

(32) (w, v, a[v/1, v/2]) e V(an (Absl enemy) (Abs2 faced)) 

iff, by V(an) there exists s 6 D such that  
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(33) (w, s, a[v/1, v/2]> 6 V(Absl enemy) 

and 

(34) (w, s, a[v/1, v/2]> 6 V(Abs2 faced) 

Now (33) holds iff <w, s, (~[~/1, v/2])[s/1]) e V(enemr). But (a[v/1, ~/2]) 
[s/l] = dis~l, v/2] and so (33) holds iff s is an enemy of v in w. And (34) 
holds iff (w, s, (a[v/1,v/2])[s/2]> 6 V(faced). But (a[v/1, v/2])[s/2] = 
a[v/1, s/2], and so (34) holds iff v faced s in w. So (32) holds iff there 
exists s 6 D such that  s is an enemy of v in w and v faced s in w. Which 
is to say that  (w, v, or> 6 V(26) iff in w, v faced an s which is one of v's 
enemies, which is just what we require. 

What  should be said about cases like (6) in which the second argument 
of enemy is supplied by the context? Here too, as argued in chapter 16 of 
Cresswell 1990, the indexical t reatment  has a pay-off, for one can simply 
treat the second argument as a contextual index. The difference between 
this t reatment  and more traditional ones is that  what it is an index for 
is now supplied by the meaning of the word in question. This meaning is 
captured by taking (27) and dropping the occurence of Abs2 which follows 
Absl. For then the second index of enemy would not be picked up by any 
operator and would remain free as a value to be picked up by the context. 

The next task is to look at the role of prepositions like of in (2). Again 
it will be convenient to see how this would be expressed in a language in 
which mother is explicitly a two-place predicate and then look at how to 
treat of as a modifier in an indexical language. In chapter 4 of Cresswell 
1985 1 shewed how to treat spatial prepositions as predicate modifiers and 
in chapter 14 of Cresswell 1990 how they become sentential functors in a 
propositional language. In the formalization of (2), assuming that  mother 
is just a two-place noun, the role of of is rather simple. In the predicate 
phrase mother of Dan we want Dan to apply to the second argument of 
mother. This means that  of is simply Abs2. For then, assuming that  

(35) (w, u, a) 6 V (mother) iff a(1) is the mother of a(2) in w, 

(36) (w,u,a) 6 V(Abs2 mother) 

iff a(1) is the mother of u. Let 

(37) <w, u, a> 6 V(Dan)(a) 

iff (w, nan, a) e a 
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and we have 

(38) (w, u, or) E V(mother of Dan) 

iff (w, Dan, a ( D a n / 2 ) ) C  V(mother) 

iff a(1) is Dan's mother in w. 

What  now about (3)? (3) means, I think, that  Arabella is someone's 
mother. To get this meaning we must insert a 'default' existential quanti- 
fier. Such quantifiers are common in many areas though there is dispute 
about whether they should be handled by a special symbol at the level 
of logical form or by building the existential quantification into the inter- 
pretation of the structure. I have a preference for the former since in the 
case of a noun like enemy the default situation is that  the context should 
supply the argument; and in some cases the same noun can be interpreted 
in both ways. If we write the default quantifier as 3n then we have 

(39) (w, u, a) E V(~n)(a) iff there exists v e D such that  (w, u,a(v/n)) 
E a  

The one-place predicate 'mother 
mother and 

' w o u l d  then be represented as 32 

(40) (w, '~ ,a )C  V(~2)(V(mother)) 

iff there exists v C D such that  (w, u, a(v/2))  C V(mother), iff there exists 
a v such that  a(1) is v's mother in w. 

To interpret (3) then, all that  is required is to give a semantics for is 
and combine it with the semantics already given for names like Arabella 
and the quantifier a. In Cresswell 1973 I argued that  the 'is' in sentences 
like (3) is identity. In Z2 this would mean 

(41) (w,u, cr)C V(is) iff  a ( 1 ) =  o-(2). 

To see how (3) works it is perhaps best to express it first in a language 
with A-abstraction 

(42) Arabella (A:c(a(Ax32mother x)(1yx is y))) 

This means that  Arabella is an z such that  there exists an z who is a 
mother and is also a y who is (the first) z. In 12 this becomes 
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(43) Arabella, Absl aAbsl~2mother Abs2 is. 

Notice that  the 3n quantifiers apply directly to the terms of cr and not to 
the evaluation individual. This is to prevent the possibility of ever getting 
a reading in which they could take anything but narrowest possible scope 
and will prevent a sentence like 

Every mother gets tired 

ever meaning that  there exists someone such that  every one of their moth- 
ers gets tired. In (3) it might seem that  the existential quantification is 
done by the an, in that  

(44) Is the mother here? 

may be uttered in a si tuation in which there is a contextually specified 
child whose mother  is sought. However, this seems merely to reflect tha t  
mother is functional. In a sentence like 

(45) Is Alex a registered student? 

ut tered at the University of Massachusetts it will hardly justify an affir- 
mative answer to be told that  Alex in enrolled at the Victoria University 
of Wellington. 

So it seems that  we can get the right t ru th  conditions both in the 
unmodified cases like (3) and in the modified cases like (2) when analysed 
as (38). However, we still have a problem. For we have moved from a 
situation with too much syntactic information to one which may seem to 
have too little. After all if mother  were a transitive verb Abs2 would still 
be necessary to indicate that  Dan is its object, for exactly the same reason 
as it is necessary in (19)-(22). 

At this point I should say something about what it is tha t  I hope to 
achieve. One of the important  debates in recent years is the extent to 
which the logical demands of a truth-condit ional  semantics should con- 
strain the syntax. If this debate is to make progress it would seem desir- 
able to be able to put a lower limit on semantic constraints. In other words 
one should a t t empt  to set out a language whose syntactic demands are 
as small as possible. Any compositional semantics will of course demand 
some syntax, and if we are to end up with t ru th  conditions, say in the 
form of a class of possible worlds, it would seem that  this process would 
have to be performed by functional application. In this sense 12 does seem 
to contain the minimal syntax that  semantics demands. Given this syntax 
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the aim would then be to build it up into something more complex but 
only when this can be done using syntactical arguments from natural  lan- 
guage. (Such arguments may of course include evidence that  particular 
syntactic analyses depend on particular semantic facts, but these would 
need to be established case by case.) 

I will shew how the literal spatial uses of prepositions as studied in 
chapter 4 of Cresswell 1985 also emerge as one-place functors in/2. Look 
at the phrase 

(46) house at Pooh Corner 

as it occurs in the sentence 

(47) Christopher Robin and Piglet built the house at Pooh Corner. 

(There is of course a sense in which at Pooh Corner is a sentence modifier 
saying where the building took place. That  is not the sense I have in 
mind.) 

We want (w, u, a(1)} E V(46) iff a (1 ) i s  a house and is at Pooh Corner, 
where we may assume that  Pooh Corner is a particular spatial region. The 
meaning of at may not be completely precise. Must the house be com- 
pletely contained in the region which is Pooh Corner, or need it merely 
overlap? Suppose the latter. Then at will be a one-place sentential mod- 
ifier with the meanings 

(48) (w, u,a} E V(at)(a) iff u is a place which overlaps a(1) in w and 
(w, ~u, ~) c a. 

For Pooh Corner we have 

(49) (w, u, a} E V(Pooh Corner)(a)iff (w, Pooh Corner, a} E a. 

(46) has the structure 

(50) Pooh Corner at house 

(w,u,a} E V(50)iff  

(51) (w, Pooh Corner, a} E V(at house)iff, by (48), 

(52) Pooh Corner is a place which overlaps a ( 1 ) i n  w and a(1) is a 
house in w. 
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There is certainly a difference between at and of, especially when of is 
wri t ten as Abs2 since Abs2 occurs in modifying sentences realized as verbs, 
and then there is no symbol for of in s But another way of looking at 
of is to say that  it is a different symbol from Abs2 but happens to have a 
semantics which turns out to be the same as Abs2. Thus 

(53) (w, u, a) E V(ot)(a) iff (w, u, a(u/2)) e a. 

If we do this we can look at what of and at have in common. In both 
cases they ibrm an expression in which the evaluation index u is related 
in some way or another with one of the terms of a. For of it is identity 
with ~r(2). For at it is spatial overlap with cr(1). The semantic difference 
is just that  while at refers to a substantive relation of refers to what  is 
often thought of as a logical relation. This seems to me just right, of is, 
if you like, the same kind of thing as at except for having a degenerate 
meaning. Indeed one of the problems in the analysis of prepositions has 
been how to put together these apparently different roles. The present 
account, by making it a mat te r  of content rather than form is able to 
preserve syntactic uniformity, while at the same time giving a plausible 
explanation of how what is really a difference in content has appeared to 
be a difference in form. In a sequel I hope to take up the question of how 
/: might be adapted to take account of natural  language syntax. In this 
paper I have tried to shew you how little syntax one needs to take care of 
the semantics of relational nouns. 
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0 

"Political economy is the science which investigates the laws of production, the 
distribution, and the exchange of wealth, so far as these laws depend upon the 
human mind." 

Henry Fawcett 
Manual of Political Economy (2 nd Ed.), 
MacMillan, London (1865), p. 54. 

I will start with a simplistic, naive viewpoint. I will take a science 
to consist of the accumulated knowledge of the researchers, or scientists, 
working in the area. The philosophy of science is thus essentially the 
philosophy of these scientists, that is their approach to the field, their 
choice of topics and their strategies for research. I will take the main 
objective of these scientists to be to learn about some specific part of the 
real world. Thus, physicists and chemists will try to understand the real 
physical world, biologists the biological world and so forth. Exceptions to 
this type of objective might be pure mathematicians and some philoso- 
phers who may try to understand only abstract objectives. However, the 
objectives of individual workers may be different from the whole group. I 
will assume the following objectives: 

(a) for the scientific field (the discipline or main objective): to study 
and attempt to understand the actual economy (the phrase "real 
economy" sometimes has a different, specific meaning in the eco- 
nomic literature and so will be avoided) 

(b) for an individual researcher (the individual objective): to max- 
imise his or her personal utility, reflected through income, self- 
satisfaction, reputation; and 

(c) for a particular piece of research (research objective): to influence 
the beliefs and thus probably the behavior of other workers 
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and, in economics, of economic agents. Thus a new theorem may 
influence the research approach taken by others, a new econometric 
technique is used in applied work or a new empirical result may 
change the degree of belief of an economic agent, measured as a 
probability, about some statement, such as "a change in money 
supply affects prices." I will propose later that there are producers 
of results and there are consumers of these results and that  this 
division has important implications. 

I will interpret the main objective as occurring because of the econom- 
ist's desire to find solutions to important problems in society relating to 
the actual economy. Thus, economists should perhaps be classified as 
"pragmatists," together with medical doctors and engineers. Although 
we want to know the truth about the economy, we will also be happy if a 
good enough approximation to the truth can be found that will be useful 
in alleviating a real world problem. "Truth" can be thought of as a final 
product, a useful approximation to it is an intermediate product. 

The three objectives are related but are not necessarily in agreement. 
A theme of this paper is to consider the implications, causes and cures of 
this disharmony, which I believe is weakening the discipline of economist 's 
attention towards the main objective. This leads to inefficiencies in the 
research effort and consequently a lack of respect for economic research by 
scientists in other fields, by politicians, the media and the public at large. 
This may be reflected in the shortage of research funds for economics 
from the National Science Foundation in the U.S., and for the proposed 
reductions in the number of academic economists in Britain, for example. 

It is worth pointing out here a sharp distinction between the physical 
and the behavioral or decision sciences, the latter including economics, 
psychology and sociology. In the behavioral sciences research output can 
influence and change the behavior of the objects being studied finding 
the relationships between smoking and health provide an example but 
this cannot occur in the physical sciences. In economics examples are 
optimal ways to select inventory levels or of reducing investment risk by 
the use of portfolios. Philosophers of science often use analogies from 
the physical sciences to make points about economics, for example, but 
these analogies are often not appropriate because of the adaptability of 
the economic agents. 

2. Economics deals with important questions, the suggested answers to 
which can affect the quality of life of many millions of people. For example: 

(a) what will be the short-run and long-run impacts of changes in the 
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size of the minimum wage? Should such a minimum exist? 
(b) what criteria should a rich, developed country use when deciding 

which developing countries should receive financial aid, and the 
extent of that aid? 

(c) should a large country use restraint of trade to protect its own 
industries? How effective is such restraint in achieving a political 
objective, such as persuading a foreign leader to change a policy? 

(d) to what extent should taxes be used to flatten the income distri- 
bution, by the use of transfer payments? 

(e) how should the savings and loan industry in the United States be 
regulated and re-structured? 

(f) should a developing country, with very limited resources, be con- 
centrating on improving the health and educational levels of its 
population or on attracting new industrial development by provid- 
ing a better transportation system? 

(g) what is the optimum population size of a country or region? Should 
immigration be encouraged or not? Should selection criteria be 
applied to decide who can migrate or not? 

There are many other examples. In most cases the economist has a poten- 
tim impact by giving advice and (conditional) forecasts to politicians, gov- 
ernment agencies, company executives, and those of banks and other in- 
stitutions, such as the International Monetary Fund and the World Bank. 

There are many difficulties with the interaction between economists 
and decision makers, some of which are discussed in Friedman (1986), 
who suggests as a secondary disciplinary objective "to influence policy." 
This important topic is not discussed here. 

Because economics deals with important questions it is important to 
society that it is a strong discipline. It needs to be encouraged and nur- 
tured but also to be censured if it acts in ways that are contrary to the 
common good. 

3. There are many types of economists. To illustrate this and to indi- 
cate the numbers in different categories the membership of the American 
Economic Association (AEA) was self-classified by major interest into ten 
broad categories. Table 1 shows the approximate number of members 
in each group in 1989, the percentage of the total for each category in 
1974 and in 1989, and the change in this percentage. Using the standard 
notation of K = thousand, the total membership in 1974 was 18.7K, in 
1988 it was 20.6K, giving a fifteen year growth of 10%, compared with a 
U.S. population growth of 15% over this period. This comparison is not 
completely relevant as not all U.S. economists belong to the AEA and 
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not all members of the AEA live in the U.S. The table shows a decline 
in the percentage of members in some of the applied subject areas (100, 
800, 900), substantial increases in the statistical and applied micro areas 
(200, 600) and small changes elsewhere. 

T A B L E  1 

A E A  MEMBERSHIP BY SUBJECT CLASSIFICATION 

Classification Number of % Total % Total Change 
Members 1989 1974 89-74 

1989 

000 General Economics 3,460 17.2 17.0 0.2 
(Theory, History) 

100 Growth, Development 2,200 11.0 12.5 -1.5 
(Planning, Fluctuations, 
Inflation) 

200 Economic Statistics 1,875 9.3 7.6 1.7 
(Econometrics) 

300 Money, Fiscal Theory 3,050 15.2 14.5 0.7 
400 International, Trade 1,970 9.8 9.3 0.5 
500 Administration, Finance 1,590 7.9 7.2 0.7 

(Marketing, Accounting) 
600 Industrial Organization, 2,105 10.5 8.0 2.5 

Technology Change 
700 Agricultural Economics, 1,030 5.1 5.4 -0.3 

Natural Resources 
800 Manpower, Labor, 1,620 8.0 10.1 -2.1 

Population 
900 Welfare, Consumer 1,200 6.0 8.2 -2.2 

Economics, Urban, 
Regional Economics 

Figures from AE Review, Directory of Members, 1974, 1989. 
[All figures approximate.] 

Two subclassifications are of interest for the arguments of later sec- 
tions. In 1989, about 43.5% of classification 000 gave "economic theory" 
as their main interest, which equates to about 1,500 individuals, whereas 
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69% of classification 200 identified themselves as econometricians, that is 
about 1,300 individuals. Thus, in this crude and oversimplified analysis, 
the number of "economic theorists" and of "econometricians" were about 
equal in the membership of the AEA in 1989, with these together making 
up about 14% of the full membership. 

It seems that philosophers of science often feel the need to categorize 
groups. In this case "theorists" can be called "rationalists," (reason is 
the source of knowledge) and econometricians "empiricists" (experience 
is the source of knowledge). Virtually all applied economists are also 
"empiricists" as they use data to build, extend and use models. These are, 
of course, just generalizations, not quite every theorist is just a rationalist, 
for example. Most economists are closer to the philosophy of Hume, Locke 
and Berkeley than that of Descartes, Spinoza and Leibniz. 

The fact that there are many types of economists and that different 
basic approaches are used both non-empirical and empirical, say 
would be viewed by an economist as potentially an advantage if it is un- 
derstood that research returns are higher if a diversification of approaches 
are used, as has been shown from portfolio theory. However, this diversi- 
fication often does not occur in a single piece of research, as will be seen. 
A piece of theory is usually just rationalist, a piece of applied economics 
at tempts to be sequentially rationalist starting with some theory 
and then empirical using data. The bridge between these components 
is little discussed, except in Stigum (1990). 

Economics is a fairly active field. In 1989 the Journal of Economic 
Literature (JEL) listed about 10K research papers published in English. 
Of the papers, about 10% were classified as "economic theory" and 5% 
as econometrics (plus forecasting). [The classifications used in the AEA 
survey and in the JEL are not necessarily the same.] The JEL in 1989 lists 
roughly 3,200 names as authors or coauthors of papers and 1,600 names 
for books, suggesting that over four thousand economists published in 
that year. 

Q 

"Political Economy consists of two parts - theory and practice; the science and 
the art." 

Mrs. Marcet 
Conversations on Political Economy (7 th Ed.) 
Longmans, London, (1839) page 87. 

For the purpose of case of argument I will assume that there are basically 
three types of economic research: theory, econometrics and applied. Thus, 
it will be assumed that any research paper can be classified into one of 
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these groups. Any individual researcher may produce papers in various 
groups, of course. The first two classifications will each be divided into 
two, giving in: 

(a) pure theory (denoted PM theory because of its similarities with 
pure mathematics), in which variables are given economic labels, 
and axioms and assumptions are converted into results with no 
empirical implications by the use of mathematical reasoning. 

(b) applicable theory (denoted AM theory), as above but the results 
do have empirically testable implications and thus may be directly 
helpful to applied research. 

(c) econometric theory (denoted EM theory) which uses mathematical 
statistics to obtain results about econometric procedures, such as 
consistency and asymptotic normality of an estimate or the power 
or relative efficiency of a test. 

(d) applicable econometrics (denoted AEM) which suggests applica- 
ble procedures, such as estimation techniques for special circum- 
stances, specification searches or tests for causality. 

(e) applied economics, which is clearly the largest group and tackles 
all the real problems involving the actual economy. 

The groups may be thought of as having different types of product. The 
theorists will be said to produce "theorems" as a final product and "theo- 
retical models" as an intermediate product. The theorems will character- 
ize properties of the variables in the models. Theoretical econometricians 
will also have "theorems" as their final products, which will characterize 
properties of the "econometric procedures" which are the final product 
of applicable econometric research. Finally, applied economic research 
will have "applied models" as an intermediate product and a variety of 
final products, such as forecasts, policy suggestions, estimates of impor- 
tant parameters such as elasticities and tests of theories. As with all the 
generalisations used in this paper, this is a vast oversimplification of ac- 
tuality but it is convenient for what follows. Workers in the (b) and (d) 
groups will be thought of as providing the new tools to be used by the 
last group. The P M theorists may well provide useful ways of thinking 
about questions that are helpful to the AM theorists. The EM theorists 
will help others appreciate the quality and properties of the econometric 
procedures. If all of the groups were numerically balanced, were work- 
ing in unison and in mutually helpful fashions, the main objective of the 
discipline would be easier to achieve. It is easy to suggest that this is 
not occurring. However, before discussing these problems it is necessary 
to mention two other groups of workers. These are the economic, gov- 
ernmental statisticians and non-research economics. This latter group is 
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probably numerically the largest and consists of economists working in 
industry, government, institutions such as the World Bank and the IMF 
and in consulting companies. It is unfair to call their work "non-research", 
but the vast majori ty of this work is not published nor publicly available. 
I think of this work as tackling actual world questions using the products 
of the applied economic researchers. 

There are concerns about the balance of published research work in eco- 
nomics. Morgan (1988) gives some numbers on the percentage of papers 
published in two main-stream economic journals (the American Economic 
Review (AER) and the Economic Journal (EJ) from Britain) and in simi- 
lar journals in four other disciplines for period 1982-86 in three categories: 

Economics Pol. 
AER EJ Sci. Soc. Chem. Phys. 

(a) Mathematical  models 42 52 18 1 0 12 
without data 

(b) Empirical analysis 44 40 51 74 17 41 
using public data  

(c) Empirical analysis 6 2 6 3 83 48 
based on experiments 
and simulations. 

[From Morgan (1988), some small categories are not reported.] 

Category (a) corresponds to theory and (b) to standard applied work. 
The balance seems wrong. To use an analogy from section 6, the members 
of the intelligence corps spend too much time talking to each other and 
not enough time talking to the army. 

. 

"If anything has become a received idea in recent philosophy of science, it is 
the thesis that there is no sharp distinction in science between observation and 
theory; ..." 

A. O'Hear 
Introduction to the Philosophy of Science 
Oxford, 1989 

The vast majori ty of data  used in economic research is supplied by 
omcial statisticians in the form of time series, panels or cross sectional 
data. There is some discussion with potential users of this data, but 
what to collect, what to provide and what transformations to use (such 
as seasonal adjustment) are largely determined by these statisticians. In 
economics, it is generally true that  the data gatherers and the data users 
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(for research purposes) are separate groups. This may not be true of non 
research economists. In the physical sciences, where applied researchers 
generate their own data by the use of experiments, or use casually gathered 
information, the relevance of the quotation at the top of this section is 
plausible. Theory is used to decide what experiment to run. In general 
this is not true in economics and so I believe that most economists would 
not accept the quotation as being relevant to their own discipline. 

This is not the place to discuss the quality of economic data. How- 
ever, it is worth pointing out that  many potentially important economic 
variables are not gathered or made publicly available. Some of these miss- 
ing variables are because of the high cost of gathering and manipulating 
the data, an example is regional consumption figures. Other variables 
are very difficult to define and measure, such as the "complexity" of an 
economy, "tastes", technology changes and individual utilities. It has to 
be accepted that  in any piece of applied economic research there will be 
missing variables, for which no acceptable proxies exist. This will always 
limit the quality of the applied model. 

0 

"What is lacking (in economics) is an effective means of communication be- 
tween abstract theory and concrete application." 

Barbara Wootton 
Lament for Economics 
1938, p. 64. 

PM Theory 

AM Theory 

31 
f 

Applied 
Research 

Non-Research 
Economists 

EM Theory 

Applicable 
Econometrics 

41 

Official 
Statisticians 

Figure 1. Major Links Between Groups of Economists 
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The figure shows what I believe to be the major links, or communication 
channels, between the groups of economics and the official statisticians. 
It should be noted that  some of the links are weak or non existent. 

To appreciate the importance of these links, and of the gaps, one can 
start with the main objective and consider the research strategy employed 
by an applied economist. Suppose that he or she (henceforth "he" for 
convenience and with no implications) starts with a well defined actual 
world problem to be tackled. The traditional research strategy is to find 
and use a relevant theory to suggest what variables are important,  a model 
specification and simplifying constraints on the model (such as variables 
to omit or at least expected signs on parameter values). 

The data is then gathered and econometric techniques used to estimate 
parameters and finally the applied worker interprets the results. It can be 
said bluntly that this research strategy often does not work. The reason 
is that the econometrician has told the applied worker to evaluate the 
applied model, and when this is done, this model is usually rejected. The 
importance of evaluation will be a central theme in this paper. It should 
be noted that  the economic theorists have little to say about the evaluation 
of applied models as it is usually assumed that  the theory model is correct. 
Econometricians have a different stand, believing that  most or perhaps 
all models are incorrect but that improved versions can be achieved 
by a careful evaluation. This process gives completely different research 
strategies than the traditional one, some start with a theory model and 
then evolve away from it as alternatives are considered, whereas other 
strategies start with pre testing of the data and the pure use of statistical, 
non theory based models. 

This paper will concentrate on two important gaps in the figure; 

Gap 1: that between theorists and econometricians, which may lead to 
advice to applied economists that is difficult to reconcile or may 
be conflicting, and 

Gap 2: that between theorists, but particularly PM theorists, and ap- 
plied workers. 

I would contend that the econometricians are more aware of the prob- 
lems encountered by applied workers and that  they react to these prob- 
lems. As evidence I would cite the many special estimation procedures 
that have been developed to deal with particular actual world situations. 

An analogy that is graphically useful but cannot be taken too far is 
to compare the organisation of economic research with the mammalian 
brain. Suppose that the brain can be considered as having two main 
parts, the core section which deals with all muscular and nerve activity 
and which assimilates most of the sensory information reaching the body, 
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and the outer cerebral cortex, or "little grey cells," which are responsible 
for thinking and the analysis of the more abstract information reaching 
the brain. The cerebral cortex is separated into two distinct sections, 
linked by a nerve bundle called the corpus callosum, and each section 
has distinct duties. In the analogy, the brain core corresponds to applied 
economic research, and the two sections of the cortex to theorists and 
econometricians. In a real brain, if the corpus callosum is cut, the body 
receives confused instructions, its actions becomes disjointed and incon- 
sistent. One can decide to pick a certain coat from a closet but cannot 
work out how to move an arm to get it, or an arm can go to the closet 
but no decision made about which coat to select. In many ways the disci- 
pline of economics behaves as though the corpus callosum is inoperative. 
The theorists and the econometricians do not interact sufficiently in their 
research to give clear signals to the applied economists about what model 
specifications and what techniques to use. The existence of this weak 
link or Gap 1 is particularly puzzling as there exists an organisation, the 
Econometric Society, with 3,500 members worldwide which includes most 
of the leading theorists and econometricians. 

The second gap is between the theorists, and to a lesser extent also the 
econometricians, with applied economists. The above quote by Baroness 
Wootton suggests that this is not a new problem. A different analogy may 
be helpful. Consider the applied economists as the omcers and soldiers 
of an army engaged in a battle. The theorists make up the intelligence 
corp. This corp is situated away from the battle, can take an overview 
of the whole situation, interpret incoming information and pass on rel- 
evant digested information and advice to the fighting part of the army. 
Thus, the members of the corp will spend part of their time talking to 
each other about the situation and new information and part of the time 
communicating with the army. Obvious dimculties arise if these two ac- 
tivities get out of balance. If most corp members do nothing but talk 
to each other, and even appear to forget that the army exists, then the 
army may not do well in the battle. The equivalence in economic re- 
search is when most theory papers are written in a technical, dimcult 
to appreciate style, make no attempt to suggest empirical implications 
and do not try to convince applied economists that the theorems are rel- 
evant or useful. Thus criticism applies to most theory papers but not 
all, the work on European unemployment by Jaques Dreze and on the 
theory of demand by Werner Hilderbrand are counterexamples. A simi- 
lar criticism can be applied to some papers in theoretical econometrics, 
such as asymptotic theory with no indication of the kind of sample size 
required to make this theory a useful approximation, or complicated and 
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uncheckable conditions for a property to hold, such as for the invertibility 
of a bilinear time series model. The next three sections discuss why these 
two gaps exist, given the present research strategies of the various groups. 

7. A dominant feature of any actual economy is its complexity. It consists 
of many economic units individuals and families making many decisions 
about consumption, investments, work patterns, savings and so forth. The 
decisions are effectively made independently, probably in some maximising 
mode, but the available choices of one agent will depend on the previous 
choices of many other agents, leading to externalities and shortages of 
some goods, such as available space on a commuter road. Interacting 
with, and limiting the behavior of, these decision makers are many other 
agents, in corporations, institutions such as universities, and local and 
federal governments. In a large economy, such as the United States, there 
may be nearly a hundred million families and two million corporations. 
Decisions are made frequently affecting production, employment, taxes, 
prices, wages, savings, factory location and many other variables that are 
generally accepted to lie within the purview of Economics. For example, 
the Statistical Abstract of the United States, 1989 takes over 800 pages 
and well over a thousand tables just to summarise the current and recent 
U.S. economy. It is dimcult to measure the complexity of an economy, 
although it is probably generally accepted that  a big economy is more 
complex than a small one and a current economy is more complex than 
those in the past. One aspect of complexity is the amount of interaction, 
or communication, between agents and this is certainly increasing. 

A further analogy can be made with a mammalian brain. Both a (large) 
economy and a (small) brain contain several hundred million units, the 
agents or the cells, that both act independently yet are linked. There are 
several different types of units, which have memories and act dynamically. 

A further aspect of complexity, which occurs in a discipline such as eco- 
nomics but not in a physical science, is the dynamics of the object being 
studied. The working of an economy is affected and constrained by its in- 
stitutions, such as bonus or regulatory agencies, and these evolve through 
time for a variety of reasons. As a consequence, and also through learning 
and increases in the efficiency of the use of human capital, the behaviour 
of economic agents also continually changes what kind of products are 
bought, investments made or careers sought depend not only on prices, 
interest rates or wages, but also on accumulated knowledge which can 
affect personal utility functions. It follows that economic theories also 
evolve, not only by changing existing theories or through the empirical 
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evaluation process, but also because new theory is required to investigate 
new situations. It follows that the philosopher of social science concerned 
with economics is criticizing a moving target. There is little impact of 
criticism of economic theories, or even methodology, of thirty, twenty or 
even ten years ago, although much writing in the philosophy of science 
cites work of such antiquity or even earlier. 

Because of the immense complexity of an actual economy it is generally 
accepted that it is necessary to adopt a simplifying strategy in order to 
conduct sensible research on it. This strategy usually consists of the 
adoption of a set of simplifying assumptions, although these are not always 
stated explicitly. An example of such a strategy is to study just a part of 
the macro economy, such as considering the relationship between wages, 
prices, productivity and employment rate. The simplifying assumption is 
that such a subsystem can be usefully analysed, whilst ignoring all the 
other thousands of variables, without any important distortions of the 
results. Sufficient conditions for this to be true, in terms of the concepts of 
exogeneity, super exogeneity and non-causality are given in Engle, Hendry 
and Richards (1983) although these conditions can only be tested in a 
limited fashion. The use of simplifying assumptions typically imply that 
the research workers aim is to produce a model or theorem that, at best, 
only approximates the actual economy. The quality of the approximation 
cannot be judged just from theoretical considerations or by simulation, 
but may be judged from a suitable empirical analysis, using data not used 
in the model. An exact fit should never be expected. 

A possible model for the brain is to assume that all N brain cells are 
identical, to work out what reaction that cell would have to a particular 
input, multiplying this reaction by N and then to claim that this will be 
the whole brain's reaction. As far as I know, no such model for the brain 
exists or would be taken seriously. Cells are not identical, they interact, 
share common inputs, and information is passed from one cell to another, 
possibly after some analysis. Any model that ignores all of this activity 
is likely to be completely inadequate. 

However, such a model not only exists in e c o n o m i c s -  called the repre- 
sentative agent theory - -  but it forms the basis of many of the dominant 
theories. Here, economic agents are assumed to be identical and to make 
their decisions as though they exist in isolation individual Robinson 
Crusoe economies. This type of theory is an example of one based on 
a particular simplifying assumption which produces an approximation to 
reality. It may be able to provide worthwhile predictions about the effect 
of an increase of income tax on consumption, say, but can make no pre- 
diction about the tax change on the income distribution. Representative 



775 

agent theory is a frequently used simplification assumption because it is 
a way of overcoming the important question of how micro theory can be 
aggregated into macro theory. Other aspects of the aggregation problem 
are discussed in section 10. 

One simplification that  is necessary for applied economists and many 
econometricians is going from the actual economy to the observed econ- 
omy. Only some parts of the economy are observable and measured or 
estimated. The quantity of available data is enormous but there are still 
many variables which economists would like to see but are not available, 
such as some regional series and a frequent, complete input-output table. 

8. A consequence of the use of a simplifying strategy with a true com- 
plex system is that  every model (and most theories) can at best be good 
approximations to the truth. It follows that all models are ultimately 
falsifiable given enough data and computer effort. 

A great deal of effort is made to falsify theories by econometricians and 
applied economists. A good example is the efficient market hypothesis 
which says that  consistent positive profits cannot be made by investment 
on the stock market or any such speculative market. The theory is easily 
understood and is obviously sensible - -  if it were clearly not true, the stock 
market would be a money pump and everyone would be rich. Until the late 
1970's the accumulated evidence from empirical evaluations was in favour 
of the hypothesis but more recent work involving more data, stronger 
computers and new statistical techniques have largely been against the 
hypothesis. Of course, in a stochastic world no theory can be said to be 
true or false, but the weight of evidence can be in favour or not. Some 
economic theories have been shown to be not falsifiable in that  they are so 
flexible that  some form of the theory is consistent with virtually any set of 
data. Rothschild (1990) says that  to the question "what restrictions does 
economic theory (the assumption that rational agents maximize) place 
on asset prices?" he gives the answer "almost none", which is similar to 
the answer Sonnenschein gave when he asked the same question about 
(excess) demand functions. 

As Redman (1990) has stated, economists generally do not try to falsify 
their own theories (or empirical techniques) but because of the strong 
competition for publications/promotions/career improvement it is very 
common for other economists to criticize and attack successful theories 
and techniques of others. I would claim that it is this continual discussion 
and evaluation of both new and old results that  give the discipline of 
economics whatever strengths it has. 
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"In the year 1854 the (British) Chancellor of the Exchequer confidently af- 
firmed that the income tax would be gradually reduced, and would be entirely 
abolished in the year 1860" 

Fawcett 
op. cit. p. 532. 

"Now everybody will get to work" 
Alfred P. Sloan, President 
General Motors, Oct. 27, 1929. 

"There is no cause for worry. The high tide of prosperity will continue." 
Andrew W. Mellon 
Secretary of the (U.S.) Treasury 
Sept., 1928. 

Perfect foresight is a common assumption in economic theory, it being 
assumed that  all economic agents can forecast some parts of the economy 
without any error into the distant future. It is an example of an approach 
to simplification that  is controversial the use of "clearly incorrect as- 
sumptions" (henceforth CIA). Of course no assumption is "clearly incor- 
rect" to all economists! I will use the term to include any assumption tha t  
appears to be untrue to most scientists who have given at least a casual 
glance at economic data.  Representative agent theory is clearly based on 
CIA's. 

A closely related class are the "possibly incorrect assumptions" (PIA's) 
which are also usually made for convenience or as a simplification. Ex- 
amples are the assumption of normality by econometricians, the use of a 
Cobb-Douglas production function in an applied study, the use of rational 
expectations or an assumption of linearity in a theory or applied model. 
PIA's  can be correct and in many cases are testable by using economic 
data.  

These types of assumptions can be discussed within the contexts of a re- 
search strategy and the evaluation of theories or models. For PM theory 
any assumptions are acceptable and need not be justified. AM theory can 
use CIA's to explore a new theory but needs to discuss the robustness of 
the theory to changes in the assumptions to make the results potentially 
useful for applied work. In fact, AM theory should be judged as being 
incomplete until this robustness question is addressed. If a small pertur- 
bation of the initial assumptions leads to a large change in the implications 
of the theory, such as a bifurcation, then this theory is unlikely to be use- 
ful in practical research. An example of the relaxation of assumptions is 
to consider first consumer choice theory under the CIA of certainty and 
then to consider uncertainty, as discussed in Stigum (1990), chapters 10 
and 19. 
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10. One of the main reasons for the gap, or weak link, between theorists 
and econometricians are that they are likely to use different simplifying 
assumptions and also to use assumptions that the other group view as 
CIA's. Examples of assumptions often used by theorists that most econo- 
metricians view as clearly incorrect are: 

(a) the economy is deterministic, rather than being inherently stochas- 
tic; 

(b) there are no unobservable variables, so that first order conditions 
are exactly true, whereas an econometrician would expect an error 
term to be present; 

(c) there is perfect foresight, whereas most of us find forecasting to be 
difficult and for there to be substantial forecast errors; 

(d) if a variable is stochastic then it is stationary, whereas data ana- 
lysts find many variables to be trending, have "unit-root" long run 
components and important seasonals; an example is the theory of 
inventories; 

(e) the economy is static, rather than being inherently dynamic. 

Assumptions often used by econometricians which may be viewed as 
CIA's by theorists include: 

(f) linearity or very simplistic forms of nonlinearity; 
(g) systems are small rather than large; and 
(h) no use is made of an underlying optimizing behavior by economic 

agents when considering model specification. 

Of these differences (a) is critical. I believe it is true to say that vir- 
tually every applied economist and certainly all econometricians believe 
that the economy is stochastic rather than deterministic. Further, they 
believe that economic variables cannot be decomposed into a deterministic 
part, to which all theory relates, plus an unknowable additive "measure- 
ment error." The stochastics come from unexpected shocks or innovations 
(weather, new technology), reaction to previous shocks and from unob- 
served, and probably unobservable, variables. There is clear difficulty in 
communication between a (theorist) who believes or appears to be- 
lieve in a deterministic economy and an applied worker who sees the 
economy to be modelled as inherently stochastic. 

Another important aspect of this gap is that the two groups sometimes 
appear to be interested in quite different aspects of the economy. A gross 
generalisation has the theorists being most interested in "equilibrium" 
and the econometricians in "dynamics", which can be viewed as disequi- 
librium. The typical theory text, is either micro or macro economies, will 
contain a great deal of discussion about equilibrium in it's many forms, 
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whereas most well known econometrics texts make absolutely no men- 
tion of the concept, at least according to their indices. The three-volume 
Handbook of Econometrics (edited by Z. Griliches and M. Intriligator, 
North-Holland, 1984) has no mention of equilibrium in any of the indices. 
This certainly suggests a major difference of emphasis between the two 
groups and that econometricians have not developed techniques to test 
some theories proposed by the theorists, although the use of cointegration 
goes some way to reducing this problem. It is difficult to define equilib- 
rium in a way that is useful to an applied economist, partly because it is 
needed for a stochastic system. 

A further example of different approaches used by theorists and econo- 
metricians is the questions that  come from the process of aggregation. 
Econometricians have concentrated on the effects of aggregating from a 
group of subeconomies, such as states, to the full economy. Conditions are 
known where no or little loss of information occurs in some cases. There 
questions are about going from one set of observable variables, at the 
state level, to the aggregate observable variables. The theorists are more 
concerned with aggregation from the micro variables, which are usually 
unobservable, to macro variables. 

11. 
"It is not very constructive to dismiss macroeconomics because it requires 
implausible aggregation assumptions " (emphasis added). 

A. Deaton 
New Palgrave Dictionary of Economics 
vol. 1, p. 597 

The macroeconomy is the aggregate of all the microeconomies of the 
individual economic agents and institutions. Some macro variables, such 
as total consumption, are simple sums of the consumption of the many 
individual agents. However, relationships do not necessarily aggregate 
so easily, for example, a non linear relationship between micro variables 
may become linear, to a close degree of approximation, between the cor- 
responding macro variables. Once more, the theorists and the econome- 
tricians have quite different approaches to aggregation. The theorists ask 
questions about how aggregation can occur so as to preserve at the macro 
levels a relationship that  has been derived at the micro level, leading to 
the quotation at the top of this section. Of course, the macroeconomy ex- 
ists and has properties regardless of the theorist's assumptions. The use of 
micro theory to suggest macro relations is one reason why an understand- 
ing of aggregation is so important. Econometricians have been inclined to 
take a more pragmatic but stochastic viewpoint of aggregation. It 
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can be shown that a strong (R 2 - 0.99) micro relationship can aggregate 

into a weak (R 2 - 0.01) macro relationship but that  a weak micro model 
(R 2 - 0.01) can lead to a well fitting macro model (R 2 = 0.99). Details 
can be found in Granger (1987). What  matters are the existence, observ- 
ability and location in the model of common factors, which are factors 
that enter the micro models of every agent. If these factors are in the 
residuals of the micro relationships, they can have a profound effect on 
the model for aggregated variables. This problem is often assumed away 
by theorists, either taking theories to be deterministic or by taking resid- 
uals to be independent of each other, as in representative agent models. 
The econometricians are equally at fault for not trying to investigate the 
types of relationships between micro residuals that occur in practice, by 
looking more at panel data for instance. It follows that the usefulness in 
practice of using aggregated micro models is still very unclear, leaving the 
applied economists with difficulties in research strategy. 

12. There seems to be one inevitable component of the gap between 
pure theorists on one hand and applicable econometricians and applied 
economists on the other, which arises from a basic difference in viewpoint 
and interest. It is helpful to distinguish between properties of models 
(strictly of variables generated by a model when used as a data generating 
process (DGP)) and properties of actual variables. Theorists are inher- 
ently interested only in properties of models whereas applied economists 
are or should be interested mostly in properties of variables. Prop- 
erties of variables include stability, stationarity, ergodicity, forecastabil- 
ity (Granger) or causality using universal information sets, long mem- 
ory or having near unit roots, capacities (see Nancy Cartwright (1989)), 
integrated and cointegration. Properties of models include consistency 
or efficiency of estimates, weak exogeneity, invertibility and encompass- 
ing. None of the properties of models have an existence without a model 
whereas properties of variables can be evaluated directly from data with- 
out use of a specific model. If a variable has a particular property, a model 
can also have this property, in which case the model is "data coherent" 
with respect to this particular property. Thus, if we realize by looking at 
the data that  dividend payments are never negative, a model that  only 
produced positive dividends would be data coherent. It is true that some 
models are only "potentially data coherent" in that  if they are properly 
identified they may have parameter estimates that  produce the required 
property. A model that is data coherent with respect to some sets of PV's 
but not others is of some but limited value. For example, a macro model 
built to explain a stylized fact (assumed to be an actual PV) may be data 
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coherent to that fact but with little else. The construction of such models 
can be thought of as a learning exercise for macro theorist rather than as 
a serious actual world modelling exercise. If successful, its value is clear 
and the method can be used in later models but it would be dangerous, 
to try to forecast the economy or to discuss policy implications if there 
are other important PV's with which the model is not data coherent. It 
will be an important part of any modelling exercise for the researcher to 
declare what PV's are considered important and which not, as part of the 
simplification process. 

13. 
"When the hypothesis nor the implications of a theory can be confronted with 
the real world, that theory is devoid of any scientific interest." 

Maurice Allais 
extract from his 1988 Nobel Lecture 
"My Conception of Economic Science" 
Methodus, 2, (1990), 5-7. 

The main disagreement between theorists and econometricians is the 
importance of empirical investigation of the implications of a theory. 
Many theory papers will not even indicate the relationship of the the- 
ory to the actual economy, yet the authors are willing to state "policy 
implications" of the theory. 

There is a simple division of how a result can be evaluated; one can 
discuss the research strategy used to obtain the result and then evaluate 
its quality. The research strategy can be discussed on purely intellectual 
grounds such as how sensible are the assumptions, how robust is the result 
to changes in the assumptions and how good is the quality of the math- 
ematics used in getting the result. I agree with Allais that,  at least for 
producers in categories 2, 4 and 5, the quality of the result theorem, 
procedure or model can only finally be evaluated by facing it with the 
actual economy. I will also argue that  the intellectual discussions about 
how a result is obtained are of very little value when evaluating it's quality. 
A theory or a model should be evaluated directly, not from it's origins. 
The quality of the mind of a child is not evaluated by considering the 
intelligence of it's parents a genius can be born to parents of below av- 
erage intellect. Similarly a great wine can be made from medium quality 
grapes and a masterpiece of art can be painted on poor quality canvas. 
Thus CIAs may be used to produce an important theorem and bad econo- 
metrics may produce an excellent model. It is probably a bad research 
strategy to start with poor ideas and technique, the result obtained will 
probably be of poor quality but it is not necessarily so. 

There are many ways to evaluate and some of them can be illustrated 
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by considering how to reach an opinion about the quality of a bottle of 
wine. Some approaches to deciding the wine is not drinkable are: 

(a) purely i n t e l l e c t u a l -  "the wine is made by untraditional methods, 
using poor grapes and it comes from Texas"; 

(b) arbitrary "the bottle is ugly"; 
(c) visual comparison "it has a funny colour"; and 
(d) empirical test "I've had a taste and its not good." 

Some academics are inclined to give a great deal of weight to approach 
(a) even though society has largely rejected it in most countries one 
cannot base an employment decision on race, gender or age of an applicant, 
for example. Science surely prefers (d), which in economics corresponds 
to the empirical testing of a theory. 

If a theorist provides a theorem and a discussion of the empirical impli- 
cations, the work can be allocated to the AM theory group. Economists, 
believing in the efficiency of worker specialization, would not expect the 
theorist to conduct the empirical investigation him or herself. It is the 
job of the applied economist to do the empirical testing, but this is less 
likely to occur if the AM theorist does not communicate well and does 
not provide a clear statement about which is testable about the theory. If 
very special data is required, such as estimates of the utility functions of 
each participant in a survey, the testing may well not occur. If the theory 
can be stated as a specific hypothesis, the tools of mathematical statistics 
and procedural econometrics can be applied, using the hypothesis as the 
null H0, provided also that suitable data is available. There is no need to 
discuss this part of evaluation further, although the appropriation reac- 
tion when Ho is rejected need further consideration. If the theory cannot 
be stated as a specific hypothesis, because of impreciseness, such as an 
unclear definition of "income" say, or because important economic vari- 
ables are ignored, such as if the theory only applies to closed economies 
say, then the applied economist has more difficulty evaluating the theory. 
It is necessary to add further simplifying assumptions to make a version 
of the theory testable. This should occur less often if the AM theorist 
keeps in mind the empirical testing question when constructing the the- 
ory. It follows that AM theorists should have some familiarity with data 
availability and with the main limitations of this data. 

This att i tude will make the AM theorists' task harder but more rele- 
vant. A procedure for progressing from sound theory to quality empirical 
evaluation is discussed in Stigum (1990), although he finds that it takes 
over a thousand pages to explain and develop the procedure. This perhaps 
give an indication of the magnitude of the task facing a responsible AM 
theorist. Various aspects of the empirical testing question are considered 
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further in sections 14 and 15. 
The situation discussed in this section is hardly new, as the following 

quotation from Keynes (1936) states: 

But although the doctrine itself has remained unquestioned by orthodox eco- 
nomists up to a late date, its signal failure for purposes of scientific prediction 
has greatly impaired, in the course of time, the prestige of its practitioners. For 
professional economists, after Malthus, were apparently unmoved by the lack of 
correspondence between the results of their theory and the facts of observation; 
a discrepancy which the ordinary man has not failed to observe, with the 
result of his growing unwillingness to accord to economists that  measure of 
respect which he gives to other groups of scientists whose theoretical results 
are confirmed by observation when they are applied to the facts. 

14. 
"The science of political economy may be divided into two great branches. The 
theoretic and the practical . . . .  The practical branch is far more arduous." 

Nassau W. Senior, 1827 
Selected writings on Economics 
Reprints of Economic Classics 
A. Kelley publisher, New York 1966 

I believe that it is generally agreed amongst theorists that really good 
applied work is much more difficult than good theory. When students run 
into problems whilst analysing data, the econometric theorist can give a 
self-satisfied smile and say "that is why I stick to theory." A theorist can 
select his or her assumptions so that the development of the theory can 
proceed, but actual economic data is often less obliging and often disobeys 
these assumptions, non normality being an example. 

Not only is good applied work difficult to produce but it seems to be 
particularly difficult to get the work accepted for publication. It is al- 
ways easy to find topics that have been neglected or assumptions that 
are dubious but not tested, or simplification strategies that a reviewer 
finds unacceptable. This is particularly true if the evaluator is a theorist 
or an econometrician, who demand use of up to date theoretical results 
or econometric procedures. As such evaluators are likely to be unfamil- 
iar with the practical problems of applied research or are unsympathetic 
to the actual difficulties encountered unrealistic demands may be put on 
the applied workers to get a paper accepted for publication. This may de- 
crease if the evaluation was conducted largely by other applied economists 
plus consumers of applied research and if evaluation using empirical tests 
was given more weight. 

A difficulty is that a poor quality applied paper, with incorrect theory 
or out-of-date econometric procedures cannot be allowed to be published, 
otherwise other applied workers would believe that work of such quality 
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was acceptable. Just as roses benefit from hard pruning, so does applied 
work benefit from harsh but fair criticism. Of course, the benefits of 
severe, constructive criticism will also apply when applied to theoretical 
work. The discipline's main objective is not reached if only applied work 
is put through an intensive evaluation process. 

In recent years econometricians have paid some attention to the ques- 
tion of how a model can be evaluated (see the collection of papers in 
Granger (1990) and references given there). There are many in-sample 
specification tests but to avoid problems of "data-mining" most econo- 
metricians prefer out-of-sample or forecasting tests, although when there 
is insufficient data cross-validation is a computer intensive compromise. 
The "standard practice" is to specify a model, possibly after a specifi- 
cation search, to estimate it's parameters by minimising a cost function 
and then to apply various evaluation tests. As these procedures are well 
documented in the econometric literature there is no need to discuss them 
here, other than to say that  the methods used are still evolving and there 
is by no means complete agreement amongst econometricians about the 
best strategies to use. 

The method of evaluation may depend on the objectives of the model, 
so that  a model devised just for forecasting should not be evaluated in 
the same way as a policy model, the difference being evaluation of uncon- 
ditional versus conditional forecasts. 

Some less conventional estimation and evaluation techniques are also 
employed. An estimated model may be rejected because it does not agree 
with economic i n t u i t i o n -  an estimated coefficient may have the "wrong" 
sign, for example, or an estimated coefficient may be liked because it has a 
similar value to estimates from other, possibly less sophisticated, studies. 

A new aspect of estimation has arisen with a class of models, called 
real business cycle models, which use an optimizing representative agent 
to suggest macro models. The models are usually too complicated to per- 
form a full estimation procedure, and so values of important parameters, 
including means, variances and autocorrelations, are taken from a variety 
of separate, but relevant, sources. To simulate the output of the model, if 
an input series is thought to be white noise, then the mean and variance 
of an observed white noise is used, together with a normality assumption, 
to produce the required series. Similarly, autocorrelations are taken from 
actual series and plugged into the simulation. The process is called "cal- 
ibration" and assures that  the output of the model resembles the actual 
economy in certain, selected features. It is true of virtually all of the cali- 
bration process, including the recently introduced use of spectral analysis 
to see if the model really does produce a "business cycle", is that  it com- 
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pletely ignores the sequence in which the actual data is generated, so that  
the information in the "arrow of time" is not employed. If the economic 
data were given to the calibration in a reversed order it would not affect 
the values used. The temporal order of data, which is the basic building 
block of virtually all discussions of causality, is generally considered to be 
the most important information that  is available to a modeller. As the 
real business cycle theories are still evolving, the preset ones are certainly 
misspecified. What  it means to calibrate a mis specified model is unclear. 

15. Much of the discussion about evaluation can be used to consider 
questions of causality in economics. A statement like "a change in money 
supply results in a change in prices" has causality implications. One 
can a t tempt  to evaluate the statement intellectually, by discussing the 
quality and correctness of the theory used to derive the relationship, and 
if there is no acceptable theory the correctness of the statement can be 
rejected. As argued above if the statement is a proposed property of the 
actual economy the only sound evaluation is by an empirical study. For 
this, an operational definition of causality is required. If instantaneous 
relationships are excluded, as I have argued elsewhere that  they should, 
then a forecastability test of causality is viable and practical (see Granger 
(1988)). Such a test will not necessary be the only one available and may 
well not capture all parts of the complex issue of causality but it does 
have enough desirable features to make it worth using. 

Thus, I am again separating discussion of the process that  leads to the 
causality statement from the evaluation of the correctness of the state- 
ment. Clearly it is not possible to use statistical procedures on unique or 
rare causal events. 

16. 
"Among persons interested in economic analysis, there are tool-makers and 
tool-users" 

A.C. Pigou 
Sydney Ball Lecture, 1929. 

It has been suggested above that  an objective of economic research is 
to affect the beliefs, and hence the behaviors, of others. Thus each piece 
of research will have both a producer and a consumer. The producer 
will need to market the product, so that  information is provided to the 
potential consumer so that an evaluation can be attempted. The natural 
questions that  follow from this viewpoint are who should evaluate research 
and how should it be done? 

As to who should evaluate, the obvious workers are peers, those working 
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on similar topics, and potential consumers, those who will be using the 
work. Using the five categories of economists proposed in section four, 
the main consumers for the work of each group are: 

Producer 

1. PM theorists 

2. AM theorists 
3. Econometric theorists 
4. Applicable 

Econometricians 
5. Applied Economists 

Main Consumers 

Other PM theorists 
Possibly AM theorists 
Theorists, Applied Economists 
Applicable Econometricians 
Applied Economists 

Other Applied, Practicing Economists 
in government, industry, finance etc. 

At present most evaluations of research papers for journal publication, 
new books or for career promotions by outside reviewers are performed 
by peers. This suggests that the quality of work by producers in groups 2 
to 5 would be improved if consumers were also used as evaluators. [I have 
no comments on how the work of group 1 producers should be evaluated.] 
As an analogy, if Chevrolet had its cars evaluated only by Ford and vice- 
versa, consumers would be worse off than if consumers were involved in 
the evaluations. Reliance just on peer review ignores the main objective 
of the discipline. 

The acknowledgement of the existence of consumers is particularly rel- 
evant for models designed to have policy implications. A policy maker 
interested in using the recommendations of such a model will surely want 
to be convinced that the model is relevant for the actual world. Econome- 
tricians would also surely claim that this can only occur if the model has 
been evaluated using data from the actual economy. Precisely how this 
should be done is still unclear, but some helpful techniques are available. 

17. 
"The first principle of Economics is that every agent is actuated only by self- 
interest" 

F.Y. Edgeworth 
Mathematical Psychics (1881). p.16. 

If agents act largely in their own self-interest it should be of no surprise 
that economic researchers do the same. Their choice of research topics 
and the research strategy used will maximise a personal utility function, 
incorporating income, location, citations and so forth, and this behavior 
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probably does not maximise a social utility function or progress towards 
the main objective of the discipline. If the incentives of the system do 
not penalise self-interests, because of the use of peer-review rather than 
consumer-review, then nothing will change. The situation is similar to 
the mis-use of a free good, such as the pollution of air and water. Indi- 
viduals may feel that it is too costly personally to attempt difficult and 
harshly evaluated applied work than less risky theory and mainstream 
econometrics. Society may want better applied economic research but the 
market for this research is not working correctly, largely because society 
has insufficient input into the decision processes, such as awards of grants, 
promotions and on publications. The economics solution to the mis-use 
of free goods is to have a public body, such as a local government, to 
impose a cost for pollution. Of course this solution does not work if the 
government consists just of polluters. The equivalence here is for editors, 
publishers and employers to give encouragement to work aimed at the 
main objective. It is not being argued that there should be no PM theory 
for example, but that the balance should change. 

These ideas are, of course, by no means new, see for example the dis- 
cussion on "satisficing" in Giere (1988). 

To improve matters, there has to be re-evaluation of their objectives by 
individual workers, of the incentives given by the NSF and other grant 
givers and by employers, the greater use of consumer evaluators, a con- 
certed effort by editors of important journals to make the evaluation pro- 
cess fairer to applied work and to suggest that theory and econometric 
papers pay specific attention to how the work can be made useful for 
applications. 

18. In this paper I have identified four major problems with the discipline 
of economics: 

P1. The gap, or lack of communication, between theorists and econo- 
metricians, and particularly the lack of appreciation by theorists 
of the importance of empirical evaluation of their results. 

P2. The gap between much of economic theory and application. 
P3. The lack of appreciation of applied economic research. 
P4. The lack of attention paid to relevant research on the actual econ- 

omy by academic economists. This problem is largely due to the 
application of self interest by researchers in their choice of research 
topics. 

Some partial solutions are: 

S1. Require each research paper to precisely state its objective and how 
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this fits in with the main objective of the discipline. This will allow 
appropriate evaluation criteria to be used. 

$2. Require each research paper to end by stating the empirical impli- 
cations of the results, if any. In some occasions this will require 
theorists to be aware of data availability, limitations and its major 
properties. 

$3. Evaluation of research papers, books and promotion files should be 
by consumers of the research as well as by peer producers. 

$4. The discipline, through major academic or popular journals, should 
publish regular, say annual, accounts of what has been achieved in 
terms of solving major problems of actual economics. 

$5. Research and fund giving organizations, such as the U.S. National 
Science Foundation or national governments and central banks, or 
international organizations such as the World Bank or IMF should 
occasionally issue challenges to the Economic Profession to solve 

or have a substantial impact on important, actual economy 
problems. An example would be to reduce unemployment in some 
disadvantaged section of society. Funds will need to be made avail- 
able to support the research. 

What  is most required is wider discussions of the problems outlined 
above. The proposed solutions could alleviate some of the problems, but 
what is most needed is a change of attitude by many academic economists, 
which can perhaps only be achieved by a change in incentives. 
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1. I n t r o d u c t i o n  

The study of causation is central to the understanding of human reasoning. 
Inferences involving changing environments require causal theories which 
make formal distinctions between beliefs based on passive observations and 
those reflecting intervening actions [Geffner, 1989, Goldszmidt and Pearl, 
1992, Lifchitz, 1987, Pearl, 1988a, Shoham, 1988]. In applications such as di- 
agnosis [Patil et al., 1982, Reiter, 1987], qualitative physics [Bobrow, 1985], 
and plan recognition [Kautz, 1987, Wilensky, 1983], a central task is that of 
finding a satisfactory explanation to a given set of observations, and the 
meaning of explanation is intimately related to the notion of causation. 

Most AI works have given the term "cause" a procedural semantics, at- 
tempting to match the way people use it in reasoning tasks, but were not 
concerned with the experience that prompts people to believe that "a causes 
b", as opposed to, say, "b causes a" or "c causes both a and b." The 
question of choosing an appropriate causal ordering received some atten- 
tion in qualitative physics, where certain interactions attain directionality 
despite the instantaneous and symmetrical nature of the underlying equa- 
tions, as in "the current causes the voltage to drop across the resistor" 
[Forbus and Gentner, 1986]. In some systems causal ordering is defined as 
the ordering at which subsets of variables can be solved independently of oth- 
ers [Iwasaki and Simon, 1986], in other systems it follows the way a distur- 
bance is propagated from one variable to others [de Kleer and Brown, 1986]. 

*This paper is a modified version of one presented at the Second International Conference 
conference on the Principles of Knowledge Representation and Reasoning, Cambridge, 
Massachusetts, April 1991. 
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Yet these choices are made as a matter of convenience, to fit the structure 
of a given theory, and do not reflect features of the empirical environment 
which compelled the formation of the theory. 

An empirical semantics for causation is important for several reasons. 
First, an intelligent system attempting to build a workable model of its 
environment cannot rely exclusively on preprogrammed causal knowledge, 
but must be able to translate direct observations to cause-and-effect rela- 
tionships. Second, by tracing empirical origins we stand to obtain an in- 
dependent gauge for deciding which of the many logics proposed for causal 
reasoning is sound and/or complete, and which provides a proper account of 
causal utterances such as "a explains b", "a suggests b", "a tends to cause 
b", and "a actually caused b", etc. 

While the notion of causation is often associated with those of necessity 
and functional dependence, causal expressions often tolerate exceptions, pri- 
marily due to missing variables and coarse description. We say, for example, 
"reckless driving causes accidents" or "you will fail this course because of 
your laziness". Suppes [Suppes, 1970] has argued convincingly that most 
causal utterances in ordinary conversation reflect probabilistic, not categori- 
cal relations 1. Thus, probability theory should provide a natural language for 
capturing causation [Reichenbach, 1956, Good, 1983]. This is especially true 
when we attempt to infer causation from (noisy) observations- probability 
calculus remains an unchallenged formalism when it comes to translating 
statistical data into a system of revisable beliefs. 

However, given that statistical analysis is driven by covariation, not cau- 
sation, and assuming that most human knowledge derives from statistical 
observations, we must still identify the clues that prompt people to perceive 
causal relationships in the data, and we must find a computational model 
that emulates this perception. 

Temporal precedence is normally assumed essential for defining causa- 
tion, and it is undoubtedly one of the most important clues that peo- 
ple use to distinguish causal from other types of associations. Accord- 
ingly, most theories of causation invoke an explicit requirement that a cause 
precedes its effect in time [Good, 1983, Reichenbach, 1956, Shoham, 1988, 
Suppes, 1970]. Yet temporal information alone cannot distinguish genuine 
causation from spurious associations caused by unknown factors. In fact 
the statistical and philosophical literature has adamantly warned analysts 
that, unless one knows in advance all causally relevant factors, or unless one 
can carefully manipulate some variables, no genuine causal inferences are 
possible [Cartwright, 1989, Cliff, 1983, Eells and Sober, 1983, Fisher, 1953, 

See [Dechter and Pearl, 1991] for a treatment of causation in the context of categorical 
data. 



791 

G/~rdenfors, 1988, Holland, 1986, Skyrms, 1980] 2. Neither condition is real- 
izable in normal learning environments, and the question remains how causal 
knowledge is ever acquired from experience. 

This paper introduces a minimal-model semantics of causation which pro- 
vides a plausible account for how causal models could be inferred from ob- 
servations. Using this semantics we show that  genuine causal influences 
can in many cases be distinguished from spurious covariations and, more- 
over, the direction of causal influences can often be determined without 
resorting to chronological information. (Although, when available, chrono- 
logical information can significantly simplify the modeling task.) Such se- 
mantics should be applicable, therefore, to the organization of concurrent 
events or events whose chronological precedence cannot be determined with 
precision, (e.g. "old age explains disabilities") in the spirit of Glymour 
[Glymour et al., 1987] and Simon [Simon, 1954]. 

This paper is organized as follows. In Section 2 we define the notions of 
causal models and causal theories, and describe the task of causal modeling 
as an identification game scientists play against Nature. In Section 3 we 
introduce the minimal-model semantics of causation and exemplify its oper- 
ability and plausibility on a simple example. Section 4 identifies conditions 
under which effective algorithms exist that  uncover the structure of casual 
influences as defined above. One such algorithm (called IC) is introduced 
in Section 5, and is shown to be sound for the class of stable distributions, 
even when some variables are not observable a. Section 6 extracts from the 
IC-algorithm the essential conditions under which causal influences are iden- 
tified and proposes these as independent definitions of genuine influences 
and spurious associations, with and without temporal information. Section 
7 provides an intuitive justification for the definitions proposed in Section 
6, showing that  our theory conforms to the common understanding of cau- 
sation as a stipulation of stable behavior under external interventions. The 
definitions are shown to be in line with accepted standards of controlled ex- 
perimentation, save for requiring the identification of "virtual" experimental 
conditions within the data  itself. In Section 8 we invoke the "virtual con- 
trol" metaphor to elucidate how causal relationships can still be ascertained 
in the absence of temporal information. We then offer an explanation for the 
puzzling, yet universal agreement between the temporal and the statistical 
aspects of causation. 

2Some of the popular quotes are: "No causation without manipulation" [Holland, 1986], 
"No causes in, no causes out" [Cartwright, 1989], "No computer program can take account 
of variables that are not in the analysis" [Cliff, 1983]. 
3proofs can be found in [Verma, 1992]. 
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2. The  causal  mode l ing  f r amework  

We view the task of causal modeling as an identification game which 
scientists play against Nature. Nature possesses stable causal mechanisms 
which, on a microscopic level are deterministic functional relationships be- 
tween variables, some of which are unobservable. These mechanisms are 
organized in the form of an acyclic schema which the scientist attempts to 
identify. 

DEFINITION 1 A causal  mode l  of a set of variables U is a directed acyclic 
graph (dag), in which each node corresponds to a distinct element of U. 

The nodes of the dag correspond to the variables under analysis, while the 
links denote direct causal influences among the variables. The causal model 
serves as a blue print for forming a "causal theory" - a precise specification 
of how each variable is influenced by its parents in the dag. Here we as- 
sume that Nature is at liberty to impose arbitrary functional relationships 
between each effect and its causes and then to perturb these relationships by 
introducing arbitrary (yet mutually independent) disturbances. These dis- 
turbances reflect "hidden" or unmeasurable conditions and exceptions which 
Nature chooses to govern by some undisclosed probability function. 

DEFINITION 2 A causal  t h e o r y  is a pair T - <D, OD> consisting of a 
causal model D and a set of parameters ~)D compatible with D. 0 D assigns 
a function x~ - f~[pa(xi), e~] and a probability measure gi, to each x~ c U, 
where pa(xi) are the parents of xi in D and each ei is a random disturbance 
distributed according to gi, independently of the other e's and of any pre- 
ceding variable xj �9 0 < j < i. (The variables are assumed ordered such that 
all arcs point from lower to higher indices.) 

This requirement of independence renders each disturbance "local" to one 
parents-child family; disturbances that influence several families simultane- 
ously will be treated explicitly as "latent" variables (see Definition 3). 

Once a causal theory T is formed, it defines a joint probability distribution 
P ( T )  over the variables in the system, and this distribution reflects some 
features of the causal model (e.g., each variable must be independent of 
its grandparents, given the values of its parents). Nature then permits the 
scientist to inspect a select subset O C_ U of "observed" variables, and to 
ask questions about P[o], the probability distribution over the observables, 
but hides the underlying causal theory as well as the structure of the causal 
model. We investigate the feasibility of recovering the topology of the dag, 
D, from features of the probability distribution. 4 

4This formulation invokes several idealizations of the actual task of scientific discovery. 
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3. M o d e l  p r e f e r e n c e s  ( O c c a m ' s  r a z o r )  

In principle, U being unknown, there is an unbounded number of models 
that  would fit a given distribution, each invoking a different set of "hidden" 
variables and each connecting the observed variables through different causal 
relationships. Therefore with no restriction on the type of models considered, 
the scientist is unable to make any meaningful assertions about  the structure 

underlying the phenomena. Likewise, assuming U = O but lacking temporal  
information, he/she can never rule out the possibility that  the underlying 
model is a complete (acyclic) graph; a structure that,  with the right choice 
of parameters can mimic (see Definition 4) the behavior of any other model, 
regardless of the variable ordering. However, following the s tandard method 
of scientific induction, it is reasonable to rule out any model for which we 
find a simpler, less ezpressive model, equally consistent with the data  (see 
Definition 6). Models that  survive this selection are called "minimal models" 
and with this notion, we can construct our definition of inferred causation: 

"A variable X is said to have a causal influence on a variable Y if a strictly 
directed path from X to Y exists in every minimal model consistent with 
the data" 

DEFINITION 3 Given a set of observable variables 0 C_ U, a l a t e n t  s t r u c -  
t u r e  is a pair  L - <D,  O> where D is a causal model over U. 

DEFINITION 4 One latent structure L - <D, O> is p r e f e r r e d  to another 
L' - <D', O> (written L ~_ L') iff D' can m i m i c  D over O, i.e. for every 
@D there exists a 05,  s.t. P[o](<D', 0 5 , > ) -  P[o](<D, OD>). 

Two latent structures are e q u i v a l e n t ,  written L' - L, iff L ~_ L' and 
L ~ - L ' .  

Note that  the preference for simplicity imposed by Definition 4 is gauged 
by the expressive power of a model, not by its syntactic description. For ex- 
ample, one latent structure L1 may invoke many more parameters than L2 
and still be preferred, if L2 is capable of accommodating a richer set of proba- 

bility distributions over the observables. One reason scientists prefer simpler 
models is that  such models are more constrained, thus more falsifiable; they 

It assumes, for example, that the scientist obtains the distribution directly, rather than 
events sampled from the distribution. This assumption is justified when a large sample 
is available, sufficient to reveal all the dependencies embedded in the distribution. Ad- 
ditionally, we assume that the observed variables actually appear in the original causal 
theory and are not some aggregate thereof. Aggregation might result in feedback loops 
which we do not discuss in this paper. Our theory also takes variables as the primitive en- 
tities in the language, not events which permits us to include "enabling" and "preventing" 
relationships as part of the mechanism. 
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provide the scientist with less opportunities to overfit the data hindsightedly 
and, therefore attain greater credibility [Pearl, 1978, Popper, 1959]. 

We also note that the set of dependencies induced by a causal model pro- 
vides a measure of its expressive power, i.e., its power of mimicing other 
models. Indeed, L1 cannot be preferred to L2 if there is even one observ- 
able dependency that is induced by L1 and not by L2. Thus, tests for 
preference and equivalence can often be reduced to tests of induced depen- 
dencies which, in turn, can be determined directly from the topology of the 
dags, without ever concerning ourselves with the set of parameters. (For 
example, see Theorem 1 below and [Frydenberg, 1989, Pearl et al., 1989, 
Verma and Pearl, 1990]). 

DEFINITION 5 A latent structure L is minimal  with respect to a class s 

of  latent structures iff for every L ~ C s L -  L ~ whenever L ~ ~_ L. 

DEFINITION 6 L - <D, O> is consis tent  with a distribution [~ over O i f  

D can accommodate  some theory that  generates [~, i.e. there exists a ~D 

s.t. P[o](<D, OD>) --/5 

Clearly, a necessary (and often sufficient) condition for L to be consistent 
with /5, is that the structure of L can account for all the dependencies 
embodied in/5. 

DEFINITION 7 (INFERRED CAUSATION) Given P, a variable C has a 
causal  influence on E iff there exists a directed path  C ---** E in every 
minimal  latent structure consistent with [~. 

We view this definition as normative, because it is based on one of the least 
disputed norms of scientific investigation: Occam's razor in its semantical 
casting. However, as with any scientific inquiry, we make no claims that 
this definition is guaranteed to always identify stable physical mechanisms 
in nature; it identifies the only mechanisms we can plausibly infer from 
non-experimental data. 

As an example of a causal relation that is identified by the definition 
above, imagine that observations taken over four variables {a, b, c, d} reveal 
two vanishing dependencies: "a is independent of b" and "d is independent 
of {a, b} given c". Assume further that the data reveals no other indepen- 
dence, except those that logically follow from these two. This dependence 
pattern would be typical for example, of the following variables: a = having 

cold, b = having hay-fever, c = having to sneeze, d = having to wipe ones 

nose. It is not hard to see that any model which explains the dependence 
between c and d by an arrow from d to c, or by a hidden common cause 



Y 
d 

(4 
d 

(b) 
d 

(c) 

795 

a b 

(d) (e) 

Figure 1: Causal models illustrating the soundness of c ~ d. The node ( , )  
represents a hidden variable. 

( , )  between the two, cannot be minimal, because any such model would be 
able to out-mimic the minimal model shown in Figure l(a) (or the one in 
Figure l(b)) which reflects all observed independencies. For example, the 
model of Figure l(c), unlike that of Figure l(a), accommodates distribu- 
tions with arbitrary relations between a and b. Similarly, Figure l(d) is not 
minimal as it fails to impose the conditional independence between d and 
{a, b} given c. In contrast, Figure l(e) is not consistent with the data since 
it imposes a marginal independence between {a,b} and d, which was not 
observed. (For theory and method of identifying conditional independencies 
in causal graphs see [Pearl, 1988b] and [Pearl et al., 1989]) 

4. P r o o f  t heo ry  and  s table  d i s t r ibu t ions  

It turns out that while the minimality principle is sufficient for forming a 
normative and operational theory of causation, it does not guarantee that 
the search through the vast space of minimal models would be computa- 
tionally practical. If Nature truly conspires to conceal the structure of the 
underlying model she could still annotate that model with a distribution 
that matches many minimal models, having totally disparate structures. To 
facilitate an effective proof theory, we rule out such eventualities, and impose 
a restriction on the distribution called "stability" (or "dag-isomorphism" in 
[Pearl, 1988b]). It conveys the assumption that all vanishing dependencies 
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are structural, not formed by incidental equalities of numerical parameters ~. 

DEFINITION 8 Let I(P) denote the set of all conditional independence 
relationships embodied in P. A causal theory T = <D,~)D> gener- 
ates a s t ab l e  distribution iff it contains no extraneous independences, i.e. 
I (P(<D,  On>))  C_ I (P(<D,  E3b>)) for any set of parameters 6)' D. 

With the added assumption of stability, every distribution has a unique 
causal model (up to equivalence), as long as there are no hidden variables. 
This uniqueness follows from the fact that  the structural constraints that  an 
underlying dag imposes upon the probability distribution are equivalent to a 
finite set of conditional independence relationships asserting that,  given its 
parents, each variable is conditionally independent of all its non-descendents 
[Pearl et al., 1989]. Therefore two causal models are equivalent (i.e. they can 
mimic each other) if and only if they relay the same dependency information. 
The following theorem, which is founded upon the dependency information, 
states necessary and sufficient conditions for equivalence of causal models 
which contain no hidden variables. 

THEOREM 1 [VERMA AND PEARL, 1990] When U = O, two causal mod- 
els are equivalent iff their dags have the same links and same set of uncoupled 
head-to-head nodes 6. 

The search for the minimal model then boils down to recovering the struc- 
ture of the underlying dag from queries about the dependencies portrayed in 
that  dag. This search is exponential in general, but simplifies significantly 
when the underlying structure is sparse (see [Spirtes and Glymour, 1991, 
Verma and Pearl, 1990] for such algorithms). 

Unfortunately, the constraints that  a latent structure imposes upon the 
distribution cannot be completely characterized by any set of dependency 
statements. However, the maximal set of sound constraints can be identified 
[Verma and Pearl, 1990] and it is this set that  permits us to recover sound 
fragments of latent structures. 

5It is possible to show that, if the parameters are chosen at random from any reason- 
able distribution, then any unstable distribution has measure zero [Spirtes et al., 1989]. 
Stability precludes deterministic constraints. Less restrictive assumptions are treated in 
[Geiger et al., 1990]. 
6i.e. converging arrows emanating from non-adjacent nodes, such as a -~ c ~ b in Figure 
1(~). 



797 

5. Recovering latent structures 

When Nature decides to "hide" some variables, the observed distr ibution/5 
need no longer be stable relative to the observable set O, i.e. /5 may result 
from many equivalent minimal latent structures, each containing any num- 
ber of hidden variables. Fortunately, rather then having to search through 
this unbounded space of latent structures, it turns out that  for every latent 
structure L, there is a dependency-equivalent latent structure called the pro- 
jection of L on O in which every unobserved node is a root node with exactly 
two observed children: 

DEFINITION 9 A latent structure L[o] - <D[o], O> is a p r o j e c t i o n  of an- 
other latent structure L iff 

1. Every unobservable variable of D[o] is a parentless common cause of 
exactly two non-adjacent observable variables. 

2. For every stable distribution P generated by L, there exists a stable 
distribution P' generated by L[o] such that I(P[o]) - I(P(o]). 

THEOREM 2 [VERMA, 1992] Any latent structure has at least one projec- 
tion. 

It is convenient to represent projections by bi-directional graphs with only 
the observed variables as vertices (i.e., leaving the hidden variables implicit). 
Each bi-directed link in such a graph represents a common hidden cause of 
the variables corresponding to the link's end points. 

Theorem 2 renders our definition of inferred causation (Definition 7) op- 
erational; we will show (Theorem 3) that  if a certain link exists in a distin- 
guished projection of any minimal model of/5, it must indicate the existence 

^ 

of a causal path in every minimal model of P. Thus the search reduces to 
finding a projection of any minimal model of t5 and identifying the appropri- 
ate links. Remarkably, these links can be identified by a simple procedure, 
the IC-algorithm, that  is not more complex than that  which recovers the 
unique minimal model in the case of fully observable structures. 

IC-Algorithm (Inductive Causation) 

Input /5 a sampled distribution. 
Output: core(P)  a marked hybrid acyclic graph. 

1. For each pair of variables a and b, search for a set Sab such that (a, Sab, b) 
is in I (P) ,  namely a and b are independent in/5, conditioned on S~D. 
If there is no such Sab, place an undirected link between the variables, 
a - b .  
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2. For each pair of non-adjacent variables a and b with a common neighbor 
c, check if c E Sab. 
If it is, then continue. 
If it is not, then add arrowheads pointing at c, (i.e. a --~ c ~- b). 

3. Form core(/3) by recursively adding arrowheads according to the following 
two rules: 7 
If there is a directed path from a to b and, in addition there is an edge 
between a and b, then add an arrowhead to that edge pointing toward b. 
If a and b are not adjacent but there exists a node c that is adjacent to 

_--> 

both a and b such that ac and c -  b, then direct c ~ b. 

4. If a and b are not adjacent but ac and c ~ b, then mark the link c ---+ b. 

The result of this procedure is a substructure called core(/~) in which every 
marked uni-directed arrow X --+ Y stands for the statement: "X has a 
causal influence on Y (in all minimal latent structures consistent with the 
data)" .  We call these relationships "genuine" causal influences (e.g. c ~ d 
in previous Figure la). 

DEFINITION 10 For any latent structure L, core(L)  is defined as the hybrid 
graph s satisfying (1) two nodes are adjacent in core(L)  iff they are adjacent 
or they have a common unobserved cause in every projection of L, and (2) 
a link between a and b has an arrowhead pointing at b iff a ~ b or a and b 
have a common unobserved cause in every projection of L. 

THEOREM 3 (soundness) For any latent structure L = < D , O >  and an 
associated theory T = <D, 0 o >  if  P (T )  is stable then every arrowhead 
identified by IC is also in core(L).  

COROLLARY 1 ff every link of the directed path C 4 "  E is marked in 
core(/5)  then C has a causal influence on E according to [3. 

6. P r o b a b i l i s t i c  de f in i t i ons  for causa l  r e l a t i o n s  

The IC-algorithm takes a dis t r ibut ion/3 and outputs  a dag, some of its links 

are marked uni-directional (denoting genuine causation), some are unmarked 
uni-directional (denoting potential causation), some are bi-directional (de- 
noting spurious association) and some are undirected (denoting relation- 
ships that  remain undetermined). The conditions which give rise to these 

ab denotes either a -o b or a ~ b, and a - b denotes an undirected edge. 
Sin a hybrid graph links may be undirected, uni-directed or bi-directed. 
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labelings constitute operational definitions for the various kinds of causal 
relationships. In this section we present explicit definitions of potential and 
genuine causation, as they emerge from Theorem 3 and the IC-algorithm. 
Note that in all these definitions, the criterion for causation between two 
variables, X and Y, will require that a third variable Z exhibit a specific 
pattern of interactions with X and Y. This is not surprising, since the very 
essence of causal claims is to stipulate the behavior of X and Y under the 
influence of a third variable, one that corresponds to an external control 
of X. Therefore, our definitions are in line with the paradigm of "no cau- 
sation without manipulation" [Holland, 1986]). The difference is only that 
the variable Z, acting as a virtual control of X, must be identified within 
the data itself. The IC-algorithm provides a systematic way of searching for 
variables Z that qualify as virtual controls. 

Detailed discussions of these definitions in terms of virtual control are 
given in Sections 7 and 8. 

DEFINITION 11 (POTENTIAL CAUSE) A variable X has a p o t e n t i a l  causa l  
inf luence on another variable Y ( inferable  from P), if 

1. X and Y are dependent in every context. 

2. There exists a variable Z and a context S such that 

(i) X and Z are independent given S 

(ii) Z and Y are dependent given S 

By "context" we mean a set of variables tied to specific values. Note that 
this definition precludes a variable X from being a potential cause of itself 
or of any other variable which functionally determines X. 

DEFINITION 12 (GENUINE CAUSE) A variable X has a ge nu ine  causa l  
inf luence on another variable Y if there exists a variable Z such that: 

1. X and Y are dependent in any context and there exists a context S 
satisfying: 

p) Z is a potential cause of X 

(ii) Z and Y are dependent given S. 

(iii) Z and Y are independent given S U X ,  

or~ 

2. X and Y are in the transitive closure of rule 1. 
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DEFINITION 13 (SPURIOUS ASSOCIATION) Two variables X and Y are 
spur ious ly  associated if they are dependent in some context S and there 
exists two other variables Z1 and Z2 such that: 

1. Z 1 and X are dependent given S 

2. Z2 and Y are dependent given S 

3. Z 1 and Y are independent given S 

4. Z2 and X are independent given S 

Succinctly, using the predicates I and --I to denote independence and 
dependence respectively, the conditions above can be written: 

1. -~I(ZI,XIS ) 

2. -~I(Z2, YIS) 

3. i(z,, YIS) 

4. I(Z2, XIS  ) 

Definition 11 was formulated in [Pearl, 1990] as a relation between events 
(rather than variables) with the added condition P(YIX)  > P(Y)  in the 
spirit of [Good, 1983, Reichenbach, 1956, Suppes, 1970]. Condition l(i) in 
Definition 12 may be established either by statistical methods (per Defi- 
nition 11) or by other sources of information e.g., experimental studies or 
temporal succession (i.e. that Z precedes X in time). 

When temporal information is available, as it is assumed in most theo- 
ries of causality ([Granger, 1988, Spohn, 1983, Suppes, 1970]), then Defini- 
tions 12 and 13 simplify considerably because every variable preceding and 
adjacent to X now qualifies as a "potential cause" of X. Moreover, adja- 
cency (i.e. condition 1 of Definition 11) is not required as long as the context 
S is confined to be earlier than S. These considerations lead to simpler con- 
ditions distinguishing genuine from spurious causes as shown next. 

DEFINITION 14 (GENUINE CAUSATION WITH TEMPORAL INFORMATION) 
A variable X has a causal influence on Y if there is a third variable Z and 
a context S, both occurring before X such that: 

1. --,I(Z, YIS) 

2. I(z, YIS u x) 
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DEFINITION 15 (SPURIOUS ASSOCIATION WITH TEMPORAL INFOR- 
MATION) Two variables X and Y are spuriously associated if they are 
dependent in some context S, X precedes Y and there exists a variable Z 
satisfying: 

1. I(Z, YIS) 

2. x l s )  

7. Causal intuition and virtual experiments  

This section explains how the formulation introduced above conforms to 
common intuition about causation and, in particular, how asymmetric prob- 
abilistic dependencies can be transformed into judgements about asymmet- 
ric causal influences. We shall first uncover the intuition behind Definition 
14, assuming the availability of temporal information, then (in Section 8) 
generalize to non temporal data, per Definition 12. 

The common intuition about causation is captured by the heuristic def- 
inition [Rubin, 1989]: "X is a cause for Y if an external agent interfering 
only with X can affect Y" . 

Thus, causal claims are much bolder than those made by probability state- 
ments; not only do they summarize relationships that hold in the distribu- 
tion underlying the data, but they also predict relationships that should 
hold when the distribution undergoes changes, such as those inferable from 
external intervention. The claim "X causes Y" asserts the existence of a 
stable dependence between X and Y, one that cannot be attributed to some 
prior cause common to both, and one that should be preserved when an 
exogenous control is applied to X. 

This intuition requires the formalization of three notions: 

1. That the intervening agent be "external" (or "exogenous") 

2. That the agent can "affect" Y 

3. That the agent interferes "only" with X 

If we label the behavior of the intervening agent by a variable Z, then 
these notions can be given the following probabilistic explications: 

1. E x t e r n a l i t y  of Z: Variations in Z must be independent of any factors 
W which precede X,  i.e., 

I (z ,w)  v w:t <t  (1) 
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2. Control :  For Z to effect changes in Y (via X) we require that Z and 
Y be dependent, written: 

Y) (2) 

3. Locality" To ensure that Z interferes "only" with X, i.e., that its en- 
tire effect on Y is mediated by X, we use the conditional independence 
assertion: 

I(Z, YIX) (3) 
to read "Z is independent of Y, given X". 

Note that (1) and (2) imply (by the axioms of conditional independence 
[Pearl, 1988b]) that X and Y are dependent, namely,--,I(X, Y). 

Conditions (1) through (3) constitute the traditional premises behind con- 
trolled statistical experiments, with Z representing the decision to adminis- 
ter condition X = x to a given unit (or a given subject), and (1) reflecting the 
requirement that units selected for the experiment be assigned at random to 
the various experimental conditions. They guarantee that any dependency 
observed between X and Y cannot be explained away by holding fixed some 
factor W preceding X (as in Figure 3), hence it must be attributed to gen- 
uine causation (as in Figure 2). The sufficiency of these premises is clearly 
not a theorem of probability theory, as it relies on temporal relationships 
among the variables. However, it can be derived from probability theory 
together with Reichenbach's principle [Reichenbach, 1956], stating that ev- 
ery dependence --,I(X, Y) requires a causal explanation, namely either one 
of the variables causes the other, or there must be a variable W preceding 
X and Y such that I(X, YIW) (see Figure 2). Indeed, if there is no back 
path from Z to Y through W (Eq. (1)) and no direct path from Z to Y 
avoiding X (Eq. (3)) then there must be a causal path from X to Y that is 
responsible for the dependence in Eq. (2) 9. 

In non-experimental situations it is not practical to detach X completely 
from its natural surrounding and to subject it to the exclusive control of an 
exogenous (and randomized) variable Z. Instead, one could view some of 
X's  natural causes as "virtual controls" and, provided certain conditions are 
met, use the latter to reveal non-spurious causal relationship between X and 
Y. In so doing we compromise, of course, condition (1), because we can no 
longer guarantee that those natural causes of X are not themselves affected 
by other causes which, in turn, might influence Y (see Figure 3). However, 
it turns out that for stable distributions, conditions (2) and (3) are sufficient 
to guarantee that the association between X and Y is non-spurious, thus 
justifying Definition 14 for genuine causation. 

9Cartwright [Cartwright, 1989] offers a sufficiency proof in the context of linear models. 
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The intuition goes as follows (see Figure 3): If the dependency between 
Z and Y (and similarly, between X and Y) is spurious, namely, X and 
Y are merely manifestations of some common cause W, there is no reason 
then for X to screen-off Y from Z, and condition (2) should be violated. In 
case condition (2) is accidentally satisfied by some strange combination of 
parameters, it is bound to be "unstable", as it will be perturbed with any 
slight change of expiremental conditions. 

Conditions (2) and (3) are identical to those in Definition 14, save for the 
context S which is common to both. The inclusion of the fixed context S is 
legitimized by noting that if P(X, Y, Z) is a marginal of a stable distribu- 
tion, then so is the conditional distribution P(X, Y, ZIS = s), as long as S 
corresponds to variables which precede X. 

Definition 14 constitutes an alternative way of recovering causal struc- 
tures, more flexible than the IC-algorithm; we search the data for three 
variables Z, X, Y (in this temporal order) that satisfy the two conditions in 
some context S = s, and when such a triple is found, X is proclaimed to have 
a genuine causal influence on Y. Clearly, permitting an arbitrary context 
S increases the number of genuine causal influences that can be identified 
in any given data; marginal independencies and even 1-place conditional 
independencies are rare phenomenon. 

Note that failing to satisfy the test for genuine causation does not mean 
that such relationship is necessarily absent between the quantities under 
study. Rather, it means that the data available cannot substantiate the claim 
of genuine causation. To further test such claims one may need to either 
conduct experimental studies, or consult a richer data set where virtual 
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control variables are found. 

In testing this modeling scheme on real life data, we have examined the 
observations reported in Sewal Wright's seminal paper "Corn and Hog Cor- 
relations" [Wright, 1925]. As expected, corn-price (X) can clearly be iden- 
tified as a cause of hog-price (Y), not the other way around. The reason 
lies in the existence of the variable corn-crop (Z) that,  by satisfying the 
conditions of Definition 14 (with S = 0), acts as a virtual control of X (see 
Figure 2). To test for the possibility of reciprocal causation, one can try to 
find a virtual controller for Y, for example, the amount of hog-breeding (Z~). 
However, it turns out that  Z' is not screened off from X by Y (possibly be- 
cause corn prices exert direct influence over farmer's decision to breed more 
hogs), hence, failing condition 3, Y disqualifies as a genuine cause of X. 
Such distinctions are important to policy makers in deciding, for example, 
which commodity, corn or hog, should be subsidized or taxed. 

8. N o n - t e m p o r a l  c a u s a t i o n  a n d  s t a t i s t i c a l  t i m e  

When temporal information is unavailable the condition that  Z precede 
X (Definition 14) cannot be tested directly and must be replaced by an 
equivalent condition, based on dependence information. As it turns out, the 
only reason we had to require that  Z precede X is to rule out the possibility 
that  Z is a causal consequence of X; if it were a consequence of X then the 
dependency between Z and Y could easily be explained away by a common 
cause W of X and Y (see Figure 2). 

The information that  permits us to conclude that  one variable is not a 
causal consequence of another comes in the form of an "intransitive triplet", 
such as the variables a, b and c in Figure l(a) satisfying: I(a, b), ~I(a, c) and 
~I(b, c). The argument goes as follows: If we create conditions (fixing Sab) 
where two variables, a and b, are each correlated with a third variable c but 
are independent of each other, then the third variable cannot act as a cause of 
a or b, (recall that  in stable distributions, common causes induce dependence 
among their effects); it must be either their common effect, a --~ c ~-- b, or 
be associated with a and b via common causes, forming a pattern such as 
a ~ c ~ b. This is indeed the eventuality that  permits our algorithm to 
begin orienting edges in the graph (step 2), and assign arrowheads pointing 
at c. It is also this intransitive pattern which is used to ensure that  X is 
not a consequence of Y (in Definition 11) and that  Z is not a consequence 
of X (in Definition 12). In definition 14 we have two intransitive triplets, 
(Z1,X, Y) and (X, Y, Z2), thus ruling out direct causal influence between 
X and Y, implying spurious associations as the only explanation for their 
dependence. 
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This interpretation of the intransitive triple is in line with the "virtual 
control" view of causation. For example, one of the reasons people insist that  
the rain causes the grass to become wet, and not the other way around, is 
that  they can find other means of getting the grass wet, totally independent 
of the rain. Transferred to our chain a -  c -  b, we can preclude c from being 
a cause of a if we find another means (b) of potentially controlling c without 
affecting a [Pearl, 1988a, p. 396]. 

Determining the direction of causal influences from nontemporal data  
raises some interesting philosophical questions about the nature of time and 
causal explanations. For example, can the orientation assigned to the arrow 
X ~ Y in Definition 14 ever clash with temporal information (say by a 
subsequent discovery that  Y precedes X)? Alternatively, since the ratio- 
nale behind Definition 14 is based on strong intuitions about how causal 
influences should behave (statistically), it is apparent that  such clashes, if 
they occur, are rather rare. The question arises then, why? Why should 
orientations determined solely by statistical dependencies have anything to 
do with the flow of time? 

In human discourse, causal explanations indeed carry two connotations, 
temporal and statistical. The temporal aspect is represented by the con- 
vention that  a cause should precede its effect. The statistical aspect ex- 
pects causal explanations (once accounted for) to screen off their effects, 
i.e., render their effects conditionally independent 1~ More generally, causal 
explanations are expected to obey many of the rules that  govern paths in 
a directed acyclic graphs (e.g., the intransitive triplet criterion for potential 
causation, Section 7). This leads to the observation that,  if agreement is 
to hold between the temporal and statistical aspects of causation, natural 
statistical phenomena must exhibit some basic temporal bias. Indeed, we 
often encounter phenomenon where knowledge of a present state renders the 
variables of the future state conditionally independent (e.g., multi-variables 
economic time series as in Eq. (4) below). We rarely find the converse 
phenomenon, where knowledge of the present state would render the com- 
ponents of the past state conditionally independent. The question arises 

1~ principle, known as Reichenbach's "conjunctive fork" or "common-cause" cri- 
terion [Reichenbach, 1956, Suppes and Zaniotti, 1981] has been criticized by Salmon 
[Salmon, 1984], who showed that some events would qualify as causal explanations though 
they fail to meet Reichenbach's criterion. Salmon admits, however, that when a conjunc- 
tive forks does occur, the screening off variable is expected to be the cause of the other 
two, not the effect [Salmon, 1984, p. 167]. He notes that it is difficult to find physi- 
cally meaningful examples where a response variable renders its two causes conditionally 
independent (although this would not violate any axiom of probability theory). This 
asymmetry is further evidence that humans tend to reject causal theories that yield un- 
stable distributions. 
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whether there is any compelling reason for this temporal bias. 
A convenient way to articulate this bias is through the notion of "Statis- 

tical Time". 

DEFINITION 16 (STATISTICAL TIME) Given an empirical distribution P, a 
statistical time of P is any ordering of the variables that agrees with at least 
one minimal causal model consistent with P. 

We see, for example, that a scalar Markov-chain process has many statis- 
tical times; one coinciding with the physical time, one opposite to it and the 
others correspond to any time ordering of the variables away from some cho- 
sen variable. On the other hand a process governed by two coupled Markov 
chains, 

X t - oL X t - 1 - J r - / ~ t -  1 -~- ~ t 

~ t  - -  q / X t - - i  -'~ (~t--1 -~ ~g, (4) 

has only one statistical time - the one coinciding with the physical time 11. 
Indeed, running the IC-algorithm on samples taken from such a process, 
while suppressing all temporal information, quickly identifies the compo- 
nents of Xt-1 and Yt-1 as genuine causes of Xt and ]st. This can be seen 
from Definition 11, where Xt-2 qualifies as a potential cause of Xt_  1 using 
Z = Yt-2 and S = {Xt-a, Yt-a}, and Definition 12, where Xt-1 qualifies as 
a genuine cause of Xt using Z = Xt-2 and S = {Yt-1} of Xt. 

The temporal bias postulated earlier can be expressed as follows: 

CONJECTURE 1 (TEMPORAL BIAS) In most natural phenomenon, 
physical time coincides with at least one statistical time. 

the 

Reichenbach [Reichenbach, 1956] attributed the asymmetry associated 
with his conjunctive fork to the second law of thermodynamics. We are 
not sure at this point whether the second law can provide a full account of 
the temporal bias as defined above, since the influence of the external noise ~t 
and ~ renders the process in (4) nonconservative 12. What is clear, however, 
is that the temporal bias is language dependent. For example, expressing 
Eq.(4) in a different coordinate system (say, using a unitary transforma- 
tion (X~, ]st') = U(Xt, Yt)), it is possible to make the statistical time (in the 
(X', Y') representation) run contrary to the physical time. This suggests 
that the apparent agreement between the physical and statistical times is 
a byproduct of human choice of linguistic primitives and, moreover, that 
the choice is compelled by a survival pressure to facilitate predictions at the 
expense of diagnosis and planning. 

11~t and ~ are assumed to be two independent, white noise time series. Also c~ ~: 5 and 
~#~ .  
12We are grateful to Seth Lloyd for this observation. 
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9. Conclusions  

The theory presented in this paper should dispel the belief that statistical 
analysis can never distinguish genuine causation from spurious covariation. 
This belief, shaped and nurtured by generations of statisticians [Fisher, 1953, 
Keynes, 1939, Ling, 1983, Niles, 1922] has been a major hindrance in the way 
of developing a satisfactory, non-circular account of causation. In the words 
of G/~rdenfors [Ggrdenfors, 1988, page 193]: 

In order to distinguish genuine from spurious causes, we must 
already know the causally relevant background factors . . . .  Fur- 
ther, the extra amount of information is substantial: In order to 
determine whether C is a cause of E, all causally relevant back- 
ground factors must be available. It seems clear that we often 
have determinate beliefs about causal relations between events, 
even if we do not know exactly which factors are causally relevant 
to the events in question la. 

This paper shows that such extra information is often unnecessary: Under 
the assumptions of model-minimality (and/or stability), there are patterns 
of dependencies that should be sufficient to uncover genuine causal relation- 
ships. These relationships cannot be attributed to hidden causes lest we 
violate one of the basic maxims of scientific methodology: the semantical 
version of Occam's razor. Adherence to this maxim may explain why hu- 
mans reach consensus regarding the directionality and nonspuriousness of 
causal relationships, in the face of opposing alternatives, perfectly consis- 
tent with experience. Echoing Cartwright [Cartwright, 1989] we summarize 
our claim with the slogan "No Causes In, Some Causes Out". 

From a methodological viewpoint, our theory should settle some of the on- 
going disputes regarding the validity of path-analytic approaches to causal 
modeling in the social sciences [Freedman, 1987, Ling, 1983]. It shows that 
the basic philosophy governing path-analytic methods is legitimate, faith- 
fully adhering to the traditional norms of scientific investigation. At the 
same time our results also explicate the assumptions upon which these meth- 
ods are based, and the conditions that must be fulfilled before claims made 
by these methods can be accepted. Specifically, our analysis makes it clear 
that causal modeling must begin with vanishing (conditional) dependencies 
(i.e. missing links in their graphical representations). Models that embody 
no vanishing dependencies contain no virtual control variables, hence, the 
causal component of their claims cannot be substantiated by observational 

laSee also Cartwright [Cartwright, 1989] for a similar position, and for a survey of the 
literature. 
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studies. With such models, the data can be used only for estimating the 
parameters of the causal links once we are absolutely sure of the causal 
structure, but the structure itself, and especially the directionality of the 
links, cannot be inferred from the data. Unfortunately, such models are 
often employed in the social and behavioral sciences e.g. [Kenny, 1979]. 

On the practical side, we have shown that the assumption of model mini- 
reality, together with that of "stability" (no accidental independencies) lead 
to an effective algorithm of structuring candidate causal models capable of 
generating the data, transparent as well as latent. Simulation studies con- 
ducted at our laboratory show that networks containing tens of variables 
require less than 5000 samples to have their structure recovered by the al- 
gorithm. For example, 1000 samples taken from the process shown in Eq. 
(5), each containing ten successive X,Y pairs, were sufficient for recovering 
its double-chain structure (and the correct direction of time). The greater 
the noise, the quicker the recovery (up to a point). 

Another result of practical importance is the following: Given a proposed 
causal theory of some phenomenon, our algorithm can identify in linear 
time those causal relationships that could potentially be substantiated by 
observational studies, and those whose directionality and non-spuriousness 
can only be determined by controlled, manipulative experiments. 

It should also be interesting to explore how the new criteria for causa- 
tion could benefit current research in machine learning. In some sense, our 
method resembles a search through a space of hypotheses [Mitchell, 1982] 
where each hypothesis stands for a causal theory. Unfortunately, this is 
where the resemblance ends. The prevailing paradigm in the machine learn- 
ing literature has been to define each hypothesis (or theory, or concept) as a 
subset of observable instances; once we observe the entire extension of this 
subset, the hypothesis is defined unambiguously. This is not the case in 
causal modeling. Even if the training sample exhausts the hypothesis subset 
(in our case, this corresponds to observing P precisely), we are still left with 
a vast number of equivalent causal theories, each stipulating a drastically 
different set of causal claims. Fitness to data, therefore, is an insufficient cri- 
terion for validating causal theories. Whereas in traditional learning tasks 
we attempt to generalize from one set of instances to another, the causal 
modeling task is to generalize from behavior under one set of conditions to 
behavior under another set. Causal models should therefore be chosen by 
a criterion that challenges their stability against changing conditions, and 
these show up in the data in the form of virtual control variables. Thus, the 
dependence patterns identified by definition 11 through 14 constitute islands 
of stability as well as virtual validation tests for causal models. It would be 
interesting to examine whether these criteria, when incorporated into ex- 
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isting machine learning programs would improve the stability of theories 
discovered by such programs. 
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B U I L D I N G  C A U S A L  G R A P H S  F R O M  S T A T I S T I C A L  D A T A  
I N  T H E  P R E S E N C E  OF L A T E N T  V A R I A B L E S  

PETER SPIRTES* 

Department of Philosophy, Carnegie-Mellon University 

1. I n t r o d u c t i o n  

The problem of inferring causal relations from statistical data in the absence 
of experiments arises repeatedly in many scientific disciplines, including so- 
ciology, economics, epidemiology, and psychology. In addition, the building 
of expert systems could be expedited if background knowledge elicited from 
experts could be supplemented with automated techniques using relevant 
statistics. 

Recently, efficient algorithms for determining causal relationships between 
random variables (in the form of Bayesian networks) from appropriate sta- 
tistical data when there are no unmeasured or "latent" variables have been 
discovered. (See Spirtes, Glymour and Scheines 1990, Spirtes and Glymour 
1991, Verma and Pearl 1990, and Pearl and Verma 1991.) Inferring causal 
relations when unmeasured variables are also acting is a much more diffi- 
cult problem. In many cases it is impossible to infer the structure among 
the latent variables from statistical relations among the measured variables. 
But the presence of latent variables can also make it difficult to infer the 
causal relations among the measured variables themselves. When only two 
variables, A and B, have been measured, and there is a correlation between 
the two, this does not suffice to establish whether A causes B, B causes A, 
or there is a third unmeasured variable causing both A and B. Nevertheless, 
when other variables are measured, more knowledge about the causal rela- 
tions between A and B is possible. We will prove in Theorem 2 that there 
are some circumstances in which it is possible to establish that A causes B, 

*I thank C. Glymour and R. Scheines for valuable help with the work described here. 
Research for this paper was supported by the Naval Personnel Research and Development 
Center and the Office of Naval Research under contract number N00114-89-J-1964. 
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rather than that  B causes A, or that  a third unmeasured variable causes 
both A and B; and we will prove in Theorem 3 that  there are other circum- 
stances in which the possibility that  A causes B can be eliminated. The 
proofs are given in Spirtes, Glymour and Scheines (forthcoming). 

2. D i r e c t e d  acycl ic  g r a p h s  

Causal processes among a set of random variables V are represented by a 
directed acyclic graph over V, where there is an edge from A to B if and 
only if A is an immediate cause of B relative to V (i.e. there is a mechanism 
by which A causes B that  is not blocked by holding fixed any of the other 
variables in V.) If there is a directed path from A to B in the causal graph, we 
will say that  A is a (possibly indirect) cause of B. (In what follows, we will 
capitalize random variables, and boldface any sets of variables. We will use 
the terms "vertices in a graph" and "variables in a graph" interchangably.) 

A directed acyclic graph G over a set of random variables V can also be 
used to represent the set of probability distributions over V that  satisfy the 
following two conditions: 

Markov Condition: Let P a r e n t s ( X )  be the set of parents of X in G (i.e. 
the set of Z such that  Z -  > X is in G) and D e s c e n d a n t s ( X )  be the set of 
descendants of X in a graph G (i.e. the set of Z such that  there is a directed 
path from X to Z in G.) A directed acyclic graph G and a probability 
distribution P on the vertices V of G satisfy the Markov condition if and only 
if for every X in V, X and V \ ( { X }  U D e s c e n d a n t s ( X ) )  are independent 
conditional on P a r e n t s ( X ) .  

Faithfulness Condition: If G is a directed acyclic graph and P is a distri- 
bution over the set of vertices V in G, then P is faithful to G if and only 
< G, P > satisfy the Markov condition and every conditional independence 
relation true in P is entailed by the Markov condition for G. 

If a distribution is placed over the exogenous variables (variables of zero 
indegree) in the causal graph of a causal process, which in turn affect the 
values of other random variables, the result is a joint distribution over all 
of the random variables. In that  case, we will say that  the causal process 
generated the joint distribution. We assume that  the distribution generated 
by a causal process satisfies the Markov and Faithfulness conditions for the 
causal graph of that  process; we will call this the Causal Faithfulness As- 
sumption. In Pearl's terminology (Pearl 1988) the causal graph is a Bayesian 
network of any distribution that  it generates. 

In a directed graph G, we will write X -  > Y if there is an edge from X 
to Y in G, and we will say that  X is parent of Y. X and Y are adjacent in a 
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directed graph G if and only if either X -  > Y or Y -  > X in G. If X and 
Y are adjacent in G, we will also say that X is a neighbor of Y and Y is 
a neighbor of X .  In a directed acyclic graph G, an undirected path U from 
X to Y is a sequence of vertices starting with X and ending with Y such 
that for every pair of vertices A and B that are adjacent to each other in 
the sequence, A and B are adjacent in G, and no vertex occurs more than 
once in U. In a directed acyclic graph G, a directed path P from X to Y is a 
sequence of vertices starting with X and ending with Y such that for every 
pair of variables A and B that are adjacent to each other in the sequence in 
that order, the edge A -  > B occurs in G, and no vertex occurs more than 
once in P. X and Y are adjacent on path P (as distinct from adjacent in 
the graph) if and only if X and Y are adjacent in the sequence P. An edge 
between X and Y occurs in a path P (directed or undirected) if and only 
if X and Y are adjacent in P. If an undirected path U contains an edge 
between X and Y, and an edge between Y and Z, the two edges collide at 
Y if and only if X -  > Y and Z - >  Y i n  G. On an undirected path U, 
Y is a collider if and only if there exist edges X -  > Y and Z -  > Y in U; 
Y is an unshielded collider on U if and only if in addition Z and X are not 
adjacent in G. X is an ancestor of Y and Y is a descendant of X if and only 
if there is a directed path from X to Y. (We count the sequence consisting 
of a single vertex < X > as a directed path from X to X, so X is its own 
ancestor and descendant, although it is not its own parent or child.) X, Y, 
and Z form triangle X - Y -  Z in G if and only if X is adjacent to Y, Y 
is adjacent to Z, and Z is adjacent to X in G. A trek between X and Y is 
either a directed path from X to Y, a directed path from Y to X, or a pair 
of directed paths from some third variable Z to X and Y respectively that 
intersect only at Z. 

Verma and Pearl (see Pearl 1988) have shown how to calculate the con- 
ditional independence relations that are entailed by distributions satisfying 
the Markov condition for a graph G using the d-separability relation. In 
graph G, a path U between X and Y d-connects variables X and Y given 
a set of vertices S not containing X or Y if and only if (i) every collider on 
U has a descendent in S and (ii) no other vertex on U is in S. Vertices X 
and Y are d-separated given a set S not containing X and Y if and only if 
no path d-connects X and Y given S. Disjoint sets of vertices X and Y are 
d-separated given S in G if and only if every member of X is d-separated 
from every member of Y given S in G. If distribution P satisfies the Markov 
and Faithfulness Conditions, then for disjoint sets of vertices X, Y, and Z, 
X is independent of Y conditional on S if and only if X is d-separated from 
Y given S in G (Pearl 1988). 

We say that V is causally sufficient if and only if every cause of any two 
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members of V is itself in V. If the distribution P is generated by some 
causal process, then given the Causal Faithfulness Assumption, P is faithful 
to some directed acyclic graph; however, if a set of measured variables V is 
not causally sufficient, the marginal distribution of P over V may not be 
faithful to any directed acyclic graph. Our strategy for making inferences 
about causal relationships when latent variables may be present is to find 
properties held in common by all directed acyclic graphs that have faithful 
distributions for which P could be the marginal. 

3. S p u r i o u s  causal  d e p e n d e n c i e s  

In a directed acyclic graph G over a set of variables V, if A and B are 
adjacent in G, then A and B are not d-separated by any subset of V \{A,  B}. 
Hence under the assumption of causal sufficiency, either A is a direct cause 
of B or B is a direct cause of A relative to V if and only if A and B are 
independent conditional on no subset of V. (Recently more efficient and 
reliable algorithms for determining causal structure from statistical data 
when there are no latent variables have been devised. See Spirtes, Glymour 
and Scheines 1990, Spirtes and Glymour 1991.) At first glance, it appears 
that this technique can be generalized to the case where V is not causally 
sufficient by inferring from the dependence of A and B conditional on every 
subset of V \{A,  B} that either A is a direct cause of B relative to V, or B 
is a direct cause of A relative to V, or there is some latent variable L that 
is a common cause of both A and B. Unfortunately, this is not the case, as 
the following example shows. 

A ~ B  v 

k 

v C  

Figure 1" Graph G 

Let V = {A,B, C,L} and O = {A,B, C}. 0 is not causally sufficient 
because L is a cause of both B and C which are in O, but L itself is not in O. 
A and C are not d-separated by any subset of O\{A,  B}, so in any marginal 
of a distribution faithful to G, A and C are not independent conditional on 
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any subset of O\{A,  B}. Nevertheless, A is not a direct cause of C relative 
to O, C is not a direct cause of A relative to O, and there is no latent 
common cause of A and C. If the algorithms for the causally sufficient case 
where applied to O, they would find, erroneously that A and C are adjacent. 
Our problem is to find a more reliable procedure. 

4. Inducing paths 

Given a directed acyclic graph G over a set of variables V, and O a subset of 
V, Verma and Pearl (1990) have characterized the conditions under which 
two variables in O are not d-separated by any subset of O\{A,  B}. In a 
directed acyclic graph G over a set of variables V, an undirected path U 
between A and B is an inducing path over a subset 0 of V if and only if 
every member of O on U is a collider on U, and every collider on U is an 
ancestor of either A or B. (We will sometimes refer to members of O as 
observed variables.) 

THEOREM 1 In a directed acyclic graph G over V,  where 0 is a subset of 
V ,  A and B are not d-separated by any subset of O \ { A , B }  if and only if 
there is an inducing path over the subset 0 between A and B. 

In Figure 1, the inducing path between A and C over O = {A, B, C} is 
< A , B , L , C  >. 

5. Inducing path graphs 

The inducing paths relative to O in a graph G over V can be represented 
in the following structure described (but not named) in Pearl and Verma 
(1990). In an inducing path graph G' for directed acyclic graph G over a 
subset of variables 0 there is an edge between variables A and B with an 
arrowhead at A if and only if A and B are in O, and there is an inducing 
path in G between A and B relative to O that is into A (i.e. there is an 
edge in the path with an arrowhead into A.) Note that in an inducing path 
graph, there are two kinds of edges: A -  > B entails that every inducing 
path over O between A and B is out of A and into B, and A < - >  B 
entails that there is an inducing path over O that is into A and into B. This 
latter kind of edge can only occur when there is a latent common cause of 
A and B. 

We can extend the concept of d-separability to inducing path graphs with- 
out modification, if we interpret directed paths in inducing path graphs as 
paths containing only edges with one arrowhead, and undirected paths as 
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containing edges with either single or double arrowheads. If G is a directed 
acyclic graph, G' is the inducing path graph for G over O, and X, Y, and S 
are disjoint sets of variables included in O, then X and Y are d-separated 
by S in G' if and only they are d-separated by S in G. 

However, there is one very important difference between d-separability 
relations in an inducing path graph and in a directed acyclic graph due to 
the existence of~d0uble-headed arrows in the former. In a directed acyclic 
graph over O, if A and B are d-separated by any subset of O\{A, B} then 
A and B are d-separated either by Pa ren t s (A)  or Pa ren t s (B) .  This is not 
true in inducing path graphs. However, we have shown the following. 

Let NA(A, B) (mnemonic for non-ancestor) be A if A is not an ancestor 
of B, and otherwise let it be B. (In an acyclic graph either A is not an 
ancestor of B or B is not an ancestor of A, so the vertex that is NA(A,  B) 
is not an ancestor of the other vertex.) 

If G' is an inducing path graph, and A -~ B, V is a member of 
D -  SEP(A,  B) if and only if A ~ V and there is an undirected path U 
between NA(A,  B) and V such that every vertex on U is an ancestor of A 
or B, and (except for the end points) is a collider on V. 

LEMMA 1 In an inducing path graph G', if A and B are not adjacent then 
A and B are d-separated by D-SEP(A,  B). 

The importance of this fact is that we can determine whether A and B 
are adjacent in an inducing path graph without determining whether A and 
B are dependent conditional on all subsets of O. 

If O is not a causally sufficient set of variables, then although we can infer 
the existence of an inducing path between A and B if A and B are dependent 
conditional on every subset of O\{A, B}, we cannot infer that either A is 
a direct cause of B relative to O, B is a direct cause of A relative to O, or 
there is a latent common cause of A and B. Nevertheless, the existence of 
an inducing path between A and B relative to O does contain information 
about the causal relationships between A and B, as the following lemma 
shows. 

LEMMA 2 f f  G iS a directed acyclic graph over V that contains an inducing 
path relative to 0 (included in V)  between A and B that is out of A, then 
there is a directed path from A to B in G. 

It follows from lemma 2 that if O is a subset of V and we can determine 
that there is an inducing path between A and B relative to O that is out of A, 
then we can infer that A is a (possibly indirect) cause of B. Hence, if we can 
infer properties of the inducing path graph over O from the distribution over 
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O, we can draw inferences about the causal relationships between variables, 
regardless of what variables we have failed to measure. In the next section 
we describe algorithms for inferring properties of the inducing path graph 
over O from the distribution over O. 

6. P a r t i a l l y  o r i e n t e d  i nduc ing  p a t h  g r a p h s  

There are four kinds of edges in a partially oriented inducing path graph: 
A -  > B, A o -  > B, A o - o B ,  and A < -  > B. We use "," as a 
metasymbol to represent any of the three kinds of ends (nothing, ">", or 
"o") that  an edge in a partially oriented inducing path graph can have; 
the "," symbol itself does not appear in a partially oriented inducing path 
graph. (We also use "," as a metasymbol to represent the two kinds of ends 
(nothing or ">") that can occur in an inducing path graph.) 

A partially oriented inducing path graph 7r for directed acyclic graph G 
with inducing path graph G' over O is intended to represent the adjacencies 
in G', and the orientation of the edges in G ~ that are common to all inducing 
path graphs with the same d-connection relations as G'. Let E(G') be the set 
of inducing path graphs over the same vertices with the same d-connections 
as G'. It is easy to see that every inducing path graph in E(G') shares the 
same set of adjacencies. 

7r is a a partially oriented inducing path graph of directed acyclic graph G 
with inducing path graph G' over 0 if and only if 

1. 7r and G' have the same vertices, and 

2. 7r and G' have the same adjacencies, and 

3. if A o -  > B in 7r, then A -  > B or A < -  > B in every inducing path 
graph in E(G'), and 

4. if A -  > B in 7c, then A -  > B in every inducing path graph in E(G'), 
and 

5. if A , - , B , - ,  C in 7r, then the edges between A and B, and B and 
C do not collide at B in any inducing path graph in E(G');  

6. if A < -  > B in 7c, then A < -  > B in every inducing path graph in 
E(o'). 

Note that an edge A , - o  B places no constraints upon the edge between 
A and B being into or out of B in any subset of E(G'). 
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The adjacencies in an inducing path graph 7r for G can be constructed by 
making A and B adjacent in 7r if and only if A and B are d-connected given 
every subset of O\{A, B}. (If a distribution P is faithful to G, then this 
amounts to making A and B adjacent if and only if A and B are dependent 
in P conditional on every subset of O\{A,B} . )  Once the adjacencies have 
been determined, it is trivial to construct a partially oriented inducing path 
graph 7r for G. Simply orient each edge A , - ,  B as A o - o  B. Of course 
this particular partially oriented inducing path graph ~r for G is very unin- 
formative about what features of the orientation of G' are common to all 
inducing path graphs in E(G'). 

In a maximally oriented partially oriented inducing path graph 7r for G, 
an edge A , - o  B would appear only if the edge between A and B were into 
B in some members of E(G'),  and out of B in other members of E(G'). Such 
a maximally oriented partially oriented inducing path graph 7r for G could 
be oriented by the simple algorithm of constructing every possible inducing 
path graph with the same adjacencies as G', throwing out the ones that do 
not have the same d-connection relations as G', and keeping track of which 
orientation features are common to all members of E(G'). Of course, this is 
completely computationally infeasible. 

Our goal is to state an algorithm that constructs a partially oriented in- 
ducing path graph for a directed acyclic graph G that contains as many 
orientations as possible, while remaining computationally feasible. The al- 
gorithm we propose is divided into two main parts. First, the adjacencies in 
the partially oriented inducing path graph are determined. Then the edges 
are oriented in so far as possible. In order to state the algorithm, several 
more definitions are needed. 

In a partially oriented inducing path graph 7r: 

1. B is a definite non-collider on undirected path U if and only if B is an 
endpoint of U or there exist vertices A and C on U such that either 
A < - B , - ,  C , A , - ,  B - >  C, o r A , - , B , - , C o n U .  

2. A is a parent of B if and only if A -  > B in ~r. 

3. B is a collider along path < A, 
in ~r. 

B, C > if and only if A , -  > B < - ,  C 

4. An edge between B and A is into A if and only if A < - ,  B in 7r. 

5. An edge between B and A is out of A if and only if A -  > B in 7r. 

6. E is a definite discriminating vertex for C with respect to triangle 
A -  B -  C using path P and vertex B, if and only either the edge 



821 

between A and C is into A and the edge between B and A is out of 
A, or the edge between A and C is out of A and the edge between B 
and A is into A, and E is a closest vertex to A such that  

a. E is not adjacent to B, and 

b. P is an undirected path from E to A not containing B or C, and 
every vertex between E and A is a collider or a definite non- 
collider, and 

c. for every vertex V on P,  if V ~ is adjacent to V on P and between 
V and A on P,  then V , - >  V' in G, and 

d. every vertex V on P between E and A is adjacent to B in G, and 

e. except for the endpoints of P,  if V is a collider on P then V -  > B 
in G, and if V is a definite non-collider on P,  then V < - ,  B in 

G. 

Figure 2 illustrates the concept of a definite discriminating vertex. 

E O  v F ~ v G "~l-,~ ~w,- A ~'-,~ lh~ B w . -  

Figure 2" E is a definite discriminating vertex for C with respect to triangle 
A -  B - C  using vertex B and path < E, F, G, A >. 

Causal  Inference A l g o r i t h m  1 

If G is a directed acyclic graph over V ~, and V is a subset of V ~, the input to 
the algorithm is the set of d-separation relations involving just members of 
V that  is true in G. Let AQ(A, B) denote the set of vertices adjacent to A 
or to B in graph Q, except for A and B themselves. (Since the algorithm is 
continually updating Q, AQ(A, B) is constantly changing as the algorithm 
progresses.) 

t As I explain in more detail in Section 8, the Causal Inference Algorithm uses some ideas 
from the Inductive Causation algorithm described in Pearl and Verma (1990). 
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A) Form the complete undirected graph Q on the vertex set V. 

B) If A and B are d-separated by any subset S of V, remove the edge 
between A and B, and record S in D(A, B). 

C) Let F be the graph resulting from step B. Orient each edge as o - o .  
For each triple of vertices A, B, C such that the pair A, B and the 
pair B, C are each adjacent in F but the pair A, C are not adjacent 
i n F ,  o r i e n t A , - ,  B , - ,  C a s A , - >  B < - ,  C if and only if B 
is not in D(A, C), and orient A , - ,  B , - ,  C as A , - , B , - ,  C if 
and only if B is in D(A, C). 

D) repeat 

If there is an edge A , - >  B, and an edge B , - ,  C, A and 
C are not adjacent, and there is no arrowhead into B, then 
o r i e n t B , - ,  C a s B - >  C, 

else if there is a directed path from A to B, and an edge 
A , - ,  B, orient A , - ,  B as A , - >  B, 

else if V is a definite discriminating vertex for M using R in 
triangle P -  M -  R then 

if M is in D(V, R) then mark M as a non-collider 
on subpath P , - , M ,  - ,  R 
else orient P , - ,  M , - ,  R as P , - >  M < - ,  R. 

else if P , - >  M ,  - ,  R then orient as P , - >  M -  > R. 

until no more edges can be oriented. 

Unfortunately, the Causal Inference Algorithm as stated is not practical 
for large numbers of variables because of the way the adjacencies are con- 
structed. While it is theoretically correct to remove an edge between A and 
B from the complete graph if and only if A and B are d-separated by some 
subset of O\{A, B}, this is impractical for two reasons. First, there are too 
many subsets of O\{A, B} on which to test the conditional independence of 
A and B. Second, for discrete distributions, unless the sample sizes are enor- 
mous there are no reliable tests of independence of two variables conditional 
on a large set of other variables. 

Remember, however, that in an inducing path graph if A and B are d- 
separated by any subset of O, then they are d-separated by D - SEP(A, B). 
Unfortunately, until we have actually constructed the inducing path graph 
we do not know which variables are in D -  SEP(A, B). Nevertheless, as 
the partially oriented inducing path graph is constructed, we can determine 
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that some variables are definitely not in D -  SEP(A, B). This reduces the 
number and size of the subsets of O that have to be checked in order to 
determine whether A and B are adjacent in the inducing path graph. 

We will determine which edges to remove from the complete graph in 
three stages. First, we will remove the edge between A and B if they are 
independent conditional on subsets of neighbors of A and B. This will 
eliminate many, but perhaps not all of the edges that are not in the inducing 
path graph. Second, we will orient edges by determining whether they collide 
or not. Third, using the partially oriented inducing path graph re that we 
have constructed thus far, we will form two sets of vertices Poss ib le -D-  
SEP(A, B, re), and Poss ib l e -D-SEP(B ,  A, re) one of which includes every 
vertex that could possibly be in D-SEP(A,B) .  (We need two such sets 
because we cannot determine from the partially oriented inducing path graph 
constructed thus far whether A is a descendant of B or B is a descendant 
of A.) Finally, we will remove the edge between A and B if A and B are 
independent conditional on any subset of either Poss ib le -D-SEP(A,  B, re) 
or P o s s i b l e - D - S E P ( B , A ,  rr). Once we have obtained the correct set of 
adjacencies, we will unorient all of the edges, and then proceed to re-orient 
them. For a given partially constructed partially oriented inducing path 
graph re, Poss ib le -D-SEP(A,  B, re) is defined as follows. 

If A -r B in a partially oriented inducing path graph re, V is in Possible-  
D-SEP(A,  B, re) if and only if V --/= A and there is an undirected path U 
between A and V in re such that for every subpath < X, Y, Z > of U either 
Y is a collider on U, or Y is not a definite non-collider on U and X, Y and 
Z form a triangle in re. 

Fast Causal Inference Algorithm 

If G is a directed acyclic graph over V', and V is a subset of V', the input to 
the algorithm is the set of d-separation relations involving just members of 
V that is true of G. Let AQ(A, B) denote the set of vertices adjacent to A 
or to B in graph Q, except for A and B themselves. (Since the algorithm is 
continually updating Q, AQ(A, B) is constantly changing as the algorithm 
progresses.) 

A.) Form the complete undirected graph Q on the vertex set V. 
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B. )  n = 0. 

repeat 
repeat 

select a pair of variables X and Y that are adjacent in Q 
such that AQ(X, Y) has cardinality greater than or equal 
to n, and a subset S(X, Y)of  AQ(X, Y)of  cardinality n, 
and if X and Y are d-separated by some subset of S(X, 
Y) delete the edge between X and Y from Q, and record 
the subset in D(X, Y) 

until all variable pairs X and Y such that AQ(X, Y) has car- 
dinality greater than or equal to n and all subsets S(X, Y) of 
AQ(X, Y) of cardinality n are exhausted. 
n = n + l .  

until for each pair of adjacent vertices X, Y, AQ(X, Y) is of cardinality 
less than n. 

C.) Let F'  be the graph resulting from step B. Orient each edge as o - o .  
For each triple of vertices A, B, C such that the pair A, B and the pair B, 
C are each adjacent in F' but the pair A, C are not adjacent in F', orient 
A , - ,  B , - ,  C as A , -  > B < - ,  C if and only if B is not in D(A, C), and 
orient A , - ,  B , - ,  C as A , - , B ,  - ,  C if and only if B is in D(A, C). 

D.) For each pair of variables A and B connected by an edge in F',  if A and 
B are d-separated by any subset of Possible-D-SEP(A,B,F')\{A,B} or 
any subset of Poss ib le -D-SEP(B,  A, F')\{A, B} remove the edge between 
A and B. 

The algorithm then orients an edge between any pair of variables X and 
Y as X o - o  Y, and proceeds to re-orient the edges in the same way as 
steps C and D of the Causal Inference Algorithm. The correctness of the 
algorithm is proved in Spirtes, Glymour and Scheines (forthcoming). 

The example in Figure 3 shows that the algorithm is not complete, i.e. 
there are edges that are not oriented by the algorithm, whose orientation 
is common to all of the inducing path graphs with the same d-connection 
relations as the inducing path graph G. 

In Figure 3, the edge between D and B is not oriented by the Fast Causal 
Induction Algorithm, even though there is an arrowhead at B in every in- 
ducing path graph with the same d-connection relations as G. We could of 
course simply add another orienting rule to handle this case. 
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A ~ B 4 - - - - -  C A o ~ - - ~  B "4----o C  kO/ 
D D 

Inducing Path Graph (3 Partially Oriented Inducing Path 

Figure 3: 

7. P r e s e r v a t i o n  t h e o r e m s  

Using the partially oriented inducing path graph output by the Fast Causal 
Inference Algorithm, and the inferences about graphs that can be drawn 
from inducing path graphs, we have the following two results. If the d- 
connections true of a directed acyclic graph G and involving just the variables 
in O are the input to the Causal Inference Algorithm, we will refer to the 
partially oriented inducing path graph over O output by the Causal Inference 
Algorithm as the CI partially oriented inducing path graph of G over O. 

THEOREM 2 /if 7r is a partially oriented inducing path graph of directed 
acyclic graph G over O, and there is a directed path U from A to B in 7r, 
then there is a directed path from A to B in G. 

A semi-directed path from A to B in partially oriented inducing path 
graph 7r is an undirected path from A to B in which no edge contains an 
arrowhead pointing towards A (i.e. if X and Y are adjacent on the path, 
and X is between A and Y on the path, then there is no arrowhead at the 
X end of the edge between X and V and there is no arrowhead at A.) 

THEOREM 3 If  7r is the CI partially oriented inducing path graph of a di- 
rected acyclic graph G over O, and there is no semi-directed path from A 
to B in 7r, then there is no directed path from A to B in G. 

As an example of the appli(:ation of the Fast Causal Inference Algorithm, 
suppose that the causal structure, depicted in Figure 4 is the true causal 
structure among a set of variables related to breathing dysfunction, and 
that all of the variables except those in boxes, (Environmental Pollution 
and Genotype) are measured. (I am not proposing this graph as a model 
of breathing dysfunction; we constructed it merely to illustrate the applica- 
tion of Theorems 2 and 3.) The partially oriented inducing graph over the 
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measured variables constructed by the Fast Causal Inference Algorithm is 
depicted in Figure 5. 

E nvi ro nme nt al G e no type 
Pollution 

dlia darna~ heart disease lung 

smoking measured breathing 
dysfunction 

price of restrictions on use 
cigarettes of cigarettes 

Figure 4: Causal Graph of Breathing Dysfunction 

By applying Theorem 2, we infer that smoking does cause breathing dys- 
function. By applying Theorem 3, we infer that smoking does not cause 
heart disease. 

Note that in order to infer that smoking causes breathing dysfunction, it 
is necessary to measure two causes of smoking (whose collision at smoking 
orients the edge from smoking to cilia damage.) In general, this suggests 
that in the design of studies intended to determine if there is a causal path 
from variable A to variable B, it is useful to measure not only variables 
that might mediate the connection between A and B, but also to measure 
possible causes of A. 
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smoking measured breathing 
dysfunction 

price of restrictions on use 
cigarettes of cigarettes 

Figure 5" Partially Oriented Inducing Graph of Breathing Dysfunction Over 
Measured Variables 

8. H i s t o r i c a l  n o t e  

In a series of papers (Pearl and Verma 1990, Pearl and Verma 1991, Verma 
and Pearl 1990, and Verma and Pearl 1991) Verma and Pearl describe an 
"Inductive Causation" algorithm that outputs a structure that they call a 
pattern (or sometimes a completed hybrid graph) of a directed acyclic graph 
G over a set of variables O. Their algorithm differs from the Causal Inference 
Algorithm in two main respects. First, early versions of the algorithm did not 
distinguish between A -  > B and A o-  > B; this distinction was introduced 
(in a different notation) in Spirtes and Glymour (1990a). Second it does 
not use definite discriminating vertices to orient any edges. (And unlike 
the Fast Causal Inference Algorithm it cannot be applied to large numbers 
of variables because it requires testing the independence of some pairs of 
variables conditional on every subset of O\{A,B}.)  The most complete 
description of their theory appears in Pearl and Verma (1990). The key 
ideas of an inducing path, an inducing path graph, and the proof of (what 
we call) Theorem 1 all appear in this paper. Unfortunately, the two main 
claims that they make about patterns in this paper are both false. 

In order to state their claims we need the following definitions. A pattern 
over O contains three kinds of edges: directed edges (e.g. A - >  B), undi- 
rected edges (e.g. A - B ) ,  and bi-directed edges (e.g. A < -  > B.) Directed 
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paths and descendants are defined in a pattern the same way they are de- 
fined in acyclic directed graphs; however, an undirected path in a pattern 
can contain bidirected edges and undirected edges as well as directed edges. 
Edges between A and B, and B and C, collide at B on an undirected path 
in a pattern if both edges have arrowheads at B. A and B are h-separated 
by S in a pattern 7r if and only if there is no undirected path between A and 
B in which every collider has a descendant in S, and no non-collider is in S. 

Verma and Pearl claimed first (lemma A.2 in their paper) that if 7r is the 
pattern of a directed acyclic graph G over O, and A and B are in O, for all 
S included in O, A and B are h-separated by S in 7r if and only if A and B 
are d-separated by S in G. Their second claim (Theorem 2 in their paper) 
was that any two directed acyclic graphs with the same pattern over O were 
"equivalent", i.e. they entailed the same d-separation relations involving 
just variables in O. The following example shows that both of these claims 
are false. 

D D 

E E F 

v B  " 'Cv A ~ ""  ~ "'- v B  v C  A v B  v C  

Graph G Graph G' Pattern tof G and G' 
Over O = {A,B,C,D} 

Figure 6: 

According to the Verma-Pearl algorithm both G and G' in Figure 6 have 
the pattern 7r over O = {A, B, C, D} depicted in Figure 6. (The edge be- 
tween C and D in the pattern is oriented from C to D in order to avoid a 
cycle involving B, C, and D.) However in G A and C are d-separated by 
{B, D} but not by {B}, whereas in G' A and C are d-separated by {B} but 
not by {B, D}. Hence G and G' have different d-separation relations among 
variables in O even though they have the same pattern. Moreover, A and 
C are h-separated by {B, D} in the pattern of G', even though they are not 
d-separated by {B, D} in G'. 

Even though the patterns over O generated by the Verma-Pearl algorithm 
for G and G' are identical, the partially oriented inducing path graphs over 
O generated by the Causal Inference Algorithm for G and G' are different. 
This is because in both cases A is a definite discriminating vertex, and hence 
the edge between C and D is oriented differently in the CI partially oriented 
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inducing path graph of G and the CI partially oriented inducing path graph 

of G'. The output  of the Causal Inference Algorithm for G and G' over O 
is depicted in Figure 7. 

D D 

AO ~ B v ~ C A ~  B v ~ C 

Partially Oriented Inducing 
Path Graph of G over 

O = {A,B,C,D}  

Partially Oriented Inducing 
Path Graph of G' over 

O = {A,B,C,D} 

Figure 7: 

While the proofs of Vertna and Pearl 's two main claims about  pat terns  
contained fallacies, we have used several of their proof techniques in our 
proofs. 
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1. I n t r o d u c t i o n  

The arguments of de Finetti  and Ramsey, which justify the use of the proba- 
bility calculus for certain numerical measures of degrees of belief, are, I think, 
at least as familiar to an audience of philosophers as to one of statisticians. 
Questions of "temporal coherence", whether Bayes' formula is only correct 
instantaneously or can be used to modify opinions through time, have, I 
gather, been widely debated by philosophers (cf. Skyrms (1990)). What  
may be new to this audience and what I will describe is the application of 
simple coherence arguments to standard problems in statistics. 

After a brief review of some of de Finetti 's ideas, I will introduce some 
standard terminology and then discuss two notions of coherence for statis- 
tical inference and predictions. 

2. de F i n e t t i ' s  t h e o r y  of c o h e r e n c e  

Let $ be a collection of events. For my purposes, $ can be regarded as a 
collection of subsets of the set ~ of possible outcomes of some experiment like 
a die toss. (However, de Finetti  (1974) has warned us about the uncritical 
acceptance of this identification of events and sets.) Suppose that,  to each 
event A in g, a bookie assigns a price P(A)  to a ticket worth one dollar if 
the actual outcome ~ of the experiment is in A and worth nothing if w is 
not in A. Thus the net payoff to a gambler who purchases such a ticket will 
be 

A(~z) - P ( A )  (2.1) 

*Research sponsored by National Science Foundation Grant DMS-8911548. 
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where A(co) is 1 or 0 accordingly as co belongs to A or not. To encourage 
"fair" prices, we require that  the bookie be willing to buy as well as sell 
tickets so that  a gambler can also have - [ A ( w ) -  P(A)] as payoff. We also 
require that  the bookie be willing to buy or sell arbitrary quantities of a 
given ticket. The resulting payoffs are of the form 

a [ A ( w ) -  P(A)] (2.2) 

where a is a real number corresponding to the quantity of tickets on A 
purchased by the gambler. The total payoff to a gambler who buys ai tickets 
on Ai for i = 1 , . . . ,  n will be 

n 

~(w) - ~ ai[Ai(w)-  P(Ai)]. (2.3) 
i = 1  

Call the bookie or the price function P coherent if there is no ~ of the form 
above which is positive at every w. 

The basic result of de Finetti is that  P is coherent if and only if P is 
consistent with a finitely additive probability measure. If g is an algebra 
of sets, there are elementary and entertaining arguments from de Finetti  
(1937) to prove that  coherence is equivalent to the usual axioms: 

(a) P i f ~ ) =  1 

(b) 0 <_ P(ft)_< 1 

(c) P(A U B) = P(A) + P(B)  if A O B = O 

If $ is not an algebra, a coherent P can always be extended to an algebra 
so as to be a finitely additive probability. 

Several authors (see, for example, Heath and Sudderth (1972) or Skyrms 
(1984)) have remarked that  if a gambler is allowed to make countably many 
bets, then P must be countably additive to avoid a sure loss. However, de 
Finetti  (1972, p. 91) considered such arguments to be circular because they 
rely on the usual conventions about infinite sums which are tantamount  to 
an assumption of countable additivity. 

Notice that  the collection of payoff functions p as in (2.3) form a linear 
space since any real multiple of such a payoff function is itself one and the 
sum of two such payoff functions is one also. Furthermore, if P is coherent, 
then the expectation (i.e. the integral) of every payoff ~ is zero because, for 

as in (2.3), 

n 

- a IEA - - 0 - O. 

i = 1  i = 1  
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This suggests a useful generalization. 
Let �9 be a linear space of bounded, real-valued functions defined on ft. 

Think of (I) as the collection of possible payoff functions from a bookie to 
a gambler and call the bookie coherent if there is no ~ in (I) which has a 
positive infimum. (A ~ as in (2.3) can have only finitely many values. If 
such a ~ is everywhere positive, then it is bounded away from zero.) The 
result in this more general framework is that coherence is equivalent to the 
existence of a finitely additive probability measure P defined on all subsets 
of ft such that E ~ ( =  f cpdP)is zero for every p in (I). (This equivalence is 
an easy consequence of Lemma 1 in Heath and Sudderth (1978).) 

The de Finetti theory treats conditional probability by the device of 
called-off bets. Suppose A and B are events and B is not empty. Let 
P(A I B) be the bookie's price for a ticket worth one dollar if w is in A but 
with the convention that the transaction is called off if cJ is not in B. The 
net payoff for this called-off bet is 

r  B(w)[A(w) - P(A I B)]. (2.4) 

As above we require that multiples and finite sums of payoff functions be 
payoff functions. If the bookie is coherent, then there is a P such that 

E ~ - o .  

But 

f 
Er - / { B ( w ) A ( w ) -  B(w)P(A I B)}dP(w) 

= P(A N B) - P ( B ) P ( A I B  ) 

and the usual m_ultiplication rule 

P(A n B ) -  P(B)P(A I B ) 

follows. The rule can also be proved using simple betting arguments as in 
de Finetti (1937). 

3. Statistical models, inferences, and predictions 

A basic problem of statistics is to infer something about a parameter or 
state of nature 0 after observing the value of a random variable x whose 
distribution po depends on 0. The family {Po} of possible distributions for 
x is called a statistical model. Another basic problem is to predict the value 
of a second variable y after observing x~ 
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For a simple example, think of 0 as a real-valued physical constant and 
suppose x is a measurement of 0 subject to a random error c so that 

x=O+c.  

If c has a standard normal distribution, then the distribution pe for x is 
normal with mean 0 and standard deviation 1, or N(0, 1) for short, and has 
probability density function 

1 1(X__0)2 

Now suppose you observe a particular value of x. What  can you say about 
0 or about the value of a subsequent measurement y? 

A statistician, who takes the majority view of probabilities as being lim- 
iting values of relative frequencies, might construct confidence intervals for 
0. Whatever the value of 0 may be, the probability under p0 that  x lies 
between 0 - 1.96 and 0 + 1.96 is .95. The statistician solves the inequalities 

0 -  1.96 < x < 0 + 1.96 

for 0 getting 
x -  1.96 < 0 < x + 1.96. 

The interval from x -  1.96 to x + 1.96 is called a 95% confidence interval 
for 0, the word "confidence" being used partly to avoid making probability 
statements about 0. However, these confidence numbers are consistent with 
a distribution qx for 0 which is N(x, 1). 

The great statistician R.A. Fisher (1956) would do similar algebra to arrive 
at the same qx which he called the "fiducial distribution" of 0. 

The Bayesians interpret probability as a measure of degree of belief and 
are willing to treat 0 as a random variable with some distribution rr prior 
to observing x. The inference about 0 is made by calculating the condi- 
tional distribution q~ of 0 given x. This conditional distribution is called the 
posterior. If, as in the example, each Po has a probability density function 
f(x 10) and if rr also has a density g(0), then q~ has a density h(Olx) given 
by Bayes' formula 

f(x [ O)g(O) 
g(a I f I 

or, more simply, 

g(e I I e)g(e). 
In general, a posterior qz for a prior ~ cannot necessarily be calculated 

using Bayes' formula. It is required, as a conditional distribution, to satisfy 
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the formula 

f J cp(O,x)po(dx)Tr(dO) - ] j  ~(O,x)qx(dO)m(dx) 

for bounded functions ~, where m is the marginal distribution of x defined 
by 

f 
for bounded ~. (By the way, in order to avoid inappropriate technicalities, 
I have not explicitly assumed the functions p and ~ to be measurable and 
I will likewise omit mention of such assumptions below. More technical 
treatments can be found among the references.) 

Not all Bayesians are willing to require that prior distributions satisfy all 
of the conventional axioms for probability. A few, like de Finetti, prefer not 
to assume countable additivity and many others use improper priors which 
assign infinite total mass to the space of 6-values rather than mass 1 (cf. 
Jeffreys (1961) and Hartigan (1983)). If, in our example, 7r is taken to be 
improper with density 9(0) identically equal to 1, then the formal posterior 
obtained from Bayes' formula has density 

g(O I x ) = f (x l 0) 
which agrees with the confidence and fiducial distributions. This posterior 
cannot be obtained from a proper, countably additive 7r, but it does corre- 
spond to the posterior for a finitely additive probability 7r on the real line 
which is invariant under translations (Heath and Sudderth (1978)). 

For the rest of this paper, a statistical inference {q~} will be, as in the ex- 
ample above, a family of probability distributions for 0 indexed by the values 
of x. Thus the notions of a model {Po} and an inference {qx} are mathemat- 
ically symmetric in 0 and x. However, x is observable by assumption and 0 
is typically not observable. 

Consider now the problem of predicting the value of a second variable y 
after observing x assuming that po is the probability distribution for the 
pair (x, y). A prediction is defined here to be a family {rx} of probability 
distributions for y indexed by the values of x. (These were called "predictive 
inferences" in Lane and Sudderth (1984).) The prediction of a frequentist 
statistician might be calculated using "prediction intervals" for y which are 
analogous to confidence intervals. R.A. Fisher generated a "fiducial dis- 
tribution" for y. A Bayesian, equipped with a prior distribution 7r for 0, 
predicts y from x by calculating rx, the conditional distribution of y given 
x. This conditional distribution is called the predictive distribution. If all 
the variables have densities, then rx has a density h(ylx)  given by 

h(y [ x) - / f (y l x, O)h(O I x)dO 
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where f ( y l  x, O) is the conditional density for y given x and 0 and h(OIx)  
is the posterior density for 0 as before. 

For a simple example, suppose again that  0 is a constant and also that  

X 1 = O--t---C1 

x,~ = 0 + Cn 

y = O - t - C n + l  

are variables corresponding to n + 1 measurements for which the errors 
C l , . . . ,  cn+l are independent, standard normal variables. You observe x = 
(X l , . . . , xn )  and must predict y. Now y is N(O, 1). So it is tempting to 
estimate 0 by 5, the average of Xl , . . . ,Xn ,  and then take our predictive 
distribution rx to be N(~, 1). However, y - ~ is N(0, 1 + n -I)  which results 
in prediction intervals for y consistent with a N(~, 1 + n -I)  and the same 
prediction can be obtained using Fisher's fiducial argument or by calculating 
the predictive distribution corresponding to the improper prior density g(O) 
which is identically equal to 1. 

It seems more in keeping with de Finetti 's original work to concentrate 
on predictions of observables rather than inferences about unobservables. In 
practise, inference and prediction are closely linked and models, which use 
unobservables, seem indispensable for predictions (cf. Geisser (1991)). 

4. T h e  s t a t i s t i c i a n  as book ie  I 

Suppose a statistician has an inference {q~} for the model {Po}. Regard the 
model as given, but think of the statistician as a bookie and the inference as 
a price function on subsets of (9, the set of possible values for 0. A gambler 
can choose a subset A ~ of (9 and an amount b(x) (positive or negative) to 
bet on the event that  0 belongs to A ~. The payoff from this bet is 

b(z)[A~(O) - q,(A~)]. (4.1) 

The function b is restricted to be bounded. Also, the transaction between 
the gambler and the bookie is thought of as a contract conditional on the 
value of x. When x is observed, the gambler pays b(x)qx(A x) dollars for 
b(x) tickets on A x and receives b(x) dollars if 0 turns out to be in A ~. The 
gambler is allowed to make a finite number of these bets and have total 
payoff of the form 

n 

~(0, x) - ~ b~(z)[A~(6) - q~(A~)]. (4.2) 
i=1  
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The gambler's expected payoff under the model is 

E(o) - f (4.3) 

The inference {qx} is called coherent I if there is no qo as in (4.2) whose 
expected payoff E(O) has a positive infimum; i.e. there is no "expected sure 
win" for the gambler. 

This definition of coherence is from Heath and Sudderth (1978) but is 
based on the ideas of Freedman and Purves (1969). It is in the spirit of 
statistical decision theory where decision functions are evaluated in terms 
of their expected loss under the model (Wald (1950)). The next section 
gives a "sure loss" criterion closer in spirit to that  of de Finetti. Here is a 
characterization of coherent I inferences from Heath and Sudderth (1978). 

THEOREM 4.1 An inference is coherent I if and only if it is the posterior 
distribution for some finitely additive prior rr for O. 

The idea of the proof is quite simple. Take ~ to be the collection of 
all functions E(O) as in (4.3) which correspond to expected payoffs. The 
definition of coherence I is that  the linear space �9 contains no function with 
a positive infimum and this means there is a finitely additive probability 7r 
on 0 which gives every function in (I) expectation zero. This is the 7r for 
which {qx} is a posterior. 

To get a better understanding of what it means for an inference to be 
coherent I, return to the simple measurement model in which P0 is N(O, 1). 
Consider four possible inferences: q~ is N(x/2, 1/2) (i.e. normal with mean 
x/2 and standard deviation 1/x/~), q~ is N(x, 1), qa is N(x, 1/2), q4 is N(x+ 
1, 1). To show an inference is coherent, it sutfices to find a prior for which 
it is the posterior. If we take re1 to be N(0, 1), a calculation based on 
Bayes' formula shows q~ to be the posterior and therefore coherent. The 
inference q2 is the one discussed in section 3 where it was mentioned that  
it is the posterior of a finitely additive prior and thus coherent. The last 
two inferences are not coherent and the easiest way to see this is to find an 
expected sure win by exploiting inconsistencies between the model and the 
inferences. For instance, one can use normal probability tables to see that  

vo{.  : I -ol > 1} = .32 

qa{O']x-O I > 1 }  - .16. 

(4.4) 
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Now take A ~ - { O ' l x -  01 < 1} and b ( x ) -  1. So, for 

~(O, z )  - A~(O) - q~(A ~) 

= A~(0) - .16, 

we have 

E(O) - .32 - .16 - .16, 

an expected sure win. Similarly, the inconsistency 

po{z " x > 0 } - . 5  

and 
q4{O z > 0 } - . 1 6  

leads to an expected sure win for the gambler. 
The last example is due to M. Stone (1976) who gave it and a number of 

other examples to show the danger of using improper priors. The incoherent 
inference q4 is, in fact, the formal posterior of an improper prior with density 
g(O) - e ~ Recall that  the coherent inference q~ is also the formal posterior of 
an improper prior. Even for our simple example, it is not easy to characterize 
those improper priors which lead to coherent inferences (cf. Heath and 
Sudderth (1989)). 

Suppose now that  {r,} is the statistician's prediction of the variable y from 
x based on the model {po}, where Po is the distribution for the pair (x, y) 
when the parameter has value 0. Regard the prediction as a price function 
on subsets of Y, the set of possible values for y. This time a gambler can 
choose a subset A ~ of Y and an amount b(x) to bet on the event that  y 
belongs to A x. The payoff is exactly as in (4.1) with 0 replaced there by y 
and qx by rx. The function b must be bounded and a finite number of such 
bets are permitted. So the gambler can have any payoff function 

cp(x, y) - ~ b~(x)[A~(y) - r~(A~)]. (4.5) 
i=1 

The expected payoff under the model is 

E(o) - f y)po(d( , y)). (4.6) 

The prediction {rx} is coherent  I if none of these expected payoffs has a 
positive infimum. 

Here is a characterization from Lane and Sudderth (1984). 
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THEOREM 4.2 The prediction {rx} is coherent I if and only if it is the 
predictive distribution of y given x corresponding to some finitely additive 
prior 7r t"or 0. 

In our prediction example from the previous section, x = (x i , . . .  ,xn) and 
y correspond to n +  1 independent N(O, 1) variables. The prediction in which 

1 is N(Y, 1 + n -1) is coherent because it can be shown to be the predictive T x 

distribution for a finitely additive 7r which is translation invariant on the 
2 is N(Y, 1) is not coherent because line. The plug-in prediction in which rx 

po{(x,y):  ] Y - y ]  > v/1 + n -1} = .32 

and 
r~{y: 1~-  y] > v/1 + n -1} < .32. 

The gambler can exploit this inconsistency with a bet on 

AX = {Y: I ~ - Yl > v/1 + n- l}  

to get an expected sure win. 

5. T h e  s t a t i s t i c i a n  as book ie  II  

In the previous section, the model {Po} was assumed to be given. This is in 
keeping with statistical practise, at least in textbooks, and even Bayesians 
sometimes regard the model as being "objective" in some sense (Savage 
(1962, p.16)). In real problems, the model, like the inference, is usually 
supplied by the statistician and represents the opinions of the statistician. 

So assume now that our statistician is responsible for the model {po} as 
well as the inference {qx}. The gambler can make bets on 0 as before to get 
a payoff ~(0, x) as in (4.2) but can also make bets on x to get a payoff 

m 

~(0, x) - ~ dj(O)[Co(x) - po(C~ (5.1) 
j---1 

where the C ~ are subsets of the set X of possible values for x and the dj are 
bounded, real-valued functions on 0.  Say that {Po} and {q~} are coherent II 
if there is no payoff ~(0, x ) +  ~(0, x) with a positive infimum; i.e. no "sure 
win" for the gambler. It 's obviously harder for the gambler to get a sure win 
than an expected sure win. On the other hand, more bets are available. It 
turns out that the characterization of coherence is the same. 

THEOREM 5.1 A model {Po} and inference {qx} are coherent II if and only 
if {qx} is the posterior for some &litely additive prior 7r under the model 

{;o}. 
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Recall how, for our simple measurement model, the inconsistency reflected 
in (4.4) was used to construct an expected sure win thereby showing {q~} 
to be incoherent I. Now that the gambler can bet on x as well as 0, we can 
get a sure win by setting 

A ~ = { 0 : l x - 0 1  > l } , C ~  

~(O,x) - A~(O) -  q~(A ~) - A~(O) -  .16, 

r x) = - l [C~  - po(A~)] = - C ~  + .32. 

Now Ax(O)= C ~  so 

g)(0, x) + r x) = .32 - .16 = .16, 

a sure win. 
The situation is completely analogous for predictions. The statistician's 

model {p0} now gives distributions for (x, y) and so payoff functions for bets 
on (x, y) are of the form 

m 

r y) - Z y) - po(C )l 
j=l 

and the payoffs ~(x, y) for bets on y based on the prediction {rx} are just as 
before of the form in (4.5). The model {po} and prediction {r~} are called 
coherent II if there is no payoff ~(x, y) + r x, y) with a positive infimum. 
Again the characterization is the same. 

THEOREM 5.2 A model {po} and prediction {rx} are coherent II if  and 
only if  {rx} is the predictive distribution of y given x corresponding to some 
finitely additive prior 7r under the model {po}. 

The proofs of the theorems in this section rely again on the fact that  the 
collection (I) of possible payoffs is a linear space. 

6. Are  s t a n d a r d  s t a t i s t i ca l  p r o c e d u r e s  c o h e r e n t ?  

As we have seen, coherent inferences and predictions have a simple charac- 
terization as being conditional distributions based on priors and these priors 
may be only finitely additive. Nevertheless it is not always easy to determine 
whether a particular procedure is coherent. 

One important class of problems consists of those in which the parameter 
space O is a group and the model {p0} is a translation family in the sense 
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that, for some random variable z with values in O, Po is the distribution 
of x = Oz. Thus 0 = xz  -1 and, for a pivotal inference, we take qx to be 
the distribution of xz  -1. Our simple measurement model has this structure 
with O equal to the additive group of real numbers, z standard normal, and 
z = 0 + z. The pivotal inference here has q~ equal to the distribution of x -  z 
which is N ( x ,  1). Whether the pivotal inference is coherent depends on the 
properties of the underlying group O. If O is locally compact and amenable, 
which means there is a finitely additive, group invariant, probability defined 
on O, then the pivotal inference is coherent and is, in fact, a posterior for a 
group invariant probability (Heath and Sudderth (1978)). If the group is not 
amenable, the pivotal inference need not be coherent. (See M. Stone (1976) 
for some nice examples.) As it turns out, many of the standard inferences 
of classical statistics (e.g. in analysis of variance) correspond to pivotals for 
amenable groups and are coherent. However, nonamenable groups occur in 
multivariate analysis and it seems likely that some of the standard inferences 
are incoherent. 

As was pointed out in section 4, incoherent inferences can also occur as 
posteriors of improper priors and improper priors are often used by Bayesians 
in applications. 

7. R e l a t e d  no t i ons  

Recently, Regazzini (1987) and Berti, Regazzini, and Rigo (1991) have for- 
mulated another notion of coherence for statistical inferences which is based 
on a theory of finitely additive conditional probability. It seems to be some- 
what easier to be coherent under their definition of coherence. For example, 
all of the inferences {qi}, i - 1 , . . . ,  4, considered in section 4 for the simple 
measurement model are coherent in their sense. A different way of evaluating 
inferences has been developed by Eaton (1982, 1986), who treats inferences 
as decision rules and raises the question as to which inferences are admissible 
for an appropriate class of loss functions. It seems to be somewhat harder 
to be admissible in Eaton's sense than to be coherent in the sense of this 
paper. 

The theory of coherence, as I have explained it, is based on an economic 

metaphor involving fictitious transactions. It is interesting that ideas quite 
similar to coherence are studied in the theory of finance where an "almost 
sure win" is called an "arbitrage opportunity" or a "free lunch". The book 
by Duffle (1988) provides a useful introduction. 
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C A R N A P ' S  V O L U N T A R I S M  1 

RICHARD J E F F R E Y  

Department of Philosophy, Princeton University, Princeton, N. J., 08544, USA 

A certain voluntarism was a constant in Carnap's  at t i tude from well before 
its expression in Der logische Aufbau der Welt (1928), 2 through its later 
expression in "Empiricism, semantics and ontology" (1950), a to his death 
in 1970. Carnap's  voluntarism was a humanistic version of Descartes's 
explanation of the t ruths of arithmetic as holding because God willed 
them: not just "Let there be light," but "Let 1+1=2" and all the rest. 
Carnap substi tuted humanity for God in this scheme; that ' s  one way to 
put it, a way Carnap wouldn't  have liked much, but close to the mark, 
I think, and usefully suggestive. Item: Descartes was stonewalling, using 
God's fiat to block further inquiry. It is not for us to inquire why He chose 
2 instead of 3. But for our own fiat the question is not what it was, but 
what it will be: choice of means to our chosen ends. This fiat cannot be 
a whim, for this choice will be made through the public deliberations of a 
constitutional convention, surveying the alternatives and comparing their 
merits. In that sense the choice is conventional. 

Philosophically, Carnap was a social democrat; his  ideals were those 
of the enlightenment. His persistent, central idea was: "It's high time 
we took charge of our own mental lives" time to engineer our own 
conceptual scheme (language, theories) as best we can to serve our own 
purposes; time to take it back from tradition, time to dismiss Descartes's 
God as a distracting myth, time to accept the fact that  there's nobody 
out there but us, to choose our purposes and concepts to serve those 
purposes, if indeed we are to choose those things and not simply suffer 
them. That ' s  a bigger "if" than Carnap would readily acknowledge. A 
good part of his dispute with Quine (:entered on it. 4 Philosophically as 
well as politically Quine generally spoke as a conservative, Carnap as a 
socialist. For Carnap, deliberate choice of the syntax and semantics of our 
language was more than a possibility it was a duty we owe ourselves 
as a corollary of freedom. 



848 

In his last 25 years, Carnap counted specification of c-functions among 
the semantical rules for languages. Choice of a language was a framework 
question, a practical choice that  could be wise or foolish, and lucky or 
unlucky, but not true or false. (It will be true that  we have chosen a 
particular framework, but that doesn't make it a true choice. Truth and 
falsity just don't apply to choices.) If deliberation eventuates in adoption 
of a framework whose semantical rules specify the confirmation function c* 
then we have made it true by fiat, by convention, by reasoned choice, that  
"Pa" confirms "Pb" to degree 2/3. 5 It is not the individual scientist who 
chooses the c-function; that  is a social choice, a convention specifying 
the framework within which the scientist works. Thus it is by social 
fiat that  c(h, e) = p for particular sentences h, e, and particular numbers 
p. The contribution of the individual experimental scientist might be to 
determine that the sentence e is true in fact, but that determination is by 
observation, not fiat. 

Today I'd put Carnap's voluntarism tobroader  judgmental use. Judg- 
mental probabilities are not generally in the mind or brain, awaiting elic- 
itation when needed. Of course the hypothesis poses no difficulty for 
Carnap, for whom c(h, e) values come with the framework, and for whom 
elicitation of your rational judgmental probability for h is is a mat ter  of 
identifying an e that represents everything you're sure of relevant to h. 
And of course it does pose a difficulty for those subjectivists who think 
that probabilities are "in the mind" in some simple sense. But I think 
the important question is not whether we have probabilities in mind, but 
whether we can fabricate useful probabilistic proxies for whatever it is we 
have in mind. a The question is whether it's feasible and desirable for us 
to train ourselves to choose probabilities or odds or Bayes factors, etc., as 
occasions demand, for use in our practical and theoretical deliberations. 
The question is not whether we are natural Bayesians but whether we can 
do Bayesianism, and, if so, whether we should. For Carnap, this last is 
the practical question: whether, after due consideration, we will. 

Recall the broad outlines of Carnap's philosophical development. 

It was through his engagement with the program of logical analysis 
floated by Russell in 1915 that Carnap began to affect the shape of 20th 
century philosophy. The program aimed at bringing to philosophy a cer- 
tain method or attitude, resembling that of the sciences in its focus on 
progress in solving problems rather than on defense of doctrines. Progress 
brought with it the doctrinal flux that soon saw the phenomenalism of 
Carnap's Logische Aufbau der Welt 7 yield to the physicalism of his Lo- 
gische Syntax der Sprache s and saw his early deductivism give way to 
the probabilism of his last 25 years, during which his work in semantics 
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fostered a flowering of modal logic. 9 He welcomed real progress and its at- 
tendant doctrinal flux from whatever source, others no less than himself. 
The celebrated "Death of Logical Positivism"l~ refers to particular doc- 
trines (e.g. phenomenological reductionism) and methods (e.g., syntax) 
that Carnap and his friends abandoned for reasons rooted in the program 
itself. Broadcasting out of Europe those of its participants and associates 
whom it did not kill, Nazi power propagated the movement, which grew 
and changed rapidly in response to hard challenges. If what fired the 
Wiener Kreis has either died or grown out of recognition, that 's largely 
due to the standard of clarity and care set by works like the A ufbau, 
Logische Syntax der Sprache, Meaning and Necessity, 11 "Empiricism, se- 
mantics, and ontology," 12 and Logical Foundations of Probability. 13 

Carnap's earliest philosophical work, in the years just after the first 
world war, treated space from a Kantian perspective modified by Ein- 
stein's recently enunciated general theory of relativity and by his own 
characteristic analysis of the disputes over the nature of space as stemming 
from conflation of different senses of the term (formal, intuitive, physical). 
This was his Jena doctoral dissertation, restricting the Kant's synthetic 
apriorism to the local topology of intiuitive space (with the rest softened 
to conventionalism), and viewing physical space as purely empirical. 14 

In Jena he had attended Frege's lectures on logic, but it was after the 
war, in 1920, that he read Frege's Grundgestze der Arithmetik 15 and 
was fired by Whitehead and Russell's Principia Mathematica. 16 His dis- 
sertation had characterized formal space in terms of the logic of relations. 
Einstein's reduction of the concepts of space and time to concretely con- 
ceived local, momentary operations of measurement played a strong r61e 
with him then as with Russell and with Whitehead, suggesting a general 
empirical constructivist program in philosophy. In his intellectual auto- 
biography Carnap recalls his excitement in 1921 upon reading Russell's 
Our Knowledge of the External World as a Field for Scientific Method in 
Philosophy 17, where "I found formulated clearly and explicitly a view of 
the aim and method of philosophy which I had implicitly held for some 
time", is According to Russell "This method, of which the first complete 
example is to be found in the writings of Frege, has gradually, in the 
course of actual research, increasingly forced itself upon me as something 
perfectly definite, capable of embodiment in maxims, and adequate, in all 
branches of philosophy, to yield whatever objective scientific knowledge 
it is possible to obtain." 19 The actual research to which he refers is the 
construction or reduction or logical reconstruction or analysis in Principia 
Mathematica of the numbers and operations of mathematics in terms of 
purely logical concepts. 
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The Aufbau was Carnap's  serious start  on the program of completing 
that  analysis by extending it to the empirical domain. In effect, perhaps, 
it was a start  on the heralded, unforthcoming fourth volume of Principia. 
Russell had described Scientific Method in Philosophy 2o as "an a t tempt  
to show, by means of examples, the nature, capacity, and limitations of 
the logico-analytic method in philosophy." He continued: "The central 
problem by which I have sought to illustrate method is the problem of 
the relation between the crude data of sense and the space, time, and 
mat ter  of mathematical  physics. I have been made aware of this problem 
by my friend and collaborator Dr Whitehead ... I owe to him ... the 
whole conception of the world of physics as a construction rather than an 
inference. What  is said on these topics here is, in fact, a rough preliminary 
account of the more precise results which he is giving in the fourth volume 
of our Principia Mathematica." 21 

Volume 3 of Principia had laid the foundations for the conceptual ap- 
paratus of physics in a theory of measurement (part VI, "Quantity").  
As with the characterization of cardinal numbers (e.g., of 2 as a prop- 
erty posessed by the empirical property of being an author of Principia 
Mathematica, or as a set containing the set [Whitehead, Russell]), so the 
rationals are characterized in empirically applicable terms, as when 2/5 
is defined as a relation between relations. 22 That  was appropriate since 
physical magnitudes were analyzed as relations: "We consider each kind 
of quanti ty as what may be called a "vector-family," i.e., a class of one- 
one relations all having the same converse domain, and all having their 
domain contained in their converse domain. In such a case as spatial dis- 
tances, the applicability of this view is obvious; in such a case as masses, 
the view becomes applicable by considering, e.g., one gramme as + one 
gramme, i.e., as the relation of a mass m to a mass m ~ when m exceeds m ~ 
by one gramme. What  is commonly called simply one gramme will then 

- 2 3  be the mass which has the relation + one gramme to the zero of mass. 
The fourth volume was to have treated geometry. Russell makes it sound 
as though the treatment would spell out something like the fourth chapter 
of Scientific Method in Philosophy, "The World of Physics and the World 
of Sense." Considering Whitehead's  views in 1914 of physics, geometry, 
and sense, and his exclusive responsibility for volume 4, perhaps what he 
intended for it was an abstract theory that could be specialized to a con- 
struction of geometrical concepts out of perceptual ones somewhat as the 
theory in volume 3 could be specialized to a physikalische Begriffsbildung. 

However that  may be, the Aufbau was Carnap's  start  on the project 
of enlarging the Principia construction to include geometry, empirical sci- 
ence, and everyday knowledge. It was to be a collaborative effort, to 
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which Nelson Goodman was the earliest and most productive recruit. 24 
"The individual no longer undertakes to erect in one bold stroke an entire 
system of philosophy. Rather, each works at his special place within the 
one unified science . . . .  If we allot to the individual in philosophical work 
as in the special sciences only a partial task, then we can look with more 
confidence into the future" in slow careful construction insight after in- 
sight will be won. Each collaborator contributes only what he can endorse 
and justify before the whole body of his co-workers. Thus stone will be 
carefully added to stone and a safe building will be erected at which each 
following generation can continue to work. ''25 Carnap was serious about 
the importance of rationalization, division of labor, but the suggestion of 
a centralized allotment of special tasks to individuals is a stylistic artifact; 
the individual chooses his own special place as Goodman did. 

Carnap's 1928 preface was a period piece, like Bridgman's operational- 
istic call to arms the year before: "We should now make it our business 
to understand so thoroughly the character of our permanent mental rela- 
tions to nature that another change in our attitude, such as that  due to 
Einstein, shall be forever impossible. It was perhaps excusable that  a rev- 
olution in mental att i tude should occur once, because after all physics is a 
young science, and physicists have been very busy, but it would certainly 
be a reproach if such a revolution should ever prove necessary again." 26 

For Carnap as for Russell, scientific method was a datum, something 
one had the hang of as a scientifically trained person; its rational recon- 
struction was not high on the agenda as something to be accomplished 
before the rational reconstruction of our substantive knowledge could be- 
gin. Russell offers general remarks about the education of scientific investi- 
gators, and maxims claiming for the scientist such characteristics as hon- 
esty and open-mindedness, but neither he nor Carnap then essayed an ex- 
plicit account of scientific method. Both saw the body of work from Frege 
to Principia Mathematica as a historically given basis and paradigm for 
scientific work in philosophy analogous to the body of work from Galileo 
to Einstein in physics. But while these histories included revolutionary 
change, as in the transition from classical to relativistic physics, and cata- 
clysmic collapse of the sort that Russell's paradox produced in Frege's 
Grundgesetze construction, Carnap's 1928 statement envisaged only slow, 
irreversible progress. He would soon see his mistake, with GSdel's 27 in- 
completability proof for the Principia project, and Tarski's 28 deflationary 
rehabilitation of the concept of truth. 

In Logische Syntax der Sprache Carnap dropped the phenomenalistic 
reductionism of the A ufbau in favor of a version of the physicalism that 
Neurath had been urging. The project remained that  of logical analysis: 
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"That part of the work of philosophers which may be held to be scientific 
in its nature ... consists of logical analysis. The aim of logical syntax 
is to provide a system of concepts, a language, by the help of which the 
results of logical analysis will be exactly formulable. Philosophy is to be 
replaced by the logic o[ science that is to say, by the logical analysis 
of the concepts and sentences of the sciences, for the logic of science is 
nothing other than the logical syntax of the language of science." 29 

This was the work Quine read as it issued from Ina Carnap's typewriter 
in 1932 during his "rebirth in central Europe" .30 

Carnap's last big philosophical project finally addressed the nature of 
scientific method, in an attempt at rational reconstruction of our way of 
building scientific and everyday knowledge on experience. This took to a 
pure extreme the idea, subscribed to by many Bayesians, that it is the dif- 
ference between your experience and mine that separates your probability 
function from mine an idea often characterized by the vaguer saying 
that there are no unconditional probability judgments, but all are relative 
to background experience. Characteristically, Carnap took this idea quite 
seriously, and formulated it simply and clearly: the current probability 
that any individual i attributes to any hypothesis h in her or his language 
ought to be c(h, ei), where c is a "logical" probability function, the same 
for all rational agents. This constant c is the logical ingredient in logical 
empiricism, while the variable ei is the empirical ingredient. Put baldly in 
Carnap's way the idea is dismissed by Bayesians to whom garbled expres- 
sions of it sound like obvious truths. Here as in the A ufbau, Carnap was 
conscious and careful in making moves that others whistle over hastily, 
eyes averted from the void below. 

Like the Aufbau, this was the start of a long-range project for which 
Carnap hoped to recruit collaborators. That was the point of the Stud- 
ies in Inductive Logic and Probability 31 series, to expedite cooperation 
among scattered collaborators through quick publication of new work on 
the project. He was optimistic and (Ayer's term) serene, first to last. He 
died with his logical boots on, at work on the project. 

What 's  wrong with logical empiricism? Quine offered a double answer in 
"Two dogmas of empiricism": belief in the analytic-synthetic distinction, 
and reductionism, "the belief that each meaningful statement is equiv- 
alent to some logical construction upon terms which refer to immediate 
experience." 32 For these, Quine substituted the belief that our overall sys- 
tem of (yes/no) judgments is an economizing response to the totality of 
irritations of our sensitive surfaces. These irritations are not captured 
by protocol sentences recording sensations, but have their effects here and 
there in the totality of our assents to and dissents from sentences of various 
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sorts. The account he gives of the economy of thought involves a circle of 
terms noticed by Charles Chihara: 33 projectibility, similarity, simplicity. 
Quine sees that  as a virtuous circle, unlike the vicious circle so carefully 
traced in "Two dogmas". But with Chihara, I find the view clearer from 
a Bayesian, probabilistic perspective if not quite the one Carnap was 

34 mapping in his last 25 years. 

Surface irritations aren't  enough. We are active animals, processing 
our inputs in view of what we take ourselves to be doing as we receive 
them. We are primates who don't  swing from trees but do get sensory 
inputs on the fly, as an integral part of activities like walking, driving cars, 
conversing, catching balls, writing, etc. There is no hint of that  in the 
common philosophical examples observing hard brown tables, sensing 
yellow patches, "here now headache," and the rest. Mach's illustration, 
the view from his left eye as he lies on a couch, sums it up. 35 Here's where 
Anscombe and Hampshire on knowledge without observation are right on 
the money. ~6 It 's not just surface irritations that  provide our sense of what 
we're doing and trying. That ' s  the big t ru th  in pragmatism as I see it. 
Rejecting reductionism won't get us out of the way of our own feet until 
we also reject the view from behind Mach's moustache. 

It strikes me that  in adopting Russell's program, Carnap adapted it 
quite characteristically. Just as he advocated artificial languages, con- 
sciously constructed by us to serve our purposes, so his philosophical 
method was synthesis, not analysis a fact better understood by de- 
tractors dismissing him as a mere engineer than by some of his friends. 
He saw meanings as human artifacts, but had no reverence for traditional 
modes of conceptual production and their at tendant  mythology, for the 
lore of our fathers. He thought it practical, and essential for progress, to 
select and abide by linguistic rules that  fit our purposes. Carnap was an 
activist, not only in relation to language but in his insistence on human 
agency as a prime epistemological perspective. This pragmatism or epis- 
temological activism grew during the work on inductive logic to which 
he devoted much of his last quarter century, in the course of which he 
came to see rational deliberation as the primary context for his notion of 
inductive probability. 37 

By continuing in the contentious scientific spirit that  Carnap and Rus- 
sell urged upon us we can get further than they did; that  was the idea 
all along. What  we embrace is not a body of philosophical doctrine but a 
de facto method that  still wants definition, "explication." Carnap made 
a good start  on that.  Where would he have ended? There is no fact of 
the matter.  The next steps are for us. 

With Carnap, I reject the Cartesian view of judgments as acts of fiat 
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belief and disbelief. Seeing those as acts that might be undertaken wisely 
or rashly, Descartes enunciated a method for avoiding false belief, a dis- 
cipline of the will "to include nothing more in my judgments than what 
presented itself to my mind with such clarity and distinctness that I would 
have no occasion to put it in doubt" .39 He called such acts of the will "af- 
firmations," i.e., acts of accepting sentences or propositions as true. What 
do "belief", "acceptance", and "affirmation" mean in this context? I don't 
know. I 'm inclined to doubt that anyone else does, either, and to explain 
the general unconcern about this lack of understanding by familiarity of 
the acceptance metaphor masquerading as intelligibility, perhaps as fol- 
lows: "Since it's clear enough what's meant by accepting other things 

gifts, advice, apologies and it's clear enough what's meant by sen- 
tences' being true, isn't it clear what's meant by accepting sentences as 
true? Doesn't Quine make "holding" sentences true the very pivot of his 
epistemology? And isn't affirmation just a matter of saying 'Yes'?" 

Probabilism, be it Carnap's or de Finetti's, replaces the two Cartesian 
options of affirmation and denial by a continuum of judgmental probabil- 
ities in the interval from 0 to 1, endpoints included, or what comes to 
the same thing a continuum of judgmental odds in the interval from 0 
to c~, endpoints included. Zero and one are probabilities no less than 1/2 
and 99/100 are. Probability 1 corresponds to infinite odds, 1:0. That 's 
a reason for thinking in terms of odds: to remember how momentous it 
may be to assign probability 1 to a hypothesis. It means you'd stake your 
all on its truth, if it's the sort of hypothesis you can stake things on. To 
assign 100% probability to success of an undertaking is to think it advan- 
tageous to stake your life upon it in exchange for any petty benefit. We 
forget that when we imagine that we'd assign probability 1 to whatever 
we'd simply state as true. 4~ 

What is involved in attributing particular judgmental probabilities to 
sentences? With Carnap in his last decade and with de Finetti, I'd answer 
in terms of a theory of preference seen as a relation between sentences or 
propositions: preference for truth of one sentence ("Cameroon wins") 
to truth of another ("Britain wins"). 41 This theory is subjectivistic in 
addressing only the effects of such probability judgments, without saying 
how those judgments ought to be arrived at. The theory doesn't prejudge 
attempts like Carnap's to supply norms for forming such judgments; and 
indeed Carnap accepted this subjectivistic theory as an account of how 

probabilities are to be applied, once formed. judgmental ~ " " " 

Broadly speaking, probabilism or "Bayesianism" sees making up the 
mind as a matter of either adopting an assignment of judgmental proba- 
bilities or adopting certain features of such an assignment, e.g., the feature 
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of assigning higher conditional probability to 5 year survival on a diag- 
nosis of ductal cell carcinoma than on a diagnosis of islet cell carcinoma. 
Some insist on restricting the term "Bayesian" narrowly to those who see 
conditioning (or "conditionalization") as the only rational way to change 
the mind; I don't. (See The Logic of Decision, Chapter 11.) Rational- 
istic Bayesianism hereafter, "rationalism" is a subspecies of the 
narrow Bayesianism just noted, according to which there exists a (logi- 
ca1, a priori) probability distribution that would define the state of mind 
of a perfect intelligence, innocent of all experience. Notable subscribers: 
Bayes, Laplace, W. E. Johnson, J. M. Keynes, Carnap, John Harsanyi. 

Rationalism and empiricism are two sides of the same Bayesian coin. 
One side is a purely rational, "logical" element, a prior probability as- 
signment M characterizing the state of mind of a newborn Laplacean 
intelligence. Carnap spent his last 25 years trying to specify M. The 
other side is a purely empirical element, a comprehensive report D of all 
experience to date. Together, these determine the experienced Laplacean 
intelligence's judgmental probabilities, obtained by conditioning the "ig- 
norance prior" M by the Prototokollsatz D. Thus M ( H I D  ) is the correct 
probabilistic judgment about H for anyone whose experiential data base 
is D. 

Radical probabilism makes no attempt to analyze judgment into a 
purely rational component and a purely empirical component, without 
residue. It rejects the empiricist myth of the sensuously given data propo- 
sition D as well as the rationalist myth of the ignorance prior M; it rejects 
the picture of judgment as a coin with empirical obverse and rational re- 
verse. Let's see why. 

On the empirical side, reports of conscious experience are too thin an 
abstract of our sensory inputs to serve adequately as the first term of the 
equation 

(1) experience + reason = judgment  

COUNTEREXAMPLE: Blindsight. 42 In humans, monkeys, etc., some 90% 
of optic nerve fibres project to the striate cortex at the very back of 
the brain via the dorsal lateral geniculate nucleus in the mid-brain. But 
"while the geniculo-striate pathway constitutes the major portion of the 
optic nerve ... there are at least 6 other branches that end up in the 
midbrain and sub-cortical regions ..., and one of these contains about 
100 000 fibres, by no means a trivial pathway it is larger than the 
whole of the auditory nerve ... Therefore, if striate cortex is removed or 
its direct input blockaded, one should expect that some visual capacity 
should remain because all of those non-geniculo-striate pathways are left 
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inner ear to oculomotor neurons . . . .  Head and eye position are related, 
in turn, to spinal control of posture by the reticular formation. "Without 
the constant and precise operation of these three systems, we could nei- 
ther walk and see, nor sit still and read . . . .  Together with the cerebellum, 
the integrated activity of these brain-stem systems is responsible for giv- 
ing sighted animals complex control of their acts." Quite apart from the 
question of awareness, it seems that the neurological analog of sense data 
must go beyond irritations of sensory surfaces. In the Cartesian mode it 
must treat the observer's body as a part of the "external" world provid- 
ing the mind with inputs to be coordinated with exteroceptive inputs by 
innate nerological circuitry that is fine-tuned mostly in utero and in the 
earliest years of extrauterine life. 

From Carnap to Quine, it is ordinary thing-languages to which physical- 
ists have looked for observation sentences, whose imputed truth values (or 
probability values) are to be propagated through the confirmational net by 
conditioning (or generalized conditioning). Quine gestures toward tempo- 
rally ordered sets of triggered exteroceptors as an empirical substrate for 
the real epistemological action, Cartesian affirmations of ordinary obser- 
vation sentences. But the proffered substrate, once mentioned, plays no 
further r61e in Quine's epistemology. It is anyway incapable of providing 
an empirical footing for his holdings true until enriched by a coordinated 
efferent substrate. The full-blown afferent-efferent substrate would pro- 
vide a footing ("neurological solipsism") upon which holdings true and 
holdings probable to various degrees could supervene, but it would play 
no r61e, either. Bag it. 

So much for the empirical side of the epistemological coin. On the 
other side, radical probabilism abandons Carnap's search for the fountain 
of rationality in a perfect ignorance prior, at the same time abandoning 
the idea that conditioning, or generalized conditioning, is the canonical 
way to change your mind. Instead, radical probabilism offers a dynamic 
or diachronic point of view, from which the distinction between making 
up your mind and changing it becomes tenuous. The Carnapian motion 
picture is a sequence of instantaneous frames, your successive complete 
probability assignments to all sentences of your language, beginning with 
M and changing every time a new conjunct is added to your data base: 
M ( - ) ,  M(-[D1) ,  M(-IDI&D2),  and so on up to your present assignment, 
M(-IDI&D2&...&Dt ). The radical probabilist picture is less detailed in 
each frame, and smoother or more structural across frames in the time 
dimension. 

Thus, making up your mind probabilistically involves making up your 
mind about how you will change your mind. It's not that you must map 
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that out in fine detail, any more than you must map out your instan- 
taneous probabilities for all sentences of your language, frame by frame. 
But since it no longer goes without saying that you will change your mind 
by conditioning or generalized conditioning (probability kinematics) any 
more than it goes without saying that your changes of mind will be quite 
spontaneous or unconsidered, these are questions about which you may 
make up your mind about changing your mind in specific cases. You may 
decide to change your mind by generalized conditioning on some set of 
data propositions. According to the laws of probability logic ("the prob- 
ability calculus") such a decision comes to the same thing as deciding to 
keep your conditional probabilities on the data propositions constant when 
your unconditional probabilities for them change. In case your probabil- 
ity for one of the data propositions changes to 1, this reduces to ordinary 
conditioningon the data proposition you've become sure of. 

It needs to be emphasized that becoming sure of a sentence's truth 
doesn't guarantee that your new conditional probabilities based on on it 
will be the same as they were before you became sure of it. That 's why 
Carnap required that you condition only on sentences that you regard 
not only as true but as recording the whole of the relevant truth that 
you know about. For this to imply constancy of conditional probabili- 
ties there must be available to you an infinitely nuanced assortment of 
data propositions to condition upon. It strikes me as a fantasy, an epis- 
temologist's pipe-dream, to imagine that such nuanced propositions are 
generally accessible to us. There need be no sentence you can formulate, 
that fits the description "the whole of the relevant truth that you know 
about. ''45 But the diachronic perspective of radical probabilism reveals a 
different dimension of nuance that you can actually use in such cases to 
identify a set of data propositions relative to which you expect your con- 
ditional probabilities to be unchanged by an impending observation that 
you think will have the effect of changing your probabilities for some of 
the data propositions. That will be a case where updating by probability 
kinematics is appropriate. 

Constancy of conditional probabilities opens other options for register- 
ing and communicating the effect of experience, e.g., the option of reg- 
istering the ratios ("Bayes' factors") f(A,B) of odds between A and B 
afterward and beforehand: 

(2) f(A B ) -  Q(A) " Q(B) 
' P(A) P(B) 

What's conveyed by the Bayes' factor is just the effect of experience, 
final odds with prior odds factored out. Others who accept your response 
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to your experience, whether or not they share your prior opinion, can 
multiply their own prior odds between A and B by your Bayes' factor to 
get their posterior odds, taking account of your experience. 46 

EXAMPLE: Expert opinion. Jane Doe is a histopathologist who hopes 
to settle on one of the following diagnoses on the basis of microscopic 
examination of a section of tissue surgically removed from a pancreatic 
tumor. (To simplify matters, suppose she is sure that exactly one of the 
three diagnoses is correct.) 

A -  Islet cell carcinoma 

B -  Ductal cell carcinoma 

C -  Benign tumor 

In the event, the experience does not drive her probability for any diag- 
nosis to 1, but does change her probabilities for the three candidates from 
the following values (P) prior to the experience, to new values (Q): 

A B C 
P 1/2 1/4 1/4 
Q 1/3 1/6 1/2 

Henry Roe, a clinician, accepts the pathologist's findings, i.e., he adopts, 
as his own, her Bayes' factors between each diagnosis and some fixed 
hypothesis, say, C: 47 

f(A, C) - 1/3, f(B,  C) - 1/3, f(C, C) - 1 

It is to be expected that, given a definite diagnosis, his conditional proba- 
bilities for the prognoses "live" (for five years) and "die" (within 5 years) 
are stable, unaffected by the pathologist's report. For definiteness, sup- 
pose those stable probabilities are as follows, where lower case "p" and "q" 
are used for the clinician's prior and posterior probabilities, to distinguish 
them from the pathologist's. 

q(livelD ) - p(livelD ) - .4, .6, .9 when D - A, B, C 

q(dielD ) - p(die]D) - .6, .4, .1 when D - A, B, C 

Given his prior probabilities p(D) for the diagnoses and his adopted Bayes' 
factors, these conditional probabilities determine his new odds on 5 year 
survival. 48 It works out as follows. 

(3) q(live) 
q(die) 

p(live[A)p(A) f (A, C) + p(livelB)p(B) f (B, C) + p(livelC)p(C ) 
p(dielA)p(A) f (A, C) + p(die]B)p(B) f (B, C) + p(die[C)p(C) 
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If the clinician's prior distribution of probabilities over the three diag- 
noses was flat, p(D) = 1/3 for each diagnosis, then the imagined numbers 
given above raise his new odds on 5 year survival from p(live): p(die) = 
19 : 11 to q(live) : q(die) = 37 : 13, so that his probability for 5 year 
survival rises from 63% to 74%. 

Prima facie, the task of eliciting Bayes' factors looks more difficult than 
eliciting odds, for Bayes' factors are ratios of odds. 49 For the same reason 
it may seem that the pathologist's Bayes' factor, (posterior odds): (prior 
odds), cannot be elicited if (as it may well be) she has no definite prior 
odds. But if her Bayes' factors would be stable over a large range of prior 
odds, so as to be acceptable by colleagues with various prior odds, her 
Bayes' factors are as easily elicited as her posterior odds if she can and 
will adopt definite odds prior to her observation, e.g., in the light of real 
or imagined statistics. With even priors, P(A) /P(C)= P(B) /P (C)=  1, 
her Bayes' factors would simply be her posterior odds; but if it is only 
uneven priors that are cogent for her, the extra arithmetic presents no 
real difficulty. 

The example illustrates two contrasts between the radical probabilism 
advocated here and the phenomenalism I have been deprecating. The 
less important contrast concerns the distinction between probability and 
certainty as basic attitudes toward Protokolls/itze. The more important 
contrast concerns the status of those attitudes toward Protokolls/itze (or 
toward what they report) as foundations for all of our knowledge. Here, 
C. I. Lewis wears the Cartesian black hat better than Carnap: "Subtract, 
in what we say that we see, or hear, or otherwise learn from direct expe- 
rience, all that could conceivably be mistaken; the remainder is the given 
content of the experience inducing this belief. If there were no such hard 
kernel in experience e.g., what we see when we think we see a deer but 
there is no deer then the word 'experience' would have nothing to refer 
to." 50 

This is the sort of empiricism dismissed above, in which the term "ex- 
perience" is understood not in its ordinary sense, as the sort of thing 
that makes you an experienced doctor, sailor, lover, traveller, carpenter, 
teacher, or whatever, but in a new sense, the sensuously given, in which 
experience is bare phenomenology or bare irritation of sensitive surfaces. 
It presupposes a unitary faculty of reason, the same for all subject matter, 
which, added to the sensuously given, equals good judgment. The formula 
itself goes back much further than Descartes, e.g., to Galen: "When I take 
as my standard the opinion held by the most skillful and wisest physicians 
and the best philosophers of the past, I say: The art of healing was orig- 
inally invented and discovered by the logos [reason] in conjunction with 
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experience. And to-day also it can only be practiced excellently and done 
well by one who employs both of these methods. ''51 

But in this formula reason is theory, and experience is gained by purges, 
surgery, etc., the sort of thing Hippocrates had called dire in his fa- 
mous "experiment perilous" aphorism. For experience in Galen's formula, 
C. I. Lewis substitutes the given. Galen's formula is 

experience + reason = medical  expertise 

There's a similar formula for other kinds of knowledge and technique, with 
"reason" and "experience" referring to other things than they do in the 
case of medicine. 52 But Lewis's formula is general: 

the given + reason = good j u d g m e n t  

Here "reason" needs to be understood as something like a successful out- 
come of the project to which Carnap devoted his last 25 years, of designing 
a satisfactory general inductive logic. For that I have no hope, for rea- 
sons given above under the headings of "blindsight" and "perception and 
proprioception". 

Carnap himself was undogmatic; with high hopes for his program, he 
offered general, inconclusive arguments as an invitation to join in testing 
the idea. In fairness to him it should be noted that I haven't tried to 
present the case for his program here; I've used it, or a simplistic cartoon 
of it, as a foil for a different program ("radical probabilism") that rejects 
the analytical basis that I've attributed to Carnap's program, the analysis 
of good judgment into an a priori probability function representing reason 
and a propositional data base representing experience. 53 

Radical probabilism doesn't insist that probabilities be based on cer- 
tainties; it can be probabilities all the way down, to the roots. Modes 
of judgment (in particular, probabilizing) and their attendant standards 
of rationality are cultural artifacts, bodies of practice modified by dis- 
covery or invention of broad features seen as grounds to stand on. It is 
ourselves or our fellows to whom we justify particular judgments. Radical 
probabilism is often faulted as uncritical, e.g., as not requiring the pathol- 
ogist to justify the Bayes' factors she finds cogent; "Anything goes." But 
probabilizing adoption of personally cogent odds, Bayes' factors, and 
the like, concerning some range of matters, e.g., tumors is a subject- 
matter-dependent techne, an art of judgment for which honest diligence 
is not enough. In practice, justification what makes the histopatholo- 
gist's personally cogent Bayes' factors cogent for her colleagues as well 
is a mish-mash including the sort of certification attested by her framed 
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diploma and her reputation among relevant cognoscenti. (Relevant: the 
cogencies of a certified, reputable faith healer are not transferrable to 
me.) 54 Personal cogency may express itself in commitment to specific ac- 
tion (say, excision) that would be thought irresponsible if the probabilistic 
judgment (odds on the tumor's being benign) were much different. With 
probability judgment as with judgment of truth and falsity, quality varies 
with subject-matter; handicappers and meteorologists are mostly useless 
as diagnosticians. 55 Judgments are capta, outputs of human transduc- 
ers like our histopathologist, in whose central nervous system perceptive 
and proprioceptive neuronic inputs somehow yield probabilistic judgments 
about stained cells under her microscope. Although she is far from know- 
ing how that works, she can know that it works, pretty well, and know 
how she learned to work that w a y -  whatever that way may prove to be. 

As I see it, radical probabilism delivers the philosophical goods that 
logical empiricists reached for over the years in various ways. Carnap got 
close, I think, with his idea of a "logical" c-function encoding meaning 
relations, but I'd radicalize that probabilism twice, cashing out the idea of 
meaning in terms of skilled use of observations to modify our probabilistic 
judgments, and cashing that out in terms of Bayes' factors. Carnap's 
idea of an "ignorance" prior cumulatively modified by growth of one's 
sentential data base is replaced by a pragmatical view of priors as carriers 
of current judgment, and of rational updating in the light of experience as 
a congeries of skills like those of the histopathologist. Described conscious 
experiences are especially welcome data, for by Bayes' theorem, when the 
new odds come from the old by conditioning on a data proposition, the 
diachronic Bayes' factor reduces to the synchronic "likelihood ratio" at 
the right: 56 

Bayes' Q(A): Q(B) 
factor P(A) " P(B) 

P(Aldata)/P(Bldata ) P(datalA ) Likelihood 
= P(A) /P(B)  = P(datalB ) ratio 

Among the virtues of describable experience are utility for teaching or for 
routinizing skills of probabilizing ("If it's purple, the odds are 7:3 on A 
against B"), and for thrashing out differences of opinion in the matter. 
But conscious experience eluding adequate description has some of those 
virtues. Example: histopathological instruction of medical students using 
a microscope with two eyepieces and an arrow of light with which the 
instructor indicates complex features of particular cells. The discussion 
of blindsight and proprioception was not meant to deny that but to call 
attention to the considerable r61e of unconscious inputs and inputs resist- 
ing description a r61e we can expect to be far greater than has been 
noted, precisely because of that unconsciousness and resistance. 
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In logical positivism (= logical empiricism) the move from verification 
to probability as a way of cashing out "meaning" goes back to the 1930's, 
to Reichenbach's Wahrscheinlichkeitslehre (Leyden, 1935) and Experience 
and Prediction (Chicago, 1938), and to Carnap's "Testability and mean- 
ing" (Philosophy of Science 1936, 1937). 57 My own probabilism stems from 
a fascinated struggle with those sources, begun in Chicago with Carnap in 
the late 1940's and refocused in Princeton with Hempel in the mid-1950's. 
I see its departures not so much as a rejection but as a further step in the 
development of logical empiricism, i.e., the movement, not its particular 
verificationist stage ca. 1929. 5s 
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Reichenbach's sense of the need for a justification of induction is poignantly 
expressed in the closing chapter of Experience and Prediction 1. Reichenbach 
chides Hume, "He [Hume] is not alarmed by his discovery; he does not realize 
that if there is no escape from the dilemma pointed out by him, science might 
as well not be continued--there is no need for a system of predictions if 
it is nothing but a ridiculous self delusion. There are modern positivists 
who do not realize this either. They talk about the formation of scientific 
theories, but they do not see that, if there is no justification for the inductive 
inference, the working procedure of science sinks to the level of a game and 
can no longer be justified by the applicability of its results for the purpose 
of actions . . . . . . .  If, however, we should not be able to find an answer 
to Hume's objections within the frame of logistic formalism, we ought to 
frankly admit that  the antimetaphysical version of philosophy led to the 
renunciation of any justification of the predictive methods of science--led to 
a definitive failure of scientific philosophy." (op. cit., 346, emphasis added.) 
Indeed, Reichenbach suggests that  not only "scientific philosophy" but life 
itself would be impossible if induction were not justifiable: "If we sit at the 
wheel of a car and want to turn the car to the right, why do we turn the 
wheel to the right? . . . i f  we should not regard the inductive prescription 
and consider the effect of a turn of the wheel as entirely unknown to us, we 
might as well turn it to the left as well. I do not say this to suggest such an 
attempt;  the effects of sceptical philosophy applied in motor traffic would 
be rather unpleasant. But I should say a philosopher who is to put aside his 
principles any time he steers a motor car is a bad philosopher." 

At the same time, Reichenbach insisted that  Hume had successfully shown 
that: 

"1. We have no logical demonstration for the validity of inductive inference. 

2. There is no demonstration a posteriori for the inductive inference; any 
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such demonstration would presuppose the very principles which it is 
to demonstrate." 

"These two pillars of Hume's criticism of the principles of induction have 
stood unshaken for two centuries," Reichenbach tells us 2, "and I think they 
will stand as long as there is a scientific philosophy." 

If the inductive inference cannot be "demonstrated" to lead to successful 
prediction either deductively or a posteriori, and yet it can still be "justi- 
fled", that  "justification" must do something other than demonstrate that  
we will obtain successful predictions in the long run by relying on induction; 
what Reichenbach claimed to have shown was that  induction will lead to the 
goal of successful prediction in the long run if any method will do so. Thus, 
Reichenbach contended, we can concede that Hume did prove 1., and 2., 
above-- that  is, Hume did show that there is no possibility of a deductive or 
an a posteriori proof that the goal of successful prediction can be reached 
by induction (or by any other method, for that matter); but this important  
discovery of Hume's does not preclude the possibility that  there is a proof 
of the conditional proposition that  induction will reach the goal i / the goal is 
attainable at all. This way of reconstruing the notion of a "justification of 
induction" is so radical a departure from what had been sought by Hume's 
critics (or so the positivists thought) that  Herbert Feigl thought one should 
give it a new name. A proof that induction will lead to success would be a 
justification of induction, in Feigl's terminology; a proof of the conditional 
proposition that  it will lead to success if success is attainable would be a 
vindication 3. And, like Reichenbach, Feigl argued that  while induction can- 
not be justified (in the sense Feigl gave to that  term 4, nevertheless (he and 
Reichenbach had shown that) it can be vindicated. Moreover, both Reichen- 
bach and Feigl held that vindication is enough; In The Rise of Scientific 
Philosophy 5, Reichenbach employs a vivid analogy, "The man who makes 
inductive inferences may be compared to a fisherman who casts a net into 
an unknown part of the ocean~he  does not know whether he will catch fish, 
but he knows that if he wants to catch fish he has to cast his net. Every 
inductive prediction is like casting a net into the ocean of the happenings of 
nature; we do not know whether we shall have a good catch, but we try, at 
least, and try by the help of the best means available." What  makes induc- 
tion "the best means available", according to Reichenbach, is that  it is the 
only 6 method concerning which we can prove that  it will lead to successful 
prediction if any method will. Since the possibility of the long run success 
of induction is the necessary condition for the possibility of the long run 
success of any method at all, we are rationally justified in using induction if 
we want successful prediction. "We should at least actualize the necessary 
conditions of success if the sumcient conditions are not within our reach." ~ 
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Given the magnificent grandeur of what Reichenbach claimed to have 
achieved--nothing less than to have provided the rational warrant for empir- 
ical knowledge which he believed us to so desperately need--it  is surprising 
that there is relatively little in-depth discussion s of Reichenbach's vindica- 
tion argument in the literature, and most of that fails to address what seem 
to me to be the central issues. In the present contribution, I want to empha- 
size those issues, as I see them, and to assess the successes and the failures 
of Reichenbach's vindicatory strategy. 

Re ichenbach ' s  a r g u m e n t s  

Reichenbach imagines an immortal inquirer who is engaged in sampling from 
an infinite population. For the sake of an example, let us imagine that balls 
are being drawn successively from an infinite urn, and that each ball is either 
red or black. The immortal scientist finds that 262 of the first 1000 balls 
are black (let us say), that 2,489 of the first 10,000 are black, that 25,021 of 
the first 100,000 are black, . . .  (Perhaps the limit of the relative frequency 
of black balls in the infinite series is actually .25.) Reichenbach's Rule of 
Induction tells the scientist to keep positing that the limit of the relative 
frequency of the attribute he or she is interested in is approzimately equal 
(to within any given preselected level of accuracy) to the frequency in the 
sample of cases so far ezarnined. (Thus, in our example, if the preselected 
level of accuracy is "• the scientist should "posit" that the limit of 
the relative frequency is .262 + .01 when the first 1000 have been examined, 
that it is .2489 + .01 when the first 10,000 have been examined, that it is 
.25021 + .01 when the first 100,000 have been examined, . . .  ) 

Now, if the relative frequency of the attribute the scientist is interested in 
approaches a limit at all, then, no matter what the degree of accuracy the 
scientist is using (+.01, in our example), the relative frequency with which 
the attribute occurs among the N members of the series so far observed 
will differ from that limit by less than the degree of accuracy (by less than 
+.01) after N reaches a certain size (called "the point of convergence"). 
In other words, the scientist, using Reichenbach's "Rule of Induction" may 
make a finite number of mistakes "at the beginning", but once the point 
of convergence has been passed all of the posits that scientist makes will be 
correct. This is simply a consequence of the definition of the concept "limit" 
as applied to a series of relative frequencies. (In our example, if the limit of 
the relative frequency of black balls in the infinite sequence is actually .25, 
then the first "posit" was incorrect, and the subsequent ones were correct.) 

But why does Reichenbach believe that all prediction problems can be 
reduced to estimates of limits of relative frequencies? Well, consider a case 
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that might seem recalcitrant to such treatment. Imagine that the balls do 
not come out of the urn with a random distribution of colors at all. Instead, 
imagine that we see a black ball come out of the urn, then we see nine 
red balls, and then we see successive black balls until ninety percent of the 
observed balls have been black, after which we see successive red balls until 
ninety percent of the observed balls have been red, then successive black balls 
until ninety percent of the observed balls have been black . . .  and so on. This 
series is such that it happens infinitely often that the relative frequency of 
black balls among the ones so far observed is .90 and infinitely often that 
the relative frequency of black balls among the ones so far observed is only 
.10. Clearly, in this series there is no "limit of the relative frequency" with 
respect to the attribute "black". But once we "tumble" to what is going 
on we will have no dimculty in predicting the color of any individual ball 
that  may be examined in the future. Does this not show that successful 
prediction does not require the existence of limits of the relative frequency? 

Reichenbach's strategy with cases like this 9 is to define a new attribute. 
Thus, suppose we have formulated a law which we believe to be the law 
obeyed by our sequence (in the case of the example, the law would be that  
the sequence begins with a black ball followed by a "run" of red balls; and 
when there is a run of red balls the run always continues until a point is 
reached at which at least ninety percent of the balls which have been drawn 
are red, and as soon as this happens a run of black balls always begins; 
and when there is a run of black balls, the run always continues until a 
point is reached at which at least ninety percent of the balls which have 
been examined are black, and as soon as this happens a run of red balls 
always begins.) If the color of a ball is what it would be if the sequence 
followed our law, we say the ball has the attribute C, and otherwise that it 
has the attribute no t -C.  Then to know the reliability of our law, what we 
need to know is the relative frequency in the long run (i.e., the limit of the 
relative frequency) of C. And only if such a reliability estimate can be made, 
Reichenbach argues, does our "law" give us any means of control over what 
happens. Thus all successful prediction depends on the existence of limits 
of the relative frequency, although not necessarily on the existence of limits 
of the relative frequency of the attribute we are ultimately interested in. 

One obvious problem is that Reichenbach's vindication deals with success 
in the infinite long run. The relevance of such a vindication to the projects 
of we all-too mortal members of a species which will not last forever in a 
universe which may not last forever is highly problematic! Although this is a 
problem Reichenbach himself discusses, it is not the problem I shall say much 
about today. 1~ Today I will accept the idealization that Reichenbach works 
with, the idealization to an immortal inquirer who wants to discover limits 



871 

of the relative frequency (or methods for making successful predictions), and 
is willing to accept an arbitrarily long finite initial sequence of failures (or 
wrong posits). 

Given this idealization, the position seems to be this. Reichenbach has 
shown that if successful prediction (in the indefinitely long run) is possible 
at all, then some limits of the relative frequency must exist and be capable 
of being estimated by us. (This is the argument we just reviewed.) And 
he has observed that it is a tautology that if there are limits of the relative 
frequency, then by using the "Rule of Induction" we shall eventually make 
correct posits about them (and no further incorrect ones, once the point 
of convergence has been reached). Does this not constitute precisely the 
vindication of induction that we were promised? 

The problem of the consistency of Reichenbach's "Rule of Induc- 
tion" 

The problem with Reichenbach's vindicatory argument is so stunningly sim- 
ple that it is surprising how little it has been discussed. The problem was, 
in effect, first pointed out by Nelson Goodman, although he did not refer 
to the issue of vindicating induction but instead pointed ou~ that there was 
a prior issue, the issue of saying what induction is. Straightforward tradi- 
tional formulations of the rule of induction - including Reichenbach's--lead 
to inconsistent predictions. 

To see the bearing of this observation on Reichenbach's argument, con- 
sider the analogous problem of justifying a system of deductive logic. One 
cannot justify such a system merely by proving that all valid formulas in 
the appropriate vocabulary are theorems of the system. As it stands, such 
a result is not sufficient. (It is also not necessary, but that is not relevant 
here. 11) It is not sufficient because this kind of "completeness" is trivially 
possessed by all inconsistent systems. Before we are impressed by a proof 
that " if S is valid, then S is a theorem of the system" we need to make sure 
(by a proof, if possible, and by 'mathematical experience' otherwise) that 
the system in question is consistent. 

The same thing is true in the case of induction. Reichenbach's celebrated 
conditional, "if successful prediction can be made by any method, it can be 
made by using the Rule of Induction" needs to be supplemented by a proof 
that the rule of induction is consistent. But, unfortunately, Reichenbach's 
rule is not consistent. 

Perhaps Goodman's discovery has not been taken seriously enough by 
philosophers who have discused Reichenbach's vindication of induction (it 
has, of course, been taken very seriously in other connections) because Good- 
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man's predicate grue 12 is so "peculiar". But it is difficult to know how such 
"peculiar " predicates are to be ruled out, or what would be left of Reichen- 
bach's argument if they were. The predicate C we used above is just as 
"peculiar" as "grue" (it takes a calculation to determine whether a given 
item in a series has to be red or black to have the attribute C); but Reichen- 
bach's demonstration that all successful prediction depends on the existence 
of limits of the relative frequency turns precisely on the fact that the rule 
of induction accepts predicates like C. Certainly Reichenbach did not seem 
to appreciate the seriousness of the problem; in the English edition of his 
Theory of Probability 13, he dismisses the problem with the strange remark 
that  "with respect to consistency, inductive logic differs intrinsically from 
deductive logic; it is consistent not de facto but de faciendo, that is, not in 
its actual status, but in a form to be made." 

Indeed, the problem is much more severe than the example given by Good- 
man would suggest. For the fact is that when we have observerved some finite 
initial part of a sequence, the data we have obtained can always be recon- 
ciled with more than one possible universal hypothesis (this is a special case 
of the familiar "underdetermination of theory by evidence"). For example, if 
we have observed that the successive runs of red balls in a certain sequence 
have the lengths of the prime numbers up to 103, then using Reichenbach's 
Rule of Induction we might project the hypothesis 14 "the successive runs 
of red balls will always have the lengths of the successive prime numbers," 
but we might also project incompatible hypotheses (for example, the hy- 
pothesis that  the sequence will repeat from the beginning once there has 
been a run of 103 successive red balls). In this respect, the inconsistency of 
Reichenbach's Rule of Induction is quite different from the inconsistency of 
a system of axioms. When a system of axioms is inconsistent, say a system 
of set theory, it sometimes takes a great deal of work to derive a contradic- 
tion from the axioms. And one might (it has been suggested, at any rate) 
seek to "localize" the contradiction by modifying the propositional calculus 
so that  it will no longer be the case that  from a single contradiction ev- 
ery formula of the system can be derived (I am thinking of the possibility 
of employing relevant logic instead of classical t ruth functional logic). But 
in the case of Reichenbach's Rule of Induction, whenever the Rule is era- 
ployed to project a universal hypothesis, it can also be employed to project a 
directly inconsistent universal hypothesis; there is no need to derive one eso- 
teric contradiction (perhaps involving "grue") and then employ the principle 
that  from a truth-functional contradiction every assertion follows. 

I confess that  many times over the years I have wondered about what 
Reichenbach meant by saying that  "[inductive logic] is consistent not de 
facto but de faciendo, that  is, not in its actual status, but in a form to be 
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made." I think that  what he must have meant is this: to keep my inductions 
consistent, what I must do is choose; if I project the hypothesis that  all the 
prime numbers will appear in order (as the lengths of "runs" of red balls), I 
must not simultaneously project any hypothesis which is inconsistent with 
that  hypothesis until the projected hypothesis has been falsified. I may, 
of course, choose the "wrong" attribute to project initially; I may, to use 
Goodman's example, initially project "grue" rather than "green"; but the 
hypothesis that "all emeralds are grue" will be falsified as soon as green 
emeralds are examined after time t, and then I will (sooner or later) project 
the more useful attribute "green". (Or so Reichenbach might have thought.) 
Similarly, in terms of the example I used a moment ago, I may initially 
project the hypothesis that the series will repeat after a run of 103 red balls 
has occurred, but I will give up that hypothesis when I get a run of 107 
red balls, and then I will (sooner or later) project the hypothesis that  the 
lengths of the successive runs of red balls are the successive primes. 

If this is what Reichenbach meant, however, it raises an interesting and 
very deep question: What guarantee is there that the right hypothesis (or the 
corresponding attribute C) will ever be projected, if there is a right hypoth- 
esis? 

T h e  e x a m p l e  of t he  c l a i rvoyan t  

One indication of Reichenbach's thinking here is the discussion of non- 
inductive methods of prediction in Ezperience and Prediction. Reichenbach 
imagines an objector who argues that "there might be a clairvoyant who 
knows every event of a series individually, who could foretell precisely what 
would happen from event to event" (op. cit. 3158). And he replies that in 
such a case we could use induction to discover how reliable the clairvoyant 
was; in his classes on Inductive Logic at U.C.L.A. this was one of Reichen- 
bach's favorite ways of illustrating his claim that  induction must succeed if 
any method does. 

This example, as it stands, does not speak to the problem of consistency, 
but it is easy enough to modify it so that it does. In my "Degree of Confirma- 
tion and Inductive Logic," 15 I introduced a "Method M" in which "effective 
hypotheses" receive priority rankings based upon the time at which they are 
proposed. (I pointed out 16 that more sophisticated priority rankings are pos- 
sible.) An effective hypothesis is one which says of each individual in a series 
whether it has some property P; and it does so effectively in the sense that 
it is possible to determine recursively whether the hypothesis implies that 
the individual in the nth place of the series is P or n o t - P  (for n=1,2,3. . .  ). 
Thus an effective hypothesis is one that we can actually compare with the 
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data; we can calculate what the character of the members of the series is 
supposed to be, and see whether the predictions of the hypothesis agree with 
the facts as more and more individuals are observed. The following rules 
defined the method M17: 

1. Let Pt,M be the set of hypotheses considered at time t with respect 
to a property M of the given series. I.e. Pt,M is a finite set of effec- 
tive hypotheses each of which specifies for each member of the series 
whether or not it is M. 

. Let ht,M be the effective hypothesis accepted at time t (if any). I.e., 
we suppose that, at any given time, various incompatible hypotheses 
have been actually suggested with respect to a given M, and have not 
yet been ruled out (we require that these be consistent with the data 
and with all other accepted hypotheses with respect to other series and 
other predicates). In addition, one hypothesis may have been accepted 
at some time prior to t, and may not yet have been abandoned. This 
hypothesis is called "the accepted hypothesis at the time t". 

. (Rule I:) At certain times tl, t2, t3 . . .  initiate an inductive test with 
respect to M. This proceeds as follows. The hypotheses in Pt,M at 
this time ti are called the alternatives. Calculate the character (M or 
no t -M)  of the next individual on the basis of each alternative. See 
which alternatives succeed in predicting this. Rule out the ones that 
fail. Continue until (a) all the alternatives but one have failed; or 
(b) all the alternatives have failed (one or the other must eventually 
happen). In case (a) accept the alternative that does not fail. In case 
(b) reject all the alternatives. 

o (Rule II:) hypotheses suggested in the course of the inductive test are 
taken as alternatives (unless they have become inconsistent with the 
data) in the next test. I.e., if h is proposed in the course of the test 
begun at t3, then h belongs to Pt4,M and not to Pt3,M. 

5. (Rule III:) If ht,M is accepted at the conclusion of any inductive test, 
then ht,M continues to be accepted as long as it remains consistent 
with the data. (In particular, while an inductive test is going on the 
previously accepted hypothesis continues to be accepted, as long as it 
is consistent with the data.) 

It is built into the method M that one cannot accept mutually inconsistent 
hypotheses (cf. 2. above). Yet, simple as the method M is, it is easy to 
show that" 
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(Completeness property of M: ) If h is an effective hypothesis and 
h is true, then, using method M, one will eventually accept h if h 
is ever proposed. 

Thus, modifying Reichenbach's argument, we have been able to show that 
there is a method which will converge to the right hypothesis if there is a right 
hypothesis (in a certain class), and which is not plagued with consistency 
problems. Extending this kind of argument to other (and larger) classes 
of hypotheses has become an important branch of inductive logic in recent 
years. ~s In this sense, Reichenbach's "vindicationist" strategy has born fruit. 
But has induction really been vindicated? 

T h e  m e t h o d  M* 

Although the completeness property of M is certainly an attractive one, 
it falls short of the vindication Reichenbach hoped for for several reasons. 
(1) Whether we will get successful prediction using M depends on what 
effective hypotheses are actually proposed. To show that  we can achieve 
successful prediction if successful prediction is possible at all, we would need 
to make sure that the immortal inquirer sooner or later considers every 
effective hypothesis. (2) As it stands, M does not accept hypotheses like "the 
clairvoyant's predictions about the series are always right". Yet, although 
this hypothesis is not "effective" in the sense that we can calculate from it 
what the character of an arbitrary future member of the series must be, we 
do have a procedure for telling what it will be if this h is correct, namely 
to ask the clairvoyant. To show that we can achieve successful prediction if 
successful prediction is possible at all, we would need to make sure that the 
immortal inquirer also considers (sooner or later) every hypothesis which 
leads to a procedure for telling what the character of a future member of the 
series will be, even if the procedure is not a calculation. (3) The assumption 
that humans cannot compute nonrecursive functions, which we have made 
throughout, would have to be justified without relying on induction. I shall 
defer discussion of (2) and (3) to the next section; in the present section we 
shall see how difficulty (1) can be met. 

The problem is the following: if we could arrange all testable hypotheses 
in a single list, and then proceed to test hypotheses in the order in which 
they occurred in our list (in the way illustrated by the method M), then we 
could ensure that if there is a correct testable hypothesis, sooner or later it 
would get accepted. However, the list must be a list of different, indeed of 
incompatible hypotheses. To see why, suppose that two of the hypotheses in 
Pt,M are in fact equivalent (or at least compatible) although we mistakenly 
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believe that they are incompatible. Then, if they happen to both be true, 
the inductive test prescribed by Rule I will never terminate! I "ducked" this 
problem when I formulated the Method M by restricting the sets Pt,M to 
sets of incompatible hypotheses; but, if our scientific language is rich enough 
to contain number theory, there will not be any effective method for telling 
whether an arbitrary pair of effective hypotheses is incompatible or not[ This 
is an "undecidable problem" in recursion theory. Moreover, if an effective 
hypothesis has to make a prediction about every member of the sequence, 
there is no effective method for telling whether a hypothesis is "effective" or 
not; however, we can handle this problem by allowing all hypotheses of the 
form "(n)(the nth ball in the sequence is red if and only if f (n)=l)" ,  where f 
is a partial recursive function to count as effective; for the partial recursive ~9 
functions (as opposed to the general recursive functions) can be effectively 
enumerated. 

However, Reichenbach's puzzling remark about inductive logic being "con- 
sistent not de facto but de faciendo, that is, not in its actual status, but in 
a form to be made" suggests that he was not thinking of proceeding in ac- 
cordance with a fixed priority ordering of the hypotheses at all; he seems to 
have assumed his immortal inductive inquirer could simply rank order the 
hypotheses as he went along. But then, there will be no guarantee that the 
immortal inquirer will consider every hypothesis that could lead to successful 
prediction; and this is what Reichenbach's vindicatory argument assumes. 

As I thought about this difficulty, it occurred to me that a present-day 
Reichenbachian, apprised of the surprising relevance of Gbdel's and Church's 
work on undecidable problems to inductive logic (as Reichenbach himself, 
of course, was not 2~ might plausibly propose modifying the method M by 
simply letting the sets Pt,M be larger and larger subsets of the set of all 
hypotheses of the form "(n)(the nth ball in the sequence is red if and only if 
f (n)=l)" ,  where f is a computable (partial recursive) function (thus giving 
up the requirement that the sets Pt,M consist of incompatible hypotheses), 
and replace Rule I by the following rule: 

(Rule I*:) At certain times tl, t2, t3 . . . ini t iate an inductive test with 
respect to M. This proceeds as follows. The hypotheses in Pt,M at this time 
ti are called the alternatives. Start calculating the character (M or no t -M)  
of future individuals (not necessarily the next individual 21) on the basis of 
each alternative. See which alternatives succeed in these predictions. Rule 
out the ones that fail. Continue until (a) the alternatives that have still 
not failed are not known to be incompatible; or (b) all the alternatives have 
failed (one or the other must eventually happen). In case (a) accept all the 
alternatives that have not failed. In case (b) reject all the alternatives. 

Call the modified method "Method M*". Then if the immortal inquirer 
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uses Method M* instead of Method M he or she may, indeed, accept two 
or more mutually inconsistent hypotheses: but there is a useful strategy the 
immortal inquirer can follow to take care of this eventuality. This strategy, 
which is familiar to recursion theorists, is (1) to assign a priority ranking 
without ties to all hypotheses (so that the hypotheses within a single Pt,M will 
be assigned different priorities, instead of being treated as a single "clump" 
as they were in the method M); (2) when the conjunction of two or more 
accepted hypotheses is discovered to be inconsistent, the one with highest 
priority continues to be accepted (until and unless it becomes inconsistent 
with the data), and other hypotheses in the set of inconsistent hypotheses 
are rejected, starting with the hypothesis of lowest priority, until consistency 
is restored. For example, if hi, h2, ha are all accepted (where hi has a higher 
priority than h2, which in turn has a higher priority than ha) and their con- 
junction has been discovered to be inconsistent, although the conjunction of 
the first two is not known to be inconsistent, then we would reject only ha. 
(3) If one or more of the hypotheses that survive this process is rejected at 
a later time, then hypotheses which were rejected because of their inconsis- 
tency with hypotheses which have now been falsified are to be reconsidered 
(i.e., incorporated into the next set Pt,M) unless they themselves have been 
falsified by the data in the meanwhile. If we add these rules to M*, our 
method has the attractive property: 

(Completeness property of M*:) If h is an effective hypothesis and 
h is true, then, using method M* one will eventually accept h. 

Moreover, even though it can happen that at one time one does accept 
hypotheses which are inconsistent using M*, this is rectified as soon as it 
is discovered. In this sense, M* realizes Reichenbach's idea that "inductive 
logic . . .  is consistent not de facto but de faciendo, that is, not in its actual 
status, but in a form to be made". 

The  l imi ts  of v ind i ca t i on  

At the beginning of the last section, I pointed out three reasons why the 
completeness property of M falls short of the justification (or "vindication") 
Reichenbach hoped for: (1) whether we get successful prediction using M 
depends on what effective hypotheses are actually proposed. To show that 
we can achieve successful prediction if successful prediction is possible at 
all, we need to make sure that the immortal inquirer sooner or later consid- 
ers every effective hypothesis. (2) M does not accept hypotheses like "the 
clairvoyant's predictions about the series are always right". Yet, although 
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this hypothesis is not "effective" in the sense that  we can calculate from it 
what the character of an arbitrary future member of the series must be, we 
do have a procedure for telling what it will be if this h is correct, namely 
to ask the clairvoyant. To show that we can achieve successful prediction if 
successful prediction is possible at all, we need to make sure that  the im- 
mortal inquirer also considers every hypothesis which yields a procedure for 
telling what the character of a future member of the series will be, even if 
the procedure is not a calculation. (3) The assumption that  humans cannot 
compute nonrecursive functions, which we have made throughout, has not 
been justified. Difficulty (1) has now been dealt with. What  can we say 
about (2 )and  (3)? 

Difficulty (3) can be subsumed under (2) in the following way: if it turns 
out (contrary to what we now believe) that  there is a method by which hu- 
roans (or idealized immortal counterparts of human inquirers) can compute 
nonrecursive functions, then those procedures, whatever they may be, can 
be incorporated in a hypothesis of the kind envisaged under difficulty (2), 
a hypothesis to the effect that a procedure P will always tell us what the 
character of a future member of a series will be ("tell us" by a method other 
than algorithmic calculation). Thus we can confine attention to (2). 

The general form of hypotheses like the one about the clairvoyant is: "If 
you do X and get result Y, then the nth member of the sequence will be 
M" (where X must depend on n). The problem is that  is impossible to 
know how such hypotheses can be "enumerated" when we do not know in 
advance what predicates they may contain. Indeed, even if we restrict at- 
tention to so-called "observation predicates", how can we know what the 
limits to human powers of observation are? The answer might seem sim- 
ple, and perhaps it is simple, if we are allowed to use empirical knowledge, 
knowledge obtained by induction, but Reichenbach agrees with Hume that  
"there is no demonstration a posteriori for the inductive inference; any such 
demonstration would presuppose the very principles which it is to demon- 
strate". Clearly a "vindicatory" argument any of whose premisses requires 
a " demonstration a posteriori" would by unacceptable for the same reason. 

Again, I believe that Reichenbach's att i tude would be that  completeness 
of our inductive method, like consistency, is "not de facto but de faciendo". 
If the immortal observer learns at some point that  there are more predicates 
needed for prediction, or even more observation predicates, then he sus- 
pected, he can simply enlarge his language and adjust his inductive method 
accordingly. Formally, this means that M* will be enlarged by allowing the 
sets Pt,M to contain hypotheses of the form " If you do X and get result 
Y, then the nth member of the sequence will be M" if such hypotheses are 
proposed, in addition to containing larger and larger subsets of the set of all 
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effective hypotheses. (It also means that the language to which the method 
M* is applied is not fixed once and for all.) And again one can obtain a 
completeness property which says that: 

If h is a hypothesis of the form specified ["If you do X and get 
result Y, then the nth member of the sequence will be M"] and h 
is true, then, using method M, one will eventually accept h if h is 
ever proposed. 

While still keeping the completeness property that 

If h is an effective hypothesis and h is true, then, using method M* 
one will eventually accept h. 

If we confine attention to hypotheses which have the form of universal laws 
. 

(i.e., if we put aside for the moment the more general question of confirming 
statistical laws which interested Reichenbach), does this not give us every- 
thing Reichenbach claimed? 

There is no question but that these completeness properties of certain 
inductive methods are of great theoretical interest. As I have already men- 
tioned, a whole little "industry" has developed to study them. And this is 
certainly a success of Reichenbach's vindicatory strategy, even if the details 
are much more complicated that Reichenbach anticipated. 

It is not, however, a complete success. Reichenbach's argument about 
the clairvoyant already has a feature that should now be conspicuous: the 
immortal inductive inquirer only considers the clairvoyant hypothesis if he or 
she encounters a clairvoyant. That it, Reichenbach does not really attempt 
to describe a method by which the immortal inquirer will (in the long run) 
arrive at successful prediction if successful prediction is possible (which was 
his announced goal); what he really describes is a method by which the 
immortal inquirer will arrive at successful prediction if anyone else does 
(and the immortal inquirer learns about it). But is this not enough? 

Well, it would be enough if the immortal inquirer could be sure that what 
methods other people use are independent of the method the immortal in- 
quirer chooses. But there is no reason to believe that this will be the case. 

The problem is this. Reichenbach, in effect, says to the immortal inquirer, 
"You have nothing to lose (in the long run) by using the Rule of Induction. 
Using it will only increase your chances of successful prediction; for if either 
you yourself or anyone else thinks of a way of getting successful prediction, 
then you will get successful prediction too." In effect, Reichenbach claims 
that induction is the dominant strategy. But if the policies followed by the 
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other inquirers are influenced by the policy-choice of our immortal inducer, 
then the immortal inducer may conceivably fail to achieve successful predic- 
tion in the long run (and everyone else may fail as well) even though someone 

perhaps our immortal inquirer would have achieved successful predic- 
tion if our immortal inquirer had not used induction! The reason is that, as 
we have seen, the immortal inquirer cannot be sure of testing all hypotheses 
that could conceivably lead to successful prediction (or at least, the immortal 
inquirer cannot do this without relying on empirical laws confirmed by in- 
duction.) The hypotheses that the immortal inquirer tests depend on what 
other people do. But then, it could be the case that if the immortal in- 
quirer had not used induction someone else would have thought of a method 
which is not even describable in the language of the immortal inquirer as it 
presently stands, and whose reliability will, therefore, never get tested in the 
inductive way that Reichenbach describes, because the immortal inquirer's 
choice of induction brought it about that this method was not even thought 
of. Indeed, if the immortal inquirer had not been a believer in induction, he 
himself might have thought of such a method, or been persuaded by some- 
one else to use it. In sum, there is no proof that induction is the dominant 
strategy, when the policies used by other inquirers are not independent of 
the policy-choice of the immortal inquirer. 

In plain empirical fact, belief in the superiority of any method, belief that 
any method is identical with "science", does certainly effect the methods 
and the hypotheses that occur to other people. Thus there is no reason at 
all to belief in the independence assumption which Reichenbach's argument 
(in a hidden way) requires. If we did not believe in induction, it is certainly 
logically possible that other methods would be tried--and logically possible 
that they would succeed that will never get tried (and hence never get 
tested) in the actual world. In short, there is a logically possible world in 
which (immortal) people use induction and fail to make successful predic- 
tions, although those same people would have made successful predictions 
if they had not used induction (using a method which was never tried in 
that world--never tried because induction was persisted in instead). Thus, 
there is no deductive proof that induction will succeed (even in the long run) 
provided successful prediction is possible at all, and no deductive proof that 
using induction is the dominant strategy. 

Finally, a word about the problem to which my own Ph.D. dissertation 
was devoted, the problem of extending Reichenbach's "justification of in- 
duction" (i.e., the vindicatory argument) to "the finite case". All of the 
positive results we have sketched here depend on the availability of unlim- 
ited future time; thus it seems clear that even the partial results in the 
direction Reichenbach wanted that we have been able to obtain in the form 
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of comple teness  proper t ies  for various induct ive  m e t h o d s  have no ana logues  

in the  finite case. (My own a t t e m p t ,  in the  d isser ta t ion,  at  a jus t i f ica t ion  

for the  finite case was inval ida ted  by the  discovery of the  incons is tency  of 

the  Rule  of Induc t ion . )  

Bu t  even if Re ichenbach ' s  a im of deduct ive ly  v ind ica t ing  induc t ion  has 

t u r n e d  out  to be an u n a t t a i n a b l e  one, the  discussion of Re ichenbach ' s  ar- 

g u m e n t  leads into p ro found  depths .  My own present  s tance  is pa r t ly  like 

Wi t tgens t e in ' s .  I agree wi th  W i t t g e n s t e i n  t h a t  "The  ' law of induc t ion '  can 

no more  be grounded t h a n  cer ta in  par t i cu la r  propos i t ions  concern ing  the  

ma te r i a l  of exper ience  ''22, and  I fu r ther  agree t h a t  "[the l anguage  game] is 

not  based on grounds .  It is not  reasonable  [verniinftig] or unreasonable .  

It is there  like our life." Where  I pe rhaps  differ wi th  W i t t g e n s t e i n  

is in f inding a t t e m p t s  like Reichenbach ' s  of p e r m a n e n t  value nonetheless .  

1 Published by the University of Chicago Press, 1938 and 1970. See 346ff. 
20p.  cit., 342. 
3 Cf. Herbert Feigl, "De Principiis Non Disputandum... ? On the Meaning and the 
Limits of Justification," in M. Black (ed.), Philosophical Analysis, pp. 119-156, Cornell 
University Press, 1950. In another article (" Some Major Issues and Developments in 
the Philosophy of Science of Logical Empiricism," in Minnesota Studies in the Philosophy 
of Science, vol. 1; The Foundations of Science and the Concepts of Psychology and 
Psychoanalysis, University of Minnesota Press, 1956, 3-37) Feigl writes (p.29), "In some 
of my early papers I had been groping for this sort of solution of the problem of induction, 
and I think I came fairly close to a tenable formulation in the paper of 1934 [Feigl means 
"The Logical Character of the Principle of Induction," Philosophy of Science, 1:20-29 
(1935)]. But with genuine appreciation I credit the late Hans Reichenbach with the 
independent discovery and the more elaborate presentation of this solution.". 
4 Reichenbach, it should be noted, did not use Feigl's terminology; he speaks of his 
purported demonstration of the conditional proposition simply as a "justification" of 
induction. 
5 Published by the University of California Press, 1951. See 245-246. Reichenbach em- 
ploys the same analogy in Experience and Prediction, cf. 362-3. 
6 Actually, Reichenbach has a problem with uniqueness. As he himself points out (Ex- 
perience and Prediction, 354) "Now it is easily seen not only that the inductive method 
will lead to success, but that every method will do the same if it determines as our wager 
the vale hn + On, where cnis a number which is a function of n, or also of hn, but bound 
to the condition limn--,oo Cn = 0 . . . .  all such methods must converge asymptotically. The 
inductive principle is the special case where cn = 0". Reichenbach has two strategies for 
dealing with this problem; one is to argue that there is less "risk" in chosing the value 
Cn = 0 because "any other value may worsen the convergence" (p. 355) ; this is clearly fal- 
lacious, since the choice of cn = 0 may also "worsen the convergence". The other strategy 
is to say that (for the immortal inquirer) the choice is "not of great relevance, as all these 
methods must lead to the same value of the limit if they are sufficiently continued."(P. 
356). 
7 Experience and Prediction, 362. 
s One of the few philosophers to devote sustained examination to Reichenbach's argument 
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was Max Black. See his Language and Philosophy, Cornell University Press, 1949. 
9 See, for example, Experience and Prediction, 358. 
10 I at tempted to meet this objection to Reichenbach's vindication argument in my Ph.D. 
thesis, published as The Meaning of the Concept of Probability in Application to Finite 
Sequences (Garland, 1990, in the series Harvard Dissertations in Philosophy, ed. Robert 
Nozick). For reasons given in the "Introduction Some Years Later" to that work, and 
developed at greater length here, I no longer regard my at tempt as successful. 
11 It is not necessary because we have learned to live with the fact that a good system 
may be incomplete, and indeed incompletable, for GSdelian reasons. But this point is 
not to my purpose here; my point here is that completeness, even when attainable, is no 
virtue unless the system is consistent. 
12 "Now let me introduce another predicate less familiar than 'green'. It is the predicate 
'grue' and it applies to all things examined before t just in case they are green but to other 
things just in case they are blue. Then at time t we have, for each evidence statement 
asserting that a given emerald is green, a parallel evidence statement asserting that that  
emerald is grue. And the statements that emerald a is grue, that emerald b is grue, 
and so on, will each confirm the general hypothesis that all emeralds are grue." Nelson 
Goodman, Fact, Fiction and Forecast, 4th edition, Harvard 1983, 74-75. 
13 Published by the University of California Press, 1940. 
14 Here and in what follows, when I speak of "projecting a hypothesis using the Rule of 
Induction" what I mean is estimating the "reliability" of that hypothesis by using t h e  
Rule of Induction applied to an appropriate attribute C. 
15 Reprinted in my Philosophical Papers, volume 1, Mathematics, Matter and Method, 
270-292 (Cambridge University Press, 1975). 
16 loc. cit. 283-4. 
17 These are given in the paper cited in n. 15, 279-80. 
is Cf. Peter Kugel, "Induction, Pure and Simple," Information and Control, 33 (1977), 
276-336; D. Osherson and S. Weinstein, "Identification in the Limit of First Order 
Structures,", Journal of Philosophical Logic, 15 (1986), 55-81; (by the same authors) 
"Paradigms of Truth Detection," Journal of Philosophical Logic, 18 (1989), 1-42; D. Os- 
herson, M. Stob, and S. Weinstein Systems that Learn, M.I.T. Press (1986). 
19 Partial recursive functions are functions which are computable, but not necessarily 
defined on all integers. (In general, whether a partial recursive function is defined on a 
given integer is an unsolvable problem.) Partial recursive functions which are defined on 
all integers are called "general recursive" 
2o For the relevance of GSdel's and Church's work on undecidable problems to inductive 
logic see, in addition to the literature cited in n. 18, my " Trial and Error Predicates 
and a Solution to a Problem of Mostowski," Journal of Symbolic Logic, 30:1 (1965), 49- 
57, E.M. Gold, "Limiting Recursion," Journal o/Symbolic Logic, 30:1 (1965), 27-48; the 
paper cited in note 15; and my "Reflexive Reflections," Erkenntnis, 22, 143-153 (1985). 
21 The reason for changing "the next individual" to "future individuals" is that,  since we 
do not require the functions f to be total, an effective hypothesis may not in fact predict 
anything about the character of one or another individual. Also it may take an arbitrarily 
long time to compute what a hypothesis does predict about a given individual, if it does 
make a prediction; thus the fact that the user of this method goes on forever (i.e., is 
immortal),  is essential. 
22 On Certainty, w 
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S T I G  K A N G E R  I N  M E M O R I A M  

DAGFINN FOLLESDAL 

University of Oslo and Stanford University 

The original invitation to hold this meeting in Uppsala came from Stig 
Kanger. Dag Prawitz and Dag Westersts had to take over the respon- 
sibility for the meeting when Kanger died on March 13, 1988, in his 64th 
year, on his way to Germany to recieve the Alexander von Humboldt prize 
for his research. 

It is doubly appropriate to devote a symposium at this congress to 
Kanger's work. Not only was this to have been his congress. His work is 
also of the highest quality and deserves to be far better known. Later in 
this symposium Lars Lindahl, who worked together with Kanger for many 
years, will present and discuss Kanger's work on rights, and Amartya Sen 
will talk about Kanger's work on choice, preference and binariness. 

However, Kanger made important contributions to many other areas of 
philosophy as well. He gave elegant formulations of various branches of 
elementary logic, many of them inspired by his teacher Anders Wedberg 
and by Tarski's work, which he admired and knew well. Kanger had 
new and interesting ideas on the theory of measurement and he even 
contributed to linguistics: in a paper on the notion of a phoneme and in 
unpublished work on time and tempus, where he presents an approach 
that is far superior to what was at that time available in the work of 
Reichenbach and Prior. 

Kanger picked up new formal theories very easily, he quickly appreciated 
their basic point and their inherent difficulties. He spotted inconsistencies 
straightaway and came up with counterexamples promptly. As an example 
I can mention that some years ago he was in Oslo listening to Donald 
Davidson presenting a first version of his "Unified Theory of Language and 
Action." Kanger immediately saw that Davidson's basic idea of preferring 
a sentence to be true, led to contradictions, and he came up with a simple 
example to show this. Davidson was forced back to the drawing-board. 
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Kanger's little remark has been preserved for posterity in his "A Note on 
Preference-Logic." (In Festschrift  for Thorild Dahlquist 1). 

Kanger's critical talent coupled with creativity, resourcefulness and 
great generosity made him an exceptional adviser, and through his ad- 
vising and other contributions that have not found their way into writing, 
he has been of immeasurable importance for philosophy in Uppsala and 
among us others who had the opportunity to discuss philosophy with him. 

I want, however, particularly to emphasize Kanger's development of a 
model theory for the modalities, in his 1957 dissertation, Proyabil i ty  in 

Logic, 2 which goes back to a course in logic that he gave at the University 
of Stockholm in the spring of 1955. 

Most work done on the modalities until then was of a syntactic charac- 
ter. C. I. Lewis' varieties of propositional modal logic and Ruth Barcan 
Marcus' and Carnap's systems of quantified modal logic from 1946 all 
focus mainly on the syntactical. Carnap had proposed a quasi-semantic 
interpretation in terms of state descriptions, but a clear and fully semantic 
interpretation had never been proposed. Kanger, in his dissertation, pro- 
posed the first fully model theoretic interpretation of modal logic. More- 
over, he introduced a fundamental new idea, which now is familiar to 
everybody working on modal logic, but which at that time was an inno- 
vation: While all earlier attempts to provide a semantics for modal logic, 
from Leibniz to Carnap, had started out from the idea of necessity as truth 
in all possible worlds, Kanger regarded the notion of a possible world as a 
relative notion. One world may be possible relative to some other worlds, 
and not possible relative to further worlds. 

Kanger shows that by imposing various restrictions on the relation be- 
tween possible worlds, for example requiring it be reflexive, symmetrical 
and/or transitive, one gets natural interpretations of the systems $5 and 
$4 of C. I. Lewis and of Feys' calculus t. These results are now among 
the first things a student of modal logic learns, as the basis of so-called 
Kripke semantics for modal logic. I think it would be appropriate for us 
who are present at this meeting to give credit where credit is due and to 
honor Kanger's memory by calling this semantics Kanger-Kripke  seman- 
tics. I am sure that Saul Kripke, who is here, would not object. Neither 
will, I am sure, Jaakko Hintikka, who is also here, and who suggested 

1 ThD 60. PhilosophicM essays dedicated to Thorild Dahlquist on his sixtieth birthday. 
(Philosophical Studies published by the Philosophical Society and the Department of 
Philosophy, University of Uppsala, Sweden, No. 32) Uppsala 1980, pp. 37-38. 
2Stig Kanger, Provability in Logic (Stockholm Studies in Philosophy 1), Almqvist & 
Wiksell, Stockholm, 1957. 
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the idea of worlds being possible relative to one another in two papers in 
1957, 3 the same year as Kanger's dissertation, but without working the 
idea out in any detail. Kripke, by the way, has never proposed the label 
"Kripke semantics" for the semantics that he developed in his 1963 and '64 
papers. 4 The label has come into use because Kripke's papers were very 
widely read and highly influential, while hardly anybody read Kanger's 
dissertation. Also, Kanger confined himself to stating his main ideas and 
results in a very condensed manner, while Kripke developed the theory 
much further and presented it in a pedagogical and very readable way. 
Kripke, of course, refers to Kanger in his articles. Thus in "Semantical 
Analysis of Modal Logic I" (page 69, footnote 2), he says: "The model- 
ing for modal logic given in Kanger [Provability in Logic], though more 
complex, is similar to that in the present paper." 

Kanger must himself bear the blame for the lack of attention given to 
his dissertation. Although he modestly says in his preface that "the essay 
may be regarded as having a kind of pedagogical aim", pedagogy is not 
its main virtue. Typically, shortly after Saul Kripke had published his 
1959 paper in the Journal of Symbolic Logic, 5 where he gives a clear and 
simple model theoretic semantics for $5, but treats the notion of possible 
world in the old-fashioned way, as an absolute notion and not as a relative 
one, I mentioned to him that Kanger in his dissertation had introduced the 
idea of possible world as a relative notion and thereby got natural models 
also for weaker systems than $5. Kripke then told me that he was aware 
that this idea was in Kanger's dissertation, but that he had tried to read 
it and found it forbidding to read in its very dry and condensed formal 
style. 6 Kanger himself may have had a foreboding of this when he wrote 
in the preface to his dissertation that "It is hoped that this [pedagogical] 
aim is not overshadowed by the technical character of my exposition". 

3jaakko Hintikka, "Quantifiers in Deontic Logic", Societas Scientiarum Fennica, Com- 
mentationes humanarum litterarum, vol. 23, no. 4 (Helsinki 1957). "Modality as 
Referential Multiplicity", Ajatus 20 (1957), 49-64, esp. pp. 61-62. 
4Saul Kripke, "Semantical Considerations on Modal Logic", Acta Philosophica Fennica 
16 (1963), 83-94. "Semantical Analysis of Modal Logic I, Normal Propositional Cal- 
culi", Zeitschrift fiir Mathematische Logik und Grundlagen der Mathematik 9 (1963), 
67-96. "Semantical Analysis of Modal Logic II, Non-normal Modal Propositional Cal- 
culi", in The Theory of Models, edited by J. W. Addison, L. Henkin, A. Tarski (Ams- 
terdam: North-Holland, 1965), pp. 206-220. 
5Saul Kripke, "A Completeness Theorem in Modal Logic". Journal of Symbolic Logic 
24 (1959), 1-14. 
6Among Kanger's papers, that are kept in Uppsala University Library, is a letter 
from Saul Kripke to Kanger, dated January 24, 1958, where Kripke asks whether 
Kanger will send him a copy of his dissertation and of his article "A Note on Partial 
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From the perspective of our t ime Kanger 's  dissertat ion is not hard  to 

read. Kanger  gives ample credit for the basic ideas of his model theoretic 
approach, including the idea of bringing in a relation between model, to 

Bjarni Jdnsson and Alfred Tarski 's  1951-52 articles "Boolean algebras 
with operators" ,  which he had studied very carefully. 7 However, there is 

no hint in J6nsson and Tarski tha t  their ideas can be applied to modal  

logic. Stig Kanger  was the first to do so, and he thereby laid the ground 

for what  is in our t ime the dominant  approach to the semantics for the 

modalit ies.  Let us give him proper credit for having done this by including 
his name in the designation for this semantics. 

Postulate Sets for Propositional Logic" (Theoria 21 (1955)), which had been brought 
to Kripke's attention by Haskell Curry. (I am grateful to Mrs. Dagmar Kanger for this 
information.) 
7Strangely enough, in the footnote in Kripke's "Semantical analysis of modal logic I", 
which I quoted above, Kripke writes: "The most surprising anticipation of the present 
theory, discovered just as the paper was almost completed, is the algebraic analogue 
in JSnsson and Tarski ["Boolean algebras with operators"]. Independently and in 
ignorance of [JSnsson and Tarski's work] (though of course much later) the present 
writer derived its main theorem by an algebraic analogue of his semantical methods; 
the proof will appear elsewhere". Given how profusely Kanger gives credit to JSnsson 
and Tarski in his dissertation, this passage confirms what Kripke told me in 1960 about 
not having studied Kanger's dissertation thoroughly. 
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S T I G  K A N G E R ' S  T H E O R Y  O F  R I G H T S  * 

LARS LINDAHL 

I.  I n t r o d u c t i o n  

Stig Kanger regarded his theory of rights as one of his substantial contri- 
butions to philosophy; he worked on it, intermittently, for nearly thirty 
years. A starting-point was Kanger's interest in the classification of "fun- 
damental jural relations" proposed by the American jurist W. N. Hohfeld, 
in the second decade of this century. Hohfeld's theory concerns an area 
which is mainly legal, and it belongs to the tradition of jurists such as 
Jeremy Bentham and John Austin. Hohfeld distinguished the relations 
right, privilege, power, immunity, and their "correlatives" duty, no-right, 
liability, disability; one of Hohfeld's tenets was that  each of these relations 
is a relation between two parties with regard to an action by one of them. 1 

In his little book New Foundations for Ethical Theory, from 1957, 
Kanger presented his first explication of Hohfeld. He suggested that stan- 
dard deontic logic, with only a deontic operator applied to sentences, is 
not adequate for expressing the Hohfeldian distinctions. The improve- 
ment he proposed was to combine a standard deontic operator with an 
action operator and to exploit the possibilities of external and internal 
negation of sentences where these operators are combined. 

In Kanger's 1963 paper "The Concept of a Right", his explication of 
Hohfeld was restated as a system of so-called simple types of rights. In 
this paper, however, the simple types are the basis of a theory of atomic 
types of rights, which is more of a genuine typology. In the explication 
of atomic types, the combinatory method of "maxi-conjunctions" is used 
ibr providing an elegant logical typology of normative relations. 

*The present essay is part of a project supported by The S6derberg Foundations. 
1On the theories of Bentham, Austin and Hohfeld, see Lindahl (1977), Chapters 1 and 
6, with further references. 
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During the last two decades of his life, Kanger was interested in the 
application of his theory of rights in connection with human rights and 
social justice; in particular, he turned to the problem of what, in the 
U. N. Declaration on Human Rights, is meant by having a right. In this 
connection, Kanger became aware of the distinction between a person's 
having a right and this right's being realized for the person. And so, 
in his last paper on rights, from 1985, Kanger dealt with the notion of 
realization of rights. 

The first part of my paper contains a brief presentation of Kanger's 
typologies. After this, there follows a discussion of problematic points. 
The final part offers some suggestions for a positive solution to the most 
central problems. 

Kanger's ideas about realization make use of a much enlarged logical 
framework, the treatment of which would lead too far in the present essay. 
His basic theory of rights, however, is independent of these ideas. 2 

II.  St ig  K a n g e r ' s  t h e o r y  of r ights :  a p r e s e n t a t i o n  

1. THE LANGUAGE USED BY KANGER 3 

The sentences on rights that Kanger tries to explicate are taken from 
juristic usage or plain ordinary language. Moreover, Kanger's explications 
are not stated within a strictly formal language but only semi-formally. 
Only two kinds of entities are explicitly referred to, namely agents, on 
the one hand, and states of affairs or conditions, on the other. Agents 
are either persons, like Mr. Smith, or so-called collective agents, such as 
the Swedish Government or Smith & Co, Ltd. As illustrations of the 
second group of entities we have, for instance, the state of affairs (or 
condition) that Mr. Smith gets back the money lent by him to Mr. Black, 
or that Mr. Smith walks outside Mr. Black's shop. In Kanger's view, 
negation, conjunction, disjunction etc. can be applied to states of affairs 
(or conditions) in the same way as they are applied to sentences, and the 
notion of logical consequence is applicable to them by analogy as well. 4 

In order to state his explications in a general way, Kanger introduces 
letters for referring to agents or states of affairs that are chosen arbitrarily. 
He assumes that x, y, z , . . .  are agents and that F, G, H , . . .  are states of 
affairs. Moreover, F(x, y), G(x, y),.., are assumed to be states of affairs 

2See Kanger (1985). The enlarged logical apparatus is developed in Kanger (1977) and 
(~gs~). 
3Kanger (1963), Kanger &: Kanger (1966), and Kanger (1972). 
4 During the last years of his life, Kanger planned to develop a general theory of condi- 
tions based on cylindric algebra; unfortunately, however, the plan was never realized. 
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"involving" (as Kanger says) agents x and y. 
To the Boolean connectives of negation, conjunction etc., Kanger adds 

the modal expressions "Shall" and "Do". Shall F is to be read "It shall 
be that F" and Do(x, F)  should be read "x sees to it that F".  

In his explication of rights, Kanger exploits the possibilities of combin- 
ing the deontic operator Shall with the action operator Do. One example 
is Shall Do(x, F)  which means that it shall be that x sees to it that  F; 
another is ~Shall Do(y, ~F)  which means that it is not the case that it 
shall be that y sees to it that not F. 5 

The logical postulates for Shall and Do assumed by Kanger are as fol- 
lows (where ) is a relation of logical consequence, satisfying some res- 
onable postulates6): 

1. If F , G, then Shall F , Shall G. 
2. (Shall F & Shall G) , Shall(F&G). 
3. Shall F , -~ Shall ~F.  
4. If F , G and G , F, then Do(x, F)  , Do(x, G). 
5. Do(x, F)  , F. 

2. T H E  SIMPLE TYPES OF RIGHTS 7 

In Kanger's theory, there are several types of rights. A type of rights is 
always a relation between two agents with respect to a state of affairs or 
a condition. For instance, if Mr. Smith has lent 100 dollars to Mr. Black, 
and, therefore, has a right to get back the money lent, then, according 
to Kanger, Smith has a right of the simple type Claim against Black 
with regard to the state of affairs (or condition) that Smith gets back 
the money he has lent to Black. In this example, Claim is the type, 
Smith is the bearer, Black is the counter-party, and the state of affairs (or 
condition) that Smith gets back the money lent is (what may be called) 
the "object-matter". 

5The systematical use of "sees to it that" in combination with other operators is a 
characteristic feature in the work of Kanger's pupils within the Fenno-Scandian school 
of legal theory and social science. It is used in PSrn (1970), (1971), (1974), (1977), 
in Lindahl (1977), in H. Kanger (1984), in S. O. Hansson (1986), (1990-91), and in 
Holmstr5m-Hintikka (1991). For some early suggestions, resembling Kanger's idea of 
combining Shall and Do, see Anderson (1962) and Fitch (1967). 
6The principles assumed by Kanger for the relation of logical consequence are as follows: 

(i) If F and F ~ G, then G; 
(ii) I f F ~ G ,  t h e n ~ G ~ - ~ F ;  

(iii) If F ---, G and G ) H, t h e n F - - ~ H .  

See, Kanger & Kanger (1966), at p. 88, note 3. 
7See, concerning Kanger's typologies, Kanger (1963), Kanger & Kanger (1966), Lindahl 
(1977), and Makinson (1986). 
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In the history of the analysis of rights, there is a traditional distinction 
between, on the one hand, "passive rights", or rights to have something 
done, and on the other hand, "active rights" or rights to do something. In 
Kanger's theory of simple types of rights, the first group, henceforth called 
O-rights, is explicated by "counter-party obligatives", while the second, 
called P-rights, are explicated by "bearer permissives". In the first group, 
we have four simple types, explicated as follows: 

Explicandum: 
O-right 
Claim(x, y, F(x, y) ) 
Counter-claim(x, y, F(x, y) ) 
Immunity(x, y, F(x, y) ) 
Counter-immunity(z, y, F(x, y) ) 

Explicans: 
Counter-party obligative 
Shall Do(y, F(x, y)); 
Shall Do(y,-~F(x, y)); 
Shall -~ Do(y,- ,F(x,  y)); 
Shall -1 Do(y, F(x, y)). 

For example, if Mr. Smith has an immunity against Mr. Black with 
regard to the condition that Mr. Smith walks outside Mr. Black's shop, 
this is explicated by: It shall be that Mr. Black does not see to it that 
Mr. Smith does not walk outside Mr. Black's shop. Each explicans satisfies 
the scheme, 

Shall 4- Do(y, • r(x,y)),  

where • stands for the two alternatives of affirmation or negation. 
The four bearer permissive types are explicated in this way: 

Explicandum: 
P-right 
Power(x,y,F(x,y)) 
Counter-power(x, y, F(x, y) ) 
Freedom(x, y, F(x, y) ) 
Counter-fredom(x, y, F(x, y) ) 

Here, each explicans satisfies the scheme, 

Explicans: 
Bearer permissive: 
-1 Shall--1 Do(x,F(x, y)); 

Shall-, Do(x, -~F(x, y)); 
Shall Do(x,-~F(x, y)); 
Shall Do(x, F(x, y)). 

-1 Shall + Do(x, • F(x, y)). 

As an example, consider Mr. Smith's counter-freedom versus the po- 
lice with regard to the condition that the police are informed about 
Mr. Smith's private life. In Kanger's explication, this would amount to: 
It is not the case that it shall be that Mr. Smith sees to it that the police 
are informed about Mr. Smith's private life. 
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Between the types of O-rights and the types of P-rights there exists a 
correspondence f such that if T is a type of O-right and T ~ is a type of 
P-right, then T ~ = f(T) in case for any x, y, F it holds that x has a right 
of type T versus y with regard to F(x, y) if and only if y has not a right 
of type T ~ versus x with regard to F(x, y). For example, Claim is the 
counter-part of counter-freedom, in the sense, that x has a claim versus y 
with regard to F(x, y) if and only if y has not a counter-freedom versus x 
with regard to F(x, y). 

According to the logical postulates, for some types it holds that mem- 
bership of one type implies membership of another. For example, since 
Do(y, F(x, y)), Do(x, ~F(x, y)), are inconsistent, Shall Do(y, F(x, y)), 
Shall Do(x,~F(x,y)), are inconsistent as well; therefore, according to 
Kanger's explication, Claim(x, y, F(x, y)), not Freedom(x, y, F(x, y)), are 
inconsistent. 

2. THE ATOMIC TYPES OF RIGHTS 

The construction of atomic types is as follows. We begin with the list, 

Claim(x, y, Y(x, y) ), 
Counter-claim(x, y, F(x, y)), 
Immunity(x, y, F(x, y)), 
Counter-immunity(x, y, F(x, y) ), 
Power(x,y,F(x,y)), 
Counter-power(x, y, F(x, y) ), 
Freedom(x, y, F(x, y) ), 
Counter-freedom(x, y, F(x, y)). 

Starting from this list, we form every new list that can be obtained by 
negating either 0, 1, 2 , . . . ,  up to all 8 members of the list, while keeping 
the other members unnegated. Obviously, the number of all such lists will 
be 2 s, i.e., 256. (Each choice of negated members of the list corresponds to 
the choice of a subset of the original list; since the list has eight members, 
the number of its subsets is 2s.) Of the 256 lists, however, all but 26 are 
inconsistent according to the logic of Shall and Do. Each of the remaining 
26 lists, when regarded as a conjunction of its members, specifies an atomic 
type of rights. 

As an example, we consider atomic type No. 5. 

Name 
"Power, immunity, counter-power, counter-immunity". 

Explicans 
{ix, y, F) [ -~Shall-~Do(x, F(x, y)) & Shall~Do(y, ~F(x, y)) & 
-~Shall-~Do(x, ~F(x, y)) & Shall~Do(y, F(x, y))}. 
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We see that  each conjunct in the explicans satisfies the scheme, 

(,) x + Shall -t- Do (y, iF(x ,  y)), 

x where • and y represent choices, as before. As suggested by David 
Makinson, 8 we can say that each atomic type is explicated by a "maxi- 
conjunction", i.e., a maximal and consistent conjunction such that  each 
conjunct satisfies scheme (.). Maximality means that if we add any fur- 
ther conjunct, satisfying (.), then this new conjunct either is inconsistent 
with the original conjunction or redundant. 

Given the underlying logic, the atomic types are mutually disjoint and 
their union is exhaustive. 

Not all of Kanger's types of atomic rights are types of rights in any 
reasonable sense. Consider Kanger's atomic type No. 23. According to 
Kanger, x has a right of atomic type No. 23 versus y with regard to F(x, y) 
if the following is true: 

Not freedom(x, y, F(x, y)), 
Not immunity(x, y, F(x, y)), 
Not counter-claim(x, y, F(x, y)). 

(Type 23 is specified by the list we obtain if all the lines of the original 
list of bearer permissives and counter-party obligatives are negated, and 
redundant members of the list have been dropped.) Since all members of 
the list are negated, x's relationship versus y with regard to F(x, y) is one 
of not having a right on any kind, rather than one of having a right of a 
certain type. To say, in this case, that x has a right of a particular kind is 
like saying that  poverty is a particular kind of opulence. Kanger's atomic 
typology, therefore, is a typology of normative relations from the "rights 
perspective" rather than a typology of rights. 

III. Some aspects of Kanger's theory 

In this section I will argue that  Kanger's typology represents an improve- 
ment in the theory of duties; as a theory of rights, it suffers from a number 
of difficulties. 

1. K A N G E R ' S  THEORY AS A THEORY OF DUTIES 

Kanger's typologies are primarily typologies of duties and non-duties; x's 
O-rights versus y are explicated in terms of y's duties, i.e., in terms of 
counter-party obligatives; correspondingly, x's P-rights versus y are ex- 
plicated in terms of x's non-duties, i.e., in terms of bearer permissives. 

8See Makinson (1986), at pp. 405 f. 
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Thus, the counter-party obligative Shall Do(y, F(x, y)) is an explication 
of "y has a duty to the effect that Do(y, F(x, y))". Correspondingly, the 
bearer permissive ~Shall Do(x, F(x, y)) is an explication of "x has no duty 
to the effect that Do(x, F(x, y))". 

Other types of duty/non-duty are explicated if a negation sign is in- 
serted before Do, before F(x,  y) or before both. 

It follows that the atomic types are intersections of different types of 
duty/non-duty for two agents with regard to one and the same state of 
affairs. 

If conceived of as typologies of duties/non-duties, Kanger's typologies 
represent a considerable improvement on earlier representations. In deon- 
tic logic, statements of duties are sometimes reproduced with the help of 
deontic operators carrying an index, like Oi, O j , . . .  where i,j are para- 
meters or variables for agents; an expression of the form OiF is read "F is 
obligatory for i". 9 Compared with this construction, Kanger's combina- 
tions of Shall and Do have greater expressive power; for example, instead 
of staying with " n o t - F  is obligatory for x", as expressed by O~-~F, a dis- 
tinction can be made between the cases Shall-~Do(x, F), Shall Do(x,-~F). 

The idea of combining a non-relativized deontic operator with an agent- 
relative action operator has another advantage as well (though this was 
not exploited by Kanger himself). This advantage consists in the possibil- 
ity of iterating operators in a meaningful way. It is controversial whether 
iterations of the kind OOF, O-~OF etc., make sense; in any case it is not 
clear what is meant by statements of this form. 1~ If we combine Shall and 
Do, however, new possibilities of iterations are opened. For example, in 
an organization, the boss is the superior of the clerk who is the superior 
of the errand-boy; it may well be the case that the boss is permitted to 
impose a duty on the errand-boy to work over-time, while the clerk is 
not permitted to impose such a duty on him. This distinction can be 
expressed by the two sentences 

~Shall~Do(x, Shall Do(z, F)); 
Shall-~Do(y, Shall Do(z, F)); 

where x is the boss, y is the clerk and z is the errand-boy. 11 It appears that 
in Kanger's language we can avoid iterations of the problematical kind; 
in the sentences just illustrated there is an instance of the Do operator 

9See, for example, B. Hansson (1970). 
1~ a discussion of this problem, see Barcan Marcus (1966), v. Wright (1968), Szewak 
(1974) and Opfermann (1977). 
l lFor  a theory exploiting these possibilities, see Lindahl (1977), Part  II (the theory of 
"ranges of legal action" or Spielraum). For a comment, see Talja (1980), where the 
tools of lattice theory are used. 
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between the two instances of the deontic operator. 

2. PROBLEMS FOR KANGER'S THEORY OF RIGHTS 

There are well-known problems connected with Kanger 's  theory conceived 
of as a theory of rights. 

(i) IDENTIFICATION OF BEARER AND COUNTER-PARTY. As remarked by 
J. S. Mill, the notion of a claim-right is connected with the idea that  par- 
ticular actions or omissions constitute cases of injustice commit ted against 
an assignable person (the bearer of the right); the injustice may consist 
in "depriving a person of a possession, or in breaking faith with him, or 
treat ing him worse than he deserves, or worse than other people who have 
no greater claims". The assumption that  an injustice is committed,  in 
turn, implies that  the bearer of the right is wronged: "in each case the 
supposition implies two t h i n g s -  a wrong done, and some assignable per- 
son who ;s wronged". 12 In accordance with this suggestion, a criterion of 
appropriateness for the explication of a claim-right is as follows: 

(1) x has a claim-right versus y to the effect that  F(x, y) 

only if it is true that ,  

(2) if F(x, y) is not the case, then x is wronged, 

(or x has a legitimate complaint). There are many interpretations of 
x, y, F such that  Kanger 's  explicans for (1), i.e., 

(3) Shall Do(y, F(x, y)), 

holds, while (2) is false. The policeman has a duty to seize the murderer, 
who tries to get away. If we set x - the murderer, y - the policeman, and 
F(x, y) for "x is seized by y", (3) is true. On the other hand, (2) is false in 
this case; the murderer is not wronged, and has no legitimate complaint, 
if the policeman does not succeed to seize him. The murderer has no right 
to the effect that  he be seized. 

Assume, on the other hand, that  Creditor has lent 100 dollars to Debtor, 
and that ,  as a consequence, Debtor has a duty to pay this amount back. 
If we set x - Creditor, y - Debtor, and F(x ,  y) for "x receives 100 dol- 
lars from y", the same counter-obligative formula (3) is true for this inter- 
pretat ion of the variables as well. In this case, however, (2) is true, and 
Creditor has a right to get his money back. Kanger 's  explicative formula 
(3) does not suffice to distinguish the two cases. 13 

12Mill (1910), p. 46. 
13Cf. Lindahl (1977), pp. 45 f., and Makinson (1986). 
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One might try to defend Kanger's theory by going to the theory of 
atomic types of rights. But this does not help much since the same atomic 
type, viz. No. 6 (claim, power, counter-freedom) seems to be appropriate 
in both of the two examples illustrated. As applied to x versus y with 
regard to F(x, y), type No. 6 is explicated as follows: 

Shall Do(y, F(x, y)), 
-,Shall -,Do(x, F(x, y)), 
~Shall Do(x, F(x, y)). 

The three sentences are true in the murderer case as well as in the Creditor 
case. (Observe that the third formula is true for the murderer, since he 
has no duty to see to it that he is seized by the particular policeman in 
view.) 

The problem just illustrated for Claim-rights is that the explicandum 
is not entailed by the explicans. This problem can be shown to exist as 
well for the other types of O-right, i.e., counter-claim, immunity, counter- 
immunity. 

If this objection is correct for O-rights, there will be a problem for P- 
rights as well. This time, however, the problem is that the explicans is 
not entailed by the explicandum. Let us remember that, in Kanger's con- 
struction, if T is a type of P-right, there is a type T* of O-right such that 
T(x, y, F(x, y)) if and only if not T* (y, x, F(x, y)). Furthermore, the types 
are constructed in such a way that 7) is the explicans of T(x, y, F(x, y)) 
if and only if -~ 7) is the explicans of T* (y, x, F(x, y)). By contraposition, 
therefore, if 7) does not entail T*(y, x, F(x, y)), then T(x, y, F(x, y)) does 
not entail -7 7). 

Let us illustrate the technical argument with an example. Suppose 
that y has a house in a suburban area. We may plausibly assume: y has 
no right that x does not walk around in the garden of y's neighbor (x's 
walking in that garden is no concern of y's). In Kanger's language, this 
means that 

(1) not Counter-immunity(y, x, F(z, y)) 

where F(z, y) expresses that x walks in the garden of y's neighbor. (1) is 
equivalent to 

(2) Power(x,y,F(x,y)). 

However, from (1) and (2) it ought not to follow, as in Kanger's theory, 

(3) -~Shall-~Do(x, F(x, y) ), 
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i.e., it should not follow that  it is permit ted that  x walks in the garden of 
y's neighbor. For example, we may well suppose that  x is a mortal  enemy 
of y's neighbor, and that  this neighbor has expressly forbidden x to walk 
in his garden; if so, the negation of (3) is true. 

(ii) RIGHTS OF RECIPIENCE WITHOUT A COUNTER-PARTY. There are 
statements about "rights to receive", which do not imply statements about 
duties and which are not tractable in terms of Kanger's typologies. An 
example is as follows: 

(1) Children have a right to be nurtured. 

If x is a child, nothing follows from (1) about who has a duty to nur- 
ture it. Rather, it has been suggested, the acceptance of (1) is a first 
and basic point of departure from which further considerations can be 
made concerning duties for others (parents, guardians, authorities and so 
on). 14 Indeed, from (1) it does not even follow that  for each child there is 
some y such that  y has a duty to nurture it; i.e., if x is a child it does not 
follow that  

(2) (3y)(Shall Do(y, F(x, y))) 

where F(x, y) means that  x is nurtured by y. It may be suggested that  
(1) entails that  if x is a child, then, 

(3) Shall (3y)[Do(y, F(x, y))]. 

(2), however, does not satisfy the Kanger scheme for counter-party obliga- 
tives since a quantifier is embedded between Shall and Do. Since the 
quantifier is located after Shall, not before it, (2) does not say that  any- 
one has a duty; rather (2) prescribes that  there be someone who nurtures 
x. 

(iii) LEGAL POWER. It is often maintained that  so-called legal power is a 
type of right not tractable in terms of duties or non-duties. Suppose that  
F is a legal predicate; F(x ,  y) signifies, for example, that  the ownership 
of the Glenroy estate is transferred from x to y. Then (it is argued), the 
statement 

(4) X has the legal power to see to it that  F(x, y), 

14See N. MacCormick's essay "Children's rights: A Test-case for the Theories of Right", 
in MacCormick (1982). 
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cannot be analyzed as 

(5) -~Shall-~Do(x, F(x, y) ), 

which is Kanger's general explication scheme for the simple type of right 
called "power": (5) expresses permission, while (4), it is usually held, 
expresses a capacitive dimension. 15 

On this point, I think that  Kanger's analysis can be defended. It is 
true that,  as "legal power" is usually understood, (4) and (5) are not 
synonymous, and Kanger's use of the term "power" is misleading. What  
Kanger wants to assert, however, is rather that  (5) is an explication of a 
general notion of a right-to-do (what in German would be called Befugnis), 
i.e., of 

(6) x has a right to see to it that  F(x, y). 

(Apparently, Kanger did not find a suitable word in English corresponding 
to Befugnis.) Admittedly, in some circumstances, a thief is able to transfer 
the ownership of stolen goods to a purchaser who is in good faith (the 
sale will be legally valid). But, obviously, the thief has no right to do this. 
Perhaps (4) is true for this interpretation of F, x, y, but since (5) is false, 
(6) is false as well. In one sense of "legal power", the thief has the legal 
power to sell the stolen goods. But if so, "legal power" is not a type of 
right. 
(iv) RELEVANCE OF CLAIM-HOLDER'S WILL. Suppose that  Mr. Smith has 
a claim versus the community to receive medical care. If x = Mr. Smith, 
y = the community, and F(x, y) is the condition that  x receives medical 
care from y, then 

(1) Claim(x, y, F(z, y) ) 

is explicated by 

(2) Shall Do(y, F(x, y)). 

According to (2), the laws are disobeyed if y does not see to it that  x 
receives medical care, even if this is due to x's refusing to receive it. 
However, all duties can be fulfilled even if x does not receive medical care, 
namely, in the case that  he does not want to have it. 

15See Lindahl (1977), p. 51 and pp. 194-211, with further references. 
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However, we might say that the "object-matter" of Smith's claim, ex- 
pressed by F(x, y), should appropriately be constructed in a different way, 
namely as the condition that medical care is made available to him by the 
community. The latter is another way of saying that Smith receives medi- 
cal care, if he wants to have it. Of course, the expression F(x, y) does not 
make it explicit that a conditional is involved, and it will be a problem 
how such a conditional should be expressed within the simple language 
presupposed by Kanger. However, this is a difficulty about expressing 
the "object-matter" of rights rather than an objection to the typology of 
rights itself. 

A possible way out, in the specific example, is to replace F(x, y)in (2) 
by the material equivalence G(x, y) ~ H(x, y), i.e., to substitute (2) by 

(2') Shall Do(y, G(x, y) ~ H(x, y)), 

where G(x, y) expresses that x (informs y that he) wants medical care and 
H(x, y) that x receives medical care from y. This would keep the analysis 
within Kanger's basic framework; however, it remains an open question 
whether the construction is a good one. 

As regards bearer-permissive rights, the problem is somewhat different. 
Mr. Brown has a right to walk in the municipal park, if he wants to, 
but need not walk there if he does not want to. In Kanger's typology, 
the relevance of Mr. Brown's will in this case can be expressed by the 
conjunction 

~Shall-~Do(x, F(x, y)) & --Shall--Do(x, ~F(x, y)), 

where F(x, y) expresses that x walks in y's park; the sentence says that 
x has both power (= Befugnis) and counter-power, as regards his walking 
in the park. Since, in this case, the power is "two-sided" (power and 
counter-power), it is sometimes described as bilateral. 

Among theories of rights the so-called will theory, making relevance 
of the right-holder's will a conceptual characteristic of rights, has a re- 
spectable ancestry. A modern version of this theory has been developed 
by the Oxford legal philosopher Sir Herbert Hart. In Swedish philosophy, 
views similar to Hart's have been proposed by Sven Danielsson. 16 

However, there are claim-rights where the claim-holder's will is irrele- 
vant, and there can be powers (in Kanger's sense) which are not bilateral. 
The statement that all children have a right to be given elementary educa- 
tion is compatible with the proposition that such eduction is compulsory, 

16See Hart (1972), and S. Danielsson's essay "Fri- och r/ittigheter" in Danielsson (1986). 
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i.e., that  refusal to partake in the education is inoperative. This shows 
that  the object-matter  of a claim-right should not always be construed by 
a conditional of the kind illustrated, where the claim-holder's will is made 
relevant: relevance of the claim-holder's will is not a general characteristic 
of claim-rights. Similarly, the statement that  the policeman has a right 
to try to seize the thief is compatible with the statement that  trying to 
do so is compulsory. The policeman's power is not bilateral, and it is not 
relevant what the policeman wants to do. 

As is well-known, the notion of a right plays, and has played, an impor- 
tant part in many moral and political theories. Various theories emphasize 
different features of the notion of a right, or even define the notion in dif- 
ferent ways, using it as a tool for an ideological message. This fact can 
be described in various ways: we might say that  the notion of a right is 
"theory-dependent", or, that  it is a "contested concept", or with Charles 
Stevenson, that  there exist various persuasive definitions of the notion. 17 
Those modern theories emphasizing relevance of the right-holder's will can 
be called liberal theories, in a wide sense. Since liberal theory occupies 
an important  place in political thought, it is only to be expected that  we 
are apt to regard cases where the right-holder's will is relevant as the cen- 
tral cases of rights. On the other hand, a general philosophical analysis 
of rights ought to avoid incorporating as definitional characteristics such 
features that  are asserted by a specific moral or political theory. 

(y) THE HETEROGENEITY OR HOMOGENEITY OF RIGHTS. Kanger never 
addresses the question whether the various types have anything in com- 
mon which justifies calling all of them types of rights. He seems to hold 
that this problem is not worth pursuing, since the term "a right" is am- 
biguous; in fact, in the opening of his 1963 paper on rights, he says: "It 
is almost a commonplace that  the idea of a right is vague and ambiguous 

The problem is whether there is any predicate ~ such that,  by analytical 
necessity, 

(1) x has a right to (the effect that)  A if and only if ~(x, A), 

where A is any condition, and ~(x, A) expresses, in a non-trivial way, the 
point made when we ascribe a right to A to the agent x. 

In the theory of rights, there are two basic att i tudes to this question. 
One is that  the term "a right" is used in such different ways that  it 
is no use to look for a predicate of the kind referred to. According to 
this view, there are different explications ~1 (x, A), ~2(x, A ) , . . . ,  ~on (x, A), 

17See Stevenson (1944). 
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appropriate for different sentences of the form "x has a right to A"; the 
only way of explicating this formula according to (1) is the trivial one of 
interpreting ~(x, A) as the disjunction ~1 (x, A) V ~2(x, A) V. . .  V ~n (x, A). 

The second basic at t i tude is that  there exists a predicate ~p appropri- 
ate for the explication of all rights. There is no agreement, however, as 
to which one of several explications is the appropriate one. In fact, as 
shown by Richard Tuck, the issue has been a bone of contention from 
the Middle Ages and onwards; various proposals are closely tied to spe- 
cific theological, moral and political theories (cf. above, about "theory- 
dependence"), is In a recent work, Alan White maintains that  "x has a 
right" expresses that  x is entitled to, has a title to, something. Basically, 
White 's  observation seems correct. However, White has not developed his 
suggestion, and, as White admits, the idea of being entitled and having a 
title is not more helpful than the information we can get from an ordinary 
dictionary. 19 This result is not surprising: if a theory of a common feature 
of rights is not to be tied to a specific legal, moral, or political theory 
it has to be exceedingly minimalistic and expressed in terms (like "being 
entitled") which are highly unprecise. 

IV. A positive proposal 

1. "BEING WRONGED" AND A NEW START 

After the foregoing survey of problems, some positive proposals will now 
be made. A central subject is the identification of bearers and counter- 
parties of rights within a minimalistic theory. In the suggestions that  
follow, the notion of being wronged, introduced in the previous section, 
features prominently. 

As is well-known, in 1956 A. R. Anderson suggested an interpreta- 
tion of the deontic operator O (for" obligatory") in terms of alethic modal 
logic.2~ to Kanger's expression Shall, this interpretation amounts 
to the following: 

Shall F +-+ N(- ,F  --+ S). 

In the expression to the right, N stands for "necessary", --+, as usual, is 
the symbol for material implication, and S is a propositional constant. S 
can be understood as "deontic", expressing that  the Bad Thing occurs. N 

1STuck (1979). Cf. M. Golding (1990), at p. 55. 
19White (1984), especially at p. 114. Of course, the idea of unambiguity is compatible 
with holding that there are, nevertheless, several types of rights. To make an analogy, 
the unambiguity of the term "bird" in zoology is perfectly compatible with assuming 
that there are various kinds of birds. 
2~ Anderson (1956), reprinted in Rescher (1967). 
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is supposed to satisfy what Anderson calls the minimal requirements of a 
normal alethic modal logic. For S, Anderson assumes the axiom -~N(S). 

The so-called system T for alethic propositional modal logic has the 
following rule of inference and axioms: 21 

If A is a theorem, then N(A) is a theorem. 
N ( A ~ B )  &N(A) ~ N ( B ) .  
N(A) ~ A. 

With system T for N, and with -~N(S), the Anderson interpretation of 
Shall yields the theorems of standard deontic logic, as formulated by: 

If A is a theorem, then Shall(A) is a theorem. 
Shall(A--, B) & Shall(A) --, Shall(B). 
Shall(A) --, -~Shall(--A). 

Therefore, this interpretation remains basically within Kanger's frame- 
work, which is also the framework accepted in this essay. 22 

A useful tool for the explication of rights is obtained if we substitute 
Anderson's propositional constant S by a two-place predicate constant W 
for "is wronged by". The notion of an agent's being wronged, introduced 
above with reference to J. S. Mill, is important in criminal, private, and 
procedural law; moreover, it plays a prominent part in moral theory. (See, 
for instance, G. E. M. Anscombe's essay "Who is wronged? ''23) In what 
follows, W(x, y) is to be read "x is wronged by y". 

2. T H E  LOGIC OF RIGHTS-PROPER 

We start with system T for N, the constant S and Anderson's axiom 

(I) -~N(S). 

We add the predicate constant W and the axiom 

(II) W(x, y) ~ S, 

expressing that if x is wronged by y, then the Code is violated etc. In 
passing, we observe that a weaker logic is obtained if we drop S together 

21See, for example, Hughes & Cresswell (1968). 
22The Anderson construction is, of course, connected with the problem of how to 
express " I f . . . ,  then" in a satisfactory way within a logically well-written language. 
Our reason for not discussing this problem is that, even if N(. ~ .) is questionable 
in the context at hand, it will keep us close to the Kanger typologies and logical 
framework. A recent at tept  to solve the problem of conditionals in deontic logic is 
made in Alchourrdn (1991), where the relation of strict implication plays an important 
part. 
23 Anscombe (1967). 
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with (I) and (II), and rather stay with the axiom, 

(1) -~N[W(x, y)], 

expressing that it is not necessary that x is wronged by y. Thus, from (I) 
and (II) we can derive 

(2) ~N[textW(x, y) V W(z, w)] 

but (2) cannot be derived from (1). As will appear, the stronger logic 
resulting from (I) and (II) will yield typologies closer to those proposed 
by Kanger. 

Next, we introduce the notion of a right-proper. If A is a condition, 
R(x, y, A) is read '% has a right-proper versus y to the effect that  A", and 
is interpreted as follows: 

R(x, y, A) ~ N(~A ~ W(x, y)). 

If, for fixed x, y, R(x, y, .) is regarded as an operator with x, y as para- 
meters, the logic of R(x, y, .) will be standard deontic logic: 

If A is a theorem, then R(x, y, A) is a theorem; 
R(x,y,A)& R(x,y,A ~ B) ~ R(x,y,B); 
R(x,y,A) ~ -~R(x,y,-~A). 

Since we have (I) and (II) among the axioms, we obtain, as well, further 
theorems for cases where x, y are not kept fixed; in particular, we have, 

R(x,y,A) ~ -~R(z,w,-~A). 

3. SIMPLE AND ATOMIC TYPES OF RIGHTS 

As will be remembered from section II, Kanger's explicans-formulae for 
simple types of O-rights (x versus y with regard to F) all satisfy the 
scheme, 

Shall + Do(y, +F) .  

In this scheme, let us substitute Shall(.) by R(x, y, .) and we obtain, 

R(x,y, +Do(y, +F)). 
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This way we can reconstruct all of Kanger's simple types of O-rights: 
claim, counter-claim, immunity, and counter-immunity. Due to the intro- 
duction of the notion of being wronged, however, their explication will 
differ from Kanger's and the problem of identifying the bearer does not 
occur. For example, Claim(x, y, F), i.e., R(x, y, Do(y, F)), is explicated 
by, 

N[~Do(y, F) ~ W(x, y)]. 

We will no longer have to say, as in the example discussed in section 
III, that the murderer has a claim versus the policeman to the effect that 
he is arrested by the policeman. 

In a similar way, all of Kanger's simple types of P-rights can be re- 
constructed within the new system. To simplify the exposition, let us 
introduce the notions May and R* by the following conventions: 

May A +-+ --,Shall~A; 

R*(x,y,A) ~ -~R(y,x,-~A). 

May expresses permission (in a weak sense), and R*(x,y, .)expresses 
a weak permissive right, which, with Hohfeld, we might call privilege, x 
versus y. Kanger's explicans-sentences for P-rights (x versus y with regard 
to F) all satisfy the scheme 

May + Do(x, +F) .  

If we substitute May(.) by R*(x, y, .), we get the scheme, 

R*(x,y,+Do(x,+F)). 

Using this scheme, all of Kanger's types of P-rights can be recon- 
structed: power (= Befugnis), counter-power, freedom, counter-freedom. 
For example, Power(x, y, F) becomes R* (x, y, Do(x, F)), and is explicated 
by 

-~N[Do(x, F) ---, W(y, x)]. 

We avoid the problem about counter-parties that is connected with 
Kanger's explication. In the example from section III, of x's walking in 
the garden of y's neighbor z, we can make the two statements, 

Power(x, y, F), not Power(x, z, F) 

i.e., x has a power (= Befugnis) versus y with regard to walking in z's 
garden, but x does not have this power versus z himself. The distinction 
is accomplished, since we have the respective explications, 

~N[Do(x, F) ~ W(y, x)], 

N[Do(x, F) ~ W(z, x)]. 
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Thus it appears that, using W, we can reconstruct the complete lists 
of four types of O-rights and four types of P-rights. Given the list of the 
eight simple types, we can, of course, reconstruct a theory of atomic types 
of rights by the method of "maxi-conjunctions". The number of atomic 
types, however, will be greater than Kanger admitted. This is due to the 
fact that while 

(1) Shall Do(y, F) ~ Shall-~ Do(x,-~F) 

is a theorem in Kanger's theory (since Do(y, F), Do(x,-~F) are inconsis- 
tent), the corresponding reconstructed formula 

(2) R(x, y, Do(y, F)) ~ R(y, x, ~ Do(x, ~F))  

does not follow from the axioms hitherto assumed in the reconstructed 
theory. (If (2) were a theorem, we would get 26 atomic types, as does 
Kanger.) It would lead too far afield to discuss in any detail the merits 
of (2). If, however, we want to have (2) as a theorem, while keeping the 
former basis of the reconstructed theory untouched, the question arises 
which further axiom or axioms should be added. There may be various 
possibilities. Among these are the following additions: 

III. N(F ) G ) ~  N [ D o ( x , F ) ~  Do(x,G)]; 

IV. N[Do(x,W(x,y))  ~ W(y,x)] 

(If these are added, (2) can be derived. 24) III is easily understood; but 
IV needs some comment. It says that, necessarily, if x himself sees to it 
that he is wronged by y, then it follows that y is wronged by x. (This 
seems, in fact, to be the rationale behind the Kanger theorem (1).) For 
example, suppose that a child, by escaping from school, sees itself to it 
that it is wronged insofar as it does not receive the education that is due 
to it. Then it follows that those who have the duty to give the child 
its education (teachers, schoolmasters etc.) are wronged by the child's 
escaping, which prevents them from fulfilling their duty. 

The acceptability of III and IV as logically valid may well be ques- 
tioned. But if so, the Kanger theorem (1) can be questioned with as 
much justification. 

24The antecedent of (2) is equivalent to N(-~Do(y,F) ---, W(x,y)) which implies 
N(-~F ~ W(x, y)). From this formula and III we get N[Do(x,--,F) ---, Do(x, W(x, y))]; 
using IV we get N(Do(x,-~F) --* W(y,x)), which is equivalent to the consequent of 
(2). 
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4. R I G H T S  W I T H O U T  A COUNTER-PARTY 

We often use s tatements  of the kind "x has a right to ..." without men- 
tioning any counter-party. Is it possible to explicate such s tatements  using 
our two-place predicate W? Three examples will be discussed. The first 
one concerns the colloquial use of "having a right", emphasized by Alan 
White. Suppose we say to x: "You have the right to feel proud." Such 
a s ta tement  is somewhat ambiguous. One plausible interpretation, how- 
ever, might go as follows. If x does not see to it that  he feels proud, 
then he is wronged by himself; furthermore, for any y other than x, if y 
sees to it that  x does not feel proud, then x is wronged by y. This way, 
counter-parties are seen as implicitly referred to, and the s ta tement  can 
be explicated in terms of the reconstructed notion. 

The next example is adapted after one proposed by Bengt Hansson. 25 
Peta luma is an area of private property, where different parts  are owned 
by different people; we assume that  for each land-owner y, y is wronged 
if x walks on his land. If F(x) expresses that  x walks on Peta luma land, 
we have 

W(y, x)]), 
since no land-owner y is wronged if x walks on Peta luma land belonging 
to another land-owner z (cf. the example, above, concerning x walking in 
the garden of y's neighbor). On the other hand, in the example, 

N[F(x)--~ (3y)(W(y,x))]. 

This sentence expresses, simpliciter, that  x has no right to walk on Peta- 
luma land. 

The third example is the one referred to in section III, that  all children 
have the right to receive nutrition. We suppose that  x is a child and that  
F(x) expresses that  x receives nutrition; we want to express that  x has 
the right to receive nutrition. This sentence is compatible with 

-~(3y)N[-~Do(y, F(x)) ~ W(x,  y)], 

i.e., there need not be any particular agent by whom the child is wronged 
if that  agent does not see to it that  the child receives nutrition. On the 
other hand, we might suggest the following as an improved interpretation: 

N[-~(3y)(Do(y, F(x))) ~ (3y)(W(x,  y))]. 

That  is: if no-one sees to it that  x receives nutrition, then there is someone 
by whom x is wronged. 

25B. Hansson (1970), at pp. 245 f. 
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The last two examples illustrate how predicate W can be used in a 
flexible way to explicate sentences that cannot be well interpreted even 
in terms of the reconstructed notions of rights against a counter-party. 
In the last of the three examples, however, the explication given may be 
questionable. Indeed, the example may suggest that, in addition to the 
two-place predicate W, we can be in need of a one-place predicate W for 
"is wronged", such that W(x) expresses that x is wronged, simpliciter. If 
we introduce such a notion, we should assume that W(x, y)implies W(x) 
but not that W(x)implies (3y)(W(x,y)). 

The purpose of introducing a one-place predicate W would be to use 
it for interpreting a notion R(x, .), i.e., a right proper where there is no 
counter-party, according to the formula: 

R(x,A) ~ N(-~A ~ W(x)). 

With axiom (I), as well as W(x, y) --. W(x) and W(x) ---. S, we would 
get standard deontic logic for R(x, .), as well as further theorems like 

R(x, A) ~ -~R(y, ~A); 

R(x, y, A) ~ R(x, A); 

and so on. The question whether there is a need for introducing the 
one-place predicate W, however, is left open here. 

5. T H E  IMPERSONAL OPERATOR SHALL AND THE RECONSTRUCTED NO- 

TION OF A RIGHT 

A typology of rights, based on the notion of "being wronged by", as de- 
veloped in the foregoing, is more akin to Hohfeld's original idea of jural 
relations between parties than is the Kanger typology, based on the imper- 
sonal operator Shall. 26 By the axiom W(x, y) ~ S, we established a con- 
nection since, from our assumptions, it follows that R(x, y, F) ~ Shall F. 

The suitability of establishing this connection may be questioned. In 
any case, however, we ought not to assume any of 

s (3x)(3y)(w(x, y)); 
Sh 11 r y, r)) .  

That is, we should not assume that if the Code is violated, then someone 
is wronged by someone, or that if something is prescribed, then someone 

26For an approach closer to Hohfeld's than Kanger 's ,  see, as well, B. Hansson (1970); 

cf. also Makinson (1986), at pp. 48 ft. 
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has a right versus someone as regards the fulfillment of what is prescribed. 
There are many prescriptions (administrative regulations, traffic prescrip- 
tions etc.) which do not imply rights for particular agents; the contrary 
assumption would lead to an inflation of rights where the group of right- 
holders is very diffuse. This shows that there is room for the reconstructed 
typologies of rights that are genuine relations of rights between parties, 
alongside with typologies of normative positions expressed in terms of 
the operator Shall. For the latter kind of typologies, Stig Kanger's idea 
of combining Shall and Do is very useful. As suggested in the forego- 
ing, typologies satisfying the Kanger schemes can be seen as typologies of 
positions of duty or non-duty. 
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1. I n t r o d u c t i o n  

Stig Kanger was a philosopher of extraordinary power and creativity. In 
logic, in choice theory, in the therory of rights, and in many other fields, 
Kanger made far-reaching contributions which were profoundly impor tant  
for the respective subjects. But he was not invariably a person of the greatest 
perseverance. He would often make an extremely innovative departure from 
the received tradition, but then move on to something else without  staying 
on to finish the work he had started. 

This is especially the case with his deep and penetrat ing contributions to 
choice thory. His slender paper "Choice Based on Preference"- -a  thoroughly 
original contr ibut ion--was writ ten some time in the middle 1970s (it will be 
called here Kanger I). It was seriously incomplete when it was first presented 
(with two sections of the text and the entire reference list missing), and it 
remained incomplete even at the time of his death more than a decade later. 
A subsequent paper "Choice and Modality" (to be called Kanger II) seemed 
like an a t t empt  at completing the exercise, and it did extend the analysis, 
but it too needed more work which never came. ~ 

In this paper, I want to talk about  some specific aspects of choice theory 
that  emerge forcefully from Kanger 's  ingenious conributions in this field. 

* For helpful discussions on this and related topics, I am most grateful to Nick Baigent, Ben 
Fine, Dagfinn Follesdal, Wlodzimierz Rabinowicz, Ryszard Sliwinski, and of course--over 
many years--to Stig Kanger himself 
1Both the papers contained, in fact, a small error, which was detected and sorted out 
by Stig Kangers's associates, Wlodzimierz Rabinowicz and Ryszard Sliwinski, in a forth- 
coming volume of Scandinavian texts on decision theory and ethics, which will include 
Kanger's unpublished and unfinished--paper "Choice Based on Preference"; PSrn et 
al. (1992). The "Introduction" also comments generally and illuminatingly on the nature 
of Kanger's contributions to decision theory. 
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But given the incompleteness of the papers, this exercise must involve some 
speculation on what Kanger was really after. I am helped in this exercise 
by the discussions I had with him, first, at the London School of Economics 
in the mid-seventies, and later on, during my two visits to Uppsala in 1978 
and 1987 respectively. 

In the next section, the standard models of binary and non-binary choice 
theory are briefly discussed, followed--in section 3--by some reformulations 
reflecting Stig Kanger's ideas and suggestions. In section 4, the motivation 
underlying the reformulations are examined, and the importance of these 
departures is illustrated with paricular substantive examples. The essay ends 
with a concluding remark on the over-all significance of Kanger's proposals. 

2. Choice  funct ions  and  b inar iness  

At the risk of some over-simplification, the literature in choice theory can be 
divided into two categories in terms of what is taken to be "the primitive", 
viz, (1) some binary relation R (interpreted as "preference", or "value", or 
"objective", or "the utility relation" something seen as prior to choice), 
or (2) the choice function C(.)itself. 2 These two standard approaches can 
serve as the background against which we see Kanger's departures. 

2.1. B i n a r y  re la t ion  as the  p r imi t ive  

Consider, first, the traditional view of "relational choice", basing choice on 
the primitive relation R in the standard way. A binary relation R ranks 
the set of available alternatives X from which a non-empty "menu" S is 
offered for choice, S C_ X, and from this S an "optimal set" C(S,R) is 
chosen on the basis of the binary relation R. In fact, only one element of 
the optimal set must ultimately be picked, but the optimal set reflects the 
set of "chooseable" elements of S. 

C(S,R) = Ix e S Vy e S: xRy} (1) 

C(S, R) is sometimes called the "choice set" of S with respect to the binary 
relation R. The interpretation of C(S, R) depends on the content of the 
binary relation R. If, for example, R stands for the relation "at least as 
good as", then C(S, R) is the set of "best" elements in S. 

Here we move from a binary relation, taken as the primitive, to the de- 
rived choices. Within this general structure, the approach can vary with the 

2The distinction applies to choice under uncertainty as well as certainty. However, in 
this paper I shall not go into the former, since neither of Kanger's essays deals with 
uncertainty. 
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characteristics of R, which may or may not be complete, may or may not be 
transitive, and so forth. 

The symmetric and asymmetric factors of R partition the different cases 
in which xRy holds into xPy and xIy. 

xPy [xRy & not yRx] (2) 
xZy [xny yRx] (3) 

If R is interpreted as at least as good as, then P can be seen as the relation 
"better than" and I as the relation "indifferent to". 

In another variant of this approach of relational choice, the elements to be 
chosen may be specified as the set of "maximal" elements, rather than as the 
"optimal elements" .3 In the case of choosing from the "maximal element" 
set, to qualify for choice, and element x has to be undominated by any other 
element (that is, for no y should it be true that  yPx), even though xRy need 
not hold either. 

M(S,P) = {x Ix e S & not 3y E S: yPx} (4) 

The distinction between the maximal set M(S, P) and the optimal set 
C(S, R) is helpful for relational choice for various reasons, but perhaps most 
of all because the optimal set C(S, R) might well be empty when R is in- 
complete. While reflexivity (requiring xRx for all x) may be trivial in the 
context of many cases in choice theory (it is, for example, hard to dispute 
that  x is "at least as good as" itself), completeness certainly can be a really 
exacting demand. Even with incompleteness, the maximal set can some- 
times exist even though the optimal set is empty. For example, if neither 
xRy, nor yRx, then C({x, y}, R) = 0, whereas M({x, y}, R) = {x, y}. 

One type of preference relation much studied in choice theory is a "quasi- 
ordering", in which R is transitive but not necessarily complete. Kanger 
too has tended to take that  type of relation as a good starting point of his 
analysis of "choice based on preference". For a quasi-ordering, an "optimal 
set" may well be empty even when a "maximal set" is clearly non-empty. 
Indeed, over a finite set S, a maximal set M(S, R) will always exist for a 
quasi-ordering R (Sen 1970, Lemma l ' b ) .  However, the following theorem 
holds (for a proof see Sen 1970, Lemma l ' d ,  pp. 11-2). 

(T. 1) 
C(S,R). 

For quasi-ordering R, if C(S,R) is non-empty, then M(S,R) = 

3On the distinction between "optimal" and "maximal" see Debreu (1959), Chapter 1, and 
Sen (1970). 
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The interest in the maximal set--as opposed to the optimal set m 
arises when the optimal set does not exist. 

particulary 

2.2. Choice  func t ion  as the  p r imi t ive  

In the alternative traditional approach, the primitive is taken to be the choice 
function C(.) itself, which is a functional relationship that specifies for any 
non-empty subset S of the universal set X, a "choice set" C(S), a subset 
of S. It is possible to obtain binary relations of "revealed" or "underlying" 
preference, from such a choice function (by making some standard assump- 
tions), and indeed there is a quite a literature on this. For example, x is 
weakly "revealed preferred" to y if and only if from some set of which y is 
a member, x is actually chosen (whether or not y is also chosen). 4 Further, 
x is weakly "base relation preferred" to y if and only if x is picked precisely 
from the pair {x, y}.5 

Weak revealed preference: 

xR y x e C(S) y e S] (5) 

Weak base relation: 
�9 [x e C((x,  y})] (6) 

The asymmetric and symmetric factors of Rc (denoted, Pc and Ic respec- 
tively) can be obtained in the usual way, following (2) and (3) applied to 
Re. Similarly, with Re. 

It is, in fact, also possible to define a strong revealed preference relation 
pc directly, in terms of x being chosen from a set that contains y but from 
which y is not chosen (that is, x is chosen and y rejected). 6 

Strong revealed preference: 

xP~y ~ [3S" x e C(S) & y c ( S - C ( S ) ) ]  (7) 

2.3. B i n a r y  choice 

A choice function is binary if and only if the revealed preference relation 
Rc generated by that choice function would generate back the same choice 
function if Rc is used as the basis of relational choice. Invoking (1) and (5), 
binariness is defined thus. 

4See Samuelson (1938), Arrow (1959), Hansson (1968), Herzberger (1973). 
5See Uzawa (1956), Herzberger (1973), Suzumura (1983). 
6See Arrow (1959), Suzumura (1983). 
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Binariness of a choice function: A choice function is binary if and only if, 
for all S C X" 

c(s) (8) 
Various consistency conditions have been proposed for choice functions, 

such as the weak axiom of revealed preference, path independence, and so 
on. The following two elementary conditions are central for the binariness 
of a choice function. 

Property c~ (basic contraction consistency)" For all x in X and all S, T c_ X, 

[x e C(X)  & x e T C_ S] ----5, [x e C(T)] (9) 

Property 3' (basic expansion consistency)" For all x in X and any class of 
sets Sj C_ X" 

[x e ~C(Sy)]  ==~ [x e C([.J Sj)] (10) 
J J 

Property a demands that  if a chosen element x from a set S belongs to a 
subset T of S, then x would be chosen from T as well. Property 3' requires 
that  if some x is chosen from every set Sy in a class, then it would be chosen 
also from the union of all such Sj. 

The following result is easily established linking Properties a and 7 to 
binariness of choice for a complete choice function, that  is, for choice func- 
tions such that  C(S) is non-empty for any non-empty S (see Sen 1971 and 
Herzberger 1973). 

(T. 2) A complete choice function is binary if and only if it satisfies Prop- 
erties a and 3'. 

Binariness can also be defined in terms of the base relation/~c, rather that  
the revealed preference relation Rc, in exactly the same way, and it can be 
shown that  "basic binariness" thus defined is equivalent to binariness with 
respect to the revealed preference relation and thus equivalent to the com- 
bination of Properties c~ and 7 (on this and related matters, see Herzberger 
1973). By varying the required properties, the choice function can be made 
less or more demanding than binariness, v 

3. K a n g e r ' s  d e p a r t u r e s  

The basic variation that  Kanger introduces in this standard structure is the 
possibility of choosing according to a binary relation of preference R V that  

7For the main results, see Arrow (1959), Hansson (1968), Sen (1971), Herzberger (1973), 
Suzumura (1983). 
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depends on the "background" set V rather than being independent of the set 
of alternatives (as assumed in the case of R considered in the last section). 
While the choices are seen as being based firmly on binary relations, the 
particular binary relation to be used in the Kanger system varies with the 
background set V. The far-reaching significance of this variation will be 
considered in the next section. 

The present section is concerned mainly with sorting out the formalities 
in Kanger's formulation, which is rather complex and in some ways quite 
hard to follow, s I shall first present the logical sequence in Kanger's own 
presentation, but it will emerge that the main differences introduced by him 
can be stated in ano ther~ra ther  simpler--way in terms of the standard 
format of choice theory. So if the reader is disinclined to go through a lot 
of formalities, he or she could move straight on to equations (15) and (16) 
below. 

Kanger proceeds from a "primitive" notion of a decision function D, from 
which a choice function C is obtained. We shall call them D g and C g 
respectively, in honour of Kanger. The different concepts can be perhaps 
more easily understood by invoking a diagram of intersecting sets V and 
X (at the cost of some loss of generality, which will not however affect the 
formal definitions presented here). We take S = V N X. 

Figure 1: 

DK(v~ X)  are the elements of V that are no worse than any element of 
V -  X (equivalently, V -  S) according to the strict binary relation p y  with 
respect to the background set V. 

D K ( v , x )  - {x Ix e Y & not 3y e V -  X " yPYx} (11) 

It is easily checked that the following relations hold: 

D g ( V , X )  = D K ( v , s )  (12) 

SRabinowicz and Sliwinski point out in their introduction in PSrn et al. (1992) that 
Kanger's "reason for choosing such an artificial concept as D as his primitive" relates 
to "the close formal connection between D and modal operators studied in modal logic". 
Rabinowicz and Sliwinski discuss these connections, and they are indeed important for the 
formal side of Kanger's reformulation of the choice problem (see Kanger I and Kanger II). 
In this paper, however, I am mainly concerned with the substantive differences pursued 
by Kanger. See also Danielsson (1974) on related issues. 
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D K ( V , V - X )  = D K ( V , V - S )  (13) 

The choice function C K is defined in terms of D K thus: 

C K (V, X) = D K (V, V - X) N X (14) 

With the choice function C K thus established, Kanger proceeds to intro- 
duce more structure into the background-dependent preference relation py: 
first the elementary need for this notationally "strict" py to be irreflexive; 
then the requirement that py be a strict partial ordering with no infinitely 
ascending chain; then it be also a semi-ordering; and finally that it be a strict 
weak ordering. He examines their various properties and relates them to the 
consistency conditions used in the standard literature (such as Properties 
and 7). 

The basic idea behind the choice function C K can be understood in more 
direct terms in the following way. Consider the maximal set M(S, P), defined 
earlier, in equation (4). The strict preference relation P invoked there did 
not depend on any background set V. Now make it dependent on a selected 
background V, and call it pv. Define C*(S, V) simply as M(S, pv), exactly 
like a traditional maximal set, except for using pV rather than P. 

C*(S,V) = M(s, pV) = {x Ix e S & not 3y e S: yPYx} (15) 

Now bearing in mind that S is the intersection of V and X, it can be easily 
established that Kanger's Choice function C g relates to C* (and thus to the 
standard maximal function M) in the following way: 

(T. 3) 
C K (V, X) = C* (S, V) = M(S, pV) (16) 

The result is easily checked by comparing (15) with the characterization 
of c K ( v , x ) i n  the Kanger system, given by (17), based on (14): 

c g ( w ,  X )  = {X I X e V n X not 3y E V N X" yPYx} (17) 

Thus, we are essentially in the same territory as the traditional maximal 
function M(.), with the added proviso that the strict preference relation 
P is now a background dependent pV. And bearing in mind the old result 
(T.1) that the traditional maximal set M(S, P) is the same as the traditional 
choice set C(S, R) whenever the latter is non-empty and R is a quasi-ordering 
(Sen 1971), we have a clear relationship between Kanger's choice system and 
the standard system of choice sets and maximal sets. 
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The Kanger system opts for the idea of maximality rather than that of 
optimality (underlying the traditional binary choice function), and further- 
more makes the binary relation of preference py (on the basis of which 
maximality is defined) dependent on the specification of the background set 
V. The latter is a truly substantial departure, and in the next section, the 
motivation underlying this change and its extensive importance are discussed 
and exemplified. But as far as formalities are concerned, we lose nothing 
substantial by using the simpler notion of a background-dependent maximal 
functions M(S, By), rather than CK(v, X), as in the Kanger system. 

The discussion that follows will be conducted entirely in these less spe- 
cialized terms, using the older notion of maximality coupled with Kanger's 
ideal of a background-dependent preference relation pV. 

4. Why background dependence? 

At .the substantive level, the idea behind a background-dependent maxi- 
mal choice M(S, py), equivalent to Kanger's differently formulated choice 
structure, can be seen in terms of two distinct departures from the stan- 
dard maximal choice M(S,P): (1) the preference relation P is taken to 
be dependent on a background set V in terms of which it is defined, and 
(2) the background set V need not be the set S (the menu) from which 
choice is being made. I shall briefly consider different types of motivations 
that can justify the broader conception of choice behaviour proposed by 
Kanger. Since Kanger himself has tended to shy away from motivational 
discussions in general, I cannot claim that these motivations explain why 
Kanger made his proposals. But nevertheless these motivational arguments 
help us understand some of the advantages of the Kanger formulation over 
more traditional models of choice behaviour. 

Let us first consider the former departure without the second (i.e., back- 
ground-dependence of preference when the background is required to be the 
menu itself). Take the preference relation pS to be dependent on the set S 
from which choice is being made: M(S, pS). This is already a considerable 
departure from the standard model of choice, given by C(S, R) or M(S, P), 
in which the preference relations R and P are taken to be menu-independent 
(and of course, more generally, background-independent). This relaxed re- 
quirement can deal with cases in which the nature of the menu from which 
choice is being made can affect the ranking of alternative elements. The 
reasons for such menu-dependence of rankings can be diverse and they tend 
to be comprehensively ignored in the traditional models of binary choice. 

I present here briefly three quite different--and essentially independent 
reasons for menu-dependence of preference, which I have discussed more 
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extensively elsewhere (Sen 1992). 9 

P o s i t i o n a l  choice: The ranking of alternatives may depend on the po- 
sition of the respective alternatives vis-a-vis the others in the menu. For 
example, when picking a slice of cake from a set of slices, a cake-loving per- 
son who nevertheless does not want to be taken to be greedy may decide 
not to pick the largest slice, but choose instead one that is as large as pos- 
sible subject to its not being the largest, to wit, she may choose the second 
largest slice. 1~ This type of choice would violate binariness and even the 
elementary condition of Property c~ (basic contraction consistency). If, for 
example, three slices of cakes are ranked in decreasing order of size as a over 
b and that over c, then from the menu (a, b, c), the person may pick b, and 
from (b, c) may choose c. 

There is nothing particularly "irrational" in such behaviour, even though 
these choices violate Property c~ and binariness. Similarly, a person may 
decide not to pick the last apple from an after-dinner fruit basket, having 
one of the pears instead, even though she may pick an apple from a larger 
basket containing many apples and many pears. 

E p i s t e m i c  va lue  of t he  menu :  A person may accept the invitation to tea 
from an acquaintance she does not know well, but refuse that invitation to 
tea if the acquaintance were also to invite this person to have some cocaine 
with him. The addition of the latter invitation may give her some extra 
information about him which might make her more skeptical of the idea of 
having tea with him. The menu offered has informational value in ranking 
the individual courses of action. Again, we see here a violation of Property 
c~ and of binariness, but the reasoning is canny enough. 

V a l u a t i o n  of f r eedom:  The freedom a person enjoys depends on the 
nature of the menu open to her. The choice of courses of action may be 
influenced by the extent of freedom. For example, a person may choose to 
read a particular newspaper when she could read any one she chooses (or 
none), and yet decide to protest and read none if she is forced to read that 
particular newspaper and no others. 

Contraction consistency and binariness are violated in all these cases, but 
there is no difficulty in explaining and rationalizing the choices in terms 

9See also Sen (1982, 1992), Elster (1983), Levi (1986), Fine (1990), among others, for 
different types of reasons for menu-independence. 
1~ valuation has been extensively investigated in the context of social choice by 
Ggrdenfors (1973) and Fine and Fine (1974). 
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of "choice based on preference" when the preference relation ps depends 
on the menu from which choice is being made. These and other examples 
have been discussed and scrutinized elsewhere in terms of the particular 
properties of menu-dependent preference pS, but they are covered inter alia 
by the more general case of background-dependent preference py  proposed 
by Stig Kanger. 

Now we can turn to the case in which the background set V need not coin- 
cide with the menu set S. This is a particularly Kanger territory. What can 
be the reason for choosing a background set that is different from the menu 
from which choice is being made? While Kanger himself has not discussed 
the motivational issues in his papers, possible reasons for the additional de- 
parture are not hard to seek. The menu tells us what we can choose from. 
The ranking of the alternatives may depend, however, on the role of the 
chosen alternatives after the choice has been made. 

For example, consider the problem of selecting tennis players to represent a 
country in the Davis Cup--an international tournament. What the selectors 
have to seek are not the best players in the country in terms of playing 
against each other, but the best players in terms of playing against tennis 
players from other nations. Consider a case in which players A and B can 
defeat players C, D, E and F individually and in pairs. That is a good 
reason for declaring them to be champion players within the nation. But it 
is still possible--given differences in the style of playing--that players C and 
D can defeat the Davis Cup team from the United States while the others 
cannot do that, and players E and F can defeat the Davis Cup players from 
Sweden, while the others cannot perform that feat. In that case, in picking 
Davis Cup players, there would be a good argument for picking C and D if 
it looks that this country will have to play against the United States, and 
for picking E and F if it appears that the contest will be against Sweden. 
The ranking relation py  must, thus, take note of the ranking of the domestic 
players not vis-a-vis each other, but of their abilities to play against the likely 
international competitors--the appropriate "background" in this case. 

Similarly, in selecting a poet laureate, the selectors may be guided not just 
by the merits of the likely candidates seen in terms of internal comparisons, 
but by the respective standings and comparative standards of these candi- 
dates vis-a-vis other well-known poets~including dead poets and lyricists 
from other nations. To take another type of example, in making admissions 
decisions, a college may be guided not just by comparisons of the applicants 
against each other seen in purely internal terms, but also by comparing them 
to general categories of students whether or not applicants to this particular 
college. Many other types of examples can be easily presented. 

The common factor in all this is the need for external reference--external 
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to the menu--in comparing the alternatives in the menu. It is that general 
possibility that the Kanger formulation of choice can capture in a neat and 
elegant way by explicitly bringing in the reference to a background set V 
that may or may not coincide with the menu S. 

5. A final r e m a r k  

In this essay I have briefly presented the special features of Stig Kanger's 
model of "choice based on preference". By presenting his formulation in a 
slightly different way, we can see it as an extension of the standard model 
of binary choice in terms of maximal sets with the binary relation of choice 
p y  made dependent on a background set V which may or may not coincide 
with the menu S. The departures, thus, involve three distinct elements: (1) 
use of maximality rather than optimality, (2) admitting menu dependence 
of preference, and (3) admitting dependence of preference on a set different 
from the menu itself. I have discussed the case for each of these departures, 
of which the last is most specific to Kanger's own work. 

I end with a final remark that while Kanger's formulation takes choice 
theory well beyond the limited framework of binary choice as it is standardly 
defined, the primitive notion that Kanger invokes is still a binary relation 
p v  defined in terms of a specified background set. In this sense, Kanger's 
model can be seen as a generalized formulation of binary choice (as he calls 
it, "choice based on preference"). 

One of the implications of Kanger's analysis is the need to rethink on 
the requirements of maximization as the basis of decisions and choice. The 
Kanger framework violates the standard conditions of maximal choice quite 
robustly, but the differences arise not from rejecting any intrinsic feature of 
maximization as such, but from dropping the implicit presumption in the 
standard literature that the preference relation be background independent. 
In effect, Stig Kanger has shown that maximization is a much more general 
discipline than theorists of maximization have tended to assume. That is 
the key to a different world of choice through maximization. 

References  

ARROW K.J. (1959), Rational Choice Functions and Orderings, Economica 26. 
DANIELSSON, S.(1974), Two Papers on Rationality and Group Preference, Uppsala: 

Philosophy Department, Uppsala University. 
DEBREU, G. (1959), Theory of Value, New York: Wiley. 
ELSTER, J. (1983), Sour Grapes, Cambridge: Cambridge University Press. 
FINE, B. (1990), On the Relationship between True Preference and Actual Choice, 

mimeographed, Birkbeck College, London. 



924 

FINE, B. AND FINE, K. (1974), Social Choice and Individual Ranking, Review of Eco- 
nomic Studies, 41. 

G~,RDENFORS, P. (1973), Positional Voting Functions, Theory and Decision 4. 
HANSSON, B. (1968), Choice Structures and Preference Relations, Synthese 18. 
HERZBERGER, H.G. (1973), Ordinal Preference and Rational Choice, Econometrica 41. 
KANGER, SWIG (1970S), Choice Based on Preference, mimeographed, University of Up- 

psala (cited here as Kanger I). 
KANGER, SWIG (1980s), Choice and Modality, mimeographed, University of Uppsala 

(cited here as Kanger II). 
LEVI, I. (1986), Hard Choices, Cambridge: Cambridge University Press. 
PORN, I. et al. (1992), Choices, Actions and Norms. Conceptual Models in Practical 

Philosophy--Scandinavian Contributions, to appear. 
RABINOWICZ, W., AND SLIWINSKI, R. (1991), Introduction, PSrn et al. (1992). 
SAMUELSON, P.A. (1938), A Note on the Pure Theory of Consumers' Behaviour, Eco- 

nomica 5. 
SEN, A.K. (1970), Collective Choice and Social Welfare, San Francisco: Holden-Day; 

republished, Amsterdam: North-Holland, (1979). 
SEN, A.K. (1971), Choice Functions and Revealed Preference, Review of Economic 

Studies 38; reprinted in Sen (1982). 
SEN, A.K. (1982), Choice, Welfare and Measurement, Cambridge, MA: MIT Press, 

and Oxford: Blackwell. 
SEN, A.K. (1992), Internal Consistency of Choice, 1984 Presidential Address to the 

Econometric Society, forthcoming in Econometrica 1993. 
SUZUMURA, K. (1983), Rational Choice, Collective Desicions, and Social Welfare, 

Cambridge: Cambridge University Press. 
UZAWA, H. (1956), A Note on Preference and Axioms of Choice, Annals of the Institute 

of Statistical Mathematics 8. 



Logic, Methodology and Philosophy of Science IX 
D. Prawitz, B. Skyrms and D. Westerst/ihl (Editors) 
�9 1994 Elsevier Science B.V. All rights reserved. 927 

D e B A Y E S I N G  G A M E  T H E O R Y  

KEN BINMORE 

University College London, University of Michigan 

The look before you leap principle is 
preposterous if carried to extremes ... 

Leonard Savage, Foundations of Statistics 

1. Bayes ianism 

Debasing the coinage is a serious offence. DeBayesing game theory would 
be even worse if it meant denying game theorists the use of Bayes' rule. 
How would we make a living if deprived of the most fundamental of the 
tools of our trade? It therefore needs to be explained that  this lecture is 
not an attack on Bayesian decision theory as commonly used in analyzing 
particular games. I am a Bayesian myself in such a context. The paper is 
an attack on Bayesianism, which I take to be the philosophical principle 
that Bayesian methods are always appropriate in all decision problems. I 
want to argue in particular that  Bayesianism is an inappropriate stand- 
point from which to view the foundations of game theory. My own hopes 
for progress on this front depend on importing evolutionary ideas into 
game theory. However, I shall have nothing to say about such alternative 
approaches. 

The ugly word Bayesianismist will be used to describe an adherent 
of the creed of Bayesianism. I freely admit that  few serious researchers 
would react with pride if such a label were pinned on them. But I do not 
think I am merely attacking a straw man. What  matters for this purpose 
is not so much what people say about their philosophical attitudes, but 
what models they choose to construct. As Robert Aumann likes to say of 
game-theoretic concepts in general: By their fruits shall ye know them. 

There is an exception to the rule that  Bayesianism is an underground 
creed. This is provided by the economics profession. For many young 
economists just out of graduate school, it is almost a heresy to argue that  
alternatives to Bayesian decision theory might ever make any sense. The 
defence against charges of heresy is to refer to the scriptures. In the case of 
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Bayesianism, the appropriate text is Savage's. Foundations of Statistics. 
Savage is very clear that  his is a small world theory. 1 Others speak of a 
closed universe, but for reasons that  will emerge, I prefer to refer instead 
to a completable universe. 

Savage makes the distinction between a small and a large world in a 
folksy way by quoting the proverbs "look before you leap" and "cross 
that  bridge when you come to it". You are in a small world if it is feasible 
always to look before you leap. You are in a large world if there are 
some bridges that  you cannot cross before you come to them. As Savage 
comments, when proverbs conflict, it is proverbially true that  there is some 
t ru th  in both. The words of the prophet therefore seem quite clear. Some 
decision situations are best modeled in terms of a completable universe; 
others are not. Savage rejects the idea that  all universes are completable 
as both "ridiculous" and "preposterous". 

My view is that  the foundational problems of game theory are not com- 
pletable universe problems, and hence are not amenable to a Bayesianis- 
mist methodology along the lines proposed by Robert  Aumann [4,5] and 
others. On the contrary, I see one of the major  purposes of studying foun- 
dational questions as being that  of finding appropriate ways of closing the 
universe of discourse so as to legitimize the use of Bayesian methods in 
analyzing particular games. 

I am well aware that  a formal theory of rational decision-making in 
an incompletable universe seems likely to remain as elusive in the near 
future as it always has in the past. To maintain otherwise would be to 
maintain that  the problem of scientific induction is on the point of being 
solved. However, I would prefer to work with a game theory that  has no 
foundations at all, than to operate using foundational principles based on 
a flawed methodology. 

2. Using Savage's theory 

This section reiterates the reasons given in Binmore [10] for rejecting un- 

qualified Bayesianism as naive. Savage's theory is entirely and exclusively 
a consistency theory. It says nothing about how decision-makers come 
to have the beliefs ascribed to them; it asserts only that,  if the decisions 
taken are consistent (in a sense made precise by a list of axioms), then 

1There is room for confusion here for those who are well-read in the scriptures. I do 
not intend when speaking of small worlds to refer to Savage's attempt to explain how a 
small world, which he calls a microcosm in this context, may be embedded in a grand 
world. This attempt does not seem to me to be very successful. I intend the concept of 
a small world to be interpreted in the wider, non-technical sense of the earlier portion 
of his book. 
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they act as though maximizing expected utility relative to a subjective 
probability distribution. Objections to the axiom system can be made, 
although it is no objection when discussing rational behavior to argue, 
along with Allais [1] and numerous others, that  real people often con- 
travene the axioms. People also often get their sums wrong, but this is 
no good reason for advocating a change in the axiomatic foundations of 
arithmetic! In any case, it is not Savage's consistency axioms that  are to 
be attacked here. 

What  is to be denied is that  Savage's passive descriptive theory can 
be reinterpreted as an active prescriptive theory at negligible cost. Ob- 
viously, a reasonable decision-maker will wish to avoid inconsistencies. A 
Bayesianismist therefore assumes that  it is enough to assign prior beliefs to 
a decision-maker and then forget the problem of where beliefs come from. 
Consistency then forces any new data that  may appear to be incorporated 
into the system via Bayesian updating. That  is, a posterior distribution 
is obtained from the prior distribution using Bayes' rule. The naivet4 of 
this approach does not consist in using Bayes' rule, whose validity as a 
piece of algebra is not in question. It lies in supposing that  the problem 
of where the priors came from can be quietly shelved. Some authors even 
explicitly assert that  rationality somehow endows decision-makers with 
priors, and hence that  the problem does not exist at all. 

Savage did argue that  his descriptive theory of rational decision-making 
could be of practical assistance in helping decision-makers form their be- 
liefs, but he did not argue that  the decision-maker's problem was simply 
that  selecting a prior from a limited stock of s tandard distributions with 
little or nothing in the way of soul-searching. His position was rather that  
one comes to a decision problem with a whole set of subjective beliefs 
derived from one's previous experience. This belief system may or may 
not be consistent. In a famous encounter with Allais, Savage himself was 
trapped into expressing inconsistent beliefs about a set of simple decision 
problems. The response he made is very instructive. He used his theory 
to adjust his beliefs until they became consistent. Luce and Raiffa [16, 
p 302] explain the process by means of which such a consistent set of final 
beliefs is obtained as follows: 

Once confronted with inconsistencies, one should, so the argument 
goes, modify one's initial decisions so as to be consistent. Let us 
assume that this jockeying making snap judgments, checking on 
their consistency, modifying them, again checking on consistency, etc 
--  leads ultimately to a bona fide, a priori distribution. 

For Savage therefore, forming beliefs was more than a question of attend- 
ing to gut-feelings. It was a mat ter  for calculation- just as the question 
of whether you or I prefer $17 x 29 to $19 x 23 is a mat ter  for calculation. 
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But why should we wish to adjust our gut-feelings using Savage's metho- 
dology? In particular, why should a rational decision-maker wish to be 
consistent? After all, scientists are not consistent, on the grounds that it 
is not clever to be consistently wrong. When surprised by data that shows 
current theories to be in error, they seek new theories that are inconsistent 
with the old theories. Consistency, from this point of view, is only a virtue 
if the possibility of being surprised can somehow be eliminated. This 
is the reason for distinguishing between incompletable and completable 
universes. Only in the latter is consistency an unqualified virtue. 

One might envisage the process by means of which a decision-maker 
achieves a consistent set of subjective beliefs in a completable universe as 
follows. The decision-maker knows that subjective judgments need to be 
made, but prefers to make such judgments when his information is maxi- 
mal rather than minimal. He therefore asks himself, for every conceivable 
possible course of future events: what would my beliefs be after experienc- 
ing these events? Such an approach automatically discounts the impact 
that new knowledge will have on the basic model that the decision-maker 
uses in determining his beliefs that is, it eliminates the possibility that 
the decision-maker will feel the need to alter his basic model after being 
surprised by a chain of events whose implications he had not previously 
considered. Next comes the question: is this system of contingent be- 
liefs consistent? If not, then the decision-maker may examine the relative 
confidence that he has in the "snap judgments" he has made, and then 
adjust the corresponding beliefs until they are consistent. 2 With Savage's 
definition of consistency, this is equivalent to asserting that the adjusted 
system of contingent beliefs can be deduced, using Bayes' rule, from a 
single prior. 

At the end of the story, the situation is as envisaged by Bayesianismists: 
the final "massaged" posteriors can indeed be formally deduced from a 
final "massaged" prior using Bayes' rule. This conclusion is guaranteed by 
the use of a complex adjustment process that operates until consistency 
is achieved. As far as the massaged beliefs are concerned, Bayes' rule has 
the status of a tautology like 2+2=4. Together with the massaged 
prior, it serves essentially as an indexing system that keeps track of the 
library of massaged posteriors. However, what is certainly false in this 
story, is the Bayesianismist view that one is learning when the massaged 
prior is updated to yield a massaged prior. On the contrary, Bayesian 
updating only takes place after all learning is over. The actual learning 
takes place while the decision-maker is discounting the effect that possible 

2Gs [13] Knowledge in Flux assesses the considerations that will control how 
such adjustments are made. 
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future surprises may have on the basic model that he uses to construct 
his beliefs, and continues as he refines his beliefs during the massaging 
process. Bayesianismists therefore have the cart before the horse. Insofar 
as learning consists of deducing one set of beliefs from another, it is the 
massaged prior that is deduced from the unmassaged posteriors. 

A caveat is necessary before proceeding. When the word "learning" is 
used in the preceding paragraph, it is intended in the sense of "adding 
to one's understanding" rather than simply "observing what happens". 
Obviously, a person with perfect recall will have more facts at his disposal 
at later times than at earlier times, and it is certainly true that there is a 
colloquial sense in which he can be said to "learn" these facts as time goes 
by. However, it seems to me that this colloquial usage takes for granted 
that whoever is "learning" the facts is also sorting and classifying them 
into some sort of orderly system with a view to possibly making use of his 
knowledge in the future. Otherwise it would not seem absurd to say that 
a video camera is "learning" the images it records. In any case, it is not 
the simple recording of facts that is intended when "Bayesian learning" 
is discussed. Any proposal for a rational learning scheme will presumably 
include recording the facts (if the cost of so doing is negligible). What 
distinguishes "Bayesian learning" from its alternatives must therefore be 
something else. 

In spite of this caveat about what I intend when speaking of learning, 
the suggestion that Bayesian updating in a completed universe involves 
no learning at all commonly provokes expressions of incredulity. Is it 
being said that we can only learn when deliberating about the future, and 
never directly from experience? The brief answer is no, but I have learned 
directly from experience that a longer answer is necessary. 

In the first place, the manner in which you and I (and off-duty Bayesian- 
ismists) learn things about the real world is not necessarily relevant to 
the way a Bayesian learns. Still less is it relevant to the way in which a 
Bayesianismist learns when on duty. Experimental evidence offers very 
little evidence in favor of the proposition that we are natural Bayesians of 
any kind. Indeed, what evidence there is seems to suggest that, without 
training, even clever people are quite remarkably inept in dealing with 
simple statistical problems. In my own game theory experiments, no sub- 
ject has ever given a Bayesian answer to the question "Why did you do 
what you did?" when surveyed after the experiment ~ even though, 
in most cases, the populations from which the subjects were drawn con- 
sisted entirely of students who had received training in Bayesian statistics. 
I therefore think introspection is unlikely to be a reliable guide when con- 
sidering what learning for a Bayesian may or may not be. 
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The fact that real people actually learn from experience is therefore not 
relevant to whether Bayesian updating in a completed universe should 
count as genuine learning. The universes about which real people learn are 
almost always incomplete and, even when they are confronted with a com- 
pletable universe, they almost never use Bayesian updating. Of course, 
Bayesian statisticians are an exception to this generalization. They use 
Bayesian updating all the time, but, just like real people, they are almost 
never working in a completed universe. That is to say, they have not asked 
themselves why a knee-jerk adherence to consistency requirements is ap- 
propriate, but simply update from a prior distribution chosen on a priori 
grounds. I do not argue that such a procedure is necessarily nonsensical. 
On the contrary, it often leads to descriptions of the data that provide 
much insight. Nor do I argue that a Bayesian statistician who updates 
from a prior distribution chosen on a priori grounds is not learning. All I 
have to say to such a Bayesian statistician is that I see no grounds for him 
to claim that he is learning optimally, or that his methodology is neces- 
sarily superior to those of classical statistics. 3 The problem of how "best" 
to learn in an incompletable universe is unsolved. Probably it is one of 
those problems that has no definitive solution. But, until the problem of 
scientific induction is solved, any learning procedures that we employ in 
the context of an incompletable universe will necessarily remain arbitrary 
to some extent. 

Recall that we are still not through with the question of whether Bayes- 
ian updating in a completed universe can properly count as learning. So 
far, it has been argued that the fact that real people clearly learn from 
experience is irrelevant to this question. The same is true of Bayesian 
statisticians operating in a universe that is incompletable, or which they 
have not chosen to complete. This leaves us free to focus on what is gen- 
uinely at issue. For this purpose, I want to draw an analogy between how 
a Bayesian using the massaging methodology I have attributed to Savage 
learns, and how a child learns arithmetic. It is true that the Bayesian 
is envisaged as teaching himself, but I do not think this invalidates the 
comparison. 

When a child learns arithmetic at school, his teacher does not know 
what computations life will call upon him to make. Amongst other things, 
she therefore teaches him an algorithm for adding numbers. This algo- 
r i thm requires that the child memorize some addition tables. In particular, 
he must memorize the answer to 2 + 3 = ?. If the teacher is good at her 
job, she will explain why 2 + 3 = 5. If the child is an apt pupil, he will 

3Which is not the same as saying that  there may not be empirical grounds for preferring 

Bayesian methods to classical methods. 
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understand her explanation. One may then reasonably say that the child 
has learned that, should he ever need to compute 2 + 3, then the answer 
will be 5. Now consider the child in his maturi ty trying to complete an 
income tax form. In filling the form, he finds himself faced with the prob- 
lem of computing 2 + 3, and so he writes down the answer 5. Did he just 
learn that the answer to this problem is 5? Obviously not. He learned this 
in school. All that one can reasonably say that he "learned" in filling the 
form is that filling the form requires computing 2 + 3. But such simple 
registering of undigested facts is excluded by the caveat that identifies 
learning with "adding to one's understanding". Of course, there may be 
children who are such poor students that they grow to maturity without 
learning their addition tables. Such a person might perhaps use his fingers 
to reckon with and thereby discover or rediscover that 2 + 3 = 5 while 
filling the tax form. He would then undoubtedly have learned something. 
But he would not be operating in a completed universe within which all 
potential surprises have been predicted and evaluated in advance of their 
occurrence. 

How is it that Bayesianismists succeed in convincing themselves that 
rational learning consists of no more than the trivial algebraic manipula- 
tions required for the use of Bayes' rule? My guess is that their blindness 
is only a symptom of a more serious disease that manifests itself as a 
worship of mathematical formalism. A definition-axiom-theorem-proof 
format is designed to close the mind to irrelevant distractions. But the 
aspects of the learning process that are neglected by Savage's formalism 
are not irrelevant. How decision-makers form and refine their subjective 
judgments really does matter. But the fact that Savage's theory leaves 
these aspects of the learning process utterly umodeled creates a trap into 
which Bayesianismists are only too ready to fall. The trap is to proceed 
as though anything that is not expressed in the formalism to which one 
is accustomed does not exist at all. 

In game theory, however, the question of where beliefs come from cannot 
sensibly be ignored. Bayesianismist decision theory provides an adequate 
account of why we should study equilibria, but fails to make any headway 
at all with the problem of equilibrium selection. Game theorists therefore 
cannot afford to fall victim to Bayesianismist newspeak 4 if they hope to 
break out of the bridgehead they currently occupy. 

4Recall from George Orwell 's 1984 tha t  newspeak is an invented language in which 
politically incorrect s ta tements  cannot be made. 
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3. Bayesianism in game theory 

This section looks very briefly at two approaches to the problem of found- 
ing game theory on Bayesian principles. The second approach, due to 
Robert Aumann [4], hangs together very much better than the first. But 
this is because Aumann's approach does not attempt to do more than jus- 
tify game theorists' obsession with the notion of an equilibrium. However, 
the first approach aims to say things about which equilibrium should be 
selected. 

Harsanyi and Selten's [14] theory is without doubt the best known of 
the avowedly Bayesian approaches to the problem of equilibrium selection. 
However, it is too baroque a theory to lend itself to easy discussion in a 
paper like this. In brief, the notion of a tracing procedure lies at the 
heart of their model. Their procedure seeks to trace the manner in which 
Bayesian players will reason their way to an equilibrium. Other authors 
offer alternative accounts of how such reasoning might proceed. Skyrms 
[20] gives a particularly clean description of how he sees the deliberative 
process operating inside the head of a Bayesian player. 

Skyrms [20] follows Harsanyi and Selten and others in supposing that, 
while deliberating, the players assign interim subjective probabilities to 
the actions available to their opponents. If these subjective probabilities 
are common knowledge, 5 along with the fact that everyone is a maximizer 
of expected utility, then an inconsistency will arise unless the players' 
beliefs happen to be in equilibrium. When such an inconsistency arises, 
the players are assumed to update their subjective probabilities using 
Bayes' rule. Various candidates for the likelihood function can be con- 
sidered (of which Skyrms offers a small sample). However, the modeling 
judgment made at this level is irrelevant to the point I want to make. 

My criticism of this and similar models will be clear. By hypothesis, the 
players have not looked ahead to preview all possible lines of reasoning 
they might find themselves following in the future. They are therefore 
operating in a universe that is definitely incomplete. In such a universe, 
no special justification for the use of Bayesian updating exists. One might 
seek to rescue the special status of Bayesian updating by departing from 
Skyrms' story and postulating that the players have indeed previewed all 
the possible lines of reasoning open to them. But, after the previewing 
is over, there would be no scope for Bayesian updating because no there 
would then be no new information to incorporate into the system when 
the player began to reason for real. In summary, one might say that the 
conditions that justify the use of Bayes' rule in this context are satisfied 

5 As a consequence of the players' duplicating the reasoning processes of their opponents. 
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if and only if there is nothing for Bayes' rule to update. 
One cannot make the same criticism of a recent paper by Kalai and 

Lehrer [15]. They envisage a game being played repeatedly in real time. 
The circumstances under which the repetition takes place need not con- 
cern us. For our purposes, it is enough that the players use Bayes' rule 
to update their beliefs after each repetition, and that Kalai and Lehrer 
give conditions under which there is convergence on a Nash equilibrium. 
What  does such a conclusion mean? It is certainly a very reassuring con- 
sistency result for those like myself who regard Nash equilibrium as the 
basic tool of game theory. But is the result also a contribution to equilib- 
rium selection theory? It is certainly true, as Kalai and Lehrer remark, 
that the limit equilibrium is a function of the players' prior beliefs, 6 but 
it seems to me that much care is necessary in interpreting this piece of 
mathematics. If we take seriously the notion that a players' prior beliefs 
are simply a summary of a set of massaged posterior beliefs, we have to 
abandon the idea that the players in Kalai and Lehrer's model are/earning 
which equilibrium to play as the future unfolds. The players' already knew 
what equilibrium would be played under all possible future contingencies. 
Their initial snap judgements necessarily incorporate preconceptions on 
this subject that the model leaves unexplained. Any learning took place 
during the unmodeled introspection period before the play of the game 
when the players previewed all possible courses the game might take and 
predicted how the game would end up being played after each of these 
possible sets of common experience. 

It should be emphasized that the last thing I wish to do is to criticize 
anyone for seeking to model the process by means of which equilibrium 
is achieved. Indeed, I have contributed to this literature myself (Binmore 
[11]). Far from decrying such work, I believe that the reason game theo- 
rists have made so little progress with the equilibrium selection problem 
is because of their reluctance to confront such questions. I do not even 
object to Bayesian updating being used as a learning rule in this context, 
provided that nobody is claiming any special status for it beyond the fact 
that it possesses some pleasant mathematical properties. However, other 
learning rules also have virtues, and the decision to use Bayes' rule in the 
context of an incomplete universe is no less ad hoc than the decision to use 
one of the rival rules. My own preferred research strategy on this subject 
is not to make any a priori choice at all of a learning rule, but to let one 
emerge endogenously as a consequence of the operation of evolutionary 
pressures. However, this is an approach fraught with many difficulties. 

6In general, the limit equilibrium will also depend on random events that occur during 
play. 
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Aumann 's  [4,5] a t tempt  to provide Bayesian foundations for game the- 
ory is very different in character from the work discussed so far in this 
section. Nobody learns anything or even decides anything in his very 
static model. Things are "just the way they are", and we are offered the 
role of a passive observer who sits on the sidelines soliloquizing on the 
nature of things. Such a model is not well-adapted to the equilibrium 
selection problem. Its purpose is to clarify what kinds of equilibria should 
lie in the set from which a selection needs to be made. 

In brief, Aumannn postulates a universe of discourse whose states are 
all-inclusive. A description of such a state includes not only what play- 
ers know and believe about the world and the knowledge and beliefs of 
other players, but also what all the players will do in that  state. In such 
a framework, it becomes almost tautological that  players whom fate has 
decreed will be Bayesian-rational in every state will necessarily operate 
some kind of equilibrium. Aumann then notes that ,  if what the play- 
ers know always includes what strategy they find themselves using, then 
they will necessarily be frozen into what he calls a "subjective correlated 
equilibrium" .7 

The preceding paragraph is a sorry excuse for an assessment of how 
Aumann proceeds. A longer and more detailed account appears in Bin- 
more [8]. However, what has been said is perhaps enough to make it clear 
that  Aumann 's  universe is definitely not a small world. Indeed, his uni- 
verse is as large as a universe could possibly be, since its states encompass 
everything that  matters.  However, Aumann evades the traps that  await 
the Bayesianismist by refusing to classify his theory either as descriptive 
or as prescriptive. He describes his model as "analytic" to indicate that  
all the action takes place in the head of an otherwise passive observer. 
The model certainly cannot be prescriptive because there is no point in 
offering advice to players who "just do what they happen to do" and "be- 
lieve what they happen to believe". Nor can the model be descriptive of 
a world in which people make conscious choices after transferring their 
experience into subjective judgments about the way things are. However, 
it seems to me that  the latter is precisely the kind of world with which 
game theory needs to grapple. 

I want to argue now that  such a world is necessarily large in Savage's 
sense. The case for this is even stronger than the s tandard claim that  the 
universe within which physics is discussed is incompletable. Or, to say 
the same thing more flamboyantly, inner space is necessarily even more 

7This is not such an innocent assumption as it may appear. When the players are mod- 
eled as self-correcting computing machines, it becomes more than a little problematic 
(Binmore [10]). 
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mysterious than outer space. The reason is that ,  if the thinking processes 
of a player are to be modeled, then we are no longer free to envisage 
that  all possible mental  processes have been completed. A player cannot 
exhaustively evaluate all contingencies in a universe tha t  includes his own 
internal deliberations and those of other players like himself. The issue is 
more fundamental  than  whether  Bayesianism is applicable or not, since 
one cannot even rely on the epistimology tha t  Bayesianismists take for 
granted. 

Bayesians usually work with possibility sets s in specifying what  a person 
knows. The possibility set P(co) consists of the set of all states tha t  the 
decision-maker thinks possible when the true state is co. Equivalently, it is 
the event tha t  he perceives in state co. But suppose tha t  we model players 
as Turing machines 9 i.e. as programs tha t  run on computers  which 
have no storage constraints.  Then we have to take on board the fact tha t  
possibility questions must be settled algorithmically. 

To explore this issue, imagine that ,  for each all-inclusive state co, pos- 
sibility questions are resolved by a Turing machine S = S(co) tha t  some- 
times answers NO to questions tha t  begin: Is it possible t h a t . . .  ? Unless 
the answer is NO, possibility is conceded. (Timing issues are neglected.) 

Consider a specific question concerning the Turing machine N.  Let the 
computer  code for this question be IN].  Let [MJ be the computer  code 
for the question: Is it possible that M will answer NO to [M] ? Finally, let 
T be a Turing machine that  outputs  [ , j  when its input is Ix]. Then the 
program R = ST  tha t  consists of first operat ing T and then operat ing S, 
responds to [M] as o e responds to [MJ. 

Suppose that  R responds to [R] with NO. Then S reports  tha t  it is 
impossible tha t  R responds to [R] with NO. If what  I know is true, it 
must therefore be that  R never responds to JR] with NO. But,  if we as 
observers know this, why don ' t  we replace S with a bet ter  program: one 
that  accurately reflects our knowledge? Either  our algori thm for deter- 
mining what  is possible is "incomplete" in tha t  it allows as possible events 
we know to be false, or it is "inconsistent" in tha t  it rejects as impossible 
events we know to be true. 

This echoing of GSdel is no accident. The halt ing problem for Turing 
machines, from which the preceding example is adapted,  is closely related 

SGame theorists refer to an elaboration of the idea of a possibility set as an information 
set (Binmore [9]). 
9The Church-Turing hypothesis asserts that any formal calculation possible for a hu- 
man mathematician can be aped by a Turing machine. Penrose [17] bravely puts the 
case for humans being able to transcend the limitations of such machines. Those who 
are consitutionally inclined to this view should read his book to find out what they are 
letting themselves in for in the way of assumptions about how the human mind works. 



938 

to part of Ghdel's reasoning. Note, in particular, the self-reference in- 
volved in asking a machine how it will respond to a question about how 
it responds to questions. 

If the implications of taking an algorithmic view of knowledge acquisi- 
tion are taken seriously, then the consequences for Bayesian epistomology 
run very deep. Binmore and Shin [6] give some (not very profound) argu- 
ments why the modal logic ($5) that characterizes knowledge for Bayesians 
would need to be replaced by the modal logic (G) that Solovay [21] showed 
to represent the "provable principles of provability" in Peano Arithmetic. 
(See also Shin [19] and Artemov [3].) 

One escape from such difficulties is to abandon the requirement that 
states be all-inclusive, so that self-referential questions that trouble knowl- 
edge algorithms can be disbarred. That is, one can seek to complete the 
universe of discourse. But self-reference is intrinsic to game theory, which 
is about chains of reasoning that go, "If I think that he thinks that I think 
. . .  ". Papers that exploit the self-referential difficulties that arise in this 
specific context are Binmore [10], Anderlini [2] and Canning [12]. 

Anderlini offers a particularly insightful observation for those Bayesians 
who like to argue that "game theory is based on the assumption that it is 
common knowledge that the players are rational". Such observations are 
thrown into the ring with no thought as to the nature of the universe of 
discourse. We are not even told what sort of entity a player is. 1~ However, 
if a player is a Turing machine and "rationality" is defined in a natural way, 
Anderlini notes that the latter is not an effectively computable concept. 
That is, one can know every instruction in the computer program of the 
opponent and still not be able to tell whether the opponent is "rational". 

4. Mode l ing  players  

In this section the need for modeling the players in game theory will be 
taken for granted. Some reasons are given in Binmore [7,8], but perhaps 
the most persuasive reason is the manner in which game theorists of all 
stripes have been driven, almost in spite of themselves, to the study of 
"bounded rationality". 

Once a player has been modeled, one can say things about his com- 
plexity. In particular, one can compare his complexity to that of his 
environment. One might summarize this lecture so far by saying that, if 
his environment is sufficiently complex compared with the complexity of 

1~ the definition of a player may be, it must certainly be rich enough in 
structure to admit the possibility of a player being irrational. Otherwise the statement 
would be empty. 
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his mental apparatus, then a Bayesianismist view of his predicament is 
untenable. 

I do not have any Ism to offer as an alternative to Bayesianism for 
decision-making in incompletable universes. I want only to make a plea 
for the issue to be returned to the research agenda from which it was dis- 
placed by the triumph of Bayesianism in the economics profession. It is 
worth noting that those who knew and worked with Savage in the fifties 
were under no illusions about the importance of the problem. Luce and 
Raiffa [16], for example, list a number of systems for making decisions 
"under complete ignorance" in which the incompleteness of the universe 
of discourse is explicitly acknowledged. The existence of such systems in- 
dicates that the problem of decision-making in an incompletable universe 
is not a featureless desert about which one can hope to say nothing at all. 
I do not feel able to endorse any of these systems, since they all appeal 
to axioms that I find it hard to evaluate in the abstract. Instead, I plan 
to describe some simple structural observations that seem to me to follow 
from little more than the requirement that a decision-maker be modeled 
as a computing machine. 

4.1 A bel ief  m a c h i n e  

Let us simplify the problem to be considered by allowing only two conse- 
quences, winning and losing. Which of these will occur depends on some 
process about which the decision-maker is only partially informed. A Tur- 
ing machine M will be used to model the manner in which the decision- 
maker evaluates his partial information. The input to M is therefore the 
data D available to the decison-maker about the unknown process. Since 
this lecture is a piece of rhetoric directed at Bayesianismists who believe 
that all ignorance can and should be quantified using subjective probabil- 
ities, let us restrict the output of the machine M to probabilistic state- 
ments. More specially, imagine that the machine M has k output devices 
H1, H2 , . . .  Hk, each of which corresponds one of the intervals I 1 , / 2 , . . . I k  
in a partition of [0, 1]. Each output device may or may not eventually 
type NO. When the output device Hj types NO, the understanding is that 
this answers the question: Is it possible that the notional probability 7r 
of winning lies in the interval Ij ? It must be remembered that nothing 
guarantees that a Turing machine will stop calculating at all. 

We presumably wish to exclude the possibility that all output devices 
will eventually print NO. But, if we are to take incompletable universes 
seriously, it must be recognized that we cannot simultaneously insist that 
only one output device will fail to output NO. If the set of admissible 
inputs D is not artificially restricted, then sometimes M will calculate 
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forever without  succeeding in tying ~r down to a single interval 5.11 

4.2 Upper and lower probabilities 

Such considerations lead very natural ly  to the notion of upper  and lower 

probabili t ies with which many decision-theorists have toyed. All tha t  is 

needed, in addit ion to what  has already been assumed, is the assumpt ion  
tha t  the subset S of [0, 1] tha t  remains after all the intervals Ij tha t  are 
going to be excluded have been excluded should necessarily be convex. 

One may then argue tha t  all tha t  is known about  the notional probabil i ty 
zr is tha t  it lies between the upper  and lower limits of the interval S. 
The idea of a probabil i ty ~- therefore has necessarily to be supplemented 
by allowing intervals [Tr, ~] in which ~ is an upper probability and 7r is a 
lower probability. 12 

No-nonsense subjectivists  like to debunk their critics by insisting tha t  

the critics compare bets on events to which the critics are reluctant  to as- 

sign subjective probabilit ies with bets on events for which the appropr ia te  

probabili t ies are uncontroversial.  In the case of a decision-maker who uses 
the machine M,  they would therefore seek two si tuations between which 
the decision-maker is indifferent one in which M outputs  7r and one in 
which M outputs  IT r, K]. However, even if the decision-maker expresses 
such an indifference, it does not follow tha t  he is saying tha t  he regards 
the output  [~-, K] from M as being equivalent to the output  zr. He will be 
expressing a preference not a belies It is t rue that ,  with Savage's consis- 
tency axioms, these ideas merge. But  Savage's consistency axioms are not 
designed for application in an incompletable universe, and it is therefore 
no longer possible to take for granted tha t  a person's  von Neumann  and 
Morgenstern utility for a process tha t  can lead only to winning or losing 
may be identified with the person's  subjective probability of winning. 

Von Neumann  and Morgenstern utilities are mentioned because there 

seems no par t icular  reason why one should not ask tha t  the preferences 

a decision-maker has over lotteries in which the prizes are objects of the 
form IT r, K] should not satisfy the von Neumann  and Morgenstern ratio- 

nali ty axioms. If so, it will make sense to speak of the von Neumann  and 

l lOne might argue that the decision-maker might be able to tie things down further if 
he were allowed to examine a transcript of the calculations made by M. But the ground 
rules are that any such examination would need to be expressible algorithmically. We 
could then construct a Turing machine that does the same thing as the decision-maker 
and run this along with M. We would then be making our judgments with a Turing 
machine again, albeit a larger Turing machine than M. 
12I am ignoring two issues. The first is that only approximations to probabilities can 
emerge from such a procedure. The second is that one cannot wait for ever to learn 
for sure which output devices are going to fail to print NO. 
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Morgenstern utility u[~_,#] of a process. One will presumably wish to 
insist that 

< < 

and to normalize so that u[p,p] = p, but it is not clear what further 
rationality requirements are appropriate. One possibility is to ask that 
the decision-maker evaluates # and 7r "separately". x3 An argument of 
Keeney and Raiffa then shows that u[_~,#] must take one of the two 
forms:  

+ • 

Thus, for example, it could be that 

+ - 

where a _> 0, ~/_> 0 and a + / 3 -  1. 

4.3 U p d a t i n g  u p p e r  a n d  lower p robab i l i t i e s  

Consider now three processes with respective data D1, D2 and D3. Let 
D3 be the process in which the decision-maker wins if and only if he wins 
in both D1 and D2. It is then natural to say that D1 and D2 should 
be regarded as independent processes if ~-3 - ~-1~-2 and ~3 - 7rlTr2. One 
can then deal with conditioning by writing D2[D1 instead of D2. It then 
seems that, although we may not be able to assign probabilities to all 
events in an incompletable universe, nevertheless Bayes' rule is still with 
us as the appropriate method for updating upper and lower probabilities. 

I think this conclusion is correct, provided that one is not naive about 
the circumstances in which the procedure is used. In reaching the conclu- 
sion that upper and lower probabilities should be updated using Bayes' 
rule, I implicitly made use of consistency assumptions. However, earlier 
in the lecture, it was argued that such consistency assumptions only make 
good sense in a completable universe. If upper and lower probabilities 
are to be updated by Bayes' rule, we therefore need to be able to argue 
that the relevant universe for this particular operation is completable. 
Among other things, we need to be confident that the machine M would 
not respond differently to the input D1 after being asked to evaluate 
D21D1 than it did before. If the machine were to operate like a human 
decision-maker following Savage's methodology, this would be assured if 
the machine's massaging activities while originally assessing the data D1 

13This requires, for example, that [~,  ~] ~ [Tr,~] r [q,~] -4 [q,~] whenever the 
u 

expressions are meaningful. Not only this, the relationship must survive when lotteries 
are taken over ~ and ~. Moreover, everything must be the same when it is the second 
argument that  is held constant in comparisons rather than the first. 
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were sufficiently wide ranging as to include the possibility that it might 
later be offered the data D21D1. However, in an incompletable universe, 
it will not be possible for the machine to anticipate what the effect of 
all possible future data will be on the manner in which it processes data. 
Like ourselves, the machine will not only learn, it will learn how to learn 
as it gathers experience, and it is impossible for the machine to predict 
how it might possibly reprogram itself under all future contingencies. 

U p p e r  and  lower probabi l i t i es  in games?  

It is necessary to round off this section be indicating how the ideas it 
presents would work in a game-theoretic setting. I hope, however, that 
what comes next will not be regarded as an attempt to construct a new 
theory of games. It is merely a piece of rhetoric whose aim is to discomfort 
Bayesianismists by bringing to their attention what they would have to 
believe if they genuinely sought to implement their ideas algorithmically. 

Figure 1 shows a payoff matrix for a version of a well-known "toy" game 
called the Battle of the Sexes. It comes with a silly story about a husband 
(player I) and a wife (player II) who did not agree at breakfast whether 
to go to a boxing match or a ballet performance in the evening. Later in 
the day they get separated and hence have to make the decision of where 
to go in the evening independently. 

Boxing 

Player II 

Boxin Ballet 
1 -1 

Player I 2 -1 
-1 2 

Ballet 

-1 1 

Figure 1: The Battle of the sexes game. 

According to a traditional analysis, the game has three Nash equilib- 
ria. 14 There are two Nash equilibria in pure strategies: namely (Boxing, 
Boxing) and (Ballet, Ballet). However, unless some way can be found 
to break the symmetry, neither can be the "solution" of the game, since 
any argument in favor of one of the pure strategy equilibria is equally an 
argument in favor of the other. The third Nash equilibrium calls for both 

14In a Nash equilibrium, each player's strategy choice is optimal given the strategy 
choices made by the other players. 
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players to use mixed strategies. That  is, each player randomizes over his 
or her pure strategies. To be precise, the husband and wife each choose 

3 2 However, boxing independently with respective probabilities g and g. 
this third Nash equilibrium is not a very attractive candidate for the "so- 
lution" of the game, because each player's solution payoff would then be 
no more than his or her security level. 15 

However, we perhaps ought to ask ourselves whether we have really 
exhausted all the Nash equilibria. Is it not possible, for example, that  the 
wife might employ a decision process in deciding what action to take whose 
data, when taken as input for the husband's assessment machine, leads 
it to produce the output [K2,~2] when questioned about the notional 
probability with which she will use Boxing? 

To simplify the situation, imagine that  the husband's ultimate aim is 
to win a prize, and the wife's is to win a second and separate prize. One 
may then take the entries in the payoff matrix of Figure 1 to be the 
probabilities with which the players will win their respective prizes for 
each the four possible pure strategy combinations. If player I now uses a 
decision process with data D1 and player II independently uses a decision 
process with data D2, then we can symbolically represent the process that  
decides whether player I wins his ultimate prize as 

(D1 A D2) V (-'D1 A -D2 A D) ,  

where D is the data for a process, independent of D1 and D2, that  is 
assessed at 2. If we make Bayesian assumptions about how such combi- 
nations of processes should be manipulated, the husband's machine will 
assess the combination as 

2 2 
[Klrr 2 + ~(1 - ~1)(1 - g2) ,g1~2 + ~(1 - ~1)(1 - ~2)]. 

To proceed further it is necessary to make assumptions about the utility 
functions with which the players evaluate such assessments. I want only 
to observe that  if both players have utility functions defined by 

- �89  

then the Battle of the Sexes not only has Nash equilibria other than those 
traditionally considered, it has Nash equilibria that  generate payoffs for 

15player I's security level is his expected payoff if he acts on the assumption his op- 
ponent will guess his choice of mixed strategy in advance and respond by choosing a 
strategy herself that minimizes his payoff. 
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1 the  players  get  w h e n  the  t r a d i t i o n a l  b o t h  players  t h a t  are b e t t e r  t h a n  the  

m i x e d  equ i l i b r ium is used.. 

5. Summary 

This lecture has been an attack on Bayesianism, which I see as a meta- 
physical doctrine that hinders advances in the foundations of game theory. 
The lecture began with an appeal to the authority of Savage. It continued 
with an a t tempt  to explain how it can be shown that certain universes 
of discourse cannot  be completable in the sense required to legitimize a 
Bayesianismist methodology. It concluded with a brief discussion of some 
of the implications of looking seriously at the idea that decision-making 
should be described in terms of algorithms. 
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V O N  N E U M A N N - M O R G E N S T E R N  U T I L I T I E S  

J O H N  C. HARSANYI  
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1. T h e  p r o b l e m  

Payoffs in game theory are usually expressed in yon Neumann-Morgen-  
stern (vNM) utilities. Yet, there is a lot of exper imenta l  evidence tha t  

people's behavior often fails to conform to the vNM axioms. This em- 
pirical fact is par t  of the more general observation tha t  people do not 

consistently follow any one of the rat ional i ty  requirements  of economic 
theory, and deviate even from such very basic ones as extensionali ty~and 
t ransi t ivi ty  (see Tversky and Kahneman,  1981; Arrow, 1982; and Schoe- 
maker,  1982). 

The observed deviations from the vNM axioms pose two different prob- 
lems. One concerns the predictive value of these axioms and of economic 
models based on these axioms. The other concerns their  normative valid- 
ity as ra t ional i ty  requirements.  In this paper  I shall restrict  my discussion 
to this la t ter  problem. These are two different problems. For even if we 
decided tha t  the vNM axioms had full normat ive  validity, we should not 
be surprised if na tura l  selection failed to provide us with an instinctive 

ability to make rat ional  and efficient choices between often quite com- 

plicated lotteries in accordance with the vNM axioms, since our animal  

and early human  ancestors were never confronted with such problems, 

and obviously did not suffer any evolutionary disadvantage by lacking the 
instinctive ability to make such choices in a proficient manner .  Nobody 

1 I shall follow Arrow (1982) in describing as extensionMity the requirement that peo- 
ple's choices between two alternatives should not depend on the way these are described 
to them as long as these descriptions are logically clearly equivalent. As we all know, 
in actual fact people do not satisfy this requirement. For instance, their willingness to 
undergo an operation may be quite different if they are told that this operation has a 
survival rate of 95 per cent than if they are told that it has a fatality rate of 5 per cent. 
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doubts the normative validity of arithmetic, yet most children cannot solve 
arithmetic problems of any complexity without special training. 

I shall argue that the vNM axioms do have full normative validity as 
rationality axioms but that this is true only under some very specific 
motivational assumptions. 

2. N o t a t i o n s  

I shall distinguish between pure and mixed alternatives depending on 
whether they do, or do not, include risk and/or  uncertainty. Pure alter- 
natives will be regarded as degenerate special cases of mixed alternatives. 
I shall use also the term lotteries to describe mixed alternatives. 

Strict preference, equivalence and nonstrict preference will be denoted 
as ~ - ,~  , and ..~>- , respectively. 

Let L be a lottery yielding alternative Ak if event ek occurs, with k = 
1 , . . .  , n. Then I shall write 

(1) L - - ( A l [ e l ; . . . ; A n [ e n ) .  

The alternatives Ak will also be called prizes or outcomes. The events ek 
will be called conditioning events. It will be assumed that these events 
are mutually exclusive and exhaust all possibilities. 

Suppose the decision maker knows the objective probabilities p l , . . .  , pn 
associated with the events e l , . . . ,  en. Then I shall write 

(2) L + ( A I , p l ; . . .  ;An,pn) 

and shall call L a risky lottery. Of course, all these probabilities must 
be non-negative and must add up to unity. On the other hand, a lottery 
will be called an uncertain lottery if it is not a risky lottery under this 
definition. 

3. A s impli f ied a n d  gene ra l i zed  ve rs ion  of t h e  von  N e u m a n n -  
M o r g e n s t e r n  ax ioms  

Von Neumann and Morgenstern's (1947) theory was restricted to the case 
where all probabilities were objective probabilities known to the decision 
maker, i.e., to the case of r/sky lotteries. But most economists use Sav- 
age's (1954) theory that employs only subjective probabilities (which he 
called personal probabilities). Therefore, it does cover also the general 
case where objective probabilities may be unknown or may be even un- 
defined. Anscombe and Aumann (1963) proposed still another theory, 
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likewise covering the general case, but using much simpler axioms. Their 
theory, however, has to use both objective and subjective probabilities. 
(But all the objective probabilities they need may be generated by one 
random device whose statistical behavior is known to the decision maker.) 

What  makes the vNM axioms rather complicated is the fact that some 
of them simply restate certain propositions of probability theory. In order 
to simplify my axioms and in order to make it clear what the logical 
status of each axiom is - -  I have separated my four rationality postulates, 
to be called simply axioms, from my two background assumptions, whose 
only purpose is to enable us to use the theorems of the Propositional 
Calculus and of the Probability Calculus in any mathematical proof. My 
two background assumptions are: 

ASSUMPTION I. The conditional statements defining a lottery [as stated 
in the sentence preceding (1)] follow the laws of the Propositional Calculus. 

ASSUMPTION II. The objective probabilities defining a risky lottery [as 
in (2)] follow the laws of the Probability Calculus. 

I need Assumption I because I want to use Anscombe and Aumann's 
"Reversal of order" postulate without making it into a separate axiom. 
Their postulate assumes that their "roulette lottery" and their "horse 
lottery" will be conducted consecutively but that it makes no difference 
if their time order is reversed. But we can just as well assume that the 
two lotteries will be conducted simultaneously. Once this assumption is 
made, their postulate becomes a corollary of a well-known theorem of the 
Propositional Calculus. If we write p ~ q for the statement "If p then 
q", and write = for logical equivalence, then the relevant theorem can be 
written as 

(3) p -~ (q -~ r) = q -~ (p -~ r ) .  

I need Assumption II because, in order to compute the final probability 
of each outcome in a two-stage lottery, I want to use the addition and 
the multiplication laws of the Probability Calculus, without making them 
into separate axioms. 

I also need the following four rationality axioms. 

AXIOM 1 (COMPLETE PREORDERING). The relation ~ (non-strict pref- 
erence) is a complete preordering over the set of all lotteries. (That is to 
say, ~ is both transitive and complete.) 

AXIOM 2 CONTINUITY). Suppose that A ~- B ~- C. Then there exists 
some probability mixture 

(4) L(p) = (A, p; C, 1 - p) 
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of A and C with 0 _ p _< 1 such that  B ~ L(p). 

AXIOM 3 (MONOTONITY IN PRIZES). Suppose that  A* k ~ Ak for k - 
1 , . . . , n .  Then also L* ~ L, where 

(5) L* - (A~ [e l ; . . .  ;A~[ en) and L - (A1 [e l ; . . .  ;Anl en). 

(This axiom is a version of the sure-thing principle.) 

AXIOM 4 (PROBABILISTIC EQUIVALENCE). Let Prob denote objective 
probability. Define the lotteries L and L' as 

(6) L - (A1 [e l ; . . .  ;An[ en) and L ' -  (A1 If1; . . .  ;Anl fn) .  

Suppose the decision maker knows that  

(7) Prob (ek) -- Prob (fk) for k -- 1 , . . . , n .  

Then, for this decision maker, we must have 

(8) L ~ L'. 

In other words, a rational decision maker will be indifferent between two 
lotteries yielding the same prizes, and yielding each prize with the same 
objective probability regardless of the physical mechanisms the two 
lotteries use to generate these probabilities. In particular, he or she 2 must 
be indifferent between a one-stage and a two-stage lottery yielding the 
same prizes with the same probabilities. 

We can now state the following theorem. 

THEOREM. Given Assumptions I and H, an individual i whose preferences 
satisfy Axioms I to 4 will have a utility function Ui that equates the utility 
Ui (L) of any lottery L to the expected utility of this lottery so that 

n 

(9) Ui(L) - ~ p k U i  (Ak), 
kl 

where P l , . . .  , Pn are either the objective probabilities of the conditioning 
events e l , . . . ,  en known to the decision maker, or are his own subjective 
probabilities for these events. 

If a utility function Ui satisfies (9) then it is said to possess the expected- 
utility property, and is called a yon Neumann-Morgenstern utility func- 
tion. Given Assumption II, our axioms are equivalent to the vNM axioms, 

2 In what follows, for stylistic reasons, in similar phrases I shall omit the female 
pronoun. 
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which means that  they can be used to prove the above theorem for risky 
lotteries. On the other hand, as Anscombe and Aumann have shown, we 
can extend the theorem to all lotteries by using our axioms, after adding as 
new axioms the theorem itself, restricted to risky lotteries, and Anscombe 
and Aumann 's  "reversal of order" postulate, derived from equation (3) by 
means of Assumption I (as explained above). 

In view of the above theorem, we can now extend the notation used in 
(2) also to uncertain lotteries if we reinterpret the probabilities p l , . . .  , pn 
as the decision maker 's  subjective probabilities for the conditioning events 

e l ~ . . .  ~en. 

It is easy to verify that  the converse of the theorem is likewise true: If a 
person's choices among lotteries consistently maximize the expected value 
of some utility function then his behavior will satisfy Axioms 1 to 4. 

4. N e e d  for an  o u t c o m e - o r i e n t e d  a t t i t u d e  

I shall now consider the normative validity of our four axioms as rationality 
requirements. To start  with axiom 1 (complete preordering), this is a 
rationality axiom used in all parts of economic theory. Its normative 
validity is rather uncontroversial. 3 

On the other hand, Axiom 2 (continuity) is basically a regularity as- 
sumption, rather than a rationality requirement. Even in the absence 
of Axiom 2, we can show the existence of a utility indicator with the 
expected-utility property by using our other three axioms. But this util- 
ity indicator will not be a real-valued (scalar-valued) utility function, but 
rather  will be a utility vector with two or more lexicographically ordered 
components (see Hausner, 1954). We need a continuity axiom (like Ax- 
iom 2) only to ensure the existence of a scalar-valued utility function. 

Thus, the real question is how much normative validity our axioms 
3 and 4 have. To answer this question, I propose to divide the utilities 
associated with choices involving risk and/or  uncertainty into outcome 
utilities and process utilities. The former are the (positive and negative) 
utilities the chooser derives from the various possible outcomes (or prizes) 
of each lottery. The latter  are the (positive and negative) utilities he 
derives from his psychological experiences before, during, and after the act 
of gambling itself. These experiences include the nervous tension produced 
by gambling; the joy of winning and the sorrow of losing; the pride or the 
regret of having made what has turned out to be the right choice or the 

3 Yet, we know from experimental studies that, in choices of some complexity, people's 
behavior often fails to conform to this axiom (mainly because they make intransitive 
choices; but see May, 1954, for an interesting discussion). 
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wrong choice; the favorable or unfavorable reactions by other people to 
the final outcome and to the decision maker's purported responsibility for 
this outcome; and so on. 

When people gamble for entertainment, they tend to do so both in the 
hope of winning valuable prizes and also in the hope of having a good 
time, which means that they are guided both by their outcome utilities 
and by their process utilities. But this may not be true when the stakes 
are very high, or when the participants are business executives or political 
leaders gambling with other people's money (or even with other people's 
lives). In such cases, the decision makers will have very good reasons, 
based both on self-interest and on moral considerations, to concentrate 
on trying to achieve the best possible outcomes both for themselves and 
for their constituents, without being diverted from this objective by the 
pleasant or unpleasant subjective experiences they derive from the process 
of gambling itself. 

This suggests the following definition. I shall say that a decision maker 
takes a strictly outcome-oriented attitude if he is guided solely by his 
outcome utilities, i.e., by the utilities he assigns to the various possible 
outcomes of each lottery, and by his outcome probabilities, i.e., by the 
probabilities he associates with these outcomes. I shall argue that our 
Axioms 3 and 4 are perfectly valid normative rationality requirements 
for decision makers with strictly outcome-oriented attitudes but are not 
valid rationality requirements for other decision makers, who are wholly 
or partly guided by their process utilities derived from the process of 
gambling itself. 

Let me first discuss Axiom 4 (probabilistic equivalence). As we have 
seen, this axiom implies that a rational decision maker will be indiffer- 
ent between a one-stage and a two-stage lottery if both yield the same 
prizes with the same probabilities. Since, by definition, a strictly outcome- 
oriented person will be interested only in the possible outcomes and their 
probabilities, and these two pieces of information will be the same for both 
lotteries, he will have to be indifferent between the latter, as required by 
our axiom. 

On the other hand, Axiom 4 is not a valid rationality requirement for 
a person guided wholly or partly by his process utilities derived from the 
process of gambling itself. For a one-stage and a two-stage lottery may 
generate very different psychological experiences and therefore also very 
different process utilities, even if they both yield the same possible prizes 
with the same probabilities. For instance, a one-stage lottery will give 
rise only to one period of nervous tension whereas a two-stage lottery will 
give rise to two such periods. As a result, other things being equal, among 
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people who give some weight to their process utilities, some will tend to 
prefer one-stage lotteries because they derive higher process utilities from 
them, while others will tend to prefer two-stage lotteries because they 
derive higher process utilities from the latter. In both cases, this will be 
a rational preference even though it will violate our Axiom 4. 

Similar considerations apply to our Axiom 3 (monotonity in prizes). 
The axiom considers two lotteries L and L*. Lottery L* is obtained by 
replacing each prize Ak of L by a prize A* k at least as desirable as Ak 
itself from the decision maker's point of view. The axiom asserts that, 
under these assumptions, the decision maker will find the new lottery L* 
itself also at least as desirable as the original lottery L was. The reason 
is that participation in lottery L* will always yield the decision maker 
an outcome as good as or better than participation in lottery L would 
have yielded him. As this argument is based on comparing the possible 
outcomes of lottery L* with those of lottery L, it shows that Axiom 3 is in 
fact a valid rationality requirement for any decision maker with a strictly 
outcome-oriented attitude. 

Yet, it is not a valid rationality requirement for a person wholly or partly 
guided by his process utilities. To verify this, let me assume that the prizes 
a l , . . .  , A~ of lottery L are pure alternatives whereas the prizes A~, . . .  , A~ 
are themselves lotteries (lottery tickets). Under this assumption, L will 
be always a one-stage lottery because it will end as soon as one of its 
possible prizes, say, Ak, has been selected as outcome. In contrast, L* 
will be a two-stage lottery, where at stage 1 one of the prizes A~ will be 
selected whereas at stage 2 the outcome of the lottery A~ itself will be 
decided. This means that a person who derives higher process utilities 
from one-stage than from two-stage lotteries may actually prefer L to L*, 
even though he prefers the prizes of the latter to the corresponding prizes 
of the former and this may be a perfectly rational preference from 
his point of view. In other words, a person who gives some weight to 
his process utilities may reasonably assign a different utility to a lottery 
A~ when it is embedded in a larger lottery L* than when it is not so 
embedded. 

5. Von N e u m a n n - M o r g e n s t e r n  utility functions,  ou tcome  utili- 
ties, and process utilities 

As we have seen, only people with a strictly outcome-oriented atti tude 
will act consistently in accordance with the vNM axioms. By definition, 
these will be people guided only by their outcome utilities (and by the 
probabilities they assign to various outcomes) but paying no attention to 
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their process utilities. Yet, by the Theorem and its converse, both stated 
in section 3, only people with these characteristics will have vNM utility 
functions. This in turn implies that a person's vNM utility function, if he 
has any, can express only his outcome utilities and cannot but disregard 
his process utilities, which will have no influence on his choice behavior. 

An even simpler way of verifying this is by inspection of equation (9) 
in section 3, which defined the utility Ui(L) of a lottery L solely in terms 
of its outcome utilities Ui (Ak) and the outcome probabilities Pk, without 
reference to any process utilities. 

Let me add that yon Neumann and Morgenstern (1947, esp. pp. 28 and 
632) were perfectly aware of the fact that their axioms excluded what they 
called the "utility of gambling", and what I am calling "process utilities". 
But they apparently felt that exclusion of these utilities was simply a 
shortcoming of their theory, one to be removed eventually by devising a 
set of more powerful axioms. Of course, a formal theory covering also 
process utilities would be an important advance. Yet, in my own view, 
even though von Neumann and Morgenstern's original theory does not 
cover process utilities, it is an analytically very valuable theory because 
the vNM utility functions defined by it have very attractive mathematical 
properties, including that of being cardinal utility functions (see section 7 
below). 

6. Von N e u m a n n - M o r g e n s t e r n  ut i l i ty  func t ions  and  a t t i t u d e s  
t o w a r d  risk 

We often read in the literature that a person's vNM utility function ex- 
presses his attitude toward risk taking, i.e., toward gambling. 4 Yet, with- 
out proper qualifications, this is a very misleading statement. If we do not 
assume strictly outcome-oriented attitudes, then a person's willingness to 
take risks will depend on two factors: 

(i) On his like or dislike for gambling as such, as determined by the 
positive and negative process utilities he associates with gambling. 

(ii) On the utilities and probabilities he assigns to various possible 
outcomes. 

For the sake of simplicity, I shall describe factor (i) as this person's 
intrinsic attitude toward gambling while describing factor (ii) as his in- 
strumental attitude toward the latter. (In the latter case I shall speak of 
an instrumental attitude because it is not based on this person's like or 

4 In wha t  follows, for convenience  I shall follow colloquial usage and use the  t e rm "risk" 

so as to cover bo th  "risk" and "unce r t a in ty" .  



955 

dislike for gambling as such but rather refers to his willingness to gamble 
for the sake of the various possible outcomes.) 

As we have seen, in the case of people who have vNM utility functions 
at all, factor (i) will be completely inoperative, so that  their only reason 
tbr gambling will be instrumental, based on their desire to achieve some 
specific outcomes. 

Yet, when it is claimed that  vNM utility functions express people's at- 
titudes toward gambling without any qualification, it is natural  to assume 
that  their intrinsic att i tude toward gambling i.e., their intrinsic like 
or dislike for gambling is being meant, even though, as we have seen, 
people's vNM utility functions cannot be affected by this at t i tude at all. 

7. Von  N e u m a n n - M o r g e n s t e r n  u t i l i t i e s  as cardinal ut i l i t i e s  

I now propose to argue that  vNM utility functions are cardinal utility func- 
tions. There are two basic differences between merely ordinal and cardinal 
utility functions. One is that  the former allow meaningful comparisons 
only between the relevant individual's utility levels but not between his 
utility differences, whereas the latter allow both kinds of comparisons in 
a meaningful way. Thus, regardless of whether Ui is an ordinal or a car- 
dinal utility function of individual i, the preference statement A ~- B will 
be represented by the inequality Ui(A) > Ui(B) whereas the indifference 
statement A ~ 23 will be represented by the equation Ui(A) = Ui(B). 

On the other hand, if Ui is merely an ordinal utility function then 
inequalities and equalities between utility differences such as 

(10) AU~(A,B) = U~(A)-  U~(B) and AU~(C,D) = U~(C) - U~(D) 

will have no introspective or behavioral meaning. In contrast, if Ui is 
a cardinal utility function then such inequalities and equalities will be 
meaningful. (As we shall see, in the special case where Ui is a vNM utility 
function, such inequalities and equalities will tell us something about i's 
preferences and indifferences between certain lotteries.) 

The other difference is that  an ordinal utility function Ui tells us only 
what i's preferences are whereas, if Ui is a cardinal utility function, then 
it will also permit us to compare i's different preferences as to their in- 
tensities or, equivalently, as to their relative importance for i. 

The relevant mathematical  facts will be stated in the form of the fol- 
lowing: 

LEMMA. Consider the inequality 

(11) AU~(A, B) > AU~(C, D). 
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This inequality will hold if and only if 

(12) n l  - A, ~ ;D,  ~- L2 - B, 5; C, . 

Moreover, the Lemma remains true even if in (11) and in (12) the signs 
> and ~- are replaced by the signs = and ~, respectively. 

To verify the first two sentences of the Lemma, note that, in view of (10), 
inequality (11) can be written also in the form 

1 1 1 1 
(13) -~U~(A) + -~Ui(D) > -~U~(B) + -~U~(C). 

Yet, (13) implies, and is also implied by, statement (12). The last sentence 
of the Lemma can be verified in a similar way. 

The Lemma shows how statements about one utility difference 
A Ui(A, B) being larger than, or being equal to, another utility difference 
AU~(C,D) can be reduced to statements about i's preference for some 
lottery L1 over some lottery L2, or about i's indifference between the two 
lotteries. It also shows how, conversely, statements about i's preferences 
and indifferences can be reduced to inequalities and equalities between 
utility differences. 

I now propose to show that, in view of our Lemma, if i prefers A to 
B but prefers C to D, then the utility differences U~(A, B) and Ui(C, D) 
can be used to measure the intensities of these two preferences by i, or, 
equivalently, the relative importance of these two preferences for him. 

Again consider the two lotteries 

( 1 1) ( 1 1) 
L 1 -  A , -~ ; D , -~ and L 2 -  B , -~ ; C, -~ . 

We can obtain L1 from L2 by making two moves: Move I will consist in 
replacing prize B by prize A in lottery L2 whereas Move II will consist in 
replacing prize C by prize D. Since by assumption we have A ~- B but 
C ~- D, Move I will amount to replacing a given prize by a preferred prize 
while Move II will amount to replacing a given prize by a less preferred 
prize. It is natural to assume that i will prefer lottery L~ to lottery 
L2 if and only if his preference for A over B has greater intensity or, 
equivalently, if it has greater importance for him, than his preference for 
C over D. 

Yet, by our Lemma, i will prefer L1 over L2 if and only if AUi(A, B) 
is larger than AUi(C,D). This means that i's preference for A over B 
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will have greater intensity and will have greater importance for him if and 
only if AU~(A, B) is larger than AU~(C, D). In other words, the two utility 
differences AU~(A, B) = U~(A) - U~(B) and AU~(C, D) = Ui(C) - U~(D) 
can be used as measures for the intensities and for the relative importance 
of i's preference for A over B, and of his preference for C over D. This is 
of course an intuitively very plausible result: The mere fact that i prefers 
A to B is indicated by the piece of information that the utility difference 
AUi(A, B) is positive. Thus, it is not surprising to find that the magnitude 
of this utility difference indicates the intensity of this preference and its 
importance for him. 

8. Marginal utilities, complementarity,  and substi tut ion 

Economists use vNM utilities primarily in analyzing choices involving risk 
and uncertainty. Other things being equal, the more concave a person's 
vNM utility function for money, i.e., the more strongly it displays decreas- 
ing marginal utilities, the less willing he will be to take risks; and the more 
convex his vNM utility function for money, i.e., the more strongly it dis- 
plays increasing marginal utilities, the more willing he will be to take risks 
(cf. Friedman and Savage, 1948). 

Yet, once vNM utility functions are available, they can be used also 
in other branches of economic theory. For instance, they can be used 
to replace the well-known Hicks-Allen definitions for complements and 
for substitutes (Hicks, 1939) by much simpler definitions. Let A and B 
denote specific amounts of commodities c~ and/3. Let Ui be i's vNM utility 
function. Let Ui(A&B) denote the utility that i derives from consuming 
A and B together, and let Ui(A) and Ui(B) denote the utilities he derives 
from consuming A and B separately. 

Then, A and B will be complements if 

(14) Ui(A&B) > U~(A) + Ui(B); 

and they will be substitutes if 

(15) U~(A&B) < U~(A) + U~(B). 

Under these definitions, i's vNM utility function for money will dis- 
play concavity, i.e., decreasing marginal utilities, in those income ranges 
where among the commodities consumed by i substitution relations pre- 
dominate. The opposite will be true in those income ranges where among 
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these commodities complementarity relations predominate. (For this pur- 
pose, indivisibilities must be considered to be special cases of complemen- 
tarities.) 

These conclusions usefully supplement those we reached in sections 6 
and 7. There we concluded that  a person's vNM utility function has noth- 
ing to do with his intrinsic like or dislike for gambling. Rather, it expresses 
his instrumental attitude toward risk taking and is itself determined by 
his cardinal utilities (outcome utilities) for various alternatives (such as 
alternative commodity baskets). Now we have found that these cardinal 
outcome utilities themselves depend on the substitution and complemen- 
tarity relations existing among the commodities consumed by the relevant 
individual. 

In any case, it is the decision maker's cardinal utilities (outcome utili- 
ties) for various alternatives that determine his (instrumental) willingness 
to take risks in order to obtain some desirable alternatives. These cardinal 
utilities determine his atti tude toward risk taking, rather than the other 
way around. 

9. Conc lus ion  

In game theory, payoffs are usually expressed in vNM utilities. Yet, exper- 
iments show that many people repeatedly deviate from the vNM axioms 
as well as from other rationality axioms. This raises the question whether 
the vNM axioms have even normative validity as rationality requirements. 
To make it easier to answer this question, I proposed a simplified form 
of the vNM axioms, based on the Anscombe-Aumann (1963) approach to 
decision theory. Then, I proposed to divide the (positive and negative) 
utilities people derive from risky choices into outcome utilities and process 
utilities. The former are the utilities people assign to the various possible 
outcomes of any lottery whereas the latter are the utilities they derive 
from the process of gambling itself. 

I argued that, in many choice situations involving risk, some people will 
have good reasons to disregard their process utilities and to be guided 
solely by the utilities and the probabilities they assign to the various 
possible outcomes. This atti tude I described as a strictly outcome-oriented 
attitude. 

I suggested that the vNM axioms have full normative validity as ratio- 
nality requirements but only for people taking this particular attitude. 
This, however, means that, if a person has a vNM utility function at all, 
this utility function can express only his outcome utilities and cannot but 
disregard his process utilities. Already von Neumann and Morgenstern re- 
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alized this fact (though they spoke of "the utility gambling" rather than 
of "process utilities"). 

It is often claimed that vNM utility functions express people's attitudes 
toward gambling. But the truth is that these utility functions have nothing 
to do with people's intrinsic attitudes toward gambling, i.e., with their 
intrinsic like or dislike for gambling as such. What they do express is 
people's instrurnental attitudes toward risk taking, i.e., their willingness 
to take risks in order to obtain some desirable outcomes. 

Then I tried to show that vNM utility functions are cardinal utility 
functions, which permit us to make meaningful comparisons, not only be- 
tween utility levels but also between utility differences, and which also 
permit us to compare a person's different preferences as to their intensi- 
ties or, equivalently, as to their relative importance for the individual in 
question. 

Finally, I proposed definitions for complementarity and for substitution 
in terms of a person's vNM utility function, and argued that the convexity 
or the concavity of a person's vNM utility function for money in any 
given income range depends on whether complementarity or substitution 
relations predominate among the commodities consumed by him. 
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