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PREFACE

Time is ubiquitous. Look to such diverse fields as literature and
computers, ethics and physics, logic and rhetoric, philosophy
and natural science. If you are studying any of these subjects,
professionally or con amore, you are very likely to come across
temporality as a crucial factor to your studies.

For this reason, people are led into the study of time from a
variety of highly different disciplines. For the same reason, the
study of time is useful and enlightening, both for its own sake
and for a large number of specific purposes. The rather
ambitious goal of this book is to comprehend time in its diversity,
and yet to do this in a focused manner.

Our study stretches from Antiquity to the present day, and
spans the field from literature to computer science. It thus
comprises a historical as well as a systematical dimension. We
believe that such a comprehensive approach is necessary in
order to achieve a fuller understanding of time. The cost of this
approach is that not all aspects can be given a treatment quite as
thorough as they deserve. Just for example, there is much more
to say about such fields as program verification, trivalent and
many-valued logic, and quantified temporal logic than what we
have managed to cover here. There are also relevant topics
which have been entirely left out: for instance, the current
discussions on indexicals, and the logic of truth value gaps, to
mention two of the most important omissions.

With these disclaimers we wish to make it clear that we are
ourselves aware of some limitations of this book. But we also
believe that it does contain an unusually comprehensive
exposition of the study of time.

We must say a few words about the genesis of this book. Peter
@hrstrgm was the first of us to do research on the concept of
time, leading to his 1988 dr. scient. thesis on this subject. This
thesis put a special emphasis on the relation between the logic of
time and the general history of natural science. Per Hasle began
studies on the logic of time in 1988, adding to our incipient
common project perspectives from linguistics and information
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science. Differences in our backgrounds notwithstanding, the
contribution contained in this volume is the result of essentially
joint work. The book contains entirely new results as well as
previously published material, which has been reworked and
put into the wider context of our exposition here.

A particularly important source for our book has been several
interviews with Dr. Mary Prior, who has graciously provided
valuable and interesting information on the work of her late
husband Arthur Norman Prior - the founder of modern
temporal logic. Furthermore, Mary Prior has granted us access
to A. N. Prior's papers kept at the Bodleian Library in Oxford,
also a crucial source for some of the new findings presented
here. A very special thanks must go to her.

We are indebted to many persons for advice, criticism and
inspiring discussions. We especially thank Mogens Wegener
and Marta Ujvari for carefully reading and constructively
criticising our manuscript. We also want to thank Harmen van
den Berg, Knud Capion, Jack Copeland, M. J. Cresswell, Dick
Crouch, Sten Ebbesen, Milea Angela Simoes Froes, Claudine
Engel-Tiercelin, Antony Galton, Richard Gaskin, Nils Klarlund,
Inger Lytje, Claus Myltoft, Jakob Mgller, Stig Andur Pedersen,
Amir Pnueli, Anne Rasmussen, Stephen Read, Jan Schmidt,
Peter Simons, and Jan Tapdrup. All these persons have in
various ways been helpful and inspiring for our work.

Peter @hrstrgm
Per Hasle
Aalborg, January 1995



INTRODUCTION:
LOGIC AND THE STUDY OF TIME

What, then, is time? If no one asks me, I know: if I wish
to explain it to one that asketh, I know not.
St. Augustine [Confessiones X1, ¢. XIV, xvii./ Gale p. 40]

Every concept of time arises in the context of some (no
doubt useful) human purpose and bears, inevitably and
essentially the stamp of that human intent.

N. Lawrence [1978, p. 24]

Philosophers have had much to say about the nature of
Time. Mathematicians and Physicists add a lot from
their perspective. More recently, linguists are also
becoming interested in the temporal constructions of
natural language. Can a logician add anything of value
to all this wisdom? J F.A.K. van Benthem [1983, xi]

According to the Ancients as well as most of the later European
thinkers in philosophy and science, time is primarily to be un-
derstood as strongly related to movement. In addition it is assu-
med that time can be described by numbers. Time has conse-
quently been thought of as a basic concept for natural science,
first and foremost physics and astronomy. In many circles
physics is still assumed to be the key science for anyone who
wants to study the concept of time, so let us first say a few words
about the contribution from physics in this respect. According to
Newtonian mechanics time is viewed plainly as a co-ordinate.
The bodies in the world are supposed to move according to the
laws of dynamics. These movements can be fully predicted in
principle. All past and future states are implicit in the present
state. Predictions and retrodictions can be expressed by means
of spatial and temporal co-ordinates. At this level there is no
proper temporal asymmetry, since the laws of dynamics permit
time reversal. A concept of entropy might, however, be defined
at this level, and the probability of increasing entropy will be

1



2 INTRODUCTION

high. In thermodynamics the law of ever increasing entropy
has been used as an argument for the so-called 'arrow of time'.
Things become even more complicated when quantum physics
is taken into consideration, and relativity theory raises some
special problems for the logical study of time.

The study of physical time is certainly very important and
useful. In our opinion, however, it is even more important to
realise the relevance of what N. Lawrence [1979] has pointed
out in his study of various levels in the discourse about time: eve-
ry concept of time bears the stamp of human intent. When hu-
mans are taken into consideration the concepts of activity and
creativity become very important for the understanding of time.
In this connection it is clearly also possible - in fact, necessary -
to introduce the idea of the 'NOW' and the direction of time.
This observation must have general consequences, if it is accep-
ted that every concept, including the concept of time, has to be
related to the human mind. Under this perspective it becomes
more natural to describe time by means of tenses: past, present
and future, than by means of instants (dates, clock-time, etc.).
With tenses, we can express that the past is forever lost and the
future is not yet here. Without these ideas we cannot hope to
grasp the idea of the passing of time.

Phenomena such as memory, experience, observation, antici-
pation and hope are all essential for the way time is understood.
Notions of past and future time, the interpretation of the past as
well as expectations of the future are all interwoven in the
human mind. In this qualitative sense the past has not ceased to
exist when followed by the next time period.

There are many common expressions for the qualitative and
quantitative aspects of time, for example 'the sight of time' -
'time will tell' - 'old time' - 'T don't have time' - 'to waste time' - 'to
buy time' - 'long time' - 'short time'. Apparently, human beings
experience a tension between time as a quantity and time as a
quality. We can certainly see the numerical or quantitative as-
pect of time, witness the clock and the calendar. But we also
highly value the qualitative aspects of time such as the 'nowness'
of events, and the passing of time as expressed by the tenses
[Lundmark 1991].
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However, time should not be seen as an idea merely dependent
upon the individual mind, but also as an intersubjective idea. An
individual cannot understand time properly only from the
viewpoint of his or her own mental life. It is a very important
fact that the tenses past, present, and future are not private, but
at least intersubjective, if not objective. A satisfactory under-
standing of time requires a careful study of temporal relations
in human society. It must be admitted that this sociotemporality
is very complex and that little has been done in order to reach a
deeper understanding of it. But it is clear that language and
communication are in general essential for an understanding of
social time.

The above description of the various notions of time does not
explicitly say which idea of temporality is the most fundamen-
tal. In our opinion, the answer to the question of fundamentality
must be that the concepts of past, present and future are basic,
but that they cannot be fully understood unless sociotemporal
relations and especially the preconditions for communication a-
re taken into consideration. Therefore a proper study of time
must involve an analysis of the general means and features of
communication. So the study of meaning and language is essen-
tial for the understanding of time.

Nobody has yet presented a satisfactory definition of time.
Every attempt to tell what time is can be understood as an ac-
centuation of some aspects of time at the expense of others.
Plato's definition of time as the 'moving image of eternity' and
Aristotle's suggestion that 'time is the number of motion with re-
spect to earlier and later' are no exceptions (see e. g. [Whitrow
1972]). In our opinion the attempt to establish a conclusive
definition of time ultimately leads to confusion. Time is not
definable by any other concepts. Time, in its fullness, is unique
and sui generis.

The Augustinean wisdom that time cannot be satisfactorily de-
scribed using just one single formula, definition, or explanation,
is now generally accepted among philosophers of time. In order
to gain more knowledge about the temporal aspects of reality,
time has to be studied within many different strands of science.
If such studies are to lead to a deeper understanding of time it-
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self, various disciplines have to be brought together in the hope
that their findings may form a new synthesis, even though we
should not expect any ultimate answer regarding the question
of the nature of time! If a synthesis is to succeed, a common lan-
guage for the discussion of time has to be established. We are
convinced that temporal logic (or 'the logic of time") is a crucial
part of such a language.

The use of numbers in the description of time has made it obvi-
ous to see a connection between time and mathematics.
However, some people may be taken aback by the claim that the
concept of time is a subject for the discipline of logic. This reac-
tion is primarily caused by the idea that logic is essentially
timeless. Nevertheless, we will here attempt to document that
time has been relevant in the development of logic, and indeed,
that its relevance has never been more acute than today. We
shall argue that this relation between time and logic is two-
ways: logical investigations into time are required for a deeper
understanding of the concept, as well as for the development of a
general language for the discussion of time. On the other hand,
temporal notions are required for a richer logic, applicable to a
wider scope of problems ranging from computer science to phi-
losophy.

We intend to demonstrate that the concept of time can in fact
be studied using temporal logic. According to St. Augustine we
all have a tacit knowledge of what time is, even though we can-
not define time as such. In a sense the endeavour of temporal lo-
gic is to study some manifestations of this tacit knowledge.

In the first part of this book the question will be discussed from
the perspective of the history of logic. It will be documented that
there is a rich tradition of temporal logic from the ancient and
medieval periods. We shall take the liberty of presenting some of
these old ideas utilising the explanatory power of symbolic logic.
The application of symbolic logic to ancient and medieval logic is
in fact disputed - some researchers claim that such a procedure
is anachronistic and misleading. We shall not take up that
methodological discussion, except in the form of 'arguing by
doing' - showing how concrete examples do lend themselves to a
discussion partly in terms of symbolic logic. The great Polish
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School of Logic set the example for this approach, and indeed,
temporal logic itself partly began from the conviction that some
classical logical ideas could and should be so studied. In our
opinion, some of the brilliant insights of those ancient and
medieval logicians and philosophers can in fact only be fully
understood and studied further by modern logicians when
recast in a symbolic formalism.

The rediscovery in our century of the importance of time and
tense 1is first and foremost due to the works of Arthur Norman
Prior, who was deeply inspired by his studies in ancient and
medieval logic. In the 1950s and 1960s Prior laid out the
foundation of temporal logic and showed that this important
discipline was intimately connected with modal logic. Prior
revived the medieval attempt at formulating a temporal logic
corresponding to natural language. In doing so, he also used his
symbolic formalism for investigating the ideas put forward by
these logicians. Prior argued that temporal logic is fundamental
for understanding and describing the world in which we live. He
regarded tense and modal logic as particularly relevant to a
number of important theological as well as philosophical
problems. Using his temporal logic Prior analysed the fun-
damental question of determinism versus freedom of choice.
The second part of the book will describe this rediscovery of the
logic of time, focusing on Prior's contribution for the reasons just
given. But we shall also describe his most important forerun-
ners in the field of temporal logic in the 19th century and the
first decades of the 20th century.

In fact, Prior himself preferred the term 'tense logic', but it has
since then become commonplace to call the general quest for a
logic of time as well as the resulting systems 'temporal logic'. We
shall adopt the modern usage in this respect; later, we shall
clarify the special meaning of 'tense logic' within the general
picture. The main parts of temporal logic have been developed
using mathematical symbolism and calculi, but nevertheless it
has first and foremost been a philosophical enterprise. During
the last decades it has become clear that temporal logic also has
a number of practical applications. In part three we intend to
outline some modern issues of temporal logic.



1.1. THE SEA-FIGHT TOMORROW

Chapter IX of Aristotle's work, On Interpretation, is without
doubt the philosophical text which has had the greatest impact
on the debate about the relations between time, truth, and possi-
bility. In this text we find the famous example of 'the sea-fight
tomorrow'; the discussion of this example certainly bears
witness to the fact that Ancient philosophy was highly conscious
of tense-logical problems (see [Gaskin 1995]).

Central to the discussion is the question of how to interpret the
following two statements:

"Tomorrow there will be a sea-fight'.
"Tomorrow there will not be a sea-fight'.

Aristotle makes the following observation:

Let us take, for example, a sea-fight. It is requisite on our
hypothesis that it should neither take place nor yet fail to
take place on the morrow. These and other strange conse-
quences follow, provided we assume in the case of a pair of
contradictory opposites having universals for subjects and
being themselves universal or having an individual subject,
that one must be true, the other false, that contingency
there can be none and that all things that are or take place

come about in the world by necessity. [On Interpretation, 18
b 23 ff]

It is natural to discuss this text with a special view to the tense-
logical semantics of operators concerning the future. The two
statements above can be symbolised by

F(1)p
F(D~p

where p stands for the statement 'there is a sea-fight', and F(1)

is read 'it will be the case in one time unit' - this is what we would
today call a metrical tense operator, since it is combined with an

10



THE SEA-FIGHT TOMORROW 11

explicit measure of time. In the present context F(1) simply me-
ans 'it will be the case tomorrow', p stands for 'there is a sea-fight
going on', and ~p stands for the negation 'there is not a sea-fight
going on'.

Can statements like F(1)p and F(1)~p be said to be true (or
false) already today? Alternatively, is the truth value of the
statement undetermined, such that it cannot be said to have any
actual truth value today? The answers to these questions in turn
bear upon the interpretation of modality. For if we assume that
F(1)p is true today, is the statement then not also necessary to-
day? And further, if it turns out that there is no sea-fight tomor-
row, can F(1)p then be possible today? Aristotle was clearly
aware of these relations, and in the discussion of the example he
as well as later thinkers also examined the related problems
concerning the modal concepts of possibility and necessity.

On grounds of his basic assumption of indeterminism, Aristotle
claimed that neither statement could be necessary today. How-
ever, the same does not apply to statements about the past or the
present; they are either necessarily true or necessarily false.
Aristotle is apparently a 'past-determinist’ and a 'present-deter-
minist', but a 'future-indeterminist'. The Aristotelian logic must
therefore be assumed to allow the following proposition within
its framework:

P(n)p > NP(n)p

P(n) stands for 'it was the case n time units ago' and N stands
for 'it is necessary that ...'. This implication must as a minimum
be consistent with the general theory, that is, its negation must
not be valid. But still more likely, it should in fact itself be a
theorem of the theory. On the other hand, the theory must reject
the validity of

NF(n)p vNF(n)~p
i.e. it should accept that in some cases it holds that

MF(n)p A MF(n)~p
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where M stands for 'it is possible that ...'.

The Polish logician Jan Fukasiewicz [1920] has argued that
Aristotle in fact considered propositions about future contingents
to be neither true nor false. Such an interpretation is not merely
a modern construction. Richard of Lavenham (c.1380) said
something very similar, when he formulated the Aristotelian
position in the following way:

The third opinion, which was Aristotle's opinion, opposes the
Christian faith in so far as this opinion presupposes that God
does not know more determinately that Antichrist will be
than that Antichrist will not be; and that He does not know
more determinately that the day of judgement will be than
that the day of judgement will not be; and that He does not
know more determinately that the resurrection of the dead
will be than that the resurrection of the dead will not be. And
the reason is that there is no determinate truth of any of the
two propositions about contingent future events. But these
propositions 'the day of judgement will be' and 'the resur-
rection of the dead will be' are contingent propositions about
the future, therefore they are not determinated to truth,
and in consequence not more determinated to truth than to
falsity (and also not conversely). The consequence is clear,
and the major premise is Aristotle's opinion in 'On Inter-
pretation'. And this opinion presupposes that no contingent
proposition about the future is true, and that no such propo-
sition is false. This was Aristotle's intention as Ockham says
in his book about 'On Interpretation'. [@hrstrgm 1983]

Lavenham's version of Aristotle's statement clearly means
that F(n)p as well as F(n)~p are neither true nor false. It is,
however, unclear whether he had in mind a third true-value
corresponding to 'indeterminate’, or simply held that no truth-
value is defined for such contingent future propositions. In any
case, Lavenham regarded the Aristotelian view as contrary to
the Christian faith, and he preferred a solution suggested by
William of Ockham.
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Lukasiewicz has argued that Aristotle's text in chapter IX of
On Interpretation should be read as an argument for a three-
valued logic. At least in the early 1950's A. N. Prior shared this
view [1957a, p.86]. At this time he thought that this was the only
way to construct an indeterministic tense-logic [1967, p.128].
Therefore he suggested a three-valued logic of tensed propositi-
ons [1953]. Later it became clear to him that indeterministic
tense-logic with bivalence is possible in at least two important
ways - known as 'the Ockhamist system' and 'the Peircean
system'. These systems are Prior's formalisations of ideas by
Ockham and Peirce; both systems will be examined in detail
later on.

The interpretative problems regarding On Interpretation
chapter IX are by no means simple. N. Rescher [1968] has
shown in a word-by-word analysis of the critical passage of
chapter IX how a realistic interpretation, which maintains the
principle of bivalence, can be consistently defended, and in fact
was defended by Scholastic and Moslem philosophers in the
Middle Ages. As we shall see, this medieval interpretation and
the tense logic pertaining to it provide an affirmative answer to
the question of whether statements about the contingent future
do have a truth-value (at the time of utterance). They also
confirm that even if it turns out that there is no sea-fight tomor-
row, F(1)p can be regarded as possible today. In principle, past-
determinism was also accepted, but it was observed that it only
holds for statements which are properly about the past. What
was at stake here was to rule out necessitation for sentences of
the form P(n)F(m)p, whose grammatical form is in the past
tense, but which are only spuriously about the past when m > n.
Concerning the general discussion of the réle of necessity,
Rescher referred to Peter Abelard (c. 1079-1142), who stated:

No proposition about the contingent future can be either de-
terminately true or determinately false in the same sense,
but this is not to say that no such proposition can be true or
false. On the contrary, any such proposition is true if the
outcome is to be true as it states though this is still unknown
to us. What Aristotle wished to maintain in his De Inter-
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pretatione was that while a proposition is necessary when it
is true, it is not therefore necessarily true simply and
always. [Kneale p.214]

As we shall see later the Ockhamist system makes it possible
that a proposition about the contingent future can be true now,
even though its truth-value is still unknown to us. In this crucial
sense Abelard's interpretation is in agreement with Prior's
Ockhamist system.

Henning Boje Andersen and Jan Faye [1980] have, however,
put forth a different interpretation of chapter IX. They claimed
that Aristotle would probably reject the general validity of what
could be called ‘the law of excluded middle for statements in the
future tense', i.e. for all p:

F(n)p vF(n)~p
Given that this proposition is not valid, it must be accepted that
~F(n)p A ~F(n)~p

may indeed be true for some proposition p. In fact, according to
this interpretation the latter formula is possible for any contin-
gent statement about the future. On the other hand, it is also
clear that F(n)p and F(n)~p cannot both be true. Therefore

~F(n)p v ~F(n)~p

must be a theorem in the Aristotelian system under this
interpretation.

It is worth pointing out that this interpretation makes
Aristotle's observations consistent with the aforementioned
Peircean system. Thus, there is a line from the two basic
interpretations of Aristotle's text presented here to Prior's two
major indeterministic tense logical systems.



1.2. THE MASTER ARGUMENT OF
D10DORUS CRONUS

Diodorus Cronus (ca. 340-280 B.C.) was a philosopher of the
Megarian school [Sedley 1977]. He achieved wide fame as a
logician and a formulator of philosophical paradoxes. The most
well-known of these paradoxes is the so-called 'Master
Argument' which in Antiquity was understood as an argument
designed to prove the truth of fatalism. Unfortunately, only the
premises and the conclusion of the argument are known. We
know almost nothing about the way in which Diodorus used his
premises in order to reach the conclusion. During the last few
decades various philosophers and logicians have tried to recon-
struct the argument as it might have been. The reconstruction
of the Master Argument certainly constitutes a genuine pro-
blem within the history of logic. It should, however, be noted that
the argument has been studied for reasons other than historical.
First of all, the Master Argument has been read as an argu-
ment for determinism. Secondly, the Master Argument can be
regarded as an attempt to clarify the conceptual relations bet-
ween time and modality. When seen in this perspective any at-
tempted reconstruction of the argument is important also from
a systematic point of view, and this is obviously true for any
version of the argument, even if it is historically incorrect.

Our approach in this chapter will in the first part be mainly
historical. We shall comment on some of the reconstructions
which have been suggested, and present an elaborated version
of one of them. At the end of the chapter, we shall discuss some
of the philosophical and conceptual problems related to the
Master Argument.

The Master Argument is a trilemma. According to Epictetus,
Diodorus argued that the following three propositions cannot all
be true [Mates 1961, p.38] :

(DD Every proposition true about the past is necessary.

(D2) An impossible proposition cannot follow from (or
after) a possible one.

15
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(D3) There is a proposition which is possible, but which
neither is nor will be true.

Diodorus used this incompatibility combined with the plausibi-
lity of (D1) and (D2) to justify that (D3) is false. Assuming (D1)
and (D2) he went on to define possibility and necessity as follows:

(DM) The possible is that which either is or will be true.
(DN)  The necessary is that which, being true, will not be
false.

In order to reconstruct the Master Argument two fundamen-
tal questions must be answered:

(D How should 'proposition’ in (D1-3) be understood?
(2) How should 'follow' in (D2) be understood?

For the sake of completeness it should be mentioned that for
some reconstructions it is also relevant whether the structure of
time is assumed to be discrete or continuous.

The first of the above questions can be answered in at least two
ways :

1.1 The propositions mentioned in (D1-3) are tempo-
rally definite statements.

(1.2) The Master Argument refers in fact to statements
corresponding to propositional functions.

F.S. Michael [1976] has suggested a reconstruction of the Mas-
ter Argument based on (1.1). According to Michael the truth or
falsity of such statements is entirely unaffected by the time of
assertion. In his version the first premise of the argument can
be formulated in the following way:

(D1IM) If the proposition pyg is true at some time ¢' before ¢,
then the truth of pg is necessary at t.
In symbols: (Tt po) At' <t ) D Nit,py
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Note that this can only be reasonable if the proposition py in
(D1M) itself takes the form T'(z'',r). Using (D1M) Michael could
in fact construct an argument like the Master Argument with-
out using (D2) directly. For his attempt at a reconstruction,
however, Michael had to presuppose that a necessary propositi-
on is true. This principle seems to be uncontroversial, but it is not
implied by (D1-3) alone. His proof can be presented in the fol-
lowing way:

According to (D3) it is assumed that there is a proposition gy,
which is possible, but false now and also at any future time.
The proposition gg must in the argument itself be of the
form T'(t',r) by Michael's assumption of (1.1). This means
that the following holds:

Mn,qp) A T(n,~qo) A (Vt: t>n 5 T(t,~q0)

Now, go must be false also before n, since if for some ¢'
T@',qo) At'<n,

then (D1M) would give us N(n,q¢) and therefore also

T(n,qo), which would contradict the above assumption. -

Hence it can be concluded that ggis false at any time, t, i.e.
t<n oT(t~q0)

for any ¢. It then follows from (D1M) that N(n,~go). This
means that ~M(n,q¢), which contradicts the above assump-

tion about gg being possible at n.
Q.E.D.

It follows from the argument as reconstructed by Michael that
a true proposition is necessary and a false proposition is impos-
sible. But then it can be said that 'possible', 'true', and 'necessary’
are identical qualifications of propositions. Therefore, Michael
proves too much, since (DM) and (DN) are obviously meant to
carry different informative content - that is, they should not be
made equivalent. So there is not sufficient reason for accepting
Michael's assumption regarding the status of propositions in the
Master Argument. And indeed, for other and independent rea-



18 CHAPTER 1.2

sons it seems most probable that Diodorus thought of proposi-
tions as corresponding to what we today would call functions.
His examples include statements like 'It is day', 'I am convers-
ing', 'It is light'. As Mates [1961, p.36] has stated, these propo-
sitions 'are true at certain times and false at others', or equiva-
lently, 'they become true and become false'. Furthermore,
Mates could also conclude that Diodorean necessity would in
most cases apply to such 'functional propositions', so generally
speaking we should expect (1.2) to be the correct answer as re-
gards the status or nature of propositions in the Master
Argument. Nevertheless, Mates did not think that (D1) could
make sense if 'proposition’ is understood in this way [1961, p.39].
Therefore Mates' analysis apparently left us with an enigma:
according to this analysis, (1.2) was the most probable answer,
but Mates could not see how this assumption could be consistent
with the context of the Master Argument.

However, as we shall see in the following, Prior has shown how
a reading of (D1) consistent with (1.2) is in fact possible. But first
we must examine the question regarding the understanding of
(D2). This question can also be answered in at least two different
ways:

2.1 'Follows' in (D2) refers to temporal order.
(2.2) ‘Follows' in (D2) refers to logical implication.

Like the reconstructions of Zeller [1882] and of Copleston
[1962], Rescher's reconstruction [1966] of the Master Argument
is based on an assumption like (2.1), i.e. on a temporal version of
(D2). Rescher assumes that the original formulation of this
premise can be reformulated in the following way:

(D2x) The impossible does not follow after the possible.

(D2x) implies that what has been possible will always be pos-
sible. This 'principle of possibility-conservation' is obviously not
very plausible. Even if some proposition p could once be re-
garded as possible, consistently with whatever else obtained at
that time, some of the conditions for p may change permanently
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at a later time such as to make it impossible always thereafter.
Moreover, Mates observed that the word used by Epictetus in
(D2), which Rescher translates into 'follow after', is the same
word used by Diodorus for 'is a consequent of'. It should also be
noted that Chrysippus, who rejected the Master Argument,
understood its second premise as referring to logical consequen-
ce rather than temporal succession [Mates 1961, p.39]. Finally,
a circumstantial but important piece of evidence that (D2) is
concerned with logical consequence is the fact that Diodorus
studied the nature of implication very carefully. The famous de-
bate between Diodorus and Philo of Megara precisely concerned
the relation between time and implication. Their views on
implication were described in the following way by Sextus
Empiricus:

according to Philo such a conditional as 'If it is day, then I
am conversing' is true when it is day and I am conversing,
since in that case its antecedent, 'It is day' is true and its
consequent, 'l am conversing', is true; but according to
Diodorus it is false, for it is possible for its antecedent, 'It is
day', to be true and its consequent 'I am conversing' to be
false at some time, namely, after I have become quiet...
[Adv.Math. VIII, 112ff; Mates, 1961, p. 98]

This conflict between Diodorus and Philo was obviously con-
cerned with whether one could allow the truth values of the
implication to vary with time or not. As Mates [p.46] has argued,
a conditional was proved to be Diodorus-true by showing that it
never has a true antecedent and a false consequent. That is,
Diodorus favoured what we today could call temporally strict
implication, whereas Philo argued for material implication. The
quotation also bears on the status of propositions, for Diodorus'
argument as referred by Sextus Empiricus presupposes that
propositions are understood as functions.

It appears that Diodorus regarded logical implication as very
important. Therefore, it is only natural to assume that it played
an important réle in his Master Argument. We believe that
(2.1) should be rejected and that (2.2) should be accepted, and
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also that it is natural to assume that the implication in question
was the Diodorus-implication, which is true just in case it never
has a true antecedent and a false consequent.

PRIOR'S RECONSTRUCTION

Prior's reconstruction [1967, p.32 ff.] of the Master Argument
follows the line of the interpretations (1.2) and (2.2). Thus it ba-
sically adopts the same understanding of 'proposition' and con-
sequence as we have been arguing for above. Prior uses tense-
and modal operators in his reconstruction, and interprets the
logical (Diodorean) consequence involved in (D2) as what is in
modal logic usually called 'strict implication', symbolised by —.

On these assumptions it is possible to restate the reconstruction
problem. Using symbols, (D1-3) can be formulated in the follow-
ing way:

(D1)Y Pg > NPgq
(D2Y ((p »q) AMp) > Mg
(D3 (3r) Mr A ~r A ~Fr)

where F is read as 'it will be the case that...", P is read as 'it has
been the case that ...". , and — is the strict implication defined as

p—>q=Np>oq)

We are now ready to reformulate Prior's reconstruction. In
doing so, we shall at first leave aside some of the problematic
points about it, in order to make the main thrust of the argu-
ment as clear as possible. We shall use the propositional function
g: 'Dion is here' as an example. The reconstruction, then, runs as
following way. Let us make the following two assumptions:

(P1) It is possible for Dion to be here.
In symbols: Mg

(P2) Dion is not here and he never will be here.
In symbols: ~g A ~Fg
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Obviously, (P1) and (P2) together make up an instance of
(D3). Now intuitively speaking, if Dion is not here now and from
now on never will be here, then in the 'immediate past' it was
true simply that Dion never would be here. Thus, it follows from
(P2) that

(P3) It has been the case that Dion never will be here.
In symbols: P~Fgq

By substitution into (D1') we have (P~Fqg > NP-~Fq).
Therefore, it follows from (P3) and (D1') that

(P4) It is necessary that it has been the case that Dion
never will be here. In symbols: NP~Fgq

For the sake of exposition, it is useful to subject (P4) to two
transformations. First, since N is equivalent with ~M~, we di-
rectly obtain

(P5) It is impossible that it has not been the case that
Dion never will be here. In symbols: ~M~P~Fq

We can now make use of the common tense-logical symbol H,
which is an abbreviation of ~P~, and which may be read 'it has
always been the case that ...' Using H in (P5), we get

(P6) It is impossible that it has always been the case that
Dion will be here. In symbols: ~MHFgq

If Dion is here now, then at any time in the past it has been
true to say 'Dion will be here'. Hence, the following implication is
true:

P7 If Dion is here, then it has always been the case
that Dion will be here. In symbols: ¢ — HFgq
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By conjoining (P1) and (P7) we obtain ((¢ — HFgq) A Mq). Using
(D2") we can then deduce MHFq.

We have now arrived at a contradiction, since on assuming
(P1) and (P2) we have derived ~MHFq (P6) as well as MHFq.
Therefore, the combined assumption of (P1) and (P2) must be
rejected.

Unfortunately, it is clear that Prior is not able to reconstruct
the argument only using (D1), (D2) and (D3). In addition to
these, he needs two extra premises. In order to make sure that
the argument from (P2) to (P3) is valid, he must assume that

(~q A ~Fq) > P~Fq
or, to put it in a general form, that

(D4) (p AGp) o> PGp
where G =~F~ ('it will always be the case that..."). Furthermore,
he must assume that (P7) is in fact a valid strict implication
such that

(D5) N(p o HFp)

is valid in general.

Prior's proof that the three Diodorean premises (D1', D2', D3")
are inconsistent given (D4) and (D5) can be summarised as a
reductio ad absurdum proof in the following way:

1 Mr A ~r A ~Fr (from D3")

(2) Mr (from 2)

(3) N(r o HFr) (from D5)

4 MHFr (from D2, 2 & 3)

(5) ~r A G~r (from 1)

(6) PG~r (from 5 & D4)

(7) NPG-~r (from 6 & D1)

(8) ~MHFr (from 7; contradicts 4)

Q.E.D.
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O. Becker [1960] has shown that the extra premises (D4) and
(D5) can be found in the writings of Aristotle. For that reason
Becker concludes that it seems reasonable to assume that the
extra premises were generally accepted in antiquity.

However, Prior's addition of (D4) and (D5) is nevertheless
problematic (even though the argument thus reconstructed is
interesting in its own right). (D4) is in fact a rather complicated
statement and not so innocuous as it may seem at first glance -
observations which will indeed become clear when we are going
to discuss the Ockhamist and Peircean systems. It is not very
likely that Diodorus would involve such an argument without
making it an explicit premise in the Master Argument. As
regards (D5), we know that Diodorus used the Master
Argument as a case for the definitions (DM) and (DN). That is,
in the argument itself M (or N) should in a sense be regarded as
primitive. It is hard to believe that Diodorus would involve a
premise about N without stating it explicitly.

A NEW RECONSTRUCTION OF THE MASTER ARGUMENT

As we have argued, Mates in his excellent analysis gave all the
essential information needed for a reconstruction of the Master
Argument. On the basis of the considerations so far we shall
suggest a very simple argument as a possible reconstruction.
We shall see that the argument can be formulated without the
use of complicated extra premises as it is the case in Prior's re-
construction. We shall assume that in the Master Argument
certain notions regarding time and propositions are taken for
granted:

(a) Time is discrete.

(b) Diodorean propositions are functions of time. Thus,
propositions are functions from instants into truth
values - and conversely, such functions are
propositions. For the function application of a
proposition p to an instant t we write T'(¢,p).
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(o) The Diodorean implication involved in (D2) can be
defined in terms of present-day temporal logic as

(p = q) if and only if (V2) (T(t,p) > T(t,q)

Ad (a): It is not possible to prove directly that Diodorus took
time to be made up of temporal atoms, although there is evi-
dence that Diodorus believed in indivisible places and bodies
[Adv. Phys. I1,142-143]. Richard Sorabji {p.19] has maintained
that a certain passage in the works of Sextus Empiricus [M
10.86-90] indicates that Diodorus was a temporal atomist. But
even if Sorabji is wrong and Diodorus was not a temporal
atomist, we might still undertake a reconstruction along the
lines which we have been suggesting, provided that Diodorus
held something like

(A) No proposition has a first instant of truth. If a proposi-
tion is true, it has already been true for some time.

Although we have no direct information indicating that Diodo-
rus actually made this assumption, it is indeed very likely that
he was aware of Aristotle's point of view:

For a change can actually be completed, and there is such a
thing as its end, because it is a limit. But with reference to
the beginning the phrase has no meaning, for there is no
beginning of a process of change, and no primary 'when' in
which the change was first in progress. [Phys. 236a 12-14]

It is not unreasonable to surmise that Diodorus tried to
elaborate this observation, and that this work led him to an
assumption like (A). We shall, however, omit a detailed
reconstruction of the master argument on the basis of (A).

Ad (b): Diodorus apparently thought of propositions as though
they contained time-variables. These propositions are true at
certain times and false at other times. On the other hand, Mates
has maintained that "although Diodorus usually predicates
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necessity of what are in effect propositional functions, it seems
that in the first of his three incompatibles, necessity is predicated
of a proposition" {1961, p. 39]. We shall demonstrate how an
understanding of the Master Argument based on (1.2) as well as
(2.2) is possible.

Ad (c): According to Mates [1961, p.45] "a conditional holds in
the Diodorean sense if and only if it holds at all times in the Phi-
lonian sense". (The Philonian implication is simply the material
implication). Mates has demonstrated that his conclusion is a
clear consequence of a number of passages from the sources.

Note that the assumptions (a), (b), and (c) are all well
documented in the known sources about Diodorus' logic.
Moreover, they do not involve the modal concepts which are at
stake in the argument. For these reasons (a)-(c) should not be
regarded as extra premises like Prior's (D4) and (D5).

In (c), we use '=>' instead of '>' in order to emphasise that our
definition is distinct from Prior's definition of Diodorean impli-
cation, which was

(p »¢)ifand only if N(p > ¢)

If we did not keep these two definitions apart, (c) might be seen
as defining modality in terms of temporality. However, the
Master Argument was thought to lead to such a definition, to
wit, (DM) and (DN), not to presuppose it. On (c), (D2) may be
rendered as

(p = q) AMp) 5 Mq
where the possibility-operator should be understood as a still
unanalysed concept. We shall assume, however, that Diodorus
accepted the usual interdefinability between necessity and

possibility (as he indeed most likely did). In symbols, this means
M=~N~ N=~M-~.
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Using the assumptions (a) - (¢), it is possible to reconstruct the
argument.

It should be noted that although (c) defines (p = g) in terms of
temporality, it is very different from the kind of temporal defi-
nition involved in Rescher's understanding of the Diodorean
‘follows'. Our understanding of (p =» g) refers to a quantification
over temporal instants rather than a temporal order.

Let us assume (D3) for some statement q, e.g. 'Dion is here'. In
symbols:

~q A ~Fg A Mg

Then the statement is false now and at every future time, al-
though Dion's being here is possible. We intend to show that the
assumption of (D3) contradicts the premises (D1) and (D2).

Let r be a statement true only at the time just before the pre-
sent time. Although any arbitrary statement fulfilling the re-
quirement would do, we may choose the more intuitively
appealing

r: 'The prophet says: Dion will never be here.'

From the propositional function r, we can construct the proposi-
tional function Pr, which is obviously false at any past time, true
now and always in the future. We can illustrate the situation by
the following figure, where the instant 'now' is represented by
the number 10:

~Pr ~Pr ~Pr Pr Pr Pr
T ~r r ~r ~r ~r
7 8 9 10 11 12

’q ’q ’q ~a ~q ~q
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Clearly r is false at any instant other than 9, the instant
immediately preceding the now. ~Pr is true at any past time, i.e.
any instant lesser than 10. On the other hand, Pr is true now, at
10, and always thereafter. Finally, by our assumption of (D3), ¢
is false now and always in the future. However, ¢ might be true
or false at any past time.

Since Pr is true now, we can by (D1) obtain NPr, which is
equivalent with ~M~Pr. It is also evident that

(q = ~Pr).

This Diodorean implication is valid since if g is true at time ¢,
then £ must be a past time; this follows from our assumption of
(D3) as illustrated in the figure. Furthermore, ~Pr is true at any
past time. Therefore the antecedent can never be true when the
consequent is false. But the validity of this Diodorean implication
contradicts (D2), since the impossible, ~Pr, follows from the
possible, g. Therefore the assumption of (ID3) has to be rejected.

In this way the Master Argument can be reconstructed using
discrete time and the Diodorean idea of implication. We think it
very likely that this was the kind of reasoning actually used by
Diodorus.

It is interesting that the above argument works even if it is
assumed that the first premise (D1) of the Master Argument is
concerned only with propositions which are genuinely about the
past. An example of a proposition which is not genuinely about
the past would be 'One day ago it was the case that in two days,
Dion will be here'. Such propositions should not be necessitated
by (D1), although they may be necessitated on other grounds. In
Prior's reconstruction, statements which are only spuriously
about the past are regarded as necessary. In this way the
validity of implications like PGg > NPGq can be derived. In our
reconstruction, however, such a questionable use of (D1) is
completely unnecessary.

The way (D2) is used in our reconstruction bears some
resemblance to one of the paradoxes of implication, since we can
without loss of generality assume that ¢ is not only false in the
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present and the future, but also in the past - that Dion has never
been here, is not here and never will be here. In this case any
proposition will follow from g in the Diodorean sense. Indeed, it is
not required that there be any semantical relation between ¢
and 7 in the argument. In general, if ¢ is any proposition which
is always false, then the Dioderean implication (g = p) holds for
any arbitrary proposition p; in this case, the implication
obviously never has a true antecedent and a false consequent.
But then we may choose any possible proposition g in order to
show that p must be possible. Hence, any proposition which is
always false must be possible on the assumption of (D2).

In this connection it should be noted that the ancients were
aware of the paradoxes of implication. There can be no doubt
that Diodorus, too, realised that any proposition which is always
false, implies any other proposition.

LOGICAL DETERMINISM

It is very likely that the Master Argument was originally des-
igned to prove fatalism or determinism. Because of the apparent
plausibility of (D1) and (D2), the argument was understood as a
rather strong case against (D3). The denial of (D3) is equivalent
to the view that if a proposition is possible, then either it is true
now or it will be true at some future time. So in a nutshell the
argument is that an event which never will happen and is not
happening now cannot be possible, and hence everything
happening now or in the future is necessary. It should be clear,
then, that the argument is interesting not only for historical
reasons. Its systematical content is entirely relevant for a mo-
dern discussion of determinism, too. The present-day philoso-
pher wanting to argue against fatalism and determinism must
relate to all known versions of the Master Argument, directly or
indirectly. If the fatalistic or deterministic conclusion of the
Master Argument is to be avoided, at least one of the two
premises (D1) and (D2) has to be denied - at any rate, that is the
case as long as we accept the tacit assumption that time is a lin-
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ear structure. Now for any version of the Master Argument
based on that assumption we believe that it is in fact quite rea-
sonable to deny at least one of (D1) and (D2). Let us consider the
versions which have been discussed above.

As mentioned above, the second premise in Rescher's version
of the Master Argument turns out to be equivalent to a 'princi-
ple of possibility-conservation'. It would certainly be reasonable
to deny the validity of this principle. In Michael's version of the
Master Argument the first premise, (D1M), should be denied,
since it is not reasonable to view a true proposition about the
future as necessary, just because it is formulated as a prophecy
stated in the past. Such a proposition is about the past only in a
spurious sense. Regarding (D1) in Prior's reconstruction we can
make a similar observation. The statement

'It has been that Dion never will be here', (in symbols: P~Fgq)

should not be counted as necessary even if it is true. Even if we
accept ~q, ~Fq, and P~Fq, there is no a priori reason to exclude
the conceptual possibility of Dion's being here at some future
time, or his 'having always been going to be here', i.e. MFq and
MPGq. Therefore, the way in which (D1) is used in Prior's ver-
sion of the argument should certainly be questioned.

In our reconstruction, we do not have to assume any more
than the necessity of propositions which are genuinely about the
past. When (D1) is seen in this way, it appears reasonable,
whereas (D2) should be rejected if time is linear. The reason is
that if there is a propositional function ¢ which is possible but
never true, then our version of (D2) implies that any absurdity
(p A ~p) also becomes possible. Obviously, it is not acceptable to
regard an absurdity as being possible. Given that time is linear it
seems entirely reasonable to deny (D2).

Prior himself questioned the validity of (D5) i.e.

(D5) N(p > HFp)
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If we understand 'will be' as 'determinately will be', then (D5)
can certainly be denied, as in fact it is in the Peircean system,
which Prior elaborated and to which he indeed preferred him-
self . We shall return to this system in part 2.

SOME CONCEPTUAL CONSIDERATIONS

The Master Argument can also be read as an attempt to relate
the modal concepts of possibility and necessity to the concept of
time. The various versions of the argument emphasise the im-
pact of temporal indices on the operators of possibility and ne-
cessity. For instance, what is possible now need not be possible in
the future. And what is now not necessary but a mere possibility,
can become necessary in the future. It is obvious that the notion
of modality involved in such assumptions should be linked to the
idea of time. A proposition is necessary if it is 'now-unpreventa-
ble', and a proposition is possible if its negation is 'now-preventa-
ble'. In formulating his argument Diodorus was aiming at a jus-
tification of his definitions of possibility and necessity, (DM) and
(DN), which were:

(DM) The possible is that which either is or will be true.
(DN)  The necessary is that which, being true, will not be
false.

But if these definitions are accepted, and if time is understood
as a linear structure, then we are led to some kind of fatalism or
determinism.

As we have seen, we do not have to accept (DM) and (DN) on
account of the argument itself, since at least one of the premises
(D1) and (D2) should be rejected if time is implicitly or explicitly
understood to be a linear structure. However, the picture is
somewhat different if we avail ourselves of the modern notion of
branching time: that is, if time is considered to be a branching
structure, it is not representable as a subset of the real numbers,
and both (D1) and (D2) as understood in our reconstruction be-
come plausible. In part 2 we shall examine the notion of
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branching time in detail. The basic idea can, however, easily be
illustrated by the following figure:
future a

future b

now
future ¢

future d

The central idea is that for any given 'now' there are a number
of possible and different futures - sometimes called the 'forking
paths into the future'. Just one of these will become actualised in
the course of time. In this kind of structure a propositional func-
tion cannot be represented by a series of truth-values. Rather, it
must be represented as a complex structure of values. It should
not be too hard to see that if the complex structures of branching
time are discrete, then our new version of the Master Argu-
ment is still valid. The premises (D1) and (D2) as understood in
our version can be accepted within all theories of branching
time, in which case the conclusion of the Master Argument also
has to be accepted within these theories. An adequate conception
of the notion of 'possibility’ can then be captured by the formula

Mr = v Fr)

Obviously this means that the definitions (DM) and (DN)
should also be adopted in theories of branching time. In fact, the
very use of the idea of 'possible futures' can be understood as an
acceptance of the conclusion of the Master Argument, since it is
evident that if time is branching then any possibility must be-
long to some possible future. So when we investigate the Master
Argument from the perspective of the historical development of
the logical study of time, the argument turns out to be a demon-
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stration of a fundamental relationship between time and modal-
ity rather than a case for fatalism or determinism.

The relation between time and modality and the attempt to
define modality in terms of tense were very important to the
founder of modern symbolic tense logic, A. N. Prior. As we shall
see in part 2, Prior elaborated the formula above into a very
complex and conceptually refined definition - his so-called
fourth grade of tense-logical involvement, wherein the concept
of modality becomes entirely absorbed by this tense logic. This
fourth grade expressed Prior's own conception of time.



1.3. THE STUDY OF TENSES IN THE MIDDLE AGES

The Diodorean Master Argument can be seen as an example
of that interest in the logic of statements involving time which is
part of a tradition dating back to Aristotle and other Ancient
philosophers. The Scholastic logicians in particular made a
number of original contributions to tense-logic. We shall now
devote a few chapters to a brief survey of the most important of
these contributions.

Medieval logicians were engaged in an attempt to develop a
logic of natural language. With this objective they had to take
heed of the fact that some statements do not have fixed truth-
values. A proposition like 'Socrates is alive' is true when Socrates
is alive, and it is false when he is not alive. Therefore it is an
integral part of medieval logic that the truth-value of a
proposition can vary from time to time. For the same reasons it
was natural, indeed inevitable, for them to analyse tensed
statements in their logical studies. It was an important goal of
theirs to be able to describe the logical content of propositions
about past and future events.

The Scholastic logicians discussed the status of tensed
statements with a view to theological problems. In the course of
time the difference between statements such as 'Christ was
born', 'Christ is born’, and 'Christ will be born' had given rise to a
theological and logical problem. On the one hand, a distinction
between the three forms from a purely logical point of view was
considered legitimate. On the other hand, some claimed that
there was in principle no difference between what had been
believed by the prophets (the third form), the contemporaries of
Jesus (the second form), and what has been believed by
Christians in all the succeeding centuries (the first form). The
object of the faith is therefore the same one. But how can the
unity of faith and its independence of time be maintained, when
its main tenets are described by statements whose meanings
seem to vary in time in the same manner as other tensed
statements?

There were two different solutions in the Middle Ages, as
pointed out by Nuchelman [1980, p.133]. Firstly, there was a
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comparatively small group of thinkers, who defended one or
another variant of the so-called 'res-theory’. These scholars
wanted to consider the object of faith as an unchangeable entity.
For instance, the object might be certain events which were
believed to have actually occurred. Secondly, there was a larger
group of Schoolmen, who adhered to the 'enuntiabile-theory'.
They maintained that the three statements: 'Christ was born',
'Christ is born', and 'Christ will be born' are significantly
different, although a hard core of meaning remains. It is quite
conceivable that doctrines (e.g. the virgin birth) ought to be
expressed without tense, but that a confession (e.g. 'l believe that
Christ was born by a virgin') becomes tensed when the faith is to
be expressed by an individual. The tense free doctrine is that
which all the tensed creeds refer to.

Thomas Aquinas [Summa theologiae II 2. q. 1. art. 2 & De
veritate q. 14, art. 12], among others, attempted to act as an
intermediary between the two theories. He pointed out that one
can consider the object of faith either from the point of view of
the object itself, or from the point of view of the faith. This
corresponds exactly to the difference between the 'res-theory’
and the 'enuntiabile-theory'. The duality between these two
perspectives is also evident when it comes to a discussion of the
relation between God's and man's possibilities for having
knowledge. According to Thomas, divine knowledge is
primarily aimed at the object itself (res), while man can only
know and believe in enuntiabile [Summa Theologia I q. 14. art.
15]. The tension between these two Scholastic theories, which
take their starting points in enuntiabile and res, respectively, in
a highly striking manner corresponds to the modern debate in
tense-logic regarding A- and B-theories. We shall discuss those
notions in part 2.

The debate about the semantic status of tense inflected state-
ments can be regarded as an example of the scholastic emphasis
on what we now call tense-logic. This subject matter was of
general interest during the entire Middle Ages and covered a
broad spectrum of theories, which also included work
concerning questions bordering on tense-logic. These
investigations sometimes went to the borderline of possible
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language use, as in a discussion by Boethius de Dacia (¢.1270)
about the statements 'heri curram' ('I will run yesterday') and
‘cras cucurri' ('I ran tomorrow') [Boethii Daci Opera, IV, I,
p.203] - a discussion which was meant to be entirely serious.

Medieval logicians in general were also very much aware of
the problems related to logical arguments involving tenses. In
his famous Logica Magna - which is representative for a great
deal of medieval logic - Paul of Venice (c. 1369-1429) dealt with
a number of questions concerning reasoning about time and
tenses. For instance, he considered the following argument
[Part IT Fasc. 8, p.271l:

(Arg. 1)

Socrates is in Rome at moment A;

You are in Rome at some moment;
therefore you are in Rome at moment A.

This argument is in fact based on two other arguments, which
can be stated in the following way:

(Arg. 2)
Socrates is;
therefore Socrates is now (i.e. at the present moment).

(Arg. 3)
You are;
therefore you are now (i.e. at the present moment).

Paul obviously realised why the use of this kind of
argumentation can be critised. We may reformulate the matter
in terms of the 'res-theory' and the 'enuntiabile-theory'.
According to the 'res-theory' (correspoding to the modern B-
theory) (Arg. 2) and (Arg. 3) are invalid. According to the
'enuntiabile-theory’ (corresponding to the modern tense logic)
the arguments are all valid, but the premise 'Socrates is in Rome
at moment A' is a contradiction unless the moment A is
assumed to be the present moment. If A is not identical with the
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present moment, one should according to the 'enuntiabile-
theory' perhaps rather formulate the premise as

Socrates has been, is or will be in Rome at moment A;

but with that premise the argument is clearly invalid.

In his Sophismata, John Buridan (c. 1295-1358) dealt with the
problem of self-reference in a setting, which related that
problem to the subjects of time and tense. Medieval logicians
used the term 'sophism' to describe propositions which were in a
given situation considered true by some and false by others.
That is, arguments could be made both for and against the truth
of the proposition in question. Such was exactly the case in
Buridan's discussion of this sophism: "You will throw me into the
water" [Buridan 1966, p. 219]. For the discussion of that sophism
Buridan imagined the following scenario: Socrates wants to
cross a river and comes to a bridge guarded by Plato, who says:
"Socrates, if in the first proposition which you utter, you speak
the truth, I will permit you to cross. But surely if you speak
falsely, I shall throw you into the water." Buridan assumed that
Socrates then replies with the sophism in question. Obviously, it
would be very hard for Plato to find out what he should do. He
must admit that he cannot keep his promise. Buridan
maintained that the sophism when uttered by Socrates has a
truth value, i.e. it is either true or false. It is, however, "not
determinately true or determinately false" [Buridan 1966, p.
220]. This means that we cannot determinately know whether
it is true or false, until we have seen how Plato acts when
Socrates is crossing. The two implications which can be found in
Plato's statement are invalid, since in both cases the antecedent
can be true and the consequence false. And since in this case
what he promised is simply false, he cannot be under any
obligation to keep his promise.

In order to deal with this sophism one also has to provide an
answer to the very difficult question concerning the status of
statements about the contingent future. Buridan's solution was
that a statement about the contingent future is true or false,
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although its truth value cannot be known by anybody now. That
solution is just one of the possible answers - as we shall see.

The logicians of the Middle Ages in general took the
Aristotelian view that a statement can change its truth value
with time. A proposition such as 'Socrates runs' is not true at all
times. The truth value depends on the actual state of affairs. The
idea of 'the truth of a proposition at a given time' thus comes into
the picture. Matters got more complicated when certain
logicians introduced propositions such as 'Sortes fuit currens in
a' ('Socrates was running at the time a') into the discussion.
Assuming that Socrates actually ran at time a, such a
proposition was regarded as false before and at time a, but true
at all times after a [Nuchelman 1980, p.133].

The truth value of the proposition was thus regarded as
relative to the time at which it was put forth - its 'moment of
utterance'. Several factors are important in determining the
truth value of a proposition: The 'present time' (understood as
the moment of utterance), the time at which the event does or
does not take place (tempus significantum), as well as the tense
of the verb in the proposition (tempus consignificatum).

To maintain that the truth value of a proposition in any given
case is to be determined relative to the 'present time' - the
moment of utterance - is not so simple as it may seem. One can
question the nature of that present time relative to which the
proposition is to be evaluated. For we might very well consider
the present as a duration rather than an atomic instant. John
Buridan argued for this conception and noted that the 'present
duration' which we have in mind may indeed be quite extended,
"for we call this year present and this day present and this hour
present " [Buridan 1966, p. 170]. Hence, Buridan argued that the
truth value of a proposition should be understood as varying
relative to the present regarded as a duration whose length is
conventionally determined. The majority of logicians in the
Middle Ages, however, took the view that the truth value should
be discussed as 'truth value corresponding to a certain time'.
They believed that what is needed in logic is 'durationless time',
not determined as a part of a duration, but as a limit for the
duration. Truth and time were considered as being closely
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interconnected. Walter Burleigh (c. 1275-1345) examined the
sophism "nothing is true unless at this instant" ("nihil est verum
nisi in hoc instanti" [Burleigh p.173] ). In his solution to that
sophism he concluded that if a proposition is true it must be true
now, that is to say at the present time. Even so, many medieval
philosophers realised that the idea of the truth of a proposition at
a durationless time was not without problems. We shall later
return to these questions which mainly have to do with
beginning and ending (incipit and desinit).

Buridan's answer to the question about the relation between
time and truth represents an important alternative to the
majority view. In his view the present, as well as the past and
the future, were to be considered as having a certain span.
Accordingly, one cannot give a definite answer to the question of
the truth value of a proposition without knowing the
presupposed convention of the duration of the present. The
truth of a proposition thus depends on the choice of the duration
which is considered to be the present. We shall analyse some
details of Buridan's position in the next chapter.

In his article in The Encyclopedia of Philosophy [London 1967,
vol.3, p.528], Ernest A. Moody identified the four most important
components of Medieval logic to be the general theories of 1)
suppositio terminorum (theory of terms) and 2) consequentia
(theory of entailment), 3) modal concepts, and finally, 4) the
general preoccupation with philosophical problems which were
in the main related to logic and language. We shall in the
following chapters consider some of the most characteristic
features of the tense-logic of the Middle Ages. We shall see that
the concept of time is relevant to all four areas mentioned by
Moody.

It should be mentioned that many of the medieval texts still
exist only in manuscript form. We have no guarantee that the
texts which have been published are generally representative of
the medieval logicians' views on the relation between time and
logic. However, it may well turn out that temporal logic received
even greater attention in the Middle Ages than it appears from
the Medieval texts which have been published so far.



1.4. TEMPORAL AMPLIATION

The temporal reference of terms is one of the problem do-
mains of tense-logic. The basic nature of the problem involved
should be clear when considering sentences such as "Young
Socrates was going to argue’, and 'The king of France was bald'.
Obviously, an adequate logical analysis of these propositions re-
quires an analysis of the temporal content of their subject terms.
In the Middle Ages, this problem field was commonly called
'‘ampliatio’, and great energy was invested into its solution.
Indeed, the work of the Medieval logicians on 'ampliatio’ is per-
haps the clearest example of the great importance which they
attributed to the logical study of temporal aspects of propositions.
One can hardly think of a Scholastic author of a major logical
work from the 14th century onwards, who would not also be
concerned with the temporal reference of terms. However, this
does not mean that all logicians called the problem domain
'ampliatio’: to our knowledge Ockham did not use this particu-
lar term at all in his analysis, perhaps because he had his very
own solution to this problem. Most Medieval logicians neverthe-
less did use the term 'ampliatio’ when discussing how to deter-
mine the temporal reference of the subject. The three rules put
forth by Walter Burleigh in his De Puritate Artis Logicae are
probably typical:

The first rule is that a common term standing (in a sen-
tence) with a non-ampliating verb about the present stands
only for present things. The second rule is that a common
term standing (in a sentence) with a verb about the past is
able to stand indifferently for present and past things. The
third rule is that a common term standing (in a sentence)
with a verb about the future is able to stand indifferently for
present and future things. [Normore 1975 p.51]

One of the crucial problems motivating the work on 'ampliatio’
was the problems regarding the naive conception of tensed
statements. According to that conception, a proposition of the
type 'A will be B’ is equivalent to the claim of the existence of a
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future in which ‘A is B', and similarly a proposition of the type 'A
has been B' is regarded as true if and only if the proposition 'A is
B' was true at some past time. But this naive conception cannot
be upheld in all cases. Consider for instance the statement

‘The little boy will become a famous man'.

This proposition can certainly be true, even though the state-
ment 'the little boy is a famous man' cannot be fulfilled at any
time. The solution was to interpret the statement as being
equivalent to:

'For a given person x, x is now a little boy and x will become
a famous man'

'The little boy' thus refers to something in the present although
the verb is referring to the future. But even this more refined
treatment cannot encompass all cases, as we can see from the
sentence 'Antichrist will be an orator'. Crucial to this example is
the theological observation that Antichrist does not yet exist. The
statement could consequently not be paraphrased in the same
way as the statement about the little boy, but was understood as
being equivalent to:

'"For some person x: it is true that x will be Antichrist, and x
will be an orator'.

In an analogous manner the proposition, 'Something white
was black', might be true because the following statement is
true: 'Something which has been white, was black’, or it might
be true because of the truth of, 'Something which is white was
black'.

Actually, even this fairly innocuous formulation is slightly bi-
ased, for it implicitly favours Ockham's solution over the traditi-
onal one. Burleigh's rules for ampliatio quoted above are repre-
sentative of the traditional solution, which treats sentences of
the form 'A has been B' as equivalent to 'For some x: x is or has
been A, and x has been B', and analogously for future tense sen-
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tences. It is possible that Ockham had Burleigh's logic at hand
when he wrote his Summa Logicae, which states:

For example if this proposition is true 'a white thing was
Socrates', and if 'white' supposits for that which is white, it is
not required that this will have sometime been true 'a white
something is Socrates', but it is required that this will have
been true 'this is Socrates' demonstrating that for which the
subject stands in 'a white thing was Socrates'.' [Normore
1975 p.48]

With this explanation Ockham showed how the proposition 'a
white thing was Socrates' can be true in the very first moment
in which Socrates was white for the first time. We have indica-
tions that Ockham did not accept Burleigh's rules since
Ockham thought that 'A was B' is either to be interpreted as - in
modern terms - 'for some x: x is A and was B', or as 'for some x: x
was A and was B', but not as the disjunction of the two possibili-
ties. That is to say, Ockham considered such sentences as inhe-
rently ambiguous. Such an interpretation of Ockham has been
defended by Graham Priest and Stephen Read [1981].

The difference between the two solutions is more significant
than one might think at first glance. One of the most persuasive
arguments in favour of the last kind of treatment - as opposed to
the traditional 'ampliatio-theory' - emerges when we analyse
propositions which require the use of a rule defining the past as
well as a rule defining the future. Let us use an example of
Buridan's {1966, p.150): 'Young Socrates was going to argue'. In
the case of this sentence, it does not seem acceptable to let the
temporal reference of the subject term 'young Socrates' extend
to the future just because an element of future occurs in the
verb phrase. More specifically, the 'disjunctive treatment’ forces
upon us a reading equivalent to

'for some x : x was going to be young Socrates, and x was
going to argue, or x was young Socrates, and x was going to

argue'.
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The first part of this reading does not seem plausible, and is not
necessarily forced upon us by the 'ambiguity treatment'.

One of the most famous analyses of 'ampliatio’' comes from
Albert of Saxony, who was the rector of the University of Paris
in 1353. Albert defined 'ampliatio’ with a particular view to
terms which do not refer to actually existing entities. That is, his
rules accepted that statements can be made about thing which
do not exist now or at any other time. He defined a number of
rather precise rules for 'ampliatio' in a way similar to
Burleigh's.

The study of 'ampliatio' was made a central part of logic du-
ring the later Scholastic period. The problem was studied as late
as in the 17th century by the Portuguese logician John of St.
Thomas (1589-1644), who was defending and still working
within the tradition of Scholastic logic. He wrote two short pas-
sages directly concerning 'ampliatio’, as well as a third passage,
in which that phenomenon forms part of the problem. In the
first of these passages he defined 'ampliatio', and in the second
passage he presented four rules related to it. Two of these rules
are similar to the above with respect to temporal and modal
propositions, while the others are formulated in the following
way:

A term signifying a beginning amplifies all terms before
and after to what is or what will be; a term signifying
cessation, to what is or was... [John of St. Thomas, p.73]

The term 'imaginatively' and the verb 'imagine' amplify all
antecedent and subsequent terms to the imaginable...
Similarly, signifying an interior act of the soul, as I wish, I
understand, etc., can amplify to the imaginable the term on
which it hits as its object. [John of St. Thomas, p.74]

The second of these two rules can naturally be looked upon as
an extension of 'ampliatio’- namely a rule for modal proposi-
tions. The first rule demonstrates yet another connection be-
tween time and 'ampliatio'. Here the study of ampliatio is re-
lated to the extensive Scholastic debate on the logic of 'incipit'
and 'desinit’, to which we shall return.
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The investigations in the last chapter clearly demonstrated
that the naive conception of tensed statements should be
rejected as a general solution. On the other hand, it is also clear
that Buridan defined tensed statements in a recursive way,
reducing them to statements in the present tense. It turns out,
however, that even the statements in the present are rather
complicated. The reason for this is that Buridan regarded the
present as a duration and not as a point in time. He explained
the problems regarding the present in the following way:

Also I say that it is not determined for us how much is the
present time which we ought to use as the present. But we
are allowed to use as much as we wish, for we call this year
present and this day present and this hour present. [Buri-
dan 1966 p. 170]

Obviously, Buridan's notion of the present was that of a
duration. There was clearly an element of convention involved
in this notion, since we are allowed to use as much of the present
time as we wish as the present.

Buridan's concept of truth is relative to a choice of the present.
That is, it only makes sense to talk about the truth of a contin-
gent proposition if the present is specified. Buridan introduced
his idea of the truth of a proposition in the following way:

Thus, if in one part of the present time, Socrates stands or is
white or is dead, it is simply true to say that he stands or is
white or is dead. [Buridan 1966 p. 173]

According to Buridan's definition a proposition p is true during
the present if and only if there exists a part of the present time
during which the truth of p is given. The scope of that definition
should perhaps be restricted by observing that Buridan's
examples in this context are all concerned with what we would
call 'stative propositions'. We may illustrate one of his examples
by the following figure.

43



44 CHAPTER 15

The present (Now)

[ | Time
L i |

Socrates is alive

Figure 1

The truth of the proposition 'Socrates is alive' is given with re-
spect to the interval I, which is a subinterval of the present assu-
med to be specified in the context. Thus, according to Buridan's
ideas the proposition is to be regarded as true with respect to the
entire present. Or in other words, if we have in mind the situa-
tion above as well as the present specified above, the present-
tense proposition 'Socrates is alive' should be evaluated as true.
This also means that there is a distinction between the general
notion of being true with respect to an interval, and the notion of
being given for as certain interval. The latter is the stronger no-
tion of the two, and it reflects the intuition that the proposition in
question is true throughout the interval.

A MODERN REPRESENTATION OF BURIDAN'S IDEAS

In order to give a symbolic representation of Buridan's ideas,
we shall use the following conventions:

- variables p, g, ... stand for atomic propositions;

-variables I, I',... denote intervals (durations);

- I, is understood to denote the present (as specified by some
choice);

- included(I,I') means that the interval I is included in the
interval I';

- the formula T(,p) means 'p is true with respect to the in-
terval I';

- the formula given(I,p) means 'the truth of p is given for
the interval I'.
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The relation 'included' is the usual inclusion relation among
intervals, and it is thus both reflexive (I1) and transitive (12):

(I1) VI: included(II)
(12) VILI'I'": (included,I') Aincluded('\I')) >
included(1,I'")

The intuitions for 'given' are not stated explicitly in Buridan's
text, but it seems reasonable to assume that the following theses
must hold:

(I13) given(lLA) o VI'. (included(I'l) o given(I',A))
(14) V1 (given(lLA) o ~given(l,~A))

(I5) ~given(I,,A) o (3 I included(L,I,) A given(l,~A))
(I6) (given(I,,A) A given(l,,A o B)) o> given(I,,B)

We observed above that given(l,A) is a strong notion of truth,
implying that the state of affairs denoted by A obtains
throughout the interval I. This intuition is what is formalised by
(I3)-(I15). Specifically, (I3) reflects the intuition that if A is given
for some interval, then it is also given for any of its subintervals.
(I4) captures the intuition that A and ~A cannot be given for the
same interval. (I5) ensures that if given does not obtain for some
predicate with respect to an interval, then the negated predicate
is given for at least one of its subintervals. Finally, (I6) states
that the given-relation is closed under a modus-ponens-like
operation.

We suggest the following symbolic representation of Buridan's
definition of truth with respect to an interval (understood to be
'the present'):

(B1) T(T,,A) = gef F1I: included(1,) A given(l,A)
A consequence of (B1) is the following one:

(B2) Tdy,A) = 3I: included(,I,) A T(LA)
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(B1-2) can of course be further generalised to cover all well-
formed propositions, but we do not currently wish to state the
rules for expressions like T(I,,p A g).

Now let us consider a situation which gives rise to some intui-
tive problems. Suppose that it is given that in one part of the
present time, Socrates is alive, and in another part of the present
time, he is dead:

The present (Now)

| - ] Time
Socrates is alive  Socrates is dead

Figure 2

It follows from the definition (B1) that Buridan is obliged to
accept the truth of the conjunction 'Socrates is alive and he is
dead'. This seems to be a violation of the principle of

contradiction, and so it would be if the following formula were
valid:

(B3) T,p Aq) = T,p) AT,q)

Consequently, Buridan had to reject the principle embodied by
(B3). But how could he establish a consistent framework such
that (B3) would be invalid? In order to solve this problem
Buridan had to make a distinction between, 'Socrates is alive
and he is dead' and 'Socrates is alive and dead' . The latter can
never be true, whereas the former can in fact in some cases be
accepted as true.

In order to analyse this problem in further detail it was very
important for Buridan to distinguish between affirmative and
negative propositions. Affirmative propositions are statements
of the form 'S is P', which are not negated. Conjunctions like
'Socrates is alive and he is not alive' i.e.

T(l,,p) A ~T(np)
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can never be true. But if this is so, how can there be a duration
for which the conjunction 'Socrates is alive and he is dead' is
true? Buridan solves the problem by pointing out that while
'Socrates is dead' is an affirmative proposition, 'Socrates is not
alive' is a negative proposition. According to Buridan, the
conjunction

T n:p) ATy, ~p)

can in fact be true in some cases, namely in such situations
where p is true in some part of the present duration I, and ~p is
true in some other part of I, (see figure 2). Obviously there are
two kinds of negation involved in the temporal logic of Buridan:

(i) negation of predicates, e.g. 'non-alive' (='dead’ ) is the ne-
gation of the predicate 'alive';

(ii) negation of propositions, e.g. 'Socrates is not alive' is the
negation of the proposition 'Socrates is alive'.

We'll make use of the notation

1) T(,,A) for 'Socrates is alive',

(2) T(,,~A) for 'Socrates is dead’,

3) ~TI,,A) for 'Socrates is not alive',
(4) ~Td,,~A) for 'Socrates is not dead'.

So the negation involved in (2) is a predicate negation, whereas
(3) is the usual sentential negation. In (4) we see both kinds of
negation occurring.

Before proceeding it should be noted that in our logical
language, A and ~A are well-formed propositions in their own
right. When they are not preceded by the T-operator, they are
understood to refer to the present. Using (B2) we find the
following truth conditions:

(B4) Td,,~A) = FI: included(l,I,) A T,~A)
(B5) ~T(I,A) = VI: included(l I,) > ~T(I,A)
(B6) ~Td,,~A) = VI: includedd,1l,) > ~Td,~A)
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Intuitively, it is obvious that an analogue of the traditional rule
for sentential double negation should also hold for predicate
negation. Using (I1) - (I6) it can in fact be verified that

(B7) ~Tp,A A B) = ~T(1,,A) A ~T(I,,B)
Or equivalently,

(B8) Td,,A vB) =T1,A) vTI,B)
From (I5) and (B4) we can now deduce that

(B9) ~ given(I,,A) > T(I,,~A)
(B10) ~ given(l,,~A) o T(I,,A)

By contraposition we find

B11) -~Td,~A) > given(I,,A)
(B12) ~T(,,A) o given(l,,~A)

It now follows from (B1) and (I11)-(15) that

(B13) ~T(Ip, ~A) > T(1,A)
(B14) ~T,A)>Td,~A)

But obviously the opposite implications do not held, for as we
have seen it may very well be true that

Ta ns ~A) AT n,A)

is the case, as in figure 2 - in which case neither of ~T'(I,,A) and
~T(I,,~A) are true! And in general, the consequences of (B12)
and (B13) may well be true, without the respective antecedents
being true.

One consequence of all these observations is of course that the
natural language inference
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'if Socrates is alive, then he is not dead'

is invalid on Buridan's account of the duration of the present.
This last result seems to us to be in conflict with the logic of
natural language. If that is so, then Buridan's ingenious
investigations raise some problems of which any attempted
interval semantics for natural language should take heed.

It may seem by now that this logic is suspiciously complicated.
But we do not think that this observation by itself makes
Buridan's ideas dubitable; interval semantics is in general a
more complicated business than instant semantics. If we wish to
study truth relative to durations, we must be prepared to accept
a complicated framework.

TWO KINDS OF TENSES

As we have seen Buridan took it for granted that tense-
distinctions are important to logical reflection. But he was also
aware of the fact that a logic of tenses which pays due regard to
a logic of durations is very complicated. For this reason,
probably, he was content to sketch his ideas of tense logic.
Buridan suggested two alternative ideas for the construction of
the logic of tenses. The first one leads to the fairly natural kind of
semantics, which we have discussed above. The tenses, past and
future, are taken absolutely, in the sense that no part of the
present time is said to be past or future.

Buridan made no attempt at formulating a detailed semantics
for the tense operators, but he maintained that if the tenses are
taken in an absolute sense, the Aristotelian proposition 'All
which is moved was moved previously' cannot be valid {Buridan
1966, p. 177]. Generally speaking, the implication

moving(X) o P(moving(X))

is not a valid thesis in Buridan's temporal logic. In the same way
he would also reject the validity of the implication
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moving(X) o F(moving(X))

On the other hand, these two propositions become valid if the
tenses are taken in the relative sense, which Buridan explained
in the following way:

But in another way, 'past' and 'future' are taken relatively,
so that the earlier part of the present time is called past with
respect to the later, and the later part is called future with
respect to the earlier. This way of taking the terms is
customary. [Buridan 1966, p. 175]

Buridan pointed out that if some thing is moving now, then
there is a part of the present during which it is moving, and
hence, it is moving in some part of the present which is earlier
than some other part of the present. Therefore, if the thing is
moving, then it was moving (if the past is taken in the relative
sense). For this reason, the Aristotelian sophism must be
conceded if the past is understood relatively.

It seems plausible to represent Buridan's idea of a relative past
in the following way:

T, PreA) = g 31" included(I',I,) A
31" before(I",I") A given(I".A)

whereas the absolute past can be defined as
T(I,,PapsA) = qer I1': before(I',1,) A given(I',A)

Let us assume that it is true for some 'now' I,, that some thing
X is moving. According to the definition (B1) this means that
there is an interval I' for which it holds that

included(I', 1) A given(I',moving(X))

If I; is included in I' and Is is included in I, such that
before(I,Ig), then by (I12) and (I3) we have
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included(I1,1,) A before(I1,I3) A given(I,moving(X))
(Of course, our scenario here does not preclude that
given(Is,moving(X))

may also hold - indeed, it might be true that X is moving
throughout the present - but on the other hand, this is clearly
not a necessary condition, i.e. it is not entailed.)

These observations fit nicely into the above definition of the
relative past; it follows directly from our assumptions that

Iy included(IaI,) A F1;:(before(l;,1s) A
given(I,moving(X))

which is the definition of T'(1,,P,.(moving(X))). Therefore, it
follows that

T(I,,moving(X)) > Pry(moving(X))
Obviously, an analogous thesis cannot be proved for P, instead

of Pr; It turns out that the two intuitively different kinds of
tenses are also very different from a formal point of view.



1.6. THE LOGIC OF BEGINNING AND ENDING

A very special chapter of Medieval logic was opened when
philosophers of that time took up the analysis of the verbs
‘incipit' (it begins) and 'desinit' (it ends). The starting point was
found in Aristotle's Physics, books 6 and 8, so it was no
coincidence that their deliberations proved to be relevant not
only to logic but also to physics. The questions concerning
beginning and ending naturally led to the consideration of
temporal limits. The number of Medieval logicians who worked
on these questions was very large [Kretzmann, 1976, pp.101£f].
As pointed out by William and Martha Kneale [1962, p.233-34],
the very fact that so much attention was given to this type of
problem constitutes an excellent proof of the formal character of
Medieval logic. The general problem had to do with the correct
understanding of 'incipit-statements' such as:

(1) 'Socrates begins to be white',
(2) 'Socrates begins to run’',

and analogously for statements containing the verb 'desinit'.
The task of the logician was to give clear semantic definitions of
'incipit' ('begins') and 'desinit' ('ends'). The most common
definition given in order to clarify the meaning of the above
examples was the following:

(1') 'Socrates is white and was not white immediately
before'
(2") 'Socrates does not run, but will run immediately after'

This interpretation was for example defended by Peter of
Spain (d. 1277). Obviously, the treatment offered by (1') and (2"
does not fit into the same pattern, or paradigm; 'whiteness' and
'running’ are treated differently. This difference - inspired by
Aristotle's treatment in the Physics - originates in a distinction
between permanent things or states (whose parts appear
simultaneously), and successive things or states (whose parts
appear one after another). Medieval logicians considered the

52
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property of 'running' to be successive and 'whiteness' to be
permanent. Hence the two kinds of predicates had to be treated
differently. In addition to the two types of phenomena, the
permanent and the successive, a third object type, the
instantaneous, was observed and discussed by Burleigh and
Thomas Bradwardine (c.1295-1349) [Nielsen, 1982, p.29].

The discussion of beginning and ending is in our opinion a
striking example of the manner in which medieval logic is
relevant even today for semantic discussions. When using
symbolic language for the discussion, we shall use the following
convention:

p is a variable ranging over permanent state propositions, s
is a variable ranging over successive state propositions, and
q is a meta-variable ranging over both types of propositions.

The questions concerning 'incipit'/'desinit' were amongst the
most discussed problems in the Middle Ages, as Simo Knuuttila
[1985, p.165ff] has pointed out. The analysis of statements was
central to the Medieval approach to scientific questions in gene-
ral, and this particular problem was regarded as important in
scientific and physical thinking as early as the 12th century (at
which time 'the present' was regarded as a primitive concept).
Thus, Scholastic natural philosophers who were interested in
kinematics turned their attention to propositions regarding
beginning and ending [Murdoch p.117ff].

In the medieval treatises on the question there is evidently a
connection between the tense-logical analysis of the problems of
'incipit' and 'desinit', and the emerging awareness of the
problem of continuity in connection with establishing the
'mathematical moment'. This is clearly the case with for
instance Richard of Lavenham's analysis in his treatises De
Natura Instantium and De Primo Instanti [{Qhrstrgm 1985b].

The study of 'incipit' and 'desinit' is an extremely difficult
matter. Two complicating factors ought to be mentioned.
Firstly, a special challenge is constituted by statements making
iterative use of 'incipit' and 'desinit'. Secondly, the use of
'immediately before' and 'immediately after' calls for very
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specific tense-logical constructions, since it is not obvious how
one is to precisely understand these expressions. It is the
question of the continuity of time which is at stake here. Richard
Kilvington (died 1361) amongst others analysed these problems
thoroughly in his Sophismata {Kretzmann 1982, p.270ff].

Two characteristic features of Medieval logic was that it dealt
with propositions whose truth-values could vary from time to
time, and that it took tensed statements into serious considera-
tion. On that basis medieval logicians put forth some very inter-
esting ideas of temporal logic, also with respect to the problems
of 'incipit'/'desinit'. In the following we will concentrate on some
findings of William of Sherwood, which he formulated in his
Syncategoremata [Kretzmann 1968}.

According to Sherwood the terms 'incipit' ('begins') and
'desinit’ ('ceases') can be used categorematically as well as
syncategorematically. This distinction was well known in
Medieval logic, as described by [Kretzmann et al ]:

Medieval logicians regularly classified meaningful words
into such as have meaning in their own right (termini
significativi ...), and such as are meaningful only when
joined to words of the first kind (termini consignificativi...).
The former are also called categorematic terms..., the latter,
syncategorematic terms... [p. 162]

Typical syncategorematic words are quantifiers such as
'every’, 'all', 'some’, etc. These remarks can be supplemented by
the observation that in a syncategorematic use of an expression,
the expression is considered to be 'incomplete'. For instance, the
verb 'to begin' may be combined with an infinitive complement
as in 'begin to run' in order to form a complete predicate (i.e. an
intransitive verb phrase). In this use of 'begin’, it is considered
incomplete until adjoined with its complement.

A categorematic expression, on the other hand, is complete by
itself - in the way a verb such as 'walk' may make up a full verb
phrase by itself. Here, we will concentrate on the syn-
categorematic use of the verbs. In this syntactic role they
indicate how things are qualified and how they are to be
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interrelated, but they cannot by themselves be used as the predi-
cate of a sentence.

In medieval logic some of the syncategorematic terms were
classed as exponible terms, i.e. terms having an obscure sense
which has to be explained or clarified. Sherwood stated that
‘incipit' and 'desinit' are such exponible terms. He offered the fol-
lowing explication of 'desinit':

Therefore, if I say 'he ceases to be sick, or unhealthy', then
'to cease' indicates that the thing is at the end of the time in
which it was such and such, (in termino temporis in quo fuit
talis). [Kretzmann 1968 p.109]

A MODERN REPRESENTATION OF THE IDEAS

Let the statement variable p stand for an arbitrary proposition,
e.g. 'Socrates is alive', and let Cp represent the proposition
stating that p ceases to be true, i.e. 'Socrates ceases to be alive'. S-
herwood's description of the time at which 'he ceases to be sick'
as 'terminus temporis in quo fuit talis', i.e. 'the end of the time
during which the person was sick', gives rise to the following
explication:

(1) The proposition Cp is true at the time t only if t is a limit
between times at which p is true and times at which p is
false.

If Bp represents the proposition stating that p begins to be true,
the following condition seems to be natural in addition to (1):

(2) The proposition Bp is true at the time ¢ only if t is a limit
between times at which p is false and times at which p is
true.
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It must be noted that (1) and (2) are not complete definitions,
since we have only stated some necessary conditions for Cp and
Bp to be true at t. If time is continuous, and the distribution of the
truth values of propositions corresponds to temporal intervals,
the limits mentioned in (1) and (2) are well-defined. Then the
definitions are in fact complete - so in that case, we may substi-
tute 'only if' by 'if and only if'. If on the other hand time is dis-
crete, the conditions in (1) and (2) are not sufficient. For let the
truth-values (T: true, F: false) for p be as follows:

time 1 2 3 4 5 6 17
trath-value ¥ T T T T F F

- where the integers are used to indicate the succession of
discrete instants (or discrete periods). Now there is a basic
intuition according to which it is reasonable to say that Cp is
true at t = 6 and that Bp is true at t = 2. But on the other hand, it
also might be intuitively plausible to say that Cp is trueatt =5
and that Bp is true at t = 1. In fact, when operating on the basis
of discrete time, (1) and (2) give rise to four possible
combinations. It must be concluded that they are not yet full
definitions. In fact, what the precise 'limits' of (1) and (2) should
be determined to be also depends upon whether we are talking
about successive or permanent states. So far, we have been
using only the example of the permanent state p, but actually
(1) and (2) in their general formulation are meant to apply to
successive states also. A fully precise version of (1) and (2) will
have to be differentiated according to the type of propositions in
question. Sherwood realised all of this and did indeed arrive at a
clear definition based on his concept of time.

In the notes to his translation of William of Sherwood's Synca-
tegoremata Norman Kretzmann stated: "Sherwood's analysis is
evidently based on a view of time as a sequence of discrete in-
stants or periods..." [Kretzmann 1968, p.109]. We agree with
Kretzmann's observation. Some of the phrases and expressions
used by Sherwood obviously presuppose that it is possible to iden-
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tify an immediate successor and an immediate predecessor for
every instant in time. His use, for instance, of the expression 'in
penultimo instanti vitae suae' ('in the next to the last instant of
his life') clearly indicates that according to Sherwood there is an
instant immediately preceding 'the last instant of his life".

PERMANENTIA AND SUCCESSIVA

Since Sherwood used a discrete parameter of time, further ex-
planations of 'incipit' and 'desinit' were required. In his exposi-
tions he was relying on the distinction between 'permanent
states' (permanentia) and 'successive states' (successiva), which
we discussed above. The parts of a permanent state are at one
and the same time, whereas the parts of a successive state are
not at one and the same time. The property of 'being white'
represents a permanent state, and 'running' represents a
successive state. As we also mentioned the distinction goes back
to Aristotle. The philosophical starting point for Sherwood's
discussion is to be sought in Aristotle's Physics book VI and book
VIII. Aristotle stated that

For a change can actually be completed, and there is such a
thing as its end, because it is a limit. But with reference to
the beginning the phrase has no meaning, for there is no
beginning of a process of change, and no primary 'when' in
which the change was first in progress. [Phys. 236a 12-14]

Obviously 'a process of change' is a successive state. Hence, ac-
cording to Aristotle there is an end to, but no beginning of a suc-
cessive state. The latter observation may seem counterintuitive,
but what is meant is simply that a thing is not in the state when
the thing begins to be in the state. Aristotle's view also means
that a thing is in the state when the thing ceases to be in the
state. In symbols:

(3.1) (Bs o ~s)
3.2) (Cs o)
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where s is an arbitrary proposition about a successive state.
Sherwood maintained that (3) is valid for such propositions. Let
the truth-values for s be as follows:

time 1 2 3 4 5 6 7 -
truth-value F T T T T F F

We discussed above the same series of truth values for the per-
manent state proposition p. It was and observed that from an in-
tuitive point of view, it could be argued that Bp was true at
either t =1 or t =2, and analogously for Cpatt =5and t =6. At a
pre-theoretical level, a similar argument might be made about
Bs and Cs. However, if we combine the insight of (3) with (1)
and (2), we must arrive at the conclusion that Bs is true if and
only if t = 1 and that Cs is true if and only if t = 5.

On the other hand, if p is a propesition corresponding to a
permanent state with the above variation of truth-values, Sher-
wood's view can be formulated in the following way:

(41) (Bpop)
(4.2) (Cp>o~p)

That condition is also in good accordance with the observations
by Aristotle in his Physics, book VIII:

It is also evident that, when speaking of the subject of motion
or change, unless we assign the instant that divides past and
future time to the state into which it will be for the future
rather than to that which it turns out of and in which it was
in the past, we shall have to say that the same thing both
exists and does not exist at the same instant, and when it has
become something it is not that something which it has
become. (263 b 10-14).

Aristotle examined the proposition: 'The object D is white'. He as-
sumed that D is white before the instant ¢, and not white after ¢.
Obviously, t is a limit: D ceases to be white at ¢ and begins to be
not-white at t. But since the change from white to not-white has
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been completed at t, D must be not-white at t. Hence, according
to Aristotle (4) is obviously valid for the proposition

p: "The object D is not white'.

We can now generalise the results of the discussion into the
following equivalences:

(5.1) Bs =(~s A F(1)s)
(5.2) Cs =(s AF(1)~s)
(6.1) Bp=(P(1)~p)
(6.2) Cp =(~p A P(1)p)

P(n) is read 'n time units ago it was the case that ...' and F(n) is
read 'in n time units it will be the case that...". In the following
we intend to investigate Sherwood's solutions to some sophisms
concerning 'incipit' and 'desinit’.

(A) WHAT BEGINS TO BE CEASES NOT TO BE

Using the same kind of symbolic language as above, we may
render this sophism as:

(7) Bq 5C~q

where ¢ ranges over arbitrary propositions. Sherwood, of
course, held this statement to be true. But since it is a sophism,
there also exists an argument implying that the statement is
false, namely this one:

'But what begins to be is, and what ceases not to be is not;
therefore what is is not'. [Kretzmann 1968 p.113].
In symbols: (Bg > ¢) and (C~q > ~q)

But this combination of statements is neither in agreement
with (5.1-2) nor with (6.1-2), i.e. ¢ can neither be a permanent
state nor a successive state. On the other hand, if we accept (5)
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and (6), it turns out that (7) is a valid thesis, and hence a fortiori
the sophism is true. Accordingly, the premise of the argument
above should be rejected (and so should its conclusion).

Using (5) and (6) it can be verified that (7) holds in general.
We shall show (7) for permanent propositions:

(i) Bp (assumption)

(ii) pAP(D~p (by 5.1)

(iii) ~~p A P(1)~p {double negation)
@iv) C-p (by 5.1 used on ~p)

Here it is assumed that if p is a permanent state, then ~p is also
a permanent state. - The proof of (Bs > C~s) is analogous, and
combining the two we of course have (7). In fact, the
implications in (7) can be substituted by equivalences, as should
be obvious from the proof above.

(B) CEASING TO BE NOT CEASING
Sherwood formulates another sophism in the following way:

'‘Suppose that Socrates is in the next to the last instant of his
life. Then Socrates ceases to be not ceasing to be'.
[Kretzmann 1968 p.114]

In the following, let p represent the proposition 'Socrates is
alive'. - According to Sherwood the sophism is not valid, if 'ceases
to be' and 'not ceasing to be' are distributed as in 'Socrates ceases
to be and Socrates doesn't cease to be'. This is obvious, for if the
sophism is read in this way, its conclusion will be Cp A ~Cp,
which clearly cannot be accepted. But if 'ceases to be' and 'not
ceasing to be' are iterated as in C~Cp, the sophism should be
regarded as true, indeed as a valid thesis. Let the truth-values
for p be as follows:

time .34
.27

56 7..
truth-value TFF..
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Before the validity of the sophism can be demonstrated, it must
be clarified how 'in the next to the last instant of his life’ ('in pen-
ultimo vitae suae') should be understood. Is it the instant imme-
diately before the death of Socrates, i.e. t = 5, or is it the instant
immediately preceding that instant, i.e. t = 4? It turns out that in
the latter case, the sophism will not be valid. For this reason we
shall assume that the instant in question is the instant immedi-
ately preceding the death of Socrates, t = 5. On the assumptions
made so far the sophism can be symbolised in the following way:

(8) F(1)Cp > C~Cp

Note that the antecedent is true exactly at £ = 5. For the proposi-
tion p corresponds to a permanent state, and consequently Cp
has to be understood according to the exposition in (6). But it
does not necessarily follow that its negation ~Cp is also a
permanent state. To understand (8) fully we must know
whether the proposition ~Cp corresponds to a permanent state
or to a successive state. It can be shown that (8) is not valid if the
exposition in (6.2) is used for both occurrences of C in C~Cp.
Hence, it seems to be natural to assume that ~Cp corresponds to
a successive state. In general, negating a predicate of one
aspectual type may turn the predicate thus formed into another
type (a fact which is also realised within modern linguistics).

On this observation, we can use the definition given in (5.2),
and this makes (8) equivalent to

(9) F(1)Cp o> (~Cp AF(1)Cp)
which is valid if and only if the following is a valid thesis:
(10) F(1)Cp > ~Cp

Since p is a permanent state proposition, we must now use
(6.2), which makes (10) equivalent to

(11) F(D)(~p A P(p) > (p vP(1)~p)
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Let us take a semi-formal look at the antecedent of (11): on our
assumptions, F(1)~p is clearly true (~p is true at t = 6), so in this
case the antecedent of (11) is true if and only if F(1)P(1)p is true.
As for the consequent, the truth value of P(1)~p cannot be de-
termined by the assumptions legitimate in connection with the
sophism in question. Nevertheless, if we can show that p must be
true, the entire consequent is of course true, and we can neglect
P(1)~p. In short, if

(12) F()P(1)p >p

is a valid thesis, then (11) is also a valid thesis. Since
F(DP(1)p > p is intuitively valid, it follows that the validity of
(8) is a consequence of natural and obvious reasoning. We may
add that in modern axiomatisations of metrical tense logic, (12)
is also valid, that is, a theorem. In the context of the discussion of
this sophism, Sherwood makes an interesting observation. He
considers the proposition

(13) Cp 5 C~Cp (where p is as above).

This proposition is a valid thesis if time is dense. To see this, as-
sume that Cp is true at the time t and that time is dense. Accord-
ing to (1) it follows that t is a limit between times at which p is
true and times at which p is false. Then ¢ is also a limit between
times at which ~Cp is true, and times - in this case only one time
t - at which ~Cp is false. For this reason C~Cp is true at t.
Hence, (13) is a valid thesis. Obviously (13) is not valid if time is
discrete, whereas (8) is not valid if time is dense. These results
are rather remarkable. Sherwood did in fact demonstrate that
the difference between accepting (8) as valid, or alternatively,
accepting (13) as valid, corresponds to the distinction between
discrete and dense time. For a modern logician, (8) and (13) will
be natural candidates for an axiomatic description of this
distinction.
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(C) CEASING TO BE BEFORE SOMETHING

Sherwood presents another sophism pertaining to some of the
same ideas in the following way:

'Suppose that Socrates is in the next to the last instant before
Plato's death. Then Socrates ceases to be before Plato's
death'. [Kretzmann 1968 p.114]

Let p represent the proposition 'Plato is alive'. As with the soph-
ism in the above section we will assume the instant in question to
be the instant immediately preceding Plato's death. Hence the
antecedent in the sophism is true if and only if F(1)Cp is true,
whereas the consequent is true if and only if CF(1)p is true.
Therefore the whole sophism can be represented as follows

(14) F(1)Cp o> CF(1)p

According to Sherwood this sophism is valid, which is easily ver-
ified if F(1)p is considered to correspond to a permanent state
and time is discrete.

SOME FUTHER REMARKS

The above results should serve to demonstrate that Sherwood
was committed to the view that the concept of time is needed
within logical analysis. He considered the logical operators cor-
responding to 'beginning' and 'ceasing' to be interesting within a
temporal logic, and formulated the semantics of these operators.
He did so by giving some basic theses for each of them and argu-
ing for the validity of those theses. By this work William of
Sherwood provided a valuable contribution to the medieval
study of temporal logic. It is remarkable that he was aware of
the possibility of distinguishing between discrete and dense time
by means of theses from temporal logic.

Another debate, which is to some extent related to the problems
concerning 'incipit' and 'desinit’, is the debate of the concepts of
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'moment of change' and 'moment of creation', issues which bear
on the ideas of 'creatio ex nihilo' and related questions. The ana-
lysis of 'creation', 'beginning’, 'end’, and similar concepts also
played an important role after the Middle Ages. Moses
Mendelssohn (1729-1786) was convinced that an analysis of
time and logical relations in connection with change would con-
stitute an argument for the immortality of the soul, an argu-
ment which Kant and Brentano resumed [Chisholm 1980].

It is also worth pointing out the distinction between successiva
and permanentia clearly anticipate those syntactic and tense
logical distinctions among types of verb phrases discussed in
modern linguistics. In fact it may be easier to understand them
when comparing them with present-day terminology. Zeno
Vendler [1967] divided verb phrases into four major types:

(a) states, corresponding to permanent properties - such as
'is white',

(b) achievements, roughly corresponding to instantaneous
events/properties, such as 'the deer was hit by an arrow',

(¢) accomplishments, which may be described as non-
instantaneous events, such as 'to draw a circle',

(d) activities, approximately the same as successive proper-
ties, such as 'to run'.

In modern formal semantics, it is realised that these different
types of verb phrases call for different tense-logical treatments
[Galton 1987, p. 13]. Also in Artificial Intelligence we find similar
distinctions, as for instance in J. F'. Allen's distinction between
states, events, and processes [Allen 83, 84] - the last concept
being comparable to that of successive states.



1.7. TIME AND CONSEQUENTIA

In the introduction, we emphasised the fact that the subject
matter of logic has not been constant throughout the history of
logic, and that the focus of interest has changed several times.
Even so, the very notion of logical consequence is an almost de-
finitional property of logical studies. The Middle Ages are no ex-
ception in this respect. The study of logical consequence, known
as consequentia, constituted one of the most central fields within
Medieval logic. Since we have been stressing the importance
attributed to time and tense, we should now balance our account
by observing that the concept of time was not of crucial impor-
tance to the formulation of most of theories on consequentia. On
the other hand, in some cases time did in fact play a réle in such
theories.

Some medieval texts on consequentia appears to be about
conditionals ('if A then B'), but in most of the texts on
consequentia it seems that the author is in fact dealing with
what we would now call inference. But as Alexander Broadie
has pointed out [1987, p.51] it is plain that medieval logicians in
general were aware of the difference between what we would
call respectively conditionals and inferences, although they used
the same term for the two relations. In this chapter we shall also
use the term in this ambiguos way.

In medieval logic the study of syllogisms was considered to be
one of the key parts. Sometimes other syllogisms that the ones of
the classical figures were studied. Given the medieval aware-
ness of the importance of temporal logic it is not surprising that
they introduced a syllogistic tense logic. According to Broadie
the first detailed discussion of the topic was given by William of
Ockham. In his Summa Logicae he stated for instance:

When both premisses are past-tensed in the second figure
and the subject of each of these supposits for things which
are, there always follows a present-tensed conclusion, and
not a past-tensed conclusion. [Summa Logicae 111, 1,18]

65
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This means that although the syllogism

No (present) A is B
Some (present) C is B
Ergo: Some C is not A

is in fact valid, the tensed syllogism,

No (present) A was B
Some (present) C was B
Ergo: Some C was not A

has to be rejected in general, whereas the

No (present) A was B
Some (present) C was B
Ergo: Some C is not A

should be accepted as valid syllogism. - In this way William of
Ockham presented some rather precise components for the
formulation of a formal (but of course not symbolic) tense logic.

Time was also involved in the medieval study of consequentia
in another way. The conception of statements as units with
temporally variable truth values led the medieval logicians to
the notion of consequentia ut nunc, which was the medieval
term for that form of logical consequence whose truth value
varies with time. That is, this type of logical consequence is
capable of being true at one time and false at another. Peter
King, for instance, has described an ut nunc consequence as a
statement with an antecedent and a consequent 'such that it is
not the case that the antecedent obtains and the consequent fails
to obtain', and he has stressed that we must take the tense of the
verb in 'it is not the case' seriously [King p.62-63].

So in medieval logic we once again find a distinction between
an implication which can be valid at one time (or some times, or
some period of time), but invalid at other times, and an
implication which must be valid at all times, if it is to be valid at
all. That distinction had already been discussed in Ancient times
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(Diodorus, Philo of Megara, the Stoics), an issue which we
touched upon in our discussion of the Master Argument. There
is an exact correspondence between the distinction underlying
the Ancient discussion and the later Medieval distinction
between 'as-of-now consequence' (consequentia ut nunc) and
'absolute consequence' (consequentia simplex) - as pointed out
by L. N. Roberts [1967]. As we have seen, the famous debate
between Diodorus and Philo of Megara was precisely concerned
with the relation between time and implication. The question
was whether to allow the truth values of the implication to vary
with time or not. The Medieval logicians were aware of the
problem, and solved it by allowing both kinds of implications,
whilst duly distinguishing between them in any concrete case.
Burleigh, for example, presented one implication of the same
type as Diodorean implication, that is, it had to be valid at any
time, and another - consequentia ut nunc - in the style of Philo,
that is, it only had to be valid at one time.

Walter Burleigh put forth the following example of a
consequentia ut nunc:

(1) 'Every man is running, so Socrates is running'

This is clearly a consequence, which is correct at certain times
and not at others. It is obviously only valid during a period of
time, in which Socrates is alive. On the other hand, a
consequentia such as:

(2) 'All living beings are running, so all men are running'

is valid at all times, since the set of living beings must at any
time include the set of human beings. However, the
consequentia of (1) will prove to be false at times where no man
by the name of Socrates exists.

While consequentia was in general a field of much interest for
medieval logicians, they did not pay much attention to the
specific consequentia ut nunc, nor did they develop any real
theory about it. It appears that only a few leading medieval
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logicians attempted to define rules for this kind of consequentia.
Burleigh, for one, stated this rule:

In an as-of-now consequence, however, the antecedent can-
not be true without the consequent as of now. [Kretzmann
1988, p.285]

This means that at a time at which the consequence holds
good, the antecedent cannot be true without the consequent.
John Buridan formulated another rule:

From any false sentence any other sentence follows as a
consequence ut nunc, and also any true sentence follows
from any other as a consequence ut nunc. [King p. 196}

What this rule states is obviously close to what we would call
the paradoxes of implication. That should come as no surprise,
for it is evident that consequentia ut nunc is essentially the same
as material implication - whereas consequentia simplex
corresponds to strict implication.

According to Buridan common people often use as-of-now-
consequences [King, p.185] .

As an example he mentioned the consequence:

'‘Cardinal White has been elected Pope;
therefore, a Master of Theology has been elected Pope.'

Clearly, this consequence can only be true if the proposition
'Cardinal White is a Master of Theology' is true.

In general, an ut-nunc-consequentia is true only when some
tacit assumption related to the consequence is also true. As
Alexander Broadie [1987, p.61] has pointed out a valid ut-nunc-
consequentia can be transformed in to a valid inference (or
conditional) by the addition of a relevant proposition, which is
true now.
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Buridan even claimed that the consequence:

'Socrates is running, Plato is running, Robert is running;
therefore, every man is running.'

is true if it is perfected with the truth of the proposition 'Any
man is Socrates, Plato or Robert'.

Buridan also pointed out that promissory consequences are as-
of-now-consequences. He considered an example, where Plato
says to Socrates:

'If you come to me, I shall give you a horse’

This consequence can be true as-of-now, if it is perfected with
the following conditions, which must be assumed to be true

[King p.186]:

(a) 'Plato wills to give a horse to Socrates', and

(b) 'whatever Plato wills to do in the future,

(i) he will be able to do by holding to that volition (and
holding in any circumstances to that what he wills); and

(ii) when he is not prevented he does that thing when and
how he wills'.

Attempts to involve past and future statements directly in the
studies of the consequence-as-of-now were rare. One of the few
examples is this one:

If Antichrist will never be generated, Aristotle never existed.
[King p. 196]

Buridan's accepted this consequence as being true as-of-now
on the basis of his Christian belief that Antichrist is in fact going
to be. Buridan did acknowledge that it is logically possible for the
antecedent to be true, but he also asserted that its truth would be
incompatible with other facts which should be accepted. Hence,
the antecedent must be regarded as false, and therefore the
consequence is to be accepted as true as-of-now. However, after
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the generation of Antichrist it must be natural to reject the
consequence.

Obviously, Buridan in this manner brought temporal
considerations into the study of concrete examples of
consequentia ut nunc. However, to do so in connection with the
consequence-as-of-now was a fairly rare thing amongst
medieval logicians, according to Bochenski [1961, p. 193]. On the
other hand it was common-place in the late Middle Ages to base
a distinction among different types of consequentia on criteria
relating to the concept of time. But around the time of 1500 A.D.,
that kind of investigation was clearly fading away among
logicians. Consequentia ut nunc was occasionally mentioned as
consequentiae vulgares, since it was regarded as primarily con-
cerned with everyday language rather than with scientific
reasoning [Kneale p. 289]. This view was probably also the
reason for the abandonment of consequentia ut nunc: as logic
gradually distanced itself from everyday language,
consequentia ut nunc came to be seen as uninteresting from a
scientific point of view.



1.8. TEMPORALIS - THE Locic or "WHILE'

Medieval logicians generally accepted a distinction between
atomic and molecular propositions. Molecular propositions are
formed from atomic (or simple) propositions by means of propo-
sitional connectives. Propositions thus formed were also known
as hypotheticals, a term which was applied not only to implica-
tional statements, but also to the other kinds of molecular
propositions such as conjunctions, disjunctions ete. In the Midd-
le Ages, however, there was little agreement as to which con-
nectives should be taken into consideration within logical stu-
dies. Thus the number of propositional connectives was not fixed
in general. William of Ockham [EL, p.198] suggested that there
were at least five: conditionalis, i.e. implication (in a broad
sense), copulativa, i.e. conjunction, disiunctiva, i.e. disjunction,
and temporalis and causalis. Temporalis will be discussed below.
With respect to causalis, we may mention two of the many ex-
amples put forth by Paul of Venice (c. 1369-1429) in his Logica
Magna:

Because you are a man you are not a donkey [II, 3, 27e]
Because the sun is this light is [II, 3,29¢]

The use of causalis is not presently a concern of ours, and we
shall leave it aside for now. It may be mentioned, though, that
causalis roughly corresponds to 'because’, and thus has to do
with causation only in a very broad sense.

Ockham did not claim, though, that the corresponding
molecular propositions are the only possible ones, or that they
were mutually independent in a strong logical sense. He merely
considered the molecular propositions listed above to be the most
interesting and important ones. Walter Burleigh [1955, p.107]
agreed with Ockham on the number of propositional connec-
tives. He admitted that other types of molecular propositions
might be thought of, but he also maintained that such further
types would prove to be reducibie into the five fundamental ones
mentioned above. Ockham and Burleigh thus agreed on which
molecular propositions were to be regarded as important or ba-

71
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sic. Writing a few decades later, John Buridan listed six molecu-
lar propositions [MS Krakow BJ 662 f.7r.]. He accepted the five
molecular propositions of Ockham and Burleigh, but in addition
he considered one more type, which he called localis, to be a con-
nective in its own right. Richard Lavenham [Spade 1973, p.57]
later in the 14th century suggested the addition of even one mo-
re type of molecular proposition, called rationalis. Ockham and
Burleigh, as well as Buridan, had probably considered rationalis
to be nothing more than a yet another variant of conditionalis.

It appears that these medieval writers all agreed on the impor-
tance of 'temporal propositions' (temporalis), i.e. molecular
propositions composed from two or more atomic propositions
conjoined by some adverb of time. Temporal connectives such as
'cum’, 'dum’, and 'quando’ appeared to these logicians to form an
important class of logical constructions, just like conjunction,
disjunction, and implication. This idea is in fact very old. The
study of temporalis can be traced back to Boethius (c. 480-524),
who discussed for instance the statement 'when a man is, an
animal is' - 'when' being the temporal connective, of course. In
the Middle Ages, one of the first philosophers to discuss temporal
propositions was the Islamic logician Ibn Sina (980-1037), in
Christian Europe known as Avicenna. In his logic he discussed
such Arabic temporalis statements as can be seen in the
following English counterparts:

"Whenever the sun is out, then it is day',

Tt is never the case that if the sun is out, then it is night',
'Tt is never the case that either the sun is out or it is day',
'If, whenever the sun is out, it is day, then either the sun is
out, or it is not day'

One cannot say that Avicenna developed a real theory of such
temporal propositions, but he did try to work out the relationship
between temporalis and the implication, as it can be seen from
the following quotation:

Take the word 'if. You do not say 'If the day of resurrection
comes, then people will be judged' because the consequent is
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not implied by the posited antecedent. For [the consequent]
is not something necessary but depends on God's will.
Rather you say 'When the day of resurrection comes,
people will be judged'. Moreover, you do not say 'If man
exists, then two is even' or 'the void is non-existent'. You say
‘'whenever man exists, then two is also even' or 'the void is
non-existent'. It seems that the word 'if is very strong in
showing implication, while 'whenever' is weak in this re-
spect and 'when' is in between. [Shehaby 1973, p.38]

According to Avicenna ftemporalis is an implication that is
slightly weaker than the implication corresponding to 'if-then'.
Here it must be observed that Avicenna had a sort of 'relevant
implication' in mind. As he saw it, 'if p, then ¢' presupposes a
strong semantical relation between p and q. Since Avicenna
considered 'p while ¢' to be weaker than this kind of implication,
he accepted that it could be true also in cases where the implica-
tion 'if g, then p' does not obtain. Following Avicenna, however, 'p
whenever g' should be interpreted as the material implication,
that is, p and g need not be semantically relevant to one another.

Most medieval logicians in the following centuries appear to
have agreed that a necessary condition for the truth of 'p while
q' is that both of p and g are true at some time in the past, the
present or the future.

It is a fact that in ordinary language use temporalis is often
conflated with implication. Thus, propositions such as "When
the sun shines, it is day', and "Wood becomes warm, when fire is
brought near to it', are often supposed to be equivalent to the cor-
responding conditionals 'If the sun shines, then it is day', and 'If
fire is brought near to wood then it becomes warm'. Similar in-
tuitions must have been at work in the attempts of various lo-
gicians, who tried to describe temporalis in terms of the
conditional. Ockham was obviously acquainted with some of
those attempts, but he nevertheless rejected their underlying
idea of reducing temporalis into a conditional. Instead, he
related the semantics of temporalis to the conjunction, as we
shall see in detail below. According to Ockham, the following
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propositions are all instances of temporalis:

(1) 'Socrates is running, while Plato is debating'.
(2) 'Socrates was running, before Plato was debating’.
(3) 'Socrates was running, after Plato was debating’'.

However, on Buridan's definitions only (1) is a proper instance
of temporalis, whereas (2) and (3) are not. Buridan seems to
have assumed that molecular propositions constructed by me-
ans of 'after' and 'before' can be reduced into propositions with
the connective 'while'. In the following we shall concentrate on
temporal propositions formulated by means of 'while' (or some
equivalent word); we shall use the connective w for 'while'.

Given Buridan's interest in durational logic, it would only seem
natural if he had also tried to account for the logic of temporalis
within a durational framework. To our knowledge, however,
Buridan never formulated such an explication. Now what is the
truth-condition for the temporal proposition (p w q)? Here all
14th century logicians gave almost the same answer: The
truth-condition for the temporal proposition (p w q), where both
p and ¢ are in the present tense, can be formulated in the
following way:

(8] (p w q) is true iff both p and q are true (now).

If (C) is accepted without any constraints, the following thesis
will be valid:

(T1) (b wqg) o(parqg)

The same of course goes for the converse of (T1). Thus it would
be a consequence of a completely general adoption of (C) that
temporalis would simply be equivalent with the usual conjunc-
tion. However, according to Buridan (C) should not be accepted
in general, but only for propositions in the present tense. Now let
p and g represent atomic propositions (with the verbs in the pre-
sent tense), and let Pp, Pq, Fp, and Fq stand for the correspon-
ding propositions with verbs in the past and in the future tense,
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respectively. With respect to the temporal propositions
(Pp w Pqg) and (Fp w Fq),,the truth-conditions will be different
from (C). As a precondition for giving the proper definitions,
Dorp {1499, p.41] suggested that any adequate definition would
have to comply with the following observations:

(B1) There is a temporal proposition (p w q), which is false,
although p and g are both true.

(B2) There is a temporal proposition (p w g), which is true,
although one of its parts is false.

In order to prove (B1) Dorp considered the temporal proposition
'My father was while Adam was'.

The constituents of this proposition, 'My father was' and
'Adam was', are both true, whereas the temporally combined
proposition is false. This is indeed sufficient to prove (B1), and as
a consequence of that principle the following proposition is not a
valid thesis in Dorp's (and Buridan's) system:

(N1) (PpAPqg)>(Pp wPq)

For this reason the temporalis and the conjunction are obvi-
ously not equivalent. (T1) can be valid only for propositions in
the present tense. Thus restricted (T1) can on the other hand be
strengthened into

(T1)  (p wa=(pnag
- where p and q are atomic and present-tense propositions.

In order to prove (B2) Dorp fielded the following temporal
proposition:

'My father was not while Adam was'
("Pater meus non fuit quando Adam fuit").
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Let p stand for 'My father is', and ¢ stand for 'Adam is'. It ap-
pears that the first part of this proposition, ‘My father was not',
is false, whereas the other part, 'Adam was', is true. It also ap-
pears that the combined temporal proposition is itself true - as
already observed by Buridan. Then the proposition would seem
to constitute a straightforward example of (B2). However, there
obviously is a problem here. In general, the whole proposition is
three-ways ambiguous, as signified by

(a) ~(Pp w Pq)
(b) (P~p w Pq)
(e) (~Pp w Pq)

The (a)-case is not interesting here, though, for clearly Pp and
Pq are both true, and thus it could never be made into a case for
(B2). In fact the (a)-case is another example of the principle
(B1). So let us turn our attention to the (b)- and (c)-cases, which
together reflect the fact that the proposition ‘My father was not'
is itself ambiguous. It can be understood as P~p or as ~Pp.
Obviously it is ~Pp that is false, while (P~p w Pq), P~p, and Pq
are all true. It seems that Dorp mixed up his readings of 'My
father was not'; in arguing that the constituent was false he
adopted the reading ~Pp , but in arguing that the whole
temporalis was true he was referring to the reading P~p , i.e. the
(b)-case. (It must be admitted, however, that the original Latin
formulation of the example ('pater meus non fuit') takes a form
that makes it tempting to understand it is as ~Pp.)

We conclude that although it may be questioned whether Dorp
managed to show (B2), but he did show that the following for-
mula is not a thesis:

(N2) (P~p w Pq) > ~Pp

What he did not manage to show was that this formula is not a
thesis:

(N3) (P-p w Pq) 5 P~p
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although he apparently thought he had done so. In fact, it may
well be the case that (N3) is a thesis, and that (B2) is not correct.
Ockham in his Summa Logicae actually denied the validity of
(B2):

It is also clear from what has been said that there is a valid
consequence from a temporal proposition to one of its parts -
but not conversely. Similarly, a conjunctive proposition fol-
lows from a temporal proposition - but not conversely.
[Ockham 1980, p.192]

That is, Ockham claimed that
(T2) (Pp w Pg) > (Pp A Pq)

is a valid thesis, whereas he (like Dorp) rejected (N1), i.e. he de-
nied that there is a valid consequence from the conjunction of
the parts of a temporal proposition to the temporal proposition
itself. The validity of (T2) clearly implies the rejection of (B2).

Since (N1) is not a thesis, there is no straightforward reduction
of temporal propositions into conjunctions, and (C) therefore
has to be amplified in a manner, which will make it applicable
also to tensed propositions such as (Pp w Pg). It appears that the
appropriate truth-condition according to both Buridan and
Dorp can be formulated as follows:

(CP) (Pp w Pgq) is true if and only if there is some time in
the past at which both p and ¢ are true.

It is evident that this truth-condition is identical with the truth-
condition for the proposition P(p A q). Therefore we have now
arrived at the following equivalence, which must be adopted as a
valid thesis within Buridan's and Dorp's logic for temporalis:

(T3) (Ppw Pqg) =P(p ~rq)
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It is reasonable to assume that the similar thesis for with re-
spect to the future operator is also valid:

(T4) (Fpw Fq) =F(p Anq)

Therefore the temporalis can in some sense be reduced to the
conjunction, although it is no straight-forward reduction. The
relation between the temporalis and the conjunction is ex-
plained in (C), (T3) and (T4). It is clear, however, that these
theses do not apply to all possible syntactical constructions. For
instance, one might ask for the truth-conditions of propositions
like (Fp w Pq). To the best of our knowledge no medieval logici-
an took such propositions into serious consideration. The reason
for this must have been the view that such hybrid propositions
simply do not make sense. What meaning could be attributed to
e.g. 'Socrates will be running while Plato was debating'? The ac-
ceptance of such propositions as meaningful presupposes the as-
sumption that some future time is also past, that is, that the
structure of time is circular (or possibly cyclical). We shall not
rule out that such an assumption might be consistent at an onto-
logical level, but it is not consistent with the semantics of Latin,
or English, for that matter. For then consequences of the form

FpoPp

would have to be counted as intuitively valid - which they are
not. It should be noted, however, that we do not rule out proposi-
tions like 'Socrates will be running while Plato will have been
debating'. But the structure of such propositions is not
(Fp w Pq), where p and ¢ are simple propositions with the verbs
in the present tense. The structure of such propositions is rather
to be represented as (Fp w FPqg).
The complete truth-condition for meaningful temporal

propositions can be stated in the following way:

If p and g are atomic propositions in the present tense, then
pwq) =prg
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If p and ¢ are arbitrary propositions (atomic or molecular,
in any tense), then
(Pp wPq)=P(p rnq) and (Fp w Fq) =F(p A q).

This definition reflects the views of the logicians whose opini-
ons have been discussed above, and on those views it covers all
non-modal, temporal propositions which are considered to be
meaningful.

In our opinion, this treatment does go a long way in getting us
an appropriate semantics for femporalis, but as we suggested a-
bove there also are limitations to it. It seems to us that in certain
cases temporalis should perhaps be related to implication rather
than conjunction. Let us give just one example of this. Consider
the sentence

(S) 'Socrates will be running, while Plato will be debating'.

Now the treatment offered above clearly implies that both of
the events of S will occur. Let p represent 'Socrates is running’,
and q represent 'Plato is debating'. Then S will be represented as
(Fp w Fgq), which is equivalent to F(p A g, which clearly entails
the future 'occurrence’ of p as well as ¢. But it seems that there is
another reading which does not strictly foresee that either event
will occur; it merely says that if p will ever be the case, then so
will g.. Let G stand for 'it will always be the case that', i.e.
G = ~F~. Then the latter reading could tentatively be represent-
ed as G(p > q). This reading is close to what we above called a
'generic reading’. However, it can be argued that this reading is
the one that should be expressed as

(S") 'Whenever Plato will be debating, Socrates will be run-
ning',

and hence, the reading G(p > g) for S might be viewed as merely
a consequence of an imprecise use of language. But in fact, it
seems that there is an even weaker reading of (S), which might
be represented as
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FgoFp A

Loosely, this reading says that if Plato is ever going to debate at
some future time, and possibly at several future times, then Soc-
rates is going to be running at least one of those times. In other
words, we here need to define 'while' in terms of implication
rather than conjunction. We admit that this reading may be
quite rare, but we believe that there is a systematical argument
for it. The treatment of (Fp w Fq) as equivalent with F(p A q)
makes no difference between

(a) forming (S) by first forming p and ¢, then forming
(p w q), and finally putting the whole thing into the future
tense; in this case (S) is seen to be equivalent with 'it will be
the case that Socrates is running, while Plato is debating'.
This is appropriately represented as F(p w ¢), and ade-
quately treated as equivalent to F(p A ¢);

(b) forming (S) by first forming two future proposition, Fp
and Fq, and then conjoining them by means of the while-
connective. This structure is immediately reflected by
(Fp w Fg). We see no prima facie evidence that this reading
must also entail the actual occurrence of p and q.

Now we admit that no difference between the two structures
can be seen in the syntactic surface structures of either Latin or
English. But it is clear that (S) could be built in both ways sug-
gested, and moreover, it is a fact that there has also been a per-
sistent tradition of understanding temporalis in terms of the im-
plication. From these observations we conclude that

(i) it is problematic to define temporalis exclusively in terms
of conjunction (and tense operations) - implication should
be granted a réle, too;

(ii) temporalis in some cases invites a kind of generic read-
ing, which can be pleasantly represented by the G-operator;
it may be noted that this kind of generic reading may be
relaxed somewhat if we would introduce intervals.
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The logicians of the 14th century also considered temporal
propositions involving modal operators. Walter Burleigh studied
temporal propositions invelving modal operators, and in this
connection he also considered the Aristotelian principle "Omne
quod est quando est necesse est esse" [Burleigh 1955, p. 130],
which Aristotle proposed in De Interpretatione IX. According to
Burleigh this principle can be understood in two different ways,
which may be representable as follows (as usual, we shall let Mp
and Np stand for 'it is possible that p', and 'it is necessary that p',
respectively):

(N4) Npwp)
(T5) p>O(Np wp)

(N4) corresponds to the translation 'it is necessary, that every-
thing is, when it is', where as (T5) can be read 'everything that is
true, is necessary, when it is true'. Burleigh maintained that
(T5) is a valid thesis, whereas (N4) is not.

But how does the notion of possibility more precisely attach to
the temporalis operator? Burleigh pointed out that a precondi-
tion for the possibility of (p w ¢), that is, for the truth of
M(p w q), is - rather of course - that both of p and ¢ must be
possible in their own right. So we have the following valid thesis :

(T6) M(p wq) > (Mp A Mg)
However, the converse of (T6) is not valid:
(N5) (Mp AMq)>M(p wq)
In his Summa Logicae Ockham investigated several details
regarding propositions containing both modal and temporalis
operators. He first investigated which conditions would have to

obtain in order for a temporal proposition to be necessary.
Ockham claimed that

... in order for a temporal proposition to be necessary it is
required that each part be necessary. [Ockham 1980, p.180]
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This condition can be formulated by means of the following
thesis:

(T N wq) >(Np ANqg)

However, the converse of (T7) is not valid, that is, no temporal
proposition (p w ¢) is necessitated simply because each of its
component propositions is necessary by itself. In fact, even tem-
poral propositions such as

'a man is a bachelor, while he is not married',
‘Socrates exists, while he exists', and
‘Socrates is moving, while he is running',

are not necessary according to Ockham. This is so, in spite of the
fact that these temporal propositions are composed of atomic
propositions which could form necessary conditionals:
'Necessarily, if a man is not married, then he is a bachelor’, and
similarly for the other two sentences.

The fact that p necessarily implies ¢ does not, however, imply
that the temporal proposition of p and ¢ is necessary, so
according to Ockham's ideas

(N6) Npo>g9>Np wqg
is not a valid thesis. Not even

(N7) Npo>p)oNp wp)
is a valid thesis in Ockham's logic. The reason is of course that
temporal propositions according to Ockham are modified con-

junctions and not modified conditionals. Hence, (p w p) will be
equivalent to p, and consequently

(T8) N wp)=Np
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is a valid thesis in Ockham's logic. In his own words:

Hence, the proposition 'Socrates exists while he exists' or
'Socrates is moving while he is running' is not necessary,
but can be false. [Ockham 1980, p.192]

There is another question regarding modal temporal
propositions to which Ockham gave an answer; that question is
concerned with impossibility. He made it clear that a temporal
proposition can be impossible, even though none of its parts is
impossible, so we do not have the following formula as a thesis:

(N8) ~M(p wq) >(~-Mp v~ Mq)

In fact, Ockham did not state a necessary condition for the im-
possibility of (p w gJ, but he did formulate a sufficient condition:

... for a temporal proposition to be impossible it is not re-
quired that some part be impossible. Rather, it is sufficient
that the parts be incompossible. Thus, this is impossible: God
creates while he does not create. [Ockham 1980, p.192]

Since p and ~p are incompossible, the statement implies that
(T9) ~M(p w ~p)
is a thesis. It should be mentioned that (T9) can be shown as a

consequence of two basic principles of modal logic: (i) the fact
that the contradiction is impossible, i.e. the thesis

(T10) ~M(p A ~p),
and (ii), the well-known modal principle that no impossible
proposition follows with necessity from a possible one, i.e. the

thesis

(T11) N(p >q) > (~-Mqg > ~Mp)



84 CHAPTER 1.8

Because of (T'1"), (T3), (T4), and standard modal logic
(T12) N(pw ~p)>(@ »~p))

is also a thesis. It is easy to verify that the validity of (T9) follows
from (T10-12).

In the 15th century temporalis became more and more neg-
lected. The medieval discussion regarding the number of basic
kinds of molecular proposition has been summed up by Paul of
Venice in his Logica Magna:

Some posit five kinds of molecular proposition, some six,
others seven, others ten, others fourteen, and so on. But
putting all these opinions to one side, I say that of kinds of
molecular proposition which are not identical in their
signification there are three and no more ... [Logica Magna,
II, Fasc. 3, 2e].

According to Paul himself, there are only three species of
molecular proposition: conditionalis, copulativa and disiunctiva.
Nevertheless, he made some very careful studies of the logic
temporal propositions such as

‘'when I was awake I did not sleep' [13e]

'while I shall not be Antichrist will not be' [15¢]

'when every man disputed every man was white' {15e]
‘when one single man will die every man will die' [18e]

and other temporal propositions like

'you will be a priest before you will be a bishop' [11el
'you will begin to be after A will be' [16¢]

However, although Paul of Venice considered such temporal
propositions to be relevant for the logical reflection, he did not
accept temporalis as one of the fundamental kinds of molecular
propositions. He simply did not accept ‘dum’, 'ubi', 'quia’ etc. as
proposition-forming functors. The opinion expressed here by
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Paul of Venice came to be the usual one in logical studies during
the Renaissance.

In post-medieval logic temporalis eventually disappeared and
can only exceptionally be found in 16th century logic. Ashworth
mentions the Portuguese logician Petrus de Fonseca (1528-
1599) as one of the exceptions.

But how can the fact that the temporalis sank into oblivion be
explained? One factor seems to have been the growing huma-
nistic criticism of scholastic logic. According to the humanists
the language used by the logicians of the scholastic tradition was
perverted. It is indeed likely that the humanists saw the me-
dieval discussion of the temporalis as a clear example of
scholastic linguistic perversions. On that basis, the temporalis
should of course be rejected as an important element of logic.

It must, however, be admitted that this can only be a part of the
explanation. For the very idea that temporal propositions
formed a class of basic molecular propositions was rejected be-
fore the general downfall of scholastic logic - in fact, it was re-
jected within the scholastic tradition itself. As we have men-
tioned, Paul of Venice in his very popular Logica Magna
claimed that there are only three species of molecular propositi-
ons. Obviously the majority of logicians of the late scholastic pe-
riod agreed with Paul. They devoted significantly more interest
to the conjunction, the disjunction, and the conditional, than to
the other putative molecular propositions. One reason for this
preference may have been the simple fact that it is relatively
easy to formulate the truth-conditions for these three molecular
propositions in terms of truth, falsity, and modality, whereas the
truth-conditions for the other molecular propositions are more
complicated. As the above discussion should have shown, the
truth-value of a temporal proposition (p w g) is not a simple
function of the truth-values of its components. On the contrary,
it comes out as a rather complicated combination of conjuncti-
ons and tense-operators. These properties do not seem to be ade-
quate for a fundamental notion.

One further partial explanation should be mentioned. The re-
jection of the temporalis might be seen in the light of the general
features of medieval logic. We believe that medieval logic can in
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a general sense be characterised as a temporal logic. That is, it
was a logic of propositions whose truth-values can vary from
time to time, and a logic in which temporal expressions were
considered to be important. It is only natural, then, that the lo-
gicians of the Middle Ages, who were working within that
framework, and who took the temporalis into serious consi-
deration, were also to put forth some of clearest statements ever
of the basic assumptions of temporal logic. Late-scholastic and
humanist logicians paid less attention to the temporal struc-
tures of logic than their predecessors, and so it seems under-
standable that the temporalis became increasingly neglected,
and was ignored as an important propositional connective. Even
so, the reasons for the rejection of the temporalis which we have
mentioned here do not seem sufficient for fully explaining this
development. There is certainly still much to be done with re-
spect to reconstructing the medieval use of the temporalis as
well as the final rejection of it as a connective. But we hope to
have argued convincingly that the temporalis is an interesting
construction of medieval logic, and that it deserves further
study.



1.9. HUMAN FREEDOM AND
DIVINE FOREKNOWLEDGE

During the Middle Ages logicians as a matter of course related
their science to theology. Clearly they felt that they had some-
thing important to offer with regard to solving fundamental
logical questions in theology. The most important question of
that kind was the problem of the contingent future. This pro-
blem has since come to be regarded as one of the most central
problems in the logic of time, together with the concomitant
question of the relation between time and modality. In our day,
it is not primarily seen as a theological problem, but intellectuals
of the Middle Ages saw the problem as intimately connected
with the relation between two fundamental Christian dogmas.
These are the dogmas of human freedom and God's
omniscience, respectively. God's omniscience is assumed to also
comprise knowledge of the future choices to be made by men.
But then the latter dogma apparently gives rise to a
straightforward argument from divine foreknowledge to
necessity of the future: if God already now knows the decision I
will make tomorrow, then an inevitable truth about my choice
tomorrow is already given now! Hence, there seems to be no
basis for the claim that I have a free choice, a conclusion which
violates the dogma of human freedom. To sum it up, the
argument proceeds in two phases: first from divine
foreknowledge to necessity of the future, and from that
argument to the subsequent conclusion that there can be no
real human freedom of choice. Among many others the great
Danish 12th century philosopher, Boethius de Dacia [Sajo, vol.V,
p.241] tried to solve this difficult problem. According to him the
main question is whether the status of the contingent future is
compatible with the certainty of divine knowledge, that is, the
belief that God has certain knowledge of arbitrary contingent
events in the future. Boethius in his analysis insisted that God
fully knows future events, which among other things means
that he knows events, which in a number of cases are not
necessary but contingent.

87



88 CHAPTER 1.9

The approach to the problem was to regard it as a consistency
problem, which had to be solved within logic. It was primarily
studied in connection with Aristotle's text from De Interpre-
tatione IX (the sea-battle tomorrow etc.). Another piece of
classical text which was occasionally taken into consideration
was Cicero's De Fato, which among other matters describes the
Diodorean Master Argument. The problem obviously bears on
the theological task of clarifying questions such as 'In which
way can God know the future?' or 'What is to be understood by
'free-will' and 'freedom of choice'?'

Extensive literature about this subject, primary as well as se-
condary, can be found, and any attempt to produce a detailed
exposition of this subject seems hopeless at the outset. On the
other hand, it is possible to get a systematical overview of basic
approaches to the problem. We shall accordingly restrict our-
selves to an exposition of the four possible solutions to the appa-
rent conflict between the two dogmas, which Richard
Lavenham (c.1380) enumerated in his treatise De eventu
futurorum. Lavenham's central idea is quite clear: If two
dogmas are seemingly contradictory, then one can solve the
problem by denying one of the dogmas, or by showing that the
apparent contradiction is not real.

Denial of the dogma of human freedom leads to fatalism (1st
possibility). Denial of the dogma of God's foreknowledge can ei-
ther be based on the claim that God does not know the truth
about the future (2nd possibility), or the assumption that no
truth about the contingent future has yet been decided (3rd
possibility).

One can alternatively formulate a system, which shows that
the two dogmas, rightly understood, can be united in a consi-
stent way (4th possibility). Lavenham himself preferred the last
approach which he called 'opinio modernorum’, and which can
justly be called the typical 'medieval solution' to the problem re-
garding human freedom and divine foreknowledge. The
central feature of that solution was its use of the notion of a 'true
future' among a number of possible futures. It was originally
formulated by William of Ockham (d. 1349), although some of
its elements can already be found in Anselm of Canterbury
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(d.1109). It is also interesting that Leibniz (1646-1711) much
later worked with a similar system as a part of his
metaphysical considerations. In the following we shall follow
this line from Anselm to Leibniz.

It seems that Lavenham, like Ockham, regarded the Aristote-
lian approach to propositions concerning the contingent future
as being equivalent with the 3rd possibility. However, this inter-
pretation of Aristotle is, as shown by Nicholas Rescher, by no
means the only one. There is also a medieval interpretation of
Aristotle, according to which his solution was thought to be
identical with what we have called the 'medieval solution’, i.e.
the 4th possibility. On the other hand, Boehner [1945] has
clearly demonstrated that a number of Ockham's contempora-
ries favoured the 3rd possibility. Peter Aureole (c.1280-1322),
for instance, claimed that neither the statement 'Antichrist will
come' nor the statement 'Antichrist will not come' is true,
whereas the disjunction of the two statements is actually true.
From that point of view, one can naturally claim that the
dogma of God's omniscience is still tenable, even if God does not
know if Antichrist will come or not. God knows all the truths
given, and cannot know if Antichrist will come due to the
simple reason that no truth value for the statement 'Antichrist
will come' yet exists. It nevertheless appears quite sensible that
Lavenham rejected the 3rd possibility as contrary to the
Christian faith, since the understanding of the dogma of God's
foreknowledge does seem somewhat clobbered.

The most characteristic feature of Lavenham's and
Ockham's theory is its theoretical concept of 'the true future'.
The Christian faith says that God' possesses certain knowledge
not only of the necessary future, but also of the contingent
future. This means that among the possible contingent futures
there must be one which has a special status, simply because it
corresponds to the actual course of events in the future. We
have ventured to call this line of thinking 'the medieval
solution', even though other approaches existed as described in
the foregoing. The justification for this is partly that the notion
of 'the true future' is the specifically medieval contribution to
this problem, and partly that leading medieval logicians
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regarded this solution as the best one (‘'opinio modernorum').
We shall now try follow the development of the medieval
solution from Anselm to Leibniz.

SCT. ANSELM

Anselm treated the problem concerning divine foreknowledge
and human freedom in his work De Concordia Praescientiae et
Praedestinationationis et Gratiae Dei cum Libero Arbitrio [Hop-
kins 1967]. In this work Anselm undertook to answer three
questions, of which the first one directly concerns the problem
of divine foreknowledge and human freedom.

The central idea in Anselm's solution to the problem is his dis-
tinction between two kinds of modality. In chapter III of De
Concordia he considers two propositions:

'There will be a revolution tomorrow', and
'The sun will rise tomorrow'.

The first of these sentences can be regarded as a contingent
sentence, whereas the second one can be regarded as necessary.
Using the day as the time unit these propositions can be
symbolised as F(1)p and F(1)q respectively. If F(1)p and F(1)q
are true, they are necessary on the basis of what Anselm calls
subsequent necessity (necessitas sequens) - in symbols:

(1) F()p > NJF(Dp

(and similarly for ¢). But according to Anselm there is another
kind of necessity. He calls it antecedent necessity (necessitas
praecedens). In terms of antecedent necessity the proposition
F(1)p is not necessary, so we have

(2)  F(Ip A~N,F(p
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or equivalently
(3) F()p A Mp~F(1)p (where M, =~ Np~)

according to which it is possible that there will not be any revo-
lution tomorrow even though it is in fact true that there will be
a revolution tomorrow. On the other hand the proposition F(1)q
is necessary on the basis of antecedent necessity. That is:
NpF(1)q.

But what is the difference between the two kinds of necessity?
According to Anselm subsequent necessity follows from true
propositions about the state of affairs, while the antecedent
necessity of a proposition means that it is compelled to be true.
Obviously subsequent necessity is 'factual necessity' - that is to
say, it is necessity in terms of simply being true. Following
Anselm, a proposition is necessary on the basis of subsequent
necessity if and only if a contradiction follows from a
conjunction of its negation and a number of true propositions.

Now in the argument from divine foreknowledge to necessity
of the future one may interpret 'necessity' (N) as 'subsequent
necessity' (Ns). Then the argument and its conclusion are fully
acceptable to Anselm. Likewise, in terms of subsequent
necessity Anselm did not have any misgivings about the thesis:
"'What will be, necessarily will be', that is

(4) Vx: F(x)p > NF(x)p
Anselm formulated his view as follows:

For when I say, 'If a thing will be, then necessarily it will be',
this necessity follows, rather than precedes, the presumed
existence of the thing. [Hopkins, p.51]

This acceptance, however, does not imply any reduction of
human freedom. To Anselm, the necessity involved is only
verbal and factual, but it does not cause anything to be true
concerning the future.
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Antecedent necessity is stronger than subsequent necessity. If
the occurrence of a certain event is necessary in terms of
antecedent necessity, then the necessity causes the event to
occur. Antecedent necessity can be described as a causal
necessity.

This distinction between two kinds of necessity is originally
Aristotelian. In his Prior Analytics Aristotle clearly drew a
distinction between absolute and relative necessity:

Further, it can be shown by taking examples of terms that
the conclusion is necessary, not absolutely, but given certain
conditions. [30b 32]

In De Interpretatione the distinction between the two kinds of
necessity is also expressed. It is very likely that Anselm knew
the Aristotelian distinction. In fact a Latin version of Aristotle's
De Interpretatione along with Boethius' commentaries was
certainly at his disposal.

Let us again consider the argument from divine
foreknowledge to necessity of the future, and the subsequent
conclusion that there can be no human freedom. Now, what is
the Anselmian reaction to that argument, when N, is used as N
in the argument?

It is obvious that Anselm rejects the conclusion of the
argument. According to him there is no insoluble conflict
between the doctrines of divine foreknowledge and human
freedom. He says:

It is clear from these considerations that there is no incon-
sistency in maintaining both that God foreknows all things
and that there are many things which, though having
before they occur the possibility of never occurring, do
actually occur through free will. [Hopkins p.55]

Therefore, according to Anselm there exists true propositions
about the future such that their negations are also possible. The
proposition F(I1)p about tomorrow's revolution is such a
proposition , as expressed in (2). It is clear that if there will be a
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revolution tomorrow, it cannot be possible - on the basis of
subsequent necessity - that there is no revolution tomorrow. If it
is possible that there is no revolution tomorrow, it has to be on
the basis of antecedent necessity, as we can see in (2).

The acceptance of (2) clearly indicates that Anselm rejected
the classical argument from divine foreknowledge to necessity
of the future. This being so Anselm had to reject at least is one of
its premises. It seems clear that he in fact denied that any true
statement about the past is antecedently necessary. In Cur
Deus Homo 11.1 Anselm was discussing the Virgin's belief that
Christ was going to die of his own will:

It is in accordance with this consequent and non-creative
necessity that since the belief or prophecy concerning
Christ, and according to which he was to die voluntarily,
and not from necessity, was true it was necessary that
these things should be. [Henry p.176]

Here Anselm admits the truth of the propesition 'It was true to
say: God knows that Christ is going to die voluntarily’
According to Anselm, however, this proposition is necessary on
the basis of subsequent necessity, but not on the basis of
antecedent necessity. Let us clarify this position by using
symbolic language. Let p stand for the proposition 'Christ dies
voluntarily', D for the operator 'God knows that', and let x and y
be suitable time units (numbers signifying for instance days or
years). Consider now the statement

P(y)DF(x+y)p

which can be read 'y years ago God knew that Christ was going
to die voluntarily x+y years later'. In this case Anselm rejected
NyP(y)DF(x+y) p.

It should be noted that this position implies the rejection of the
first of the premises in the so-called Master Argument of
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Diodorus, wherein necessity (V) is understood in a completely
general sense:

(D) P(x)A D NP(x)A ,
where A is an arbitrary proposition.

Anselm obviously would reject (D), if N is interpreted as N,
and A is the proposition DF(x+y)p. Nevertheless, it seems that
Anselm was willing to accept (D]) in some limited sense. In De
Concordia he said:

Now, the past event has a characteristic which neither the
present nor the future event has. For what is past can
never become not-past as what is present can become not-
present and as what is going to occur without necessity can
be not going to occur. [Hopkins p.52]

Let us ponder this statement carefully. The phrase 'what is
going to occur .. can be not going to occur' shows us that Anselm
must be talking about events, of which it is possible that they
would not occur, even though they actually do occur. This in
turn shows us that the kind of possibility, respectively necessity,
in question must be antecedent possibility. For the occurrence of
an event entails its subsequent necessity, and hence, in that
sense it cannot be going not to occur. We repeat the formula
used earlier on to capture the kind of possibility at stake:

(2)  F(l)p A ~N,F(1)p

Now let us apply these observations to the statement 'what is
past can never become not-past’. Given that we are talking
about antecedent necessity, it must be interpreted in the
following way:

(D1') P(x)A o> N,P(x)A

Since Anselm rejected the general version of (D1), he must
have presupposed some constraints on the type of propositions
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which can be accepted as A in (D1'). In order to explain which
constraint is natural from the Anselmian point of view one
should note that Anselm did not say that any past tense
proposition is necessary, but rather he made his assertion about
past events. We do not think that he would accept God's fore-
knowledge in the past as a past event, for according to him
divine knowledge is different from human knowledge. In De
Concordia he says:

We should also understand that like foreknowledge,
predestination is not properly attributed to God. For there is
no before or after in God, but all things are present to Him
at once. [Hopkins p.68]

So according to Anselm the fact that God knew something in
the past cannot be properly characterised as a past event.
Following Anselm God's knowledge should be understood as
timeless knowledge, but it is also true that he assumed that this
divine knowledge can be transformed into the temporal dimen-
sion. This seems to be how prophecy works.

THOMAS AQUINAS

The idea of viewing God's knowledge as timeless was
suggested by Boethius (480 - 524), and since then it has been
discussed many times (see e.g. [Lucas 1989, p. 209 ff]). During
the Middle ages it became common to appeal to this idea in
attempts at solving the problem of the logical tension between
the doctrines of human freedom and divine foreknowledge. The
medieval philosopher who contributed the most to the
elaboration of this solution was Thomas Aquinas (1225-1274).
In Aquinas' opinion, God's eternity is timelessly simultaneous
with all parts of time. He compared this view with the relation
between the center and the circumference of a circle. The
relation between the center and the circumference is the same
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all the way round; in a similar manner, God relates in the same
way to all times. In his own words:

Furthermore, since the being of what is eternal does not
pass away, eternity is present in its presentiality to any time
or instant of time. We may see an example of sorts in the
case of a circle. Although it is indivisible, it does not co-exist
simultaneously with any other point as to position, since it is
the order of position that produces the continuity of the
circumference. On the other hand, the center of the circle,
which is no part of the circumference, is directly opposed to
any given determinate point on the circumference. Hence,
whatever is found in any part of time coexists with what is
eternal as being present to it, although with respect to some
other time it be past or future. [Summa contra gentiles I, c.
66]

As Marilyn McCord Adams [1987 II, p.1121] has pointed out,
Aquinas apparently assumed not only that God and His
knowledge are timeless, but also that time should be regarded
as a system in which the basic relations of succession and
simultaneity are given in a timeless way - owing to the fact that
time is given to God in a timeless way. But Aquinas also
maintained that the divine knowledge can be transformed into
the temporal dimension by means of prophecies. In [Summa
contra gentiles I, c. 67] he emphasised this possibility quoting the
biblical statement "I foretold thee of old, before they came to pass
I told thee" [Isaias 48:5]. So the conceptual difference between
past, present, and future is relevant only when humans are
involved, either as the subjects of cognition or as participants in
communication. Furthermore, Aquinas clearly stated that a
temporal being cannot have any certain knowledge of future
contingents at all. Thus Aquinas was suggesting a distinction
between time as it is for temporal beings such as humans, and
time as it is for God, who is eternal.
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WILLIAM OF OCKHAM

Ockham discussed the problem of divine foreknowledge and
human freedom in his work Tractatus de praedestinatione et
de futuris contingentibus [Ockham 1969]. He asserted that God
knows all future contingents, but he also maintained that
human beings can choose between alternative possibilities. In
his Tractatus he argued that the doctrines of divine foreknow-
ledge and human freedom are compatible.

Ockham was aware that the concept of communication was
essential to this discussion - especially, of course, the communi-
cation coming from God to human beings. He claimed that God
can communicate the truth about the future to us.
Nevertheless, according to Ockham divine knowledge regar-
ding future contingents does not imply that they are necessary.
As an example Ockham considered the prophecy of Jonah: "Yet
forty days, and Nineveh shall be overthrown" (Jonah ch. 3 v. 4).

This prophecy is a communication from God about the future.
Therefore, it might seem to follow that when this prophecy has
been proclaimed, then the future destruction of Nineveh is
necessary. But Ockham did not accept that. Instead, he made
room for human freedom in the face of true prophecies by
assuming that "all prophecies about future contingents were
conditionals" [Ockham 1969, p.44]. So according to Ockham we
must understand the prophecy of Jonah as presupposing the
condition 'unless the citizens of Nineveh repent'. Obviously, this
is in fact exactly how the citizens of Nineveh understood the s-
tatement of Jonah!

Ockham realised that the revelation of the future by means of
an unconditional statement, communicated from God to the
prophet, is incompatible with the contingency of the prophecy.
If God reveals the future by means of unconditional statements,
then the future is inevitable, since the divine revelation must be
true. The concept of divine communication (revelation) must be
taken into consideration, if the belief in divine foreknowledge is
to be compatible with the belief in the freedom of human
actions. So Ockham understood that the compatibility can only
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be established within a framework which duly considers what
we in the introduction called sociotemporal notions.

Ockham attempted to clarify the issue as much as possible.
About the divine foreknowledge, he stated:

... the divine essence is an intuitive cognition that is so
perfect, so clear, that it is an evident cognition of all things
past and future, so that it knows which part of a
contradiction [involving such things] is true and which part
is false. [Ockham, 1969, p.50]

However, he had to admit that this is not very clear. In fact, he
maintained that it is impossible to express clearly the way in
which God knows future contingents. He also had to conclude
that in general the divine knowledge about the contingent
future is inaccessible. God is able to communicate the truth
about the future to us, but if God reveals the truth about the
future by means of unconditional statements, the future
statements cannot be contingent anymore. Hence, God's
unconditional foreknowledge regarding future contingents is in
principle not revealed, whereas conditionals can be communi-
cated to the prophets. Even so, that part of divine foreknowledge
about future contingents which is not revealed must also be
considered as true according to Ockham.

Richard of Lavenham made a remarkable effort to capture
and in a clear way to present the logical features of Ockham's
system as opposed to Aristotle's solution. Lavenham described
some examples. In his view the propositions

'Antichrist will be',
'The Day of Judgement will be', and
'The resurrection will be'

are all about future contingent facts. Then, Lavenham main-
tained, they are neither determinately true nor determinately
false on Aristotle's account. To substantiate that interpretation
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Lavenham referred to the following consequentia, which he
held to be the crucial claim of Aristotle's theory:

'If a proposition is about a future contingent fact, then the
proposition is not determinately true.'

The Christian faith, however, goes against the acceptance of
the consequentia, since a Christian person must believe that
God foreknows all future contingent facts. If Antichrist will
indeed be, then God knows that Antichrist will be, and for this
reason it is determinately true that Antichrist will be.

It will be recalled that Richard of Lavenham enumerated four
possible approaches to solving the apparent conflict between
God's foreknowledge and human freedom. He rejected the
three classical opinions corresponding to the first, second, and
third solutions, and then formulated his own answer to the
problem - which was also the opinion of many of his
contemporaries. Lavenham held that the doctrines of divine
foreknowledge and human freedom are compatible. He
considered two versions of the inference from God's prescience
to the necessity of the future, and he explained why they should
be rejected. Let us with Lavenham consider the first version.
The starting point is this example:

q: 'The Day of Judgement will be.'

The proposition q is regarded as being about a future contingent
fact. The following consequentia can now be formed:

(C) 'God knew from eternity that g; therefore g'.

This consequentia is obviously valid. The argument now
proceeds by utilising the principle:

(P) 'A true proposition about the past, the truth of which
does not depend on the future, is necessary'.
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The principle is formulated such as to deal only with
sentences, which are genuinely about the past. (P) seems to be
equivalent to the idea that what has already been (or is now) the
case cannot be undone. It might appear to follow from (P) that
the antecedent of (C) is necessary, that is, that we should have

(A) 'Necessarily, God knew from eternity that ¢g'.
(As you shall see, this is the step which Lavenham rejected, but
which was crucial to the argument.) We can now apply a well

known principle of modal logic (medieval as well as modern):

(M) 'If 'q follows from p' is a valid consequentia, and p is
necessary, then g will also be necessary'.

Hence, the consequent of (C) will also be necessary. In short, the
argument goes as follows:

1)) 'The Day of Judgment will be'.

2 'God knew that the Day of Judgment will be'.

(3) 'It is necessary that God knew that the Day of
Judgment will be'.

(4) 'Tt is necessary that the Day of Judgement will be'.

But Lavenham rejected the inference from (2) to (3). He
claimed that (P) cannot be used in order to justify this
inference, precisely because the truth of (2) depends on the
future. For if the Day of Judgement will not be, then (2) must
also be false! Lavenham's answer to this argument obviously
depends on Ockham's view in De praedestinatione et de
praescientia Det.

In considering the other version of the argument, Lavenham
used the examples:

p: 'Antichrist will be'.
g: 'God wills that Antichrist will be'.
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Within the framework of the dogmas of the Christian faith,
the consequentia from g to p is clearly valid So if g can be proved
to be necessary, then p will also be necessary in virtue of (M). To
see how one might go on to establish the necessity of g,
Lavenham investigated the following syllogism:

Major premise: g is unchangeably known to God.
Minor premise: What is unchangeably known to God is
necessarily known to God.

Conclusion: g is necessarily known to God.

In this syllogism the minor premise is valid on grounds of the
principle that whatever is unchangeable is also necessary. The
major premise is shown by a proof ad absurdum: if g were
known to God, but not unchangeably known to him, then g
would be changeably known to God. But this is absurd. Thus it is
proved that g is necessarily known to God. But more than that
is needed, since it should be demonstrated that g by itself is
necessary. It seems that Lavenham forgot to mention the
following premise:

"'What is necessarily known to God is necessary'.

However, there is no doubt that this premise is presupposed in
his reconstruction of the argument. By means of this extra
premise it is easily shown that g is itself necessary, and consequ-
ently p is also necessary. Thus goes the second version of the
argument as rendered by Lavenham. But Lavenham himself
of course rejected the argument. He pointed out that the minor
premise of the syllogism above is not valid. For we might just as
well assume that what is unchangeably known to God could
after all have been different, and therefore it does not have to be
necessary! It can therefore be said that in appealing to this
minor premise, the argument was in a sense presupposing that
which it was going to demonstrate, a fact which Lavenham
apparently realised.

As we have seen Lavenham identified four possible
approaches to solving the tension between our two apparently
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conflicting dogmas. However, these approaches were not the
only ones to be considered by medieval philosophers. At least one
important position seems to have been left out. That is the
opinion of St. Thomas Aquinas and others who claimed that the
knowledge of God abstracts from the difference between past,
present and future. According to this view it might be said that
all events are 'always' present to God - in an atemporal sense of
‘always'!

It was mentioned earlier that Leibniz worked out a
metaphysics of time, which from a systematical point of view is
very similar to the thoughts of Anselm and Ockham. We shall
now for a passage leave the Middle Ages in order to examine his
system.

LEIBNIZ

Leibniz accepted the doctrine of divine foreknowledge as well as
that of human freedom. He of course knew the standard argu-
ments that can be constructed in order to prove the incompati-
bility of the two doctrines, but he claimed that those arguments
were invalid:

Nor does the foreknowledge or preordination of God impose
necessity even though it is also infallible. For God has seen
things in an ideal series of possibles, such as they were to be,
and among them man freely sinning. By seeing the exis-
tence of this series He did not change the nature of things,
nor did he make what is contingent necessary. [Rescher
1967 p.39]

Leibniz's central idea was that God had chosen the best of all
possible worlds and made it actual. But in actualising the crea-
tures of that world He did not change their free natures. So it is
not necessary for a man to do that which he will in fact be doing
according to the foreknowledge of God. It would have been
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possible for him to make different decisions leading to different
acts. But if this is so, how can the foreknowledge of God be
infallible? Leibniz' solution to this problem is very close to
Anselm's solution. Like Anselm, Leibniz introduced a distinction
between two kinds of necessity:

For we must distinguish between an absolute and a hypo-
thetical necessity. [Alexander p.56]

These two concepts of necessity correspond exactly to An-
selm's antecedent and subsequent necessity, respectively. With
respect to the argument from God's foreknowledge to necessity
of the future, Leibniz would have no objection so long as the
necessity in question is the hypothetical necessity - just like
Anselm accepted the argument when interpreted as referring
to succedent necessity. Leibniz observed that

Hypothetical necessity is that, which the supposition or hy-
pothesis of God's foresight and pre-ordination lays upon fu-
ture contingents. [Alexander p.56]

This statement is equivalent to Anselm's 'What will be, necessa-
rily will be', i.e.

F(x)p > N;F(x)p

- where N; may be interpreted as subsequent as well as
hypothetical necessity. It is important to realise that this
statement does not provide any information at all about the
number of future possibilities. Perhaps this is more easily seen,
if we once again allow ourselves to illustrate the thoughts
involved by means of the modern notion of 'branching time'.
For ease of reference, we here repeat the illustration which we
used in the previous discussion of the Master Argument:
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future a

future b

now
future ¢

future d

Suppose that, say, future b is the course of events that is actually
going to be. Then to assert hypothetical necessity of some future
event E can be interpreted as saying simply that the event E 'is
on the b-branch'. But that is exactly the same as simply saying
that E is going to occur, which makes the formula above a
simple tautology. And in fact it is very likely that Leibniz
considered this type of statement as outright tautological, that
is, as stating what we would now express with the formula

N(F(x)p o F(x)p)

It should be obvious, then, that this kind of statement does not
convey any information as to the number of possible futures. On
the other hand, Leibniz would certainly reject the validity of the
formula

F(x)p > NF(x)p,

where N represents necessity in general, that is, it also includes
absolute necessity. In terms of the branching time model above,
absolute necessity in effect quantifies over all branches
expanding from the given 'now'.

That rejection is a consequence of his refusal to accept 'past-
necessitation'- (D1) - for arbitrary statements. Although Leib-
niz rejected the generalised version of (D1), he was willing to
accept a limited version of that principle. In his Theodicy [II §
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170] he explained that there is a difference in modality between
the past and the future. For while it is not possible to cause a
past event, it is now possible to cause some of the future events.
Therefore, if p is a statement variable such that P(x)p is
genuinely about the past, it follows that P(x)p is also necessary
in the general sense, i.e.

P(x)p > NP(x)p

Regarding the contingent future there are statement variables,
e.g. the variable q, such that it is possible to make F(x)q false, in
spite of the fact that it will be true - that is

F(x)g A M~F(x)q

This means that while there is no alternative to the actual
past, there are alternatives to the future. These alternative
futures correspond to the Leibnizian concept of possible worlds.

The connection which Leibniz established between modality
and the multitude of possible futures is the one which is also
commonly used within present-day modal logic and possible
world semantics: what is necessary is that which holds in all
possible futures, and what is possible is that which holds in at
least one possible future. The concept of modality involved here
is clearly of a temporal nature. This means that a proposition
which describes some event is necessary (in the absolute sense)
if and only if the proposition follows from a proposition about the
past or the present. It seems that the implication in question is a
kind of causal implication. Thus, an alternative formulation
would be to say that a future event is necessary if and only it is
unchangeably caused by present or past events. It follows that
in terms of our branching time model a necessary event must
be true in all future branches.

The possible worlds of Leibniz represent the ways in which the
entire history might have been different from what it is. There-
fore it seems to be reasonable to identify a possible world with a
possible history.
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Leibniz claimed that among all the possible worlds God has
chosen the best one:

It follows from the supreme perfection of God that he has
chosen the best possible plan in producing the universe, a
plan which combines the greatest variety together with the
greatest order ... For as all possible things have a claim to
existence in God's understanding in proportion to their per-
fections, the result of all these claims must be the most per-
fect actual world which is possible. Without this it would be
impossible to give a reason why things have gone as they
have rather than otherwise. [Leibniz 1969, p.639]

Leibniz' idea of possible worlds can in the context of temporal
logic be viewed as a number of sequences of events. In each of
these chronicles the future events follow logically from the
present. In this connection it should be noted that all relevant
information about the present also includes information about
all past events. Leibniz formulated his position as follows:

For everything has been regulated in things, once and for
all, with as much order and agreement as possible; the su-
preme wisdom and goodness cannot act except with perfect
harmony. The present is great with the future; the future
could be read in the past; the distant is expressed in the
near. One could learn the beauty of the universe in each
soul if one could unravel all that is rolled up in it but that
develops perceptibly only with time. [Leibniz 1969, p.640]

It may seem that Leibniz in this way left no room for the idea
of free choice. That would, however, be an erroneous
conclusion. In dealing with the question of human freedom he
stated:

Since the individual concept of every person includes once
and for all everything which can ever happen to him, one
sees in it a priori proofs or reasons for the truths of each
event and why one has happened rather than another, but
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these truths, however certain, are nevertheless contingent,
being based on the free will of God and of creatures. It is
true that their choice always has its reasons, but these in-
cline without necessitating. [p.310]

Leibniz took the person of Julius Caesar as an example. The
concept of this person involves already at his birth (and in fact,
ever before) a future crossing of the Rubicon, a future
dictatorship etc. Nevertheless, the assumption that the person
who was crossing the Rubicon on a certain day in 52 B.C,, and
who has also done exactly everything Caesar did before the
crossing, will choose not to be a dictator, does not imply a
contradiction. Therefore Caesar's becoming a dictator is not
necessary, but merely certain as foreseen by God.

THE ANSELM-OCKHAM-LEIBNIZ SOLUTION

It is evident that the solutions presented by Anselm, Ockham,
and Leibniz, have very much in common. In spite of minor
differences it is meaningful to speak about 'the Anselm-
Ockham-Leibniz solution'.

The analysis of the relation between the dogmas of human
freedom and God's omniscience, which led to the 'the Anselm-
Ockham-Leibniz solution', has proved to be very important also
for the development of modern tense-logic. Within the modern
discipline the problems concerning determinism and the status
of the contingent future are normally not thought of in
theological terms, but rather it is discussed at a purely tempo-
modal level: What does it mean for an event E to take place?
How shall we solve the problems of determinism versus
indeterminism? What is the relation between time and
modality in general?

In part 2 and 3 we intend to examine some different theories
for the future operator in an indeterministic tense-logic,
theories which form modern counterparts of the various
medieval approaches we have been discussing. In this modern
context, we shall argue that 'the Anselm-Ockham-Leibniz
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solution' is consistent as well as plausible. We shall also qualify
our own heading of 'the Anselm-Ockham-Leibniz solution' by
showing that from a strictly formal point of view, the solution
can be differentiated into two slightly different systems. This is
so because Leibniz' ideas can give rise to a model of time which
differs slightly from what could be called an Ockhamistic model
of time.



1.10. THE DOWNFALL OF MEDIEVAL TENSE-LOGIC

In a short but thought-provoking sketch of the history of logic
with a special view to tense-logic, A. N. Prior has argued that
the central tenets of Medieval logic with respect to time and
tense can be summarised in the following way:

(i) tense distinctions are a proper subject of logical
reflection, and

(ii) what is true at one time is in many cases false at another
time, and vice versa. [1957a, p.104]

Prior admitted that he had not actually documented these
claims in his sketch. However, as we have seen in the preceding
chapters there are many concrete examples in support of his
claims. Prior's statement can be made more precise, though, by
mentioning its two main points in the reverse order, since (ii)
can be seen as a natural presupposition for (i). One can hardly
imagine a logical system based on the first claim which rejects
the second. That is to say: if, in accordance with a rejection of (ii),
logic is to treat timeless truths only, then it seems rather futile to
establish theories for tensed propositions. On the other hand
there is no inconsistency in recognising that the truth value of
propositions can in principle vary with time, but finding work
on this subject uninteresting for logic. And in fact the waning of
tense logic began with a gradual loss of interest in temporal
structures, that is, it was (i) which was first abandoned by the
different schools of logic, and (ii) came to be rejected only
afterwards. We shall now sketch a few major points of this
gradual transformation of logic as a discipline.

The downfall of Scholasticism was a process unfolding with
the rise of the Renaissance Humanism. One of the losses was the
logical studies practised within the Scholastic discipline of dia-
lectics. The Scholastic disputation, which can be seen as a
method of unravelling logical intricacies, came to be particular-
ly despised. It was perceived as expressive of an abstract
philosophy, which could not lead to anything constructive, and
which did not have any worthwhile qualities in its own right.
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The struggle against the Scholastic tradition initiated by the
dawning Renaissance lasted for at least a century, although E. J.
Ashworth [1982] is probably correct in suggesting that the most
significant phase of the battle took place in the years around
1530. In the early period some of the major critics of
Scholasticism were Laurentius Valla (1407-1457) and Rudolf
Agricola (1443-1485). In the footsteps of Cicero and Quintilian,
Valla and Agricola wanted to study and define logic within the
discipline of rhetoric. For instance Agricola defined logic as "the
art of expressing yourself convincingly of anything” [Dumitriu
p-232]. This considerable change in the conception of logic was to
a large extent a reaction against the perceived maltreatment of
the Latin language by Scholastic logicians.

In the decisive phase of the strife the most important
humanists were Juan Luis Vives (1493-1540) and Peter Ramus
(1515-1572), who also introduced the new 'humanist logic',
based on the same ideas as those of Valla and Agricola. Vives
went to the university of Paris in 1509 to study within the
Scholastic tradition, but when he left it again in 1512, he was
totally convinced that Scholastic logic had very little going for it,
if indeed anything at all. He especially reacted against the
sophisticated, almost artificial, language of the Scholastic
logicians. That language was actually semi-artificial in much
the same manner as the verbiage of present-day philosophical
logic, as seen also in the preceding pages - think of phrases such
as 'it will always have been the case that...', etc. However,
modern logicians do not have to rely on this kind of language,
because we have actual symbolic logic at our disposal. But the
Scholastics had no other means than this quasi-formal
language in order to make their ideas precise, and for that
reason it became an important and pervasive part of their
logical tradition. Against that tradition Vives maintained, like
Valla and Agricola before him, that contemporary logicians
ought to stick to ordinary language. In this connection they
fielded the extra argument that it had been possible for Aristotle
and Cicero to describe their logical rules in everyday Greek and
Latin. In passing it is worth noting that there are striking
similarities between the Humanist criticism of Scholastic logic,
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and the modern 'pragmatical' opposition against the project of
formal semantics for natural language. In both cases there is a
reaction against the (real or imagined) regimentation of
natural language, and a turn to pragmatical phenomena
instead. Especially the downfall of Logical Atomism in the face
of Ordinary Language Philosophy in the Fourties, which is
recorded in [Urmson 19671, makes out a striking parallel.

The Renaissance perception of the Scholastic tradition is
reflected in strong terms in Vives' Adversus pseudodialecticos of
1520, in which passages like this one can be found:

One is nowadays ashamed of speaking of 'incipit' and
'desinit'. Who, by chance, passed on this subtle rigourism,
these futile examples, these inane [examples]. [Vives p.59]

In this arrogant way Vives dismissed the attempts of the pre-
vious centuries to build a conceptual apparatus, which amongst
other things should provide an account of temporal continuity
and limits. He also ridiculed Scholastic distinctions between
propositions such as:

(I) "Antichristus qui fuit erit' (Antichrist who was, will be)
and

(II) 'Antichristus erit, qui fuit' (Antichrist will be the one,
who was).

According to the Scholastic analysis the first proposition is
false, because it implies that Antichrist has already lived,
whereas the second one is considered to be true, since Antichrist
- according to the Bible - will come, whereafter he will be the one
who was! For a modern tense-logician this is familiar as the
distinction between (Fg A Pq) and FPq, respectively. Vives
regarded this discussion primarily as an example of bad Latin,
and did not realise that there was indeed a significant logical
difference underlying the discussion.

Vives was greatly applauded for his endeavours. Erasmus of
Rotterdam, for example, wrote that Vives was more suited than



112 CHAPTER 1.10

any other person for the task of refuting Scholastic logic, due to
his previous service for several years within that tradition.

It is possible, however, that the Scholastic tradition was also to
some extent dissolving from within. Ashworth [1982] has
discussed whether there was a general recognition of the
inadequacy of their logic among the better known logicians at
the University of Paris. That question must still be said to be
open, although it is obvious that in their work these logicians
were getting close to the limit of what linguistic formulations
could bear in order to gain more insight by logical analysis. In an
ironical manner, this is the very same problem which also gave
rise to Vives' type of accusation, namely that of unnecessary
sophistry and maltreatment of Latin.

It is hardly possible to find any real progress, or any real
novelties, in the modified logic of the Renaissance, as Robert
Adamson [1911] has remarked. The same is true of the only
logician of 'the Crunch period', Peter Ramus, whose works were
very popular in the 16th and 17th centuries. He became the
main proponent of the so-called humanist logic. The result of
the leading Renaissance logician's work was not a recreation of
logic, but an amputation. The emphasis on rhetoric and the
significance attributed to Roman logic, which mainly
accentuated elegance and simplicity, turned logic into a science
of the art of argumentation, or an 'ars docendi' as seen by
Melanchthon (1497-1560).

As a consequence of Humanistic logic the temporal dimensions
of logic became progressively more neglected. During the 16th
century interest in temporal constructions such as those
discussed in the previous sections nearly disappeared, although
a few logicians continued to work along the lines of the
Scholastic tradition (see [Trentman 1982]). 'Ampliatio’ was
among the temporal constructions which attracted the
attention of logicians for the longest period of time (see
[Ashworth 1982]).

By the 17th century, the interest in such temporal
constructions had nearly disappeared among logicians.
Nevertheless there were a number of logicians who felt that the
truth value of propositions must in principle be looked upon as
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varying with time, as Nuchelman [1980 p.131 ff] has shown in
his thorough analysis. But in the famous and representative
work La Logique ou l'art de penser, which was first published in
1662, Antoine Arnauld (1612-1694) and Pierre Nicole (1625-
1695) presented a persuasive and coherent logical theory, in
which little room was left for the medieval approach to the logic
of tensed propositions. The idea of temporally varying truth was
not categorically rejected in the text, but on the other hand it just
did not play any réle. In the following chapter we shall briefly
consider the new understanding of logic developed by Leibniz
and others.



1.11. LOGIC AS A TIMELESS SCIENCE

In his thorough history of logic Anton Dumitriu [1977 p.11 ff]
puts much emphasis on the significance of Francis Bacon
(1561-1626). In Bacon's attempt to establish experimental
science and define its methods, he presented logic as a tool to be
applied within the respective scientific disciplines, as well as a
more general tool for analysing the conditions of each discipline.
Thus Bacon emphasised the réle of logic as methodology. This
emphasis would eventually lead to the dissociation of logic from
language, that very connection which in the Scholastic times
had inter alia legitimised the study of propositions with time
reference. Dumitriu attributes almost the same importance to
the réle of René Descartes (1596-1650) within post-Scholastic
logic. In Descartes' methodology, mathematics becomes a model
for all of science. Since mathematical truths are in general
considered to be independent of and without reference to time,
Descartes' point of view also seemed to motivate that time be
neglected in logic. One of the great Cartesians, Malebranche
(1638-1715) wrote, in his Recherche de la vérité:

La vérité est incréée, immuable, éternelle, au-dessus de
toutes choses. [Risse 1970, p.110]

Let us now consider Gottfried Wilhelm Leibniz (1646-1716),
who was of paramount importance in the history of logic.
Leibniz must be considered to be the founder of symbolic logic.
He is also one of the logicians responsible for the definitive
abandonment of tense-logic. In 1679 he presented a subject-
predicate logic, in which the study of the copula (English 'be’, or
Latin 'esse') was not significant (see [Leibniz 1969 p.235]). In so
doing he effectively distanced himself from a considerable
number of the subjects with which the Scholastic logicians had
been concerned.

Leibniz was clearly influenced by Peter Ramus and
Melanchthon (see [Leibniz 1969 p.464 & p.471]), and followed
them in finding Scholastic logic inadequate. He also mentioned
the logicians Jacobus Zabrella (1533-1599) and Joachim
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Jungius (1587-1657) as persons who revealed the inadequacy of
Scholastic logic. Nevertheless, Leibniz' approach to logic was
very different from the methods known within 'humanist logic'.
He wanted to mathematicize logic, and to construct a calculus
which could be used as a mathematical description of logical
structures and inference. In this endeavour, he left out the
copula and its conjugation, as well as other auxiliaries, for
instance modal ones. In Leibniz' symbolic logic it is implicitly
understood that a copula has to appear in the present tense (and
an omnitemporal sense).

An important person in the development was Gabriel Wagner,
who in 1696 settled in Hamburg,. Here he began to publish the
journal 'Vernunftiitbungen', in which he led a bitter fight against
contemporary Scholasticism, roundly attacking logic. This
prompted Leibniz, in a letter to Wagner in the same year, to
defend the discipline as extremely valuable (see [Leibniz 1969
p.462 ff]). In his letter Leibniz tried to determine what exactly
logic was. He established that logic ought to be looked upon as an
art, which can make the knowledgeable more secure. This
happens not only by evaluating the truth values of given
propositions, but also by logical investigations and methods
leading to new and hitherto hidden truths. Leibniz thus
regarded logic as a science of thought and method.

In his attempt to determine what logic is, Leibniz pointed to it
as a science important for all kinds of intellectual work. In his
opinion, it had to be considered the key to all intellectual
evaluations, and hence to all of science. Since Wagner was
unwilling to draw this conclusion he must either have disagreed
with Leibniz' definition of logic, or else he must have considered
the state of logic as well as its results so far to be pretty poor.
Some of Wagner's remarks indicate that he did indeed hold the
latter, and actually, so did Leibniz himself, at least to some
extent. He recognised that logic at present was 'but a shadow' of
what he wanted it to be. But even though he thus partly agreed
with Wagner, he thought it was wrong to reject the entire
logical tradition out of hand, since he considered much
traditional logic as both thought-provoking and useful.
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The logic which Leibniz himself wanted to promote was a
timeless logic. But that is not to say that Leibniz did not take an
interest in questions involving time, and in fact, questions which
we would call tense logical. Indeed, we have argued that Leibniz'
philosophy regarding the relation between God's foreknowledge
and man's free will is in tune with Medieval as well as modern
tense-logic.

Nevertheless, in his actual logical works Leibniz formulated
his logic in such a way that it did not take time into account. We
shall here suggest what we believe to be the main reasons for
Leibniz' deliberate neglect of time within his logic.

Firstly, it was Leibniz' ambition to bring mathematics and
logic close together. Leibniz admitted that mathematics is
identical with logic, but he maintained that it is 'one of the eldest
sons' of logic. In particular, he emphasised what he considered
to be an important discovery, namely the insight that many of
the advantageous features of algebra can be traced back to the
august science of logic! (See [Leibniz 1969 p.469 ff]) Given
Leibniz' clear interest in the relation between mathematics and
logic, and especially in the use of logic within mathematics, it is
easy to understand that he would favour the timeless variety of
truth.

A second and more philosophical reason for Leibniz'
preference for a tenseless logic can be found in his concept of the
individual substance. The complete or perfect notion of an
individual substance on his view includes everything which can
be said of the substance with respect to past, present, and future
(see [Leibniz 1969 p.268 f{f]). We have already discussed the
example of the concept of Julius Caesar. Leibniz also mentioned
the Apostles Peter and Judas as examples: it is inherent in the
complete notion or concept of Peter that he was going to deny
Jesus, and likewise is inherent in the complete notion of Judas
that he was lost. Therefore, according to Leibniz any
argumentation or investigation concerning complete notions
does not need to make any reference to time. Predicates belong,
or do not belong, to the complete notion irrespective of temporal
relations. It should however be noted that the temporal aspects
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are clearly incorporated into the very formulation of the
concepts!

Leibniz' conception of logic was continued by people like Wolff
and the Dane Jens Kraft, who in their books on logic referred to
mathematical examples, although they did not use actual
symbolic logic. Examples of actual symbolic logic were rare in
the 18th century and the first part of 19th century. Important
exceptions were Johan Heinrich Lambert, Gottfried Ploucquet,
Leonard Euler, and J. D. Gergonne [Kneale 1962 p.348 ff.]. But
the typical attitude of the time was that there was no need for a
further development of logic. Kant, notably, had in the preface to
Critique of Pure Reason stated that logic had been unable to
make any substantial advances since Aristotle, and logic
appeared to him as "allem Ansehen nach geschlossen und
vollendet zu sein" [2. ed. p.VIII]. Kant defined logic as the
discipline concerned with the formal rules for any kind of
thinking ("die formalen Regeln alles Denken"). In his opinion,
the study of these rules, i.e. logic as such, had already been
completed by Aristotle. This of course did not exclude that there
could still be work to be done on the foundation of logic, in order
to be able to formulate the conditions for 'pure reason' - this was
exactly what Kant himself was doing. But the set of formal rules
of thought, that is, logic itself, was considered to have been
already exhaustively determined. Therefore attention was
turned away from a supposedly futile study of actual logic, and
instead directed towards a discussion of the application of logic,
primarily within reasoning and scientific methodology. Thus
logical studies were concerned with general truths, and logic
became timeless.



2.1. THE 19TH CENTURY
AND BOOLEAN LOGIC

In the 19th century temporal distinctions were usually con-
sidered to be irrelevant to logic. The timeless character of logic
was often argued for by reference to philosophy of science: the
primary interests of science should be timeless (or omni-tempo-
ral); and since logic was thought to be a tool for sciences, it too
had to follow suit. Thus Alexander Pfinder, who worked within
the phenomenological tradition, asserted that the non-historical
sciences had exclusively to aim at true propositions described
with "eine durch alle Zeiten hindurchgehende Gegenwart"
(1921, p.269] (app. "a present stretching through all times").
Pfander was by no means the first person to state such views.
On the contrary, they must be said to have been prevalent
during the previous two centuries. The perception of logic as
timeless was still a common-place around the turn of the
century. In the following we shall as one example show how this
conception was expressed by one Danish logician of that period.

K. Kroman was one of the most prominent logicians of his day
in Denmark. His work on logic entitled Tenke og Sjzlelaere
(app. "Textbook on Thought and the Soul") [1899] was
concerned with the nature of scientific statements:

[To say] that N. N. has a horse, which had a fall yesterday, is
not [to make] a scientific statement. But the observation
that the horse is a solid ungulate hoofed mammal, which is
normally used as a domestic animal, is on the other hand a
scientific statement. [1899, p.5] (our translation)

Kroman's understanding of the rdle of logic as a tool for the
other sciences is apparent in the following quotes:

...it is with the aid of logic, that we build any other science...

Logic is ... the science of correct thinking. [1899, p.5] (our
translation)
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Thus logic is, according to Kroman as well as most of his
contemporaries, a tool to be used in connection with the
formulation of any science. The underlying assumption is that
scientific theories are essentially systems of propositions. Logic
itself consists of three parts since it studies concepts,
propositions, and inferences:

The basic items of logic are... concepts, and with concepts
the first part of logic is thus concerned [p.15];

Words refined into concepts are not sufficient as a basis for
logic, but logic must, whilst following everyday language,
also seek a refined expression for the life and movement of
conceptual content, corresponding to the [everyday
language] sentence; this expression it finds in the
proposition. [p.22];

...it (is) the task of logic to teach us how we form inferences,
or how we should correctly derive new propositions from
given ones. [p.23] (our translation)

This trichotomy is historical and obvious in Scholastic logic, too.
There, however, temporal considerations were interwoven with
all three elements. But Kroman only discussed the réle of time
explicitly in connection with the formulation of propositions:

Science is furthermore concerned essentially with
conditions and activities of a general character, conditions
and activities which are not depending on any specific
present moment of time, but which are of a lasting validity;
hence the different 'tenses' of the verb would as a rule also
be superfluous, and we could in general abide by the present
tense only. [p.31-32] (our translation)

There is thus no room for considerations concerning tense
inflected propositions in Kroman's logic. The reason for this is
clearly that logic is to serve science as Kroman and his
contemporaries saw it. Here time comes into the picture, partly
in connection with the basis for prediction, and partly in
connection with his ideas on the development of knowledge.
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Kroman's understanding of logic as a timeless discipline was
continued in Hoffding's logic, in which the copula of propositions
is seen to be always in the present tense: 'is'. Hoffding did allow
that time relations can be considered, but only when the
expression indicating time occurs either as the logical subject or
as a predicate. Not until Jergen Jergensen, who emphasised
Boole's inclusion of time and Eukasiewicz's analysis of
propositions relating to the future, did time-logic find a modest
place within Danish logic.

Kroman's view on logic was certainly typical of his period, not
only in Denmark but in Western logic as a whole. The most
important logician of the nineteenth century was Gottlob Frege
(1848-1925). For Frege, truth in logic was completely timeless:
the time at which an utterance is made is considered as part of
the thought which is being expressed [Klemke, p.361]. If
somebody wants to say the same today, as he said yesterday
then he must substitute the expression 'today' with the
expression 'yesterday' [Prior 1957]. In Frege's logical system
there is no room for the conception of a proposition as a function
with time as a variable. Likewise, the study of tensed
propositions is not considered to be interesting. While this
without doubt holds for his symbolic logic and its concomitant
conception of what logic is about, it is paradoxical that Frege at
the same time was keenly aware of intensionality in language.
In his famous article "Uber Sinn und Bedeutung" [Frege 1969]
(On Sense and Reference), he actually did invite a conception of
propositions as functions. His observations in that paper played a
crucial réle for the later development of intensional logic (and
possible world semantics), where propositions are ordinarily
construed as functions with time as one of their crucial
parameters [Montague 1976a].

In Prior's overview of the history of logic it is described how
many 19th century logicians - for instance R. Whately, H.L.
Mansel, Francis Bowen, and Thomas Fowler - denied that
tensed propositions were important or at all relevant in logical
analysis. There are some notable exceptions, though; these
include J. S. Mill (1806-73), George Boole (1815-64) and C. S.
Peirce (1839-1914). In the next section we shall examine
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Peirce's role, but for now we shall concentrate on George Boole,
who constructed a logical formalism modelled on algebra. This
formalism proved vital for the development of modern symbolic
logic. But Boole is also perhaps the first 19th century logician to
have included the concept of time explicitly in his theories
(although only in a few passages). Naturally, we shall here
concentrate on this element of Boole's logic and leave aside a
more exhaustive exposition.

Some interesting considerations regarding the relation
between time and logic can be found in the manuscript entitled
Sketch of a Theory and Method of Probabilities Founded upon
the Calculus of Logic, which Boole must have written between
1848 and 1854. Boole here discussed elementary propositions
such as "The Thermometer falls" and "It will rain". Boole made
this observation:

Accordingly I have ... interpreted the symbols x, y, z, as
expressing the cases in which those elementary
propositions are true [x corresponding to 'it rains' and y
corresponding to 'it hails']. This is in agreement with the
ordinary doctrine of the 'Reduction of Hypotheticals'. But
more exact analysis has led me to another conclusion. And
without stopping here to assign the reason upon which that
interpretation is founded, I shall simply state that it consists
in regarding the symbols as representing the times in
which the elementary propositions to which they refer are
true. [LP, p.146]

From this passage it is not clear what convinced Boole that a
temporal approach is preferable to the approach based on an
analysis of the given situation. But an appendix to the
manuscript shows that he recognised the importance of
ordinary language as a guide for - or perhaps a test-bed of -
logical considerations (especially with respect to the study of
universals and particulars):

The language of common discourse, which in many
respects outstrips the limits within which the logicians
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would fain have restricted it, recognizes, however, the
particular as well as the universal in hypothetical
judgements, - and it distinguishes them by the particle
'sometimes’. The system which I have endeavoured to
establish introduces the same element, Time, and in the
same manner. This I was not aware of when I was led to
form that system, and I accordingly esteem it an interesting
verification. [LP, p.162-63]

Boole obviously held that a proposition refers to one or more
durations. If two propositions refer to the duration x and the
duration y, respectively, then the conjunction between two
propositions equals xy (i.e. the intersection between the two
durations). It thus becomes especially interesting to examine the
numerical constants 0 and I:

.. the numerical values 0 and 1 will be equally admissible
with this system of interpretation, the former as the
representative of the nothing of time or never: the latter as
the Universal of time, which when unlimited is Eternity,

when limited the duration to which our discourse refers.
[LP, p.146]

For example, Boole represented propositions such as:
'If it rains, it hails'
by an equation of the type:
xX=vy

Let us render the ideas involved in this example in modern
terms: y is to be understood as the function defined on the set of
times, yielding the value 1 when 'it hails' is true, and 0
otherwise; x is the analogous function corresponding to 'it rains'.
The third function of the equation v, is according to Boole "the
representative of time partially indefinite and is a symbol of the
same kind as x and y". The set theoretical réle, which v plays in
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the equation is to ensure that the set of truths for x is a subset of
the set of truths for y. Similarly, one could say that 'it hails' and
'it rains' can respectively be represented by the equations y=1
and x=1. Here the implication 'if it rains, it hails', has been
captured by an equation. Alternatively, one could represent it by
the function (1 - x + vy).

In his major work An Investigation of the Laws of Thought, on
which are founded the Mathematical Theories of Logic and
Probability [1854], Boole presented some of the same thoughts
which appear in the earlier manuscript. He considered the so-
called secondary propositions [p.159], verdict functions which
relate to other verdicts. It is characteristic of secondary verdicts
that they involve a time relation. This means that logic must be
about relations between 'valid times'. Jorgen Jorgensen has
pertinently characterised Boole's theory for secondary verdicts
as a "time interval calculus" [1937, p.48]. This kind of theory as
was unique in nineteenth century logic.

It must be admitted that the introduction of time into a logic
for secondary verdicts does not seem to have been one of Boole's
chief concerns (judged on the basis of the number of pages in his
works devoted to the treatment of this question). But his
remarks on the matter are on the other hand clear enough. In
any case they caused John Venn [1894, p.451-52] to realise as a
consequence of Boole's theory that tense inflected propositions
must be considered in logic, even though Venn himself did not
like the idea much. Half a century later, Boole's inclusion of time
in logic became one of the inspiring factors for the founder of
modern tense-logic, A.N. Prior[1957], who strongly emphasised
Boole's suggestions.



2.2. C.S. PEIRCE ON
TIME AND MODALITY

Time has usually been considered by logicians to
be what is called ‘extra-logical' matter. I have
never shared this opinion. But I have thought
that logic had not yet reached the state of
development at which the introduction of
temporal modifications of its forms would not
result in great confusion; and I am much of that
way of thinking yet. C.S. Peirce [CP 4.523]

To Charles Sanders Peirce (1839-1914) semiotics (or to use his
own expression: 'semeiotic') gradually became identical with lo-
gic in a broad sense. In defining this relation between semiotics
and logic, Peirce was no doubt highly influenced by the way the
scholastic realists understood science, as for instance demon-
strated by Emily Michael [1977]. He got his inspiration first and
foremost from the medieval juxtapositon of three of the seven
free arts into the so-called trivium. The trivium consisted of the
disciplines Grammar, Dialectics (or: Logic), and Rhetoric. As
demonstrated by Max H. Fisch [1978], Peirce's work from 1865
to 1903 shows a constant development of reflections on the
content and application of this tripartition. In the Spring of 1865
he subdivided the general science of representations into
'General Grammar', 'Logic' and "Universal Rhetorics'. In May
the same year he called this division 'General Grammar',
'General Logic', and 'General Rhetorics', and in 1867 it was
presented as 'Formal Grammar', 'Logic’ and 'Formal
Rhetorics'. Twenty years later, in 1897, it had become 'Pure
Grammar', 'Logic Proper' and 'Pure Rhetorics'. In 1903 Peirce -
within his own now more matured framework - determined
the tripartition as 'Speculative Grammar', 'Critic', and
'Methodeutic'. By then it was also clear to him that semiotics -
subdivided in that way - can in fact be understood as logic in the
broad sense. Altogether Peirce's semiotics can be looked upon as

a modernisation of the understanding of logic from the late
Middle Ages.

128
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Not only the tripartion, but also several other elements of
medieval logic had an impact on Peirce's analyses and his devel-
opment of semiotics. One example is the tripartition of the sub-
jects of logic into terms, propositions and arguments - a division,
which can be found in almost every mediaeval introduction to
logic. It was clear to Peirce that this classification was relevant
not only within logic (in the narrow sense), but also within both
grammar and rhetoric, a fact which had also been recognised
by the ancients and the medievals. It should be mentioned, how-
ever, that Peirce rejected the idea of completely non-assertoric
terms. In his opinion even terms are in general assertoric [CP
2.341].

One of the very obvious differences between mediaeval logic
and the logic of later centuries is the réle of time in logic. In
mediaeval logic time was taken very seriously. Words and
terms with a temporal content such as 'begin', 'end', 'while' were
analysed, and the tenses of the verbs were made the object of
endless logical/semantical analyses. Peirce was certainly aware
of this, and there are many indications that he realised as one of
the earliest modern philosophers and logicians that time could
and even should be gradually included in logic.

As the introductory quote above makes evident, Peirce made
himself a spokesman for an open and undogmatic understand-
ing of logic. This openness, which was obviously due to his ex-
tensive knowledge of classic and scholastic logic, also meant that
he would not accept logic as an untemporal science. He could
well imagine a new development of a logic, which would take
time seriously. Peirce, however, held that logicians around the
turn of the century were not ready to (re)introduce time into
logic without creating great confusion; not until later would it be
possible to introduce the logic of time.

Peirce's prophetical vision of a temporal logic proved to be cor-
rect. In the 1950's and 60's A. N. Prior succeeded in re-establish-
ing the logic of time as a proper part of logic. It is obvious that the
study of Peirce's philosophy meant a great deal to Prior. In
Prior's first great time logical work Time and Modality [1957],
he gave a brief presentation of the history of the modern logic of
time in an appendix; about one fourth of this exposition is
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devoted to the importance of Peirce with respect to the
development of the new logic of time.

Peirce's philosophy contains features, which could well be
interpreted as an emergent logic for events. For example, he
defined the notion of a "Token' as applying to "A Single event
which happens once and whose identity is limited to that one
happening or a Single object or thing which is in one single place
at any one instant of time" [CP 4.537]. As we have already seen
Peirce was hesitant about advancing a formal logic of time
himself, but nevertheless it is relatively easy in his authorship to
find clear ideas which can be used in a presentation of a formal
time logic.

In the following we shall first discuss Peirce's conception of
time. Then we shall examine those rudimentary elements of a
time logic, which can be found in Peirce's work after all. This
examination will be followed by a preliminary discussion of
Prior's formalisation of those elements. In a later chapter we
shall compare these Peircean answers regarding future contin-
gents with a formal version of the Ockham answer discussed in
Part One.

PEIRCE'S UNDERSTANDING OF TIME

It is reasonable first to discuss Peirce's understanding of time
within mathematics. Peirce was fully aware of the fact that one
of his greatest sources of inspiration, the philosophy of Imma-
nuel Kant, had in Anglo-Saxon thinking given rise to an extra-
ordinary linkage of the concept of time with mathematics:

However, Sir William Rowan Hamilton and De Morgan in-
fluenced (the latter only indirectly) by Kant defined ma-
thematics as the science of time and space. This definition
never had very wide vogue. It is one of the very worst any
science ever received. [NEM, p.594].
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Inspired by Kantian thinking, Hamilton had felt that if geome-
try could be understood as a pure mathematical study of space,
then a similar pure mathematical study of time ought to exist.
The research program emerging from this conviction can be
described as an attempt to establish algebra as the 'science of
pure time'. Hamilton encountered many difficulties in that
endeavour. In fact, there are several indications that he actually
gave up the fundamental idea himself [@hrstrem 1985a]. Peirce
was very categoric in his rejection of Hamilton's program. He
even stated that "it must be an unclear head that cannot see that
number and counting have nothing in particular to do with
time." [NEM, p.594] However, the validity of that rejection is
doubtful. Aristotle had already determined time as "the number
of motion with respect to earlier and later" [Physica IV, 220b]. In
fact, there seems to be an etymological connection between the
Greek words for rhythm and number, respectively. This
connection apparently strengthened the belief within Greek
philosophy that these two concepts are interdependent, or at
least semantically related. At any rate, there is ample historical
proof that time and numbers are closely interwoven. Immediate
examples are the calendar and the clock. As a matter of fact, in
Peirce's own work there are enough examples to support the
viewpoint that time is relevant to mathematics. Peirce's first
rejection of Hamilton's program was rather injudicious, but as
we shall see below the following observation is more convincing:

Hamilton called algebra the science of Time. But the most
remarkable characteristic of time, namely, that the passage
from the past to the future is qualitatively different from
the passage from the future to the past is not represented in
algebra. [NEM, p.9]

According to Peirce, Hamilton's program failed because it did
not in its algebra incorporate the temporal asymmetry between
the past and the future.

In his comprehensive work New Elements of Mathematics
[NEM] (which was a rewriting. or perhaps a paraphrase, of his
father Benjamin's manuscript), Peirce included a brief chapter
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concerned with time. In a letter to William E. Story (dated the
22nd of March 1896), Peirce's stated his motivation for
including this chapter as follows: "The science of Time receives a
brief chapter, chiefly because it affords an opportunity for
studying true continuity" [NEM, p.vi]. The mathematical
character of time is defined in this chapter in the following way:

Time is that by the variations of which individual things
have inconsistent characters. Thus, to be alive and to be
dead are inconsistent states; but at different times the same
body may be alive and dead. [NEM, p.248]

Obviously, this definition is not merely mathematical, but also
substantially logical; this can be seen from the way it uses the
notion of (in)consistency, and also from the implicit reference to
assertions. Moreover, the kind of logic implicit in the definition
is a time logic, since it involves assertions which are true at some
times, but false at other times. In general, it is clear that to
Peirce time was to be understood in relation to events, and it is
unlikely that his framework should leave any room for repre-
sentations of an 'empty time', wherein no change at all would
take place. These observations are supported by the following
quotation from 1892:

Time, as the universal form of change, cannot exist unless
there is something to undergo change and to undergo
change continuous in time there must be a continuity of
changeable qualities. [CP 6.132]

Further Peirce defines the past, the present and the future in
the following way:

The present is the existing state of things .... The past is that
part of time with which the memory is concerned ... The
future is that part of time with which the will is concerned.
[NEM, p.248-49]
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Obviously, these definitions are not themselves exactly what
we would call pure mathematics. Nonetheless, they invite a
mathematical discussion of the concept of time, as witnessed by
the appeal to the notion of continuity; evidently, such a discus-
sion should on the other hand be influenced by cognition and
psychology. The chapter on time is mainly concerned with con-
siderations about temporal continuity. The crucial point is here
the gradual change in the course of time. In that connection it
becomes very important to distinguish between 'instant' corres-
ponding to the mathematical time and 'moment’ which is an in-
finitesimal duration and which can be used in a mathematical
description of the gradual change.

In Peirce's philosophy, experience was a crucial notion, and in
that connection he naturally had to discuss time. Any realisation
process, as for instance the change from doubt to belief, must
involve something temporal, he stressed [CP 7.346]. As Sandra
B. Rosenthal [1987] noted, Peirce was aware of the fact that no
experience is so limited as not to contain a flow of continuity.
Peirce put it like this:

There is no span of present time so short as not to contain ...
something for the confirmation of which we are waiting.
[CP 7.675]

In 'The Law of Mind' (1892) he tried to determine the salient
features of how we as human beings understand time:

One of the most marked features about the law of mind is
that it makes time to have a definite direction of flow from
past to future. The relation of past to future is different from
the relation of future to past. [CP 6.127]

This temporal asymmetry is clearly in opposition to the laws of
mechanics, which are fully symmetrical with respect to the
time co-ordinate - the two temporal directions being no more
different in relation to mechanics than two spatial directions.
Nevertheless, Peirce maintained that our experience of time is
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asymmetrical. Our cognitive relation to the past is certainly dif-
ferent from our relation to the future.

The fact that "future conduct is the only conduct that is subject
to self-control" [CP 5.427] was very important for him with re-
spect to a theory of meaning:

The rational meaning of every proposition lies in the future.
How so? The meaning of a proposition is itself a proposi-
tion... it must be simply the general description of all the
experimental phenomena which the assertion of the
proposition virtually predicts. {CP 5.427]

Peirce believed that the power or principle shaping the history
of nature is neither coincidence nor necessity, but rather it is
love, agape: the divine love which the Creator expresses towards
creation in the course of time. In this way nature can be viewed
as a continuous flow. But it should also be clear that according to
Peirce man is not only living in this progressive time. Human
time is also tense-oriented, that is, the concepts of past, present
and future are essential to the human mind. The past can be
characterised as 'facts'. According to Peirce a fact should be un-
derstood as a "fait accompli; its esse is in praeterito" [CP 2.84].
Such facts should be viewed as 'now-unpreventable'. But with
the future it is a different matter:

Being in futuro appears in mental forms, intentions and ex-
pectations. Memory supplies us a knowledge of the past by a
sort of brute force, a quite binary action without reasoning.
But all our knowledge of the future is obtained through the
medium of something else. [CP 2.86]

The medium mentioned here could for instance be the laws of
physics, or nature in general. That is, in some cases the future
can be present in its causes, and in these cases we can have
knowledge of the future. But in other cases we must confine
ourselves to other kinds of law-like statements. It should, how-
ever, be mentioned that Peirce did not consider natural laws to
be quite as compelling as logical laws. Natural laws he saw as
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'habits of nature', and he even accepted the possibility of a "sud-
den stoppage of everything" [CP 4.547]. He did not consider the
possibility of a law of nature against such a sudden stoppage as
an argument which should be taken very seriously!

To which extent would Peirce allow that a scientific law can be
a medium through which aspects of the future can be known?
This is, as far as we can see, an open question. Peirce's views on
the relation between time and cognition as well as his idea of
time in general are very complex, and we must admit that his
statements do not unambiguously point in any single direction.
A few quotations should illustrate that:

For time is itself an organized something, having its law or
regularity; so that time itself is a part of that universe whose
origin is to be considered. We have therefore to suppose a
state of things before time was organized. Accordingly,
when we speak of the universe as "arising", we do not mean
that literally. [CP 6.214]

The idea of time must be employed in arriving at the con-
ception of logical consecution; but the idea once obtained, the
time element may be omitted, this leaving the logical se-
quence free from time. That done, time appears as an exis-
tential analogue of the logical flow. [CP 1.491]

Statements like these are typical for Peirce's philosophy. They
form a good inspiration for further speculation regarding the
concept of time. It must be admitted, however, that his ideas of
time become very complicated when it is added that Peirce
apparently believed in what Milic Capek [1991, p.265] has
termed a 'self-returning nature of time'. Peirce stated:

The other question is whether time is infinite in duration or
not. If it has no flaw in its continuity, it must, as we shall see
in Chapter 4 return to itself. This may happen after a finite
time, as Pythagoras is said to have supposed, or in infinite
time, which would be a doctrine of consistent pessimism.
[CP 1.498]
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Peirce formulated similar views in [CP 1.498) and in [CP
6.210]. It is hard to see how the idea of eternal recurrence can fit
with the rest of the Peircean thinking. Peirce may in fact have
had problems with this question himself, since the 'Chapter 4' to
which he refers in the above quotation was apparently never
written. We shall leave this issue here.

TIME AND MODALITY

The concept of possibility has always played a great réle in
philosophy, and Peirce is no exception to this rule - on the con-
trary, it was one of his essential goals to find a suitable definition
of 'possibility’. Early in his authorship his attempts at a definition
were characterised by semantically negative expressions, but
later he emphasised the positive character of the notion. On the
18th of March 1897 Peirce wrote:

... my old definition of the possible as that which we do not
know not to be true (in some state of information real or
feigned) is an anacoluthon. The possible is a positive univer-
se, and the two negations happen to fit in, but thatis all ... I
found myself arrested until I could form a whole logic of
possibility, - a very difficult and laborious task. {CP 8.308]

Later he formulated the positive character of possibility in still
stronger terms:

Potentiality is the absence of Determination (in the usual
broad sense) not of a mere negative kind, but a positive ca-
pacity to be Yea and to be Nay; not ignorance but a state of
being ... Actuality is the Act which determines the merely
possible ... Necessitation is the support of Actuality by reason
... [Ms 277, 1908; quoted from Fisch and Turquette 1966:78]

It is a natural consequence of Peircean thought that he in
some contexts related modality, including the definition of the
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possible, to time or temporality. In order to examine this relation
closer we must first scrutinise Peirce's view on the relation
between time and reality, which means that we have to start
with the ontological foundation for his ideas about the logic of
time. Peirce distinguished between three modes of being, which
can be understood from the following quotations:

My view is that there are three modes of being. I hold that
we can directly observe them in elements of whatever is at
any time before the mind in any way. They are the being of
positive qualitative possibility, the being of actual fact, and
the being of law that will govern facts in the future. [CP
1.21-1.23]

Thus the three modes of being in Peirce's philosophy are: ac-
tuality, possibility and necessity. In 'temporal terms', ‘actuality’
(understood as the 'given') will cover both the past and the pre-
sent. The future is thought of as a possibility sphere with certain
predetermined incidents (logically necessary or determined by
natural law). In this way possibility as well as necessity are both
related to the future; and conversely, future events are subdi-
vided into either necessary ones or merely possible ones. In ac-
cordance with this binary subdivision, Peirce rejected the idea
that the truth about the contingent (and undecided) future
could be known beforehand - or indeed, that assertions about the
contingent future could at all be meaningfully regarded as
having a truth-value. The following statement sums up essen-
tial features of Peirce's views:

That time is a particular variety of objective Modality is too
obvious for argumentation. The Past consists of the sum of
faits accomplis, and this Accomplishment is the Existential
Mode of Time. ...the Mode of the Past is that of Actuality.
Nothing of the sort is true of the Future.... (The future) is
not Actual, since it does not act except through the idea of it,
that is as a law acts; but is either Necessary or Possible... [CP
5.459]
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Peirce did not define the past as 'necessary’, but reserved this
definition for 'the preordained'. However, he maintained that at
a cognitive level the relation of the present to the past is deci-
sively different from the relation of the present to the future.
Whilst in principle any past event belongs to the domain of the
memory, we have no possibilities of obtaining a similar insight
into future events. On the contrary, the future lies open before
us, thus enabling us to influence the forming of the future
within certain limits. A similar possibility of influencing the past
does not exist:

I remember the past, but I have absolutely no slightest ap-
proach to such knowledge of the future. On the other hand I
have considerable power over the future, but nobody except
the Parisian mob imagines that he can change the past by
much or by little. [CP 6.70]

Peirce furthermore wrote:

A certain event either will happen or will not. There is
nothing now in existence to constitute the truth of its being
about to happen, or of its being not about to happen, unless it
be certain circumstances to which only a law or uniformity
can lend efficacy. But that law or uniformity, the nomi-
nalists say, has no real being, it is only a mental represen-
tation. If so, neither the being about to happen nor the being
about not to happen has any reality at present ... If, however,
we admit that the law has a real being, and of the mode of
being an individual, but even more real, then the future
necessary consequent of a present state of things is as real
and true as the present state of things itself. [CP 6.368]

Peirce saw himself as a realist. Truth and reality were for him
objective, albeit in a sense differing from classical 'naive
realism'. As pointed out by for instance Harry R. Klocker [1968,
p.80 ff], truth is according to Peirce that viewpoint upon which
everybody examining the state of things eventually agree, and
reality is the object represented by this viewpoint. (In fact, this
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should probably be modified even further, into approximately
'that viewpoint upon which everybody examining the state of
things by scientific method eventually agree'.)

THE DETERMINISM PROBLEM

The determinism problem was one of the problems of primary
importance to Prior, and in this problem is included the question
of free choice or free will. Strictly speaking Peirce did not leave
much latitude for the will itself. On the 18th of March 1897 he
stressed in a letter to William James that the will as such is not
free to any important extent. The freedom rather antecedes the
will and is being established in a state of unstable equilibrium:

The freedom lies in the choice which long antecedes the
will. There a state of nearly unstable equilibrium is found.
[CP 8.311]

In the history of logic the problems concerning the freedom of
man have often been discussed in theological terms as a tension
between man's putative freedom of choice in the face of divine
foreknowledge. Now and then Peirce discussed these questions
in that context, too. In 1893 he wrote:

That is to say, they suppose that a man is perfectly free to do
or not to do a given act; and yet that God already knows
whether he will or will not do it. This seems to most persons
flatly self-contradictorary; and so it is, if we conceive God's
knowledge to be among the things which exist at the pre-
sent time. But it is a degraded conception to conceive God as
subject to Time, which is rather one of his creatures. [CP
4.68]
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In this way Peirce accepted the view of the church fathers that
the world is not created in time, but that God in the beginning
created the world as well as time. Peirce continued:

Literal fore-knowledge is certainly contradictory to literal
freedom. But if we say that though God knows (using the
word knows in a trans-temporal sense), he never did know,
does not know, and never will know, then his knowledge in
no wise interferes with freedom. [CP 4.68]

The year before Peirce had in the Monist published a survey of
what he called '"The Doctrine of Necessity', which he described
as "the common belief that every single fact in the universe is
precisely determined by law" [CP 6.36], or alternatively:

The proposition in question is that the state of things exist-
ing at any time, together with certain immutable laws,
completely determine the state of things at every other time
[CP 6.37]

This doctrine he traced back to the Stoics, who according to
Peirce linked the doctrine with materialism. He pointed out that
the later advances in mechanical physics gave an impetus to the
doctrine. On the other hand, it was not generally accepted, ex-
actly because it appeared irreconcilable with the belief in the
freedom of the will and the possibility of miracles. Peirce himself
argued against mechanical determinism and insisted that in
the description of courses of events there would have to be a
decisive element of probability, spontaneousness and real
possibility. As indicated by John E. Smith [1987] this position fits
very well with the viewpoints published by William James some
years earlier.

Peirce rejected that conception of science upon which the doc-
trine of necessity rests by stressing the observation that con-
clusions drawn from science are never more than probable. He
argued that the doctrine presupposed the idea that physical
quantities do in fact have mathematical values, an idea which
just like the doctrine of necessity itself could not be established by
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means of observation. Peirce could not come to terms with a
universal mechanical determinism. He felt that especially the
origin of life in its infinite complex forms fitted very badly with
the doctrine of necessity. Moreover, reflections on consciousness
also undermined the doctrine. If the doctrine is accepted
without modification, then one must reject the idea of con-
sciousness as a source or ground of real choices and decisions.
For all functions of the mind must then be understood as parts
of the physical universe, and thus the perception that we are
free to do a given act will be reduced to an illusion. In rejecting
the doctrine Peirce believed to have made room for conscious-
ness, or in his own words: "room to insert mind into our scheme,
and put it into the place where it is needed, into the position,
which as the sole self-intelligible thing, it is entitled to occupy,
that of the fountain of existence ..." [CP 6.61]

It is worth mentioning that Peirce's refutation of the doctrine
of necessity and his accentuation of indefiniteness, coincidence
and spontaneousness can be seen as a forerunner of the philo-
sophy prevalent today in the interpretation of quantum physics,
as pointed out by Peder Voetmann Christiansen [1988 p.38 ff].

Peirce rejected the notion that indefiniteness should be seen as
a degeneration from definiteness. To him, indefiniteness was of
primary importance:

Get rid, thoughtful Reader, of the Ockhamistic prejudice of
political partizenship that in thought, in being, and in
development the indefinite is due to a degeneration from a
primal state of perfect definiteness. The truth is rather on
the side of the scholastic realists that the unsettled is the
primal state, and that definiteness and determinateness, the
two poles of settledness, are, in the large, approximations,
developmentally, epistemologically, and metaphysically
[CP 6.348]

These observations are, in fact, an ontological counterpart of
the position that statements regarding the contingent future
cannot be true now (perhaps an additional reason why Ockham
is mentioned explicitly in the quote). In a Peircean system, truth



142 CHAPTER 2.2

cannot be the only basic concept - if indeed, it can be basic at all.
Some kind of theoretical vagueness also has to be involved.
Peirce gave this example:

Again, statisticians can tell us pretty accurately how many
people in the city of New York will commit suicide in the
year after the next. None of these persons have at present
any idea of doing such a thing, and it is very doubtful
whether it can properly be said to be determinate now who
they will be, although their number is approximately fixed.
[CP 4.172]

Even though statisticans can predict the number of suicides in
New York pretty accurately, they cannot tell which persons will
commit suicide in the year after the next. It is sufficiently
evident that in Peirce's opinion, a proposition like 'Mr. Smith is
going to commit suicide in the year after the next' cannot be
true now, since Mr. Smith has not yet made up his mind - or, if
he had, he might change it. (The only possible exception to this
rule would be for us to establish some kind of natural law, which
would in the fixed amount of time lead inevitably to Mr. Smith's
suicide. But apart from the extreme unlikelihood of finding such
a law, if we found it we would not be dealing with the contingent
future any more, but with the necessary future.)

THE FORMALISATION OF THE PEIRCEAN IDEAS

Peirce did not make any attempt to formalise his ideas on
temporal and modal logic in terms of an operator calculus in
the modern sense. However, he made some interesting
attempts of relevance in this field, using his so-called existential
graphs. This however was not recognised, or at any rate did not
had any roéle to play in the development of tempo-modal logic
during the 1950s and 1960s. But later it has become widely
recognised that Peirce in fact established a general calculating
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technique, which comprehends what we today call predicate
logic. In part 3 we shall outline the ideas involved, and also
discuss how they can be utilised in a computational context. In
the following we shall however concentrate on those Peircean
ideas, which came to play a réle for A. N. Prior in his
development of tempo-modal logic.

Peirce maintained that logical assertions become true by re-
presenting facts. If 'a fact' is understood as 'a portion of reality'
small enough to be represented in one single (atomic) assertion,
then the assertions of logic will stand as figures representing
features of reality.

But how does this conception of logic stand in relation to a
changing world? If assertions represent features of reality, then
the perception of the single fact must be linked with time.
Peirce's insistence on a correspondence between logic and
reality presupposes a conception of logic which takes time
seriously. In his introduction to the logic of time A. N. Prior
analysed Peirce's position, especially with respect to future
statements. The analysis showed that in Peirce's framework, a
proposition like (i) 'Tomorrow Jane chooses to go to
Copenhagen' is equivalent with either (ii) 'Tomorrow Jane
necessarily chooses to go to Copenhagen', or (iii) 'Tomorrow
Jane possibly chooses to go to Copenhagen'. The system thus
makes no room for any concept of plain truth 'in between'
‘necessarily' and 'possibly’.

On the basis of his studies of Peirce's philosophy Prior put
forward a tense logical system, with which he, by the way, de-
clared himself to be very satisfied. In his own words:

.. C.S. Peirce's description of the past (with, of course the
present) as the region of the 'actual’, the area of 'brute fact',
and the future as the region of the necessary and the pos-
sible. That is why I call this system 'Peircean’. {Prior 1967,
p.132]

There is hardly any doubt that Prior's rendition of Peirce's
ambitions as regards the logic of time and modality is correct.
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We are even able to support this with Peirce quotations, which
Prior, in all likelihood, did not have at his disposal:

A simply assertory Proposition differs just half as much as
the assertion of a Possibility, or that of a Necessity, as these
two differ from each other. For as we have seen above, that
which characterises and defines an assertion of Possibility is
its emancipation from the Principle of Contradiction, while
it remains subject to the Principle of Excluded Third; while
that which characterizes and defines an assertion of
Necessity is that it remains subject to the Principle of
Contradiction, but throws of the yoke of the Principle of
Excluded Third; and what characterizes and defines an as-
sertion of Actuality or simple existence, is that it acknow-
ledges allegiance to both formulae, and is just midway be-
tween the two rational 'Modals' as the modified forms are
called by all the old logicians. [The Art of Reasoning elucida-
ted, 1910; quoted from Fisch and Turquette 1966, p. 78]

Obviously, this statement makes a distinction between three
types of assertions. For ordinary assertions both 'the Principle of
Excluded Third":

pv-~p
and 'the Principle of Contradiction'

~(p A ~p)
are valid. That is also rather to be expected, for by the ordinary
laws of (bivalent) logic the two principles are equivalent. But in

modal contexts matters are not that simple. For instance, as a
rule

~(Np AN~p)

applies for assertions containing the necessity-operator N.
However, the following is not valid:
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Np vN-~p

As for the possibility-operator M it is the other way round:
Mp v M~p

is valid, but
~(Mp A M-~p)

in not valid in general. - By analysing Peirce's way of thinking
and transferring this into the modern logic of time, we arrive at
the conclusion that the following formula must hold for any
proposition p:

~(F(x)p A F(x)~p),
whereas its 'excluded middle' analogue
F(x)p vF(x)~p

does not hold in general. - This is due to the fact that both as-
sertions, F(x)p and F(x)~p, can be false, if they represent a pair
of statements about the contingent future. On the other hand, if
they are taken to represent statements about the necessary fu-
ture, involved precisely one of them is true - that is, the law of
excluded middle holds in that case.

It seems, however, that this theory gives offence to the intui-
tion on which everyday language is based. We normally accept
a concept of future which is logically between possible future
and necessary future, and which certainly makes no distinction
between F(x)~p and ~F(x)p. For instance, we may well wish to
assert that 'Tomorrow Jane chooses to go to Copenhagen'
without saying that this choice is necessary. And if Jane the next
day does choose to go to Copenhagen, we shall feel justified in
having made the assertion yesterday - that is, we would be
inclined to consider it as having been true, when we made it.
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In any case it is clear that Peirce did not depart from the clas-
sical logic, but rather added a great deal to it. This attitude is
shown clearly in the following remarks:

I have long felt that it is a serious defect in existing logic that
it takes no heed of the limit between two realms. I do not say
that the Principle of Excluded Middle is downright false;
but I do say that in every field of thought whatsoever there
is an intermediate ground between positive assertion and
positive negation which is just as Real as they. Mathema-
ticians always recognize this, and seek for the limit as the
presumable lair of powerful concepts, while metaphysicians
and old fashioned logicians, the sheep and goat separators -
never recognize this. The recognition does not involve any
denial of existing logic, but it involves a great deal of addition
to it. [Letter to William James, dated Feb. 26, 1906}

It would have been interesting to learn more about what kind
of 'additions’ to 'the existing logic' Peirce had in mind. From
what he said about the principle of excluded middle and the law
of contradiction it seems very likely that he had in mind some
kind of operator logic, as the one we have presented here. One
might even with some justification conjecture that Peirce
realised how a distinction between ~F(x)p and F(x)~p would be-
come necessary, when it comes to formulating a logic of time.
Perhaps he was thinking of the need for this kind of distinction,
when he stated that the introduction of temporal modifications
of the forms of logic would result in great confusion, and that
logic had to be developed further before it could be done [CP
4.523}.

SOME FORMALITIES OF THE PEIRCEAN SOLUTION

We shall now finally sketch Prior's 'Peircean system' (it will
also be described in chapter 2.5 and subsequent chapters in
increasing detail). The essential feature of this system can be
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explained in terms of the old Aristotelian example about the
possible sea-fight tomorrow. According to Peirce's ideas we can
model the future in the following way:

sea-fight

no sea-fight

In the Peirce-model it makes no sense to speak about 'the true
future' as one of the possible futures. There is no future yet. Let s
stand for 'there is a sea-battle going on', and let us make the
reasonable assumption that 'tomorrow it will be the case that s’
is contingent. Then in this model F(1)s as well as F(1)~s are
false, whereas ~F(1)s and ~F(1)~s are both true. There is cer-
tainly a tension between this hall-mark of the system and the
intuition normally involved in everyday reasoning.

Prior realised that according to the Peirce-solution we cannot
infer that there was going to be a sea-battle from the fact that
there is a sea-battle going on, although it certainly does follow
that there will have been one. [Prior 1957a, p.95]

That is, in the Peirce-model one must accept that even if s,
'there is a sea-battle going on', is given (true), we cannot infer
P(1)F(1)s. Therefore, g oP(x)F(x)q , is not a thesis in the Peirce
system. On the other hand, it should be obvious that in this
system, the proposition schemas

F(x)P(x)q o q
P(x)F(x)q > q

are generally valid.

We may sum up these features by noting with Prior that in the
Peirce model F(x)q is understood in the strong way, i.e. as "it is
bound to be the case after x time units that q" [Prior 1969, p.329]1.
Moreover, future contingents cannot be known 'now', and
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hence there cannot be any true statements about the contingent
future. We have seen that in this system the statement 'there
will be a sea-battle tomorrow' cannot be true today, for there is
no unique future, but rather a number of alternative, possible
futures.

The basic question concerns the interpretation of expressions
regarding the future: can it be maintained with conceptual and
logical consistency that '(some event) E will happen', whilst dis-
tinguishing this statement from 'E could happen’, and 'E will
necessarily happen'? We have shown how in the Peircean
System the plain 'tomorrow' becomes equivalent to 'necessarily
tomorrow', or 'possibly tomorrow'. But we have also previously
seen how the Ockham view on statements permits a differenti-
ation between actual, possible and necessary future, and hence a
differentiation between 'tomorrow’', 'possibly tomorrow' and
'necessarily tomorrow'. This fundamental question of the status
of the contingent future has certainly not been definitively
settled (and perhaps can never be). The debate between
Ockhamists and Peirceans goes on. Many things indicate that
the discussion about which position to prefer is actually a ques-
tion about the very understanding of logic. Later we shall also
compare Peircean answers regarding future contingents with
the Ockhamistic answers.



2.3. LUKASIEWICZ'S CONTRIBUTION
TO TEMPORAL LOGIC

In a series of articles during the 1920's and 30's the famous
Polish logician Jan ELukasiewicz advocated a particular
interpretation of Aristotle's discussion of the status of sentences
about the contingent future, as developed in his 'sea-fight'
example (from De Interpretatione chapter IX). Eukasiewicz'
interpretation crucially rests on a rejection of the principle of
bivalence. In fact, this kind of interpretation was not new, but
had been formulated as early as by the Epicureans. However,
PFukasiewicz presented this position more clearly than had ever
been done before, and developed it with the aid of modern
symbolic logic.

Now it is clear that philosophical determinism goes nicely with
some tempo-modal logical systems, and conversely; but on the
other hand, a tempo-modal system can be constructed so as to
allow for indeterminism. F.ukasiewicz used his interpretation of
Aristotle and the status of sentences about the contingent future
as an argument against logical determinism and in favour of
logical indeterminism, for which he declared his wholehearted
support. He defined (logical) determinism as the assumption
that

If A is B at time t; then it is true at any time before t, that A is
B at t. [McCall 1967, p. 22]

Generally speaking, determinism thus becomes equivalent to a
thesis of omnitemporal truth, since 'A is B at time t' is identified
with 'it is true for any time #;, that A is B at time ¢#'; the restriction
in the above quote that ¢; be earlier than ¢ disappears in a fuller
development, as will be shown below.

Let p stand for the statement 'A is B', the expression 7'(¢,p) for 'p
is true at time ¢', and (¢; < ¢) for 't is earlier than (before) ¢'; then
F.ukasiewicz's rendition of determinism can be symbolised as

(D) (T(t,p) A (t; < t) o T(t,Tt,p)

149
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On tukasiewicz' interpretation, Aristotle's considerations in the
sea-fight example were intended to show that (D) follows from
two common (logical) presuppositions. Firstly, the principle of
bivalence which can be expressed in the following way:

(B) For any time t and any proposition p: either T'(¢t,p) or
T(t,~p), but not both.

If (B) holds p and ~p cannot both be true at the same time, but
one of them has to be true and the other false. This means that
the following two formulae

(B1) ~ (T(t,p) A T,~p))
(B2) T(tp) vT(t,~p)

hold for any p and any t. Consequently

(CD) ~ T(t,p) =T, ~p)
(C2) ~T@,T(t,p) =Tt T;,~p))

*.ukasiewicz furthermore considered the principle expressed in
the following Aristotelian statement:

... if [a certain thing] was white or was not white, then it is
true to confirm or deny it. [18a39].

The Aristotelian assumption that if it was true that X is Y then it
is true that is true that X was Y, can according to Lukasiewicz
be translated as the following principle:

P (T@,p) nt<ty >T(¢1,T(,p))

The difference between (P) and (D) is thus merely rooted in the
before/after relation between ¢ and #;. The proof that (B) and (P)
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implies (D) can be done indirectly. Assume that (D) is invalid i.e.
that

Ttp) rt; <t A~T(t, T,p)

holds for a proposition p and for two times ¢ and ¢;. By (C2) this is
equivalent to

Tp) Aty <t AT(t;,T(t,~p)).

By applying (P) we get:
Ttp) rt;<t AT(t,T(t,~p))

which assuming 7'(¢,T(z,p)) = T(t,p) must be equivalent to
T(t,p) rt; <t AT(,~p).

This clearly contradicts (B1), so we conclude that it is possible to
infer (D) from (P) and (B1-2)!

Lukasiewicz suggested that the principles embodied by the
above theorems (D, B, and P) were the underlying tenets,
respectively the implications of the Aristotelian text. This means
that Aristotle in order to avoid determinism had to restrict the
validity of bivalence. Nevertheless, L.ukasiewicz had to admit
that the putative limitations of this sacred principle are by no
means self-evident in Aristotle's discussion; the very need for
interpretation and 'reconstruction' bears witness to this
observation! Indeed, Aristotle does not seem to have been
definitive in his attitude towards the principle of bivalence.

Whichever way Aristotle himself is to be understood,
Lukasiewicz's solution to the problem of sentences about the
contingent future and the associated problems with
determinism was very much inspired by the Aristotelian
analysis. His solution, then, was to consistently reject the
principle of bivalence by introducing a third truth value. This
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truth value, 'undetermined', is applied to contingent propositions
regarding the future [McCall 1967, p. 64]. For instance, a
proposition stating that there will be a sea-fight tomorrow can
be assigned the truth value 'undetermined' today. This is
because today it is not given or definitely determined whether
the sea-fight is actually going to take place tomorrow or not.

Lukasiewicz' interpretation was disputed by Prior [1962, p. 240
ff.], who pointed out a significant difference between
L.ukasiewicz's trivalent logic and Aristotle's text: according to
Aristotle it is true already today, that there either there will or
there will not be a sea-fight tomorrow, even though the truth
value of the two constituents of the disjunction are separately
unknown, or possibly 'undetermined'. This contradicts one
important and presumably inevitable property of L.ukasiewicz'
three-valued logic: namely the fact that the truth value of the
disjunction of two (separately undetermined) propositions is
according to Eukasiewicz 'undetermined', ie. (p v ¢) is
undetermined for p undetermined and q undetermined. For
this reason it must be concluded that L.ukasiewicz' trivalent
logic does not provide a convincing basis for the interpretation of
Aristotle's sea-fight example and the associated logical and
philosophical problems. As we have seen in part I, Nicholas
Rescher's [1968] so-called 'medieval interpretation' seems far
more promising, although it has to be admitted that a distinction
between the principles of bivalence and 'tertium non datur' can
be read into the Aristotelian text (see e.g. [Andersen & Faye
1980)).

We have to follow Prior in his refutation of . ukasiewicz'
interpretation, and we may add that on quite different grounds
we ourselves - like many others - are uncomfortable with the
idea of a trivalent logic. But we could not possibly mention the
name and part of the work of Jan Eukasiewicz without saying a
word in praise of this great logician - and wise philosopher, too.

First of all, Lukasiewicz made a number of specific
contributions to the development of formal and mathematical
logic - the most well-known one being his 'Polish Notation',
which is superior to standard logical (infix) notation by being
syntactically unambiguous without the aid of parentheses. Even
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though this notation (which Prior also used) has failed to
establish itself as a standard, it has proved its practical worth at
least within computer science.

Secondly, although L ukasiewicz can not be said to have
developed a genuine temporal logic, he was the first logician to
actually work out a symbolic calculus sensitive to some of the
logical and philosophical problems associated with time and
tense; to that extent he anticipated Prior's work by 30-40 years.

Thirdly, and in our opinion most importantly of all,
ELukasiewicz was one of the first significant logicians to relate
modern symbolic logic to Classical and Medieval discussions of
logic. Together with a number of other prominent logicians,
including A. Tarski, he managed to establish a fruitful Polish
environment which took a particular interest in the history of
logic, especially Ancient and Scholastic. It is worth noting the
manner wherein modern symbolic logic was related to the his-
torical sources: L.ukasiewicz and his associates did not merely
apply the former to the latter, they also took direct inspiration
from the latter for the development of the former. The way in
which L.ukasiewicz related Aritotle's text in De Interpretatione,
Chapter 9, to a trivalent logic is a first class example of this.
Thus these Polish logicians established the very paradigm,
within which Prior himself obviously worked - and on which,
we may add, this book is also based.

Perhaps L.ukasiewicz's most remarkable achievement within
this paradigm was his investigation of the history of the
propositional logic [1935]. One of F.ukasiewicz's students during
the 1930s was J. Salamucha, who in 1935 published a book on
Ockham's propositional logic. We may conclude this section by
quoting a passage from the German translation of that book,
which neatly typifies the way in which this group of Polish
logicians thought and worked:

Wir haben bei Ockham, wie bei fast allen mittelalterlichen
Autoren, neben der katagorischen Syllogistik, in der
Aussagen und Aussagenfunktionen von Typos: A ist B,
auftreten, noch andere Syllogistiken; vor allem entwicklet
sich nach Aristoteles die Syllogistik der modalisierten
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Aussagen, ferner die Syllogistik der Aussagen, in denen das
Zeitwort die Form der Zukunft oder der Vergangenheit
hat.... [Salamucha 1950]

The quote is typical for this group of pre-war Polish logicians.
There was an awareness of the fact that logicians in the Ancient
times and in the Middle Ages had analysed tensed propositions
and arguments, and that such analyses were still relevant; at
the time, however, these were given less priority than other
kinds of logical analysis.



2.4. A THREE-POINT STRUCTURE OF TENSES

In his Elements of Symbolic Logic [1947], Hans Reichenbach
put forth a description of tenses which was to have a significant
impact upon the linguistic community. Reichenbach suggested
that in order to understand how tenses work we must consider
not only the time of utterance, and the time of the event in
question, but also a 'point of reference’.

To understand the idea of this three-fold distinction, it is pro-
bably best first to consider the future perfect, as in 'I shall have
seen John'. This sentence clearly speaks of a certain event,
namely 'my seeing John'; but it is also clear that it directs us to a
future time different from the time of the (expected) event -
namely a time prior to which the event has already occurred.
Thus, we must distinguish between the time of the event and the
time to which the sentence refers. Reichenbach called the for-
mer 'point of the event' and the latter 'point of reference', sym-
bolised by E and R, respectively. Furthermore, both must of
course be determined with respect to the time of utterance, the
'point of speech' S.

Armed with these distinctions Reichenbach could give the
following diagram for the future perfect:

Future Perfect

I shall have seen John
| 1 | >
S E R

A quite similar analysis can be given for the past perfect 'T had
seen John'. These two tenses, then - the past perfect and the
future perfect - establish the prima facie case for distinguishing
between E, S, and R in the description of tenses. However, if the
difference between E and R is crucial in explaining the past
perfect and the future perfect, it is precisely the coincidence
between one or more of E, R, and S, which is crucial in
explaining some of the other tenses. Indeed, what particularly
impressed linguists was the elegant and concise account of the

155



156 CHAPTER 2.4

difference between the simple past and the present perfect
which Reichenbach could give on the basis of the three-fold
distinction.

In grammars of English, six tenses are standardly recognised;
the diagram for each of these can be seen in this figure (cf.
[Reichenbach 1947, p. 290]):

Future Perfect Simple Future
I shall have seen John I shall see John
| 1 l - | | >
S E R S,R E
Past Perfect Simple Past
I had seen John I saw John
| | | » ] | >
E R S R,E S
Present Perfect Present
I have seen John I see John
] | » ] >
E S,R S,R,E

On this account, the crucial difference between the simple past
and the present perfect is determined by the relative 'position’ of
the reference point. In the case of the simple past, the diagram
clearly suggests that the point of reference coincides with the
point of the event. Thus the sentence 'I saw John' clearly refers
to the past, but it makes no discernible distinction between the
time of the event - E - and the time from which this event is
seen, i.e. the reference time R. In the case of the present perfect,
the event is also situated in the past, but here, the point of refe-
rence coincides with the point of speech.

Reichenbach's system makes a rather strong prediction about
the notion of tenses, logically as well as grammatically. If tenses
are in general to be construed as a three-point structure, the
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possible arrangements of this kind of structure must exhaust
the set of possible tenses. In principle, Reichenbach's
systematisation allows for 13 different tenses; he only regarded
nine of these as significantly different, though:

If we wish to systematize the possible tenses we can
proceed as follows. We choose the point of speech as the
starting point; relative to it the point of reference can be in
the past, at the same time, or in the future. This furnishes
three possibilities. Next we consider the point of the event;
it can be before, simultaneous with, or after the reference
point. We thus arrive at 3 ® 3 = 9 possible forms, which we
call fundamental forms. Further differences of form result
only when the position of the event relative to the point of
speech is considered; this position, however, is usually
irrelevant [our italics][p. 296]

The fact that Reichenbach considered the relative positions of
E and S as basically irrelevant explains a slight oddity about his
diagram for the future perfect. The sentence 'I shall have seen
John' would also seem to be true even if the speaker has in mind
an event which has already occurred - that is, the structure
would be E----S----R (this is perhaps a less natural reading, but
quite possible). However, the above quotation makes it clear that
according to Reichenbach, there is no important difference
between E----S----R and S----E----R. Indeed, in summing up
the possible tenses he explicitly aligns

S--E-—R
S, E—-R
E----S-—R

under the common heading of 'future perfect'. A similar
account is given for R----E----S§, R----S----E, and R----S,E,
which he collects under the heading 'posterior past'. None of the
six traditional tenses corresponds to posterior past, but it can be
stated by some transcription, as in 'l was to see John once more'
or 'the letter was to cause her great anxiety'.
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OTTO JESPERSEN ON TIME AND TENSE

According to Reichenbach, the idea of a three-point structure
for tenses had already been suggested by the great Danish
linguist Otto Jespersen (1860-1943):

In J. O. H. Jespersen's excellent analysis of Grammar (The
Philosophy of Grammar, H. Holt, New York, 1924) I find
the three-point structure indicated for such tenses as the
past perfect and the future perfect (p. 256), but not applied
to the interpretation of the other tenses. This explains the
difficulties which even Jespersen has in distinguishing the
present perfect from the simple past (p. 269). He sees
correctly the close connection between the present tense
and the present perfect, recognizable in such sentences as
'mow I have eaten enough'. But he gives a rather vague
definition of the present perfect and calls it 'a retrospective
variety of the present'. [Reichenbach 1947, p. 290]

In fact, when looking into Jespersen's text it takes some
consideration to see how the three-point structure can be said to
be suggested here. Jespersen's book deals with time and tense in
two chapters. In these chapters there are no explicit statements
that such a three-fold distinction has been made, nor do they
make any clear qualitative - let alone terminological -
distinction between speech time and reference time. However,
Jespersen first suggests that we should basically consider seven
different possible tenses. For these he introduces this diagram,
which must be what Reichenbach sees as the first suggestion of
a three-point structure:

present

|
[ |

past future

before-past after-past before-future after-future
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However, the diagram is immediately reworked into the one
below, since "it is much better to arrange the seven "times" in one
straight line... For there can be no doubt that we are obliged (by
the essence of time itself, or at any rate by a necessity of our
thinking) to figure to ourselves time as something having one
dimension only, thus capable of being represented by one
straight line" [Jespersen, p. 256}. Such a representation - in
which an indication of a three-point structure is easier to see - is
given on p. 257:

A

post-future Cc after-future

future Cb future C future
ante-future Ca  before-future
present OB present

post-preterit Ac  after-past

preterit Ab  past A past

ante-preterit | Aa  before-past

Jespersen here uses the terms before-past, past, etc., in an
ontological sense, i.e. concerning the 'essence of time', whereas
the terms ante-preterit, preterit, etc., are the corresponding
grammatical terms. The four 'subordinate times' can be briefly
described as follows:

a) before-past (ante-preterit): corresponds to the past
perfect;

b) after-past: is described by periphrastic forms such as "The
letter was to cause anxiety';

c) before-future: corresponds to the future perfect;
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d) after-future: is described by periphrastic forms such as 'I
shall be going to see John'.

The closest Jespersen gets anywhere in his text to describing a
Reichenbach-like three-point structure is in his explanation of
the figure above:

This figure, and the letters indicating the various divisions,
show the relative value of the seven points, the subordinate
"times" being orientated with regard to some point in the
past (Ab) and in the future (Cb) exactly as the main times
(A and C) are orientated with regard to the present
moment (B). [p. 257]

Clearly, in addition to the present (the time of utterance), two
more 'points of orientation' are brought into the picture.
However, Reichenbach's implementation of this idea differs
from Jespersen in three important respects:

1) Obviously, Jespersen considers three points - rather
than just two - to be relevant only for the subordinate tenses.
This is crucial, of course, for "the difficulties which even
Jespersen has" in explaining the difference between the
simple past and the future perfect - in the manner
suggested by Reichenbach.

2) Jespersen makes no qualitative or terminological
distinction between the two points besides the present.

3) An exhaustive system of tenses, respectively, times,
cannot be constructed on the basis of the above distinctions.
Jespersen says: "The system thus attained seems to be
logically impregnable, but, as we shall see, it does not claim
to comprise all possible time-categories nor all those tenses
that are actually found in languages" [p. 257]. This is
obviously in contrast to Reichenbach, who, as we have
already seen, proposes his three-point system as a
comprehensive account of all possible tenses.
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It is a very interesting fact that one tense which Jespersen
considers to be 'beyond' his seven-tense system is exactly the
present perfect:

The system of tenses given above will probably have to
meet the objection that it assigns no place to the perfect,
have written... This, however, is really no defect of the
system, for the perfect cannot be fitted into the simple
series, because besides the purely temporal element it
contains the element of result... it represents the present
state as the outcome of past events, and may therefore be
called a retrospective variety of the present. [p. 269]

Furthermore, Jespersen points out another significant
difference between the simple past and the present perfect,
namely that the former is about some definite point in the past,
as opposed to the latter. Indeed, in English this difference is
taken so strictly that it "does not allow the use of the perfect if a
definite point in the past is meant, whether this be expressly
mentioned or not" [p. 270]. This is in contrast to some other
languages, e.g. German and Danish, the latter of which tolerates
combinations like "jeg har set ham igar (I have seen him
yesterday)" [p. 271].

It appears, then, that Jespersen considered the present perfect
to be a tense which could not be fitted into his general 'structure
of time' with corresponding tenses (the diagram on p. 257). Or
perhaps we should rather say that in this structure it would not
be wrong to place the present perfect under Ab, together with
the simple past (preterit) - but this would not be sufficient to
describe it. The reason for this is that the present perfect bring in
an element which is not strictly temporal (the element of result).
Now Reichenbach, on the other hand, in his generalised
framework did manage to give a clear formal distinction
between the simple past and the present perfect. Therefore, his
system seems to be an improvement of Jespersen's ideas. But of
course, this only holds provided that his generalisation is also
otherwise logically and linguistically tenable. We shall now try
to assess these questions.



162 CHAPTER 2.4

PRIOR, JESPERSEN AND REICHENBACH

For all its intuitive elegance, it is clear that Reichenbach's
formalism is very limited. It is certainly not a complete calculus,
but at best it could be seen as a suggestion of some guidelines
along which such a system could be constructed. However, even
when measured on its own terms the system harbours severe
difficulties.

As we have seen there is a difference between Jespersen and
Reichenbach in that the latter makes a sharp distinction be-
tween 'point of reference' and 'point of event'. This is the very
move on which the general viability of Reichenbach's systemati-
sation rests - as well as its accounts of the individual tenses. One
who clearly saw this was Prior, who in [1967] discussed the pre-
cursors of tense logic. Herein he gave Reichenbach some credit
for his observations, but then went on to state that
"Reichenbach's scheme, however, will not do as it stands; it is at
once too simple and too complicated" [1967, p. 13]. The main tar-
get of Prior's attack was exactly the sharp distinction between
'point of reference' and 'point of event'. Consider a complicated
future tense like this one:

'I shall have been going to see John'.

This sentence is perhaps not very natural, but it is
grammatically correct, and it does express a tense-relation for
which we must be able to account. It is not too hard to see that to
describe this tense, we in fact need two points of reference.
Prior's 'Reichenbachian' diagram for this case looks like this:

— T T T
S R2 E RI

So, for such a tense the Reichenbachian framework would
have to be extended to allow for two points of reference; and in
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general, an arbitrary number of 'reference points' might be
needed. Prior could therefore observe that

... once this possibility is seen, it becomes unnecessary and
misleading to make such a sharp distinction between the
point or points of reference and the point of speech; the
point of speech is just the first point of reference. (This, no
doubt, destroys Reichenbach's way of distinguishing the
simple past and the present perfect; but that distinction
needs more subtle machinery in any case.) {1967, p. 13]

It is crucial for Reichenbach's system that three points of time
should always be taken into consideration. But we have just seen
that this may sometimes be too little; and, as the quotation also
suggests, it is sometimes too much. For in the account of, say, the
simple past - in terms of an R,E----S diagram, where R = E -
why should we accept that there is really more than two
temporal indicators involved? And even more so, why should we
accept such a thing for the present S,R,E (where S=R=E)? Only
cogent logico-linguistic reasons should make one accept that
there are three temporal indicators at play in these cases. But
referring to the fact that Reichenbach's account apparently
explains the difference between the simple past and the present
perfect is at best circumstantial evidence; for it explains this
difference only if the distinctions are valid beforehand.

Incidentally, these observations also show that the
Reichenbach framework really ought to distinguish between on
one hand the temporal indicators - or concepts - of 'event’,
'reference’ and 'speech’, and on the other hand the points of time
which they 'indicate'. Thus for instance, if the event E occurs at
t, we might say that ¢(E)=¢t. Only thus can a diagram like

o(R), (E)----7(S)

make a meaningful distinction between more than two
indicators. Here, R and E are co-extensive with respect to their
time-parameter, but they must be assumed to be intensionally
different (i.e. WR)=®E), but E #R).
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As we have already seen Jespersen did not assume that three
points of time were relevant for the tenses in general; rather, in
his system such a structure is applicable only to the subordinate
times. For the past and for the future, only one point of
‘orientation' besides the present is taken into consideration - and
for the present, only the present is relevant. Moreover, even
when a three-point structure becomes relevant, there is no
suggestion that the two points besides the present qualitatively
differ from each other. In all these respects, it is Prior - rather
than Reichenbach - who is in agreement with Jespersen.

To be true, Jespersen's system does not foresee a multiple-point
structure as Prior does; but then again, Jespersen explicitly
stated that his arrangement of the seven-tense system was not
exhaustive. The divisions which he does make are, however,
more naturally expressed in terms of tense logic than in terms of
the three-point structure: for instance, we have the following
correspondences (assuming linear discrete time):

Aa: before-past (past perfect) PPq
Ab: past (simple past) Pq
Ac: after-past PFq

These tense-logical forms are really closer to Jespersen's
system than the three-point structures. In each case, the
number of tense-operators clearly agrees with the number of
'points of orientation’ considered relevant by Jespersen. Forms
where still more 'points of orientation’' are needed, as in 'I shall
have been going to see John', can be represented by tense-logical
formulae with a corresponding number of operators, e.g. FPFq.
Obviously, these tense-logical forms also agree with Jespersen in
making no qualitative differences between the corresponding
'points of orientation'.

One minor discrepancy should be mentioned: the tense-logical
form_ PFq differs slightly from the category Ac, which in
Jespersen's diagram seems unambiguously situated in the past.
PFgq, on the other hand, may also be true if q takes place at the
present moment or even at a future moment. However, this does
not contradict Ac, but is simply more general. As far as we can
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see, PFq actually describes tense-constructions of the form 'it
was to be that q' better than Ac. For it is clear that such linguistic
forms can also refer to an event q which is in the ‘absolute
future' (even though this may be rare in actual language use).
But if somebody insists that this category Ac must refer strictly
to the past, we could obtain this by a metrical tense-logical form,
as in P(n)F(m)q, where n > m.

We mentioned earlier three differences between Jespersen and
Reichenbach - having to do with (a) whether three-point
structures should always be used, (b) whether there are any
qualitative differences between the different points involved, and
(¢) whether the respective systems are exhaustive or not. The
previous paragraphs should have made it clear that on the first
two points Prior is obviously much closer to Jespersen - they both
answer in the negative - than is Reichenbach, who confirms
both of these points. As for (c), it is at least clear that Jespersen
did not consider his seven tense system to be linguistically
complete, but there are some indications that he considered it to
be logically, or conceptually, exhaustive. Nevertheless, he clearly
did not think that all linguistically realised tenses could be
uniquely captured by his system, as opposed to Reichenbach's
belief in his 9 tenses. But neither Jespersen nor Reichenbach had
available formal tense logic. In this discipline, it has been made
clear that the number of tenses depends on several assumptions
about the structure of time (one result by Prior and Hamblin,
yielding 30 different tenses on certain given assumptions, is
mentioned in the next chapter). Jespersen's openness in this re-
spect, however, goes better with Prior's findings than
Reichenbach's strong prediction of just 9 (or 13) possible tenses.

Reichenbach was a brilliant mind, and many of his results -
also on the philosophy of time - have had lasting value. Fairness
demands that this be acknowledged, and in the case of his 'three-
point structure' it must at least be admitted that for its day it was
an_elegant and advanced proposal. But its real deficiencies
together with its very success made it counter-productive -
Prior considered Reichenbach's work in this respect as an im-
pediment rather than a help in the development of tense logic.
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Apparently, Prior did not question that Reichenbach's ideas
had essentially originated in Jespersen's work. In fact, he even
accepted that "Jespersen only used this 'three-point structure' to
explain these two tenses [future perfect and past perfect]..."
[1967, p. 12]. However, the discussion of Jespersen should have
made it clear that this is oversimplifying matters somewhat,
since all four "subordinate times" depend on some kind of three-
point structure. It is true, however, that only two of these times
correspond directly to traditionally recognised tenses. Never-
theless, the fact of the matter is that Jespersen's ideas in many
ways seem more compatible with tense logic than with
Reichenbach's system, a fact which Prior could well have put to
good use.



2.5. A.N. PRIOR'S TENSE-LOGIC

The history of tensed logic proper began with Prior's
insight: Tensed propositions are propositional functions,
with times as arguments. [Bas C. van Frassen 1980]

A. N. Prior must be said to have laid the foundation for modern
tense-logic. He revived the medieval attempt at formulating a
temporal logic for natural language. Therefore his work also
established a paradigm applicable to the exact study of the logic
of natural language. Prior held that logic should be related as
closely as possible to intuitions embodied in everyday discourse,
and his tense logic can indeed account for a large number of lin-
guistic inferences. In the 1950's and 1960's he laid out the foun-
dation of tense-logic and showed that this important discipline
was intimately connected with modal logic. Prior also argued
that temporal logic is fundamental for understanding and de-
scribing the world in which we live. He regarded tense and
modal logic as particularly relevant to a number of important
theological problems. Using his temporal logic Prior analysed
the fundamental question of determinism versus freedom of
choice.

Arthur Norman Prior was born in Masterton, New Zealand,
on December 4th., 1914. His mother died a fortnight after his
birth. His father was a doctor and a medical officer during the
First World War, and Prior was brought up by his aunts and
grandparents. Both of his grandfathers were Methodist mini-
sters.

Prior went to Otago University at Dunedin in 1932. He set out
to study medicine, but after a short time he instead went into
philosophy and psychology. In 1934 he attended Findlay's
courses on ethics and logic. Through Findlay Prior became inte-
rested in the history of logic and was introduced to Prantl's text-
books. His ML.A. thesis was devoted to this subject. In 1949 Prior
wrote about Findlay: "I owe to his teaching, directly or indirect-
ly, all that I know of either Logic or Ethics" [Kenny p. 323].

Prior was brought up as a Methodist, but while he was a stu-
dent he came to consider Methodistic theology too unsystematic,
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and he became a Presbyterian. He also became a very active
member of the Student Christian Movement (SCM). In the
years about 1940 he found himself in a crisis of belief. During
these years he wrote the article 'Can religion be dis-
cussed?'(1942), in which he advocated an almost atheistic positi-
on. This view, however, does not seem to have lasted very long.
He continued to treasure his theological library and to join the
work of the SCM [Kenny p. 326]. Later in his life, however, he
became an agnostic.

It is very likely that Prior's abandoning of Christianity and his
becoming an agnostic was related to the problems concerning
freedom and time. He was acutely aware of the fact that a
number of significant Christian thinkers in the course of history
had attacked or criticised the idea of free will. In a paper entitled
'‘Determinism in Philosophy and Theology' [DPT] (probably
written in his Calvinist period), he formulated this in the follo-
wing way:

It is extremely rare for philosophers to pay any great atten-
tion to the fact that a whole line of Christian thinkers, run-
ning from Augustine (to trace it no further back) through
Luther and Calvin and Pascal to Barth and Brunner in our
own day, have attacked free will in the name of religion.
[DPT, p. 1]

Prior added that for instance Jonathan Edwards, who produced
a novel defence of Calvinism in 18th-century New England, did
it by "demonstrating the absurdity of free will itself" [DPT p. 1].
However, even if we accept that the idea of free will is illusory
(and at the time of writing DPT, Prior seems to have accepted
this, in contrast to his later convictions), the ordinary perception
of freedom and of guilt has to be explained:

Even those of us who accept a straightforward determi-
nism have to give some account of men's feeling of freedom,
and their feeling of guilt; ... [DPT, p. 2-3]
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This state of inner conflict between two parts of the self, in
which we feel both responsible and enslaved, is also one to
which no one can be a stranger ... [DPT, p. 4]

Even so, Prior felt that a Christian had to be a determinist, and
that the believer must accept that we are guilty of that which
we are totally helpless to alter [DPT, p. 2]. It appears that Prior
accepted Edward's and others' argument that the doctrine of
God's infallible and complete foreknowledge is incompatible
with the contingency of future events. "I must confess I can't see
that foreknowledge is compatible with preventability", he said
[IWB, p. 12]. Prior clearly understood that foreknowledge sho-
uld not itself be seen as the cause of that which is foreknown, but
rather as an effect. But what has got so far as to have effects is
surely "beyond stopping", he pointed out (IWB, p. 12]. The only
way out of this for anyone who wants to accept the doctrine of
divine foreknowledge appeared to be Thomas Aquinas' idea of
atemporal knowledge. Thomas "taught that God doesn't experi-
ence time as passing, but has it present all at once. In other
words, God sees time as tapestry" [SFTT, p. 2]. This solution was
not at all attractive to Prior, since it seems to be in conflict with
the reality of tenses. Moreover, atemporal knowledge cannot be
foreknowledge in the strict sense. Prior's own view was that God
"cannot know the answer to the question "How will that person
choose?" because there isn't any answer to it until he has chosen"
[SFTT, p. 3]. This position of course suggests that Prior at some
stage had adopted an indeterministic position. That in turn
would mean that a full Christian faith could no longer be held,
provided that Christianity implies a full forekonowledge by God,
and that such foreknowledge is incompatible with the notion of
free will.

In 1943 he married Mary. From 1946 to 1958 he taught philo-
sophy at Canterbury University College in New Zealand. In
1953 he became a professor of philosophy. In 1949 his book
Logic and the Basis of Ethics had been published. After that time
he became even more interested in logical problems. During
1950 and 1951 he wrote a manuscript for a book with the wor-
king title The Craft of Logic. This book was, however, never
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published as a whole, but in 1976 P. T. Geach and A. J. P. Kenny
edited parts of it. In the first chapter of the book, Propositions
and Sentences, the author among other things analysed
Aristotle's view on some of the problems concerning time and
tense. Prior found that according to the ancient as well as the
medieval view a proposition may be true at one time and false at
another. He described this view in the following way:

... the statement or opinion that someone is sitting will be
true so long as the person in question is in fact seated, and
will become false - if it is persisted in - as soon as he rises.
[Prior 1976b, p. 38]

In the following years Prior worked mainly on questions in the
history of logic. From 1952 to 1955 he had seven articles on the
history of logic published. Four of these were concerned with
Medieval logic and one with Diodorean logic. His interest in the
history of logic is also evident in his Formal Logic, published in
1955. According to Mary Prior his resurging interest in the
history of logic was very much due to the fact that the universi-
ty library bought Bochenski's Précis de Logique Mathématique
(1948).

It seems that a short article by Benson Mates [1949] made
Prior even more aware of the interesting relation between time
and logic. The paper was concerned with Diodorean logic, pri-
marily Diodorus' definition of implication. Prior seemed to rea-
lise that it might be possible to relate Diodorus' ideas to contem-
porary works on modality by developing a calculus which in-
cluded temporal operators analogous to the operators of modal
logic. Mary Prior has described the first occurrence of this idea:
"I remember his waking me one night, coming and sitting on
my bed, and reading a footnote from John Findlay's article on
Time, and saying he thought one could make a formalised tense
logic." This must have been some time in 1953 [Kenny p. 336].
The footnote which Prior studied that night was the following:

And our conventions with regard to tenses are so well
worked out that we have practically the materials in them
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for a formal calculus... The calculus of tenses should have
been included in the modern development of modal logics. It
includes such obvious propositions as that
x present = (x present) present ;
X future = (x future) present = (x present) future;
also such comparatively recondite propositions as that
(x).(x past) future; i.e. all events, past and future will be
past. [Gale p. 159-60]

To be sure, Findlay's considerations on the relation between
time and logic in this footnote were not very elaborated, but it
gave Prior the idea of developing a formal calculus which would
capture this relation in detail. For this reason Prior called
Findlay "the founding father of modern tense logic" [Prior 1967,
p. 1]. But there are, in our opinion, certainly not sufficient rea-
sons for viewing Findlay as the founder of tense logic. The ho-
nour of being the founder must without doubt be attributed to
Prior himself. With his many articles and books on gquestions in
tense logic he presented a very extensive and thorough corpus,
which still forms the basis of tense logic as a discipline. Findlay's
major merit in tense logic is, as Jean-Louis Gardies [1975, p. 40]
has remarked, to have had the luck of inspiring Prior to initiate
the development of formal tense logic.

In fact, Findlay's footnote was certainly not the only source of
inspiration for Prior's incipient formal study of the logic of time.
Prior highly valued various parts of Polish logic like L.ukasie-
wicz's three-valued logic. And of course, from the previous sta-
ges of his career he was well acquainted with a huge historical
material on questions related to temporal logic. A persistent fea-
ture throughout Prior's works is a clear interest in the history of
logic. Indeed, Prior took an interest in the history of logic not on-
ly as a subject in its own right, but he also saw the works of an-
cient and medieval logicians as a significant contribution to the
contemporary development of logic. He was particularly inter-
ested in Aristotle, Diodorus, and the Scholastics, but his interest
also extended to more recent logicians such as Boole and Peirce,
whom he called "the greatest of all symbolic logicians" [1957¢].
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It is likely that Prior was already in the early fifties acquainted
with McTaggart's considerations on time [1908], and Reichen-
bach's examinations of the tenses of verbs [1947]. However, he
made no reference to those ideas in his introductions to tense
logic during the 1950's. The reason may be that he thought of
these philosophers as adversaries. At least, he himself declared
that at first he considered McTaggart an 'enemy’, until Peter
Geach made him aware of the importance and relevance of
McTaggart's distinction between the so-called A- and B-series
conceptions of time [1967, p. vi]. The A-series conception is based
on the notions of past, present, and future, as opposed to a
‘tapestry' view on time, as embodied by the B-series conception
of time. Prior later formally elaborated McTaggart's distinction,
and showed that we can discuss time using either a tense logic,
corresponding to the A-series conception, or using an earlier-
later calculus, corresponding to the B-series conception; we shall
show in detail how he related the two to one another in chapter
2.8. Prior's interest in McTaggarts observations was first
aroused when he realised that McTaggart had offered an
argument to the effect that the B-series presupposes the A-
series rather than vice versa [1967, p.2]. Prior was particularly
concerned with McTaggart's argument against the reality of
tenses. He pointed out that the argument is in fact based on one
crucial assumption, namely that tenses should be explicated in
terms of a non-temporal 'is', attaching either an event or a
'moment' to a 'moment'. That assumption is certainly very
controversial. Nevertheless, since Prior's studies brought
renewed fame to McTaggart's argument, this so-called
McTaggart's paradox has been very important in the debate
about various kinds of temporal logic and their mutual
relations. In the next part of this book, we shall discuss the kind
of reasoning involved in McTaggart's paradox.

With regard to Reichenbach's ideas, however, he did not
change his mind. As we have seen in chapter 2.4, Reichenbach
made some elegant observations, but the formalism he con-
structed was very limited. Indeed, its crucial idea of a three-
point structure directly resists some required logical generali-
sations. It is also dubitable whether its capacity for linguistic
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generalisation really goes very far - in spite of considerable ini-
tial success in the linguistic community. In consequence, Prior
regarded Reichenbach's analysis as in some ways "a hindrance
rather than a help to the construction of a logic of tenses" [1967,
p. 13].

Prior shared the medieval view on statements. He presented
this view in Past, Present and Future, quoting Peter Geach, who
had formulated it as early as 1949:

Such expressions as 'at time t' are out of place in expoun-
ding scholastic views of time and motion. For a scholastic,
'Socrates is sitting' is a complete proposition, enuntiabile,
which is sometimes true, sometimes false; not an incom-
plete expression requiring a further phrase like 'at time t' to
make it into an assertion. [Prior 1967, p. 15]

Prior continued to examine the Scholastic sources himself, and
in his writings he clearly demonstrated the validity of Geach's
formulation of the Scholastics' view on propositions.

Prior was invited to Oxford as 'John Locke Lecturer' in Philo-
sophy in 1955-56. This led on to the Prior family moving in 1959
to Manchester and a few years later to Oxford, where Prior
worked at Balliol College.

The John Locke lectures gave Prior an excellent opportunity
to present his new findings regarding time and modality. The
lectures were held on Mondays. Among the participants were
John Lemmon, Ivo Thomas, and Peter Geach [Kenny p. 337].
The lectures were later published as the book Time and
Modality (1957). It was this work which made Prior internatio-
nally known. After the publication of Time and Modality he re-
ceived a number of important and interesting letters from vari-
ous logicians. One of the logicians who wrote to Prior was Saul
Kripke. In two letters to Prior in September and October 1958
Kripke put forth some very stimulating ideas regarding tempo-
ral logic. In the next section we shall examine Kripke's ideas and
their impact on Prior's work.

According to Peter Geach, Prior regarded his own research
into the logic of ordinary language constructions as a continua-
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tion of the medieval tradition {Geach p. 188]. His attitude was
congenial to that of the young Russell in Principles of Mathe-
matics: ordinary language is not a logician's master, but it must
be his guide [Geach p. 187]. After all logic in Prior's opinion "is
not primarily about language, but about the real world" [TR, p.
1]. For this reason he strongly opposed the formalistic view on
logic:

Formalism, i.e. the theory that logic is just about symbols
and not about things, is false. [TR p. 1]

I cannot see how any statement whatever can be made true
simply by using language in a particular way... [WL, p. 2]

Prior's own answer to the question about the nature of logic
ran as follows:

Logic deals, at bottom, with statements - it enquires into
what statements follow from what - but logicians aren't en-
tirely agreed as to what a statement is. Ancient and medie-
val logicians thought of a statement as something that can
be true at one time and false at another. [SFTT, p. 1]

It is an obvious consequence of the ancient and medieval view
that time should not be ignored in logic. Following this view
Prior stressed that "the tense of a statement must be taken seri-
ously" [SFTT, p. 2]. To Prior, all logic was in a sense tense logic:
"... tenseless statements of modern logic are just a special case of
statements in the old sense ..." [SFTT, p. 2]. He argued that tense
logic is based on two fundamental assumptions [Prior 1957a, p.
104]:

1) tense-distinctions are a proper subject of logical reflec-
tion,

2) what is true at one time is in many cases false at another
time, and vice versa.

Prior observed that ancient and medieval logicians took these
assumptions for granted, but that they were eventually denied
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(or simply ignored) after the Renaissance. Prior himself can be
said to have realised the possibility of formulating a logic based
on these old assumptions. In fact, he took the assumptions even
further and also claimed the reality of tenses:

So far, then, as I have anything that you could call a philo-
sophical creed, its first article is this: I believe in the reality
of the distinction between past, present, and future. I believe
that what we see as a progress of events is a progress of
events, a coming to pass of one thing after another, and not
just a timeless tapestry with everything stuck there for
good and all. [SFTT, p. 1]

It was Prior's conviction that tense logic was not merely a for-
mal language together with rules for purely syntactic manipu-
lations. It also embodied a crucial ontological and epistemologi-
cal point of view according to which "the tenses (it will be, it was
the case) are primitive; only present objects exist." [Prior & Fine,
1977, p. 116] To Prior, the present and the real were one and the
same concept. Shortly before he died he formulated his view in
the following way:

...the present simply is the real considered in relation to two

particular species of unreality, namely past and future.
{Prior 1972]

It is obvious that Prior was strongly attracted by questions
concerning the relation between time and existence. In Time
and Modality he proposed a system called 'Q' which was
specifically meant to be a 'logic for contingent beings' [1957a, 41
ff.]. System Q can deal with a certain kind of propositions, which
are not always 'statable'. Such propositions are particularly
interesting from a tense logical point of view.

Consider the proposition r: 'x exists'. If the object x is a
contingent being, then we may assume that it has come into
existence at some past time (or perhaps it is coming into
existence right now). Before its coming into existence the
proposition » was not statable. One consequence is that in a tense
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logic which is sensitive to this problem, such as Q, we cannot in
general assume that Pr and ~H~r are equivalent. This makes
things very complicated, so it is understandable that Prior
subsequently chose to leave aside that problem in his first
pioneering development of symbolic tense logic. However, late in
his work he again took up this challenge and formulated a
tense-logic for non-permanent existents [1968, p. 145 ff.].

In 1958 Prior entered into a very interesting correspondence
with Charles Hamblin of The New South Wales University of
Technology in Australia. Their correspondence led to important
results, especially on implication relations among tensed propo-
sitions. Prior and Hamblin discussed two central issues in tense
logic: the number of non-equivalent tenses, and the implicative
structure of the (non-metric) tense operators. In a letter to Prior
dated 18th April 1958 Hamblin suggested a set of axioms with P
and F as monadic operators, corresponding to "a simple
interpretation in terms of a two-way infinite continuous time-
scale". Hamblin's axioms are:

Ax1: Fp vq) =(Fp vFq)
Ax2: ~F~p > Fp

Ax3: FFp =Fp

Ax4: FPp = (p vFp v Pp)
Ax5: ~F~Pq =(q v Pq)

Hamblin also assumed 3 rules of inference:

R1: If A is a thesis, then ~F~A is also a thesis.
R2: If A =B is a thesis, then FA =FB is also a thesis.
R3: If A is a thesis, and A’ is the result of simultaneous-

ly replacing each occurrence of F in A by P and
each occurrence of P in A by F, then A' is also a the-
sis. (A'is the socalled mirror-image of A.)

When these axioms and rules are added to the usual proposi-
tional calculus a number of interesting theorems can be proved.
In fact, Hamblin could prove that "there are just 30 distinct
tenses", which can be formed using only P, F and negation.
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Hamblin also suggested a certain implicative structure for the
tenses. His suggestion can be illustrated like this:

F.P-

e

P~ — P-P-—P -P-P—P P
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These results became even more appealing when Prior started
to use the operators G (= ~F~) and H (= ~P~). (We have not
been able to find any explicit explanation as to why Prior chose
exactly those two letters. However, M. J. Cresswell has by per-
sonal communication suggested to us that G was inspired by the
phrase 'is always going to be', and H by the phrase 'has always

been'.)

F- — % F-F- — -F-F —» F

Using G and H, Hamblin could summarise the reduction of
tenses with more than two adjacent tense-operators into the fol-
lowing diagram:

GH FH PH HP GP FP HF GF FG PG
P|GH PH PH HP P FP FP GF FG PG
H|GH H PH HP HP FP HF GF FG HG
F|GH FH PH HP FP FP F GF FG FG
G|GH GH PH HP GP FP GF GF FG G
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Finally, in 1965 Hamblin and Prior ended up with the
following nice implicative structure for the non-metrical tense-
operators, which according to Hamblin is "a bit like a bird's nest"
[(Hamblin, letter of 6th July 1965]:
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In 1967 Prior published his major work, Past, Present and
Future, in which his approach to tense logic had reached a very
convincing form. The decade of intense work in the field since
the John Locke lectures had brought him a lot further. Also he
had been able to benefit greatly from the correspondence with
logicians like Kripke and Hamblin.

As a teacher Prior was very inspiring. He was always able to
find nice and understandable illustrations of the logical systems
he wanted to introduce. For instance, he would illustrate the
fact that LMp cannot be deduced from Mp in the following way
(where Mp in this context means 'p either is or will be true', and
Lp stands for 'p is and always will be true'):

GP

...it is or will be that Uncle Joe's car is running, but it will
not always be true that this is or will be true; so in this sense
Mp does not imply LMp [1957¢]
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It seems clear that he very much liked teaching and lecturing.
He was not 'the Oxford type', but it appears that he almost im-
mediately build up a reputation as one of the best lecturers in
Oxford.

Prior died on October 6th., 1969, whilst on a lecture tour in
Scandinavia. On the day of his death he was visiting Trondheim
in Norway. Prior had by then accomplished an impressive pro-
duction. The bibliographical overview of Prior's philosophical
works comprises more than 150 titles [Flo 1970]. In this over-
view one can follow how Prior's interests developed in the
course of his work. Summarising the main trends it can be said
that his work until the middie of the 1950's was characterised
by a preoccupation with ethics and the history of logic. From the
mid-fifties and onwards he devoted himself mainly to the study
of the relation between time, modality, and logic. That should be
seen as a natural consequence of his endeavour to develop the
formal calculus of tense logic, a task which he took up around
1953 (at the time of being inspired by Findlay's footnote). Never-
theless, we hope to have also made clear that there is no sharp
distinction between Prior's philosophical and historical concerns
on one hand and his work as a formal logician on the other.



2.6. THE IDEA OF BRANCHING TIME

If the determinist sees Time as a line, the
indeterminist sees it as a system of forking paths...
John P. Burgess [1978, p.157]

The straight line and the circle, respectively, are the tradi-
tional geometrical representations of time. According to the
linear conception time is progressive. Strictly speaking, nothing
will stay as it was, everything will change. Even if a phenome-
non appears to be stable, say, the whiteness of an object, it is still
not seen to be identical with 'same' phenomenon one moment
ago - since that phenomenon does not really exist as opposed to
the phenomenon we are contemplating 'now', and which does
exist. According to the circular conception of time nothing is
really new. Any event is a repetition of previous events, and will
be repeated indefinitely in the future. These two geometrical
images of time have been dominant within the philosophy of
nature and other strands of systematic thinking from the anti-
quity and up to this century. However, during the last decades a
number of intellectuals have suggested a new kind of time
models. According to these models time is viewed as a branching
system - a tree-structure. Since branching time models are very
important in the modern analysis of temporality, it is worth
trying to understand this new image of time in relation to the
history of ideas. Consider this figure:

M

X Y
One of the first philosophers of time to formulate the idea of
branching time in a precise manner was Henri Bergson (1859-

180
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1941) in his book from 1889 Essai sur les données immédiates
de la conscience. In this book Bergson considered the problems
regarding time and free will. As a possible illustration of the
process of deliberation he discussed the above figure [Bergson
1950, p. 176]. Bergson considered a interpretation of this
illustration like the following: The person in question has
traversed a series, MO, of conscious states. At the state O he
finds the two directions, OX and OY, equally open for him. -
However, Bergson argued that this geometrical representation
of the process of coming to a decision is deceptive:

This figure does not show me the deed in the doing but the
deed already done. Do not ask me then whether the self,
having traversed the path MO and decided in favour X,
could or could not choose Y: I should answer that the ques-
tion is meaningless, because there is no line MO, no point O,
no path OX, no direction OY. To ask such a question is to
admit the possibility of adequately representing time by
space and a succession by a simultaneity. [Bergson 1950,
p.180]

In our century the idea of branching time has become more ac-
ceptable than it was in the 19th century. In this connection the
authorship of Borges stands out prominently. Apparently,
Borges was the first intellectual to give a detailed description of
the new model of time, namely in his short story from 1941 The
Garden of Forking Paths [in Borges 1962] (which in some of its
elements appears almost a thriller). In the following we shall
account for the new understanding of time anticipated and
compellingly unfolded by this story.

Borges' story is set during World War I. The Chinese Yu Tsun
is a spy for the Germans in England. But a certain English
counter-intelligence officer, captain Richard Madden, has just
managed to quash the spying network to which Yu Tsun be-
longs. Yu Tsun himself has not yet been taken, but captain
Madden is right on his heels. The Chinese spy, however, still has
one important task to accomplish for his German superiors in
Berlin. He must point out to them the town of Albert, where the
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English are building a new strategically important artillery
park. In the circumstances he sees no other way of achieving
this goal than to kill some person with the name of 'Albert'; this
incident, then, should reach the headlines of the English news-
papers, where the Berlin office regularly looks for clues from its
spies. Yu Tsun searches for possible victims in a telephone direc-
tory, and the only possible victim turns out to be one Stephen
Albert, who lives about half an hour's travel by train from Yu
Tsun's home. Yu Tsun plans the murder and leaves his place; he
starts carrying out his plan, whilst trying to observe the
following maxim:

Whosoever would undertake some atrocious enterprise
should act as if it were already accomplished, should impose
upon himself a future as irrevocable as the past. [p. 92]

Yu T'sun now sees the murder of Albert as something inevitable.
Albert is already dead in this planned future, which has been
given the glow of necessity by Yu Tsun. And yet the murder is no
necessity. This is strongly suggested by the fact that captain
Richard Madden was right on the trail of Yu Tsun and went
after him on his way to the train, but "by an accident of fate" he
does not reach him [Borges, p. 92]. Madden is only a few
minutes late for the train, but this "small victory" [Borges, p. 92]
is the difference between life and death for Stephen Albert - and
for the fate of Yu Tsun himself. Already in this introductory
sequence the branching between different future courses of
events is evident to the attentive reader. The past, on the other
hand, is irrevocable, necessary and unchangeable. Planning is
an attempt to assign to the future the same characteristics as
those of the past, even though on grounds of principle this may
only succeed to a certain extent. And Yu Tsun's maxim, it may
be added, is a recipe for soothing one's conscience by projecting
the properties of the past onto the future.

References to bifurcations in time pervade the story. When Yu
Tsun leaves the train at Ashgrove and has to walk the last
stretch to Stephen Albert's house, some local children give him
the following piece of guidance:
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The house is a good distance away, but you won't get lost if
you take the road to the left and bear to the left at every
crossroad. {p. 93]

The children's' instruction about turning always to the left re-
minds Yu Tsun that "such was the common formula for finding
the central courtyard of certain labyrinths" [p. 93]. His thoughts
are thus led on to his great-grandfather Ts'ui Pén, who for
thirteen years worked on the construction of a maze, "in which
all men would lose themselves". [p. 93]. The analogy between a
labyrinth and time now becomes explicit to Yu Tsun's mind:

... I thought of a maze of mazes, of a sinuous, ever growing
maze which would take in both past and future and would
somehow involve the stars. [p. 94]

These thoughts are being mirrored by nature itself: "... overhead
the branches of trees intermingled..." [p. 93]. For a moment Yu
Tsun feels as if he is allied with eternity - as a spectator to the
totality of temporal courses of events:

For an undetermined period of time I felt myself cut off
from the world, an abstract spectator. [p. 94]

When approaching Albert's home, Yu Tsun to his surprise hears
Chinese music coming from the garden. Stephen Albert at first
mistakes Yu Tsun for a Chinese consul, who was apparently
expected to come round some time to see Albert's garden. Thus a
conversation is started, and Yu Tsun eventually learns that his
victim-to-be is a sinologist, who holds a profound knowledge
about his forefather's Ts'ui Pén's universe of ideas. For this rea-
son Yu Tsun decides to postpone the execution of his otherwise
irrevocable decision to kill Albert for about an hour. He lets
Albert know that he is a descendant of Ts'ui Pén. The two to-
gether take a stroll through the garden. Also here the sugges-
tions of the concept of branching time are clear:
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The damp path zigzagged like those of my childhood. [p. 95]

A philosophical - and at the same time highly existential - con-
versation then takes place in Albert's library. Stephen Albert is
sitting with his back to a large circular clock. Yu Tsun is seated
facing the clock. The conversation is about Ts'ui Pén, who for
thirteen years lived remote from the world in order to write a
book and construct a labyrinth. After the death of Ts'ui Pén his
heirs found only a mess of chaotic manuscripts, which were
published only because the executor of his will insisted. Yu Tsun
himself never understood the book. That is evident from his
remarks about it:

Such a publication was madness. The book is a shapeless
mass of contradictory rough drafts. I examined it once upon
a time: the hero dies in the third chapter, while in the fourth
he is alive. [p. 96]

Yu Tsun holds that the book is by no means characterised by
the logical rules which in his view every author should obey.
Thus for instance he thinks that the third chapter of the book
should respect chapter two as a phase which has been
concluded. It just has not occurred to him that the logic of the
book could be quite new. Due to his close studies Stephen Albert,
however, has been able to see through the mystery. A fragment
of a letter from Ts'ui Pén has proved to hold the decisive key to
the right understanding of the book:

I leave to various future times, but not to all, my garden of
forking paths. [p. 97]

The book and the labyrinth were not to be considered as two
separate pieces of work to be carried out by Ts'ui Pén. They
were in essence the same thing. The book was to be constructed
as a labyrinth of time. The apparent conflict between the
different parts of the book is simply due to the fact that Ts'ui Pén
wanted to describe all the possible futures concurrently. The
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book therefore does not respect the usual logic but defines its
own logic - a new kind of temporal logic:

This is the cause of the contradictions in the novel. Fang, let
us say, has a secret. A stranger knocks at his door. Fang
makes up his mind to kill him. Naturally there are various
possible outcomes. Fang can kill the intruder, the intruder
can kill Fang, both can be saved, both can die and so on and
so on. In Ts'ui Pén's work, all the possible solutions occur,
each one being the point of departure for other bifurcations.
Sometimes the pathways of this labyrinth converge..... [p.
98]

In other words the novel depicts time as an infinite branching
system. Thus Ts'ui Pén has handed over his proposal for a solu-
tion of the enigma of time to posteriority. That is to say, he has
handed it over to the different futures after his death - even
though it will in fact not be received in some of them. For
instance, the solution is not received in the case of those possible
futures, in which the executor of the will has the manuscripts
burnt in order to prevent their publication.

Throughout Borges' short story the description of time as a
gigantic branching system gets still more precise. Towards the
end of the short story he lets Stephen Albert say:

The explanation is obvious. The Garden of Forking Paths is
a picture, incomplete yet not false, of the universe such as
Ts'ui Pén conceived it to be. Differing from Newton and
Schopenhauer, your ancestor did not think of time as
absolute and uniform. He believed in an infinite series of
times, in a dizzily growing, ever spreading network of
diverging, converging and parallel times. This web of time -
the strands of which approach one another, bifurcate,
intersect or ignore each other through the centuries -
embraces every possibility. [p. 100]

Borges' conception of time bears many similarities to Leibniz'
idea of possible worlds. The different futures represent different
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possibilities, and this aspect assumes a particular importance
with respect to the existence of persons. Even though a person
exists in one series of time, it cannot at all be taken for granted
that he or she exists in another series of time. Borges lets
Stephen Albert emphasise the fact that in most times - we might
say, courses of events - neither Yu Tsun or he himself (Albert)
exist. Moreover, the question about the existence of persons in
the different series of time gives rise to some considerations on
the extremely difficult philosophical problems concerning
temporal and counterfactual identity:

Once again I sensed the population of which I have already
spoken. It seemed to me that the dew-damp garden
surrounding the house was infinitely saturated with
invisible people. All were Albert and myself, secretive, busy
and multiform in other dimensions of time. [p. 100]

Yu Tsun experiences the counterfactual, yet in a sense real
and simultaneous existence of other 'editions' of himself and
Albert - varied infinitely as in a nightmare. And it is
understandable that this should appear like a nightmare, for if
the number of Yu Tsuns is infinite, who then is the real Yu
Tsun? A complementary question to this philosophical and
existential problem is this one: what exactly does it mean that a
number of different possible persons are in some sense all Yu
Tsun? Perhaps in his short story Borges presupposed the
answer later to become prevalent in philosophy, namely that
two possible persons are identical in a 'simultaneous' sense if
they have a common history (indistinguishable histories) up to a
certain point of time. Borges increases the dramatic effect of the
idea of simultaneous identity by letting Albert say:

Time is forever dividing itself toward innumerable futures,
and in one of them I am your enemy. [p. 100]

This utterance answers a warped remark by Yu Tsun, who
claims that in all possible times he would appreciate and be
grateful to Albert for his reconstruction of the garden of forking
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paths. Albert's answer stands out in dramatic contrast to Yu
Tsun's proclaimed gratefulness, since Yu Tsun shortly after
fires the killing shot at Albert in accordance with the
'irrevocable decision' made before he even met Albert.

Borges new idea about time is represented in a literary figure,
and therefore it is no wonder that a number of philosophical and
logical problems remain unanswered. In particular, the ques-
tion about the branching towards the past is conspicuous. How
can Borges accept an idea about a branching past? What does it
mean when "the web of time - the strands of which approach
one another ..., intersect" [p. 100], and "Sometimes the pathways
converge" [p. 98}?7 Does Borges actually mean that it makes
sense to talk about alternative possibilities of the past in the same
way as one may operate with alternative possibilities of the fu-
ture? Clearly, it is meaningful to talk about an alternative past
in an epistemological sense, since we do not have a full or defi-
nite knowledge about the vast majority of questions about the
past. This epistemological limitation is different from an ontolo-
gical assumption that there be several different courses of
events in the past, which are equally real. However, there is
hardly any evidence of such a distinction being made in Borges'
story. On the other hand it is difficult to believe that Borges
would really make room for a liberty of choice regarding the
past. The story repeatedly stresses the observation that the past
is irrevocable. The ethical tension arises exactly out of the wilful
and forced projection of this property of the past onto the future.
Neither Yu Tsun nor anybody else can repeat or alter the past,
and this fact in the end influences Yu Tsun's attitude towards
the murder which he has committed. Immediately after the
deed, Yu Tsun is apprehended by Richard Madden, who has
somehow managed to trace him to Albert's home. Afterwards,
writing in his cell, where he is awaiting execution, Yu Tsun
expresses his anguish at his deed:

What remains is unreal and unimportant. Madden broke
in and arrested me. I have been condemned to hang.
Abominably, I have yet triumphed! The secret name of the
city to be attacked got through to Berlin. Yesterday it was
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bombed...He [the German superior in the Berlin
headquarters] does not know, for no one can, of my infinite
penitence and sickness of the heart. [p. 101]

Those last words conclude the story. The feeling of repentance
and fatigue expressed in them seems to be the nearest a human
being can come in an attempt to change the past. - A solution to
the question about alternative pasts in Borges short story can be
based on the observation that the text seems to contain two con-
cepts of eventuality (possible courses of events). One is connected
with the situation of the human being. Our alternatives (of
choice) with respect to eventuality regards the future only, since
the past has already been settled. The other concept of eventual-
ity is related to the conceivable or the consistent. It is a very
comprehensive concept, since everything that does not directly
involve a logical self-contradiction is regarded as possible.
(Specific causal restrictions might be superimposed on this no-
tion.) Apparently, Borges is relying on the latter concept of
eventuality in his depiction of a temporal branching system.
From the viewpoint of the present state of things it is possible to
imagine different past courses of events, which have in various
ways led to the present situation. These different pasts would be
possible in so far as they among themselves make no
(recognisable) contrast to the present state of affairs, for if they
did we could rule some of them out.

It is a quite striking fact that Borges wrote his short story
already in 1941, the very same year when J. Findlay's article
Time: A Treatment of Some Puzzles was published in the
Australasian Journal of Psychology and Philosophy. This article
is normally considered to be the starting point for the modern
logic of time (although Lukasiewicz trivalent logic might be seen
as an even earlier forerunner of temporal logic, as we have
shown in a chapter 2.3). There can be no doubt that The Garden
of Forking Paths is a compelling picture of the very same basic
intuitions which also underlie the later formal development of
branching time. Nevertheless, it is hard to establish any direct
impact of Borges' ideas in the development of the formal logic of
time - in spite of the fact that many leading logicians and
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philosophers within the study of time have evidently been aware
of Borges' short story. In order to understand the more or less
simultaneous appearance of Borges' short stories about time
and the incipient study of temporal logic, we should perhaps
rather focus on a general desire of understanding the nature of
time in a more satisfactory way than the classical models could
provide. There appears to have been a widespread concern with
fundamental questions about time among intellectuals in the
1940's and the 1950's. Both the early logic of time and Borges'
literary description of time can be said to have had the purpose
of stressing the reality of time. Time is seen as an aspect of the
real world and not an illusion. But what does this mean and how
do we work out these ideas in detail? The idea of branching time
is a framework within which we can begin to answer some of
those questions. At least as an experiment, we can with Borges
take on the réle of an 'abstract spectator' of the world and try to
understand the infinite temporal branching structure of
possible events.

The idea of branching time was not realised in early work on
temporal logic. Indeed it had not yet been formulated in Prior's
Time and Modality (1957), which otherwise marked the major
breakthrough of the new logic of time. As an explicit (or for-
malised) idea, branching time was first suggested to Prior in a
letter from Saul Kripke in September 1958. This letter contains
an initial version of the idea and a system of branching time,
although it was of course not worked out in details. Kripke
suggested that we may consider the present as a point of 'rank
0', and possible 'events' or 'states' at the next moment as points of
'rank 1'; for every such possible state in turn, there would be
various possible future states at the next moment from 'rank1’,
the set of which could be labelled 'rank2', and so forth. In this
way it is possible to form a tree structure representing the entire
set of possible futures expanding from the present (rank0) - in-
deed a set of possible futures can be said to be identified for any
state, or node in the tree. In this structure every point deter-
mines a subtree consisting of its own present and future.
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Branching Time
according to Saul
Kripke, 1958:

Rank O Rank 1 Rank 2

Prior clearly found this view of time highly interesting, and in
the following years he substantially developed it. He worked out
the formal details of several different systems, which constitute
different and even competing interpretations of this idea, as you
shall see below. Eventually, he incorporated the idea of branch-
ing into the concept of time itself.

We may refine the intuitive picture of branching time by the
figure below. In this picture, it makes sense to say that for every
event there is one unambiguous past. For instance, in relation to
the event Es, the past contains the linear arrangement of events
represented by E,, E1, and E,. In relation to E; considered as the
present time the events Ey and E;, are alternative future possi-
bilities. Relative to Es, the events E4, E¢ and E; will be counterfac-
tual; that is, if E; is ever 'realised’, E;, E¢ and E; are indeed 'by
now' (E;) beyond possible realisation. Each E-node really repre-
sents a set of events and facts; if two facts both 'belong to' one and
the same node, say E;s they are of course genuinely simultane-
ous at Es. E4, Es and E;, on the other hand, represent a pseudo-
simultaneity with Es for what would have been real under
different and counterfactual conditions.
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It is, however, still possible to interpret this general idea in
various ways. Prior himself worked out two different interpre-
tations, inspired respectively by Ockham and Peirce [Prior
1968, p.122 ff]. This fundamental work has led to a large num-
ber of articles in various journals. A significant number of these
papers are concerned with the problem of determinism versus
indeterminism, and we shall in part 3 examine in detail how in-
deterministic tense logics based on the idea of branching time
can be worked out.

In order to shed light on the concept of time, Prior's procedure
basically was to work out different temporal systems and then
to examine their logical consequences. Other researchers have
taken a more 'ontological approach', focusing on the concept of
time itself; from an analysis of that concept, one can then con-
struct the corresponding logic. (Needless to say, the two proce-
dures cannot be kept strictly apart, but they do differ somewhat
in their methodological consequences.) Nicholas Rescher {1968],
for one, has reacted against Prior's rendition of branching time,
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arguing that time itself is not really branching, in spite of the
fact that a wealth of possibilities for the future course of events
can be found (as seen from the present). To Rescher, we have a
“branching in time", but not "branching of time" [1971, p.173].
Storrs McCall [1976], on the other hand, has argued that the
passing of time is genuinely related to the understanding of time
as a branching system: the passing of time is equivalent to a loss
of possibilities! This observation emphasises how the branching
of time is directed towards the future only, that is, for any point
in the system there exists only one possible past. Of course, the
problem of the ontological status of the possible futures is a very
difficult one. Should we consent to what Borges lets Yu Tsun say
immediately before he kills Stephen Albert: "The future exists
now -" [p. 101]? Prior would certainly disagree; he repeatedly
stated the conviction that only the present exists. The tension
between these two creeds is in fact also manifest in The Garden
of Forking Paths. Before Yu Tsun plans the murder and
embarks on his chosen mission, he ponders his probable fate in
the near future, namely the ordinary punishment meted out to
spies: execution. But reflecting on the importance of the present
as constituting reality, he finds some solace:

Then I reflected that all things happen, happen to one,
precisely now. Century follows century, and things happen
only in the present. [p. 90]

Thus Yu Tsun comforts himself with an observation exactly
opposed to the maxim with which he later tries to justify his
deed. The above words bear a striking resemblance to some of
Prior's remarks on the present as reality. In tense logic, the
picture of branching time unfolded in the story is actually
compatible with the identification of the present with the real.
Nevertheless, while Borges' story certainly depicts and appa-
rently advocates the branching view of time, it is not quite so
clear whether it also agrees with the notion that 'only present
objects exist' [Prior & Fine 1977, p. 116]. Even so, the fact that
the story also pays attention to the special réle of the present
bears yet more witness to its profundity.
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Finally, it may be worth considering the fact that the whole
course of the story is itself what we would ordinarily consider as
extremely unlikely. It is quite a bit of a coincidence that Yu
Tsun's only possible vietim should turn out to be a sinologist, in-
deed a sinologist who happens to have studied intensely the
work of Yu Tsun's great-grandfather. In this circumstance one
might seek evidence to the effect that after all, courses of events
are seen as governed by Fate, or Providence. But on the other
hand, it might also be seen as a suggestion that no future possi-
bility should be ruled out or considered 'too unlikely' (excepting
those which would violate the laws of logic or physics). The
latter interpretation would be in good accordance with general
features in Borges' work, to the best of our knowledge.

Several models of branching time have been proposed. The
main difference between these models has to do with the status
of the future. The models fall into a small number of groups,
where the basic ideas can be shown in a very intuitive way:
consider once again the old Aristotelian example about the
possible sea-fight tomorrow. How should we define truth for
statements like F(1)p?

One particular line of answer to this question can be based on a
simple but radical assumption, namely the rejection of the prin-
ciple of bivalence. As we have seen Jan FL.ukasiewicz maintained
that we should view the logic of time as three-valued, attaching
a third truth-value: 'indeterminate' to statements about the con-
tingent future. A comparable line has been taken by Richmond
H. Thomason [1970], according to which the truth-value of
statements about the contingent future are in general unde-
fined. Thomason's theory is certainly consistent, and it is also
interesting that he has been able to use it in the context of deon-
tic logic (i.e. the logic of moral obligation) [Thomason 1981, pp.
165 ff.]. The crucial problem with this approach as well as that
of Lukasiewicz is the circumstance that the usual truth-
functional technique breaks down for these theories. This con-
dition is a source of serious formal problems as well as highly
counter-intuitive features. For instance, if F(1)p and ~F(1)p are
both 'indeterminate' (or 'undefined'), it is very hard to explain
how statements like the conjunction F(I)p A ~F(1)p and the dis-
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junction F(1)p v ~F(1)p can be anything else than 'indetermi-
nate' (or 'undefined’) [Prior 1967, p. 135]. We think that the
introduction of 'indeterminate' or 'undefined' statements is an
unnecessary complication. For this reason we shall leave aside
further discussion of solutions based on the rejection of biva-
lence.

Let us consider the four bivalent answers which have been
given in the literature. For the sake of simplicity, we shall use
metrical time in our examples; but the results can be genera-
lised into non-metrical time, if each branch defines an equiva-
lence class of futures.

1) The first answer is that the two possibilities, sea-fight and no
sea-fight, are both future, and that none of them has any supe-
rior status relative to the other. This answer can be represented
graphically in the following way:

sea-fight
Hi1

2
no sea-fight

The arrows on end of the two future branches indicate that the
statements 'there is going to be a sea-battle (tomorrow)' and
'there is not going to be a sea-battle (tomorrow)' are both true in
this picture of branching time. That is, if we let p stand for ‘there
is a sea-battle going on', and F(1)p stand for 'there is going to be
a sea-battle tomorrow', then

F(1)p AF(1)~p

is true. The corresponding tense-logical system is called K after
Saul Kripke.

2) According to the Ockham-model only one possible future is
the true one, although we as human beings do not know which
of them it is. Let us assume that there is in fact going to be no
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sea-fight tomorrow. In this case the future should be repre-
sented graphically in the following way, where a line not ending
in an arrow indicates that it will be false to assert that the
corresponding state-of-affairs will be the case tomorrow:

sea-fight
H1

H2
no sea-fight

So, ~F(1)p AF(1)~p is the true description of this situation, even
though we may be unable to know this at the present moment
(p etc. being defined as above).

3) According to the Peirce-model - which Prior himself
adopted as covering his own view - it makes no sense to speak
about the true future as one of the possible futures. There is no
future yet, just a number of possibilities. Hence, the future - or
perhaps rather, the "hypothetical future' - should be represented
graphically in this way:

sea-fight
Hi

H2
no sea-fight

Neither F(1)p nor F(1)~p are true on this picture. However, if
some proposition q holds tomorrow in all possible futures - that
is, if the truth of q tomorrow is regarded as necessary - then
F(1)q is true.

4) The possibility of the first three answers mentioned above
were realised by A. N. Prior. However, later Hirokazu Nishimu-
ra [1979] formulated a new temporal model which turned out to
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be slightly different from the Ockham-model which Prior had
considered. Nishimura's model involved not only times, but also
histories defined as linear subsets of the set of times. In fact, it is
natural to view Nishimura's model of time as a union of disjoint
histories. According to the model the tenses (past, present,
future) are always relative to a history. Relative to one possible
history there is going to be a sea-fight tomorrow, and relative to
another history there is not going to be a sea-fight tomorrow.
Graphically, this model can be presented in the following way:

sea-fight

g
—

no sea-fight

Here, F(1)p is true with respect to H1, whilst F(1)~p is true with
respect to H2.

Clearly Nishimura's model has to involve some relation of
identity of histories before certain events. H1 and H2 may be
identical in all past times except for the fact that F(x)p is true at
all such times in H1 (for some x), while it is false in H2.
Therefore, in order to achieve such an identity relation future
statements must be disregarded. In dealing with the model, it is
natural to consider the full set of histories as pre-defined. As we
have seen, this view is similar to Leibniz' concept of creation of a
temporal world. In general, it is interesting that the construc-
tions in Nishimura's model come very close to ideas that can be
found in Leibniz' philosophy, in spite of the fact that Leibniz
himself ruled out time from his endeavour to establish a sym-
bolic logic. Nishimura's ideas can be incorporated into a formal
branching time model, which we shall call the Leibniz System,
to be presented in due course. This system seems to be very close
to the Ockhamist one, but it turns out that there are certain
statements which are true from an Ockhamistic point of view,
but false within the Leibniz System - as we shall see later.
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According to Prior many philosophers and scientists who
accept the tapestry view of time have claimed that "they have
on their side a very august scientific theory, the theory of rela-
tivity, and of course it wouldn't do for mere philosophers to
question august scientific theories" [SFTT, p. 3]. Prior early be-
came aware of the conflict between tense logic and special rela-
tivity. It was mentioned by Saul Kripke in a letter to Prior as
early as 1958. Prior described the conflict in a very clear way:

The trouble arises when we come to compare another's ex-
periences, when, for example, I want to know whether I
saw a certain flash of light before you did, or you saw it be-
fore I did. ... It could happen that if I assumed myself to be
stationary and you moving, I'd get one result - say that I
saw the flash first - and if you assumed that you were stati-
onary and I moving, you'd get a different result ... And the
conclusion drawn in the theory of relativity is that this
question - the question as to which of us is right, which of us
really saw it first - is a meaningless question ... Now I don't
want to be disrespectful to people whose researches lie in
other fields than my own, but I feel compelled to say that
this just won't do. [SFTT, p. 3-4]

It is easy to understand what Prior means. Suppose that two
observers, A and B, are moving with velocities v and -v, from an
emitter E, both leaving E when the E-clock reads ¢=0.

A E B
-V Vv

-—™:O O O—

According to special relativity the following transformations for
the time co-ordinates hold:

ta=L (tg+ vxg)
tg = L(tg - vxp)

197



198 CHAPTER 2.7

where L= (1 - v2)-1/2 and the speed of light is taken as unity (¢ =
1).

A flash is emitted from E and received simultaneously by A
and B, yielding same readings, ¢z, on the E-clocks. The time co-
ordinates for seeing the flash on A (xg = -vtg) and B (xg= vtg)
can be calculated in A's system in the following way:

taa= L(g + vxg) = L(1-v2)tg
tap = L@Eg - vxg) = L(1+v2)tg

Clearly according to this A is the first to see the flash. The arri-
vals of the light signals can also be calculated in the B-system:

tga = L(tg - vxg) = L(1+v2)tg
tgp = L(tg - vxg) = L(1-v)tg

According to this calculation B sees the flash before A. For this
reason some physicists would say that the question as to which
of the two observers really saw a certain flash first can only ma-
ke sense if an inertial frame is specified relative to which the
calculation should be carried out.

However, Prior thought that the question as to which of the
two observers really saw a certain flash first is indeed a mea-
ningful one. He stated that what it means is simply this: "When I
was seeing the flash, had you already seen it, or had you not?"
[SFTT, p. 5] Of course, it might be doubted that a physicist
committed to the ordinary interpretation of special relativity
would be convinced by that definition. He would probably say
that this is begging the question. As a precondition for accepting
the question as a meaningful one he would instead demand
some experimental procedure, by means of which the question
can be settled.

Prior admitted that we cannot in all cases know whether a
given event is present or not, i.e. whether it is really taking place
'now' or not, but he maintained that this epistemological
question is very different from the corresponding ontological
question. He wanted to make it clear that all what physics could
show would be that "in some cases we can never know, we can
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never physically find out [our italics], whether something is
actually happening or merely has happened or will happen"
[Prior 1972, p. 323]. Nevertheless, many modern physicists
want to go even further, and claim with Albert Einstein:

There is no irreversibility in the basic laws of physics. You
have to accept the idea that subjective time with its
emphasis on the now has no objective meaning. [Letter to
Michele Besso; quoted from Prigogine 1980, p. 203]

On the other hand, Prior could also note - without doubt with
some pleasure - that not even Einstein was quite content with
this view. Einstein once said to Carnap that the problem of the
Now worried him seriously, explaining that "the experience of
the Now means something special for men, something different
from the past and the future, but that this important difference
does not and cannot occur within physics" [Prior 1968, pp. 133-
134]. Following this kind of reasoning, Prior maintained that
questions concerning the human Now make sense, even though
we cannot be sure that such questions can ever be decided by
physical means. On logical and philosophical grounds Prior
maintained that when an event X is happening, another event
Y either has happened or has not happened. He strongly rejec-
ted the idea of treating 'having happened' as a property that can
attach to an event from one point of view whilst not from some
other point of view:

So it seems to me that there's a strong case for just digging
our heels in here and saying that, relativity or no relativity,
if I say I saw a certain flash before you, and you say you saw
it first, one of us is just wrong - is misled it may be, by the ef-
fect of speed on his instruments - even if there is just no
physical means whatever of deciding which of us it is.
[SFTT, p. 5]

There seems to be two different ways of solving the conflict
between tense logic and special relativity. We can either reject
(or adjust) the fundamental beliefs underlying tense logic, or we
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can reject (or adjust) the basic assumptions of special relativity.
In the following we shall prefer to adjust the philosophical
assumptions of special relativity in such a way that no empirical
(or measurable) consequence of the theory is denied.

The paper [Dhrstrgm 1990] analyses a number of conceptual
possibilities for upholding at the same time the assumptions of
the Special Theory of Relativity and Prior's equating reality
with the present. The analysis shows that this can be done in
various ways. One of the most obvious ways presupposes the se-
lection of a privileged inertial system, to whose time-coordinates
special meanings are attributed. If such a selection is not to be
made ad hoc, then it must be possible to list the reasons
(preferably cosmological ones) for it. It should be pointed out
that the principle of relativity does not exclude a cosmological
time (that is, a 'natural' inertial system, which distinguishes it-
self through the distribution and movement of matter in the
universe). However, even on the assumption of a homogeneous
universe it can be doubted that cosmic time can actually be
viewed as an ontological feature of the universe; Whitrow,
sharing the assumption of a homogeneous universe, stated:

It is doubtful whether there exists a precise definition which
has so great merits that there would be sufficient reason to
consider the time thus obtained as the true one. [Whitrow
1980, p. 304]

This point of view is not shared by all researchers. As Mogens
Wegener has pointed out in his Simultaneity and Weak
Relativity [1992, pp. 10 ff.] some scientists think that the cosmo-
logical evidence supports the existence of a universal substra-
tum relative to which a cosmic and absolute simultaneity can be
introduced. At least, it is clear that it is possible to hold Prior's
very strong tense-logical position without violating any of the
empirical consequences of special relativity, as long as we
conceive the tenses as relative to one privileged observer.
Arguing from a theological point of view, J. R. Lucas {1989, p.
220] has come to the same conclusion. Lucas points out that "the
canon of simultaneity implicit in the instantaneous acquisition
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of knowledge by an omniscient being" is not incompatible with
the special theory of relativity, since there may be "a divinely
preferred frame of reference".

If there is some privileged frame of reference, then the
temporal co-ordinates in other systems do not strictly speaking
represent proper time. For this reason Prior claimed:

we may say that the theory of relativity isn't about real
space and time... the time which enters into the so-called
space-time of relativity theory ... is just part of an artificial
framework which the scientists have constructed to link
together observed facts in the simplest way possible... [SFTT,
p. 5]

Prior did not mind playing that parlour game, too. He realised
that the non-linear structure of space-time points, ordered with
absolute before-after relations, possibly of a causal nature, con-
stitutes an interesting object of study for the tense logician. The
structure branches both forwards and backwards, so it is not
immediately clear how the corresponding tense logic is to be axi-
omatised. He argued [Prior 1967, p. 203ff] that the characteris-
tic axioms for relativistic space-time are:

FGq 5GFq
PHq 5HPq

His argumentation was thorough and detailed, although a
more systematic investigation of the relation between special
relativity and tense logic was not carried out until 1980 (see
[Goldblatt 1980]). A decade earlier on, Professor Gerald Mas-
seyfrom Michigan State University had directed a frontal at-
tack on tense logic as a new discipline. He had specifically re-
ferred to results from the Special Theory of Relativity, accusing
Prior of promoting "bad physics and indefensible metaphysics"
[Massey 1969]. However, in the light of amongst other things
Goldblatt's results, Massey's attack was somewhat unreasona-
ble.
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Regarding a tense logical approach to relativity, Prior also
pointed out that there is a logic of such functors as 'It appears
from a certain point of view that -'. Hence, it is possible to make
good sense out of talk about an infinity of different 'apparent'
time-series. Prior suspected that the infinity of 'local proper
times', which figure in relativistic physics, amounts simply to
what appears from various points of view, or what appears to be
the course of events in various 'frames of reference'. If the phy-
sicist wants to obtain a more general picture, he can "indicate
what features of the course of events (what temporal orderings
of those events) will be common to all points of view, and one can
work out a tense logic for that too" [Prior 1968 p. 133]. Prior
himself made some important contributions to the development
of such a relativistic tense logic [Prior 1967, p. 203 ff.] even -
though he felt that the project of a relativistic tense logic was on
the whole a bit strange.

Although some results regarding relativistic tense logic have
been obtained by Prior and his followers, J. P. Burgess [1984] in
his overview of tense logic had to observe that a tense logic for
special relativity had not yet been worked out fully - indeed that
the results which had been produced so far had been sparse. In
our opinion this is still the case.



2.8. SOME BASIC SYSTEMS OF
TEMPORAL LOGIC

Temporal reasoning is captured in one manner by tense logic,
and in another manner by the logic of instants; the tension
between the two approaches was reflected in relation to the
traditional interpretation of the special theory of relativity,
which was analysed in the previous chapter. In terms of
McTaggart's time-series we can say that tense logic is A-logical,
whereas the logic of instants (or dates) is B-logical. Thus, we can
speak about two kinds of temporal logic (A and B). In this
chapter we shall study the relation between these kinds of
temporal logic from a formal point of view.

Unlike most other disciplines in modern logic, temporal logic
and its symbolic calculi were first developed entirely outside of
the field of mathematics. This stands out in contrast to the
comparable discipline of, say, modal logic, which also has clear
philosophical motivations and implications, but in whose
development regular mathematicians played an important réle
from the beginning. A. N. Prior, however, who was himself a
philosopher by training, established temporal logic as a part of
philosophical logic. In consequence, the emphasis was put on
conceptual investigations rather than studies of purely
mathematical aspects of temporal logic. This should not be
misconstrued as a failure in mathematical competence, for
Prior was clearly aware of the importance of meta-
mathematical questions concerning general properties and
mutual relations of logical systems, and contributed to these
issues in developing tense logical systems. However, in
constructing the systems conceptual considerations would take
priority over mathematical neatness. The strength of
philosophical logic lies in its self-imposed obligation to take the
logical intuitions embodied in everyday language into serious
consideration. On the other hand, it is also clear that until
recently, temporal logic has lacked the kind of mathematical
glamour exhibited in many other fields of symbolic logic.

In most presentations of temporal logic there is a very clear
distinction between axiomatics and proof theory on one hand

203



204 CHAPTER 2.8

and semantics and model-theory on the other. A-logic is viewed
as axiomatics, and B-theory mainly as a kind of semantics,
dealing with truth-conditions and temporal models. Prior's
approach to temporal logic was different. Elaborating some
observations by McTaggart, he maintained that A-logic is basic
and that B-logic can be derived from it. In this chapter and the
next one we shall expound some of the basic systems of temporal
logics (i.e. A- and B-logics), largely following Prior's ideas. We
shall present some of his most important results regarding
temporal logic.

Any A-logic, i.e. tense logic, is based on the primitive tense-
operators P and F; its axiomatisation is often formulated in
terms of the derived operators H and G (as we have pointed out
earlier, H and G are inter-definable with P and F, respectively,
so either pair of operators can in fact be chosen as primitives). A
very fundamental system has been named K, (where the 'K’ is
probably in honour of Saul Kripke). This tense logic can be
presented as an axiomatic system with the following axiom
schemes [Prior 1967 p. 176; McArthur 1976, p. 17 ff.]:

(A1)  p, where p is a tautology of the propositional
calculus

(A2) G(p oq) o(Gp o Gq)

(A3)  H(p>q)>(Hp oHg)

(Ad) poHFp

(A5) p>oGPp

In (A2) - (A5), p and q are arbitrary, well-formed formulas. All
axioms are said to be immediately provable, while other theses
can be proved by inference. In K, Modus Ponens is the basic rule
of inference:

(RMP) Ifrpand+p >q,thenrgq.
In addition we have two rules, which introduce tense-operators:

RG) If +p, then + Gp.
(RH) Ifrp, then + Hp.
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From K, other tense logical systems can be defined by adding
more axioms to the above list, (A1) - (A5), as we shall see in the
following.

In order to introduce a logic of instants or dates, i.e. a B-logic,
we need a set TIME of instants (or dates) with a relation, <,
which attributes to TIME some structure. The relation '<' is
called the before-after-relation. For any temporal instant t and
any statement p, 7'(¢,p} is a new statement, which can be read 'p
is true at t'. In most B-logics it is assumed that

(T1) T(t,p Arq) =T(tp) A Ttq)
(T2)  T(-~p) =~T(p)

Note that in principle we should make a distinction between
two kinds of conjunction (and also between two kinds of
negation) in (T1)-(T2). The reason is that in most B-logics, p
and g are treated as propositional functions rather than full-
fledged propositions such as T'(¢,p). This means that the two
kinds of expressions would be of different types. On the other
hand, it is also possible in a B-logic to put both types of
expressions syntactically on a par, as you shall see in the next
chapter. So we shall neglect this complication, since it is after all
rather clear how the conjunctions, negations etc. should be read
in each case.

Now, the definitions

(DF)  T(,Fp) 55631 (t<t; A T(t1,p)
(DP)  T(t,Pp) =qer Ft1: (1<t AT(t1,p)

would allow us to evaluate any tense logical formula p, in terms
of T'(¢,p). From the definitions Hp = ~P~p and Gp =g ~F~p it
immediately follows

(DGQ) Tt,Gp) =Vty: (t<t; o Tk,p)
(DH) T@Hp) =Yty (ti<t > T(t,p))
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We shall say that a structure (TIME,<,T) is a B-logical
structure , if T' satisfies (T1-2) and the definitions (DF), (DP),
(DG), and (DH). T is called the T-operator (or the valuation
operator) of the structure.

It is easy to see that the axioms (A1) - (A5) are all true at any ¢
in any B-logical structure. Let us consider the case of (A4). In
this case the following proof can be given:

(1) (t<t; A T(t1,p) D (t<t; A T(t1,p))
(2) (t<t; A T(t1,p)) D FHo:(t<tz A T(ta,p))
(3) (t<t; AT(t,p)) > T(t,Fp)

(4) (T(t1,p) t<ty) > T(t,Fp)

(5) T(t1,p) o (t<t; > T(t,Fp))

(6) T(t1,p) o V¢ (t<t; > T(t,Fp))

(7 T(ti,p) o T(t1,HFp)

(8) Vt;: (T(t,p) > T(t,HFp))

Using standard quantification theory etec. it is also easy to see
that the rules of inference all preserve truth by any T-operator
in a B-logical structure. Summing up these observations, we
have the following result:

Theorem. If a tense-logical statement p is provable in K,
then T'(t,p) (i.e. p is true at ¢) for any ¢ in any B-logical
structure (TIME,<,T).

K; makes less assumptions on the 'structure of time' than any
other tense-logical system; that is, no restriction on the before-
after-relation is required in the corresponding B-logic. This is
why the system K is said to be minimal.

If we add the axiom

(A6) FFpoFp

we get a new tense-logical system corresponding to a transitive
before-after relation, i.e.

(B1) (t1<tsnto<ty) Dt;<ts
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If to K; we add the axioms (A6) and
(A7) FPp 5(Pp vp v Fp)

we get the system known as Kj,. The subscript 'b' indicates that
this system allows for branching time. Provable theorems in K,
are true for any T-operator with (T1-3) and

(B2) (t1<tantg<te) D@;<tzviy=tavis<ty

(B2) can be called 'backwards linearity'.

AN. Prior {1967, p.205 ff.] has demonstrated that the following
statement is provable in K;if (A7) is accepted as an axiom:

(A7x) (PpArPg) >(P(prq) vP(p APqg) vP(Pp A q))

(A7x) is less elegant than (A7), but at the intuitive level the
former more directly expresses the idea of backwards linearity
in a branching time model than does the latter. It is in fact also
easy to see that (A7) is provable from K, with (A7x). Thus there
is a free choice between (A7) and (A7x), if one wishes to enlarge
K, into Ky,

We shall present a version of Prior's proof in order to give an
example of the kind of very powerful reasoning which can be
carried out in tense logic. So, we are going to prove the following
meta-theorem:

In Kienlarged with (A7), (A7x) is a theorem.

Similarly, in K;enlarged with (A7x), (A7) is a theorem. - Prior
proves the following lemmas:

Lemma 1. In a tense logical system with the axioms (Al)-
(A5) and (A7) and the rules (RMP), (RG), and (RH)

H(p o (Hp 5q)) vH(Hqop))
is provable, where p and ¢ are arbitrary well formed
formulas.
Proof:
The proof is carried out by reductio ad absurdum i.e.
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(1 ~(H(p o (Hp oq)) vH(Hqop))) (assumption)
2 ~H(p o (Hp >q)) (from 1)
(3) ~H(Hgop)) (from 1)
) P A Ho A ~g) (from 2)
(5) P(Hq A ~p) (from 3)
(6) HFP(Hq A ~p) (from 5 and A4)
V)] P(p AHp A ~q AFP(Hq A ~p)) (from 4 and 6)

(8) P((p AHp A~q AP(Hg A ~p)) v
@AHpA~gqAHgA~p)v
(pAHp A~q AF(Hg A ~p))) (from 7 and A7)
But (8) is clearly impossible since all the components in the
disjunction are impossible.

Lemma 2. In a tense logical system with the axioms (Al)-
(A5) and (A7) and the rules (RMP), (RG), and (RH)

(H(p oq) AH(p o Hg) AH(Pp oq) A Pp) > Hg
is provable, where p and g are arbitrary well formed
formulas.
Proof:
By substitution in Lemma 1 we find

H(q o (Hq o> ~p)) vH(H~p D q))
Therefore, the problem can be split into two cases:
In the first case H(g o> (Hq > ~p)) is assumed and in the
second H(H~p > ¢)) is assumed.

1) In the first case we can argue in the following way:

(1) Hp >q) (assumption)

(2) H(pp o Hg) (assumption)

3) H(Pp oq) (assumption)

(4) Pp (assumption)

(5) H(qg o5 (Hq > ~p)) (assumption)

(6) H(p > (Hq > ~p)) (from 1 and 5)

(M H(p o> ~p) (from 2 and 6)

(8 ~P(p Ap) (from 7)

9) ~Pp (from 8) - contradicts (4)

This means that the assumptions in the antecedent rule out
the first case.
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2) In the second case, in which we can argue in the

following way:

1) H(poq) (assumption)
(2) H(p > Hg) (assumption)
3) H(Pp oq) (assumption)
4) Pp (assumption)
5) H(H~p oq)) (assumption)
(6) H(~q > Pp)) (from 5)

(7) H(~q 5q) (from 6 and 3)
(8 ~P(~q A ~q)) (from 7)

)] Hq (from 8)
Q.E.D.

Now, (A7x) can be proved from lemma 2 in the following way:

(H(p oq) AH(p oD Hg) AH(Pp >q) APp) > Hg
(H(p >oq) AH(p > Hq) AH(Pp oq)) > (Pp > Hg)
~(Pp o Hg) > ~(H(p 5q) AH(p > Hy) AH(Pp 5q))
(Pp AP~q) >(P(p A~q) v P(p AP~q) vP(Pp A ~q))
From this (A7x) can be obtained by substitution.
Moreover, K; together with the axiom
(A8) PFp o(Pp vp vFp)
makes it possible by a proof similar to the above proof to deduce

(A8x) (FpaFq)o>(F(prq) vF(p AFq) vF(Fp Aq)

The axiom (A8) corresponds to the requirement of forward
linearity for the temporal ordering i.e.
(B3) (ta<tinto<itz) DEr<izgviy=izvizg<ity

We can also to K; - or any of the suggested enlarged systems -
add the axioms corresponding to non-ending time
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(A9) GpoFp
(A10) HpoPp

ie.
(B4) Vi FHo:t; < ts
(B5) ViiHo ta <ty

and dense time

(All) FpoFFp
ie.
(B6) Vit ViaTFtg:t1<taD(t1 <tsats <ty

K. together with all of the axioms (A7)-(A11) yields Prior's
linear tense logic K, for which all the Hamblin implications can
be proved.

In tense logics like K], based on just two primitive operators P
and F, we can by definition introduce a number of new
operators, for instance

Ap =(p AGp A Hp) (- always p)
Ip =(p vFp v Pp) (- sometime p)

However, Hans Kamp [1968] has demonstrated that some
temporal operators expressible in terms of a T-operator cannot
be defined in this way. One of these operators can be verbalised
as 'is going to be uninterruptedly the case for some time'
{Burgess 1984, p.117]; if we symbolise this operator as 'X', the
relevant definition is

T(t,Xp) Zdef Fots (t<ta<isn Viprta<its<tsdT(typ))

Kamp, however, managed to prove that this operator, and
indeed, every temporal operator in a linear, dense, non-ending
instant-logic, can be defined in terms of his two operators U and
S, until and since, provided that time is assumed to be
continuous [Burgess 1984, p.117]. Kamp's two operators can be
defined in the following way (where Upg may be read as 'p until
q', and Spq can be read as p since ¢"):
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Fto: (t<tagnTlo,g) AVt <ty <ts > (T(typ) AT(t1,~q))

T'(t,Spq) = def
FHo: (ta <t AT(oq) AVEL ta<ti <t D (T(t,p) AT(t1,~q)

Almost from the very beginning of his development of tense
logic, Prior [1967 p.111] was aware of problems concerning
limitations to the expressive power of tense logic. But his
approach to a solution to this problem was very different from
that of Hans Kamp. Inspired by some observations due to Peter
Geach, Prior pointed out that we can in fact define U and S in
terms of the tense-operators P and F, if we allow ourselves

(i) the use of propositional quantifiers, and
(i) the assumption that at each instant there is some
proposition true at that instant only.

A tense-logical system based on these conditions has in fact very
interesting and far-reaching implications. We shall study this
issue in the next chapter.

TEMPO-MODAL SYSTEMS

Above, we have discussed purely tense-logical systems.
Matters obviously become more complex, when besides the two
primitive tense operators a primitive modal operator is
introduced - as required in the cases of Prior's so-called
Ockhamistic, respectively Peircean system.

In order to describe the semantics for these tempo-modal
systems Prior [1967, p. 126 ff.] needs a notion of temporal
'routes’ or 'temporal branches' i.e. maximally ordered (i.e.
linear) subsets in (TIME,<). We prefer the term ‘chronicle'. The
set of all such chronicles will be called C. We shall also need the
concept of a chronicle-section (¢,2), wherec e C and ¢ € ¢ and a
relation, = on the set of chronicle-sections according to which
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(c,t) =(c',t) means that the two sections are identical up to t i.e.

ftleclt' <t} ={t'ec'|t' <t).
/ c
t\

C

An operator Ock is an Ockhamistic valuation operator in a
given Ockhamistic structure, if for any temporal instant ¢ in
any chronicle ¢ and any tense-logical statement p, Ock(t,c,p) is a
meta-statement which can be read 'p is true at t in the chronicle
c '

(a) Ock(t,c, p A q) iff both Ock(t,c,p) and Ock(z,c,q)
(b) Ock(t,c,~p) iff not Ock(t,c,p)
(¢) Ock(t,c,Fp) iff Ock(t'c,p) for some t' € c with t < t'
(d) Ock(t,c,Pp) iff Ock(t',c,p) for some t' e cwith t' < ¢
(e) Ock(t,c,Np) iff Ock(t,c',p)

for all (c¢',t) with (c,t) =(c',t)

If these conditions hold (TIME,<,C,=0ck) is said to be an
Ockhamistic structure. - A formula p is said to be Ockham-
valid if and only if Ock(t,c,p) for any ¢ and ¢ (with ¢ € ¢) and any
Ockhamistic structure.

It may be doubted whether Prior's Ockhamistic system is in
fact an adequate representation of the tense logical ideas
propagated by William of Ockham. According to Ockham God
knows the contingent future, so it seems that he would accept
an idea of absolute truth, also when regarding a statement Fg
about the contingent future - and not only what Prior has called
“prima-facie assignments" [1967, p.126] like Ock(t,c,Fq). That is,
such a proposition can be made true 'by fiat' simply by
constructing a concrete structure which satisfies it. But
Ockham would accept that Fq could be true at t without being
relativised to any chronicle. And that actually brings us back to
a two-place T-operator, like the ones we have previously
discussed. In the next part of the book we shall show that it is
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possible to establish a system which seems to be a bit closer to
Ockham's original ideas. On the other hand, it should be noted
that the question concerning the notion of truth is mainly
philosophical. Prior's Ockhamistic system appears to
comprehend at least all the theorems which should be accepted
according to Ockham's original ideas. Let us, for instance,
consider one tense logical formula:

qg oHFq

It is obvious from the above definitions that Ock(t,c,q > HFgq) for
any ¢t and any ¢ with ¢ € ¢. Therefore ¢ o HFgq is a theorem in
Prior's Ockhamistic system.

Likewise Pq > NPq (where F does not occur in q ) is obviously a
theorem, whereas the formula PFq > NPFq is not a theorem in
the system. This difference corresponds exactly to the difference
between proper past and pseudo-past (see chapter 1.9).

It has proved quite difficult to find a satisfactory
axiomatisation of Prior's Ockhamistic system. One prominent
attempt was made by Robert P. McArthur [1976, p. 47]. He
introduced a primitive operator L, for which he stated the
following axioms:

(L1) Lpoqg)o(Lp>oLg

(L3) Lp>LLp

(LG) Lp>Gp

P p > LPp, where p contains no occurrences of ¥

and the rule
(RL) If # p, then + Lp.

L is, of course, intuitively related to 'necessity', but McArthur's
L-operator is clearly more than just a modal operator: from
(LG®) it is obvious that L is also temporal. It is natural to
understand L as equivalent to NG, where N is a pure necessity
operator. Conceived in this way, all the axioms in the system are
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certainly Ockham-valid. But as far as we know, the question of
completeness for Prior's Ockhamistic system is still open.

Now, let us turn to the other tempo-modal system that Prior
studied carefully, the so-called Peirce system. In this system
four different operators, F, G, f, and g, regarding the future can
be considered. These operators can be translated into an
Ockhamistic formulation in the following way:

F - NF
f— MF
G - NG
g - MG

This process of translation is well-defined, but it should be noted
that there is no Peircean expression which translates into the
Ockhamistic F. The great achievement of the Ockhamistic
system could arguably be said to be its property of making a
genuine distinction between the following three types of
statement:

6] Necessarily, Mr. Smith will commit suicide.
(ii) Possibly, Mr. Smith will commit suicide.
(ii) Mr. Smith will commit suicide.

However, in the Peirce-system the type of future statement
seen in (iii) will have to be interpreted as meaning either (i) or
(ii). There is no 'plain future' in this system. Of course, that is not
a consequence of sloppiness on Peirce's side, but rather it is a
deliberate and philosophically motivated choice, as explained in
chapter 2.2. Therefore, the Ockhamistic system cannot a priori
be preferred on philosophical grounds; but on linguistic grounds
at least, it seems clear that (iii) should be distinguished from (i)
and (i).

Given the above translation rules, truth and validity within the
Peirce system can clearly be defined in terms of truth and
validity in Ockhamistic structures:
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A formula p is said to be Peirce-true at a time ¢ in
(TIME,<,C,=,Peirce) if and only if the translation of p into
the Ockhamistic language is true at t with ¢ € c.

A formula is Peirce-valid iff its translation is Ockham-
valid.

Let us consider the formula: ¢ 5 HFg . When this formula is
translated into the Ockhamistic language, we get the formula:

g oHNFgq

It is obvious from the above definitions that Ock(t,c,q > HNFgq)
can be made false for some ¢ and some ¢ with ¢ € ¢ in some
structure. Therefore, the formula ¢ o> HFq, is not a theorem in
Prior's Peircean system.

Now, the truth-operator in the Peircean system does not have
to be defined in terms of the Ockhamistic operator. It would
have been possible to present it quite independently. But since we
want to compare the two systems, the above definitions are very
useful. We can immediately verify the most interesting feature
of Prior's definition of Peircean truth:

Peirce(t,Fp) if and only if
for all (c',2) with (c,t) =(c',t)
Peirce(t',p) for some t' € ¢' with ¢ < ¢'

This appears to be in very good accordance with the ideas of C. S.
Peirce, since he as we have seen in chapter 2.2 rejected the very
idea that statements regarding the contingent future could be
true.



2.9. FOUR GRADES OF
TENSE-LOGICAL INVOLVEMENT

In order to construct a tempo-modal logic, which is intuitively
satisfactory, we may proceed semantically; it is not demanded
that a full axiomatic system together with proofs of soundness
and completeness be given. Needless to say, such results would
certainly be desirable, where they can be achieved. However, in
the general project of formal semantics for natural languages it
seems to be commonly accepted that from some point of
complexity, we must necessarily depart from deductive systems
in favour of model-theory [Dowty et al. 1979, p. 50 ff.]. That is, a
general and satisfactory formal semantics for natural language
probably cannot be finitely and completely axiomatised. On the
other hand, these observations do not necessarily apply to the
restricted case of tense logic.

Thus, in the discussion of issues in philosophical logic in relation
to everyday language we can in principle confine ourselves to
the semantics of the systems. This is exactly what we intend to
do when dealing with the problem of finding an indeterministic
tense logic, which is intuitively satisfactory. Nevertheless, the
tension between a proof-theoretical approach to tense logic and
a semantical approach should not be exaggerated. As we shall
see in this chapter, A.N. Prior has shown that for tense logic the
two approaches can (and should) be embedded in an approach
of a higher order.

In chapter 2.4 we briefly mentioned that tense logic corres-
ponds to McTaggart's A-series conception, which sees time in
terms of past, present, and future, whereas an earlier-later cal-
culus corresponds to his B-series conception, which sees time as
a set of objectively existing instants. Prior clearly considered the
A-conception to be the fundamental one:

Time is not an object, but whatever is real exists and acts in
time... But this earlier-later calculus is only a convenient
but indirect way of expressing truths that are not really
about 'events' but about things ... [TR p. 2-3]

216
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Prior introduced four grades of 'tense logical involvement'. The
first grade defines tenses entirely in terms of objective instants
and an earlier-later relation. For instance, a sentence such as
Fp, it will be the case that p', is defined as a short-hand for 'there
exists some instant ¢ which is later than now, and p is true at t,
and similarly for the past tense; these definitions are, of course,
the same ones as those we already stated in chapter 2.8, namely

(DF)  T(@,Fp) sger H1: t<t; AT(t1,p)
(DP) T, Pp) Sdef Ty ti<t AT(t,p)

Tenses, then, can be considered as mere meta-linguistic abbre-
viations, so this is the lowest grade of tense logical involvement.
Prior succinctly described the first grade as follows:

...there is a nice economy about it ... it reduces the minimal
tense logic to a by-product of the introduction of four defini-
tions into an ordinary first-order theory, and richer [tense
logical] systems to by-products of conditions imposed on a
relation in that theory. [Prior 1968, p. 118]

In the first grade, tense operators are simply a handy way of
summarizing the properties of the before-after relations, which
constitute the B-theory of McTaggart. Hence, in the first grade
B-theory concepts are seen to be determining for a proper
understanding of time and reality; tenses are deemed to have no
independent epistemological status. The basic idea is a definition
of truth relative to temporal instants (this definition is in fact
already incorporated into the notion of a B-logical structure
defined in chapter 2.8):

(T1) Tapnrq =Ttp) ATtqg)

In addition, there may be some specified properties of the before-
after relation, like for instance transitivity:

(B1) (t1 <tonta<its) Dt <ty
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In this way, instants acquire an independent ontological status.
As we have seen, Prior rejected the idea of temporal instants as
something primitive and objective.

In the second grade of tense logical involvement, tenses are not
reduced into B-series notions. Rather, they are treated on a par
with the earlier-later relation. Specifically, a bare proposition p
is treated as a syntactically full-fledged propesition, on a par
with what Rescher and Urquhart [1971] called 'chronologically
definite' propositions such as T'(¢,p) ('it is true at time ¢ that p").
The point of the second grade is that a bare proposition with no
explicit temporal reference is not to be viewed as an incomplete
proposition. One consequence of this is that an expression such
as T, T'(t',p)) is also well-formed, and of the same type as T(z,p)
and p. Prior showed how such a system leads to a number of
theses, which relates tense logic to the earlier-later calculus and
vice versa [Prior 1968, p. 119]. The following crucial rule of
inference makes this relation within the second grade especially
obvious:

(RT) If + p, then r T(t,p) for any ¢t and any truth-operator 7.

He also stated the following basic assumptions regarding the
truth-operator:

(TX1) (V& Ttp) op
(TX2) (Vi T(t1,p)) o T(ts, Vts: T(ts,p))
(TX3) T(t1,p) > T(ts, T(t1,p)

The philosophical implication of this second grade of tense
logical involvement is that one must regard the basic A- and B-
theory concepts as being on the same conceptual level. Neither
set of concepts is conditioned by the other.

The B-theory is sometimes considered as the semantics of the
corresponding A-theory. This is not surprising if we again consi-
der the first-grade formulation of Fp, 'it will be the case that p',
as a short-hand for 'there exists some instant ¢ which is later
than now, and p is true at t' (cf. (DF)).
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This is tantamount to stating a truth condition for Fp. On this
view of the relationship between the A- and B-theories, it may be
a bit puzzling that p and T(%,p) can be treated as being on the
same logical level - the former apparently belonging to the logi-
cal language (or object language) and the latter to the semantics
(or meta-language). In Prior's opinion, however, this is not at all
surprising. In a paper on some problems of self-reference he
stated:

In other words, a language can contain its own semantics,
that is to say its own theory of meaning, provided that this
semantics contains the law that for any sentence x, x means
that x is true. [Prior 1976a, p. 141]

It seems that this statement is exemplified exactly by the rela-
tion of the logic of tenses (the A-theory) to the logic of earlier and
later (the B-theory), provided that we are willing to take the
step of the second grade: syntactically conflating 'bare' p with
T(t,p). The relation becomes even clearer in the third grade, a
system which has crucial implications for the status of the indi-
cation of time. Prior introduced the third grade in the following
way:

What I shall call the third grade of tense logical
involvement consists in treating the instant-variables a, b, c,
etc. as representing propositions. [Prior 1968, p. 122-23]

Such instant-propositions describe the world uniquely at any
given instant, and are for this reason also called world-state
propositions. Like Prior we shall use a, b, ¢ ... as instant-
propositions instead of £, £, ... In fact, Prior assumed that such
propositions are what ought to be meant by 'instants":

A world-state proposition in the tense-logical sense is simply
an index of an instant; indeed, I would like to say that it is an
instant, in the only sense in which 'instants' are not highly
fictitious entities. [Prior 1967, p.188-89]
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The traditional distinction between the description of the
content and the indication of time for an event is thereby
dissolved. From the properties of the logical language which
embodies the third grade of tense logical involvement Prior also
showed that T(a,p) can be defined in terms of a primitive
necessity-operator. Then tense logic, and indeed, all of temporal
logic can be developed from the purely 'modal notions' of past,
present, future, and necessity.

In our opinion this idea of treating instants as some kind of
world propositions was one of his most interesting constructions.
We believe that the full strength of this view has not yet been
displayed. It is very likely that this notion will turn out to be very
useful in the part of computer science called natural language
understanding [Hasle 1991].

The fourth grade consists in a tense logical definition of the
necessity-operator such that the only primitive operators in the
theory are the two tense logical ones: P and F. Prior himself
favoured this fourth grade. It appears that his reasons for
wanting to reduce modality to tenses were mainly
metaphysical, since it has to do with his rejection of the concept
of the (one) true (but still unknown) future. If one accepts the
fourth grade of tense-logical involvement, it will turn out that
something like the Peirce solution will be natural, and that we
have to reject solutions which involve crucially the idea of a true
or simple future - like the Ockhamistic theory.

A tense-logical approach to the concept of time involves a
commitment to the third or the fourth grade. We ourselves
prefer a tense-logical approach, essentially for the same reasons
as Prior. However, systems based on the third grade are
obviously more general than systems based on the fourth grade.
If the fourth grade is accepted, interesting systems such as the
Ockhamistic have to be ruled out. Therefore, we are inclined to
consider the third grade to be the desirable basis for a
conceptually adequate logic of time. In the following we shall
present some of Prior's most important results with respect to
the third grade - that is, the theorems in question are valid, if the
third grade is accepted. Our presentation will differ somewhat
from Prior's, though. Before proceeding it may be noted that
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[Hasle 91] gives an exposition which follows Prior's own
presentation more closely.

THE LOGIC OF INSTANT-PROPOSITIONS

With the standard set of well formed formulae (wff) of
propositional tense logic we assume K, i.e. the axioms

(A1) p, where p is a tautology of the propositional
calculus

(A2) G(p oq) o(Gp > Gqg)

(A3)  H(p>q)>(Hp>Hg)

(A4) poGPp

(A5) p >HFp

and the rules of inference

(RMP) Iftpand+p >q,thenrgq.
(RG) Ifrp,then+Gp.
(RH) Iffp,then rHp.

where '+' means 'it is provable in the system that'. It is some-
times useful to mention the system explicitly, as in K; +p. In
chapter 2.8 we demonstrated that if K; - p then T'(¢,p) holds for
any ¢, and any T-operator which satisfies (T1-2) and the defini-
tions (DP), (DF), (DG) and (DH). In other words, K; is sound. We
shall now argue that if the system is 'interpreted' as in Prior's
third grade, it is also complete. More precisely, if T(z,p) holds for
any ¢ and for any T satisfying (T1-2), (DP), (DF), (DG) and
(DH) then p is provable in K;, provided that we adopt the
assumptions on which the third grade is based.

We are not going to demonstrate completeness in a traditional
mathematical way, but we intend to show that a result very
similar to completeness can be obtained in the context of Prior's
third grade. In order to do that we need a set of instant
propositions {a, b, ¢, ...J. We shall define an instant proposition as
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a maximal consistent set of K;-wff's. We extend the notion of
well formed formulae in the following way, calling the enlarged
system Pry:

(1) Any Ki-wif is a Pri-wff.

(2) Any instant proposition a is a Pri-wff.

3) If o and B are Pri-wff, and a is an instant
proposition, then ~a, anB, Va:a, Pa, and Fo are all
Pri-wif's.

4) There are no other Pri-wif's.

In addition, we assume the standard definitions of propositio-
nal and predicate logic, including the definition of Ja: « as
~Va:~o. In the following, 'p' stands for an arbitrary Pri-wff,
whereas 'a’ stands for an arbitrary instant proposition.

The axioms of Pr; are the axioms of K; together with the axiom

(In Jaa
and the rule:

(RD For any instant proposition a and any wff p:
Exactly one of fa op and Fa o ~p

together with the rules included in Prior's quantification theory
[Prior 1955, p.76 ff.]:

(111) If F ¢(x) P, then (Vx:¢(x))>p.
(r12) If F ao¢(x), then F aoVx:¢(x), for x not free in a.

From (IT1-2) it is easy to deduce [Prior 1955, p. 82] that

(Z1) If F ¢(x)of then + Fx:¢(x) 5B, for x not free in .
(£2) If F oog(x) then F aoFx: ¢(x).

It should be noted that (RI) is natural in the light of what it
means to be a maximal consistent set. Intuitively, an instant
proposition a may be viewed as the conjunction of the elements
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in the maximal consistent set. (I1) is also rather natural since it
simply states that some instant proposition holds now.

It is not difficult to prove that the system Pr; defined in this
way is sound assuming (T1-2) and

— quantification as in (IT11-2) within the scope of T;
- T(t,a) defines a one to one correspondence between times
and instant propositions;

for the T-operators in question.

In order to obtain a result similar to 'ordinary completeness’,
we need a language in which we can express a notion
corresponding to Pri-provability, i.e. a meta-language relative to
the Pri-language. For this reason we again extend the notion of
well-formed formulae and call the resulting language Prior;:

() Any Pri-wif is a Prior;-wif.

(2) If o and B are Priory-wifs, then ~a, a A 8, La, and
Va:a are all Priori-wif's.
3) There are no other Prior;-wif's.

In addition, we assume the standard definitions from proposi-
tional and predicate modal logic, especially the definition of M as
~L~. The axiomatic system of Prior, consists of Pryand the
axioms

(L1) L(p>q)o@p>Lg)

(L2) Lpop
(L3) LpoLLp
(12) ~L~a

(I3) L(a op) v L(a >~p)
(BF)  L(Va: ¢(a)) = Va: L(d(a))
(LG) LpoGp

(LH) Lpo>Hp

along with the rule

(RL) If Fp, then r Lp.
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It is obvious that (RG) and (RH) follow from (RL), (LG), and
(LH).

It is also worth noting that Lp intuitively may be read as
'provable in Pri' (for any Pri-wff p). When read in this way it
seems reasonable that L satisfies (RL) and the axioms above,
provided that these are restricted to Pri-wifs. (L1) must hold for
any notion of provability. (I2) holds, since if ~a is provable, then a
cannot be consistent. (I3) is in fact a consequence of (RI)
together with the consistency and the maximality of a.

(BF) is known as the Barcan formula after Ruth C. Barcan
[1946], who was able to demonstrate it for modal logics which
satisfy a few basic conditions. If Lp is understood as 'provable in
Pr¢, then (BF) is rather natural since it may be read as stating
what it means to prove Va: ¢(a).

Now we want to construct a T-operator based on the full logic
of instant propositions i.e. Prior;. That is, we wish show how an
entire earlier-later-calculus can be developed - one might say
boot-strapped - from definitions in the tense-logical theory.

Let Q denote the set of instant propositions. For arbitrary ele-
ments a and b in Q we introduce the following definitions:

(DB) a<b=grl(a 5Fb)
corresponding to 'the instant a is earlier than the instant &', and
(DT) T(a,p) =i L(a o p)

corresponding to 'it is true at time a that p'.

Using these assumptions and definitions we can prove the the-
orems (T'1-2), as well as (DG) and (DH). In turn, this means
that (©2<,7T) is a B-logical structure (with T defined as above).

The proofs can be carried out in the following way:

(T1.1) T(ap Aq) > (T(a,p) » T(a,q)

Proof:
(D T(a,p Aq) (assumption)
(2) Laea>paAq) (1, using DT)

3 Lita>p)r@>q) (2)



FOUR GRADES OF TENSE-LOGICAL INVOLVEMENT 225

(4) L@ >p) AL@>q) (3)

(5) T(a, p) A T(a,q) (4, using DT)
Q.E.D.

(T1.2) (T(a,p) AT@q)>T(apArq)
Proof:

1 T(a, p) A T(@,q) (assumption)

(2) L(aop) AL@>q) (1, using DT)
(3) Lia>op)a@a>g) (2)

(4) La>@EAq) (3)
(5) T(a,p Arq) (4, using DT)
Q.E.D.

Obviously, (T1) follows from (T1.1) and (T1.2).

(T2.1) T(a,~p) > ~T(a,p)

Proof:

This is proved by reductio ad absurdum.

(1) T(a,~p) (assumption)
(2) T(a,p) (assumption)
(3) L(a > -p) (1)

(4) L(p o ~a) (8, using L1)
(5) L(a op) 2)

(6) L~a (4 & 5; Contradicts 12)
QED.

(T2.2) ~T(a,p) o T(a,~p)

Proof:

(D) ~T(a,p) (assumption)
(2) L(a o ~p) (1, using 13)
QED.

Obviously, (T2) follows from (T2.1) and (T2.2).

(DL.1) ~L~p o 3b: T(b,p)

Proof:

1) ~L~p (assumption)

(2) L(3b: b) (using I1 and RL)
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3) ~L~(3b: b Ap) (1 and 2, using L1)
(4) Fb: ~L~(b Ap) (3, using BF)
(5) 3b: ~L(b > ~p) (4)
(6) Ib: L(b op) (5, using I3)
N 3b: T(b,p) (6, using DT)
QED.
(DL.2) Lp > vb: T(b,p)
Proof:
1) Lp (assumption)
(2) p>o(bop) (A1)
(3) L® op) (1 and 2, using L1)
(4) T(b,p) (3, using DT)
(5) Lp o T(b,p) (1 and 4)
(6) Lp 5 Vb: T(b,p) (1n2)
QED.

It follows from (DL.1) and (DL.2) that

(DL) Va: T(a,p) =Lp

In order to prove the remaining theorems, we need the follo-
wing lemma about the ordering relation:

(DB.1) a<b>L(b>Pa)

Proof:

This proved by reductio ad absurdum:

(1)
(2)
(3)
4)
(5)
(6)
(7
QED.

a<b

~L(b o Pa)
L > ~Pa)
L(a o Fb)
L(a@a DFH~a)
L(a o> ~a)
L~a

(assumption)

(assumption)

(2, using 13)

(1 by DB)

(8 and 4, by LG, L3 and L1)
(5 by A5)

(6, contradiction)
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Similarly, it can be proved that
(DB.2) L(b oPa)oa<b
This means that
(DB.3) a<b=L(b>Pa)

The remaining task is to prove (DG) and (DH) for the structure
(2 T,<) defined here. This can be done in the following way:

(DG.1) T(a,Gp) o (a<b > T(b,p))

Proof:

This is proved by reductio ad absurdum:

1) T(a,Gp) (assumption)
(2) a<b (assumption)
3) ~T(b,p) (assumption)
(4) L(® > ~p) (3, using DT and I3)
(5) L(Gp oG~b) (4 by LG)

(6) L(a o Gp) (1, using DT)
(N L(a > G~b) (5 and 6)

(8) L(a > ~Fb) (7)

(9) L(a o Fb) (2)

(10) La > b A~Fb)) (8and9)
(11) L~a (10).

(11) contradicts 12. - Q.E.D.

(DG.2) T(a,Gp) > Vb:(a<b > T(b,p))

Proof:

This follows immediately from the (I12) and the fact that
(DG.1) is proved for an arbitrary b.

(DG.3) vb:(a<b > T(b,p)) > L(Pa >p)

Proof:

This is proved by reductio ad absurdum:

(1) Vb:(a<b o> T'(b,p)) {assumption)
(2) ~L(Pa o p) (assumption)

(3) ~L~Pa A ~p) (2)
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We have now proved that the T' we have defined is a suitable
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4) 3b: T(b,Pa A ~p)

(5) 3b: T(b,Pa) A T(b,~p)
(6) b: a<b AT(b,~p)

(7 : T(b,p) AT(b,~p)
(8) b: T(b,~b)

)] 3b:L~b

(9) contradicts I2. - Q.E.D.

(DG .4) Vb:(a<b > T(b,p)) 5 T(a,Gp)
Proof:

1) (Vb: a<b > T(b,p))

(2) L(Pa o p)

(3) L(GPa > Gp)

(4) L(a > GPa)

(5) L(a > Gp)

(6) T(a,Gp)

Q.E.D.

(DG) T(a,Gp)=Yb:(a<b >T(b,p)
Proof:

From DG.2 and DG.4.

(DH) T(a,Hp) = Vb:(b<a 5T(b,p)
Proof:

From (DG) by analogy.

T-operator.

As we have seen Lp may be read 'p is provable in Pry', given the
restriction to Pri-wffs. - With this reading of L the theorem
(DL) means that p is provable if (and only ifj T(a,p) holds for
every instant proposition a. If we know that T(a,p) holds for any
a in TIME in any B-logical structure (TIME,<,T), then p is
provable in Pr;. This leads to the important result that Pry is
complete relative to the semantics of (TIME,<,T), with no

restrictions on the before-after relation <.

(3 and DL.1)
(4, using T1)
(5, using DB.3)
(6and 1)

(7N

(8)

(assumption)
(1 and DG.3)
(2 and LG)
(A4)

(3 and 4)

(5)
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A number of other interesting theorems may be proved, such
as the following ones:

(TX1) (Va: T(a,p)) op

Proof:

6} L(a op) o>(a >p) (L2)
(2) (Va: L{a op)) o(a >p) (1, I11)
3 a > (Va: L{a op)) op) (2)

4) (Fa: @) o (Va: L(a op)) op) (3, 12)
5) (Va: L(a op)) op (4,11)
(6) (Va: T(a,p)) op (5)
Q.E.D.

(TX2) (Va: T(a,p)) o T(b, Ve: T(c,p))

Proof:

1 L{a >p) >(b>La>p))

(2) L(a op) o L(b oL(a op)) (1,L1,L3)

3) Va: L(a Dp) o Va: L(b oL(a op)) (2)

(4) Va: L{a op) DL > Va: L(a op)) (3 and BF)
(5) Va: T(a,p) o T(b, Va: T(a,p))

(6) va: T(a,p) o T(b, Vc: T(e,p)

Q.E.D.

(TX3) T(a,p) > T(b,T(a,p)

Proof:

(L L(a op) o(b oL{a>p))

(2) L(a op) D L(b olL(a o p)) (i,L1,L3)
(3) T(a,p) > T(b,T(a,p))

QED.

In this way formulae of the T-calculus are mixed with wffs
from Pry. In Priory, everything is included in one single language
comprising the T-calculus as well as ordinary tense logic. This
extended language is simply Prywith the addition of the logic of
instant propositions - since the elements of the T-calculus are
introduced by definitions based on Pr;. This way of seeing things
is far from the 'main-stream' tradition within formal logic,
where proof theory (in this case the axiomatics of Pry) is kept
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strictly separated from semantics (in this case the T-calculus).
But as Prior pointed out there is nothing semantically wrong
with it, if the T-calculus is given an interpretation within tense
logic. He also pointed out that such an interpretation could be
‘metalogically useful', since in many cases T(a,p) turns out to be
easier to prove than the 'bare' tense-logical formula p itself
[1967, p.89].

Prior has thus shown that we can in fact interpret B-logic
within A-logic, namely in a given modal context in which we
can interpret instants as propositions and quantify over them.
In this sense B-logical semantics is absorbed within an entirely
A-logical axiomatics. In Prior's own words, this means "to treat
the first order theory of the earlier-later relation as a mere by-
product of tense logic" {1968, p.160].



2.10. METRIC TENSE LOGIC

In the discussion of problems like 'the sea-fight tomorrow' we
need more than modal logics and tense-logical systems like K,
and K;. We also need metric tense logic, in which numerical
durations are taken into consideration. In metric tense logic it is
assumed that some metrical systems for duration (including a
relevant time unit) are given. Of course, we have already used
metric tense logic in earlier discussions, precisely because this is
what is required for cases like 'the sea-fight tomorrow'. In this
chapter we shall examine this subject more systematically.
Prior himself dealt with the problems of metric tense logic
several times. We shall now study his basic ideas and present his
version of the so-called minimal system for metric tense logic
[Prior 1968, pp. 88-97]. We shall call the system MT.

The language of MT is based on a set of propositional variables:
p, q, r..., and the following definition of well-formed formulae:

1) Propositional variables are wif.

(2) If ¢ and B are wff, and x is a positive number, then
~0, 0of, anf, av B Vx:o Ix: o P(x)o, and Fx)o
are all wif.

3) There are no other wif.

So the essentially new element in metric tense logic are the
expressions P(x)a and F(x)a, stating respectively 'x time units
ago it was the case that o and 'in x time units it will be the case
that o'. In the following x and y stand for arbitrary positive
numbers. N. Rescher [1966] has suggested the use of not only
positive, but also negative numbers along with the definition
P(x)o =4.¢ F(-x)o. Prior, on the other hand, argued that things
can become very complicated, if we want such a definition in its
full generality [1967 p.98]. For this reason he suggested that no
negative numbers should occur in metric tense logic. Prior did
discuss the use of the number zero in the forms P(0)o and
F(0)o, but towards the end of his work he decided to leave such
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possibilities out. - We shall define
G(x)o =gef ~F(x)~0 and H(x)a sger ~P(x)~0.

A few words on the semantical intuition involved in these
definitions might be profitable. In relation to a branching time
model, G(x)« is true iff ais true in x time units from 'now' in
any future branch:

b
~
e
-

-1—
—1—

x time
units

The 'quantification' implicit in the G-operator is over the set of
all branches rooted in the 'now'. On the other hand it is not
required that o after x time units should be true ‘forever' on any
branch. We mention this explicitly, because we are otherwise
used to read G as 'it is always going to be the case that'.

In a model based on linear time, there would be no difference
between G(x)a and F(x)c, for in such a model ~F(x)o = F(x)~c.
However, since we are presently concerned with a minimal
metric tense logic, we shall make no assumptions on the
structure of time. Similar observations go for H(x)a and P(x)c.

The axioms of the non-modal part of MT are the following:

(MT1) Gx)(p o4q) 2 (Gx)p >Gx)q)
(MT2) F(x)H(x)p o p
(MT3) F(y+x)p o F(y)F(x)p
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In addition to these axioms Prior also stated some axioms for the
past-operator. However, these axioms can be omitted if we
introduce the so called 'mirror-image-rule':

(RM) The 'mirror image' of any theorem (in which all
occurrences of P are replaced by F and vice versa) is also a
theorem.

For instance,
(MT2") P(x)G(x)p o p

is the mirror-image of (MT2). In the following, references in
proofs to axioms and theorems may also refer to their mirror-
image 'versions'. The other rules of MT are the following:

(RMP) Ifrpand +p oq, then rq.

RF) If r p , then + G(x)p (for any x).

(RP) If ¥ p , then » H(x)p (for any x).

(I11) If + ¢(x)>B, then + Vx:¢(x)DpP.

(12) If F aog(x), then + aoVx:¢(x), for x not free in o.
(1) If + ¢(x) B, then + Fx:¢(x)>P, for x not free in B.
(£2) If  ao¢(x), then + ooFx: ¢(x).

As in chapter 2.9, we are using Prior's theory of quantification,
which presupposes that quantification does not take place over
empty sets. Since the quantification in MT is over the set of
positive numbers, this is not in practice a restriction. In MT it is
possible to prove a number of interesting theorems like

(MT4) H(x)(p oq) > (P(x)p > P(x)q)
(MT5) p o> G(x)P(x)p
(MT6) Px)G(x)p op
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Prior actually suggested two more axioms than (MT1-3):

(MT7) Vx:G(y)G(x)p > G@)vx:G(x)p
(MT8) Vx:G(y)H(x)p > G(y)Vx:H(x)p

However, these formulae can be proved in the following way:
1) G(y)q o G(y)q

(2) vx:G(y)g > Gly)q (1 and IT1)
3) H(y)(Vx:G(y)g > G(y)g) (2 and RP)
4) P(y)Vx:G(y)q > P(y)G(y)q (3 and MT4)
(5) P(y)Vx:G(y)q oq (4 and MT$é)
6) P(y) Vx:G(y)qg oVx:q (6 and 112)
¢ G(y)(P(y)Vx:G(y)q oVx:q) (6 and RF)
(8) G(y)Py)Vx:Gy)qg o> G(y)Vx:q (7 and MT1)
(9 Vx:G(y)q > G(y) Vx:q (8 and MTS5)

In order to get (MT7) and (MT8) we should replace ¢ by G(x)p
and H(x)p respectively. Observe that (MT7-8) are very close to
the Barcan Formula(e).

On the basis of the metric tense logic MT we can build a non-
metric tense logic. We introduce the definitions

(DUF) Fp =y Ix:F(x)p
(DUG) Gp =g Vx:G(x)p
(DUP) Pp =g Ix:P(x)p
(DUH) Hp =g Vx:H(x)p

(We are presently not assuming any special structure of time.)
Note that in order to make these definitions plausible we have to
assume that x is not free in p. As pointed out by Prior [1967, p.95]
the reason is that two propositions like

F(q A F(x)p) and Fx: F(x)(q » F(x)p)
are obviously not equivalent.) - From the above definitions it is

possible to prove the axioms of K, as theorems of MT. Because of
the 'mirror-image-rule' it is sufficient to prove (A2) and (A4).
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(A2) G(q op) 5(Gg > Gp)

Proof:

(1) G(q op) (assumption)
(2) Vx:G(x)(q D p) (1)

) Vx: (G(x)g o G{x)p) (2, using MT1)
(4) Vx:G(x)q o Vx:G(x)p (3)

(5) Gg oGp (4)

QED.

(A4) q D HFg

Proof:

(D F(x)q o F(x)q

(2) F(x)q > Zx: F(x)q (1 by £2)

(3) F(x)qg o Fq (2)

4) H(x)F(x)qg > H(x)Fq (3 by RP)

(5) q DH(x)Fq (4 and MT5)
(6) q o Vx: H(x)Fq (5, using I12)
) g >HFgq (6)

Q.ED.

In some systems with more axioms than MT the propositions
F(x)q and G(x)q will be equivalent - for instance, in systems
enlarged with an axiom for forward linearity, as we have
already suggested earlier. However, the difference in systems
like MT between F(x) and G(x) is interesting. It turns out that
in such systems G(x) comes very close to what we have
presented as the Peircean notion of 'in x time units it is going to
be that', whereas F(x) corresponds to 'in x time units it is possibly
going to be'. - It should also be noted that it is possible to define
new non-metric tense-operators corresponding to the following
four expressions: Vx: F(x)p, Vx: P(x)p, Zx: G(x)p, and Fx: H(x)p.
So MT could in fact give rise to a richer tense logic than K,.
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INSTANT-PROPOSITIONS AND METRIC TENSE-LOGIC

MT can be extended so that the extended system, MT*, includes
instants-propositions a, b, c... as well as a modal operator L for
which the Barcan formulae

(BF1)  Vx:L¢(x) o L(Vx: ¢(x))
(BF2)  Jx:L¢(x) o> L(Fx: ¢(x))

hold along with the axioms

(LHX) Lg oH(x)q
(LGX) Lq oG(x)q

Note that MT* involves quantification over positive numbers as
well as quantification over instant propositions. Barcan's
formulae are assumed for both kinds of quantification. We also
use the same quantifier symbols, since it is obvious in each case
which kind of quantification is at play.

It is known from modal logic that the Barcan formulae are
provable in any 'L-calculus' satisfying a few basic conditions.
However, in the same way as in chapter 2.9 we may intuitively
assume L to be at least as strong as 'provability' in MT. For these
reasons the results demonstrated in the following with respect
to MT* could also serve as an argument for the kind of
completeness mentioned in chapter 2.9.

It is obvious that the following theorems can be proved from
the axioms mentioned above

(LH) Lg>Hgq
(LG) Lg>oGg

The assumptions (I1)-(I3) are also added to the system. This
means that we now have a system stronger than the one we
developed in chapter 2.8-9. Hence, the proofs of (T1-2)
regarding the 'truth-operator' T can also be carried out in the
present system. - In addition, we define
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(DB1) before(a,b,x) =g L(a SF(x)b)
We can now prove a number of further theorems:

(T8)  before(a,b,x) =L{(b oP(x)a)
Proof: This is proved by reductio ad absurdum:

(D L(a >F(x)b) (assumption)

(2) ~L(b >P(x)a) (assumption)

3 L(b >~P(x)a) (2, using 13)

4) L(F(x)b o F(x)~P(x)a) (3 and MT4)

(5) L(a oF(x)~P(x)a) (1 and 4)

(6) L(a >F(x)H(x)~a) (5)

(7) L@@ > ~a) (6 and MT?2)

(8) L~a (7)

(8) is contradicting I1!- The opposite implication is similar.
QED.

(T9) a<b > 3 x: before(a,b,x)
Proof: This is proved by reductio ad absurdum:

(D a<b (assumption)

(2) L(a > Jx:F(x)b) (1, DB, and DUF)
3 ~(3 x: before(a,b,x)) (assumption)

(4) Vx: ~L(a > F(x)b) (3, using DB1)
5) V x: L(a o> ~F(x)b) (4, using 13)

(6) Lla o Vx: ~F(x)b) (5 and BF1)

(7 L(a o ~a) (2 and 6)

(8) L~a (6; contradicts 12)
Q.ED.

(T10) 3dx: before(a,b,x) Da<b

Proof:

(1) Jx: before(a,b,x) (assumption)

(2) Fx: L(a o F(x)b) (1, using DB1)
(3) L(3 x: (@ > F(x)b)) (2 and BF2)

(4) L(a 5 Jx: F(x)b) (3)

(5) L(a o Fb) (4, using DMF)
(6) a<b (5, using DB)

QED.
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It follows from (T9) and (T'10) that
(T11) a<b = F x: before(a,b,x)

The theorems corresponding to the definitions of F(x)q and
P(x)g in any T-calculus can now be proved:

(T12) 3 b: (before(a,b,x) A T(b,p)) > T(a,F(x)p)

Proof:

@8] L(a o F(x)b) (assumption)
(2) L op) (assumption)
(3) L(F(x)b > F(x)p) (2)

(4) L(a > F(x)p) (1 and 3)
QED.

(T13) L(P(x)a o> ~p) o> L(a > ~F(x)p)

Proof:

(1) L(P(x)a o ~p) (assumption)
(2) L(G(x)P(x)a > G(x)~p) (1)

(3) L(a > G(x)~p) (2 and MT5)
(4) L(a o ~F(x)p) (3)

QED.

(T14) T(a,F(x)p) > (3 b: before(a,b,x) n T(b,p))

Proof:

1) T(a,F(x)p) (assumption)
(2) L(a o F(x)p) (1)

(3) ~L(a > ~F(x)p) (2)

(4) ~L(P(x)a > ~p) (3 and T13)
(5) ~L~(P(x)a A p) (4)

(8) 3b: T(b,P(x)a A p) (5 and DL)
@) 3b: (T(b,P(x)a) A T(b,p)) (6)

(8) 3b: (before(a,b,x) A T(b,p)) N

QED.
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It follows immediately from (T12) and (T14) that
(T15) T(a,F(x)p) =(3 b: before(a,b,x) A T(b,p)).

Moreover, by using the definition of before(a,b,x) (DB1) and the
'mirror-image rule’' RM on (B19), we obtain

(T16) T(a,P(x)p) =(3b: before(b,a,x) » T(b,p))

Prior suggested that MT corresponds to any 7T-calculus for
which we have (T1-2), (T'15), (T16), and

(T17) T(a,Zx:q) =&:T(a,q)
(T18) before(a,b,x+y) o Jc:(before(a,c,x) A before(c,b,y))

These theses can also be proved in the instant-calculus. It can
be done in the following way:

(T17.1)T(a,Zx:q) o Fx:T(a,q)
Proof: This is proved by reductio ad absurdum.

(1 T(a,3x:q) (assumption)
(2) vx:~T(a,q) (assumption)
3) Vx:L(a o~q) (2)

4) L(Vx:(a o5~q)) (3 and BF1)
(5) L{a oVx:~q) (4)

(6) L(a o>(3Fx:q)) (5, contradicting 1)
Q.E.D.

(T17.2) &:T(a,q) > T(a,Ix:q)

Proof:

(1) Z:T(a,q) (assumption)
(2) I:L(a oq) (1)

(3) L(Zx:(a 5q)) (2 and BF2)
(4) L{a > Fx:q) (3)

QED.
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(T18) before(a,b,x+y) o Jc:(before(a,c,x) A before(c,b,y))
Proof:

(D before(a,b,x+y)

2) T(a,F(x+y)b)

3) T(a,F(x)F(y)b)

4) Fe:(before(a,c,x) A T(c,F(y)b))

(5) Je:(before(a,c,x) A before(b,c,y))

Q.ED.

The MT axioms are valid in each T-calculus in which (T1-2)
and (T15-18) hold. Such a T-calculus can be said to be minimal,
since no further conditions on the before-relation have to be
assumed. Given a set of instant-propositions for which (11-3)
hold, and a modal operator L for which (BF1-2) and (LHX +
LGX) hold, we have also demonstrated that it is possible to
define a T-calculus within MT. In that sense MT corresponds to
a minimal T-calculus. Given the existence of instant
propositions, any theorem that can be proved in MT will also be
valid in any T-calculus, and vice versa.



3.1. TWO PARADIGMS OF TEMPORAL LOGIC

Not only do we measure the movement by the time, but
also the time by the movement, because they define
each other. The time marks the movement, since it is
its number; and the movement the time.

[Aristotle, Physics, IV 220 b]

Since Antiquity two images of time have been discussed: the
flow of the river and the line made up of stationary points. The
tension between the two pictures of time, the dynamic and the
static view, has for instance been expressed by the Aristotelian
idea of time as the number of motion with respect to earlier and
later - an idea, which comprises both pictures. On the one hand
time is linked to motion, i.e. changes in the world, and on the
other hand time can be conceived as a stationary order of events
represented by numbers.

The basic set of concepts for the dynamic understanding of
time are past, present, and future. After McTaggart's analysis
of time, these concepts are called the A-concepts. They are well
suited for describing the flow of time, since the present time will
become past, i.e. flow into past. The basic set of concepts for the
stationary understanding of time are before, simultaneously,
and after. Following McTaggart, these are called the
B-concepts, and they seem especially apt for describing the
permanent and temporal order of events.

Philosophers and others still discuss intensively which of the
two conceptions is the more fundamental one for the philosophi-
cal description of time. The situation can well be characterised
as a debate between two Kuhnian paradigms - the ideas
embodied by the well-established B-theory, which were for some
centuries predominant in philosophical and scientific theories of
time, and the rising A-theory, which in the 1950s received a
fresh impetus due to the advent of Prior's tense logic. Still, many
researchers do not want to embrace the A-conception. The main
reason for this reluctance is the perception that the A-theory
does not have the 'precedence’ or priority, which can apparently
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be attributed to the B-theory. Some arguments often put
forward in favour of the B-theory are these:

1) A-concepts can only be defined in relation to B-concepts.
2) B-concepts cannot be reduced into A-concepts.

3) The future is just as real as the past.

4) A-concepts are not objective, but depend upon emotions.
5) B-concepts are objective.

6) The physical theories about time support the B-theory.

In the following we shall ourselves come down quite openly on
one side in the conflict: we shall argue that there is indeed a
stronger case for the A-conception than for the B-conception.
Surely the B-concepts do play a réle in thought and language;
but they should in our opinion be seen as secondary to or derived
from the A-concepts. In our argumentation, we shall go into
detail with the theses (1)-(6). Towards the end of the chapter we
shall be concerned with McTaggart's paradox and its relevance
for the debate; we shall also outline the general contours of the
two paradigms.

REDUCTION OF A-CONCEPTS

Many B-theorists have maintained that every statement
couched in A-concepts can be reformulated into a statement in
terms of B-concepts - or at least that its truth conditions can and
should be defined by B-concepts. Take for instance the A-state-
ment 'It will rain in London', and assume it to be uttered at 1:51
p-m. on the 10th of November in the year 1994. According to
B-theorists this statement is completely equivalent with the
B-statement 'It rains in London at a moment of time after 1:51
p-m. on the 10th of November in the year 1994".

It should be noted that it is only possible to reduce the A-state-
ment if the time of utterance is known. Already for this reason
the suggested procedure for reducing the A-statement is not
satisfactory. Indeed, it is not truly possible to express past,
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present and future in terms of the B-theory. How, for instance,
could it be possible to express 'E has happened' in such a B-
language? One might try to go for something like 'E is before the
utterance of this very statement'. However, such a formulation
is really based on a concealed reference to the present. In other
words, that which should be explained away (tenses) is really
presupposed - the definition is circular.

In addition, there are examples of A-statements that cannot be
reduced in that way without demonstrable loss of meaning.
Consider, for example, this statement, uttered at 1 p.m. on a
given date: 'Fortunately, my consultation with the dentist is
over'. According to the B-theory the statement should be re-
duced into this: 'Fortunately, the consultation with the dentist is
before 1 p.m. (on the given date)'. This B-statement, however,
exhibits no semantic equivalence at all with the A-statement
which is uttered at 1 p.m. While it is possible for a person by
means of the A-statement to express the reason for his or her
joy and relief, the B-statement merely states that the temporal
arrangement between two instants is fortunate: 'Fortunately, t;
is before to!'

In the B-reduction of the A-statement valuable semantic con-
tent pertinent to the reason for one's joy and relief - the fact that
the pain is over - has been lost. Similarly, the B-theoretical re-
duction of an A-statement about the future would fail to capture
such semantic content which could give one reason to experi-
ence fear, expectation or excitement. On this background it
must be reasonable to reject the B-theoretical procedure of re-
duction.

REDUCTION OF B-CONCEPTS

It is quite common among B-theorists to maintain that B-con-
cepts cannot be reduced into A-concepts. If one would try to do
that, the argument goes, it would be necessary to operate with
new and extra concepts like 'more past than' and 'more future
than'. Such an idea apparently stems from the perception that
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in A-theory, one can merely express that an event is future, but
not that one event is in a nearer future than some other event -
and analogously for the past. In other words, they assume that
in A-theory a temporal ordering among events cannot be ex-
pressed in general. This statement, however, is plainly wrong.
Of course, it is immediately disproved if we take metric tense
logic; but even if we take tense logic in its 'pure' form, it is pos-
sible to reduce B-concepts into A-concepts without any loss of
meaning. Take the statement "The event E; will take place
prior to the event Ey'. This B-statement can be reduced into the
following A-statement: '(Sometime) in the future, it true that E;
is present and Es is future'. In general, B-statements of the form
'The event E; is prior to the event Eg' can be reduced into A-
statements of the form: The following is either past, present or
future (true): 'E; is present and E; is past'. Naturally, when
giving such a definition in terms of tense logic one must ensure
that this relation between events actually satisfies all demands
imposed on the before/after-relation of the B-theory.

The reduction of the B-theoretical concept of an instant into A-
concepts can only be carried out by employing Prior's definition
of instants as a special kind of propositions. How this can be done
formally we have already seen in chapter 2.9 and 2.10.
However, Robin Le Poidevin [1991, p. 36 ff] has argued that
Prior's propositional theory of instants is in tension with another
basic tenet of Prior's, namely what Poidevin has called the anti-
realist construal of past and future tensed statements. He has
also maintained that the theory is based upon an incoherent
view of propositions, namely the idea that different tokens of the
same tensed type (e.g. 'Socrates is sitting') uttered at different
times express the same proposition. In both cases Poidevin's
criticism is based on the assumption that according to Prior's
view tensed propositions have "present fact as their truth-
conditions” {1991, p. 37]. In our opinion, Poidevin's analysis is
sound and interesting on its own terms, but we believe that it
based on a wrong assumption. In Prior's theory the notion of
truth-conditions is not basic. It is in fact - as we have argued in
part 2 - a derived idea. The semantical concept of being true at
an instant is defined in terms of present truth. But as Richard



TWO PARADIGMS OF TEMPORAL LOGIC 247

Swinburne has pointed out 'there is more to be known about the
world than you can know by knowing the truth-values of
sentences at their time of utterance. You need to know which
ones are true now, which of the ones which are were, or will be
true when uttered are true now. And for such truth timeless
truth conditions cannot be given' [1990, p. 121]. It is an essential
element of Prior's theory that the very common assumption of
truth as something timeless has to be rejected.

THE REALITY AND THE POSSIBLE FUTURE

Some B-theorists have argued that the future is just as real as
the past. They have claimed that statements about the future
are true or false today, exactly in the same manner as state-
ments about the past. Naturally this realism with respect to the
future is necessary if one advocates a symmetrical concept of
time - as a number of B-theorists do. With this symmetrical
concept it is possible to be safeguarded against a certain line of
A-theoretical arguments, namely arguments based on the as-
sumption of truth-value gaps. For example, the idea that state-
ments about the future (seen in contrast to statements about the
past) have no truth-value today calls for a truth-value gap.

But as we have seen it is possible to formulate a tense logic (i.e.
an A-theory) without having to give up the notion of the reality
of the future, whilst preserving the natural asymmetry between
past and future (the Ockham system). Some of these theories
can be traced back to a number of medieval considerations re-
garding human freedom and divine foreknowledge.

While the assumption about the reality of the future can very
well be consistent with both B-theories and A-theories, the case
is different when looking at the assumptions about alternative
future possibilities. Tentatively, that assumption might be ex-
pressed as the following maxim: 'Whereas it is impossible to
change the past, it is possible to change the future'. But that
formulation oversimplifies the matter. First, it excludes the re-
ality of the future, and second, it is really self-contradictory to
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say that one can change the future. The principle in question
should rather be put in this way: "Whereas no (real) alternative
possibilities of the past are available, alternative possibilities of
the future are (at least sometimes) available'. An essential fea-
ture in our daily lives is reflected in this formulation. It is a fun-
damental part of our experience of reality that for instance to-
day, one can choose to travel to Copenhagen tomorrow, and one
can also choose to stay at home. Furthermore it is clearly also a
part of our experience that one today cannot choose to travel to
Copenhagen yesterday. If you were not in Copenhagen yester-
day, you have actually lost any possibility you may have had of
going there yesterday - and you shall have to try to bear the loss.
On the other hand, in some sense a certain kind of alternative
possibilities of the past are in fact available for us today: one can
choose to 'make it true yesterday' that one would arrive in
Copenhagen within two days - this may be seen as a side-effect
of choosing today to go to Copenhagen tomorrow (provided that
this choice is also effectuated). However, this kind of influence is
certainly felt as somewhat spurious, and it is a task for tense
logic (i.e. A-logic) to determine the difference between 'genuine'
and 'spurious' events of the past.

In our opinion, such considerations build a crucial part of an
argumentation in favour of the A-theory. It is in fact possible to
describe the asymmetry between past and future in terms of A-
theory, and in such a manner as to leave open the room for
genuine choice (with respect to the future). Moreover, it is pos-
sible by reference to the loss of possibilities to define the contents
of our perception of the passing of time - a notion which does not
fit into the basic framework of the B-theory. We believe that our
experience of some freedom of choice - even though it is limited
- as well as the passing of time are not illusions, but that these
phenomena are properties of reality; and on that premise we
have every reason to claim that A-theory reflects this reality
better than does B-theory.
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THE OBJECTIVITY OF THE A-CONCEPTS

It is sometimes argued that A-concepts are not objective, but on
the contrary purely subjective concepts which are highly
dependent on our consciousness or mind. And it is certainly true
that the A-concepts account well for significant parts of
subjective human experience - they are indeed also meant to do
so. Nevertheless, it is very problematic to assert that A-concepts
are entirely relative to individual human minds; for then it
becomes very difficult to explain the kind of intersubjectivity,
which forms the basis for the practical agreement concerning
the Now. This agreement in everyday experience is strong evi-
dence to the intersubjectivity of the A-concepts, and we empha-
sise that these concepts are in any case not 'private’. Within a
group of observers it will not be difficult to establish some agree-
ment regarding the A-concepts. Now what about the B-
theoretical claim that B-concepts are objective? A-theorists have
no quarrel with that contention, for the obvious reason that A-
theory sees B-concepts as being derived from the intersubjective
(objective) A-concepts.

In an interesting way the controversy between A-theory and
B-theory reflects why and how time was relegated from logic
for centuries. It is true that the B-theory incorporates some
notion of time into logic, but essentially it is based on the long-
cherished idea of tenseless propositions, into which it also strives
to reduce tensed propositions. The idea of logic as a science
concerned with tenseless propositions was really the major
obstacle to the (re)introduction of time into logic. It must-be said,
therefore, that B-theory only admits time into logic in the most
restricted sense possible. To the contrary, A-theory in its fullest
consequence actually denies the existence of tense-less facts at
all, holding that in principle all facts must be said to be tense
formed. The A-theorist will maintain that our immediate per-
ception is given in a tensed-formed way. The memory of a per-
ception is obviously described by means of the past tense, while
hope, expectation and choice are described by means of the fu-
ture tense. Our communication, indeed our social lives with
each other, are dependent upon the use of modal and tense-logi-
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cal concepts. Therefore the temporal description of reality is
inseparable from the assumption of the possibility of human
experience and communication.

TIME AND EXPERIENCE

Many B-theorists maintain that the B-concepts (in contrast to
the A-concepts) can be experienced directly. But it quickly turns
out that this position is very difficult to support. When a B-theo-
rist claims to be able to experience directly that for instance 'E; is
before Eo', the A-theorists can refer to the fairly obvious fact that
in reality this experience has been gained from at least two 'A-
experiences', namely the experiences of the respective events.
That is, there is no direct experience corresponding to 'Eq is be-
fore Eg'; the experience expressed by such a statement presup-
poses the experience of E; and Eg, respectively. It seems to be
clear that in principle all experience must be 'now-experience'.
This does not necessarily mean that all statements of experience
must refer to events happening now, but only that experience is
actually being gained now. For instance, we may have the 'now-
experience' that Ez is happening and the 'now-experience' that
E; has happened.

The 'nowness' of experience notwithstanding, it is desirable -
also from the point of view of an A-theorist - to reformulate as
much as possible of the experience statements into earlier-later
statements like 'E; is before Es'. In this way it is possible to
achieve a formulation of the experience in question such that
the truth-value does not vary with time. The A-theory in no
way has to forego expressive advantages, which may for some
cases be attached to B-theoretical formulations; A-theory
merely makes it clear where the B-formulated experience
originally comes from - that is, how we should understand the
statement 'E; is before Eo'. It is worth noting that not all 'now-
experience' refers directly to the present. When for instance one
sees (the light from) a star, one may be well aware of the fact
that the emission of the light is a past event, even though the ex-
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perience of the light is a present one. Strictly speaking, one can-
not experience the pastness of the emission of the light, but this is
a limitation which would also occur in any B-theoretical epi-
stemology.

There is, in fact, nothing to support the view that it is possible
for us to observe B-relations between events directly. We find it
very hard to see how it can be possible to observe that one event
is later than another, without presupposing that this observation
is composed of some A-observations - i.e. now-experiences of the
respective events. It seems that an immediate observation of B-
relations could only be attributed to God, as indeed it is in
Thomas Aquinas' philosophy. According to Thomas, all events
are present to God at once. Thus God has a timeless knowledge
about events and their mutual relations, which means that God
knows and understands B-relations directly. One might per-
haps say that the B-theory belongs in a description of reality-as-
it-is-t0-God. B-theory ignores specifically human limitations
and conditions. When, however, the aim is to discuss temporal
relations in reality-as-it-is-to-us, we have no doubt that the A-
theory is the obvious solution. Moreover, to the extent that our
experience of reality is actually true and not an illusion, it seems
that A-concepts are indispensable. In fact, as pointed out by N.
Lawrence [1978, p. 24] it is very hard for us to imagine any kind
of temporal notion not related to human experience.

A- AND B-CONCEPTS IN PHYSICS

We have ourselves come out quite openly as supporters of the
A-theory. Where human experience, communication and lan-
guage are involved, B-theory can be criticised on many counts.
But A-theory, as we have emphasised, is not meant to be
concerned with these matters as opposed to a mind-independent
physical reality. To some degree, it is actually a defence of the
reality of some basic human experiences. Therefore, evidence
from hard science such as Physics must be taken into account -
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as a minimum, it must be shown that A-theory is not in conflict
with empirical science.

Now many B-theorists in fact maintain that evidence espe-
cially from Physics directly supports their theory, as opposed to
the A-theory. This is supposed to be of particular importance,
since it is assumed that physics has a very special réle to play in
the study of time. This view has been very clearly stated by Hans
Reichenbach:

There is no other way to solve the problem of time than the
way through physics. More than any other science, physics
has been concerned with the nature of time. If time is
objective, the physicist must have discovered that fact, if
there is Becoming the physicist must know it; but if time is
merely subjective and Being is timeless, the physicist must
have been able to ignore time in his construction of reality
and describe the world without the help of time.
Parmenides’' claim that time is an illusion, Kant's claim that
time is subjective, and Bergson's and Heraclitus' claim that
flux is everything, are all insufficiently grounded theories.
[Reichenbach, 1956, p. 16]

One argument fielded by B-theorists is the contention that
within physics time is treated as a parameter associated with a
relation, which is to a very large extent similar to the
before/after-relation. This is true, but there is a fairly simple
reply to it: the time parameter within physics must be
understood as a theoretical construct, which conceptually
should really be traced back to the A-concepts.

Another argument is that B-concepts fit nicely with the special
theory of relativity, specifically, with the relativity of simul-
taneity. According to Minkowski's rendition of relativity, time is
understood in terms of geometry. That is, time exists in the
same sense as space, in an atemporal way. This can be
illustrated by statements like the following by H. Weyl:

The objective world simply is, it does not happen.. Only to
the gaze of my consciousness, crawling upward along the
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life line of my body, does a section of this world come to life
as a fleeting image in space which continuously changes in
time. [Weyl, 1949, p. 116]

According to this interpretation, it seems that relativity is in
conflict with fundamental A-theoretical concepts about becom-
ing and happening, i.e. 'the passage of time'. However, as we
have seen in chapter 2.7, the tense-logical position does not con-
tradict any part of the empirical basis of the theory. Not all
questions regarding relativistic tense logic have been satisfac-
torily answered, but the A-theory can by no means be rejected
out of hand by appealing to the special theory of relativity.

Indeed, within the natural sciences there is ample proof of as-
sumptions and ideas which are more in harmony with the A-
theory than with the B-theory. The theories of prediction and
beforehand calculations illustrate this fact. Hans Reichenbach
has argued that

The concept of 'becoming' acquires significance in physics:
the present, which separates the future from the past, is the
moment at which that which was undetermined becomes
determined, and 'becoming' has the same meaning as
'‘becoming determined’. [Griinbaum 1973, p. 320]

In this way Reichenbach has pointed out that there is a crucial
difference between past and future, which the physicist has to
take into serious consideration. The difference is that there are
future facts which cannot possibly be predicted, whereas in
principle any past fact can be recorded. This makes it possible to
establish an epistemological basis for a tense-logical approach
within the physical sciences. In particular, this seems to be
important with respect to 'quantum logic', which is the concep-
tual foundation of quantum physics. C. F. von Weizsicker has
stated this in the following way:

The most general presupposition of experience is time. Its
structure, as expressed by the words present, past and fu-
ture is analysed in a logic of temporal propositions (tense-
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logic) which provides the conceptual frame for the quan-
tum logic and for the theory of objective probability.
[Weizséicker 1971, p. 236]

MCTAGGART'S PARADOX

It was McTaggart who explicitly identified the dichotomy
between two major conceptions of time and labelled them 'A’
and 'B', respectively. McTaggart himself arrived at the
conclusion that A-concepts are more fundamental than B-
concepts. He did not, however, use this analysis as an argument
in favour of A-theory. On the contrary, he used it for a
refutation of the reality of time! McTaggart argued that A-
concepts give rise to a contradiction - which has become known
as 'McTaggart's Paradox'. Due to this putative contradiction
within the fundamental conceptualisation of time, he went on to
claim that time is not real.

The core of McTaggart's argument is that the notions of 'past’,
'‘present' and 'future' are predicates applicable to events. The
three predicates are supposed to be mutually exclusive - any
concrete event happens just once (even though a type of event
may be repeated). On the other hand, any of the three predi-
cates can be applied to any event. In a book on history, it makes
sense to speak of 'the death of Queen Anne' as a past event - call
it e1 - but in a document written in the lifetime of Queen Anne, it
could well make sense to speak about her death as a future
event. Apparently this gives rise to an inconsistency, since how
can e be both past and future - and present as well, by a similar
argument? The answer must be that there is another event ey,
relative to which for instance e; has been present and future,
and is going to be past. Now, the same kind of apparent
inconsistency can be established with respect to ez, and the
problem can only be solved by introducing a new event es, for
which a new apparent inconsistency will arise etc. - which
seems to mean that we have to go ad infinitum in order to solve
the inconsistency. The consequence appears to be that the
inconsistency can never be solved.
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Prior, however, pointed out a basic flaw in McTaggarts argu-
ment: the contradictions arise from an attempt at forcing the A-
series notions into a B-series framework [1967, p. 6]. Events
may be described in terms of Prior's instant-propositions, of
which it also holds that they 'happen', i.e. are true, exactly once.
The condition that the three predicates are mutually exclusive
can be formulated as:

a o (~Pa A ~Fa)
Pa 5 (~a » ~Fa)
Fa o> (~a A ~Pa)

The fact that any event can be past, present, and future, can be
expressed in the following way, where the I-operator stands for
'the present'”:

Ia o (PFa A FPa)
Pa o (Pla A PFa)
Fa o (FPa A Fla)

But no contradiction follows from these 6 theses. It is thus
revealed that McTaggart's paradox is in no way a cogent
argument against the A-series notions, let alone the reality of
time.

THE TWO PARADIGMS

Both the A-theory and the B-theory are internally consistent
theories. They can both profitably be used for describing a range
of temporal phenomena, and indeed, from a formal point of
view each of the theories can be 'absorbed' within the other, un-
der certain premises. So why would philosophers (and we, too)
present them as competing paradigms? What is at stake here is
a question of two different ways of understanding reality, and
consequently also two different languages for description. One
might refer to Henri Bergson who discussed the use of space
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metaphors for the description and analysis of temporal pheno-
mena. Such a language is clearly B-like. According to Bergson
this language is obviously unsatisfactory. He denied that time
can be adequately represented by space. In this way we can only
deal with "time flown" and not with "time flowing". [Bergson
1950, p. 221}. However, Bergson did not say very much about
how to express more precisely "time flowing", that is, he did not
suggest any A-like language.

The two theories oppose each other as two general frame-
works, as two different answers to the question of how we
should fully understand the temporal relations in the world.
Hence, we find it natural to compare them with Kuhnian
paradigms. The advocates of the A-paradigm and the B-
paradigm, respectively, form two scientific communities with a
discussion going on between them. Neither group can present
logically cogent arguments. Of course, considerations of logical
properties such as expressive power, elegance etc. are not
irrelevant - and the same thing obviously goes for
'circumstantial evidence' from empirical sciences. But
essentially, the argumentation offered is of a metaphysical
nature.

From our own A-theoretical position, we think that the follo-
wing two issues should be weighted highly in the debate between
the paradigms: firstly, it seems that the processes of perception,
observation, and cognition can only be described satisfactorily by
means of the A-concepts; secondly, the temporal asymmetry
between past and future, and the passage of time can only be
described satisfactorily by means of the A-theory. Both of these
points, together with the importance of communication, also
suggest that A-concepts are closely related to natural language.



3.2. INDETERMINISTIC TENSE LOGIC

It is sometimes argued that classical physics establishes a con-
vincing case for determinism, and against human freedom of
choice. In its simplest - and original - form, this argument is
based on the assumption that all the individual elements of the
human brain and body interact according to Newtonian
mechanics. This was clearly the assumption in the famous
argument for the idea of L'Homme-Machine, 'The Man
Machine', by La Mettrie (1709-51). According to John Cohen,
La Mettrie "seems to have been the first to state the problem of
the mind in terms of physics" [Cohen 1966, p. 70]. In fact, there
was also a clearly temporal aspect to La Mettrie's idea:

La Mettrie was no doubt encouraged to make his grand
extrapolation by the ingenious successes of contemporary
horologists. [Cohen 1966, p. 70]

That very same aspect of temporality has also been a basis for
criticising La Mettrie's 'Horloge Model', since this model
exhibits a "paradoxical timelessness, that is, its insensitivity to
duration, which is so vital a feature to human experience" [1966,
p. 70). Such a criticism could in fact be carried out with
reference to the philosophy of Henri Bergson who presented a
very interesting analysis of the problem of human freedom in
relation to the concept of time:

Freedom is ... a fact, and among the facts which we observe
there is none clearer. All the difficulties of the problem ...
arise from the desire to endow duration with the same
attributes as extensity, to interpret a succession by a
simultaneity, and to express the idea of freedom in a
language into which it is obviously untranslatable. [Bergson
1950, p. 221]

According to Bergson the idea of human freedom is in fact

indefinable. He argued that "we can analyse a thing but not a
process; we can break up extensity, but not duration" [Bergson

257
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1950, p. 219]. This seems to be completely correct if all we have
got are the conceptualisations which constitute a B-series
conception of time. In the following we shall, however, assume
that an A-series conception of time is possible. We shall
concentrate on an argument concerned with the réle of human
communication when confronted with the idea of 'the man
machine',

According to Newtonian mechanics all past and future states
of a closed system are implicit in the present state. If man is
such a system, then all future decisions of a human being can in
principle be predicted by an observer, who is fully informed of
every relevant aspect of the present state. Therefore, there
seems to be no freedom of choice, and there seems to be no way
to argue that the human feeling of freedom is more than a men-
tal illusion.

The basic idea in the above argument is that the state of any
individual is in principle a conjunction of statements

qiAQ2A... AN

all being true 'now' and therefore also now-unpreventable (i.e.
necessary). Moreover, for any possible act «, which the person
in question may perform in the future, the laws of classical
physics make it necessary that either the person will or will not
perform that act (for any given amount of time). Let A be the
statement 'this person performs o, so that F(1)A stands for 'this
person is going to perform o tomorrow’ (taking 'tomorrow as
our example). It then follows from the assumptions discussed so
far that either (1) or (2) must be true:

(1) N(qiArqzA...rqny) DF(DA)
(2) N((qirq2A...Agn) DF(1)~A)

This means that it is already now given whether the person is
going to perform « or not. Hence, the person has no freedom of
choice, and it cannot consistently be maintained that it is possible
that he will perform ¢, but also possible that he will not perform
.. That is, the following formula is ruled out:



INDETERMINISTIC TENSE LOGIC 259

(3) MF(1)A A MF(1)-A

It is well known today that the premises of this argument do
not hold in general. After all classical mechanics has been
replaced by quantum mechanics, for which the deterministic
ideal does not hold at the microscopic level. Nevertheless,
various 'modernised' versions of the argument can be
constructed, or it might simply be maintained that Newtonian
mechanics still holds for the relevant parts of the brain and body
system. However, Donald M. MacKay [1971,1973,1974] has
shown that even if everything were mechanistic, the classical
argument has to be rejected, when the possibility of
communication is taken into consideration. We shall present
the main line of MacKay's argument:

Let AG be an agent and let P be a predictor. Assume that P is
fully informed of AG's state at the time #;. Making use of this
knowledge, P predicts what AG will do at some later time ¢2.
That is, P states the prediction F(1)A (where t; corresponds to
the present instant, and ¢9is an instant one time unit later).
Now, is F(1)A true at ¢t;? MacKay had his own definition of
truth, which deserves to be mentioned here. He was by training
a physicist, and his analysis of the epistemology of prediction led
him to the following notion of truth:

1 do, as a matter of fact, prefer to reserve the word 'true' for
propositions that anyone and everyone would be correct to
believe and in error to disbelieve. [1974, p. 108]

In this sense the prediction F(1)A is not true at #;. For if the
prediction is communicated to AG at ¢, the state of AG's mind
(or brain and body system) will be changed, and the prediction
will not be valid in general. The very premises of the prediction
are changed, if it is communicated to AG. This means that the
logical structure of the necessity based on the classical laws is
not (1), but rather

(4) N((girqz A ... Agn) D(~-CF(1)A oF(1)A)) ,
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where C is an operator meaning 'it is communicated to AG that
.... So P might predict AG's future decision, but since he has to
assume that the prediction is not communicated to AG -
~CF(1)A - there does not exist an unconditional prediction of
AG's future actions. Thus, even on the (really very strong)
assumption that human behaviour is completely determined by
classical mechanical laws, P can deduce no more than

(6) N(~CF(1)A o> F(DA).

Along the same lines J.W.N. Watkins [1971] has pointed out
that there is a ceteris paribus clause involved in predictions of
future decisions of cognitive agents. According to Watkins, pre-
dictions can be valid only on the assumption that they are not
communicated to the agents in question, exactly as stated in (4).
In this way, even silent predictions concerning cognitive agents
are conditional. This meets an obvious - although rather
superficial - rejoinder to MacKay's argument, namely that AG's
actions are still deterministic, if P simply chooses not to
communicate his prediction to AG. Watkins makes it clear that
even though one may choose to keep silent, one's predictions are
still conditioned by exactly that choice! Therefore, it must be
concluded that the possibility of silent prediction of AG's future
decision does not imply that AG is unfree, since there is no way
to demonstrate that a predicted decision is necessary. There is
no fully determinate specification of AG's future decision, which
he would be correct to accept as inevitable, and would be unable
to falsify, if it was communicated to him. For these reasons it is
not possible to maintain NF(1)A v NF(1)~A even within the
classical framework. Therefore, freedom of choice as expressed
mn (3) can still be consistently upheld.

MacKay has claimed that even if an agent's brain and body
system was as mechanical as a clockwork, it cannot be proved
that such a system is unfree, as long as it can receive informa-
tion and react correspondingly. This seems to raise a question
about the scope of MacKay's argument. Thus Landsberg and
Evans [1970] have argued that even a computer could be free
according to the argument. That is in a sense correct. MacKay's
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argument certainly does not refute or rule out that computers
can be free. On the other hand, MacKay has neither argued nor
proved such an idea. His argument does not pretend to prove
that human beings (or possibly comparable systems) do have a
free will, but rather it is concerned with consistency. He has
shown that the existence of a statement A for which (3) holds is
consistent with fundamental deterministic assumptions - by
showing how (1-2) must be made conditional. The question
about the reality of freedom of choice has to be discussed with
reference to other lines of reasoning, for instance metaphysical
or theological. MacKay himself maintained that it is not compu-
ters, nor brains, but conscious agents who may or may not be
free. According to him, the crucial property of free agents is
their capability of believing - correctly or incorrectly - what they
are told [1974, p. 111].

MacKay's definition of truth as well as the observations so far
imply that a 'silent’ prediction like F(1)A can not be classified as
true, even if A in fact turns out to be true after one time unit. It is
interesting that MacKay's notion of truth for future-tense
propositions is very similar to Peirce's position with respect to
the contingent future - a position also adopted by Prior. MacKay
did not develop any proper logical system corresponding to his
ideas. But as we shall see in the following Prior certainly did that
for a very similar set of ideas.

Prior like MacKay had a strong commitment to what he
called 'a belief in real freedom'. In his opinion, one of the most
important differences between the past and the future is that

...once something has become past, it is, as it were, out of our
reach - once a thing has happened, nothing we can do can
make it not to have happened. But the future is to some
extent, even though it is only a very small extent, something
we can make for ourselves... [SFTT, p. 2].

Prior wanted to develop an indeterministic tense-logic. As he
developed Kripke's ideas from 1958 (cf. chapter 2.5), Prior
related his belief in real freedom to the concept of branching
time:
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Genuine determinism would be the belief that there is only
one possible future, and to express this you really do need to
go beyond K; and add a postulate for nonbranching of the
future. [Prior 1969, p. 329]

The postulate he has in mind is this one:
(6) PFqo(q vPq vFg)

i.e. "Whatever has been 'on the cards' either is the case or has
been the case or is 'on the cards' still" [Prior 1969, p. 329].

As John P. Burgess [1978, p. 157] later explained, Prior would
agree that the determinist sees time as a line, and the indeter-
minist sees it as a system of 'forking paths'. As we have seen he
found it highly important to examine the notion of branching in
detail and formally elaborated two models for it, namely those
by Ockham and Peirce, respectively [Prior 1968, p. 122 ff].

Prior himself adopted the so-called Peirce-solution to the pro-

blem of the contingent future, according to which the following
holds:

... from the fact that there is a sea-battle going on it does not
follow that there was going to be one, though it does follow
that there will have been one. [Prior 1957a, p. 95]

Let g be the statement 'there is a sea-battle going on'. Then it is
a thesis that

(7Y q>Fn)P(n)gq

The validity of this thesis is illustrated by the diagram below: if
q is true today, then P(n)g will be true in any possible situation
after n days. Therefore F(n)P(n)q must be true today. How-
ever, the mirror image of (7):

(8) ¢q > PMm)F(n)g
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does not hold, if F(n)q is understood in the strong way, i.e. as "it is
bound to be the case after n time units that ¢" [Prior 1969, p.

329].
/ o

P(n)q

q
F(n)P(n)q

44— n units —Pp»

The counter-argument against viewing (8) as a thesis is that it
is possible to imagine that g is true at some time, but that F(n)g
has not been true n days ago, for which reason P(n)F(n)q is not
true now. The following diagram describes for instance
situations, where the truth of ¢ is brought about by, say, pure
coincidence, or by some act of free choice:

q

/ T

~F(n)q

4————— n units —Pp
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Similarly, Prior maintained that although
9 g>oGPg

is a thesis, its mirror image
(10) ¢ o HFq

is not valid [SFTT, p. 2], if F is understood in the strong way.
(Prior's considerations here are based on the Peircean notions
discussed in chapter 2.8. However, it should be mentioned that
(10) is true in other branching time systems with different
definitions, notably Kj, and the Ockhamistic theory.)

In Prior's opinion, since the truth of future contingents cannot
be known now, there cannot be any true statements about
future contingents. On this view, the statement 'there will be a
sea-battle tomorrow' cannot be true today, since there is no
unique future but rather a number of different possible futures
(unless, of course, that sentence happens to be deterministically
entailed by facts of today).

The basic question concerns the interpretation of expressions
regarding the future: Can it be maintained with conceptual and
logical consistency of some event E that 'E will happen', this
being taken as different from 'E could happen', and 'E will
necessarily happen'? In chapter 2.8, we pointed out that the
Ockham-system makes a genuine distinction between three
types of statement, repeated here for ease of reference:

(i) Necessarily, Mr. Smith will commit suicide.
(ii) Possibly, Mr. Smith will commit suicide.
(ii1) Mr. Smith will commit suicide.

Of course, this means that Ockham would answer the question
positively. However, Prior like Peirce took the stance that 'E will
happen' cannot make sense, unless it is interpreted as
equivalent to one of the two other types of statement. The
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difference to the Ockhamistic (as well as the general medieval)
solution clearly has to do with the definition of truth. Prior
suggested the following condition of truth with respect to future
statements:

. nothing can be said to be truly 'going-to-happen'
(futurum) until it is so 'present in its causes' as to be beyond
stopping; until that happens neither 'It will be the case that
p' nor 't will not be the case that p' is strictly speaking true.
[1968, p. 38]

In other words we have the following principle (P):

(P) The proposition F(n)p is true now if and only if there
exist now facts which make it true (i.e., will make p true in
due course).

This definition is very similar to the one MacKay suggested,
and it is also quite essential in Peirce's philosophy. What may
appear more surprising is Prior's conviction that St. Thomas
Aquinas also accepted these ideas. To be true, Prior argued
against Thomas' view that God's knowledge is in some way
beyond time, but otherwise he consented to most of what
Thomas had said about tense-logical reasoning. According to
Prior's interpretation of Thomas' philosophy, Thomas would
even agree on the rejection of (10).

(P) implies that the proposition F(n)p can only be true, if it is in
principle possible to verify it from facts known at the time of
utterance. Future tense propositions which cannot be verified
are false or not well-formed. William of Ockham, of course,
could not have accepted an idea of truth corresponding to (P).
Ockham held that it is possible for God to know something, even
though that which He knows can in no way - short of divine
revelation - be verified by us. With special regard to propositions
about the future, Ockham claimed that God has a complete
knowledge: "It must be held beyond question that God knows
with certainty all future contingents, i.e., He knows with
certainty which part of the contradiction is true and which is
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false" [1969, p. 48]. (Here, Ockham obviously had in mind the
embedding of contingent sentences into contradictions of the
form F(n)p v F(n)~p.)

On this analysis, a future contingent can be true now. The
Ockhamist definition of truth with respect to future statements
can be formulated in the following way:

(O) The proposition F(n)p is true now if and only if God
knows that p will be in n days.

In Ockham's logic, any proposition is known by God if and only
if it is true. Therefore, the above definition can also be expressed
in the following way:

(O'") The proposition F(n)p is true now if and only if p will be
true in n days.

We have already indicated how the formal details
corresponding to this definition can be worked out in an
Ockhamistic structure. If (O') is accepted, it must be admitted
that we are not in general able to establish whether a proposition
is true or false, in spite of the fact that it is assumed to have a
definite truth-value at any time - even if it is contingent. We
cannot be sure that already now, there exist facts that make
F(n)p true. Hence the truth value of F(n)p might be unknown -
or even unknowable - to us. Thus future contingents can be true
now, although we cannot know with certainty that they are
true.

In the Ockhamistic framework F(n)p is either true or false.
Let us assume that F(n)p is in fact true. Even so, if F(n)p is
about the contingent future a rational person does not have to
accept its truth; he could deny it without compromising his
rationality. On the other hand, while a person would certainly in
the assumed case be correct in believing that F(n)p is true, he
would be mistaken in regarding F(n)p as false.

Ockham's theory of the future is realistic, since the truth value
of F(n)p is well-defined, even if F(n)p is about the contingent
future. Furthermore, there exist true propositions about all
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future events and states-of-affairs. In our opinion (O') is a more
natural definition of truth for future statements than is (P). In
fact, we think that few would be ready to accept the full
consequences of (P). If (P) is accepted, it follows that any
proposition about future contingents is false. As mentioned
earlier, this also means that 'plain' future statements such as
'Mr. Smith will commit suicide'’ must be regarded as (a)
inherently false, or (b) ill-formed (or elliptical, omitting a
required modal expression). Relating this to everyday life, for
instance guesses will in general be false: if we are playing the
pools and we believe that we are going to win, this belief will
according to (P) be false, even if it turns out that we do indeed
win. On this basis, it will be almost impossible to state the
difference between a true and a false prophet! In order to state
such a difference, we need a truth-definition like (O').
It should also be noted that 'excluded middle',

(11) F(n)p v F(n)~p

is not a thesis according to the Peirce-system. His theory makes
it conceivable that the proposition 'In n days it will be the case
that p', and the proposition 'In n days it will be the case that not
D', are both false. The understanding of the concept of the future
within the Peirce theory is realistic to the extent that it regards
the truth value of the proposition F(n)p as a meaningful
concept. If F(n)p is interpreted as either NF(n)p or MF(n)p, it is
either true or false; but otherwise, it is inherently false. The
latter observation makes it clear that the theory is not realistic
in the sense that we can form true propositions about future
contingents. In general, bare F(n)p and F(n)~p are both false
according to the Peirce theory.

We think we have exemplified by now that this theory is not
congenial with logical and linguistic intuitions evident in
everyday communication. Following this investigation, one
might conclude that the Ockham theory is a fairly accurate
representation of our intuitions concerning valid temporal
reasoning (with regard to the problems with which it deals;
many other aspects of temporal reasoning, for instance
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durations, have not been dealt with here). In our opinion, Prior's
Ockhamist theory is indeed satisfactory for most cases. But as
demonstrated by Hirokazu Nishimura [1979], there are some
rare examples in which the Ockham theory is not sufficient. We
shall state such an example.

Let (TIME,<,C,~,0ck) be an Ockhamistic structure, where C
is the set of all maximally ordered (i.e. linear) subsets in
(TIME,<). Let us for the sake of simplicity assume that TIME is
discrete and each chronicle isomorphic to the set of integers. We
may think of the elements in TIME as possible days.

Consider these two statements:

Aj: 'Inevitably, if today there is life on earth, then either this
is the last day (of life on earth), or the last day will come.'
Semantically: Ock(t,c, ¢ o (G~q vF(Hq A g A G~q))) for any
t, c (g standing for the statement 'there is life on earth').

- A; implies that life cannot go on forever, so that on any
possible day, it is true either that life has become extinct, or
that this is the last day of life on earth, or that life will later
become extinct.

Agp: 'At any possible day on which there is life on earth, it is
possible that there will be life on earth the following day.'
Semantically: Ock(t,c, ¢ > MF(1,q)) for any ¢, c.

- Ay implies that there is hope (and possibilities) for
tomorrow as long as there is life!

We assert that a person might hold both A; and Ay without
contradicting himself, But we shall show that the assumption
that A; and Az can both be true is in conflict with the
Ockhamistic theory. - Assume that A; and Ag are both true and
let t9 be some possible day in TIME on some chronicle c;.
Because of Aj, this means that there is another possible day t1 for
which Ock(ts,c;, Hg A g A G~q). Because of Ag, it follows that

Ock(ti,c1,9 > MF(1,q)).

In consequence, Ock(t;,c;, MF(1,q)).
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This means that there is a possible day ¢'s immediately after ¢;,
on some chronicle cz, where (t', c2) = (¢, ¢c1) and Ock(t's,cs,q).
Because of A; there is a possible day ¢s, for which
Ock(ts,c2,9 A G~q) and Ock(t,cz,q) for all t between t's and 3.
Now because of Ay it follows that there is a possible day ¢'3,
immediately after o, on some chronicle c3 where (t'3, cg) = (%2, c2)
and Ock(t's,c3,q). Because of A; there is a possible day t3, for
which Ock(tsc3,9 A G~q) and Ock(t,c3,q) for all t between t';s and
t3. This procedure can be carried out ad infinitum. - Obviously,
the series of possible days, c: t1< to< t3< ... following the part of ¢y
before ¢;, defines a maximally ordered subset in (TIME, <), i.e. a
chronicle. It is easy to see that Ock(t,c,q) for all ¢£. But this is
clearly a violation of A;. Q.E.D.

The construction procedure can be illustrated by the following
figure:

t3
c3

t2
c2

t1 » c1

If, on the other hand, we assume another tense logic different
from the Ockhamistic system, in which the construction of the
chronicle ¢ from the series of c;, ¢y, ... is forbidden, then the
conjunction of A; and Ay might be accepted without any
inconsistency. In such a tense logic the set of possible chronicles
cannot be closed under the kind of construction just mentioned.
We must assume that not all linear subsets in (TIME,<) are
possible chronicles. An Ochamistic system revised in this
manner has an interesting affinity to Leibniz' philosophy. For
this reason shall call such a modified Ockhamistic system the
Leibniz system. We shall deal with the formalities of this system
in the next chapter.



3.3. LEIBNIZIAN TENSE LOGIC

In this chapter we shall present an indeterministic tense logic
similar to Prior's Ockhamistic theory, but modified in the light
of the observations made by Hirokazu Nishimura (mentioned in
the preceding chapter). Since the system is based on a kind of
temporal reasoning very similar to Leibniz' philosophy, we shall
call the system 'Leibnizian tempo-modal logic', LT for short. The
definition of well-formed formulae within LT is:

o) Propositional variables are wif.

(2) If o and B are wif and x is a positive number, then
~a, 0B, oA, o v B, Vx:a, Ix: 0, Nex, Por, and Fo are
all wff.

(3) There are no other wif.

The axioms of LT are:

(A1) A, where A is a tautology of the propositional
calculus

(A2) G(A oB) 5(GA > GB)

(A3) H(A >B) >(HA > HB)

(A4) A DHFA

(A5) A-GPA

(A6) FFA o FA

(A7) FPAS(PAvAvFA)

(A8) PFA >(PA vA vFA)

(A9) GA o FA

(A10) HA-SPA

(A11) FAOSFFA

(A12) NGA o GNA

(A13) PA 5 NPA, where A contains no occurrences of '

(N1) N(A>B)>(NA>NB)

(N2) NASA

(N3) NAOSNNA

(N4) MNA > NA, where M =45 ~N~

270
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(N1)-(N4) are the S5 axioms for N. The rules of inference are
the same as for the Ockhamistic system, i.e.

(RMP) If A and F A 5B, then ¢ B.

(RG)
(RH)
(RN)
(I11)
(T2)

If FA, then F GA.

If + A, then F HA.

If ¥ A then F NA.

If + ¢(x)>p then F Vx:¢(x)>B.

If F oo¢(x) then F aoVx:¢(x), for x not free in .

where 't p' means 'p is provable'.
The earlier-later logic (B-logic) we have in mind can be
presented by the following definitions.

Definition: A Leibnizian structure is a quadruple
(TIME,<,=~,T), where TIME is a non-empty set with two
relations < and = such that

(B1)
(B2)
(B3)
(B4)
(B5)
(B6)
(B7)
(B8)
(B9)
(B10)

(t; <tantg<ts) Ot; <ty

(t1<tontz<ts) Dti<tavii=tzviz<ty
(to<tintea<tz) D;<taviy=tzviz<ty
ViiRo: t1 <o

Vi Tto i to < £

Vi VEaTtg:t1 <teD(t1 <itzantlz<its)

t=t

t; =la Dta =t;

(t; =tonts =tg) Dt; =t3

(t1=tantg<ts) DIty (tg=tgntyg<ity)

and an operator T such that

(T
(T2)
(T3)
(T4)
(T5)
(T6)

Tt A AB) =(T(tA) A T(tB))

T(t,~A) = ~T(t,A)

Vva:T(t,A) = T(t, Vx:A) where x is foreign to ¢
Tt FA) =31 (t<t; AT(E,4))

T#,PA) =F;1: (1<t AT#,A))

TtNA) = Vit (t; =t > T(t1,4))
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(TT7) Vit Vis: ((; =ta A T(t1,PA) o T(ts, PA),
where A contains no occurrences of F.

You may read 7(t,A) as 'A is true at ¢', but bear in mind that we
are not introducing a separate semantics following usual
model-theoretic procedures. Rather, we are enlarging the
logical language such the extended system 'contains the
semantics of the original system', following Prior's ideas in this
respect.

Definition: A statement is Leibniz-valid if and only if T'(z,4)
for every Leibnizian structure (TIME,<,=T) and every ¢ in
TIME.

It is easy to see that the axioms (Al) - (A13) and (N1) - (N4)
are all Leibniz-valid. Since the inference rules carry the
Leibniz-validity over, it follows that the following theorem holds:

Theorem 1: If A is provable in LT, then A is Leibniz-valid.

This theorem expresses the soundness of LT. Using Prior's
idea of instant propositions we shall also argue that LT is
complete relative to Leibniz-validity. First we shall enlarge the
logical language in the manner already shown in chapter 2.9.
The enlarged system must include instant propositions (i.e.
maximal consistent sets from LT) and a modal operator L, for
which we assume

(BF) L(Va: ¢(a)) = Va: L(¢(a))
a1 Fxa

(I12) ~L-~a

(13) L(a>op) vL(a >~p)

(L1) L(p>og)>(Lp>Ly

(L2) Lpop

(L3) LpoLLp

(LG) LpoGp

(LH) Lp>Hp

(LN) LpoNp



LEIBNIZIAN TENSE LOGIC 273

Intuitively, we may think of L as an operator corresponding to
'provability within LT'.

Using the following definitions, we can now demonstrate that
the set of instant propositions forms a Leibnizian structure:

a < b s L(a SDFb)
a =b =¢L(a >Mb)
T(a,A) =gefL(a 2 A)

Note that (A1) - (A1l) are simply the axioms for K;. Conse-
quently the properties (B1) - (B6) and (TL1) - (TL5) which
correspond to the semantics of K follow from the completeness
of Kj. The remaining properties of the structure can be proved
in the following way:

Theorem 2: The relation ~is an equivalence relation.

Proof:

Reflexivity is trivial.

Symmetry is proved by reductio ad absurdum:

(1) a=b (assumption)

(2) ~(b =a) (assumption)

3 L(a > Mb) (from 1)

(4) L(a > ~-Mb) (from 2 and I3)

5) L{a > ~a) (from 3 and 4)

(6) L~a (from 5). Contradicts (I2).
Transitivity is proved in a straightforward way:
(D a=b (assumption)

(2) b=c (assumption)

(3) L(a > Mb) (from 1)

4) L(b o Mc) (from 2)

(5 L(Mb > Mc) (from 4, L1, L3 LN)
(6) L{a > Mc) {(from 3 and 5)

@) a=c (from 6)

QED.

Theorem 2 implies that (B7) - (B9) hold.
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Theorem 3 : T(a,NA) > (a =b o> T(b,A))

Proof:

Let us assume that in some case this implication is violated.
Then we may argue as follows:

(1) L(a o NA) (assumption)

(2) L(a > Mb) (assumption)

3 L >~A) (assumption and I3)
4) LA o -~b) (from 3)

(5) L(NA oN-~b) (from 4)

(6) L{a 5N-~b) (from 1 and 5)

(7 L(Mb > ~a) (from 6)

(8) L(a o ~a) (from 7)

€)) L~a (from 8)

This obviously contradicts (I1). Therefore the implication in

question cannot be violated.
QE.D.

Theorem 4: T(a,NA) > Vb: (a =b >T(b,A)
Proof: This follows from theorem 3.

Theorem 5: ~L~A 5 3b: T(b,A)
Proof: From chapter 2.9.

Theorem 6: Vb: (a =b >T(b,A)) o L(Ma o A)

Proof:

This is proved by reductio ad absurdum

(1) vh: (a ~b >T(b,A)) (assumption)
2) ~L{Ma > A) (assumption)
3) ~L~(Ma A ~A) (assumption)
(4) 3b: T(b,Ma A ~A) (3, theorem 5)
(5) b: T(b,Ma) A T(b,~A) (from 4)

(6) F:a=bATb,~A) (from 5)

(N b: L(b 2A) A L(b~A) (from 1 and 6)
(8) 3b: L(b >~b) (from 7)

9) ~(Vvb: ~L~b) (8)

(9) contradicts (I12). Q.E.D.
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Theorem 7: Vb: (a =b > T(b,A)) o T(a, NA)

Proof:

The proof is straight forward:

1 Vb: (@ =b > T(b,A) (assumption)
(2) LMa 5 A) (1 by theorem 6)
3 L(NMa o> NA) (2)

(4) L{Ma o> NA) (3)

(5) L(a > Ma) (from N2)

(6) L{a o NA) (from 4 and 5)
¥)) T(a,NA) (from 6)
QED.

Theorem 8: Vb: (a =b > T(b,A)) =T(a, NA)
Proof: From theorem 4 and theorem 7.

Theorem 9: (T(a,PA) Aa =b) > T(b,PA)
Proof: Follows from theorem 2, (A13) and the theorem 8.

According to theorem 9, a=b means that any formula of the

form PA (where A contains no occurrences of F and no instant
propositions) which follows with L-necessity from a (ie.
L(a o PA))also follows with L-necessity from b (and vice versa).
In consequence, equivalent instants have the same genuine past.

Theorem 10: (a<b A b=d) > (3c: a=c A c<d)

Proof:

1 a<b A b=d (assumption)
(2) T(a,FMd) (from 1)

3) T(a,MFd) (2 and A12)
4) Je: a=c A T(c,Fd) (from 3)

(5) Je: a=c Ac<d (from 4)
Q.ED.

Thus we have demonstrated that the set of instant propositions
with the relations and the T-operator defined above is in fact a
Leibnizian structure. In consequence, if A is Leibniz-valid, it will
also be valid in this structure, i.e. L(a > A) for any a. If we do
interpret L as 'LT-provability', it follows that A can be proved in
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LT from any instant proposition. Then by (DL) from chapter 2.9
it follows that LA, i.e. 'A is provable in LT'. When this is taken
together with theorem 1, we may conclude that LT is also
complete, i.e. it holds that A is Leibniz-valid if and only if A is
provable in LT. (We think that for practical purposes this
actually does demonstrate completeness, but we are aware that
a full mathematical proof requires more than what is given
here.)

However, the above notion of Leibniz-validity does not exclude
a cyclical model. In order to make the models non-cyclical we
would need an additional assumption like

(B11) ¢y =ts D ~(t; < t3)
In the enlarged system this would correspond to the axiom
a>~MFa

where a stands for an instant proposition. There is, however, no
obvious axiom in LT which can do exactly the same job (that is,
if instant propositions are not at our disposal).

METRIC TENSE LOGIC

We shall now present a metric tense logic MLT, which is an
extension of LT. The language of MLT is based on a set of
propositional variables: p, g, r... and the following definition of
well-formed formulae

(1) Propositional variables are wif.

(2) If @ and B are wif and x is a positive real number, then
~a, oof, anf, avB, ¥V x:a, I x: o, Na, P(x)o, and F(x)o
are all wff.

(3) There are no other wif.
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We shall assume S5 for N and in addition the following axioms:

(LT1) G)p oq9) >(Gx)p > Gx)g)
(LT2) F(x)H(x)p op
(LT3) F(y+x)p > F(y)F(x)p
(LT4) Hx)(p oq) > (H(x)p 5 H(x)q)
(LT5) P(x)G(x)p op
(LT6) Ply+x)p o P(y)P(x)p
(LT7) F(x)~p = ~F(x)p
(LT8) P(x)~p = ~P(x)p
(LT9) NG(x)p > G(x)Np
(LT10) P(x)p o NP(x)p,
where p contains no occurrences of F.

In addition we assume standard number theory for positive
numbers. - The rules of ML.T are the following:

(RMP) If+p and + p oq, then F q.

(RF) Ifr p, then r G(x)p.

(RP) Ifrp, then r H(x)p.

(IT1)  If r ¢(x)oP then F Vx:¢(x)>P.

(IT2)  If ¥ ao¢(x), then F aoVx:¢(x) for x not free in o.

Note that in LT the operators F(x) and H(x) are equivalent
and similarly for P(x) and H(x). Nevertheless, we use all four
operators in order to make the comparison with other systems
easier.

On this basis, all the axioms of Kjcan obviously be proved.
Assuming standard number theory it is easy to prove (A8-11).
(A12) and (A13) can be proved from (LT9) and (LT10),
respectively. - Hence, we can conclude that MLT is a proper
extension of LT. The semantics we have in mind for MLT can
be presented by the following definitions.
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Definition: A metric Leibnizian structure is a quadruple
(TIME,before,~T), where TIME is a non-empty set with
two relations < and = such that

(B1) (before(t;,tax) A before(ts,ts,y)) D before(tstsx+y)
(B2) (before(titox) A before(tytsx) Sta = t3

(B3")  (before(ti,tax) A before(tstax) Dty =ts

(B4") V1 Va3t : before(ts,tax)

(B5") Vit Vix 3ty : before(ty,ta x)

(B6) t=t

(B79) t; =toDte =1y

(B8" (t;=tants ~t3) Dt; ~t3

(B9")  (t;=ta A before(tsts,x) D Fty (t3~ts A before(tyts,x))

and an operator T such that

(T1) Tt A A B) =(T(tA) A TtB))
(T2) T(t,~A) = ~TtA)
(T3) vx:T(t,A) =T(t, Vx:A)
where x is foreign to ¢.
(T4) TG, F(x)A) = FH;: (before(t,t1,x) A T(t1,A))
(T5) T(t,P(x)A) = 3t;: (before(tit,x) A T(t1,A))
(T6) T(t,NA) = Vty: (t; =t 5T(t,4))
(T7)  (t;1 =tz AT, P(x)A) > T(ts,P(x)A),
where A contains no occurrences of F.

Standard number theory for positive numbers is also assumed
as a background for the semantical reasoning regarding metric
Leibnizian structures.

We shall say that a statement A is metrically Leibniz-valid if
and only if for any metric Leibnizian structure
(TIME,before,~T) and any ¢ in TIME, it holds that T\t,A). Now,
it is not difficult to verify that any statement which is provable
in MLT is also metrically Leibniz-valid. In order to show that
this is the case we have to argue that the validity in question is
carried over by the MLT rules and that all the MLT axioms are
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metrically Leibniz-valid. Most of these proofs are trivial or very
easy. Let us consider for example (LT7). We prove that

T F(x)~p > ~F(x)p)

Proof:

This is proved by reductio ad absurdum.

(1) T(t,F(x)~p) (assumption)

(2) T(t,F(x)p) (assumption)

(3) 3;1: before(t, t1,x) AT(t;,~p)

(4) Fto: before(t, to,x) A T(to,p)

(5) Ft13ts: before(t, t1,x) A before(t, ta,x) A T(te,p) A T(t1,~p)
(6) 3tz: before(t, t1,x) AT(t1,p) A T(ts,~p)

(7) 3y Tty,p) A ~T(ty,p) - i.e. a contradiction,
Q.ED.

It may be concluded that if A is provable in MLT, then A is also
metrically Leibniz-valid. In order to demonstrate that the
converse also holds, we shall once again make use of an
enlarged system. This system includes Prior's instant
propositions and the modal operator L earlier mentioned in this
chapter, with the addition that any two different instant
propositions are non-equivalent, i.e.

L(a =b) if and only if a=b.

We want to prove that the set of instant propositions forms a
metric Leibnizian structure, if we make use of the definitions
we have used in this chapter and in chapter 2.10:

before(a,b,x) =g L(a > F(x)b)
a =b =grL(a D Mb)
T(a,A) =gesL(a 2 A)
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Most of the proofs needed for this purpose can be copied from
earlier; a few of them are new, though, but fairly easy. Let us
take some examples:

Va Vx3b: before(a,b,x)

Proof:

(1) Gx)( v ~p)

(2) F(x)(p v ~p)

(8) L(a > F(x)(p v ~p))

(4) Ib: (L(a o F(x)b) AL(b >(p v ~p))
(5) 3b: before(a,b,x)

(before(a,b,x) A before(a,c,x)) > L(b >c)

Proof:

This is proved by reductio ad absurdum.

1) L{a > F(x)b) (assumption)
(2) L(a > F(x)c) (assumption)
3 ~L(b oc) (assumption)

(4) L > ~c)

(5) L(F(x)b > F(x)~c)

(6) L{a o F(x)~c)

7N L{a 5 ~F(x)c)

(8) L{a o -a). (Contradicts 12).
QED.

By a similar argument it can be proved that
(before(a,b,x) A before(a,c,x)) >L(c D b)
In consequence we have
(before(a,b,x) A before(a,c,x)) > L(b =c)

Since any two instant propositions are non-equivalent, it can be
concluded that

(before(a,b,x) A before(a,c,x)) > b=c



LEIBNIZIAN TENSE LOGIC 281

With respect to the problem of cyclicity we have the same
problem as in LT, and again there is an obvious solution within
the enlarged system.

MLT seems to be very useful in many cases. However,
counterfactual implications in natural language like

(S1) A is not the case, but if A were the case, then B would
also be the case,

or with a more natural wording
(S2) if A were the case, then B would be the case

cannot be satisfactorily expressed in MLT. The obvious solution
in a branching time logic would seem to be

~A A Zx: P(x)NF(x)(A 5 B)

which because of (LT9) turns out to imply the following
formula:

~A AN(A > B)
This corresponds to statement:

(82) A is not the case, but necessarily, if A were the case,
then B would also be the case.

Now, since (S2) is normally considered to be semantically
stronger than (S1), we want a logic that can reflect this relation.
In the next chapter we shall see how such a logic can be
constructed.



3.3. LEIBNIZIAN TENSE LOGIC

In this chapter we shall present an indeterministic tense logic
similar to Prior's Ockhamistic theory, but modified in the light
of the observations made by Hirokazu Nishimura (mentioned in
the preceding chapter). Since the system is based on a kind of
temporal reasoning very similar to Leibniz' philosophy, we shall
call the system 'Leibnizian tempo-modal logic', LT for short. The
definition of well-formed formulae within LT is:

o) Propositional variables are wif.

(2) If o and B are wif and x is a positive number, then
~a, 0B, oA, o v B, Vx:a, Ix: 0, Nex, Por, and Fo are
all wff.

(3) There are no other wif.

The axioms of LT are:

(A1) A, where A is a tautology of the propositional
calculus

(A2) G(A oB) 5(GA > GB)

(A3) H(A >B) >(HA > HB)

(A4) A DHFA

(A5) A-GPA

(A6) FFA o FA

(A7) FPAS(PAvAvFA)

(A8) PFA >(PA vA vFA)

(A9) GA o FA

(A10) HA-SPA

(A11) FAOSFFA

(A12) NGA o GNA

(A13) PA 5 NPA, where A contains no occurrences of '

(N1) N(A>B)>(NA>NB)

(N2) NASA

(N3) NAOSNNA

(N4) MNA > NA, where M =45 ~N~

270
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(N1)-(N4) are the S5 axioms for N. The rules of inference are
the same as for the Ockhamistic system, i.e.

(RMP) If A and F A 5B, then ¢ B.

(RG)
(RH)
(RN)
(I11)
(T2)

If FA, then F GA.

If + A, then F HA.

If ¥ A then F NA.

If + ¢(x)>p then F Vx:¢(x)>B.

If F oo¢(x) then F aoVx:¢(x), for x not free in .

where 't p' means 'p is provable'.
The earlier-later logic (B-logic) we have in mind can be
presented by the following definitions.

Definition: A Leibnizian structure is a quadruple
(TIME,<,=~,T), where TIME is a non-empty set with two
relations < and = such that

(B1)
(B2)
(B3)
(B4)
(B5)
(B6)
(B7)
(B8)
(B9)
(B10)

(t; <tantg<ts) Ot; <ty

(t1<tontz<ts) Dti<tavii=tzviz<ty
(to<tintea<tz) D;<taviy=tzviz<ty
ViiRo: t1 <o

Vi Tto i to < £

Vi VEaTtg:t1 <teD(t1 <itzantlz<its)

t=t

t; =la Dta =t;

(t; =tonts =tg) Dt; =t3

(t1=tantg<ts) DIty (tg=tgntyg<ity)

and an operator T such that

(T
(T2)
(T3)
(T4)
(T5)
(T6)

Tt A AB) =(T(tA) A T(tB))

T(t,~A) = ~T(t,A)

Vva:T(t,A) = T(t, Vx:A) where x is foreign to ¢
Tt FA) =31 (t<t; AT(E,4))

T#,PA) =F;1: (1<t AT#,A))

TtNA) = Vit (t; =t > T(t1,4))
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(TT7) Vit Vis: ((; =ta A T(t1,PA) o T(ts, PA),
where A contains no occurrences of F.

You may read 7(t,A) as 'A is true at ¢', but bear in mind that we
are not introducing a separate semantics following usual
model-theoretic procedures. Rather, we are enlarging the
logical language such the extended system 'contains the
semantics of the original system', following Prior's ideas in this
respect.

Definition: A statement is Leibniz-valid if and only if T'(z,4)
for every Leibnizian structure (TIME,<,=T) and every ¢ in
TIME.

It is easy to see that the axioms (Al) - (A13) and (N1) - (N4)
are all Leibniz-valid. Since the inference rules carry the
Leibniz-validity over, it follows that the following theorem holds:

Theorem 1: If A is provable in LT, then A is Leibniz-valid.

This theorem expresses the soundness of LT. Using Prior's
idea of instant propositions we shall also argue that LT is
complete relative to Leibniz-validity. First we shall enlarge the
logical language in the manner already shown in chapter 2.9.
The enlarged system must include instant propositions (i.e.
maximal consistent sets from LT) and a modal operator L, for
which we assume

(BF) L(Va: ¢(a)) = Va: L(¢(a))
a1 Fxa

(I12) ~L-~a

(13) L(a>op) vL(a >~p)

(L1) L(p>og)>(Lp>Ly

(L2) Lpop

(L3) LpoLLp

(LG) LpoGp

(LH) Lp>Hp

(LN) LpoNp
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Intuitively, we may think of L as an operator corresponding to
'provability within LT'.

Using the following definitions, we can now demonstrate that
the set of instant propositions forms a Leibnizian structure:

a < b s L(a SDFb)
a =b =¢L(a >Mb)
T(a,A) =gefL(a 2 A)

Note that (A1) - (A1l) are simply the axioms for K;. Conse-
quently the properties (B1) - (B6) and (TL1) - (TL5) which
correspond to the semantics of K follow from the completeness
of Kj. The remaining properties of the structure can be proved
in the following way:

Theorem 2: The relation ~is an equivalence relation.

Proof:

Reflexivity is trivial.

Symmetry is proved by reductio ad absurdum:

(1) a=b (assumption)

(2) ~(b =a) (assumption)

3 L(a > Mb) (from 1)

(4) L(a > ~-Mb) (from 2 and I3)

5) L{a > ~a) (from 3 and 4)

(6) L~a (from 5). Contradicts (I2).
Transitivity is proved in a straightforward way:
(D a=b (assumption)

(2) b=c (assumption)

(3) L(a > Mb) (from 1)

4) L(b o Mc) (from 2)

(5 L(Mb > Mc) (from 4, L1, L3 LN)
(6) L{a > Mc) {(from 3 and 5)

@) a=c (from 6)

QED.

Theorem 2 implies that (B7) - (B9) hold.



274 CHAPTER 3.3

Theorem 3 : T(a,NA) > (a =b o> T(b,A))

Proof:

Let us assume that in some case this implication is violated.
Then we may argue as follows:

(1) L(a o NA) (assumption)

(2) L(a > Mb) (assumption)

3 L >~A) (assumption and I3)
4) LA o -~b) (from 3)

(5) L(NA oN-~b) (from 4)

(6) L{a 5N-~b) (from 1 and 5)

(7 L(Mb > ~a) (from 6)

(8) L(a o ~a) (from 7)

€)) L~a (from 8)

This obviously contradicts (I1). Therefore the implication in

question cannot be violated.
QE.D.

Theorem 4: T(a,NA) > Vb: (a =b >T(b,A)
Proof: This follows from theorem 3.

Theorem 5: ~L~A 5 3b: T(b,A)
Proof: From chapter 2.9.

Theorem 6: Vb: (a =b >T(b,A)) o L(Ma o A)

Proof:

This is proved by reductio ad absurdum

(1) vh: (a ~b >T(b,A)) (assumption)
2) ~L{Ma > A) (assumption)
3) ~L~(Ma A ~A) (assumption)
(4) 3b: T(b,Ma A ~A) (3, theorem 5)
(5) b: T(b,Ma) A T(b,~A) (from 4)

(6) F:a=bATb,~A) (from 5)

(N b: L(b 2A) A L(b~A) (from 1 and 6)
(8) 3b: L(b >~b) (from 7)

9) ~(Vvb: ~L~b) (8)

(9) contradicts (I12). Q.E.D.
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Theorem 7: Vb: (a =b > T(b,A)) o T(a, NA)

Proof:

The proof is straight forward:

1 Vb: (@ =b > T(b,A) (assumption)
(2) LMa 5 A) (1 by theorem 6)
3 L(NMa o> NA) (2)

(4) L{Ma o> NA) (3)

(5) L(a > Ma) (from N2)

(6) L{a o NA) (from 4 and 5)
¥)) T(a,NA) (from 6)
QED.

Theorem 8: Vb: (a =b > T(b,A)) =T(a, NA)
Proof: From theorem 4 and theorem 7.

Theorem 9: (T(a,PA) Aa =b) > T(b,PA)
Proof: Follows from theorem 2, (A13) and the theorem 8.

According to theorem 9, a=b means that any formula of the

form PA (where A contains no occurrences of F and no instant
propositions) which follows with L-necessity from a (ie.
L(a o PA))also follows with L-necessity from b (and vice versa).
In consequence, equivalent instants have the same genuine past.

Theorem 10: (a<b A b=d) > (3c: a=c A c<d)

Proof:

1 a<b A b=d (assumption)
(2) T(a,FMd) (from 1)

3) T(a,MFd) (2 and A12)
4) Je: a=c A T(c,Fd) (from 3)

(5) Je: a=c Ac<d (from 4)
Q.ED.

Thus we have demonstrated that the set of instant propositions
with the relations and the T-operator defined above is in fact a
Leibnizian structure. In consequence, if A is Leibniz-valid, it will
also be valid in this structure, i.e. L(a > A) for any a. If we do
interpret L as 'LT-provability', it follows that A can be proved in
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LT from any instant proposition. Then by (DL) from chapter 2.9
it follows that LA, i.e. 'A is provable in LT'. When this is taken
together with theorem 1, we may conclude that LT is also
complete, i.e. it holds that A is Leibniz-valid if and only if A is
provable in LT. (We think that for practical purposes this
actually does demonstrate completeness, but we are aware that
a full mathematical proof requires more than what is given
here.)

However, the above notion of Leibniz-validity does not exclude
a cyclical model. In order to make the models non-cyclical we
would need an additional assumption like

(B11) ¢y =ts D ~(t; < t3)
In the enlarged system this would correspond to the axiom
a>~MFa

where a stands for an instant proposition. There is, however, no
obvious axiom in LT which can do exactly the same job (that is,
if instant propositions are not at our disposal).

METRIC TENSE LOGIC

We shall now present a metric tense logic MLT, which is an
extension of LT. The language of MLT is based on a set of
propositional variables: p, g, r... and the following definition of
well-formed formulae

(1) Propositional variables are wif.

(2) If @ and B are wif and x is a positive real number, then
~a, oof, anf, avB, ¥V x:a, I x: o, Na, P(x)o, and F(x)o
are all wff.

(3) There are no other wif.
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We shall assume S5 for N and in addition the following axioms:

(LT1) G)p oq9) >(Gx)p > Gx)g)
(LT2) F(x)H(x)p op
(LT3) F(y+x)p > F(y)F(x)p
(LT4) Hx)(p oq) > (H(x)p 5 H(x)q)
(LT5) P(x)G(x)p op
(LT6) Ply+x)p o P(y)P(x)p
(LT7) F(x)~p = ~F(x)p
(LT8) P(x)~p = ~P(x)p
(LT9) NG(x)p > G(x)Np
(LT10) P(x)p o NP(x)p,
where p contains no occurrences of F.

In addition we assume standard number theory for positive
numbers. - The rules of ML.T are the following:

(RMP) If+p and + p oq, then F q.

(RF) Ifr p, then r G(x)p.

(RP) Ifrp, then r H(x)p.

(IT1)  If r ¢(x)oP then F Vx:¢(x)>P.

(IT2)  If ¥ ao¢(x), then F aoVx:¢(x) for x not free in o.

Note that in LT the operators F(x) and H(x) are equivalent
and similarly for P(x) and H(x). Nevertheless, we use all four
operators in order to make the comparison with other systems
easier.

On this basis, all the axioms of Kjcan obviously be proved.
Assuming standard number theory it is easy to prove (A8-11).
(A12) and (A13) can be proved from (LT9) and (LT10),
respectively. - Hence, we can conclude that MLT is a proper
extension of LT. The semantics we have in mind for MLT can
be presented by the following definitions.
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Definition: A metric Leibnizian structure is a quadruple
(TIME,before,~T), where TIME is a non-empty set with
two relations < and = such that

(B1) (before(t;,tax) A before(ts,ts,y)) D before(tstsx+y)
(B2) (before(titox) A before(tytsx) Sta = t3

(B3")  (before(ti,tax) A before(tstax) Dty =ts

(B4") V1 Va3t : before(ts,tax)

(B5") Vit Vix 3ty : before(ty,ta x)

(B6) t=t

(B79) t; =toDte =1y

(B8" (t;=tants ~t3) Dt; ~t3

(B9")  (t;=ta A before(tsts,x) D Fty (t3~ts A before(tyts,x))

and an operator T such that

(T1) Tt A A B) =(T(tA) A TtB))
(T2) T(t,~A) = ~TtA)
(T3) vx:T(t,A) =T(t, Vx:A)
where x is foreign to ¢.
(T4) TG, F(x)A) = FH;: (before(t,t1,x) A T(t1,A))
(T5) T(t,P(x)A) = 3t;: (before(tit,x) A T(t1,A))
(T6) T(t,NA) = Vty: (t; =t 5T(t,4))
(T7)  (t;1 =tz AT, P(x)A) > T(ts,P(x)A),
where A contains no occurrences of F.

Standard number theory for positive numbers is also assumed
as a background for the semantical reasoning regarding metric
Leibnizian structures.

We shall say that a statement A is metrically Leibniz-valid if
and only if for any metric Leibnizian structure
(TIME,before,~T) and any ¢ in TIME, it holds that T\t,A). Now,
it is not difficult to verify that any statement which is provable
in MLT is also metrically Leibniz-valid. In order to show that
this is the case we have to argue that the validity in question is
carried over by the MLT rules and that all the MLT axioms are
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metrically Leibniz-valid. Most of these proofs are trivial or very
easy. Let us consider for example (LT7). We prove that

T F(x)~p > ~F(x)p)

Proof:

This is proved by reductio ad absurdum.

(1) T(t,F(x)~p) (assumption)

(2) T(t,F(x)p) (assumption)

(3) 3;1: before(t, t1,x) AT(t;,~p)

(4) Fto: before(t, to,x) A T(to,p)

(5) Ft13ts: before(t, t1,x) A before(t, ta,x) A T(te,p) A T(t1,~p)
(6) 3tz: before(t, t1,x) AT(t1,p) A T(ts,~p)

(7) 3y Tty,p) A ~T(ty,p) - i.e. a contradiction,
Q.ED.

It may be concluded that if A is provable in MLT, then A is also
metrically Leibniz-valid. In order to demonstrate that the
converse also holds, we shall once again make use of an
enlarged system. This system includes Prior's instant
propositions and the modal operator L earlier mentioned in this
chapter, with the addition that any two different instant
propositions are non-equivalent, i.e.

L(a =b) if and only if a=b.

We want to prove that the set of instant propositions forms a
metric Leibnizian structure, if we make use of the definitions
we have used in this chapter and in chapter 2.10:

before(a,b,x) =g L(a > F(x)b)
a =b =grL(a D Mb)
T(a,A) =gesL(a 2 A)
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Most of the proofs needed for this purpose can be copied from
earlier; a few of them are new, though, but fairly easy. Let us
take some examples:

Va Vx3b: before(a,b,x)

Proof:

(1) Gx)( v ~p)

(2) F(x)(p v ~p)

(8) L(a > F(x)(p v ~p))

(4) Ib: (L(a o F(x)b) AL(b >(p v ~p))
(5) 3b: before(a,b,x)

(before(a,b,x) A before(a,c,x)) > L(b >c)

Proof:

This is proved by reductio ad absurdum.

1) L{a > F(x)b) (assumption)
(2) L(a > F(x)c) (assumption)
3 ~L(b oc) (assumption)

(4) L > ~c)

(5) L(F(x)b > F(x)~c)

(6) L{a o F(x)~c)

7N L{a 5 ~F(x)c)

(8) L{a o -a). (Contradicts 12).
QED.

By a similar argument it can be proved that
(before(a,b,x) A before(a,c,x)) >L(c D b)
In consequence we have
(before(a,b,x) A before(a,c,x)) > L(b =c)

Since any two instant propositions are non-equivalent, it can be
concluded that

(before(a,b,x) A before(a,c,x)) > b=c
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With respect to the problem of cyclicity we have the same
problem as in LT, and again there is an obvious solution within
the enlarged system.

MLT seems to be very useful in many cases. However,
counterfactual implications in natural language like

(S1) A is not the case, but if A were the case, then B would
also be the case,

or with a more natural wording
(S2) if A were the case, then B would be the case

cannot be satisfactorily expressed in MLT. The obvious solution
in a branching time logic would seem to be

~A A Zx: P(x)NF(x)(A 5 B)

which because of (LT9) turns out to imply the following
formula:

~A AN(A > B)
This corresponds to statement:

(82) A is not the case, but necessarily, if A were the case,
then B would also be the case.

Now, since (S2) is normally considered to be semantically
stronger than (S1), we want a logic that can reflect this relation.
In the next chapter we shall see how such a logic can be
constructed.



3.4. TENSE LOGIC AND
COUNTERFACTUAL REASONING

Temporal reasoning is intimately related to certain other
kinds of reasoning. Some particularly important examples are
causal, counterfactual, and diagnostic reasoning. In these kinds
of reasoning we find a type of conditionals, which are crucially
interwoven with temporality. (A recent Ph. D. Thesis [Crouch
1993] has shown how time and tense are in fact pervasive
features of English conditionals in general.)

Since time proves to be relevant for counterfactual as well as
diagnostic reasoning, we find it essential to examine the formal
logical structure of such reasoning - as well as its tacit
dimension, which for these cases plays a somewhat special réle.
We are going to argue that a suitable framework can be
constructed in the form of a non-monotonic and tempo-modal
logic, which is partly based on J.L. Mackie's suggestions regar-
ding causality [Mackie 1974]. Moreover, the features of this
framework - especially non-monotonicity - broadens the
perspectives studied so far on time and tense.

Let us consider an example of everyday reasoning about time
and causes, based on the following story:

Joe wants to prepare a meal for some guests. He goes to the
local shop in order to buy the ingredients, and he hires a
cook, who is supposed to prepare the meal. In due time the
cook arrives at Joe's place, just to find out that there is an
electrical failure, which will make it impossible to have the
dinner ready on time.

In the following argument between Joe and his friend Jim, we
see a number of (somewhat artificial) counterfactual state-
ments:

Joe: If it had not been for the failure, we would have had
dinner on time.

Jim:You're wrong. If the cook left, you might still not have
had dinner on time, even in the absence of the failure.

282
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Joe: Well, I was just assuming that the cook would stay. But
what I mean is that if there were no failure and the cook
agreed to stay, we would have had dinner on time.

Jim: You're wrong again. If you had not been to the shop to
buy the ingredients, you would not have had dinner on time,
even if the cook stayed and there were no electrical failure.
Joe: 1 don't agree. Somebody else might have brought the in-
gredients. As long as the cook has got the ingredients and
there is no electrical failure, we shall with necessity have
dinner on time.

Jim: Well, the cook might change his mind because of all
your quarrelling. Again, in that case there would not be din-
ner on time, even if there were no electrical failure.

Joe: Well, we might have had dinner on time, if I had or-
dered some ready-made dinner. The electrical failure could
not have prevented the dinner in that case.

Jim: 1 think you're wrong again. The cook is a union man.
He will bar the door to the delivery of the ready-made din-
ner, since the ready-made dinner company takes away jobs
from proper cooks. But if the cook leaves, the ready-made
dinner can be delivered.

What happens in this kind of debate is that still new elements
from the scenario are introduced as relevant. At each point, it
can be argued that the speaker in question is right, if his state-
ment is evaluated from his point of view.

On the other hand, it turns out that when e.g. the first state-
ment above is evaluated from a new and broader perspective in
which a new causal factor (i.e. the cook) is taken into
consideration, it is false. What is at stake here is the very notion
of causation. Each of the statements can be interpreted as
assertions regarding causes.

In order to account for the non-monotonicity, i.e. the apparent
change in the truth-values of statements, we must introduce a
new representation of causality. Whereas causality is normally
conceived as a relation between a cause and its effect, the idea is
to represent causality as a predicate which takes three argu-
ments. The point is that there is always a ceteris paribus clause
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involved in a statement regarding causality. Causal statements
such as 'if it rains, the grass will become wet', or 'rain causes the
grass to become wet', are asserted under the tacit assumption of
‘all other things being equal'. For instance, the statement 'rain
causes the grass to become wet' presupposes 'the grass has not
been covered' (say, by a large tent for our garden party tonight).
In general, the ceteris paribus clause determines which possible
'chronicles’, i.e. possible courses of events, should be taken into
consideration in order to evaluate the statement in question.

In other words, this extra argument of the causality predicate,
which we shall call the 'scope’, defines the set of entities relevant
for the evaluation of the statement. The minimal scope can be
constructed directly from the statement in question as the set of
all atomic propositions (with their tenses) involved in the state-
ment. We shall call this the natural scope of the statement.

Also it would be wrong to see the cause as just one single entity.
The above conversation shows that it would be more correct to
represent the cause as a conjunction of a number of statements.

In the following we intend to show how counterfactual
implications can be introduced semantically as an extension of
MLT discussed in the last chapter. The crucial features of this
extension come from the idea that counterfactual statements
are evaluated under ceteris paribus assumptions, and
furthermore, that in any such evaluation one must assume
what we have called a 'scope' for the statement in question.

First, we are going to introduce a number of fairly technical
definitions, without too much motivation; then we shall come
back to the dinner scenario to show how the systems work in
practice.

CIMP - MODELLING COUNTERFACTUAL IMPLICATIONS

David Lewis [1973] formulated a very elegant logic of counter-
factuals, which covers many important intuitions. Its main
defect is, however, that possible worlds appear only as semantic
indices - rather than as concrete conceptual alternatives.
Instead, we shall propose a construction of possible worlds as
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finite sets of propositions. These constructions will be based on
Mackie causal complexes, which are arguably relevant for the
evaluation of most counterfactuals. We shall describe our ideas
partly with reference to a computer implementation called 'the
CIMP system'. (The system is implemented in PROLOG and
can be used interactively as a tool for modelling and evaluating
counterfactuals, cf. [Hasle & @hrstrem 1992], [Jhrstrgm et al.
1992], and [@hrstrgm and Hasle 1995].)

The central idea of CIMP is to consider conceptual
alternatives as partial descriptions of a situation. Consider a
case of meningitis. If we want to evaluate the conditional

if the patient had been vaccinated, he would not have devel-
oped meningitis,

we must construct a situation in which the patient was vacci-
nated and exposed to the same pneumococci infection. This con-
struction must respect known singular causal complexes and
facts about the case. Furthermore, there is a causal field within
which the construction takes place. To capture all this, we need
formal definitions of causal statements and causal models.
Moreover, we want to construct possible alternatives as possible
ways in which the world might have developed, that is, as pos-
sible courses of events. This means that there will be a temporal
aspect in our analysis. In CIMP, counterfactual implications
are evaluated with respect to 'possible chronicles' rather than
possible worlds. In a sum, CIMP is a semantical system based on
the ideas in metric tense logic combined with an understanding
of causality based on Mackie's ideas.

David Lewis has stressed the same relation between branching
time and counterfactual reasoning in the following way:

I suggest that the mysterious asymmetry between open fu-
ture and fixed past is nothing else than the asymmetry of
counterfactual dependence. The forking paths into the fu-
ture - the actual one and all the rest - are the many alterna-
tive futures that would come about under various counter-
factual suppositions about the present. [Lewis 1979, p. 462]
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The idea seems to be that given the actual development up to
the present state, it does not make sense in addition to assume
another past. But even given the actual development up to the
present state, we actually have the choice between a number of
mutually exclusive assumptions about the future. In this way
Lewis wants to see the asymmetrical structure of time as
nothing but a consequence of the nature of counterfactual de-
pendence.

We do not accept that counterfactual dependence should have
conceptual priority over the very concept of time. We suggest
that the asymmetry between open future and fixed past is taken
for granted and used for the purpose of defining counterfactual
implication.

The language of CIMP is based on a finite set of propositional
expressions, called the maximal scope:

MSCOPE=S,u.. uS;uUSyuSiu.. uSy, where
S ={PG,q.1), P(,q.2), ..., Plg.ici)), i=1...v

So =1{q01, o2 - .90n0/ .
S;={F(i,q:0), Fi,qi2), ..., FG,qing)}, i=1...w

and all the g;; are propositional constants and the N(j) are posi-
tive integers. Furthermore, we define an operator dual in the
following way:

dual(P(x,~q)) = P(x,q;)
dual(P(x,q;) = P(x,~q;)
dual(~q;) = q;
dual(qy) = ~q;
dual(F(x,~q;) = F(x,q;)
dual(F(x,q;) = F(x,~q;)

We need some additional definitions:
Definition: Two sets, S and S’ are said to relate to each other

if for each element A in S exactly one of A and dual(A) is in
S' and vice versa.
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Definition: A maximal set is a set that relates to MSCOPE.

Obviously, related sets have the same number of elements. It is
also evident that any maximal set can be written as a union of
subsets: E, v .. vE; UEgUE; U ..  UE,), where for each i, E;is
related to the S;. The E;s are called events, and the elements of
each E; are called basic propositions. Note that all elements in an
event have the same tense and that the events consequently can
be ordered in an obvious way. Every maximal set corresponds to
a proposition which is formed as the conjunction of all the
propositions in the set. For this reason we shall write a maximal
setas U, =E,u. VE;UEyUE;v . UE,), wherea is the
corresponding maximal proposition. - It is obvious that

Theorem 1: If B € U, , then dual(B) ¢ U,.

This means that U, is made consistent by its construction. It is
also easy to prove that

Theorem 2: If SCOPE is a subset of MSCOPE and U, is a
maximal set, then there is a unique subset of U, which
relates to SCOPE.

The unique subset described in the theorem we shall
henceforth call sub(SCOPE,U,).

We shall make use of John Mackie's [1974] conception of
singular causation. Mackie defined singular causation in the
following way (the formulation here is taken from [Marsden et
al. 1990, p. 66]):

c is a cause of e when the occurrence of ¢ is, by itself, an in-
sufficient but necessary part of a set of conditions which,
when combined, are unnecessary yet sufficient for e (in
short: ¢ is an INUS condition for e).

Let E (: the effect) be a basic proposition and C (: the causal
complex) be a set of basic propositions. We shall also assume that
the tenses in C are exactly one time unit earlier than E. We may
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consider C as a conjunction of basic statements, which
necessarily leads to E.

Definition: An expression of the form causal(C,E) is said to
be a causal statement if for some i, C (: the causal complex)
relates to a subset of S; and E (: the effect) relates to a
member of S;,; .

In CIMP, Mackie's ideas are formalised in terms of causal
statements. The elements of C are INUS conditions.

Definition: E is said to be causally determined by the set of
U, and the causal statements CS, if there is an element in
CS causal(C,E) with C cU,. Formally,

ICseC8: Cs=causal(C.E) AC c U,

Definition: A maximal set U, is a permissible chronicle (or
history) w.r.t. a set of causal statements CS if and only if
each basic proposition B which is determined by U, and CS
is a member of U,. The set of permissible chronicles is
written perm(CS). We shall say that CS is consistent if
perm(CS) is non-empty.

Note that if the basic proposition B is causally determined by a
permissible chronicle U, and the elements in CS, then dual(B) is
not causally determined by U, and the elements in CS.

Definition: EeMSCOPE is said to be causally supported by
U, in CS, if there is a causal statement causal(C,dual(E)) in
CS, and for any such statement C is not a subset of U,.
Formally,

FCseCS 3FC: Cs=causal(C,dual(E)) A

VCseCS VC: (Cs=causal(C,dual(E)) > ~(Cc Uy)

Definition: E is said to be uniquely supported by U, in CS, if
E is causally supported by U, and CS, but dual(E) is not
causally supported by U, and CS.
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It is obvious that

Theorem 3: If E is supported by U, in CS then dual(E) is not
determined by U,.

Theorem 4: If there is a causal(C,E)eCS and E is uniquely
supported by Uy, then E is determined by U,.

The set of permissible chronicles can be organised as a
branching time system. It is important for the evaluation of
counterfactuals that this system can be given an additional
structure by the reference to causal models introduced in the
following way:

Definition: CM(CS,U,.) is a causal model, if CS is a
consistent set of causal statements and U, is a maximal set,
such that if causal(C,E) < CS and C is a subset of U,, then
Ee U,. - The maximal proposition ¢ will be called the true
chronicle.

In the following we shall refer to the causal model CM(CS,U,).
It obviously follows from the above definitions that if CS is
consistent, then it can give rise to at least one causal model.

We introduce the following algorithm, according to which a
selected event after any given event can be constructed:

Assume that E} is the event just before Ej,;in the true
chronicle U,, and that E'; is a possible event that relates to
E}. Suppose that Ej,;=(gj,...,qn/. The problem is how to
construct E'z.1= {q...,q'n/ . The algorithm can be described
as follows, where q; is an arbitrary element in E;.;:

a) If g; is causally determined by E'; in CS, then put ¢ ';=q;.

b) If dual(g;) is causally determined by E'; in CS, then put
q 'i=dual(q;)

¢) If a)-b) do not apply and dual(g;) is uniquely supported by
E', and CS, then put q'i=dual(gy).

d) If a)-c) do not apply, then put g ';=q;.
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By this algorithm 'the future part' of a permissible chronicle
can be constructed from any event. This means that the set of
permissible chronicles forms a branching time system with the
very special property that for each event there is a selected next
event in the system, that is, 'a preferred branch'. For each tense
7 there is a relation between maximal propositions, which may
be written a =; b, meaning that the future of U, relative to the
tense T is constructed from U, by the above algorithm. The latest
tense in A we shall denote by 7(A).

Before we can present the semantics for the system, we need a
proper definition of the full CIMP language.

From MSCOPE the well formed formulae (wff) of the CIMP
language can be defined by the following rules:

(a) If Ae MSCOPE, then A is a wff,

(b) If Ae MSCOPE, then dual(A) is a wif.

(c) If A and B are wif's and SC < MSCOPE, then
~A, (A A B), (SC: A > B) are wif's.

(d) Nothing else is a wif.

(A vB) and (A > B) are defined as usual by negations and con-
junctions.

The truth operator can be presented in the following way,
where we shall let the maximal propositions play the roéle of
instants as originally suggested by A. N. Prior:

T(a,P(i,q)) iff P(i,q) € U,
T(a,F(i,q) iff FG,q) e U,
T(a,~A) iff not T(a,A).

T(a,A A B) iff T(a,A) and T(a,B)
T(a,q) iffq € U,

Let Sel(CS,c,A) be the set of maximal propositions and
aeperm(CS), where T(a,A) and ¢ =4 a. Sc(A,CS,c,SCOPE) is
the set of propositions in Sel(CS,c,A), which are maximal with
respect to an ordering relation <goppg, defined in the following
way:
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a<SCOPE b Edef(Uc N (U \ sub(SCOPE, Ua)) clUy
It is easy to see that if a<gcgpg b then
(U N (Ug \ sub(SCOPE,U,)) < (U. N (Up \ sub(SCOPE,U))

The statement a<gcopg b clearly means that everything which is
true according to a, but outside SCOPE, is also true according to
b. We now define what it means in CIMP for the counterfactual
implication (SCOPE: a>b) to be true relative to the set of causal
statements CS and the true chronicle c:

Definition: If the evaluation of B depends on the future
course of events relative to 1(A), then T(c,SCOPE: A>B) is
defined as: VaeSc(A,CS,c,SCOPE): T(a,B).

Three things should be noted about this definition:

(a) If no SCOPE is mentioned explicitly, the scope has to be
constructed from the basic elements in A and B, i.e. the natural
scope for A > B.

(b) If we want to draw counterfactual consequences regarding
the future relative to 7(A), we have to use the algorithm for
constructing the selected futures.

(c) The definition does not cover cases where the counterfac-
tual consequence B depends only on past or present events rela-
tive to A). Such cases are indeed difficult to express in a lin-
guistically natural manner. One example could be

(i) If the Germans had not lost the battle of the Marne, then
they would not have transferred troops to the Russian
Front (before that battle).

It would seem, however, that conceptually we are inclined to
understand such cases as meaning the same thing as

(ii) If the Germans had not transferred troops to the
Russian Front, then they would not have lost the battle of
the Marne.



292 CHAPTER 3.4

But such a contra-position, that is, the view that (i) and (ii) are
equivalent, can be questioned. On the other hand, if (i) is con-
sidered as different from (ii), it does express an odd proposition,
which suggests that the past relative to the antecedent is not
settled. This issue is discussed in [Pedersen et al. 1994]. However,
here we choose to handle only the 'standard case', which is
covered by the above definition.

CIMP differs from Lewis' classical ideas in several ways. First
of all CIMP systematically takes time and tense into account,
whereas Lewis {1973] makes no explicit reference to time in his
definitions. Secondly, CIMP in general incorporates the notion
of a scope as in (SCOPE: A>B). Lewis' logic, in contrast, only
deals with the logic of A > B (corresponding to the cases, in
which the 'natural scope' is used in CIMP). Thirdly, some of the
axioms of Lewis' system are not valid in CIMP. Let us for
example consider two axioms from [Lewis 1973/1986, p. 132]:

(Lewis 1) (A>B) o (A >B)
(Lewis 2) (AAB)>(A>B)

It is not difficult to verify that (Lewis 1) holds in CIMP:

Theorem: (A > B) o (A > B) is valid in CIMP

Proof:

We have to prove that T(c,(A > B) > (A > B)) for any c.
This is proved by reductio ad absurdum.

(1) ~T(e,(A>B) >(A > B)) (assumption)

(2) T(c,A >B) (from 1)

3) ~T(c,A o B) (from 1)

(4) T(c,A) (from 3)

(5) ~T(c,B) (from 3)

(6) VaeSc(A,CS,c,SCOPE): T(a,B)) (from 2, 5 & def.)
@) ceSc(A,CS,e,SCOPE) (from 4)

(8) T(c,B) (from 6 and 7).

This contradicts (5). - Q.E.D.
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This means that counterfactual implication is in fact stronger
than material implication (given that the converse does not
hold). - (Lewis 2), however, is not valid in CIMP. Let us as an
illustration consider the causal statement:

CS= {causal({q},F(1,~r))}

and the true chronicle: U, = {p,~q} v {F(1,r)}. This basis
obviously gives rise to the following permissible chronicles:

U, ={p,q} VIF(1,~1r)}
Uy ={~p,q} U{F(1,~r)}
Uq={~p,~q} V{F(1,r)}
U.={~p,~q} V{F(1,~r)}
Ur={p,~q} V{F(1,~r)}
U.={p,~q) V{F(1,r)]

The following statement is an instance of (Lewis 2):
(pvg AF(r) o(pvyg >F(r)

In the CIMP evaluation of this statement it is easy to see that
T(c,(pvg)AF(1,r)), beSe(pvq,CS,c,(p,q,F(1,r)}) and ~T(b,F(1,r)).
So, (Lewis 2) is clearly not valid in CIMP.

It should also be emphasised that the logic of counterfactual
implication is non-monotonic, that is, (A A C) >B cannot be
deduced from A > B, Similarly, we cannot in general deduce the
proposition A > (B vC) from A > B.

David Lewis has provided several important results regarding
the completeness and decidability of his system(s). CIMP is not
so well developed. We have no genuine axiomatics for the
system. On the other hand, the obvious computability of the logic
should make CIMP a proper candidate for the modelling of
counterfactual reasoning in artificial intelligence and natural
language understanding. We intend to illustrate this by a closer
study of our 'dinner scenario'. Before doing this, it will be useful
to extend the system such as to deal with modalities also. We add
these definitions to the system:
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T(a,NA) =gor Vb: same_past(a,b) > T(b,A)
T(a,MA) =3.r 3b: same_past(a,b) A T(b,A)
where same_past(a,b) means that
Usv ... VUo=Uppu... UUpp

With these definitions it is obviously possible to distinguish
between A > B, A > MB, and A > NB.

ANALYSIS OF THE DINNER EXAMPLE

Let us consider the dinner scenario example again. Clearly Joe
and Jim both take the following facts for granted:

P(1,shopping) : 'Joe has been to the shop one time unit ago to
buy the ingredients'

ingredients: '"The ingredients are available'

cook: "The cook is present'

el-failure: 'The electrical failure occurs'

F(1,~ dinner): 'Dinner will not be served during the next pe-
riod of time'.

The list of these 5 basic statements constitutes the true history
in this example. Joe and Jim also both assume a number of cau-
sal statements, which can be presented graphically in the fol-
lowing way:

P(1,shopping)

ingredients

———9| F(1,dinner)

cook

~ el_failure
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This model could also be presented as the following database:

causal({ingredients,cook, ~el-failure},F(1,dinner)).
causal({P(1,shopping)},ingredients).

Now, how should the first statement

Joe: If it had not been for the failure, we would have had
dinner on time

be evaluated within this causal model? In symbolic form the
statement can be formulated as:

~ el-failure > F(1,dinner)

where el-failure and F(1,dinner) are propositional constants
with the obvious meanings. Clearly, in this case only two factors
are relevant. The scope of the above statement can be repre-
sented by the set (el-failure,F(1,dinner)}. which gives rise to
three permissible chronicles:

H1. (el-failure, F(1,dinner)}

H2. {~el-failure,F(1,dinner)}

H3. fel-failure,F(1,~dinner)]

- (to each of these chronicles one must add the invariant set
{P(1,shopping), ingredients, cook/. to obtain the full
permissible history).

It is easy to see that the following counterfactual holds:
~el-fatlure > F(1,dinner)
The next statement is

Jim: You're wrong. If the cook left, you might still not have
had dinner on time, even in the absence of the failure.
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In symbols:
(~ cook A ~ el-failure) > MF(1,~dinner)

This obviously holds in the model, and indeed, the following
stronger statements also holds:

If the cook left, you would not have had dinner on time,
even in the absence of the failure.

In symbols:
(~ cook A ~ el-failure) > F(1,~dinner)

The truth of this counterfactual implication can be seen by in-
spection into this picture:

[F(1, ~ dinner)]
[ingredients, cook, el_failure] /

T~ [F({, dinnen)]

7 [ingredients, cook, ~ el_failure] st [F(1, dinner)]

[P(1, shopping}]

‘;\\ [F(1, ~ dinner)]
\ [ingredients, ~ cook, el_failure] — .
\ =~ [F(1, dinner)]
\

\
A lingredients, ~ cook, ~ el_failure]=e==="" [F(1, ~ dinner)]
= [F(, dinner)]

Joe's next statement in the conversation, "what I mean is that
if there were no failure and the cook agreed to stay, we would
have had dinner on time", is simply the counterfactual

(cook A ~ el-failure) > F(1,dinner)

which clearly holds.
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However, consider the following answer:

Jim: You're wrong again. If you had not been to the shop to
buy the ingredients, you would not have had dinner on time,
even if the cook stayed and there were no electrical failure.

In symbols:

(cook A ~ ingredients A ~ el-failure A ~P(1,shopping)) >
F(1,~dinner))

Here the scope is changed such that in principle, 15 permis-
sible chronicles are taken into consideration. The only
chronicles corresponding to a true antecedent of the counter-
factual in question are:

H1: {P(1,~shopping), ~ingredients,cook, ~el-failure,
F(l,dinner)}

H2: P(1,~shopping),~ingredients,cook, ~el-failure,
F(1,~dinner)}

By our definitions, H2 is selected in this case. The validity of
this counterfactual can be verified by inspection into the above
diagram. - The next statement is

Joe: I don't agree. Somebody else might have brought the in-
gredients. As long as the cook has got the ingredients and
there is no electrical failure, we shall with necessity have
dinner on time.

In symbols:
(cook A ~ el-failure A P(1,somebody) > NF(1,dinner)
The evaluation of this statement involves an expansion of the
list of facts with the fact ~P(1,somebody). Obviously, this also

means that the scope is expanded. The causal model is expanded
with the statement:
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causal({P(1,somebody)},ingredients).

Once more, we can construct all the permissible chronicles,
and it can then be verified that the statement is true
(F(1,dinner) holds in all those chronicles in which the
antecendent is true, so this consequence is true with necessity).

The new causal model can be presented graphically in the fol-
lowing way:

P(1,somebody)
P(1,shopping) llngredients

> Cook F(1,dinner)

———pi~el-failure

The next move in the debate is similar from a formal point of
view; it involves a new model with the fact unchanged-mind,
and an extended causality relation:

Jim: Well, the cook might change his mind because of all
your quarrelling. Again, in that case there would not be din-
ner on time, even if there were no electrical failure.

P(1,somebody)

P(1,shopping) ingredients

unchanged-mind »| F(1,dinner)

- [Cook

~————1el-failure
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With the new scope and the new model it can easily be verified
that

(~ el-failure A ~ unchanged-mind ) > ~ F(1,dinner)

In the next part of the conversation yet another new complex
is introduced:

Joe: Well, we might have had dinner on time, if I had or-
dered some ready-made dinner. The electrical failure could
not have prevented the dinner in that case.

P(1,somebody) ready made d.
P(1,shopping) Ingredients
unchanged-mind »| F(1.dinner)

» [COOK

———p1~el-failure

With this new complex and the new fact: ~ready-made_d., it
can be shown that

(el-failure A ready-made_d) > NF(1,dinner)

holds for the scope in question (we take 'could not...prevent' as
indicating necessity).

The conversation is concluded by the statement
Jim: I think you're wrong again. The cook is a union man.

He will bar the door to the delivery of the ready-made din-
ner, since the ready-made dinner company takes away jobs
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from proper cooks. But if the cook leaves, the ready-made
dinner can be delivered.

Here, the causal model becomes even more complicated:

ready made d.
P(1,somebody) ~ cook
P(1,shopping) L«ngredients

unchanged-mind |—a| F(1.dinner)

» [COOK

———{-cl-failure

As the definition of an INUS-condition suggests, there can be
more causal complexes for an effect. The sets of conditions of
two causal complexes for some effect E may be disjoint, but they
may also have a non-empty intersection. It is interesting that in
the present model the proposition cook as well as its negation
~cook appear in two parallel complexes. With the assumed
scope and the above model the counterfactual

(~cook A ready_made_d) > NF(1,dinner)
is true. - One might now fear that it holds that

(cook > F(1,dinner)) A (~cook > F(1,dinner))
since cook and ~cook are both INUS-conditions in complexes
leading to the same effect F(1,dinner). However, with the true

history

{P(1,shopping),ingredients,cook,
el-failure,~ready_made_d, F(1,~ dinner)}
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and the described causality relation, the counterfactual
~cook > F(1,dinner)

does not hold. This can be seen by considering the permissible
history

{P(1,shopping),ingredients,~cook,
el-failure,~ready_made_d, F(1,~ dinner)).

PERSPECTIVES

As we have already suggested we do not consider the CIMP
system to be in any sense finished. On the other hand, we believe
that ideas like the ones proposed here should be included into a
general account of causal and counterfactual reasoning.
Moreover, we think that these ideas have far-reaching
consequences. The dinner scenario is clearly a toy example, but
it exhibits some patterns of reasoning which are crucial for
many (partly overlapping) issues within real information
systems:

e artificial intelligence: it is clear that CIMP implements several
kinds of reasoning, and moreover, that it maintains an affinity
to natural language, which also makes it a candidate for
natural language understanding ([Hasle and @hrstrgm 1992]);

* updating databases: the non-monotonic growth of information
in databases is in fact a very general problem, having to do with
how to maintain consistency. The non-monotonic features of
CIMP illustrate this kind of problems, and some ways of
handling them are suggested;

¢ planning: the construction of a number of futures with respect
to a notion of relevance (scope) and a set of underlying causal
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assumptions is essential in many planning systems (in chapter
3.7, we take up the issue of time in planning systems at a more
general level);

* diagnosis: the fact that the techniques of CIMP are directly
applicable to diagnosis has been investigated at some length, e.g.
in [Pedersen et al. 1994]. Here it is shown that the CIMP-logic
can be used with considerable generality for error diagnosis as
well as medical diagnosis;

* decision support and judicial systems: the relevance in decision
support is an obvious consequence of the points above. - One
interesting application of CIMP shows its more specific
relevance in judicial systems. Anne Rasmussen [1993] has
analysed the Danish authorities' official report on the fire
catastrophe on the ferry boat Scandinavian Star (which took
place on the 7th of April 1990). In her analysis of the report,
Rasmussen applied the CIMP notions and thus obtained a
logical - as well as computable - model of the reasoning used.
This kind of reasoning studied is furthermore used for
determining the responsibility for what went wrong. The
conclusions of the report are in the real world used both for
deciding how to avoid similar events in the future, and for
deciding upon verdicts in the case. Since CIMP can model such
reasoning, it could be used for similar decision-making purposes
(although we do not recommend that verdicts be based upon it).

Thus, we are suggesting that the CIMP-ideas are highly
versatile for information systems. If that is so, the reason for this
is really to be found in its temporal nature rather than in any
special other merits which it might have. Conceptually, CIMP
formalises and unifies a number of features of reasoning within
a temporal framework - specifically, a metric branching time
model. Therefore, the specialised study of this chapter in fact
also holds more general implications for the concept of time and
its importance.



3.5. LOGIC OF DURATIONS

The logics studied so far have mainly been based on some no-
tion of temporal instants - rather than durations. Of course, we
have also seen some exceptions to this rule, for instance John
Buridan's thoughts presented in chapter 1.5, or Zeno Vendler's
distinctions mentioned in chapter 1.6. The prevalence of in-
stant-based logics has not been left unchallenged, though: from
a fairly early stage of the development of formal semantics for
natural languages it has been argued almost vehemently that
human language and reasoning call for an interval-based
rather than point-based semantics. This was emphasised and
formally elaborated in [Dowty 1979], which forms a milestone in
this respect. Similar discussions, albeit from rather different
perspectives, have been going on within philosophical logic as
well as computer science. For instance, in philosophical logic
Peter Simons [1987] has carried out some careful studies of
'‘temporal parts' and Antony Galton has - with reference to con-
ceptual structures in natural language - argued that temporal
logic should take heed of durations, and worked out proposals
for meeting this requirement [Galton 1984]. Similar
considerations have been put forward within artificial
intelligence research, notably by Allen [1983, 1984], Allen and
Hayes [1985, 1989], and Peter Ladkin [1987]. In theoretical
computer science, Ben Moszkowski [1983], Roger Hale [1987]
and others have shown that at least for some purposes
durational logic offers more than instant logic.

There can be no doubt that a fully adequate temporal logic
must be able to account also for durations; and the idea that du-
rations should take conceptual priority over instants is worth
considering. But that does not mean that instant-based ap-
proaches must be discarded altogether. On the contrary, many
aspects of temporal concepts and phenomena are best studied
within such logics - if for no other reason, then simply because
they are generally speaking less complex. The fact that mea-
ningful and fruitful studies can be conducted within instant-

303
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based frameworks should have become quite clear from previ-
ous discussions.

In fact, the logic of durations was studied even some years be-
fore Prior's rediscovery of tense logic. The first modern logician
to formulate a calculus in this field was A. G. Walker [1947].
Walker was, however, not concerned with temporal logic in any
general sense.

Walker considered a structure (S,<), where S is a non-empty
set of periods. This set is ordered by a partial ordering relation
'<', analogous to the before-after-relation among instants. Two
interesting and related aspects of this model should be men-
tioned right away: first, it does not seem counterintuitive to call
one period 'earlier' than another one, even if they 'overlap'. Thus
‘Mary opened the door before John rushed in' seems quite right,
even if John begins his rushing in before Mary concludes her
opening the door. Nevertheless, the 'a<b'-relation is to be
considered as 'strict' in the sense that no overlap between a and b
1s permitted. Second, since the ordering relation is only partial,
and since the notion of overlap has already made itself manifest,
it is interesting to consider also the latter relation, defined as

alb s ~(a<b v b<a).

This obviously corresponds to the idea of two periods a and &
overlapping each other. - Walker formulated an axiomatic
system using the following two axioms:

(W1) aja
(W2) (a<b Abjerc<d) oa<d

In relation to these axioms Walker was able to construct a set-
theoretic structure of triplets (A,B,C), where A, B, and C are all
sets of durations such that

1) A and B are non-empty
2) the union of A, B and C is the set of all durations
3) every element in A is before every element in B
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4) every element in C is overlapping some element in A as
well as some element in B.

Walker demonstrated that the structure of these triplets has
all the algebraic properties which we would intuitively expect
the structure of temporal instants to have. For this reason it
may be reasonable to view a temporal instant as such a
'secondary’ construct from the logic of durations.

As we have seen C. L. Hamblin contributed significantly to the
development of temporal logic in its very early period. More
than two decades later than Walker, Hamblin [1972] also put
forth a theory of the logic of durations. Hamblin was not aware
of Walker's work when he developed his theory [Hamblin 1972,
p. 331], but he achieved some similar results using a different
technique. Hamblin also considered a fundamental structure
consisting of a set of durations with a partial ordering relation
(S,<). In addition he defined the following relations for arbitrary
durations, where (a7 b) may be read 'b follows immediately
after o', and (a<b) may be read 'a is contained in b'.:

al b =4 (a<b A ~(3c: a<c A c<b))
azb =g Ve: (cla Dclb)

Using the definition of a7 b, Hamblin could also offer a derived
notion of an instant:

Any pair of durations (a,b) uniquely defines an instant if
and only if (a7 b).

We shall use expressions like as b7 ¢ for the conjunction of a1 b
and b7 c. Hamblin's axioms can be formulated in the following
way using our notation (and omitting external universal quan-
tification):

(Hamblin 1); ~(a<a)
(Hamblin 2): (a<b A c<d) > (a<d v c<b)
(Hamblin 3): a<b > (a3 b v(3c: al c1 b))
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(Hamblin 4): (afcrard Abic)obrd

(Hamblin 5): (ar b1 d rna1 c1 d) > b=c

(Hamblin 6): 3b: a<b

(Hamblin 7): 3b: b<a

(Hamblin 8): 3b: (bca A ~(b=a))

(Hamblin 9): ba > (T(a,p) 5T(b,p))

(Hamblin 10): Vb:(b<a > (Fc: c£b AT(c,p)) 5T(a,p))

It is interesting that Hamblin 9-10 express two features, which
are also known from lattice-based theories of mass terms [Link
83] and event structures [e.g. Bach 1986, Link 1987].
Specifically, (Hamblin 9) states a kind of dissectiveness: if some
proposition p 'is true with respect to' some interval a, and b is
contained in a, then p is true also with respect to 5. We might
also say that this expresses 'downwards inheritance'. In a dual
manner, (Hamblin 10) expresses a sort of cumulativity.
However, it is well known, at least from later literature on du-
rations, that not all 'properties' of durations behave like this:
thus for instance, an 'accomplishment' like 'Mary baked a cake'
(say, from 1 p.m. to 4 p.m.) does not entail that Mary baked a
cake during the sub-periods, say, from 2 p.m. to 3 p.m. (Note
that even though it may be tempting to say that Mary was
‘engaged in the process' also during all sub-periods, she certainly
did not accomplish it during any of those). It is therefore clear
that Hamblin's theory is confined to certain subsets of
(properties of) durations.

During the last decade various kinds of durational logic have
been studied and applied within artificial intelligence research
and natural language understanding (usually under the hea-
ding 'interval semantics', which seems more popular in this sci-
entific community). Two researchers in this field, who have
contributed significantly to the development of durational logic,
are James Allen and Patrick J. Hayes [1985, 1989]. Like Walker
and Hamblin, Allen and Hayes have taken as their starting
point the study of the structure of the partially ordered set of
durations. They have suggested an axiomatic system, which we
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reformulate as (AH 1-5). We shall use v for a generalised kind
of 'exclusive disjunction’, i.e.

(P1vp2) =~@P1=p)).

A generalised definition can be given as

(1Y ... YPN) Sdef Nig NP =
(PyA APig A Piyg A APN)

The axioms are:

(AH1) (arcarardabic)obird

(AH2) (@rbacid)o(ardyZFearerdyIfcifib)
(AH3) 3b,c:brarc

(AH4) (azbrd Aarcid)>ob=c

(AH5) a1b>FeVed: (c1arbido>crerd)

This axiomatic system obviously takes the 1-relation as the
primitive. However, this does not constitute any essential step
away from Hamblin's system, in which the opposite implication
of (Hamblin 3) can easily be proved. We therefore have as a
theorem

(Hamblin 3"): a<b =(a1 b v(3ec: a1 c1 b))

which may obviously be used as a definition of the <-relation in
the AH-system. With this definition (Hamblin 2) is provable in
the AH-system. (AH1) and (AH4) are just (Hamblin 4) and
(Hamblin 5), and (Hamblin 6-7) are immediate consequences of
(AH3). Because of the exclusive disjunctions in (AH2), we can
derive ~aJ1 a, i.e. (Hamblin 1). So it seems that (Hamblin 8) is the
only difference between the systems (if we disregard Hamblin's
special requirements of cumulativity and dissectiveness, cf.
Hamblin 9-10).

It follows from (AH4) that the e in (AH5) is uniquely deter-
mined by the durations a and b. Following Allen and Hayes, we
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shall call this resulting duration the sum of @ and b, i.e. e=a+b.
However, we point out that this sum-operator is not commuta-
tive and is in effect a kind of concatenation rather than a 'usual'
sum-operator.

Allen and Hayes have shown that two arbitrary durations can
be related in exactly 13 different ways, which can all be ex-
pressed solely in terms of the 7 -operator and equality:

a meets b =gral b
atsmetbyb=prbra

a is before b sjr Fe:arc1 b

a is after b =g, Je: b1 ci a

a starts b =g J: b=a+c

a is started by b =4 Zc: a=b+c

a finishes b s4r Jc: b=c+a

a is finished by b =5,r T: a=c+b

a overlaps b =4 3,d,e: a=c+d A b=d+e
a is overlapped by b =4, 3c,d,e: (b=c+d A a=d+e)
a during b =4 Jc,d: b=c+a+d

a contains b 53¢ Jc,d: a=c+b+d

a equals b =4,ra=b

It is very illuminating to study various combinations among
these 13 relations. Using Allen's and Hayes' axiomatisation, it is
possible to implement a reasoning system, by means of which
statements like

If a overlaps b and b is started by ¢, then a overlaps c;
If a finishes b and b starts ¢, then a during c;
If @ during b and b overlaps c, then a is not met by ¢;

can be proved. This kind of reasoning will be important in any
system, which should be able to perform or simulate common-
sense reasoning involving time periods. Consider for instance
this situation:

Mary was reading during the postman's visit. John finished
his beer just when the postman left.
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It is clear that John's and Mary's respective activities are not
explicitly related by the above statements. On the other hand, it
is also clear that a certain temporal relation must obtain be-
tween them. The information in this scenario can be captured in
durational logic in terms of the following two statements:

The postman's visit takes place during Mary's reading.
The postman's visit finishes or is finished by John's drinking
the beer.

In the logic of durations it can be formally demonstrated from
these statements that the duration during which 'John is
drinking the beer' is during, overlaps, or starts 'Mary's reading'.
- The task of carrying out all such kinds of reasoning about du-
rations is by no means simple (see also (Knight & Jixin 1992]).

We have already pointed out that for some durations, or
perhaps rather, certain types of events, there are no sub-parts;
for instance, if 'John opened the door' during some period a, it
will not be true to say that John opened the door during any sub-
interval b contained in a. In this case, dissectiveness does not
obtain (c¢f. Hamblin 9). When reasoning about durations we
often come across durations without parts corresponding to for
example opening a door. Allen's and Hayes' reason for excluding
in general the axiom (Hamblin 8) is precisely that they want to
study these so-called 'moments', which can be understood as
durations without any internal structure (not to be confused
with 'instants'). It appears that nothing is contained in a
moment, and that two moments cannot overlap each other.

Hamblin's (as well as Allen's and Hayes') durational logic is
based on a conception of durations as something similar to real
intervals. A number of interesting theorems can be proved from
Hamblin's axioms, but the system is not sufficient to establish
that linear intuition about time on which it is obviously based.
The reason for this is that there is nothing in (Hamblin 1-8) to
exclude a genuine branching time model. On the other hand, if
time should in fact be conceived as branching, then the
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'containment'-relation ~ in the above axioms will yield some
very strange results, and will be rather far from the inclusion
relation that Hamblin probably had in mind.

Peter Roper [1980] has developed a more fine-grained logic
from very much the same intuition as Hamblin's. Réper starts
from a non-empty set S of durations and a relation ¢ defined on
S, which should express the 'inclusion' relation among dura-
tions. Roper defines a P-frame as a structure (S, 5 <) satisfying:

(A1) Ifx<y,x'cx and y'cy, then x'<y".

(A2) If for every x'cx and y'cy there are x"cx'
andy''cy' such that x"'<y", then x<y.

(A3) If x<y and y<z, then x<z.

(A4.1) For any x, there exists x'cx and y such that x'<y.

(A4.2) For any x, there exists x'cx and y such that y<x'

(A5.1) For any x, y and z, if x<y and x<z, then there exists
y'cy and z'cz such that z'<y' or y'<z'.

(A5.2) For any x, y and z, if y<x and z<x, then there exists
y'cy and z'c z such that z'<y' or y'<z".

Obviously, (A5.1) corresponds to forwards linearity, whereas
(A5.2) ensures backwards linearity. On the other hand, there is
nothing in Riper's system to ensure the irreflexivity of the or-
dering relation.

Some of the further details of Réper's system are mainly con-
cerned with that distinction between dissective and non-dissec-
tive 'events', which we have already suggested. We shall reca-
pitulate the main problem by considering the following two
propositions:

p: '"Percival drinks a pint of bitter'
q: 'Araminta is in Oxford'.

Let us assume that both propositions are true for a duration a,
and let b be an arbitrary sub-duration, i.e. 5 ca. Then a proposi-
tion such as ¢ will also be true for the duration 4. Following
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Réper, we shall say that q is persistent (i.e. dissective). This can
be symbolically expressed as:

(T(a,g) Ab ca) > T(b,q)

A persistent proposition denotes 'a property' in Allen's termi-
nology. On the other hand, a proposition such as p may be false
for some or all sub-durations. That is, it is in general conceivable
that for some sub-duration b, the following formula holds:

T(a,p) Ab ca A ~T(b,p)

Without doubt, this is true for our present example. Suppose
that Percival drank one pint of bitter, beginning at 11:30 a.m.
and finishing at 11:40 a.m. Then it is false that he drank one pint
of bitter during the subinterval from 11:35 to 11:36. - Allen
reserves the term 'an event' for propositions of this type. The
distinction between these two types of propositions is central for
any attempt at establishing an adequate durational logic.

It is evident that Hamblin's theory (cf. Hamblin 9-10) is about
what Allen has called properties, that is, persistent propositions.
Roper, however, makes a distinction between the logic of what
he has called homogeneous sentences and the logic of 'other
sentences'. According to Roper a sentence p is homogeneous if
and only if it is 1) persistent (dissective) and 2) cumulative (i.e.
for any e, if p is true for all sub-durations of a, then p is true for
a).

To avoid terminological confusion, let us recapitulate the
major distinctions: in chapter 1.6, we briefly described Zeno
Vendler's famous four-fold distinction between verb phrases. It
seems fair to say, though, that the main distinction is between

(a) predicates, which are dissective and cumulative, and
(b) predicates, which describe 'non-divisible' phenomena.

The former we have called persistent; Allen calls them pro-
perties, and Roper collects them under the heading homoge-
neous. The latter are (somewhat misleadingly) called events by
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Allen. Further refinements of these distinctions may be found in
the work of Allen as well as other authors.

Roper's way of assigning truth-values to homogeneous sen-
tences closely follows the intuitions embodied by (Hamblin 9-10).
Roper introduces a valuation function V from pairs consisting of
a propositional variable and a time period into the truth values
{0,1}, in such a way that his V(p,a)=1 corresponds to Hamblin's
T(a,p). Roper defines a P-model based on the P-Frame (S,c,<)
as a structure (S,5 <, V), where the V-function satisfies

1) If V(p,x)=1 and y cx, then V(p,y)=1
(ii) If for every y cx there is a z such that z cy and
V(p,z)=1, then V(p,x)=1

The truth of a wif relative to the P-model is defined as

(P1) If p is a propositional variable, then PE, p iff
Vip,x)=1

P2) PE,~Aiff for ally cx, not P A

(P3) PE.AABiff P, A and PE,B

(P4) PE A vBiff for every y cx, there exists az cy
such that Pf=,A or PF,B

(P5) PE.A > Biff for every y cx, if P, A, then P, B

(P6) P [, GA iff for every y cx and all z with y<z, P=,A

P77 P _HA iff for every y cx and all z< y, P, A

It is possible to derive truth conditions for F and P:

(P8) PF,FA iff for all y cx, there exists z cy and w with
z<w such that P A

(P9) P[, PAiff for ally cx, there exists z cy and w with
w<z such that P, ,A

Roper has formulated an axiomatic system corresponding to
the P-models. One of the most interesting features is the fact
that the formulae
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A-PA
A>DFA

turn out to be P-valid (true in any P-model), and provable in the
corresponding axiomatic system. Roper points out that the
presence of these theorems is a "perhaps unexpected feature of
the system" [p. 459]. It is interesting that John Buridan in his
durational logic made a similar observation, as we have seen in
chapter 1.5. He introduced a distinction between relative and
absolute tenses. The above theses would also be valid in
Buridan's logic, provided that the past and the future are un-
derstood as relative in this context. However, Roper's logic of
homogeneous sentences contains no similar distinction.
Nevertheless, we shall show that Buridan's idea can also be in-
corporated into Roper's system.

In order to construct a semantical model for the logic of non-
homogeneous sentences, Roper has introduced an E-frame
(S,c,<) as a structure that satisfies the following conditions:

(D1) cis reflexive.

(D2) C s transitive.

(D3) < is transitive.

(D4) For anyx,y,x',y', ifx<y, x'cx and y'cy,
then x'<y'.

In addition, an E-model based on the E-frame (S, 5 <) is defined
as a structure (S,c,<, V). V is a function from wiff's into {0,1},
which satisfies this condition:

For any x in S, there exists a y cx such that either V(p,z)=1
for every z cy, or V(p,z)=0 for every z cy.

The truth of a wff relative to this E-model is defined as follows:

(E1) If p is a propositional variable, then
EE, p iff Vip,x)=1
(E2) EE ~Aiffnot EF,A
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(E3)
(E4)
(E5)
(E6)
(ET)
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EEF, AABiIffEF,Aand EF.B
EF,AvBiffEE,AorEF,B
EE.,A>5Biff (not EF,A)or EF.B
EF, GA iff for every y with x<y, EF,A
E . HA iff for every y with y<x, EfF, A

So far the semantics is exactly as it would be for an 'instant-
oriented' tense logic. However, in order to express a durational
equivalent of linearity and density we need two extra operators,
called L and W. These operators are defined by the following
semantic properties:

(E8)
(E9)

EF, LA iff for everyy withy cx, EF, A
Ef, WA iff for some y withx cy, EF, A

Consider now forwards and backwards linearity:

For any durations %, y, 2, if x<y and x<z, then either y<z,
z<y, or there is a duration w such that w ¢z and wcy.

For any durations x, ¥, z, if y<x and z<x, then either y<z,
z<y, or there is a duration w such that w ¢z and wcy.

Roper has argued that these properties correspond to the
following axioms: ’

(Ax1)
(Ax2)

(Fp AFq) o (F(p AFq) vF(Fp rq) vF(Wp A Wq))
(Pp APqg) > (P(p A Pg) v P(Pp Aq) vP(Wp A Wq))

Density is expressed as follows:

For any duration x there are durations y and 2, such that
y<z,y cx,and z Cx.,

which leads to the axioms (where M = ~L~):

(Ax3)

Lp > MFp
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(Ax4d) Lp oMPp

The truth conditions for F and P can easily be derived:

(E10)
(E11)

E |, FA iff for some y with x<y, EF A
E |5, PA iff for some y with y<x, EfF,A

(E10) and (E11) obviously give rise to what Buridan called an
absolute understanding of the tenses. The relative tenses may be
expressed as follows:

(E12)

(E13)

EE, F,A iff for some zc x there is a y with z<y
such that EF,A
E 5, PgA iff for some z< x there is a y with y<z
such that EfF A

It is easy to verify that Fr,; = MF and P,,; =MP. - Roper has
demonstrated that the axiomatic system for a minimal non-ho-
mogeneous durational tense logic, corresponding to a logic based
on (D1-4), would be the axioms of K; with the addition of these

axioms:

(MD1)
(MD2)
(MD3)
(MD4)
(MD5)
(MD6)
(MD7)
(MD8)
(MD9)
(MD10)
(MD11)
(MD12)

and the rules

L(p >5q)>(Lp >Lg)
~W~p oq) > (Wp > Wg)
WLp op

p>LWp

Lpop

poWp

Lp>LLp

WWp > Wp

Gp > GGp

Hp > HHp

MGp o> GLp

MHp > HLp
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(MDR1) Iftp,then*tLp
(MDR2) Iffp,then + ~W~p

We may call this minimal system for durational logic DK;. In
chapter 2.8 we have shown that for instant logic the usual
axioms for backwards and forwards linearity can in fact be
proved as theorems, if we instead adopt some considerably
simpler axioms. Similarly, we shall show that (Ax1-2) can be
proved on the basis of DK and some simpler axioms of linearity:

(Ax1"') (PFp > (Fp vPp vMWp)
(Ax2') (FPp o (Fp vPp vMWp)

In order to do that we need some lemmas.

Lemma 1. DK; F H(L~W~p > (Hp 5q)) v H(Hqop))

Proof:

The proof is carried out by reductio ad absurdum.

N ~(H(L~W~p o> (Hp oq)) vH(Hqop))) (ass.)
(2) ~H(L~W~p o (Hp oq)) (1)

(3) ~H(Hqop)) (1)

(4) P(L~W~p A Hp A ~q) (2)

(5) P(Hg A ~p) (3)

(6) HFP(Hgq A ~p) (5, Ad)

(7 P(L~W~p A Hp A ~q AFP(Hg A ~p)) (4,6)
(8) P(L~W~p A Hp A ~q AP(Hg A ~p)) v

(L~W~p A Hp A ~q AMW(Hg A ~p)) v

(L~-W~p A Hp A ~q AF(Hq A ~p)) ) (7, A7)

But (8) is clearly impossible since all the components in the
disjunction are impossible.

Lemma 2.

DK+ (HWp > ~W~q) AnH(p > Hg) A H(Pp >q) A Pp) DHg
Proof:

By substitution in Lemma 1 we find
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H(L~W~q > (Hq o~p)) vHH~p 5q))

Therefore, the problem can be split into two cases: in the
first case H(L~W~q o (Hq 5 ~p)) is assumed, and in the
second H(H~p o ¢)) is assumed. In the first case we make
the following derivation:

1 HWp > ~W-~q) (ass.)

(2) H({p > Hg) (ass.)

(3) H(Pp oq) (ass.)

(4) Pp (ass.)

(5) H(L~-W~q > (Hq > ~p)) (ass.)

(6) HL(Wp > ~W~q) (1, MD12)
(7 H(LWp o L~W~q) (1, MD1)
(8) H(LWp > (Hq > ~p)) (5,7)

(9) H(p > (Hq > ~p)) (8, MD5)
(10)  H(p>-~p) 2,9
11) ~P(p Ap) (10)

(12) ~Pp (11)

(11) contradicts contradicts (4). This means that the
assumptions in the antecedent rule out the first case. In the
second case, we can argue in the following way:

(1) H(p o5q) (ass.)

(2) H(p - Hg) (ass.)

(3) HPp oq) (ass.)

(4) Pp (ass.)

(5) H(H~p 59)) (ass.)

(6) H(~q > Pp)) (5)

(7 H(~q 5q)) (6 and 3)
(8) ~P(~q A ~q)) ¥

9) Hq (8)
QED.

Now, (Ax1) can be proved from lemma 2 in the following way:
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(HWp > ~W~g) AH(p > Hg) AH(Pp 5q) A Pp) o Hg
(HWp >~W~q) AH(p o Hg) AH(Pp oq)) > (Pp > Hg)
~(Pp > Hg) > ~(H(Wp >~W~q) A H(p > Hg) A H(Pp 5 q))
(Pp AP~q) 5(P(Wp AW-~q) vP(p AP~q) vP(Pp A ~q))

From this (Ax1) can be obtained by substitution. In a similar
way it is possible to prove (Ax2) in a system enlarged with
(Ax2'). - In this way we have demonstrated that

DK; U{Ax1'} F Ax1, and DK; U {Ax2'} F Ax2
It can also be demonstrated that
DK, u{Ax1} F Ax1', and DK;  (Ax2) F Ax2'

This means that it is in fact a matter of choice whether we
want to use {Ax1,Ax2)} or {Ax1',Ax2'} to express linearity. As we
have seen Roper uses {Ax1,Ax2}, but Ax1' and Ax2' are obviously
simpler than Ax1 and Ax2.

It is worth considering whether there is a durational parallel
to Prior's idea of instant propositions. In fact, (E2) corresponds
to this Priorian postulate within the third grade:

T'(x,~p) = ~T(x,p)
and that (E3) corresponds to
Tx,p rq@) =(T(x,p) A T(x,q)).

For that reason this logic can be treated along the lines of
Prior's third grade, now using 'duration propositions' instead of
instant propositions. Moreover, this can in principle be done not
only with a linear conception of time, but also for a logic of
durations based on a branching time. On the other hand, it must
be recalled that we are currently dealing only with a non-
homogeneous durational logic.
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As we mentioned at the beginning of this chapter, a number of
researchers have argued that representations of time based on
intervals are more natural than instant-based systems. Even if
the arguments for the conceptual priority of durations over
mathematical instants seem convincing, it must also be
admitted that the notion of durationless instants is very useful in
many cases - especially for the description of change. For this
reason, the idea of constructing instants from durations - as
proposed by Walker and Hamblin - is of considerable interest.
Such constructions may turn out to be very important, if they
can be shown to give rise to a full instant-logic.

But it should also be mentioned that the project of durational
logic, respectively interval semantics, has been attacked. There
can be no doubt that for natural language some idea of
durations is required - and hence, that conceptually one must
(sometimes) speak of durations. But that certainly does not
prove that the desired notions of duration could not be built
within an instant-logic, a point which has been put forcefully
and elegantly by P. Tichy [1985] as well as A. Galton {1990]. This
issue cannot be expected to be settled soon, but regardless of the
priority between these two conceptions, both approaches are
useful for the general study of time.



3.6. GRAPHS FOR TIME AND MODALITY

As we have mentioned in part 2, C.S. Peirce established a cal-
culatory technique of logical graphs. These so-called existential
graphs have been studied carefully by computer scientists and
others for some years. Since the beginning of the 1980's, John
Sowa [1984] and others have tried to systematise a modern ver-
sion of Peirce's existential graphs - and indeed, to implement it
computationally. (A somewhat different but also highly
interesting modernisation is Harmen van den Berg's
'Knowledge Graphs' [1993a].) It seems that the modern version
of the Peircean graphs known as 'conceptual graphs' is useful
within artificial intelligence in a broad sense - including
interfaces to databases, deductive databases, and the like. In this
chapter we shall study the Peircean ideas and some of the
problems Peirce left open. We shall focus on the 'graphical’
representation of tempo-modal problems.

The graphs which C.S. Peirce introduced in his logic are divi-
ded into 3 classes: the Alpha, Beta, and Gamma graphs. In all of
them the statements in question are written on the so-called
'sheet of assertion’, SA. The most simple statement is the empty
statement, which is supposed to hold according to the only axi-
om in the Peircean Alpha-system. Propositions on the SA may
be enclosed using so-called 'cuts', which in fact correspond to
negations (we also speak of 'negated contexts'). That is, the fol-
lowing combination of graphs means that P is the case, @ is not
the case, and the conjunction of § and R is not the case.

P

O

320
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Here the box represents the SA, whereas the curved closures
symbolise the cuts, i.e. the negated contexts. In terms of the
established formalism of propositional logic, the above graph is
equivalent to

PA~Q@A~(SAR)

It is obvious that such conjunctional forms are rather easy to
represent in Peircean graphs. Disjunctions and implications
are, however, slightly more complicated. The implication (P>Q)
is represented by the following graph

p

<

In standard formalism this graph can be expressed as
~(PA~@Q), which is exactly the definition of material implication
in terms of negation and conjunction.

It is a remarkable theoretical result that Peirce's Alpha graphs
correspond exactly to standard propositional calculus (cf. John
Sowa [1992b]). His Beta graphs, in turn, correspond to first
order predicate calculus with a 'non-empty' quantification
theory (see below). With that restriction, this means that
theorems which can be proved in first order logic can also be
proved in terms of existential graphs. To prove a theorem
corresponding to a certain graph one must transform the
empty proposition on SA into the graph in question. A number of
rules are available for this procedure, and they will be stated in
the following. John Sowa [1992b] has argued that it is in many
cases significantly easier to prove a theorem by using the graphs
rather than the established logical procedures. He has
substantiated this view by giving some rather convincing
examples.



322 CHAPTER 3.6

In the Beta graphs Peirce introduced a predicate calculus with
a quantification theory formulated in terms of what he called
'lines of identity' (ligatures). These graphs are immediately
designed for existential statements. The statement which is now
normally formalised as Zx:q(x) is represented by the graph:

Universal statements have to be represented in a slightly more
complicated way using two cuts (i.e. two negations)
corresponding to the formula ~(3Fx:~qg(x)):

Roberts [1973, p. 138] enumerates the rules for the Alpha and
Beta graphs as follows:

R1. The rule of erasure. Any evenly enclosed graph and any
evenly enclosed portion of a line of identity may be erased.
R2. The rule of insertion. Any graph may be scribed on any
oddly enclosed area, and two lines of identity (or portions of
lines) oddly enclosed on the same area may be joined.

R3. The rule of iteration. If a graph P occurs in the SA or in
a nest of cuts, it may be scribed on any area not part of P,
which is contained by the place of P. Consequently, (a) a
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branch with a loose end may be added to any line of identity,
provided that no crossing of cuts results from this addition;
(b) any loose end of a ligature may be extended inwards
through cuts; (c) any ligature thus extended may be joined
to the corresponding ligature of an iterated instance of a
graph; and (d) a cycle may be formed, by joining by inward
extensions the two loose ends that are the innermost parts
of a ligature.

R4. The rule of deiteration. Any graph whose occurrence
could be the result of iteration may be erased. Consequently,
(a) a branch with a loose end may be retracted into any line
of identity, provided that no crossing of cuts occurs in the
retraction; (b) any loose end of a ligature may be retracted
outwards through cuts; and (¢) any cyclical part of a
ligature may be cut at its inmost part.

R5. The rule of the double cut. The double cut may be
inserted around or removed (where it occurs) from any
graph on any area. And these transformations will not be
prevented by the presence of ligatures passing from outside
the outer cut to inside the inner cut.

In addition to these rules there are two axioms: the empty
graph (SA) and the unattached line of identity. From these two
axioms it is possible to derive a number of theorems and rules
using (R1-5). For instance, the graph corresponding to the
following implication

Vx: q(x) o Fx: q(x)

turns out to be provable, as demonstrated by Roberts {1992]. The
axiom of the unattached line of identity has a crucial réle to play
in this proof. This means that quantification cannot be empty in
the logic of the Beta graphs (which is in fact also the case with
Prior's quantification theory).
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THE NEED FOR MORE THAN ALPHA AND BETA GRAPHS

The logic of Beta graphs is clearly useful in many cases. Peirce
realised, however, that the Alpha and Beta graphs are not
satisfactory in all cases. For instance, he considered the
following two propositions (see [CP 4.546]):

(1) Some married woman will commit suicide, if her
husband fails in business.

(2) Some married woman will commit suicide, if every
married woman's husband fails in business.

Peirce argued that these two conditionals are equivalent if we
analyse them in a merely classical and non-modal logic - i.e. in
terms of Beta graphs within his own logical system. For the
sake of simplicity we reformulate the problem using only
predicates with one argument.

According to Peirce's rules for Beta graphs and their lines of
identity, the graphs corresponding to (1) and (2) can be proved
to be equivalent, i.e.

S| 7 N

- where fail(x) means 'x is married to a businessman who fails
in business', and suicide(x) means 'x commits suicide'. This
equivalence can be established by the rules of transformation for
Beta graphs. The two graphs respectively correspond to the
following two expressions of standard predicate notation (where
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quantification is understood to be over the set of women married
to businessmen):

(1a) (Fx)(fail(x) > suicide(x))
(2a) (F)(Vy)fail(y) > suicide(x))

Both of these expressions are equivalent with
(3 x)~fail(x) v (Ix) suicide(x)

The inference from (2a) to (1a) appears rather natural,
whereas the opposite inference is clearly counterintuitive.
Nevertheless, (1a) and (2a) turn out to be logically equivalent, as
long as we are moving strictly within classical predicate logic,
respectively the Beta graphs. Therefore, as long as we are trying
to represent our case within those systems, we are obliged to
accept the counterintuitive inference.

However, it may be more natural to formulate the problem in
terms of three predicates, so let wife(x) stand for 'x is the wife of
a businessman'. When the statements (1) and (2) are
represented with three predicates, the graphs in question will be:

e (€D
& D

Again, these graphs can be shown to be equivalent. Essentially,
their equivalence is due to the fact that the term wife is outside
the scope of the negations. Therefore, the rules of iteration and
deiteration for Beta graphs can be applied to the inner copies.
The proof using Beta graphs could run as indicated below.
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wife —d wife —J

i
ek
~—

TR D

wife wife

>
(3)

0@

Step (1) in the above deduction is the introduction of a double
cut in the first graph. In step (2) iteration is used, and in step (3)
the rules of erasure and deiteration are used; a few other rules
are also used, but the details are omitted here. - In every step the
opposite operation is also allowed. The only counterintuitive step
seems to be the implication from right to left in (3).

In terms of standard formalism (1) and (2) are represented by

(1b) (3 x)(wife(x) A (fail(x) > suicide(x)))
(2b) (T x)wife(x) A (Yy)(wife(y) > (failly)) > suicide(x))

Using fundamental equivalences from first order logic, (1b)
and (2b) can be written as disjunctions
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(1b") (Ix)(wife(x) a~fail(x)) v (Ix) (wife(x) A suicide(x)))

(2bY)  (Fx)((wife(x) A Fy)(wife(y) A ~fail(y)) v
(Fx)((wife(x) A suicide(x)))

By the 'omission' of wife(x) in the first part of the disjunction in
(2b"), it becomes evident that (1b") follows from (2b'). That is,
they are both equivalent to

(Ix)(wife(x) A ~fail(x)) v (IxNwife(x) A suicide(x))

Peirce stated that the equivalence of these two propositions is
"the absurd result of admitting no reality but existence" [CP
4.546]. As Stephen Read [1992] has pointed out, Peirce's analysis
is a strong argument against anybody inclined to assert that
conditionals in natural language are always truth-functional.
But the Peircean analysis is also an argument for the need of a
new tempo-modal logic. Peirce formulated his own solution in
the following way:

If, however, we suppose that to say that a woman will
suicide if her husband fails, means that every possible
course of events would either be one in which the husband
would not fail or one in which the wife will commit suicide,
then, to make that false it will not be requisite for the
husband actually to fail, but it will suffice that there are
possible circumstances under which he would fail, while yet
his wife would not commit suicide. [CP 4.546]

This means that we have to quantify over 'every possible
course of events'. Prior's tense-logical notation systems provide
the means for doing just that. The operator suited for the
problem at hand is G, corresponding to 'it is always going to be
the case that'. As we have seen Prior established a system
designed to capture Peirce's ideas on temporal logic -
appropriately called 'the Peircean solution' (see chapter 2.2 and
2.6). In the Peircean system, G means 'always going to be in
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every course of events'. Using the operator in this way, we can
express (1) and (2) as respectively

(10) (3 x)G(husband_fail(x) > suicide(x))
(2¢) (3 )GV y)husband_fail(y) o suicide(x))

(It should be mentioned that a linguistically more appropriate
representation perhaps should take the form N(p o Fg).
However, (1c) and (2¢) are sufficient for the conceptual
considerations which are important here.)

(1c) clearly means that there is some married woman w for
whom

(1d) (~husband_fail(w) v suicide(w))

holds at any time in any possible future course of events. (2¢)
means that there is a married woman w for whom

(2d) (3 y) ~husband_fail(y) v suicide(w)

holds at any time in any possible future course of events.

For this reason it is formally clear that (1c) entails (2¢), but not
conversely. And this corresponds exactly to intuition with
respect to the two statements (1) and (2): the inference from (1)
to (2) is valid, but Peirce was justified in maintaining that the
inference from (2) to (1) must be rejected.

Generally speaking, some kind of tempo-modal logic is
required for describing conditionals in natural language
reasoning in a satisfactory way - a fact which has quite recently
been more systematically expounded [Crouch 1993]. Peirce's
considerations on the example discussed in this section clearly
demonstrate that he realised this.
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THE GAMMA GRAPHS

Peirce himself made some attempts at solving the problems of
modality by introducing a new kind of graphs. In what he called
'The Gamma Part of Existential Graphs' [CP 4.510 ff], he put
forth some interesting suggestions regarding modal logic. Some
of his considerations on this topic were linked to what is now
called epistemic logic, i.e. the logic of knowledge. In the following
we shall describe his ideas.

In epistemic logic, the idea is that relative to a given state of
information a number of propositions are known to be true. In
Peirce's graph theory, propositions describing the information
in question should be written on the 'sheet of assertion' SA, using
just Alpha and Beta graphs. Other propositions, however, are to
be regarded as merely possible in the present state of
information. Peirce represented such propositions using
'broken cuts', combined with the 'unbroken cuts' which we
already know from the Alpha and Beta graphs. A broken cut
should be interpreted as corresponding to 'it is possible that not
...". This means that 'it is possible that ...' must be represented as
a combination of a broken and an unbroken cut:

Now consider a contingent proposition, i.e. a proposition,
which is possible, but not necessary according to the present
state of information.
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In this state the sheet will include at least two propositions:

Ve Ve
/ N\ oy \
W\, /
N N\

-

Now suppose that p is contingent relative to some state of
information, and that we then learn that p is in fact true. This
would mean that the SA should be changed according to the
new state of information. The graph corresponding to Mp
(‘possibly p') should be changed into the graph for 'it is known
with certainty that p', i.e. ~M~p. Obviously, this means that the
graph for M~p should be dropped, which results in a new (and
simpler) graph representing the updated state of information.
In this way Peirce in effect pointed out that the passage of time
does not only lead to new knowledge, but also to a loss of
possibility. With respect to this epistemic logic Don D. Roberts
[1973, p. 85] has observed that the notions of necessity and
possibility both may seem to collapse into the notion of truth.
Roberts himself gave an important part of the answer to this
worry by emphasising how "possibility and necessity are
relative to the state of information" [CP 4.517], and that there
will only be a total collapse in case of omniscience. In the context
of existential graphs Peirce in fact established an equivalence
between 'p is known to be true' and 'p is necessary'. In
consequence, 'p is not known to be false' and 'p is possible' should
also be equivalent in a Peircean logic. Therefore, the kind of
modal logic which Peirce was aiming at was in fact an
epistemic logic, which should be sensitive to the impact of time.
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He furthermore realised that it would be useful not only to have
a logic for knowledge in a strong sense, but also a logic for
confidence:

The idea of time really is involved in the very idea of an
argument. But the gravest complications of logic would be
involved, if we took account of time so as to distinguish
between what one knows and what one has sufficient
reason to be entirely confident of. [CP 4.523]

TEMPO-MODAL PREDICATE LOGIC AND EXISTENTIAL GRAPHS

Peirce was concerned with the epistemic aspect of modality,
but he also wanted to apply his logical graphs to modality in
general - that is, to use them for representing any kind of
modality. However, he was aware of the great complexity in
which a full-fledged logic involving temporal modifications
would result. This is probably the reason why Peirce's
presentations of the Gamma graphs remained tentative and
unfinished. In the following we intend to explain some of the
problems he was facing, and suggest some ideas regarding the
possible continuation of his project.

Our analysis of the problem from [CP 4.546] suggests that the
two statements should in fact be understood as follows:

(1) Some married woman will (in every possible future)
commit suicide if her husband fails in business.

(2") Some married woman will (in every possible future)
commit suicide if every married woman's husband fails in
business.

We intend to formulate a graph-theoretical version of the
tense-logical solution. So, we have to make sure that there are
proper graphical representations of (1') and (2') such that the
graphs are non-equivalent. In fact, it is not difficult to create
graphs corresponding to the modal expressions in (1') and (2").
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Obviously, a graph with a broken cut inside an unbroken cut
with g would clearly correspond to the statement 'in every
possible future q'. A representation of (1') and (2') could then be
(omitting the SA):

e 1 +
> &>

In order to treat problems like the one we have been discussing
we must be able to handle graphs involving the two kinds of cuts
(broken and unbroken) as well as lines of identity. In
consequence, we have to establish rules for modal conceptual
graphs, specifically such that (1') and (2') would be non-
equivalent.

Harmen van den Berg [1993b] has shown how it is possible to
formulate propositional modal rules of inference corresponding
to conceptual graphs with broken as well as unbroken cuts.
However, the rule of iteration has to be slightly changed, and a
few extra rules have to be added in order to obtain the
propositional modal logic T' (sometimes called M), for which the
so-called rule of necessitation and the following axioms hold:

(Nec) If p is provable, then Np is provable

N{@ >q) o(Np oNg)
Np op

The question of a similar account for modal predicate logic is
left open by Harmen van den Berg. In order to obtain a predi-
cate modal logic we have to accept (R1-R5) for graphs only in-
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volving broken cuts in subgraphs which are untouched by the
operations of the rules. Since classical quantification rules
should be valid in general, it follows that any loose end of a liga-
ture may be extended inwards through broken as well as un-
broken cuts (cf. R3). The resulting minimal change of the R-
rules and van den Berg's rules then leads to the following rules:

R1'. The rule of erasure. Any evenly enclosed graph and
any portion of a line of identity evenly enclosed by unbroken
cuts may be erased.

R2'. The rule of insertion. Any graph may be scribed on any
oddly enclosed area, and two lines of identity (or portions of
lines) oddly enclosed by unbroken cuts on the same area
may be joined.

R3'. The rule of iteration. If a graph P occurs in the SA or in
a nest of unbroken cuts, it may be scribed on any area not
part of P, which is contained by the place of P.
Consequently, (a) a branch with a loose end may be added to
any line of identity, provided that no crossing of cuts results
from this addition; (b) any loose end of a ligature may be
extended inwards through cuts; (¢) any ligature thus
extended may be joined to the corresponding ligature of an
iterated instance of a graph; and (d) a cycle may be formed,
by joining by inward extensions through unbroken cuts the
two loose ends that are the innermost parts of a ligature.
R4'. The rule of deiteration. Any graph whose occurrence
could be the result of iteration may be erased. Consequently,
(a) a branch with a loose end may be retracted into any line
of identity, provided that no crossing of cuts occurs in the
retraction; (b) any loose end of a ligature may be retracted
outwards through unbroken cuts; and (c) any cyclical part
of a ligature crossing no modal cut may be cut at its inmost
part.

R5'. The rule of the double cut. The double cut may be
inserted around or removed from any graph on any area.
And these transformations will not be prevented by the
presence of ligatures passing from outside the outer cut to
inside the inner cut through unbroken cuts.
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R6'. The rule of modal conversion. An evenly enclosed
unbroken cut may be replaced by a broken cut. An oddly
enclosed broken cut may be replaced by an unbroken cut.
R7'. The necessitation rule. If the graph corresponding to p
is provable, then the graph corresponding to Np is also
provable.

R8'. The distribution rule. The graph corresponding to
N(p A q) is provable if and only if the graph corresponding
to (Np A Ng) is provable.

The rule of necessitation implies the following rule:

(Nec N): If the implication (p o q) is provable, then the
implication (Np 5 Ng) is also provable.

This derived rule could also be stated directly in terms of
existential graphs. If we want the modal logic S4, we have to add
this rule:

The duplication rule. A combination of two cuts around a
graph (broken or unbroken cuts) may be duplicated. The
inverse operation is also allowed.

Using this rule we can prove the graph corresponding to the
axiom:

Np oD NNp

If we want the modal logic S5, we have to add the rule:

The generalised duplication rule. A combination of two cuts
around a graph (broken or unbroken cuts) may be
duplicated in random order. The inverse operation is also
allowed.
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With the generalised duplication rule, we can prove the graph
corresponding to the axiom:

Mp > NMp

The change from (R1-5) to (R1'-R8') seems to be minimal if
the system should include T. For that reason one may suspect
that the system with the two Beta axioms together with (R1'-
R8') is something rather close to the modal predicate logic
corresponding to T. But we shall suggest that something more
seems to be needed. As we shall see this idea can in fact be traced
back to the Peircean analysis.

The question regarding the relation between modal operators
and quantifiers is crucial for any modal predicate logic. Peirce
was aware of this problem. He stated:

Now, you will observe that there is a great difference
between the two following propositions:

First, There is some one married woman who under all
possible conditions would commit suicide or else her
husband would not have failed.

Second, Under all possible circumstances there is some
married woman or other who would commit suicide or else
her husband would not have failed. [CP 4.546]

It is very likely that what Peirce had in mind was the insight
that we cannot with complete generality derive x: Ns(x) from
N(Fx: s(x}). - that is, not without making some restrictions. This
is in fact a very old wisdom which was also known to the
medieval logicians. One cannot deduce 'there is a man who will
live forever' from 'it will forever be true that there is a man'.
However, the opposite deduction is clearly reasonable. In fact
the implication

(NEX) 3x: Ns(x) > N(3x: s(x))
or equivalently:
(NEX') M(Vx: s(x)) o Vx: Ms(x)



336 CHAPTER 3.6

turns out to be provable in predicate modal logic corresponding
to T. This theorem can be represented by the following graph:

Let an N-double cut be a broken cut inside an unbroken cut,
with nothing enclosed in the outer area except for portions of
lines of identity which pass from inside the inner area to outside
the outer area. We can then formulate a rule for modal graphs,
from which the graph version of (NEX) can be proved:

(R-NEX) Any oddly enclosed loose end of a ligature may be
extended outwards through an N-double cut.

- Any evenly enclosed loose end of a ligature may be
retracted inwards through an N-double cut.

It appears that we need a rule like (R-NEX) in order to
establish the graph-theoretical equivalent to a modal predicate
logic including T. We suspect that this rule can be made nicer
and more general. (How that should be done in detail will
depend on further logical investigations.) As far as we know,
Peirce did not investigate the corresponding logical relation
between the necessity operator and the universal quantifier. In
chapters 2.9 and 2.10 we discussed a certain relation between
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quantifiers and modal operators, namely Barcan's formula
[Prior 1967, p. 137 ff.]:

Vx: Ns(x) o N(Vx: s(x))
or equivalently
M(3x: s(x)) o Fx: Ms(x)

This formula corresponds to the following graph:

The validity of Barcan's formula within a modal system would
mean that for instance the following implication holds:

if 'at some future time there will be a suiciding wife',
then 'there is some wife who at some future time will
commit suicide'.

Such an implication seems not to be acceptable in the context of
Peirce's example, since it excludes the possibility that the
suiciding wife could come into being at some future time. As we
have seen, Barcan's formula is provable in S5, but not so in S4.
Therefore S4 could be a reasonable candidate for a modal logic
capable of 'solving' the Peircean example. But we have to be
cautious in trying to 'embed' S4 within the Gamma graphs.
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The rule of duplication for predicate modal logic must be
adapted very carefully such that Barcan's formula can not be
derived:

R9'. The duplication rule. A combination of two cuts around
a graph (broken or unbroken cuts) may be duplicated.
These transformations will not be prevented by the
presence of ligatures passing from outside the outer cut to
inside the inner cut through unbroken cuts.

Thus revised, the rule of duplication will obviously not validate
the Barcan formula. A generalised duplication rule, which can
yield a modal graph logic as strong as S5, should be formulated
in an analogous manner:

R10'. The generalised duplication rule. A combination of
two cuts around a graph (broken or unbroken cuts) may be
duplicated in random order. These transformations will not
be prevented by the presence of ligatures passing from
outside the outer cut to inside the inner cut through
unbroken cuts.

With this rule we can in fact prove the theorems of S5
including Barcan's formula. However, as we have argued the
logic Peirce needed to solve his problem should not allow for the
validity of Barcan's formula, since that would make it difficult
to give an account of the logical aspect of 'coming into being'. In
consequence it seems that the logic Peirce was looking for
should be weaker than S5. We shall suggest the modal predicate
logic corresponding to the system with the Beta axioms and the
rules (R1'- R9' + R-NEX).
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CONCEPTUAL GRAPHS AND TEMPO-MODAL LOGIC

Peirce clearly realised the need for more modal operators than
just one. Peirce's central ideas were in fact amenable to
systematisation in the form of tempo-modal calculi, as indeed
Prior showed, but these logics have so far not been formulated in
terms of Peirce's existential graphs. However, during the last
decade the study of so-called conceptual graphs has been
developed as a field within artificial intelligence and logic.
Conceptual graphs constitute a formal logical system based on
the ideas laid out in Peirce's existential graphs. The field was
first established by John Sowa [1984]. There are a few
differences between conceptual graphs and existential graphs,
first and foremost that

(1) in conceptual graphs 'contexts' are not in general
negated as in existential graphs, and

(ii) it is possible to treat variables, individuals and types in a
more direct and elegant manner in conceptual graphs.

For instance, Sowa [1992a, p. 22] represents the statement
'some dog does not eat meat' in the following way:

[DOG: *x]
-[[*x] « (AGENT) « [EAT] — (PATIENT) —» [MEATI]]

In the following, we shall use Sowa's notation for conceptual
graphs for our discussion.

During the last years some researchers have tried to
formulate various systems of temporal logic in terms of
conceptual graphs [Esch and Nagle 1992], [Moulin and Coté
1992]. There is, however, still a lot to be done in this area.

In order to formulate a graph-theoretical equivalent of Prior's
'"Peircean system' (and other relevant tempo-modal systems, for
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that matter) we shall need at least two tense operators
corresponding to past and future:

(P) -> [SITUATION: GRAPH]
(F) -> [SITUATION: GRAPH]

meaning respectively 'the situation GRAPH has been' and 'the
situation GRAPH will be'. We can define graphs corresponding
to Prior's H (‘has always been') and G (‘will always be'), i.e.

(H) -> [SITUATION: GRAPH]
(G) -> [SITUATION: GRAPH]

-[(P) -> [SITUATION: -{GRAPH]}}
=[(F) -> [SITUATION: -[GRAPH]]].

With such graphs we can also formulate fundamental tense-
logical theorems like, say HFg o q, in terms of conceptual
graphs.

We may need metric tense operators, which can be
represented graphically in the following way:

[TIME: t] -> (P') -> [SITUATION: GRAPH]
[TIME: t] -> (F') -> [SITUATION: GRAPH]

where t is any number (or integer if time is supposed to be
discrete). If (P') and (F') are taken to be primitive, we may
define (P) and (F) as

[TIME: *] -> (P") -> [SITUATION: GRAPH]
[TIME: *] -> (F") -> [SITUATION: GRAPH]

It is an open problem how a full tense logic should be
incorporated into the theory of conceptual graphs - in other
words, how the Gamma rules corresponding to Prior's tempo-
modal systems should be formulated. This problem seems to be a
rather complicated one.
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The analysis of the Peirce problem can also be formulated in
terms of conceptual graphs. Within this theory, the crucial
statements could be expressed in the following way:

(1) Some married woman will commit suicide if her
husband fails in business

[WOMAN: *x]

{WOMAN: *x] -> (MARRIED) -> [MAN] <-(FAILING)
]=>

][[WOMAN: *x] <- (AGNT) <- [SUICIDE]

(2) Some married woman will commit suicide if every
married woman's husband fails in business

[WOMAN: *x]
[
[WOMAN: @every=*y]
[WOMAN: *y] ->
(MARRIED) -> [MAN] <-
(FAILING) ]
=>
{
[WOMAN: *x] <- (AGNT) <- [SUICIDE]
]

where we define the graph [WOMAN: @every=*y] as an abbre-
viation of { [WOMAN: *y] A [*y] 1.
The graphs for (1) and (2) turn out to be logically equivalent.
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This is, however, not the case for the corresponding modal
statement:

(1) Some married woman will commit suicide if in every
possible future her husband fails in business

[WOMAN: *x]
(N)->
[ [
[WOMAN: *x] ->
(MARRIED) -> [MAN] <-
(FAILING) ]

=>

|
[WOMAN: *x] <- (AGNT) <- [SUICIDE]
]
]

(2") Some married woman will commit suicide if in every
possible future every married woman's husband fails in
business

[WOMAN: *x]
(N)->
[ [
[WOMAN: @every=*yl
[WOMAN: *y] ->
(MARRIED) ->
[MAN] <- (FAILING)

>

[WOMAN: *x] <- (AGNT) <- [SUICIDE]
]
L
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In this case there is only one modal operator and consequently
only two kinds of cut, and the rules (R1'-R9") and (R-NEX)
may still give us a very convincing logic. However, if we
introduce a separate future operator F along with the modal
operator N, things become more complicated. And of course, if
we wish to embed a tense logic within conceptual graphs, we
must include not only a future-operator, but also some past-
operator P. However, there is yet no graph-theoretical
equivalent to Prior's tense logics. It is a question for further
investigation how this should be done.

John Sowa [1992a, p. 26] has himself defined the tense
operators in terms of PTIM (point in time). For instance,

relation PAST(x) is
[SITUATION: *x] —
(PTIM) — [TIME] — (SUCC) — [TIME: #now]

That would allow us to refer to situational contexts. The relation
between this approach and the operator approach is rather
unexplored. Nevertheless, the way in which we dealt with the
Gamma graphs should provide useful clues as to how we may
proceed with the task of constructing tense-logical conceptual
graph theory.



3.7. TEMPORAL LOGIC AND
COMPUTER SCIENCE

The usefulness of systems of this sort [on
discrete time] does not depend on any serious
metaphysical assumption that time is discrete;
they are applicable in limited fields of
discourse in which we are concerned only
with what happens next in a sequence of
discrete states, e.g. in the working of a digital
computer. A. N. Prior (1967, p. 67]

The relevance of temporal logic within computer science was
realised in the course of the 1970s. Temporal logic has by now
become an established discipline within this science, but the first
researchers to take up the connection were not acquainted with
Prior's tense logic. The initial studies in the field were based on
Temporal Logic by N. Rescher and A. Urquhart [1971]. This
book was in fact dedicated to the memory of Arthur Prior, and
at any rate computer scientists would in due course also begin to
study Prior's own works on tense logic. The above quotation
makes it clear that one decade earlier it had occurred to Prior
himself that his tense logic might be useful in computer science.

One of the first computer scientists to realise the relevance of
temporal logic for the purposes of computer science was Amir
Pnueli. Pnueli has himself described [1994, personal
communication] how he was working on problems pertinent to
the logic of time, when in late 1975 or early 1976 Saul Gorn of
the University of Pennsylvania made him aware of Rescher's
book Logics of Commands. This book, however, turned out to be
of little relevance for Pnueli's purposes. But on the back of the
dust cover there was a reference to another book by the same
author, namely Rescher's and Urquhart's Temporal Logic.
Pnueli went on to study this book, where a firm basis for dealing
with temporal logic could be found.

Pnueli's pioneering work on temporal logic within computer
science, as well as subsequent work in this area, has been

344
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concerned not only with the application of temporal logic to
specific problems, but also with general theory development.
(This fact is highly evident in the contributions to the first
international conference on temporal logic in Bonn, 1994
[Gabbay and Ohlbach 1994]). Together with formal linguistics,
computer science is today a chief contributor to the continued
development in this field.

Temporal logic has become an important formalism for
various purposes within computer science, ranging from
fundamental theoretical issues to special types of application
software. One significant example of the latter type is natural
language understanding. In the context of this book we have for
obvious reasons been paying special attention, directly and
indirectly, to this problem domain. In natural language
understanding we have to deal with the problem of giving a
semantical representation of time, as it is manifest in linguistic
expressions (tenses, aspect, temporal connectives and adverbs)
[Hasle 1991]. An important goal of this kind of work is, of course,
to give a formal account of intuitively valid inferences. Broadly
speaking, this is tantamount to formalising rational common
sense reasoning involving time. Moreover, Martha S. Palmer et
al. [1993] have argued that the specific (i.e. context-dependent)
interpretation of tense and other temporal expressions in
natural language often requires common-sense reasoning.
Thus, studies in natural language understanding almost
irresistibly call for techniques from temporal logic, which is in
fact itself a theoretical field based on a study of valid common-
sense reasoning. Time and again, we have exemplified this by
scrutinising such deliberations, from Antiquity to the present
day. From this kind of investigation into natural language
understanding we are led to more general studies regarding the
representation (and manipulation) of temporal knowledge.
Such studies are immediately relevant for other issues within
artificial intelligence, where temporal logic is important, for
example when prediction, explanation, planning or similar
purposes are involved. In many expert systems, e.g. medical
diagnosis systems, the representation of time is essential.
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Likewise, robotical systems as a rule require that some
understanding of time must be simulated.

A most interesting application of ideas from temporal
reasoning can be found in planning systems. For the
construction of linear as well as non-linear 'planners', the
representation of time is fundamental [Shoham 1994, p. 199 ff].
In our opinion, all such applications of temporal logic should be
viewed as ultimately inspired from the study of valid common-
sense reasoning as embodied in elements of natural language.
This view can be supported by the careful work of R. S. Crouch
and S. Pulman [1993], who have specifically demonstrated how
a natural language interface to a planning system can be
constructed. In this connection they argue that the task of
building a natural language interface to an information system
is one of modelling the domain in question as a reasoning
system. Indeed, this way of relating natural language to
reasoning and logic may be seen as a modern version of the
medieval conception of logic discussed in part 1.

Time has shown, however, that the relevance of temporal logic
within computer science extends far beyond natural language
understanding and artificial intelligence. It can also be applied
in various phases of the system development process. Usually,
this process is divided into four consecutive phases: analysis of
the problem at hand, design, implementation, and validation.
(Sometimes validation is not counted as a separate phase;
moreover, it is generally recognised that the phases are not
clearly distinct. Rather, they overlap and are usually
reiterated). Temporal logic has proved its worth within each of
these phases. In design and implementation, it is used for
specifying properties that the system in question should possess.
In analysis, it plays the same réle as in common-sense
reasoning. In validation, its use is normally restricted to
verification, i.e. the task of proving that the program does have
the required properties (the other part of validation being
various ways of empirically testing the program). Obviously,
temporal logic can thus play a very general réle in system
development; it even appears that it may be a natural candidate
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for integrating the various phases, or at least relating them to
each other.

The fact that temporal logic can be used for specifying
computer programs, and for reasoning about them, has been
known for some years {Burstall 1974, Pnueli 1977, Manna &
Wolper 1981]. In particular, temporal logic has become an
important tool for the analysis of concurrrent (parallelistic)
programs. The main idea is that the execution history can be
described in terms of temporal logic, without necessarily
referring to specific program states or times. This means that
general properties of programs such as freedom of deadlock,
mutual exclusion etc. can be expressed in a very nice way in
terms of formulae of temporal logic.

Anyone who wants to use temporal logic has to choose between
its two major paradigms, namely A- and B-logic. Of course, that
choice may be seen as a choice between a syntax of tenses
(operator approach) and a syntax involving reification of time
(quantifier approach). With a B-logic it seems that one has to
formulate a theory of time as a structure. With an A-logic, on
the other hand, it is not required that any such structure be
specified - not immediately, at least. On the other hand, Erik
Sandewall {1992, pp. 609-610] has argued that the reified
approach should be preferred for reasons of notational
convenience. A similar answer has been presented by Yoav
Shoham [1994, p. 234 ff.], who has suggested a so-called 'time
map management' in which temporal reasoning is based on a
B-logic with 'points in time'. We agree that in many cases one
would like to refer to specific moments of time. However, as
demonstrated in previous chapters such references can also be
obtained in an A-logic, to which ideas from Prior's third grade
are added.

Roger Hale {1987] has used a well known programming
example known as 'The Towers of Hanoi' to illustrate some of
the ideas in so-called temporal logic programming. In the
following we shall make use of the same example in order to
clarify how temporal logic may be applied for specification
purposes.
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THE TOWERS OF HANOI

Let us assume that N different rings are given. The sizes of the
rings are 1, 2, ..., N. We shall use the size of each ring as its
name, i.e. the smallest ring is called '1', and so forth. The rings
can be placed on three pegs. At the beginning all the rings are
placed on the first peg in an ordered way as indicated on the

If N=4 as in the above figure, this state can be represented by
the following kind of proposition:

state({1,2,3,4](].[])

In any state the rings on each peg form a 'tower'. In general, a
state can be represented by a proposition of the form
state(A,B,C), which should be read as 'in the present state the
first tower corresponds to the list A, the second tower
corresponds to the list B, and the third tower corresponds to the
list C'. As can be seen we use PROLOG-like lists to describe the
states.

With this setting a game can be introduced. There is only one
rule in the game, called MOVE:

MOVE:

the player is allowed to pick any ring at the top of one of the
three pegs, and move it to any other peg, provided that this
move does not place the ring on top of some other ring
which is smaller than the one being moved.
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Strictly speaking, this is hardly yet a game, since no purpose or
goal has been stated; but for now, we wish to discuss some
properties of the game at this general level.

From the state at the beginning we can in two steps reach for
instance this state state(/3,4],[2],{1]), graphically:

There are N2 possible states, which may be numbered as sy, s2,
..., SM, where M=N3. To simplify matters, we shall currently
assume that the 'first' peg (A) is the one where the rings are
initially placed:

sy=state(1,....NJ[1[])

Using these atomic state propositions as primitives, we can
form a logical language in the usual way. We may also form
instant propositions as maximal consistent sets. Given the
underlying 'model’, it is sound to assume that the states are
mutually exclusive:

Fs;D~sj, wherei #j

This means that each maximal consistent set contains exactly
one 'atomic' (specifically, unnegated) state proposition. Thus,
given an instant proposition a; there is a unique state proposition
s; such that

Fa;Ds;

We want to know whether there is a series of possible moves
which can bring us from the initial state described by s;to some
other state s;. In order to discuss this problem, we need a
description of the possible moves in any conceivable state. Such a
description can be obtained in terms of metric tense logic. The
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permissible moves can be specified by the following implications,
which in fact form a complete inductive definition of the possible
future states, PFS"

PFS:

F (state(/X|AlB,C) A legal(X,B)) > MF(1)state(A,[X|B],C)
+ (state({X|ALB,C) A legal(X,C)) > MF(1)state(A,B,[X|C])
+ (state(A,[X|B],C) A legal(X,C)) > MF(1)state(A,B,[X|C])
F (state(A,[X|BJ,C) A legal(X,A)) > MF(1)state({X|A],B,C)
F (state(A,B,[X|C]) A legal(X,A)) > MF(1)state({X|AJ],B,C))
+ (state(A,B,[X|C]) A legal(X,B)) > MF(1)state(A,[X|B],C)

where legal is defined by

legal(X,[]) for any X, and
legal(X,[Y | L)) iff X<Y.

The above implications in effect define an infinite number of
possible developments of the game, all starting from some given
states;. These developments can be described by instant
propositions. For instance

T(a;, MF(1)p) = (Jaj: T(a; MF(1)aj) A T(a;p))

Intuitively, it is clear that the rings are 'ordered' in the initial
state of the game, and that the one rule of the game in all cases
preserves this order. When this condition is compared with the
rules 'defining' MF(1), it should be intuitively clear that at any
instant there is a possible next state. This means that there are
no deadlocks, that is, no states from which we cannot reach
another state following the rule. We may in fact state this
property as the axiom:

Fp > MF(1)P(1)p
Let us now discuss the notion of 'order' more formally. In

every state each tower must be ordered such that the smallest
ring is at the top of the tower - in general, the sequence of rings
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as stated in its list-form [X)Y,...,Z] must be increasing. This
ordering can be defined recursively:

ordered((])
ordered({A])
ordered([A,B|L]) =4¢f (A<B A ordered(/B|LJ]))

The statement that the rings are ordered on all pegs can be
defined in the following way:

order =4f
(state(A,B,C) o (ordered(A) A ordered(B) A ordered(C))

By inspection of the implications defining MF(1), it is easily
shown that

+ order > NF(1)order (where NF(1)p =4 ~M~F(1)p)
Since we have the following theorem for metric tense logic
+ NF(1)(p > NF(1)q) > (NF(1)p > NF(1)NF(1)q)

we can in fact prove that once the order has been established, it
must be preserved forever, i.e. the theorem

ORDER + order o NGf(order)
(where Gp =ger ~F(X)~p, for any natural number X)

Since the implications on which this result is based (PFS)
formalise the one rule of the game, we have also shown that this
rule is order-preserving.

We now wish to add a 'purpose’ or goal to the game, namely
that the game has been successfully finished when the following
condition obtains:
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FINISH:

The tower of Hanoi which was originally on the first peg,
corresponding to the proposition s1, has been moved to one of
the other pegs. (That is, all the rings are now placed in order
on one of the other pegs, and this has been achieved by
following the MOVE-rule only.)

This final state of success corresponds to the proposition
finish =4 (state((],(][1,...,N]) v state((](1,...,.N][])

In a computer science terminology, we say that the problem
has been solved if the game has been successfully finished; in
general, our program or plan is said to solve the problem if and
only if it will always lead to the game being successfully finished.
Given our definitions so far, the statement that the tower
problem can be solved is equivalent to asserting the provability of
the statement

P-SOLVE r state((1,...,N][][]) > MF finish
(where Fp =4.r F(X)p, for some natural number X)

We have already in PFS specified MF(1)p in terms of all
possible moves in any type of situation. We now proceed to
establish a definition of F(1) corresponding to a plan for future
actions, that is, such that F(1) in effect specifies which move to

make in order to 'approach' a solution. This definition of F(1)
should be made such that

SOLVE + state((1,...,NI[][]) O F finish

is provable. Obviously, any demonstration of SOLVE will also be
a demonstration of P-SOLVE.

PFS is, as pointed out before, in effect a specification of the
future operator. However, the specification of F corresponding
to the plan must exclude loops. We therefore propose a rather
different definition of the future operator (in effect, a ‘select'-
operator), availing ourselves of two derived concepts:
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o smallest =i (s1 v P(n)sy), where n is even, and
* another =gs P(1)smallest.

With a view to practical programming it should be noted that
the history of moves, i.e. the sequence of states during
computation, must be recorded, when these concepts are to be
used in connection with a given program.

The specification now runs like this:

(smallest A state((1|A],B,C)) > F(1)state(A,[1|B],C)
(smallest A state(A,[1|B],C)) o> F(state(A,B,(1|C])
(smallest A state(A,B,[1|C])) o> F(1)state({1|A],B,C)

(another A state({1|A],[X|BJ,C) A legal(X,C)) o
F(1)state((1|A],B,[X|C])
(another A state([1|A],B,[X|C])  legal(X,B)) >
F(1)state((1|A],[X|B],C)
(another A state(IX|A],B,[1|C]) A legal(X,B)) o
F(state(A,[X|BJ(1|C])
(another A state(A,[X|Bl[1|C]) A legal(X,A)) >
F(1)state(IX|AL,B,[1|C])
(another A state(IX|A][1|B],C) A legal(X,C)) o
F(1)state(A,[1|BLIX|CD
(another A state(A,[1|B][X|C]) A legal(X,A)) o
F(1)state(IX|AL,[1]|B],C)

Intuitively, the proposition 'smallest' means that the ring
labelled '1' is the next to be moved, whereas the proposition
'another' implies that a ring different from the one labelled '1' is
the next to be moved. The plan inherent in this F in effect selects
a specific 'goal peg' among the two empty pegs (this is directly
reflected in the theorem below). There is really nothing
surprising about that, but of course any of the two empty pegs
will do for a 'goal peg'. The only important point is that one such
must be selected from the beginning.
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In order to demonstrate that SOLVE holds with the above
definition of F we prove the following:

Theorem:

(a) (smallest A state([1...k][].[]) > F(2*-1 state((],[1...k][]) A

another), where k is an odd integer

(b) (smallest A state((],[1...k],[]) > F(2*-1,state((],[],[1...k]) A
another), where k is an odd integer

(¢) (smallest A state((1...k][1[]) > F(2*-1 state((][][1...k]) A
another), where k is an even integer

(d) (smallest A state(],[],[1...k]) > F(2*-1,state((],(1...k],[]) A
another), where k is an even integer

Proof:

The theorem is proved by mathematical induction. The proof is
immediate for 2=1 and k=2. Let us first assume that n is even,
and let the inductive hypothesis be the assumption that the
theorem has been proved for k=1...n. We must now show that
the theorem also holds for the n+1 case. Since r is even we have

(smallest A state((1...n,n+1][1.[]) >
F@2"-1,state((n+1][][1...n]) A another)

since the ring n+1 does not influence the first 2°-1 steps. In the
next step, however, this ring is moved. In consequence, we have

(smallest A state((1...n,n+1][1[]) >
Fer)(state((][n+1][1...n]) A another)

By inspection into the rules for the F-plan one can assure
oneself of the fact that this ring n+I will not be moved anymore,
and we do not have to pay further attention to it in the following
steps. For this reason it follows that
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(smallest A state(1...n,n+1][][]) o
F@r-142%)(state((],[1[1...n,n+1]) A another)
le.
(smallest A state({1...n,n+1]{][]) o
Fer)(state((],(][1...n,n+1]) A another)

So, if n is even the induction step has been established. The case
with odd n is similar. Q.E.D.

The above theorem obviously implies SOLVE, and hence also P-
SOLVE.

THEOREM PROVING AND DECISION PROCEDURES

We have by now given an example of using temporal logic for
reasoning about program properties. But it might be said that
the proof above gives nothing more than one can have with an
‘ordinary’ technique, in which mathematical induction is also
used. There is, however, one important modification to such
objections: consider again the theorem

SOLVE F state((1,....NI[][]) o F finish

Loosely speaking, this theorem states that the F-plan can lead
to the desired result, provided that the initial state is as specified,
and moreover, that in time it will indeed achieve this result. We
might implement the F-plan in PROLOG, or in some
algorithmic language, say Pascal. In fact, the Towers of Hanoi
problem is a computer science classic; an example of a very
simple PROLOG solution may be found in [Clocksin and
Mellish 1984, pp. 146], and a Pascal solution may be found in
[Grogono 1978, pp. 102-103]. Now call the implemented
program - in whichever language - P: if we can prove that P
satisfies SOLVE, we have proved that P can and will solve the
problem. This is in contrast to non-temporal techniques. In
general, non-temporal techniques only describe whether a
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program solves a problem correctly, if the program terminates
'in the desired state'; this is called partial correctness. In such a
framework (for instance, so-called operational semantics), one
has to resort to other techniques in order to prove also that the
program will indeed terminate. When both conditions:

(1) P can lead (only) to the desired final state
(ii) P will in time achieve this state

are proved, we have proved what is usually called the total
correctness of P. The point in connection with temporal logic is
that SOLVE states both conditions in one single formula, and
hence, that a proof of this formula is immediately a proof of the
total correctness. We shall illustrate this with one more example
below. On the basis of that example we shall conclude this
chapter with some fairly general observations on the use of
temporal logic in computer science.

A particularly important issue when computation is involved
is the question of decidability. It is desirable to have general
procedures of theorem proving for the tempo-modal logics
which we would like to use for specification and reasoning
purposes. In computer science some results in this respects have
been obtained. As an example we mention the discrete temporal
logic suggested by M. Abadi and Z. Manna [1986] and further
studied by H. Bestougeff and G. Ligozat [1992, pp. 267 ff.]. We
also mention the branching time logic of Ben-Ari et al. [1981],
for which the authors managed to establish some nice
decidability and complexity results.

The temporal logic with which we described the F-plan is
discrete, and it only treats one temporal 'direction’, that is, it does
not include any operator for the past. Many of the temporal
logics studied in computer science share these limitations,
especially the latter limitation. However, in reasoning systems
as well as for many practical purposes we would like to have
continuous logics with operators for the past as well as for the
future. For most of these logics, however, we do not have any
general decision procedure, but only partial procedures valid for
fragments of the logics in question - like the one studied in
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[Bhrstrgm & Klarlund 1986]. It would be interesting to have
such results for a tense logic corresponding to Prior's third
grade and the Leibnizian tempo-modal logic which we have
presented in chapter 3.3 (some recent findings within nominal
tense logic [Blackburn 1993] seem promising in this respect).

As an alternative to general procedures for theorem proving,
one may use semantical models for the evaluation of tempo-
modal statements. Most of the temporal logics we have been
studying have in fact been proved to be decidable, i.e. they have
the finite model property. This means that any formula A is
provable in the logic if and only if it is valid in any frame
corresponding to the logic. The computational complexities of
decision procedures of such logic have been studied and
important results have been found (see for instance [Sistla and
Clarke 19851). One highly interesting result was found by
Hiroakira Ono and Akira Nakamura [1980]. They have
considered some of the most well known tense and modal logics
with the finite model property. Let L be one of these logics. We
then define a function rf, such that ry(m) is the smallest number
r which satisfies the following condition:

For any formula A with m modal (or tense) operators, A is
provable in L if and only if A is valid in every L-model with
at most r worlds.

With respect to 'pure' tense logics Ono and Nakamura have
shown that we have the inequality m+I1<r(m) <m+3 for K,
Their results leave us with a higher degree of uncertainty with
respect to linear tense logic, since they have only been able to
deduce that the inequality m+1<r(m) <2m+3 holds for Kj. At
any rate, such results are important for the implementation of
evaluation procedures for tempo-modal logics.
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ONE FURTHER EXAMPLE

Consider the following program, which computes the greatest
common denominator (GCD) of two natural numbers A and B;
when the program terminates, A = GCD of the two original
input values:

LO: start

L1:read A;

L2: read B;

L3: if A = B then goto L10 else goto L4;
L4: if A < B then goto L5 else goto L8;
L5: C:=A;

L6:A:=B;

L7:B:=C;

L8: A:=A-B;

LY: goto L3;

L10: write A;

L11:end.

The program is written in a very simple programming
language known as flowchart language, where a label is
attached to each instruction. An ordering among labels is
assumed, as indicated by their numbering. L0 is called the start
label, and L11 is called a terminal label (in principle, there may
be several 'termination points' in programs).

Since the program is supposed to compute the GCD of two
arbitrary programs, we can specify this crucial property of the
program by the following definitions and conditions:

GCD(A,B) = g =35
(Amodg=0) A(Bmodg=0) A
Vxe N (Amodx=0ABmodx=0})>ox<g)

The input condition can be specified as follows:

C;={GCD(A,B) =g AA,B,g € N}
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Strictly speaking, geN is implied by the definition of GCD. It
should also be noted that the program is written such that g=1 is
counted as a denominator of any pair of natural numbers.

The output condition is this one:

Co = {A=g}

Any program which takes some input and computes an output
can be described as an input-output function. That is, if P is the
program and [7 is the corresponding input-output function,
then IT is the semantical meaning of P. These notions are
customary in so-called operational semantics, which is the least
abstract kind of formal semantics for programming languages.
Operational semantics for a given programming language
contains general rules for systematically constructing the
input-output function of any program written in that language.
We here ignore these rules (in [Andersen et al., forthcoming] the
full set of such rules are given for the same example).

Let X denote the set of possible inputs to P, and Y the set of
possible outputs. In our current case, X =N xN and Y = N. We
can now state quite precisely the crucial property of P, namely
that it computes the greatest common denominator among two
natural numbers:

(@) Vx € X, Wy € Y- (Cy(x) A Tx) = y) > Cofy).

We can consider (a) to be the formal specification of P, where
ITis the input-output function corresponding to P. Moreover, (a)
is a necessary condition of the correctness of P: if we can show
that Cy obtains, whenever the terminal label L11 is reached -
provided that the input condition C; is satisfied from the start -
then we have shown that the program is partially correct. (For
the current example this can be shown by a fairly simple
inductive proof.) In general, correctness is a relation between a
specification and a program. The specification states what the
program should do, and a concrete program in some
programming language is meant to implement this
specification. If we can prove that the program in question
satisfies the specification, we have proved its correctness.
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However, (a) needs to be augmented in order to state that L11
will indeed be reached. We therefore propose this specification
instead, in which we avail ourselves of temporal notions:

(b) Vx € X, Vy € Y: ((at LO) A Cyx)) > F((at L11) A Cp(y)).

In this formula we still refer explicitly to P by referring to its
labels; we have introduced a predicate 'at' to be able to do so.
However, we need not refer to the input-output function of P. A
proof that P satisfies (b) is a proof of P's total correctness. - In the
current case, we have to do with a deterministic program, and a
linear tense logic will suffice. But in many cases, notably for
indeterministic or concurrent programs, we can do better with
a branching time logic. Moreover, the linear cases can also be
described within this framework.

Now let P be any program with input conditions ¢, output
conditions y, 'starting point' § (where computation begins), and
a set of terminal points E (where computation ends).

A quite general criterion for the correctness of P can then be
stated as

(c) Vx e X,Vy € Y: ((at B) A ¢(x)) o (NF((at e) A y(y),
foree E

In fact, (c) does not refer to P at all. It can be used to refer to
any program for which we have an identifiable 'starting point’,
and an identifiable set of 'termination points'. Loosely, we may
read (c) as follows:

if computation begins and the input conditions are satisfied,
then for all branches we 'reach' some terminal state e such
that the output conditions are satisfied (and computation
ends).

Note that quantification over branches is implicit here.
However, we omit the semantical details of this branching time
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logic, but these can be found in Ben-Ari et al. [1981]. General and
thorough overviews of how to use temporal logic in verification
can be found in [Emerson 1990, Stirling 1992].

Given any program P with ¢, y, B, and E as above, a proof that
P satisfies (c) is a proof of its total correctness. Such a proof may
of course avail itself of all the techniques in any tense-logical
axiomatisation of this branching time logic.

When investigating the properties of a program, we are
interested not only in correctness, but also in being able to reason
in general about its properties. For instance, in the loop from L3
to L9 the GCD-program may perform a number of
subtractions. Hypothetically speaking, this could lead to A
becoming negative. The 'swap operation' performed in L5-L7 is
designed to prevent this. Again, we can use temporal logic to
describe this 'local’ property of the program

((at L3) A (A >0) o NGA > 0)

Here, we have also used the observation that 'after' the L3-L9
loop, A is never changed. We could have proceeded in smaller
steps, first stating a weaker 'invariant' of the loop, and then we
could have deduced the above result using other logical
statements about the program. But at any rate, the above
formula holds and is a strong statement of one important
property of the GCD-program.

Especially for reasoning about concurrent programs, temporal
logic has proved to be the suitable tool. Let PI and P2 be two
concurrent processes, sharing some common resource R - say, a
printer, or the CPU for that matter. In principle, PI can be
prevented from ever getting to use R by P2 snatching it just
before P1, whenever PI requests it. If the concurrent program
is to work with satisfactory results, then the following condition
must be satisfied:

requests(P,R) > NF(access(P,R)),
where P is any of the processes involved.
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In general, the salient features of concurrent programs can be
described with temporal logic, for instance

¢ freedom of deadlock - e.g. if a number of processes
simultaneously request the same resource, then the
resource is allocated to one of them (they do not all begin to
wait for each other);

* mutual exclusion - it must in some cases be prevented that
more than one process is allowed 'into' a certain 'region’; for
instance, PI and P2 cannot both work on the same printer
at the same time (the results could be imagined);

» fairness - the property briefly discussed above that any
process which regularly requests access to some resource
does obtain access sooner or later. This condition can be
refined in many ways. A (conceptually) simple refinement
would be that processes are granted access in the same
order as they have requested it;

e liveness - the property that any process which has been
temporarily suspended is sooner or later resumed.

This list could be prolonged significantly, and many interesting
questions could be raised. The notion of concurrency is not only
computationally important, but it also has conceptual -
information-theoretic - implications. Just for instance, who has
the privilege of giving what information when? What can and
should processes be capable of predicting about each other? But
we shall leave these issues here.

PERSPECTIVES

The use of temporal logic in computer science is a large and
rapidly expanding field. We have but suggested its more central
uses and issues, and it must be admitted that even this has been
done only in a sketchy manner. Nevertheless, it should have
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become evident that temporal logic is very versatile in computer
science. It is useful, sometimes crucial, at all levels of computer
science, which we might sum up as follows:

* theoretical computer science:

Temporal logic is useful for program verification, specification,
and for reasoning about programs in general. In connection
with concurrency it is crucial for such purposes. It is also the
natural formalism for expressing a generalised idea of total
correctness.

* programming languages and their theory:

Here, the crucial question is the development of temporal
programming languages. This question is closely associated
with the question of decision procedures for temporal logics (cf.
Frank Leflke [1991]). Some temporal logical programming
languages already exist. We mention Tokio [Fujita et al. 1986],
Tempura [Moszkowski 1986], and the work of Dov Gabbay
[1987]. A useful overview is given by M. A. Orgun and W. Ma in
[Gabbay and Ohlbach 1994, pp. 445-479]. A concomitant but
more general question is how to characterise the temporal
properties of existing programming languages, and perhaps to
establish temporally motivated criteria for evaluating
languages. The use of temporal logic in program synthesis - the
automatic generation of programs from more general
specifications - is also under investigation [e.g. Emerson and
Clarke 1982]. Such endeavours, if successful, would tie together
specification, programming, and verification in a very fruitful
way.

* applications:

The most obvious use of temporal logic in computer science is
perhaps within the field of natural language understanding. A
large number of fairly advanced 'information systems' also call
for temporal logic, for instance planning systems, decision
support systems, and diagnostical systems. All these kinds of
applications may be seen as cases of artificial intelligence. Our
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discussions of the CIMP system (chapter 3.4) and of conceptual
graphs (chapter 3.6) are also examples of this kind.

* media systems:

In some systems, wherein aesthetical and communicative
properties are especially important, time assumes a crucial réle.
For instance, in hypertext systems or multimedia the conscious
control of timing and montage is crucial. Such systems are best
understood as well as designed with explicit reference to time
(see e.g. [Andersen and @hrstrgm 1994]). (The general
theoretical study of such 'sign production' has recently become
known as 'Computer Semiotics'; see for instance [Andersen
1990], [Andersen et al., forthcoming], [Hasle 1993], [Hasle 1995].)

¢ system development:

As pointed out at the beginning of this chapter, temporal logic
can be relevant in problem and domain analysis, as well as in
design, implementation and validation. Its rdle in analysis and
design is particularly related to its réle in philosophical logic
(analysis of concepts and language). Its possible rdle in
implementation and validation is a direct consequence of its
relation to theoretical computer science and 'programming
languages'.

At the beginning of this chapter we saw that Prior himself in
the 1960's anticipated the use of temporal logic in connection
with computers. He also observed that there might be some
practical gains from the study of tenses "in the representation of
time-delay in computer circuits" [TR, p. 4]. This remark also
seems to anticipate its use in program verification and even in
hardware verification. At the other end of the spectrum, it is
clear that the general linguistic and philosophical motivation for
tense logic explains its obvious relevance for artificial
intelligence and advanced information systems. Thus in
general, it would be in a good Priorian spirit to have logicians
provide computer science with a collection of logical systems
dealing with aspects of time, tense, and modality.
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What does all this come down to? Needless to say, the present
authors stand in every danger of overestimating the
importance of temporal logic, and a sweeping conclusion is
indeed tempting: it would seem that temporal logic, or perhaps
we should merely say 'temporality’, is pivotal within computer
science. It extends in a vertical direction, ranging from
fundamental theory to applications, and in a horizontal
direction, ranging from analysis to validation in concrete
system development. But even if we, in deference to computer
science proper, have to go for less, it is certainly no exaggeration
that temporal logic has proved its practical worth in many
areas within computer science.



4. CONCLUSION

The logic of time provides one of the most striking examples of
a fruitful interaction between a variety of disciplines, which are
normally kept apart, more or less strictly. Philosophy, logic and
computer science have played the key parts in this interaction,
but we can well refine that picture considerably: we have (to
varying degrees) been drawing - as has the development of the
logic of time - on what appears to be very diverse sources,
namely:

* general philosophy

¢ ethical and theological considerations
¢ conceptual analysis

¢ linguistic considerations

¢ literary fiction

¢ the history of ideas

* mathematics

® physics

¢ computer science.

The pivotal discipline for linking together our various
observations has been logic in a broad sense, that is, logic in a
'presystematic' as well as a fully symbolical form. This is in
accordance with the conviction stated in the introduction that in
order to study time we need to establish a common language for
the discussion, and that such a language should be developed
within logic. However, logic is not 'merely’ a mediating
language: the reason why the logic of time can take input from
all those various fields, and also contribute to them, is in our
conviction that logic in its broad sense is really active in all
systematic human thinking. This is, however, not to be taken in
a strict psychological sense, but rather as a philosophical
statement - and we add that human rationality in our opinion
should be seen as comprising more than logic, respectively
systematic thinking (just for instance, social intuition,
aesthetical sense, rhetorical skill).

366
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In the case of the logic of time, we believe that this subject can
only artificially be separated into one part belonging to the
humanities and another part belonging to natural science. To be
true, for practical purposes the subject may be isolated into for
instance one linguistic discipline and another computer science
discipline; but their mutual relevance should not be forgotten,
and the enterprise of the logic of time should still be seen as a
whole.

This conviction may be provocative for traditional humanists
as well as traditional natural scientists. We first take the case of
opposing humanists: for quite some time and in a good many
places people brought up within the humanities have been told
that logic is completely irrelevant in a field such as, say,
literature, and outright misleading when applied within
linguistics. Now such assertions raise many issues, which we
shall not deal with in any detail here. But we may remind the
reader of just one example. The analysis of Borges' short story
'The Garden of Forking Paths' demonstrated how certain
logical ideas were anticipated in a piece of literary fiction - ideas,
which are indeed formalisable as well as technically applicable.
On the other hand, it also showed how logical concepts can be
applied in a literary analysis: we think it would be much more
difficult to discern and present the ideas and the structure of the
story without those concepts. - The Borges-example may seem
biased to the extent that the story in question lends itself to
logical considerations in an unusual degree; and certainly, we
did choose that example because it is particularly striking. But
we also think that the kind of two-ways traffic exhibited in this
connection is quite general: logical analysis plays a réle in
systematic thinking and is therefore, rightly, manifest also in
the humanities - much more so than is normally recognised.
And conversely, symbolic logics to a very high degree reflect or
embody presystematic analyses of conceptual structures,
philosophical problems and linguistic examples. The logic of
time is a particularly evident example, but the same observation
also applies to such prominent foundations of mathematical
logic as Boolean Algebra and Frege's Predicate Logic - which
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Frege himself called 'Begriffsschrift', meaning approximately
‘conceptual writing'.

With these remarks we also anticipate an answer to sceptical
natural scientists, who may actually be using temporal logic in
their field, but who hold that its philosophical and historical
background are really irrelevant to the purposes within the
respective discipline. In fact, such a view was vividly expressed
by [Ben-Ari et al. 1981], who were among the first computer
scientists to systematically apply branching time systems within
program verification. In discussing the linear time approach
versus the branching time approach within the field, they stated
that

The difference in approaches has very little to do with the
philosophical question of the structure of physical time
which leads to the metaphysical problems of determinacy
[sic] versus free will. Instead, it is pragmatically based on
the choice of the type of programs and properties one
wishes to formalise and study. [p. 164]

In the end, the choice between linear and branching models
cannot be made on philosophical grounds but instead should
be dictated by the type of programs, execution policies and
properties which one wishes to study. [p. 165]

There is a point here which is much too common-sensical to be
brushed aside easily. Clearly, the philosopher, the linguist, the
physicist, or the computer scientist using temporal logic may
and must adapt this logic to specific purposes. In doing so, the
background of temporal logic can sometimes be ignored - and
nobody would call a scientist using temporal logic in this way
incompetent, because he or she did not know Diodorus Cronus!
Nevertheless, the conceptual background as well as still new
conceptual analyses have proved to be an important source - we
say, a crucial source - for innovations and progress in the field of
temporal logic. Such new developments in turn will have an
impact on the sciences for which temporal logic is useful. But
there is more to it than that fairly utilitaristic argument. It
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seems to become ever more recognised in our age that the
classical division between 'hard' empirical science on one hand
and more qualitative conceptual considerations on the other
hand is highly mythical. In this connection we shall as our last
example reflect on the notion of 'information systems'. Such
systems are clearly related to artificial intelligence - for
instance, the CIMP system of chapter 3.4 is an information
system as well as a case of artificial intelligence. But
'information systems' may be understood as comprising a
broader range of applications than 'artificial intelligence'.

The term 'information systems' refers to a certain class of
computer applications, which is rapidly gaining in importance
(indeed the notion is integral to the idea of an 'information
society'). The very term indicates that attention is shifted away
from the underlying computer architecture and towards the
information content of the system. Of course, that does not
mean that the underlying architecture has become
unimportant - that part still ultimately defines the possibilities
as well as limitations in the construction of such systems.
Moreover, there is no sharp boundary between the construction
of an information system and a 'classical' program
development: the latter also models some kind of information
process. The difference is a matter of degree: in classical
program development, the central activity is the construction of
an algorithm. Such an algorithm specifies step-by-step how the
computer is to carry out its computation. To that extent it is fair
to call the process machine-oriented. In the construction of
information systems, on the other hand, such considerations
only enter at a very late stage, if at all: the emphasis is clearly
put on the modelling of information, and with modern
development tools the algorithmic aspect comes to be of
secondary importance (for instance, when fourth generation
languages, expert system shells etc. are used). Therefore, an
appropriate analysis of information in the domain in question is
the crucial foundation of the entire construction process of an
information system; to that extent it is fair to call the process
information-oriented.
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Logic in its broad sense provides a bridge between a
presystematic analysis of information and a formalisation
which can be implemented. When focusing on the relation
between logic and the analysis of information in a domain, it is
worth recollecting Prior's view of logic: logic in his opinion "is not
primarily about language, but about the real world" [TR, p. 1] (cf.
chapter 2.5). In a domain we will find real phenomena and
relations between them. Logical analysis is not 'just' a language
game, but an attempt at singling out crucial phenomena and to
capture the relations between them. However, this endeavour -
at least when it becomes systematical - presupposes that we
formulate our initial ideas about the domain in language, and
therefore logical analysis is mediated by language. According to
Peter Geach [1970, p.187] the young Russell as well as Prior
held that "ordinary language is not the logician's master, but it
must be his guide".

Critics of logic have often contended that it is a study of highly
artificial linguistic examples - indeed we have tried to show that
such protestations were abroad already in the Renaissance and
a cause of the downfall of Scholastic Logic. Such sentiments
may even be shared by scientists and other professionals
working in the field of information systems. Some of those may
consider formal logic to be a useful language, but they may at
the same time hold that the analyses current within
philosophical logic are somewhat esoteric and 'out of bounds' for
their purposes. To meet such objections we first point out that on
Prior's - and our - conception of logic, it must always be
remembered that the linguistic examples mediate a study of
real phenomena and relations. This means that logic does not
have to be empirically faithful to natural language in all
respects, but on the other hand it does not render logic irrelevant
to the study of language, for the latter also has to deal with
reality in a logically reasonable way. Logical analysis of the kind
we have been studying in this book is required for the
construction of most information systems. We assert that logical
analysis is information analysis. The latter, of course, comprises
more than logic, for instance statistical methods, but any
information analysis which should lead to a computerised
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system must from some stage be logical (or translatable into a
logical analysis). And that is also evident if we turn our attention
away from the domain and towards computer implementation.
Such obvious vehicles for the implementation of information
systems as relational databases and logic programming are
based on relational logic, also in a technical sense. In general, the
development of ever higher level programming languages
reflects how attention is increasingly directed towards
modelling information and away from reflecting internal
computer architecture (cf. [Andersen et al. (forthcoming)]).

Recent developments such as object-oriented programming
and constraint programming emphasise this trend and its
connection with logic. Thus in object-oriented programming
one strives to identify objects (phenomena), their properties and
the relations between them. Furthermore, the crucial notions of
generalisation and specialisation are equivalent to logical
implication, or set inclusion; and the notions of intension and
extension crucial in object-oriented analysis are imported
directly from the logical tradition. - Constraint programming
also strives to identify logical properties within programs.

The fact that logic is active both in the analysis of a domain and
its information content, and in relational databases, logic
programming, object-oriented programming etc., explains why
the latter are particularly well suited for the construction of
information systems. And the fact that these programming
paradigms are constantly gaining importance at the expense of
classical algorithmic approaches reflects how the use of the
computer is increasingly becoming a matter of information
handling rather than 'brute' data transformation, for which the
algorithmic approach was ideally suited. To fully understand
these developments one must have knowledge of more than
programming languages and their principles: one must also
understand the relation between logical languages and their
conceptual background, as well as their history. The
development of temporal logic is a brilliant and exemplary case
in point, in its historical as well as systematical aspects.

We consider temporal logic as a field worth studying in its own
right, and this would be our conviction even it had no 'practical
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applications' at all. We hope that this interest in the subject for
its own sake has been conveyed to the reader. Nevertheless,
with the case of temporal logic in computer science we have
shown how concepts and formalisms originally developed for
entirely analytical purposes have proved their worth within
applied science. Thus, the movement from the historical
background (part one), via the formal development of tense-
logical calculi (part two), and into computational applications
(part three) may also serve as a demonstration of a more
general point, namely that the philosophical analysis of
concepts, language and logic is highly relevant to the field of
information systems. It seems to us that this point is particularly
well exemplified with reference to time. Therefore, exactly by
emphasising the internal unity of the concept of time our study
may have shown how 'time is ubiquitous'.
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The following is a summary of the systems discussed in the
chapters 2.9, 2.10, and 3.3.

1.1 NON-METRICAL A-LOGIC (TENSE LOGICS)

Given a set of propositional variables (denoted p, g, r,...) and a
non-empty subset of this set i.e. the instant variables (denoted a,
b,c ...). Then the language of non-metrical A-logics can be
presented by the following formation rules for well-formed
formulas (wff):

(1) Propositional variables, p, g, r ... are wif

(2) If p and q are wff, then ~p, p A q, Pp, Fp, Lp are also wff's.
(3) If p is a wff, then Ya:p is also a wif.

(4) Nothing else is a A-wff.

Abbreviations/definitions:

Hp =gr ~P~p

Gp =g ~F~p

(P D) =ger ~(p A~q)
(0 vq) =ger ~(~p A~q)

SYSTEM K;

Axioms:

(A1) p, where p is a tautology of the propositional
calculus

(A2) G(p oq) o (Gp oGq)

(A3) H(p >q)> (Hp oHg)

(A4) p > HFp

(A5) p> GPp

373
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Rules:

(RMP) Iftrp and *p5q,thenrgq.

(RG) If + p, then r Gp.

(RH) If F p, then r Hp.
SYSTEM K,

Add to K; the axioms:

(A6) FFp o Fp

(AT FPp > (Pp v p vFp)

Some theorems in Kj,:
(A6x) PPp 5Pp
(A7x) (Pp APq) > (Pprq)v PlpAaPqg) vP(Pp A q)

SYSTEM K;
Add to Ky the axioms:
(A8) PFp > (Pp v p vFp)
(A9) Gp oFp

(A10) Hp >Pp
(All)  Fp >FFp

Some theorems in K :
(A8x) (Fp AFq) >(Fprq)v Fip AFg) vF(Fp A @)
(Allx) Pp >PPp

SYSTEM Pr;

Definition: An instant proposition from K;is any set of Ki-wff's,
which is maximal and consistent with respect to K;.

Well-formed formulae (wff):

(D Any K-wff is a Pr-wff.
(2) Any instant proposition from K;is a Pry-wif.
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3) If a and 8 are Pri-wif's, and x is an instant
proposition, then ~a, a A 8, Vx:a, Pa, and Fo and
all Pr-wif's.

@) There are no other Pri-wif's.

Abbreviation:

(3a:p) =zer ~(Va:~p)
Axiom:

(I1) Zoa
Rule:

(RI) For any instant proposition ¢ and any wif p:
If not+a op, then Fa >~p

Prior's quantification rules:

(IT1) If * ¢(x)of then F Vx:¢(x)Dp.
(T12) If » ao¢(x) then + a>Vx:¢(x), for x not free in a.

Deduced rules:

(Z1) Ifr ¢(x)opB, then + Fx:¢(x) P, for x not free in B.
(22) If r a>o¢(x), then F a>Tx:¢(x).

THE SYSTEM, Prior;
Well-formed formulae (wff):

(1) Any Pri-wif is a Prior,-wff.

(2) If @ and f are Priory-wif's and x is an instant
proposition, then ~a, a A §, La, and Vx: o are all
Prior-wif's.

(3) There are no other Prior;-wff's.
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Axioms:

(L1) L(p >q)>(Lp oLg)
(I12) ~L~a

(I8) L(a op) vL(a >~p)
(BF) L(Va: ¢(a)) = Va: L(¢a))
(LG) Lp oGp)

(LH) Lp oHp)

Rule:
(RL) If #p ,then r Lp

In the same way, we can construct the systems Prior;, and
Prior; from K}, and K, respectively.
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1.2 NON-METRICAL TEMPO-MODAL LOGICS

In the non-metrical tempo-modal logics the modal operator L is
taken into account. The standard modal logics are M, S4 and S5.
They can be presented as axiomatic systems.

SYSTEM M
Axioms:
(L1) Lip oq) o(Lp oLq)
(L2) Lpop
Rule:
(RL) If ¥ p, then + Lp.
SYSTEM S4
Add to M the axiom:
(L3) Lp >LLp
SYSTEM S5
Add to S4 the axiom:
(L4) ~L~Lp o Lp
THE McARTHUR SYSTEM
Add to K, the axioms:
L1 L(p oq) o(Lp oLg)
(L3) Lp oLLp
(LG) Lp oGp
(LP) p > LPp, where p contains no occurrences of F

and the rule

(RL) If F p, then F Lp.
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1.3. LEIBNIZIAN TENSE Logic LT

Axioms of LT:
(Al)

(A2)
(A3)
(Ad)
(A5)
(A6)
(A7)
(A8)
(A9)
(A10)
(A11)
(A12)
(A13)

A, where A is a tautology of the propositional
calculus

G(A oB) > (GA o GB)

H(A oB)> (HA > HB)

A o HFA

A >5GPA

FFA o FA

FPA > (PAvAvFA)

PFA > (PAvAvFA)

GA - FA

HA - PA

FA > FFA

NGA o GNA

PA o5 NPA,

where A contains no occurrences of F

In addition we have the S5 axioms for N:

(N1)
(N2)
(N3)
(N4)

Rules in LT:

(RMP)
(RG)
(RH)
(RN)
(IT1)
(r2)

N(A 5 B) o(NA > NB)

NA S5A

NA o NNA

MNA o5 NA, where M =j,r ~N~

If rA and + A 5B, then rB.

If A, then + GA.

If - A, then r HA.

If ~ A, then + NA.

If F ¢(x)of, then r Vx:¢(x)>P.

If ¥ ao¢(x), then + 0o Vx:¢(x), for x not free in a.
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1.4. NON-METRICAL B-LOGIC (INSTANT LOGICS)

Let TIME be a non-empty set. The elements in TIME are called
instants, dates or just times. Assume that there is defined a
relation, <, on TIME. The expression ¢; < tg is read 't; is before

ta'.

The language i.e. the well-formed formula (wff):

(1) Ifpis a propositional variable and ¢ is an instant i.e.
t € TIME, then T(t,p) is a wif.
(2) IfT(tp)and T(t,q) are wif's and ¢; and ¢, are instants,
then T'(¢ ~p), T(tp A q), t; <1z are also wif's.
(8) IfXandY are wifs and t € TIME, then ~X,X A Y,
#:X, Vt: X, are also wif's.
(4) Nothing else is a wff.
We shall use the same abbreviaitons and definitions as in tense
logics.
B-ogical tense-defintions:

(DF) T(t,Fp) =g Ft1: (t<t; A T(t1,p))
(DP) T(t,Pp) =ger 3t1: (t1<t A T(t1,p))
(DL) T(t,Lp) =qer Vt1: T(t1,p)

MINIMAL B-LOGIC, B,,

Axioms:

(T1) Ttp Arq) =Ttp) ATt,q)
(T2) T(t,~p) =-~T(,p)

Some theorems in Bp,:

(DG) T(t,Gp) = Viy: (t<t; > T(¢1,p))
(DH) T(t,Hp) =Vt;: (t1<t > T(t1,p)
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BRANCHING TIME LOGIC B,

Add the following axioms to Bp,:

(B1) (tr<tonta<tz) Dt;<ts
(B2) (ti<tantz<tz) Dlr1<tsvii=tzviz <ty
LINEAR TIME LOGIC B;:

Add the following axioms to By:

(B3) (ta<tinto<tz) D@1 <tzvii=tzviz<ty

(B4) Vi Ho:t; <ts

(B5) VtiRa:to< t;

(B6) Vi VtaTts i t1 <teD(t; <tzntz<is)
EXTENDED B-LOGIC:

Any of the systems Bn,B}p, and B; can be extended by the
axioms:

(TX1) (Vvt: Tt,p)) op
(TX2) (Vt1: T(t1,p) o T(ts, Vts: T(ts,p)
(TX3) T(t1,p) o T(ts, T(t1,p))
and the rule:
(RT) If + p, then + T'(t,p) for any ¢t
For the Leibnizian system we need the following B-logic:
Definition:
A Leibnizian structure is a quadruple (TIME,<,~,T) where

TIME is a non-empty set with two relations < and = such
that

(B1) (t; <tontas<tz) Dt;<ts
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(B2) (ti<tantz<tay) D@Er<tavii=tzviz<iy
(B3) (ta<tinta<itz) D@1 <tzviy=tyvig<ity
(B4) Vi o t1 <t

(B5) V¢ Fa:ta <ty

(B6) Vi ViaTtg t; <taD (1 <tantz<ity)

B7) t=t

(B8) t; =toDig =1;

(B9) (t; =tantg =t3) Dt; ~t3

(B10) (ty=tontg< tad) DTty (tz=tgaty<ty

and a truth operator 7" such that

(T1) Tt A AB) =T(tA) A Tt,B))
(T2) T@,~A) = ~T(tA)
(T3) Y. T(t,A) = T(t, Vx:A) where x is foreign to ¢.
(T4) Tt FA) =3 (t<t; ATEL,A)
(T5) Tt PA) =31 (t1<t AT(t1,A)
(T6) Tt NA) = Vi (t; =t 5 T(t1,A)
(T ViE; Vi (t; =ta A T(t1,PA)) o T(t3,PA)
where A contains no occurrences of F.
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2. METRICAL A-LOGIC (TENSE LOGICS)

The language of MT is based on a set of propositional variables
(denoted p, g, r...) and a non-empty set of instant variables
(denoted a, b, ¢ ...). The set of well-formed formulae can be
presented by the following definition:

(1) Propositional variables are wif.

(2) If o and B are wff, and x is a positive number, then
~a, 00f, anf, a v B, Vx:a, La, P(x)ox, and F(x)o are
all wff.

3 If ais a wff, then Va:ais also a wif.

4) There are no other wif.

We shall use the same quantifier symbols for quantification
over numbers and instant variables and we shall use the same
abbreviations/definitions as in the systems above with the
addition of the following definitions:

(DGF) G(x)ot =gef ~F(x)~0
(DHF) H(x)o =gr ~P(x)~0r.
(DUF) Fp =g Ix:F(x)p
(DUG) Gp =g Vx:G(x)p
(DUP) Pp =g Ix:Plx)p
(DUH) Hp =g Vx:H(x)p

The axioms of the system MT are:

(MT1) Gx)(p oq) o (G(x)p 2 G(x)q)
(MT2) F(x)H(x)p op
(MT3) F(y+x)p o F(y)F(x)p
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The rules of the system MT are:

(RM) The 'mirror image' of any theorem (in which all
occurrences of P are replaced by F and vice versa) is also a
theorem.

(RMP) If+A and rA > B, then +B.

(RF)
(1)
(I12)

If A, then r G(x)A.
If + ¢(x)>f then + Vx:¢(x)>p.
If F ao@(x) then F a>Vx:¢(x), for x not free in a.

Some theorems in MT:

(MT4)
(MT5)
(MT6)
(MT7)
(MTS8)

H(x)(p o q) > (P(x)p o P(x)q)
p o G(x)P(x)p

Px)G(x)p o p

Vx: Gly)G(x)p > G{y) Vx: G(x)p
Vx: G(y)H(x)p > G(y)Vx:H(x)p

LEIBNIZIAN METRIC TENSE LOGIC MLT

The axioms of the system MLT are:

(LT1D)
(LT2)
(LT3)
(LT4)
(LT5)
(LT6)
(LT7)
(LTS8)
(LT9)
(LT10)

Gx)(p o q) o (G(x)p o G(x)q)
F(x)H(x)p o p

Fly+x)p o F(y)F(x)p

H(x)(p o q) o (H(x)p o> H(x)q)
Px)G(x)p o p

P(y+x)p > P(y)P(x)p

F(x)~p =~F(x)p

P(x)~p = ~P(x)p

NG(x)p > G(x)Np

P(x)p o> NP(x)p,

where p contains no occurrences of F.

In addition we assume the S5-axioms hold for N.
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3. THE SYSTEM OF PRIOR'S 3RD GRADE

Given a set of propositional variables (denoted p, g, r, ...) and a
non-empty subset of this set i.e. the instant variables (denoted a,
b,c ...). Then the language of non-metrical A-logics can be
presented by the following formation rules for well-formed
formula (wff):

1)
(2

3)
4)

Propositional variables p, g, r ... are wif

If p and ¢q are wif, then ~p, p A q, Pp, Fp, Lp are also
wif's.

If p is a wif, then Va:p is also a wif.

Nothing else is a wif.

Abbreviations/definitions as in 1.1 and in addition:

(DE) (Za:p) =ger ~(Va:~p)
(DB) a <b sgrL(a >Fb)
(DT) T(a,p) =4 La >p)

Axioms for instant variables:

(I1)
(12)
(I3)

T a
~L~a

L(a op) vIL(a>~p)

Sonie theorems:

(DL) Va:T(a,p)=Lp
(DG) T(a,Gp) = Vb:(a<b > T(b,p))
(DH) T(a,Hp) = Vb:( b<a > T(b,p))
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3.1. INSTANT-LOGIC AND METRIC TENSE-LOGIC

SYSTEM MT*

Add to MT an modal operator for which the following axioms
hold:

(BF1) Vx:L¢(x) o L(Vx: ¢(x))
(BF2) Fx:L¢(x) > L(Ix: ¢(x))
(LHX) Lqg >H(x)q
(LGX) Lqg 5G(x)q

Definition:
(DB1) before(a,b,x) =4 L(a OF(x)b)
Some theorems in MT*:

(L5) Lp oGp

(L6) Lp oHp

(T8) before(a,b,x) =L(b >P(x)a)

(T9) a<b o I x: before(a,b,x)

(T10)  Jx: before(a,b,x) Da<b

(T11) a<b =3I x: before(a,b,x)

(T12) 3 b: (before(a,b,x) A T(b,p)) > T(a,F(x)p)
(T13) L(P(x)a > ~p) > L(a >~F(x)p)

(T14) T(a,F(x)p) > (3 b: before(a,b,x) A T(b,p))
(T15) T(a,F(x)p) =(3b: before(a,b,x) A T(b,p))
(T16) T(a,P(x)p) =(3b: before(b,a,x) » T(b,p))
(T17) T(a,3x:q) = T(a,q)

(T18)  before(a,b,x+y) o Jc:(before(a,c,x) A before(c,b,y))
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