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P. MANCOSU, K.F. JØRGENSEN AND S.A. PEDERSEN

INTRODUCTION

In the 20th century philosophy of mathematics has to a great extent been
dominated by views developed during the so-called foundational crisis in the
beginning of that century. These views have primarily focused on questions
pertaining to the logical structure of mathematics and questions regarding
the justification and consistency of mathematics. Paradigmatic in this re-
spect is Hilbert’s program which inherits from Frege and Russell the project
to formalize all areas of ordinary mathematics and then adds the require-
ment of a proof, by epistemically privileged means (finitistic reasoning), of
the consistency of such formalized theories. While interest in modified ver-
sions of the original foundational programs is still thriving, in the second
part of the twentieth century several philosophers and historians of mathe-
matics have questioned whether such foundational programs could exhaust
the realm of important philosophical problems to be raised about the nature
of mathematics. Some have done so in open confrontation (and hostility)
to the logically based analysis of mathematics which characterized the clas-
sical foundational programs, while others (and many of the contributors to
this book belong to this tradition) have only called for an extension of the
range of questions and problems that should be raised in connection with an
understanding of mathematics. The focus has turned thus to a consideration
of what mathematicians are actually doing when they produce mathematics.
Questions concerning concept-formation, understanding, heuristics, changes
in style of reasoning, the role of analogies and diagrams etc. have become
the subject of intense interest. These historians and philosophers agree that
there is more to understanding mathematics than a study of its logical struc-
ture and put much emphasis on mathematical activity as a human activity.
How are mathematical objects and concepts generated? How does the pro-
cess tie up with justification? What role do visual images and diagrams play
in mathematical activity? In addition to these cognitive issues one might
also investigate how mathematics interacts with the natural sciences, and
how mathematical thinking might depend on the culture it is embedded in.

This book is based on the meeting “Mathematics as Rational Activity”
held at Roskilde University, Denmark, from November 1 to November 3,
2001. The meeting focused on recent work in the study of mathematical
activity understood according to the outline given above. The lectures, by
some of the most outstanding scholars in this area, addressed a variety of
issues related to mathematical reasoning. Despite the variety of the con-
tributions there were strong unifying themes which recur in these lectures
thereby providing a strong sense of unity and purpose to the present book.

1
P. Mancosu et al. (eds.), Visualization, Explanation and Reasoning Styles in Mathematics, 1-9.

© 2005 Springer. Printed in the Netherlands.
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The title of the book “Visualization, Explanation, and Reasoning Styles in
Mathematics” is indeed an accurate description of these recurring themes.

The volume is divided into two parts. The first part is called Mathemati-
cal Reasoning and Visualization.

One question which arises pertaining to mathematical reasoning is to
what extent, if any, diagrams and visual imagery can provide us with mathe-
matical knowledge. Most of the contributions in the book touch upon this
question but the first part of the book is fully devoted to it. In “Visualization
in Logic and Mathematics”, Paolo Mancosu provides a broad introductory
discussion of visualization and diagrammatic reasoning and their relevance
for recent discussions in the philosophy of mathematics. Mancosu begins
by outlining how visual intuition and diagrammatic reasoning were discred-
ited in late nineteenth century and twentieth century analysis and geometry.
While diagrams and visual imagery were considered heuristically fruitful
their role for justificatory purposes was considered to be unreliable and thus
to be avoided. However, recent developments in mathematics and logic have
brought back to the forefront the importance of visual imagery and diagram-
matic reasoning. Mancosu describes how many mathematicians are calling
for more visual approaches to mathematics and the recent developments in
logic related to diagrammatic reasoning. In the final part of the paper he
discusses how these recent developments affect the traditional foundational
debates and describes some recent philosophical attempts to grant to visual-
ization (Giaquinto) and diagrammatic reasoning (Barwise and Etchemendy)
an epistemic status which goes beyond the mere heuristic role attributed to
them in the past.

With this background the reader can then move on to Marcus Giaquinto’s
“From Symmetry Perception to Basic Geometry”. In Frege’s approach to the
foundations of mathematics, Frege explicitly excluded that psychological in-
vestigations might be relevant to the foundational goal. This was basically
motivated by the idea that experience, whether physical or psychological,
could not warrant the generalizations drawn from it and thus in this way one
could not account for the objectivity of mathematics. The Fregean approach
had no account of how our psychological processes relate to our grasping
of mathematical truths. Frege’s position rests on the assumption that the
only role a perception or an experience of visual imaging can play is that of
evidence for a further generalization. By contrast, Giaquinto proposes that
experiences of seeing or visual imaging might play the role of “triggers” for
belief-forming dispositions which in turn give us geometrical knowledge. He
gives an account, meant to be empirically testable, of how we could come to
the knowledge of a simple geometrical truth, such as that in a perfect square
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the two parts either side of the diagonal are congruent. The account pro-
ceeds by stages. First, a description of how we perceive squareness (and the
role that visual detection of symmetries plays in the process) and how this
results in a category representation (in the form of a description set) for the
perceptual concept of square. Second, how a modification of the perceptual
concept of square gives rise to the concept of a perfect square. Third, it is
argued that the possession of these concepts is tantamount to having certain
belief forming dispositions which can be triggered by experiences of visual
seeing or imaging. However, the role of the visual or imaging experience
is not that of evidence but rather of “trigger” for the belief-forming disposi-
tions. Finally, if the mode of acquisition of such triggered beliefs is reliable
and there is no violation of epistemic rationality, Giaquinto claims that the
beliefs thus obtained constitute knowledge. What type of knowledge? Be-
ing non-logical and non-empirical (since the role of experience is not that of
providing evidence) the beliefs thus obtained are synthetic a priori. Whether
any individual or we as a community of mathematical learners come to have
the beliefs in question through the process described ought, according to
Giaquinto, to be subject of empirical investigation. If he is right the gap be-
tween experience and mathematical knowledge would finally be filled by an
account that does justice both to the role of psychological processes and to
the objectivity of mathematics.

In a more traditional philosophical context, namely the perennial dis-
pute between platonism and naturalism, James Robert Brown also addresses
the role of “seeing” and “intuition” in mathematics and the relevance of dia-
grams in this context. While providing a defense of Platonism, Brown agrees
that with respect to epistemological questions traditional Platonism has al-
ways been problematic: How are we to have access to the mathematical enti-
ties which exist in an abstract non-causal world? Modern Platonists typically
claim that we can “see” or “intuit” the mathematical entities with a special
non-sensible intuition. K. Godel and G. H. Hardy are two of the most well¨
known mathematicians holding this view. Thus, Hardy for instance, sees all
mathematical evidence as some sort of perception. But in this respect, ac-
cording to Brown, he goes too far. We only need, Brown says, to commit
ourselves to the perception of some basic mathematical objects and facts.
These can then serve as grounds for more advanced mathematics which we
cannot directly “see” and this is quite close to Gödel’s position. By stress-¨
ing the fact that much of what is called “seeing” in natural science is quite
remote from visual perception, Brown goes on to describe how we can have
“seeing” in mathematics through diagrams. Using a simple example of a
picture-proof, Brown claims that a diagram can function as a “telescope”
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that allows us to “see” into the Platonic realm. The diagram displays only a
specific case but through the diagram we are able to intuit a general truth and
this intuition cannot be confused with the sensory information given by the
diagram. Brown’s position on intuition is then elaborated further through an
analysis of how Freiling’s well known informal disproof of the Continuum
Hypothesis (by throwing darts at the real line) affects Maddy’s naturalism in
philosophy of mathematics. The resulting claim is that, according to Brown,
there is “some sort of mathematical perception which cannot be reduced to
either physical perception or to disguised logical inference”.

In his second contribution, Marcus Giaquinto addresses the varieties
of mathematical activities which are encountered in mathematical practice.
These include, to name only some paradigmatic examples, discovery, expla-
nation, formulation, application, justification and representation. All of these
activities provide rich material for a philosophical analysis of mathematics.
Unfortunately, until recently philosophers of mathematics have mainly paid
attention to only a few of these and, moreover, the of attention has often
been too narrowly focused. The extension proposed by Giaquinto concerns
not only the proposal to take into account the above mentioned activities but
also the various aspects in which mathematics is done and communicated
(making, presenting, taking in).

Three important ingredients of mathematical activity are discovery, ex-
planation and justification. The discussion of discovery through visual imag-
ing nicely ties up with the previous material on visualization and again Gi-
aquinto points out that although we might reach knowledge by such means
this need not be a proof. Explanation is also a theme touched upon by many
contributors in the book. Giaquinto points out that there are proofs which
are not explanations and explanations which are not proofs. Of course, there
are also examples of proofs which are explanations, and Giaquinto refers
to Chemla’s paper for an important historical example. Moreover, explana-
tions might play a role in motivating definitions, as illustrated by the moving
particle argument which gives a satisfactory account of the use of Euler’s
formula

eiπ = cosπ+ isinπ.

as a definition in extending the exponential function to complex numbers.
Motivating a definition through an explanation is thus an important type of
mathematical activity and it can be seen as a form as justification which is
distinct from proving a theorem. Another such activity is motivating or ‘jus-
tifying’ the axioms. Giaquinto concludes that extending the philosophical
analysis of mathematics to all these aspects, and the many more discussed in
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his paper, ‘would restore to philosophy of mathematics its ancient depth and
succulence’.

Part II of the book is entitled Mathematical Explanation and Proof Styles.
Jens Høyrup in “On Reasoning Styles in Early Mathematics” discusses

aspects of reasoning in Babylonian and Greek mathematics. Høyrup’s essay
takes its start from a criticism of those historians of mathematics who for-
mulate a distinction between Babylonian and Greek mathematics claiming
that the former is basically a collection of ad hoc rules whereas the latter is
a reasoned discipline. In addition to show that this is an incorrect charac-
terization of the situation, Høyrup also wants to characterize the reasoning
involved in Old Babylonian mathematics in constant comparison with Greek
mathematics. What he points out is that there are certainly mathematical
tablets in which solutions to problems are given where “no attempt is made
to discuss why or under which conditions the operations performed are le-
gitimate and lead to correct results”. The situation is made worse by the
fact that most of these clay tablets contain no diagrams. But obviously there
must have been more that accompanied the process of instruction and learn-
ing. Høyrup argues that a few remaining texts from Susa allows us to see
the kind of explanations that would have been given orally in a learning con-
text. Moreover, these explanations are ‘critical’, i.e. provide reasons for
the extent of the validity of the procedure under discussion and for why the
procedure works. Thus, Old Babylonian mathematics displays its own char-
acteristic style of thought. The real difference with Greek mathematics is
that in the Old Babylonian school “the role of critique had been peripheral
and accidental; in Greek theoretical mathematics it was, if not the very centre
then at least an essential gauge”. Høyrup concludes that we cannot count as
mathematics any activity that is devoid of understanding and that when the
historian works on a mathematical culture for which the sources do not re-
veal an appeal to reasoning then either we are not understanding the sources
or the sources are not an accurate mirror of the mathematical practice.

Another area in history of mathematics which has traditionally been
judged against the yardstick of Greek mathematics is Chinese mathemat-
ics. Karine Chemla’s “The Interplay between Proof and Algorithm in 3-rd
Century China” dovetails well with Høyrup’s contribution by showing that
Chinese mathematics also presents reasoning styles which differ from Greek
mathematics but should nonetheless be seen as part of the history of proof. A
key case study in this connection is Liu Hui’s commentary on The nine chap-
ters on mathematical procedures. In particular, Chemla focuses on Liu Hui’s
commentary on the measurement of the circle. The commentary, made up of
two parts, reveals Liu Hui’s concerns for explaining why a certain algorithm
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is correct and it functions as an explanation of the algorithm. The work bears
witness to a sophisticated practice of proving mathematical results in ancient
China which differs from proving practices in Greek mathematics. Liu Hui
was a commentator and this is significant as proofs seem to emerge in Chi-
nese mathematics as the result of such activity. Chemla claims that whereas
in Greek mathematics proofs seem mainly aimed at establishing the truth of
propositions in the case of Liu Hui what is at stake is the establishment of
the correctness of a certain algorithm or possibly showing why the algorithm
is correct. Without entering into the details of the analysis let us point out
that we have here another interesting case study of mathematical practice
which highlights two important facts. First, it shows that the role of proof
might be explanatory, in addition to that of certifying a result. Moreover,
the reasoning style displayed in these texts represent a characterizing feature
of Chinese mathematics and thus it reminds us about the importance of the
mathematical culture in which different proof practices are embedded.

Thus, Høyrup’s and Chemla’s case studies, in addition to their intrin-
sic importance for the historiographical characterization of Old Babylonian
mathematics and Chinese mathematics vs. Greek mathematics, raise impor-
tant issues concerning mathematical understanding and mathematical expla-
nation and show that these notions are also context-dependent.

Jamie Tappenden’s article “Proof style and Understanding in Mathemat-
ics I” touches on several topics central to the book such as visualization,
explanation, justification, and concept formation. The article focuses on the
different styles within complex analysis represented by Weierstrass and Rie-
mann. Weierstrass’s methodology was computationally motivated: it aimed
at finding explicit representations of functions and algorithms to compute
their values. Riemann, by contrast, was more abstract in his approach, more
“conceptual”. With the introduction of the concept of a Riemann surface,
Riemann not only reorganized the subject matter of complex analysis but in-
troduced a whole new style in the area. This new approached yielded new
discoveries, new proofs and it deepened our understanding of the subject in
unexpected ways. Tappenden explores here the important role that the vi-
sualization allowed by Riemann’s approach played in this reconfiguration
of the subject. The unification yielded by Riemann’s approach is also ana-
lyzed by Tappenden with reference to contemporary debates on the nature of
unification, understanding, and explanation (Friedman, Toulmin, Kitcher).
The topic of unification is intimately tied to the discussion of ‘fruitful’ con-
cepts. Fruitful concepts have unifying and explanatory roles but it is often
difficult to say what makes a concept fruitful in mathematics. Tappenden
mentions the unification of the theory of algebraic functions of one variable
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and the theory of algebraic numbers given by Dedekind and Weber. In this
case, notions like “ideals” and “fields” turned out to be extremely fruitful
concepts: they help us understand “what is going on” and as such discharge
an explanatory role. In connecting the topics of visualization, explanation,
and unification, Tappenden notes that often, as in the case of Riemann’s ap-
proach to function theory and Artin’s Geometric Algebra, a contributor to
the “fruitfulness” or “naturalness” of the approach is that the arguments and
categories characterizing the approach can be visualized. These aspects of
mathematical practice (visualization, explanation, fruitfulness) are often rel-
egated to ‘subjective’ matters of taste but Tappenden makes a strong case that
they can be the topic of fruitful philosophical and methodological analysis.
However, he concludes, one should not hope to provide an a priori account
of such notions; rather, only detailed case studies of mathematical practice
will be able to enlighten us on these complex issues.

The notion of explanation in mathematics, which has appeared in many
of the articles discussed above, is the focus of Johannes Hafner and Paolo
Mancosu’s “The Varieties of Mathematical Explanations”. While Hafner
and Mancosu emphasize that explanations in mathematics need not be proofs
(for instance, theories as a whole might be explanatory), in this paper they
restrict attention to proofs. They begin by providing evidence for the claim
that mathematicians seek explanations in their ordinary practice and cherish
different types of explanations (for instance, many mathematicians are often
critical of proofs that only show that something is true but do not give an
hint of why it is true). They go on to suggest that a fruitful approach to the
topic of mathematical explanation would consist in providing a taxonomy of
recurrent types of mathematical explanation and then trying to see whether
these patterns are heterogeneous or can be subsumed under a general ac-
count. In the literature on explanation in mathematics there are basically
only two philosophical theories on offer. One proposed by Steiner (1978)
and an account based on unification due to Kitcher (discussed in the previ-
ous article by Tappenden). Mancosu and Hafner provide a case study of how
to use mathematical explanations as found in mathematical practice to test
theories of mathematical explanation. The case study focuses on Steiner’s
theory of mathematical explanation. This theory singles out two criteria for
a proof to count as explanatory: dependence on a characterizing property
and generalizability through varying of that property. The authors argue that
Pringsheim’s explanatory proof of Kummer’s convergence criterion in the
theory of infinite series defies both criteria and thus cannot be accounted for
by Steiner’s model of explanation. This can be seen, as it were, as a case
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study of how to show that the variety of mathematical explanations cannot
be easily reduced to a single model.

The last article of the book is devoted to a very neglected part of mathe-
matical activity: the role of aesthetical factors in mathematics. Obviously,
mathematics displays aesthetic features. Mathematicians often talk about
the elegance of certain constructions or the beauty of various geometrical
figures. But is the ‘aesthetic dimension’ a rational feature of mathematical
activity or a completely subjective and non-analyzable aspect of the mathe-
matical experience? Reviel Netz’s “Towards an aesthetic of mathematics”
develops several analytical tools required for a productive discussion of this
difficult topic. Netz argues from the outset that every type of human expres-
sion possesses an aesthetic dimension. Moreover, the aesthetic dimension
is an objective fact, although a difficult one to analyze. Whereas most driv-
ing factors in mathematical activity are epistemic in the case of beauty we
have a clear case of a non-epistemic value which is intrinsic to mathematical
research. Netz thus expands the range of topics addressed in the other con-
tributions of the book: “The thrust of the articles collected in this volume is,
I believe, to widen our picture of the field of mathematical practice as a ra-
tional activity: one that appeals to the visual and not merely to the symbolic,
that aims at explanation and not merely at proof. It also appeals, I suggest,
to the aesthetic. Among other things – and still as rational practitioners –
mathematicians aim at beauty.” Netz’s paper proceeds by giving a typology
of sources of mathematical beauty. Mathematical beauty can be predicated
of states of minds, of the products of mathematical activity (say theorems
as embodied in texts), and of the objects studied in the previous categories.
Netz’s analysis focuses on mathematical texts and he proposes to bring to
bear for the task a body of theory already developed in poetics. In order to
limit the scope he discusses Greek mathematical texts and explores the sense
in which techniques of “narrative” and “prosody” can be fruitfully exploited
for an analysis of the aesthetic dimension of these texts. In this approach
“narrative” will account for the content and “prosody” for the form of the
mathematical text. Netz claims that just as in literature one source of beauty
in mathematics is the interaction (he calls it “correspondence”) between form
and content.

Given the emphasis on the heterogeneity of mathematical practice dis-
played in most of the articles in the present collection, the outcome of the
work is not that of claiming that some unique model or theory will account
for the great wealth of mathematical activities. Even if such a theory were to
be found in the future, it would be premature to suggest anything of the sort at
this stage. Rather, through their mathematical, historical, and philosophical
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richness, these contributions show that there is a wide virgin territory open
to investigation. Our hope is that others will also embark in its exploration.
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PART 1

MATHEMATICAL REASONING AND
VISUALIZATION



PAOLO MANCOSU

VISUALIZATION IN LOGIC AND MATHEMATICS

In the last two decades there has been renewed interest in visualization in
logic and mathematics. Visualization is usually understood in different ways
but for the purposes of this article I will take a rather broad conception of
visualization to include both visualization by means of mental images as
well as visualizations by means of computer generated images or images
drawn on paper, e.g. diagrams etc. These different types of visualization
can differ substantially but I am interested in offering a characterization of
visualization that is as broad as possible. The article describes and explains
(1) the way in which visual thinking fell into disrepute, (2) the renaissance
of visual thinking in mathematics over recent decades, (3) the ways in which
visual thinking has been rehabilitated in epistemology of mathematics and
logic.

This renaissance of interest in visualization in logic and mathematics
has emerged as a consequence of developments in several different areas,
including computer science, mathematics, mathematics education, cognitive
psychology, and philosophy. When speaking of renaissance in visualization
there is an obvious implication that visualization had been relegated to a sec-
ondary role in the past. One usually refers to the fact that the development of
mathematics in the nineteenth century had shown that mathematical claims
that seemed obvious on account of an intuitive and immediate visualization
turned out to be incorrect on closer inspection. This went hand in hand with
a downgrading of Anschauung and specifically visuo-spatial thinking from
the exalted status it had in Kant’s epistemology of mathematics. The effects
were also felt in pedagogy with a shift of emphasis away from visualization
(for instance, in Landau’s diagram-free text on calculus).

1. DIAGRAMS AND IMAGES IN THE LATE NINETEENTH
CENTURY

Some of the standard cases mentioned in this connection are the belief that
every continuous function must be everywhere differentiable except at iso-
lated points, or the tacit assumption in elementary geometry that the two
circumferences drawn in the construction of the equilateral triangle over any
given segment in Euclid’s Elements I.1 meet in one point (the vertex of the
equilateral triangle).1

In both cases the claim seems to be obvious from the visual situation
(diagrams or mental imagery) but turns out to be unwarranted. In the for-
mer case this is the consequence of the discovery of continuous nowhere
differentiable functions. In the latter case, this was due to the realization
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that only a continuity axiom can guarantee the existence of the intersection
point of the two circles. Such results and many other concomitant factors,
led mathematicians to formulate more rigorous approaches to mathematics
that excluded the recourse to such treacherous tools as images and diagrams
in favor of a linguistic development of mathematics. Of course, the use of
images and diagrams was still allowed at a heuristic level. The careful math-
ematician was however supposed to resist the chant of the visual sirens when
it came to the context of justification:

For the appeal to a figure is, in general, not at all necessary. It
does facilitate essentially the grasp of the relations stated in the
theorem and the constructions applied in the proof. Moreover,
it is a fruitful tool to discover such relationships and construc-
tions. However, if one is not afraid of the sacrifice of time and
effort involved, then one can omit the figure in the proof of
any theorem; indeed, the theorem is only truly demonstrated
if the proof is completely independent of the figure. (Pasch,
1882/1926, 43).

In short, visualization seemed to lose its force in the context of justifica-
tion while being allowed in the context of discovery and as something that
simplifies cognition (but cannot ground it). Pasch is well known for being
one of the pioneers of a development of geometry characterized by the rejec-
tion of diagrams as relevant to geometrical foundations. In the Foundations
of Geometry (1899) Hilbert is not explicit about the role of diagrams in ge-
ometry. However, in a number of unpublished lectures he raises the issue. In
lectures on the foundations of geometry from 1894 we read:

A system of points, lines, planes is called a diagram or figure
[Figur]. The proof [of the theorem he is discussing] can in-
deed be given by calling on a suitable figure, but this appeal
is not at all necessary. [It merely] makes the interpretation
easier, and it [the appeal to diagrams] is a fruitful means of
discovering new propositions. Nevertheless, be careful, since
it [the use of figures] can easily be misleading. A theorem is
only proved when the proof is completely independent of the
diagram. The proof must call step by step on the preceding ax-
ioms. The making of figures is [equivalent to] the experimen-
tation of the physicist, and experimental geometry is already
over with the [laying down of the] axioms. (Hilbert, 1894, 11).

And in other lectures from 1898 and 1902 Hilbert provides examples of
how one can be misled by diagrams by going through a proof of the claim
that “every triangle is equilateral”. In introducing the example he says:
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One could also avoid using figures, but we will not do this.
Rather, we will use figures often. However, we will never rely
on them [niemals auf sie verlassen]. In the use of figures one
must be especially careful; we will always have care to make
sure that the operations applied to a figure remain correct from
a purely logical perspective. (Hilbert, 1902, 602).

These motivations, emerging from the foundational work in geometry
and analysis, led to a conception of formal proof that has dominated logic in
the past century (and it is usually attached to the names of Frege, Hilbert, and
Russell). This conception of formal proof relies on a linguistic characteriza-
tion of proofs as a sequence of sentences. We find the essential elements of
such conception already in Pasch:

We will acknowledge only those proofs in which one can ap-
peal step by step to preceding propositions and definitions. If
for the grasp of a proof the corresponding figure is indispens-
able then the proof does not satisfy the requirements that we
imposed on it. These requirements are fulfillable; in any com-
plete proof the figure is dispensable [. . . ]. (Pasch, 1882/1926,
90).

These attitudes towards diagrammatic reasoning and visualization have
thus a complex history, which still calls for a good historian. Certainly one
would have to take into account the importance of the development of pro-
jective and non-Euclidean geometries in the nineteenth century and of the
arithmetization of analysis.2

However, I am not convinced that we can tell a linear story where the
heroes finally attained a level of rigor hitherto unprecedented, thus leaving
the opposition in disarray. For instance, I think there is much to learn from
taking a look at the opposition between Klein and the Weierstrass school or
the debate that opposed the “rigorist” Segre to the “intuitionists” Severi and
Enriques in algebraic geometry.3

I will limit myself to a remark on one of the main paradigmatic exam-
ples that were used to discredit the role of geometric intuition in analysis,
e.g. Weierstrass’ discovery of a continuous nowhere differentiable function.
Weierstrass’ result was announced in 1872 (and published by du Bois Rey-
mond (1875, 29)). The function in question was given by the equation

f (x) =∑bn cos(anx)π

with a odd, b ∈ [0,1) and ab > 1+ 3π/2.
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FIGURE 1. von Koch’s snow-flake.

Weierstrass’ result was given in a strictly analytic way (du Bois Rey-
mond (1875, 29-31)) and it left obscure what the geometrical nature of the
example might be. This was somehow characteristic of the school of Weier-
strass, which – as Poincare poignantly puts it – “ne cherche pas a voir mais´
a comprendre” (Poincar´` e, 1898, 16). However, there were mathematicians´
who did not accept this distinction between seeing and understanding. A
case in point is Helge von Koch. Von Koch is now well known for his snow-
flake, one of the earliest examples of fractals and up to this day one of the
paradigmatic examples of fractals.

What is not well known is the motivation that led von Koch to his dis-
covery of the snowflake. In his 1906 von Koch begins by remarking that until
Weierstrass came up with his example of a continuous nowhere differentiable
curve it was a widespread opinion (“founded no doubt on the graphical rep-
resentation of curves”) that every continuous curve had a definite tangent
(with the exception of singular points). But then he adds:

Although Weierstrass’ example has once and for all corrected
this mistake, it is insufficient to satisfy our mind from the ge-
ometrical point of view; for the function in question is defined
by an analytic expression which hides the geometrical nature
of the corresponding curve so that one does not see, from this
point of view, why the curve has no tangent; one should say
rather that the appearance is here in contradiction with the re-
ality of the fact established by Weierstrass in a purely analytic
manner. (von Koch, 1906, 145-6).

Restoring geometrical meaning to the analytic examples was at the source
of the work:



VISUALIZATION IN LOGIC AND MATHEMATICS 17

This is why I have asked myself – and I believe that this ques-
tion is of importance when teaching the fundamental princi-
ples of analysis and geometry – whether one could find a curve
without tangent for which the geometrical appearance is in
agreement with the fact in question. The curve which I found
and which is the subject of this paper is defined by a geomet-
rical construction, sufficiently simple, I believe, that anyone
should be able to see [pressentir] through “naı̈ve intuition” the¨
impossibility of a determinate tangent. (von Koch, 1906, 146).

Von Koch’s project must be seen against the background of the philo-
sophical discussion among mathematicians on the demarcation between “vi-
sualizable” (or “intuitable” ) and “non-visualizable” curves. This discussion
(see Volkert (1986)), to which Klein, du Bois Reymond, Köpke, Chr. Wiener¨
and others contributed, should draw our attention to the fact that a detailed
history of attitudes towards visualization in the twentieth century might re-
veal a more complex pattern than a simple and absolute predominance of a
linguistic, non visual, notion of proof.

2. THE RETURN OF THE VISUAL AS A CHANGE IN
MATHEMATICAL STYLE

But granting the predominance of a linguistic, non visual, notion of formal
proof in mathematics – and examples such as Bourbaki make clear that this
not a myth – let us now try to characterize the salient features of this ‘return
of the visual’.

One of the most important aspects is certainly the development of vi-
sualization techniques in computer science and its impact on mathematics.
Here there has clearly been a two ways influence as mathematical techniques
have helped shape techniques in computer science (including those leading
to great progress in visualization techniques). Conversely, developments in
visualization techniques developed by computer scientists have had impor-
tant effects on mathematics. Computer graphics has allowed researchers to
display information (say, analytic or numerical information) in ways that can
be represented in the form of a graph, or a chart or in other forms but in any
case in a form that allows for a quick visual grasp. Two areas are usually
singled out as paradigmatic of the powerful role displayed by visualization
in the mathematical arena. The first one is the area of chaos theory, and in
particular fractal theory (see Evans (1991)). In “Visual theorems”, Philip
Davis emphasizes that “aspects of the figures can be read off (visual the-
orems) that cannot be concluded through non-computational mathematical
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FIGURE 2. Mandelbrot and Julia sets.

devices” (1993, 339). For delightful examples of visual proofs see Roger B.
Nelsen (1993, 2000).

Here one can point at the dramatic case of the relationship between the
Mandelbrot set and all the Julia sets sitting inside it. It would have been im-
possible to recognize analytically, without the visual support offered by the
computer, that the Julia sets are present inside the Mandelbrot sets. More-
over, the connectedness of the Mandelbrot set became apparent to Mandel-
brot on the basis of its graphical appearance.

Another area where the benefits of computer graphics have been greatly
exploited is differential geometry. The visual study of three-dimensional
surfaces was pioneered in the late seventies by T. Banchoff and C. Strauss.
Through the use of computer graphic animation they were able to construct
surfaces and gain a better grasp of them by the application of transforma-
tions. However, the two most eventful results obtained in this way were
the problem of everting the 2-sphere and the discovery of new minimal
surfaces.4 Palais aptly summarizes the situation:

Two problems in mathematics have helped push the state of
the art in mathematical visualization – namely, the problem
of everting the 2-sphere and of constructing new, embedded,
complete minimal surfaces, especially higher-genus examples.
In the case of eversion, the goal was to illuminate a process so
complex that very few people, even experts, could picture the
full details mentally. In the case of minimal surfaces, the vi-
sualizations actually helped point the way to rigorous mathe-
matical proofs. (Palais, 1999, 654).

In his account of the latter discovery David Hoffman says:
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FIGURE 3. Costa’s surface.

In 1984, Bill Meeks and I established the existence of an in-
finite family of complete embedded minimal surfaces in R3.
For each k > 0, there exists an example which is homeomor-
phic to a surface of genus k from which three points have been
removed. Figure [3] is a picture of genus-one example. The
equations for this remarkable surface were established by Cel-
soe Costa in his thesis, but they were so complex that the un-
derlying geometry was obscured. We used the computer to nu-
merically approximate the surface and then construct an image
of it. This gave us the clues to its essential properties, which
we then established mathematically. (Hoffman, 1987, 8).

Hoffman emphasizes the importance of computer generated images as
“part of the process of doing mathematics”. However, in his paper he also
emphasizes the importance of proving ‘mathematically’ the properties of the
surface which can be ‘seen’ directly in the visualization:

Also it [the surface] was highly symmetric. This turned out
to be the key to getting a proof of embeddedness. Within
a week, the way to prove embeddedness via symmetry was
worked out. During that time we used computer graphics as
a guide to “verify” certain conjectures about the geometry of
the surface. We were able to go back and forth between the
equations and the images. The pictures were extremely useful
as a guide to the analysis. (Hoffman 1987, p.17)

We thus see that the ‘return of the visual’ has led to new mathematical
discoveries, which, it might be argued, could not have been obtained without
the application of computer generated images. Nonetheless, these ‘images’
are not taken at face value. The properties they display must then be verified
‘mathematically’.5
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The reaction against a purely symbolical conception of mathematics has
also found its way in new presentations of certain mathematical subjects that
emphasize the visual aspects of the discipline. Paradigmatic examples are
Fomenko’s ‘Visual geometry and topology’ (1994) and Needham’s ‘Visual
complex analysis’ (1997).

Both of them recognize the importance of the influence of computer sci-
ence in the recent shift towards more visual methods but their call for a return
to intuition and visualization runs deeper and it is rooted in an apprecia-
tion of the importance of visual intuition in areas such as geometry, topol-
ogy, and complex analysis. Fomenko quotes Hilbert approvingly to the ef-
fect that notwithstanding the importance of analytical and abstract reasoning
“visual perception [Anschauung] still plays the leading role in geometry”.
Fomenko however does not consider a visual presentation to be logically
self-sufficient:

Many modern fields of mathematics admit visual presenta-
tions which do not, of course, claim to be logically rigorous
but, on the other hand, offer a prompt introduction into the
subject matter. (Fomenko, 1994, preface p. vi).

And later:

It happens rather frequently that the proof of one or another
mathematical fact can at first be ‘seen’, and only after that (and
following the visual idea) can we present a logically consistent
formulation, which is sometimes a very difficult task requiring
serious intellectual efforts. (Fomenko, 1994, preface p. vii)

Thus, Fomenko’s emphasis is on the pedagogical and heuristic value of
visual thinking and he does not seem to ascribe to results obtained by visual
thinking a justificatory status comparable to that obtained by a ‘logically
consistent formulation’.

Needham is also very strongly critical of the tendency of modern math-
ematics to downplay the importance of visual arguments. In a ‘parable’ he
compares the situation in contemporary mathematics to that of a society in
which music can only be written and read but never be ‘listened to or per-
formed’. He says:

In this parable, it was patently unfair and irrational to have
a law forbidding would-be music students from experiencing
and understanding the subject directly through ‘sonic intu-
ition’. But in our society of mathematicians we have such
a law. It is not a written law, and those who flout it may yet
prosper, but it says, Mathematics must not be visualized!6
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Just like Fomenko, Needham concedes that “many of the arguments [in
the book] are not rigorous, at least as they stand” but that “an initial lack of
rigor is a small price to pay if it allows the reader to see into this world more
directly and pleasurably than would otherwise be possible” (p. xi).

In concluding this section then I would like to point out that many con-
temporary mathematicians are calling for a return to more visual approaches
to mathematics. However, this return of the visual does not seem to upset the
traditional criteria of rigor. In all the cases mentioned above all the authors
remark on the cognitive importance of visual images in doing mathematics
but also seem to recognize that images do not satisfy the criteria of rigor nec-
essary to establish the results being investigated. In this sense this new trend
towards visualization, while marking an important shift in style of research
and mathematical education (on mathematics education see Zimmerman and
Cunningham (1991)), does not seem to me to bring about a radically new po-
sition on the issue of the epistemic warrant which can be attributed to argu-
ments which rely on visual steps. In any case, this problem is not addressed
directly by any of the authors mentioned above.

At this point several problems could be raised. First, it would be inter-
esting to know more about the cognitive visual roots of our mathematical
reasoning and the exact role that mental imagery plays in our mathematical
thinking. Second, a number of classical foundational and epistemological
questions can still be raised about the warrant afforded by diagrammatic or
visual reasoning. In the next section I will try to mention what seem to be
the most promising directions of research in these areas at the moment.

3. NEW DIRECTIONS OF RESEARCH AND FOUNDATIONS OF
MATHEMATICS

Despite the great revival of interest for visual imagery in cognitive psychol-
ogy (Kosslyn, 1980, 1983; Shepard and Cooper, 1982; Denis, 1989) research
in the specific field of mathematical visualization has still a long way to go.
Some interesting results are emerging in the study of diagrammatic reason-
ing (Larkin and Simon, 1987; Glasgow et al., 1995) and problem solving
(Kaufmann (1979); for a survey and extensive references see Antonietti et al.
(1995)). However, the two most up to date treatments of how the brain does
arithmetic (Butterworth, 1999; Deheane, 1997) contain very little on visual-
ization in arithmetic. These investigations in cognitive psychology have in-
fluenced a number of researchers active in foundations of mathematics, who
are interested in addressing the complex web of issues related to perception,
imagery, diagrammatic reasoning and mathematical cognition.
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Let me begin by mentioning the project “Géom´ etrie et cognition” led by´
G. Longo, J. Petitot, and B. Teissier at the ENS in Paris. Their approach
emphasizes the need to provide cognitive foundations for mathematics, in
opposition to logical foundations à la Hilbert. Their research is strongly in-`
fluenced by the dramatic developments in cognitive psychology, especially
in the area of perception theory. And although mental imagery is not stressed
in their ‘manifesto’ (where the emphasis is on perception)7, it is obvious that
their program calls for an account of the cognitive role of mental imagery
in mathematics. This ‘cognitive’ approach to the foundations is less con-
cerned with the traditional goals of logical foundation, as it had been pur-
sued in the tradition of proof theory. Rather, it goes back to the tradition
represented by Riemann, Poincaré, Helmholtz and Weyl. Moreover, they ap-´
peal to Husserl’s phenomenological analyses and in particular the work on
genesis of concepts. For this tradition the foundational task is essentially to
give an epistemological analysis of the constitutive role of the mind in the
construction of mathematics and geometry in particular.

Of great interest is also the epistemological work on visualization car-
ried out by Marcus Giaquinto.8 One can read Giaquinto’s project as trying
to account for the epistemological status of certain experiences of visual-
ization which, he argues, are substantially different both from observation
and from conceptual reasoning. There is obviously a “Kantian” flavor to the
project. The thesis, as presented by Giaquinto, is that the epistemic func-
tion of visualization in mathematics can go beyond the merely heuristic one
and be in fact a means of discovery. We are used to associate discovery
with the heuristic context. But discovery is taken here in a technical sense
according to which “one discovers a truth by coming to believe it indepen-
dently in an epistemically acceptable way”. The independence criterion is
meant to exclude cases in which one comes to believe a proposition just by
being told. One of the conditions on the requirement of epistemic acceptabil-
ity is that the way in which one comes to believe a proposition is reliable.
Giaquinto then proposes a case of visualization (a simple geometrical fact
about squares) for which he claims that through that process of visualization
one could have arrived at a discovery (in the sense above, which does not
entail priority) of the result. However, the justification provided by the vi-
sualization need not be a demonstrable justification, i.e. a justification that
can be checked by intersubjective standards of proof. And nonetheless this
is, he concludes, a legitimate way to come to know a mathematical proposi-
tion. The upshot of his investigations is the claim that whereas in elementary
arithmetic and geometry it is possible to discover truths by means of visu-
alization this is not the case in elementary real analysis, except perhaps in
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extremely restricted cases. It is important to point out here some important
features of Giaquinto’s approach. In traditional philosophy of mathematics
the emphasis is mostly on major theories, such as arithmetic, analysis, or set
theory. The main question that has been pursued is whether these theories
are true and, if so, how do we know them to be true. Since deduction can
preserve knowledge, usually the question becomes that of the epistemology
of the axioms of such theories. Giaquinto asks the analogous question for the
case of the individual and his or her mathematical beliefs. How do people
know their initial (uninferred) mathematical beliefs? And more generally,
how do they acquire their beliefs, whether initial or derived? His strategy
is then to investigate how people actually acquire their beliefs, and this is
where cognitive psychology comes in. Once we have isolated the cognitive
mechanisms of belief acquisition then we can subject them to epistemolog-
ical analysis and ask whether they are in fact knowledge-yielding. While it
is beyond the scope of this paper to address the argumentative line defended
by Giaquinto, let me just grant him the thesis and see how it fits within the
spectrum of positions in foundations of mathematics. Obviously, his project
dovetails quite well with the issues raised by those philosophers of math-
ematics who insist that foundations of mathematics should address issues
concerning the epistemology of mathematics. Giaquinto’s last writings on
this issue in fact (see this volume) put forth an account of the interaction
between perception, visual imaging, concepts and belief formation in the
realm of elementary geometry. But, as mentioned before, it is not central to
Giaquinto’s claims that the types of visualizations he discusses would count
as proofs in the traditional sense. He thus moves away from the traditional
concerns in philosophy of mathematics in two ways. First of all, he shifts
the focus from the community to the individual. Second, since justification
will ultimately depend on some unjustified premises that we must hold to be
true, the question becomes how do we know these ultimate premises to be
true. And that, Giaquinto argues, cannot be done by giving another justifica-
tion (which would involve a regress) but rather by an epistemic evaluation of
the way we come to believe those premises. But this is a question that even
those who focus on major mathematical theories will have to address, as the
starting point of those theories would have to be accounted for epistemolog-
ically. And how could that be done, without going back to the mechanisms
of belief acquisition of the individual? In this way, Giaquinto’s work shows
its relevance also for traditional programs in the philosophy of mathematics.

By contrast, the work carried out by Barwise and Etchemendy on visual
arguments in logic and mathematics is motivated in great part by the proof-
theoretic foundational tradition.9 While Giaquinto was mainly concerned
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with discovery (in the technical sense we have pointed out), Barwise and
Etchemendy focus on proof.

Barwise and Etchemendy begin by acknowledging the important heuris-
tic role of visual representations but want to go further:

We claim that visual forms of representation can be important,
not just as heuristic and pedagogical tools, but as legitimate
elements of mathematical proofs. As logicians, we recog-
nize that this is a heretical claim, running counter to centuries
of logical and mathematical tradition. This tradition finds its
roots in the use of diagrams in geometry. The modern attitude
is that diagrams are at best a heuristic in aid of finding a real,
formal proof of a theorem in geometry, and at worst a breeding
ground for fallacious inferences. (Barwise and Etchemendy,
1996, 3).

Their position challenges the “dogma” ‘that all valid reasoning is (or can
be) cast in the form of a sequence of sentences in some language’. To this
effect they aim at developing an information-based theory of deduction rich
enough to assess the validity of heterogeneous proofs that use multiple forms
of representation (both diagrammatic and verbal). The point is that language
is just one of the many forms in which information can be couched. Visual
images, whether in the form of geometrical diagrams, maps, graphs or visual
scenes of real-world situations are other forms. The goal becomes then that
of developing formal systems of reasoning in which diagrammatic elements
play a central role. It is important here to keep two different claims in mind.
The first claim is that “not all valid reasoning is (or can be cast) in the form of
a sequence of sentences from some language.” The second claim is that it is
possible to construct heterogeneous systems of logic, which unequivocally
show that it is possible to reason rigorously with diagrammatic elements.
This requires extending to these new systems the analogue of notions of
soundness, completeness etc., which are the adequacy conditions for formal
systems of deductive inference. And in turn this requires a framework that
‘does not presuppose that the information is presented linguistically’. Work
along these lines has been done by Barwise, Etchemendy (see 1996) and
their students (see Allwein and Barwise (1996); Shin (1994), among others).

What conclusions can one draw from the work that has been achieved in
this area?

A far-reaching claim made by Barwise and Etchemendy was that “not
all valid reasoning is (or can be cast) in the form of a sequence of sentences
from some language”. If what is meant is that there are forms of valid rea-
soning (visual or diagrammatic reasonings) which cannot be expressed in



VISUALIZATION IN LOGIC AND MATHEMATICS 25

linguistic form, then I claim that the positive developments mentioned above
do nothing at all to prove the point.10 Indeed, even setting up the question in
such a way is problematic, for there is very little clarity on what criteria one
can appeal to in order to distinguish linguistic systems from visual systems.
These issues are at the center of much recent work (Stenning, 2000).

However, the logical precision of these diagrammatic systems allows one
to investigate a number of claims that were made for or against the use of
visual elements in proofs. For instance, people have often noticed the lack of
expressive power of diagrammatic systems. The setting up of diagrammatic
systems has given us a better insight into the problem. Consider for instance
Venn’s idea of representing all relationships between an arbitrary number of
classes by means of closed curves. It was obvious to Venn that if one only
uses circles, there is no way to go beyond 3 classes, that is the addition of
a fourth circle to the diagram will not be able to represent all the possible
combinations between 4 classes.

In the case of Euler’s diagrams there are also limitations, due to Helly’s
theorem, which shows that there are consistent sets of set intersection state-
ments that cannot be represented by any diagram of convex curves. In short,
it is essential to study how the geometrical and topological features of the
representation system affects its expressivity.

Another advantage of setting up formal systems of diagrammatic rea-
soning is that one can give a logical analysis of the often made claim that
diagrammatic systems are intrinsically more efficient. A recent article by
Lemon and Pratt (1997) develops a computational complexity approach to
the study of diagrammatic representations.

I would like to conclude with a reflection on how this work affects tra-
ditional foundational concerns. One claim made by Barwise, Etchemendy,
Shin and others is concerned with the foundational issue of reasoning with
diagrammatic representations, i.e. that it is possible to reason rigorously with
diagrammatic elements. Thus, visual systems are not inherently deceptive,
or no more than linguistic systems might be. Here I think that the work done
by Barwise, Etchemendy, Shin and others proves the point. What they did
was to show that to the traditional model of linguistic rigor we can now add
rigorous forms of inference with diagrammatic elements.

However, there are several philosophers of mathematics who are op-
posed to this traditional approach and are interested in visual reasoning as an
essential factor in providing a more ‘realistic’ philosophy of mathematics,
sensitive to its practice and its cognitive roots. I believe that many of them
would find the work by Barwise and Etchemendy on diagrammatic reasoning
insufficient at best and misguided at worst. The problem, for many people in
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this tradition, is that exclusive attention to the goal of justification is unac-
ceptable. There are many other important epistemic goals, such as discovery
(in Giaquinto’s sense), explanation, understanding, genesis of concepts etc.,
that philosophy of mathematics should account for.

In any case, the work on diagrammatic reasoning accounts for a very
minimal part of our employment of visual tools in our logical and mathema-
tical experience. Should the practicing mathematician feel more comfortable
using visual or diagrammatic tools in his or her work? I think the work on
diagrammatic reasoning does not do much to allay possible worries of be-
ing misled by the visual tools in research contexts but it does show that the
reasons for why such tools are problematic is not necessarily on account of
some intrinsic feature of the visual medium. It is rather that one must always
check that the visual medium does not introduce constraints of its own on
the representation of the target area. And I doubt this is an issue that can be
settled a priori rather than by a detailed case by case analysis of such uses.
But after all, mathematicians have been doing just that for more than two
thousand years.
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NOTES
1See (Pasch, 1882/1926, 44).
2For diagrammatic reasoning in Greek mathematics see Netz (1999). For vi-

sualization in non-Euclidean geometry see Reichenbach (1956). For debates on
visualization in the arithmetization of analysis see Volkert (1986).

3One should recall here Hadamard’s distinction between visual and symbolic ap-
proaches to mathematical thinking. Hadamard himself claimed to think visually, and
following Poincaré characterized mathematicians as falling into two broad classes,´
the analysts and the geometers. As for Hilbert, quoted by Hadamard: “I have given
a simplified proof of part (a) of Jordan’s theorem. Of course, my proof is completely
arithmetizable (otherwise it would be considered non-existent); but, investigating it,
I never ceased thinking of the diagram (only thinking of a very twisted curve), and
so do I when remembering it” (Hadamard, 1949, 103).

4The problem of the eversion of the two sphere is that of turning it inside out
without tearing. For reasons of space I will not give a detailed explanation of what
the two problems are. Palais (1999) provides a very readable account of the two
results. I trust that the main methodological point will be clear even for those who
are not conversant with differential geometry.

5Indeed one should not make the mistake of underestimating the complexity
of producing ‘persuasive’ images. For instance in his article Hoffman describes
how much of the mathematical community admitted difficulty in understanding the
images they were producing and that this forced them to produce more realistic
images. See Hoffman, 1987, p.18.

6“More likely than not, when one opens a random modern mathematics text on
a random subject, one is confronted by abstract symbolic reasoning that is divorced
from one’s sensory experience of the world, despite the fact that the very phenom-
ena one is studying were often discovered by appealing to geometric (and perhaps
physical) intuition.

This reflects the fact that steadily over the last hundred of years the honour of
visual reasoning in mathematics has been bismirched. Although the great mathe-
maticians have always been oblivious to such fashions, it is only recently that the
“mathematician in the street” has picked up the gauntlet on behalf of geometry. The
present book openly challenges the current dominance of purely symbolic logical
reasoning by using new, visually accessible arguments to explain the truths of ele-
mentary complex analysis.” (Needham, 1997, vii).

7See http://www.di.ens.fr/users/longo/geocogni.html#anchor1640003for the pro-
gram and further references.

8The epistemological investigations by Giaquinto (1992, 1994) also take their
start from cognitive psychology. In particular, Giaquinto was influenced by Koss-
lyn, who in his book “Ghosts in the Mind’s Machine” comments on the relationship
between knowledge and imagery by making the point that previous knowledge con-
strains the images we come up with. By contrast, Brown (1997) takes its start from
the work by Barwise and Etchemendy.
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9I should immediately point out that the narrative contrast between Giaquinto’s
work and Barwise and Etchemendy has to be taken with caution. Barwise and
Etchemendy focus on diagrammatic reasoning, which is a form of visual reasoning,
but have nothing to say about the phenomenology of visualization, which constitutes
the main contribution by Giaquinto.

10A proper discussion of this topic would quickly lead into cognitive psychology
and to the ‘imagery debate’. See Tye (1991).
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M. GIAQUINTO

FROM SYMMETRY PERCEPTION TO BASIC GEOMETRY

INTRODUCTION

How do we acquire our basic geometric beliefs? Do those beliefs, acquired
in the way that we normally acquire them, constitute knowledge? On the
view that I propose, the starting point is visual perception of basic shapes:
the geometrical concepts of basic shapes that we form first depend on the
way we perceive those shapes. I hold that in having geometrical concepts for
shapes, we have certain belief-forming dispositions; these dispositions can
be triggered by experiences of seeing or visual imagining, and when they are,
we acquire geometrical beliefs. I further claim that the beliefs thus acquired
constitute knowledge, in fact synthetic a priori knowledge, provided that the
belief-forming dispositions are reliable. This is the skeleton of my proposal.

In this article, I will try to illustrate this idea with respect to a very simple
truth of Euclidean geometry, namely, that the parts of a square to each side
of a diagonal are congruent. There are four parts: (1) Perceiving a figure as
a square. (2) A geometrical concept for squares. (3) Getting the belief. (4)
Is it knowledge?

1. PERCEIVING A FIGURE AS A SQUARE

Visual object recognition depends on parsing a scene into bordered seg-
ments. More specifically, functions required for object recognition – e.g.
visual search, texture segregation, and motion perception – require as input a
representation of the scene as a set of surfaces, and the construction of such
a representation requires as input a representation of the scene in terms of
bordered segments (Nakayama et al., 1995). In what follows I take the vi-
sual representation of bordered segments for granted, and use it as a basis for
introducing some of the ingredients of 2-dimensional shape perception.

1.1. Orientation and reference systems

Perception of an object or figure can be radically affected by its orientation.
A well known example first introduced and discussed by Mach (1959) is the
square-diamond. A square with a base perceived as horizontal will be per-
ceived as a square and not as a diamond; but a square perceived as standing
vertically on one of its corners will be perceived as a diamond, not a square
(Figure 1). Irvin Rock drew attention to other examples, such as the dif-
ficulty in recognising familiar faces in photographs presented upside down
and failure to notice that a figure is the outline of one’s country when it is
presented at 90◦ from its familiar north-up orientation (Rock, 1973).
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FIGURE 1.

Orientation is relative to a reference system. A reference system (RS)
is a pair of orthogonal axes, one of which has an assigned ‘up’ direction.1

A reference system can be based on features of the perceived object, on the
perceiver’s retina, head or torso, on the edges of a page (if the object is a
diagram), or on the environment (horizon plus gravity). Rock stressed the
importance of specifying which reference system is operative when making
claims about the effects of orientation on perception. A change of reference
system is liable to alter perceptual outcomes. Suppose you are looking at a
symbol on a page from the side (Figure 2). Switch from a head-based to a
page based reference system and what was perceived as a capital sigma (Σ)
may come to be perceived as a capital em (M). Perceptual processing prefers
some reference systems to others. View a square with its sides at 45◦ to floor
and ceiling and, as mentioned earlier, it will appear as a diamond; tilt your
head 45◦ so that the figure has sides that are parallel to the retinal axes and
it will still be perceived as a diamond. This is because, in the absence of
additional factors, the visual system prefers environmental axes over retinal
axes.

FIGURE 2.
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By thinking of the content of a visual representation as a set of descrip-
tions we can make sense of the dependency of perception on orientation. De-
scriptions in the description set (DS) of a visual representation use a selected
reference system. When a square is perceived as a diamond the description
set will include the information that the object is symmetrical about the ver-
tical (up-down) axis with one vertex at its top, another at its bottom, and one
vertex out to each side. That description will not be in the description set for
perception of a figure as a square; that will include instead the information
that the object is symmetrical about the vertical axis with one horizontal edge
at its top, another at its bottom, and one vertical edge out to each side. The
description sets are different, hence the perceptions have different contents.
Similarly, the description set for Σ contains ‘centred horizontal line at top’,
which is not in the description set for M. The description set for M contains
‘vertical lines at each side’, which is not in the description set for Σ.

A couple of warnings about description sets may be helpful. First, the
descriptions in a description set are not the perceiver’s commentary and they
are not expressed in a natural language. They are simply feature represen-
tations encoded in a format that has neural realization. The use of the word
‘description’ is not intended to suggest that the format is sentential rather
than pictorial. Secondly, perceivers may not have conscious access to the
description sets of their perceptual representations. When we experience a
representational change in viewing a constant figure (duck to rabbit; upright
Σ to fallen M), there is a change of description sets. But we rarely know just
what changes of description are involved.

When we see a figure in an unusual orientation, such as the letter M on its
side, how do we recognize it as an M? To answer this we need to distinguish
between mere perception and perceptual recognition. Perception involves
generating a set of descriptions of what is perceived; recognition involves
this and the additional step of finding a best match between the generated
description set and a stored description set for the conventional appearance
of the figure. In the case under consideration, the page-based and head-based
axes coincide and have the same up and down directions, and that will be the
preferred reference system, initially at least. The conventional top of the
figure, however, will not be perceived as top, since relative to the preferred
reference system it is off to one side rather than vertically above; and for
the parallel reason its conventional bottom will not be perceived as bottom.
Matching needs the conventional top and bottom of the figure to be top and
bottom with respect to the up and down directions of the preferred reference
system. This can be achieved by selecting a different reference system, one
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FIGURE 3.

that assigns up and down directions to an axis that is horizontal with respect
to the page and head.

1.2. Intrinsic axes and frame effects

To recap briefly, the visual system prefers an environmental reference sys-
tem over an egocentric reference system, e.g. gravitational over retinal axes,
when these do not coincide; and both may be overridden by consciously di-
rected attention, even when they do coincide. In fact they may be overridden
without consciously directed attention when the figure viewed has a strong
intrinsic axis. For example, an isosceles triangle with large equal angles and
a narrow third angle will be perceived as having the narrow vertex as its top
and the short side opposite the narrow vertex as its base, even if the narrow
vertex is way off pointing up with respect to environmental, egocentric and
page-based axes. The bisector of the narrow vertex is the intrinsic axis to
which the visual system is drawn, and so one naturally perceives the trian-
gle in figure 3 as tilting and pointing in the ‘North East’ direction, while the
accompanying figure, lacking a strong intrinsic axis, need not be seen that
way.

When is a line through two points on the perimeter of a figure a strong
intrinsic axis? Let the part of a line falling within the boundary of the figure
be called its internal segment. One proposal is that if the internal segment of
one such line is significantly longer than all the others, such as the internal
segment of the major axis of an obvious ellipse, that line will be the figure’s
strong intrinsic axis (Marr and Nishihara, 1978). There is some evidence that
length is an important factor in recovering the descriptions of a perceived
shape (Humphreys, 1983). But the results of experiments on frame effects
led Stephen Palmer (1990) to conclude that reflection symmetry outweighs
length as a determinant of the intrinsic axis used by the visual system. (The
only symmetries mentioned in this study will be reflection symmetries.) If
a figure has more than one pair of orthogonal axes of symmetry, which pair
of axes the visual system uses as reference axes depends on surrounding
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FIGURE 4.

features of the scene. Palmer and his colleagues showed that equilateral tri-
angles can be perceived as pointing in one of three directions and the selected
direction depends on contextual features (Palmer, 1980; Palmer and Bucher,
1981). Compare the central equilateral triangles in each of the three-triangle
arrays in figure 4. Although all the triangles have the same orientation with
respect to page and retina, the triangles in the left array are likely to be seen
initially as pointing in the 11 o’clock direction while those in the right array
are likely to be seen initially as pointing in the 3 o’clock direction. This can
be explained in terms of the coincidence of axes of symmetry. In the left
hand array the 11 o’clock symmetry axes coincide, whereas in the right hand
array their 3 o’clock symmetry axes coincide.

1.3. Reflection symmetry and shape perception

Other frame effects can also be explained in terms of axes of reflection sym-
metry. Earlier I mentioned Mach’s observation that a square with sides at 45◦
to the edges of the page (and to retinal axes) is seen not as a square but as a
diamond, unlike a square whose sides are horizontal or vertical with respect
to the page. But the Mach phenomenon can be offset by additional config-
urations, such as other squares (as in figure 5a) or a rectangular frame (as
in figure 5b).2 Although the central squares are in the diamond orientation
with respect to page and retina one sees them as squares. Palmer explains
this by the fact that the bisector of the diamond’s upper right and lower left
sides is the diamond’s only symmetry axis that coincides in 5a with a sym-
metry axis of the accompanying diamonds and in 5b with a symmetry axis
of the surrounding rectangle. One sees a square as a diamond rather than a
square just when the visual system uses an axis through opposite vertices as
the main up-and-down axis; one sees it as a square rather than a diamond
just when the visual system uses an axis through opposite sides as the main
up-and-down axis. When a symmetry axis of one figure coincides with a
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[a] [b]

FIGURE 5.

symmetry axis of one or more surrounding figures, the visual system is more
likely to use that axis as the main up-down axis for feature descriptions. It
is as though there were an augmentation rule for the salience of a symmetry
axis: the salience of a symmetry axis of a figure increases when the figure is
accompanied by another figure symmetrical about the same axis. Figure 6,
adapted from one of Palmer’s (1985) figures, illustrates this for the configu-
ration in 5b. Symmetry axes are shown for the diamond, the rectangle and
then the two combined.

Before investigating description sets for these shapes, an apparent cir-
cularity in this account must be removed. To perceive a figure as having a
certain reflection symmetry, the visual system must first select the relevant
axis as an axis of possible reflection symmetry. But in the account given
above, in order to select an axis for generating descriptions, the visual sys-
tem must first determine the figure’s reflection symmetries. This problem
disappears if symmetry perception involves two processes: a fast but rough
test of reflection symmetry in all orientations simultaneously; then, if one or
more axes of symmetry are detected, a more precise evaluation of symmetry
about one or more of these axes in turn.3 The initial selection of reference
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FIGURE 7.

system axes for generating descriptions depends only on the rough and rapid
process of symmetry detection, while perceiving the figure as having a cer-
tain reflection symmetry (so that that symmetry is in the figure’s description
set) depends on the second more precise evaluation process.4

Once axes are selected, reflection symmetries may have a further effect
on which feature descriptions are generated, hence, on which features are
perceived. This can be illustrated by examining a square in the normal ori-
entation and in the diamond orientation. Since the reflection symmetries
about the selected axes are perceived, features entailed by those symmetries
may also be perceived. Look first at the square in normal orientation (on the
left in figure 7). It is perceived as symmetrical about its vertical and horizon-
tal axes. But it would not look symmetrical about the vertical axis unless its
upper angles looked equal and its lower angles looked equal. It would not
look symmetrical about the horizontal unless the angles on the left looked
equal and the angles on the right looked equal. So perceiving these sym-
metries entails perceiving every pair of adjacent angles as equal. Perceiving
these symmetries simultaneously, one perceives all the angles as equal.

Compare this with the perception of angles of the diamond (on the right
in figure 7). In that case perceiving the symmetries entails perceiving oppo-
site angles as equal, not on perceiving adjacent angles as equal. If all pairs
of adjacent angles are equal, all angles are equal; but all pairs of opposite
angles may be equal without all angles being equal. If we pressed the left
and right vertices closer together so that the angle α◦ is greater than the an-
gle β◦ of the top and bottom vertices, the figure would still be perceived as
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a diamond. So perceiving a figure as a square entails that all its angles are
perceived as equal, whereas perceiving it as a diamond does not.

How does perception of the symmetries about the vertical and horizontal
axes relate to the perception of the sides of the figures? It is the reverse of
the relation between perceiving the symmetries and the angles. When see-
ing the figure as a square, simultaneously perceiving the symmetries about
the vertical and horizontal axes entails perceiving its opposite sides as equal,
not on perceiving all its sides as equal. When seeing it as a diamond, si-
multaneously perceiving the symmetries entails all sides being perceived as
equal.5

We can thus explain the Mach phenomenon in terms of the selection of
a page-based reference system of vertical and horizontal axes for producing
feature descriptions. Though the square and the equiangular diamond are
congruent, their different orientations with respect to the reference system
produces different feature descriptions, hence different perceptual contents.

This much explains the perceptual difference between a square and an
equiangular diamond, but it does not explain the perceptual difference be-
tween a square and other rectangles (nor the perceptual difference between
an equiangular diamond and other diamonds). Even when a figure is per-
ceived as a rectangle but not as a square, its adjacent angles will look equal
and its opposite sides will look equal. Clearly what distinguishes a square
from all other rectangles is that all its sides are equal. The visual system can
pick up this additional information by means of a secondary set of orthogonal
axes, the axes at 45◦ to the primary pair of axes. Perceiving the symmetries
of the square about these diagonal axes involves perceiving adjacent sides
as equal, and that is enough to distinguish the square from other rectangles
in perception. As there are now two sets of orthogonal axes involved, the
visual system must discriminate between them. Only one of these sets can
be used as the reference system for descriptions. The axis-pair of the ref-
erence system is primary. A secondary pair of axes can be singled out by
reference to the primary pair. In this case the other axes might be described
as angle-bisectors of the primary pair.

An alternative possibility is that the visual system uses co-ordinates based
on the axes of the reference system with a Euclidean metric. Using this
co-ordinate system, a measuring mechanism computes lengths, which serve
as inputs to a system that encodes spatial properties based on size, as dis-
tinct from a system for coding non-metric spatial relations such as con-
nected/apart, inside/outside, above/below.6 Using the co-ordinate system we
could detect equality of sides, and thereby distinguish squares from other



PERCEPTION TO GEOMETRY 39

rectangles. But a more economical way of achieving this end is by perceiv-
ing the symmetries about the diagonal axes, and so I will assume that this is
how the visual system operates.

1.4. A description set for squares

The foregoing provides all the ingredients needed for a description set for
squares. Let V and H be the vertical and horizontal axes of the reference
system. Then to perceive a figure as a square it suffices that the visual system
detects the following features.

Plane surface region, enclosed by straight edges:
edges parallel to H, one above and one below; edges parallel
to V, one each side.

Symmetrical about V.
Symmetrical about H.
Symmetrical about each axis bisecting angles of V and H.

My suggestion is that this is the description set used by the human visual
system for perception of squares.7 This is not to say that these are the only
features of squares that we perceive. But whenever the visual system detects
these features, the figure will be perceived as a square. In short, these fea-
tures are enough, though they are not all. The fact that this description set
is so economical may help to explain why squares are so basic to our visual
thinking. Thinking about squares requires that, in addition to our capacity to
perceive a figure as a square, we have a concept for squares. How a concept
for squares relates to square perception is the subject of the next section.

2. A GEOMETRICAL CONCEPT FOR SQUARES

A concept, as that term is used here,8 is a constituent of a thought, and a
thought is the content of a possible mental state which may be correct or
incorrect and which has inferential relations with other such contents. Nei-
ther thoughts nor concepts are here taken to be linguistic entities. Though
thoughts can usually be expressed by uttering a sentence and concepts can
usually be expressed by a word or phrase in an uttered sentence, thoughts are
not taken to be sentence meanings, and concepts are not taken to be lexical
meanings.9

Why assume that thoughts have constituents? They are needed to ac-
count for inferential relations between thoughts. Consider the following in-
ferences.

Mice are smaller than cats. Cats are smaller than cows. There-
fore mice are smaller than cows.
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Tom was an uncle. Therefore Tom was a brother.

The validity of the first inference depends on a common constituent of all
three thoughts, here signalled by the expression ‘smaller than’. The validity
of the second depends on the connection between the constituents expressed
by ‘uncle’ and ‘brother’. Concepts are typically constituents of thoughts on
which some of their inferential relations depend. In fact we can characterise
a concept in terms of these relations. To possess a concept one must be
disposed to find certain inferences10 cogent without supporting reasons. So
we can in principle specify a concept in terms of these basic inferences.11

For example, we can specify a concept for uncles thus:

{uncle} is that concept C which one possesses if and only
if one is disposed to find inferences of the following forms
cogent without supporting reasons:

x C y. Therefore x is a brother of a parent of y.
x is a brother of a parent of y. Therefore x C y.

2.1. A perceptual concept for squares

Before proceeding to specify a geometric concept for squares, I will spec-
ify a perceptual concept for squares. This is because the initial geometric
concept for squares that I am aiming at is a slight refinement of a perceptual
concept for squares, and is most easily explained if the perceptual concept
is introduced first. The actual specification of a perceptual concept will be
quite complicated. But the root idea is that the perceptual concept for squares
centres on a disposition to judge something square when it appears square
and one does not suspect that circumstances are illusiogenic or one’s vision
is malfunctioning. This kind of account would be circular (hence fail to spec-
ify any concept) if it were not possible for something to appear square to a
person without that person’s deploying the perceptual concept for squares.
As a square figure appears square just when its squareness is perceived, we
can see that this is possible, by noting the distinction drawn earlier between
merely perceiving the squareness of a figure and perceptually recognizing
the figure as square. Recognizing a figure as square involves a perceptual
experience of it which draws on an antecedently acquired category represen-
tation of squares: not only must visual processing generate the descriptions
in the description set for squares, it must also make a best match between the
set of generated descriptions and the previously stored description set which
constitutes the category representation of squares. But for merely perceiv-
ing the squareness of a figure it will suffice if visual processing generates
the descriptions in the description set for squares, without also matching the
generated descriptions with those belonging to a stored description set for
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squares. Thus there is no pressure at all to hold that perceiving the square-
ness of a figure must involve deploying a concept for squares.12

To specify a perceptual concept for squares we use the features in the
description set, but allow for imperfections, as we can recognize a figure as
a square even if, for example, it is visibly not completely enclosed or its
sides are visibly not perfectly straight. The degree of imperfection allowable
is not something that I can specify; obviously the lines must be sufficiently
straight and the figure sufficiently enclosed to generate the feature descrip-
tions ‘straight line’ and ‘closed figure’, and so on. I will just use the modifier
‘n/c’ for ‘nearly or completely’ to deal with this. Here is one further point
before giving the perceptual concept. We can apply perceptual concepts to
things that we are not perceiving. To cater for this the perceptual concept
will have two parts, for the cases in which one is thinking about an item one
perceives, and an item one does not perceive, respectively.

The concept {square} is the concept C that one possesses if and only if
both of the following hold:

(a) When an item x is represented in one’s perceptual experience as a n/c
plane figure n/c enclosed by n/c straight edges, one edge above H and
n/c parallel to it, one below H and n/c parallel to it, and one to each
side of V and n/c parallel to V, and as n/c symmetrical about V and
n/c symmetrical about H, and as n/c symmetrical about each axis bi-
secting angles of V and H – when x is thus represented in perceptual
experience and one trusts the experience, one believes without extra
reasons that that item x has C. Conversely, when one trusts one’s per-
ceptual experience of an item x, one believes that x has C only if x is
represented in the experience as a n/c plane figure n/c enclosed by n/c
straight edges . . . etc.

(b) Let ‘Σ’ name the shape that figures appear to have in the experiences
described in clause (a). When an item x is unperceived one is disposed
to find inferences of the following forms cogent without supporting
reasons:

x has Σ. Therefore x has C.
x has C. Therefore x has Σ

Obviously what perceptual concept for squares one actually possesses
depends on the description set actually used by the visual system in perceiv-
ing something as square. There are possibilities other than the description
set given here that are consistent with the data about shape perception. Also,
it is at least theoretically possible that different people have different per-
ceptual concepts for squares. So it would be wrong or at least potentially
misleading, given the present state of knowledge, to talk of the perceptual
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concept for squares. But there is no impropriety in talking of the perceptual
concept {square}, since that is the concept individuated above.

2.2. A geometrical concept for squares

The perceptual concept {square} is a vague concept; that is, there may be
things for which it is indeterminate whether they fall under the concept. This
is because there is some indeterminacy in the extensions of perceptible prop-
erties in the description set square-perception, such as straightness and re-
flection symmetry. Among things which are clearly square, such as a hand-
kerchief or the surface of a floor tile, we can sometimes see one as a better
square than another: edges sharper, straighter or more nearly equal in length,
for example, corners more exactly rectangular, halves more symmetrical13

and so on. Sometimes we can see a square, one drawn by hand for instance,
as one which could be improved on and we can imagine a change which
would result in a better square. It can be part of the content of an experience
of those having the concept {square} that one square is a better square than
the other.

It can also be part of the content of experience that a square is perfect.
Since there is a finite limit to the acuity of perceptual experience, there
are lower limits on perceptible asymmetry and perceptible deviation from
straightness. Asymmetry about an axis which is so slight that it falls below
the limit will be imperceptible; similarly for non-straightness. So any figure
veridically perceived as symmetrical about an axis α, if its asymmetry about
α falls below the lower limit of perceptible asymmetry, will be perceived as
maximally symmetrical about α; similarly for straightness. Hence there is a
maximum degree to which a bounded plane surface region can be perceived
as symmetrical about a given axis, and a maximum degree to which a border
segment can be perceived as straight. When in experiencing something as
square these maxima are reached, this fact may be encoded in the description
set generated in the perceptual process. In that circumstance the perceived
item will be experienced as having perfectly straight sides, and as perfectly
symmetrical about vertical and horizontal axes. If in addition the same ap-
plies with respect to the other features in the description set for squares, the
item will appear perfectly square. To be precise, let us say that an item ap-
pears perfectly square when it is represented in one’s perceptual experience
as a perfectly plane figure completely enclosed by perfectly straight edges,
one edge above H and perfectly parallel to it, one below H and perfectly
parallel to it, and one to each side of V and perfectly parallel to V, and as
perfectly symmetrical about V and perfectly symmetrical about H, and as
perfectly symmetrical about each axis perfectly bisecting angles of V and
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H. Just as the root of the perceptual concept for squares centres on a dispo-
sition to judge something square just when it appears square and one trusts
the experience, so the root idea of an initial geometrical concept of squares
centres on a disposition to judge something square just when it appears per-
fectly square to one and one trusts the experience. The only difference is that
the features that figure in the geometrical concept must be perfect exemplars
of their kind. Hence where, in the specification of the perceptual concept,
the figure or parts of it are required to be nearly or completely this or that
(e.g. n/c straight edges, one edge above H and n/c parallel to it, one below
H and n/c parallel to it, and one to each side of V and n/c parallel to V . . .),
in the specification of the geometrical concept they must be completely this
or that. This is the only difference between the perceptual concept and the
initial geometrical concept; the specifications are just the same except that
every occurrence of the qualifier ‘nearly or completely’ gets cut down to
‘completely’.

2.3. From concepts to belief-forming dispositions

Concept possession may bring with it a belief-forming disposition. I will
try to show this for the case of someone possessing the concept {perfect
square}. I assume that one also possesses a concept for restricted universal
quantification, as in ‘All Fs’ or ‘Every F’. If one has that concept, whenever
one finds cogent inferences of the form ‘x has F, so x has G’, one is disposed
to believe the proposition ‘Every F has G’. Now suppose that having these
concepts you perceive a particular surface region x as perfectly square. You
can think of its apparent shape demonstratively, as that shape. Letting ‘S’
name that shape thought of demonstratively, your coming to believe of some
item that it has S will result in your believing that it is perfectly square; and
your coming to believe of some item that it is perfectly square will result in
your believing that it has S.14 This is due to your having the concept {perfect
square}. As you also have a concept for restricted universal quantification,
you will have the following disposition:

(PS) If you were to perceive a figure as perfectly square, you would believe
of its apparent shape S that whatever has S is perfectly square, and
that whatever is perfectly square has S.

If you have this disposition, merely seeing a figure as perfectly square will
produce in you a pair of general beliefs. Although these beliefs are not log-
ical trivialities, they are not empirical truths either, as epistemic rationality
does not require that one has evidence for these beliefs: one does not need
to inspect a sample of the domain, e.g. of the class of things having S, for
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rationally believing that whatever has S is perfectly square. This then illus-
trates a rational way of getting a belief as a result of a concept-generated
disposition triggered by a visual experience. In a similar way we can acquire
the geometrical belief that the parts of a square either side of a diagonal are
congruent. I will now try to show this.

3. GETTING THE BELIEF

Suppose one has a concept for congruence, i.e. sameness of both shape and
size. If a figure a appears to one symmetrical about a line l and one trusts
the perceptual experience, one will believe that the parts of a either side of l
are congruent. We can further say that if a appears to one symmetrical about
l, one will believe that if a is as it appears (in shape), the parts of a either
side of l are congruent. Such a belief is just about the particular figure a; it
contains no hidden generality. But given that a appears symmetrical about l
one will have the stronger belief that if a were as it appears (in shape), the
parts of a either side of l would be congruent. This belief does have some
generality, as it covers a range of possible cases.15 One would believe this
because one realizes that it is only the apparent shape of a that is relevant:
having the apparent shape of a suffices for the attributed property. So one
has a yet more general belief, about any figure having the apparent shape of
a, that it has the attributed property. This is the level of generality that we
require for geometrical truths, so let us focus on our disposition to form this
belief. Of course, the attributed property in this case is not congruence of
the parts of the figure either side of the line l, because the line l is just a line
through a. What we have in mind, for a figure x having the apparent shape
of a, is a line through x that would correspond to l (through a) if a were as
it appears. Correspondence is this relation: a line k through b corresponds
to line l through a if and only if some similarity mapping of a onto b maps
l onto k.16 To put all this together, suppose one has geometrical concepts
for correspondence, as well as for similarity and congruence. Then one will
have the following belief-forming disposition.

(C) If one were to perceive a plane figure a as perfectly symmetrical about
a line l, then (letting ‘S’ name the apparent shape of a) one would
believe without extra reasons that for any figure x having S and for
any line k through x which would correspond to l through a if a had
S, the parts of x either side of k are perfectly congruent.

If a figure appears perfectly square to one, it appears perfectly symmetri-
cal about its diagonals. This is because perfect symmetry about a line that
bisects the angle made by the vertical and horizontal axes of the reference
system is a feature in the description set for perceiving perfect squareness,



PERCEPTION TO GEOMETRY 45

and a line that bisects those axes is a diagonal of the square. Given a concept
for diagonals as well as the concepts that provide one with disposition (C),
one will have a disposition that is a special case of (C):

If one were to perceive a plane figure a as perfectly square,
then (letting ‘S’ name the apparent shape of a) one would be-
lieve without extra reasons that for any figure x having S and
for any line k through x which would correspond to a diago-
nal of a if a had S, the parts of x either side of k are perfectly
congruent.

Now recall the disposition one has a result of possessing the concept {perfect
square}:

(PS) If you were to perceive a figure as perfectly square, you would believe
of its apparent shape S that whatever has S is perfectly square, and
that whatever is perfectly square has S.

Because of this, when one perceives a as perfectly square, one moves freely
in thought between ‘having S’ and ‘being perfectly square’. So in the state-
ment of the disposition above, the special case of (C), we can eliminate talk
of S. The consequent belief is this:

For any perfect square x and for any line k through x which
would correspond to a diagonal of a if a were perfectly square,
the parts of x either side of k are perfectly congruent.

But given a concept for diagonals as well as the concept {perfect square},
one would be disposed to think of a line through perfect square x which
would correspond to a diagonal of a if a were perfectly square as, simply, a
diagonal of x. Thus one has a disposition that is a special case of (C) with
this consequent belief:

For any perfect square x and for any diagonal k of x, the parts
of x either side of k are perfectly congruent.

Spelled out then, the disposition is this.

(CPS) If one were to perceive a plane figure a as perfectly square, one would
believe without extra reasons that for any perfect square x and for any
diagonal k of x, the parts of x either side of k are perfectly congruent.

The point here, the truly remarkable point, is that if the mind is equipped
with the appropriate concepts, a visual experience of a particular figure can
give rise to a general geometric belief. In short, having appropriate concepts
enables one to ‘see the general in particular.’ One cannot have those concepts
without having a disposition that can be triggered by a visual experience to
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form a general belief. In the example at hand this is the target belief that the
parts of a square to each side of a diagonal are congruent.

The original question is how we acquire this belief. Of course, people
may get this belief in different ways. Moreover, it is an empirical question
whether anyone gets this belief in the way that I have described. What is
suggested here is merely one possibility. In one respect it is a rather unlikely
possibility. How often do we see something as perfectly square? A closely
related possibility is one in which the triggering experience is of the kind
described except that the figure is seen as a square but not a perfect square.
In this case I suspect that one can acquire the target belief in the same way
except that the route goes through visual imagination: perceiving the figure
as a square causes one to imagine a perfect square.17 This is possible if, as I
believe, possession of the relevant concepts gives rise also to similar belief-
forming dispositions activated by visualizing rather than visual perceiving.18

There is not space to pursue this here. These suggestions are, as I said, mere
possibilities, to be eliminated or modified in the light of future findings. But
they are partial answers to the Kantian question ‘How is it possible to have
(basic) geometrical knowledge?’ which respect the role of sensory experi-
ence without collapsing geometry into an empirical science.

4. IS IT KNOWLEDGE?

If one comes to believe in the way described above that the parts of a square
to each side of a diagonal are congruent, is that belief knowledge? To be
knowledge the belief must be true, it must have been acquired in a reliable
way, and there must be no violation of epistemic rationality in the way it
was acquired and maintained. In my view these three conditions suffice for
knowledge. It is at least arguable that there is a further condition: the believer
must have a justification for the belief. I will briefly address the question in
the light of these four conditions, and then respond to a couple of objections.
We can deal with the first condition quickly. The belief is about squares in
space as it would be if it were as the mind represents it, that is, in Euclidean
space. In Euclidean space the parts of a square either side of each diagonal
are congruent. So the belief is true. This leaves the conditions of reliability,
rationality, and justification.

4.1. Reliability

If one reaches the belief in the way described, the belief state results from the
activation of the belief-forming disposition (CPS). So the question we have
to answer is whether this belief-forming disposition is reliable. In standard
cases, a belief-forming disposition is reliable in just this circumstance: if the
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antecedent condition were realized, the belief mentioned in the consequent
would be true. In this case the disposition is somewhat trivially reliable,
because the belief mentioned in the consequent (that the parts of a square
either side of a diagonal are congruent) would be true whether or not the
antecedent condition is realized. But (CPS) is just a special case of (C), one
which one has because one has (C) together with the disposition (PS). The
reliability of (C) is not at all trivial, as the belief mentioned in the consequent
of (C) might easily be false if the antecedent condition were unrealized. Yet
(C) is reliable, for it is clear by examining (C) that if its antecedent condition
were realized the belief mentioned in the consequent would be true. In the
same way the disposition (PS) is non-trivially reliable. So I do not think that
there can be any serious doubt about the reliability of this way of getting the
belief.

4.2. Rationality

To qualify as knowledge a belief state must satisfy certain rationality con-
straints. Suppose for instance that having acquired a true belief b in a reliable
way you become aware of having other beliefs with as much justification as
b which are inconsistent with b. In this circumstance believing b is epistemi-
cally irrational and so cannot count as knowledge. There are other rationality
constraints. There is no good reason to think that it is impossible or even dif-
ficult to meet rationality constraints. The contrary thought arises when one
imposes rationality constraints that are much too strict. An example is the
view that consistency of one’s total belief set is required for avoiding irra-
tionality. This is too harsh because it overlooks the possibility of arriving
at a number of jointly inconsistent beliefs, each with explicit justification,
when the inconsistency is extremely difficult to detect. In that case the be-
liever would be unlucky but not necessarily irrational. In the absence of any
plausible argument to the contrary, I take it that it is possible, perhaps easy,
to get a belief by activation of reliable belief-forming dispositions and keep
it, without violations of rationality. Thus one may come to believe the target
geometrical truth in a reliable way and keep it without irrationality. In such
circumstances the belief has an epistemically valuable status. I hold that it is
knowledge.

4.3. Implicit justification

Some people say that a belief is not knowledge unless the believer has a jus-
tification for the belief. This is too strong if it is required that the believer
is able to express a justification, otherwise young children would not have
knowledge. A more plausible version of this doctrine requires only implicit
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justification. But what that comes to is not clear. If it suffices that the per-
son’s beliefs can be marshalled so as to provide a justifying argument, the
requirement can be met. Here is the justifying argument.

1. x is a perfect square. [Assumption]
2. ∴ For any y perceived as perfectly square, x is as y appears.
3. Anything perceived as perfectly square appears symmetric about its

diagonals. [Description set for squares]
4. ∴ x is symmetrical about its diagonals.
5. ∴ The parts of x either side of a diagonal are congruent.
6. ∴ The parts of any perfect square either side of a diagonal are con-

gruent. [Discharging the assumption]

If implicit justification involves something more, I would not accept that
knowledge requires implicit justification. The kind of implicit justification
that is available, on top of the satisfaction of the reliability and rationality
conditions, is enough to make the attribution of knowledge safe.

4.4. First objection: no a priori knowledge

On my account a visual experience causes the belief, but does not play the
role of reasons or grounds for the belief, as it is not necessary for the believer
to take the experience to be veridical – it is enough that a perceived figure ap-
pears perfectly square. So the visual experience is used neither as evidence
nor as a way of recalling past experiences for service as evidence. The visual
experience serves merely to trigger certain belief-forming dispositions. So
this way of acquiring the belief is a priori.

The first objection is simply that there is no a priori knowledge, as no be-
lief whatever is immune from empirical overthrow. The argument is Quine’s,
but it starts from a point made by Duhem, that what constitutes evidence for
or against a belief depends on what other beliefs we hold fixed (Quine, 1960;
Duhem, 1914). When we find that our beliefs as a whole conflict with obser-
vations, we may reject seemingly non-empirical beliefs in order to bring the
totality of our beliefs into line with our observations. An oft-cited example is
the overthrow of the Euclidean Parallels Postulate. Hence the acceptability
of a belief depends on its belonging to a totality of beliefs that fits well with
our experience. Thus the acceptability of any belief depends on experience,
and so cannot be an instance of a priori knowledge.

The most important point in reply to the Quinean objection is this. The
way in which the belief about squares in my account is a priori relates to
its genesis: no experience is used as evidence in acquiring the belief. This
is consistent with the possibility of losing the belief empirically. So even if
Quine were right that all beliefs are vulnerable to empirical overthrow, that
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would not show that beliefs acquired in the way described above could not
be knowledge. Secondly, the argument for the claim that no belief whatever
is immune from empirical overthrow is inconclusive. It is true that some
seemingly non-empirical beliefs have been overthrown, such as the belief
that the shortest distance between two physical points is a straight line. But
there may be others that we cannot rationally reject in order to accommodate
observations which conflict with the corpus of our beliefs.19

4.5. Second objection: no conceptual knowledge

The second objection, put by Paul Horwich (2000), is that there is no con-
ceptual knowledge. The argument is that there may be nothing in reality
answering to a concept (no reference or semantic value), in which case gen-
eral thoughts that issue from the concept will not be true. So in order to know
of a conceptual thought that it is true, one must know that the concept has a
reference, and that knowledge must have an evidential basis independent of
the concept. As an example, consider Priestley’s concept of phlogiston. That
involves a number of inference forms, e.g. ‘x is combustible; ∴ x contains
phlogiston.’ But nothing simultaneously satisfies all those inference forms.
Although the belief that all combustible matter contains phlogiston issues
from the concept, that could not be known without knowing that there really
is some kind of substance answering to Priestley’s concept of phlogiston.
Exactly parallel remarks apply with respect to the belief that the parts of a
square either side of a diagonal are congruent. Even though the belief issues
from the concept {perfect square} and others, we could not know the belief
to be true without knowing that there really is something answering to the
concept {perfect square} and we cannot get that knowledge from merely
having the concept. So this is a challenge to the reliability of the way in
which the belief about squares was reached.

There are two complementary replies to this objection. First, I think
that we do in fact know that something answers to the concept {perfect
square}. This is because the visual experiences involved in acquiring the
concept {perfect square} acquaint us with the property of being perfectly
square. Not that we ever see things that are perfectly square: perhaps nothing
perceptible is in any way geometrically perfect, as Plato maintained. Rather
we become aware of the possibility of a figure’s being perfectly square, as
a result of the visual experiences that produce in us the concept.20 I think
that the same is true of the other concepts involved in the target belief, such
as concepts for diagonal, the part-of relation, and for congruence. This is
in stark contrast to the phlogiston case. In that case the existence of a kind
of substance answering to the concept of phlogiston was merely postulated,
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and that postulation remained to be justified. So, even though the belief about
perfect squares may not be purely conceptual, we have no reason to doubt
that it is knowledge.

The second reply is this. The central claim of the objection is that in
order to know a truth we must know that its constituent concepts each have
a reference. (I take it that negative existential truths are not under considera-
tion here.) While this is clear for concepts introduced by explicit definition
or explicit postulation, it is not clear for other concepts. For example, at a
fairly early stage in language competence one comes to know that for any
statements S and T , if the statement of the form ‘S and T ’ is true, so is the
statement S. This could not be true unless the concept for conjunction here
expressed by ‘and’ had a reference or semantic value, which in this case is
the truth function for conjunction. But we surely do not come to know that
the concept has this or any other reference until much later, if at all, when
we start thinking about semantics. The condition on knowledge that the ob-
jection is based on is too strong. It is reasonable only where a certain class
of concepts is involved, and we do not have reason to think that basic geo-
metrical concepts belong to this class. So, putting these two replies together,
it is clear that the objection poses no threat to the knowledge claim made in
this paper.

5. SUMMARY

How do we know basic geometrical truths? In answer to this I have pre-
sented one possibility for a belief about squares, in the hope that it would
serve as a guide in similar cases. (1) The story started with an account of
perceiving squareness in which visual detection of reflection symmetries is
crucial. This is built into a stored category representation or description set
for squares. (2) A perceptual concept for squares uses that description set,
and a basic geometrical concept for squares is obtained by slight modifica-
tion of the perceptual concept. (3) Possessing these concepts (and others)
entails having certain belief-forming dispositions, which can be triggered by
accessing the stored description set for squares either through seeing some-
thing as square or by visualizing a square. When a visual experience thus
triggers the relevant belief-forming disposition, the experience does not have
the role of evidence for the resulting belief. (4) The belief acquired this way
is, or at least can be, knowledge. The mode of acquisition is reliable, and
there need be no violation of epistemic rationality. Also, there is some sense
in which the believer has an implicit justification for the belief. The only two
serious objections that I know about can be met.
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One final point. This manner of acquiring the belief is non-empirical,
because the role of experience is not to provide evidence. At the same time,
some visual experience is crucial in triggering the relevant belief-forming
disposition; and it is clear that this way of reaching the belief involves no
unpacking of definitions, conceptual analysis or logical deduction. Hence
it must count as non-analytic. Given that ‘non-analytic and non-empirical’
translates as ‘synthetic a priori’, we have a vindication of Kant’s claim that
some knowledge is, or at least can be, synthetic a priori.

Department of Philosophy
University College London
England

NOTES
1If one axis is assigned up-down direction, surely the other is assigned left-right

direction? Not necessarily. Reorienting figures by reflection about their vertical
(up-down) axis has little effect on perceived shape (Rock, 1973). This could beff
because the horizontal axis is not assigned left-right direction – but then codes of
features on one side of the vertical axis would have to bracketed together somehow,
to separate them from codes of features on the other side, otherwise there would
be left-right confusion. For further evidence that shape descriptions do not include
left-right information see Hinton and Parsons (1981).

2See (Palmer, 1985). Rock (1990a) cites Kopferman as the source of the frame
effect illustrated in figure 5b.

3If the axes of probable symmetry include vertical, horizontal, 45◦ diagonal axes
and others, that is likely to be the order in which they are evaluated for symmetry;
see (Goldmeier, 1972; Rock and Leaman, 1963; Palmer and Hemenway, 1978).

4This two-process model was proposed by Palmer and Hemenway (1978) to ac-
count for response-time data that conflict with the predictions of a model consisting
of a single sequential symmetry evaluation procedure proposed by Corballis and
Roldan (1975). A two-process model is also used by Bruce and Morgan (1975) to
account for differences they found among small violations of symmetry, including
the fact that some are detected much faster than others.

5This is an elaboration of the analysis in (Palmer, 1983). Evidence that these
are the relevant features distinguishing the two shape perceptions comes from the
fact that the figures we perceive as squares we view as special kinds of rectangle,
not special kinds of rhombus, whereas squares we perceive as diamonds we view
as special kinds of rhombus. Palmer cites Leyton: A unified theory of cognitive
reference. Proceedings, 4th Annual Conference of the Cognitive Science Society,
1982.

6This is motivated by experimental results reported in (Kosslyn et al., 1989).
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7How would the description set for perceiving a figure as an equilateral diamond
differ from this? It will not contain the feature of sides parallel to the axes V and
H of the reference system. A candidate description set for the equilateral diamond
is this: Plane surface region, enclosed by straight edges, with vertices on H, one to
each side of V, and vertices lying on V, one to each side of H; symmetrical about V;
symmetrical about H; symmetrical about each axis bisecting angles of V and H.

8The term ‘concept’ is also used for word sense, explanatory theory, category
representation, prototype (i.e. representation used in typicality judgements) and oth-
ers. See the introduction of (Margolis and Laurence, 1999).

9In general, thoughts and concepts seem too fine to be identified with expression
meanings. But I do not insist on this view, if only because the individuation of
expression meanings is such a slippery, obscure and contentious matter.

10This is a slight oversimplification, if inferences are transitions between thoughts.
In some cases one needs to consider transitions from content-bearing mental states
that are not thoughts. My use of the word ‘inference’ here is intended to include
such transitions.

11The idea is Peacocke’s (1992). This view of concepts (thought constituents) is
minimalist. It is consistent with the approach taken in this paper that minimalism
misses out something essential to the nature of concepts. For example, one might
hold that part of what constitutes possessing a perceptual concept for squares is that
one has a symbol for the perceptual category of squares. Giuseppe Longo suggests
that if the minimalist account is wrong, what I am talking about might better be
called ‘proto-concepts’.

12Nor is it required that one deploys a concept for any of the features in the
description set for squares, such as straightness or reflection symmetry, though it is
required that the visual system can detect and represent these features.

13See Palmer and Hemenway (1978) for evidence of our ability to make judge-
ments of approximate reflection symmetry. For a definition of a variable symmetry
magnitude see (Zabrodsky and Algom, 1996). Degree of symmetry (using this def-
inition) was found to correlate fairly well with perceived figural goodness.

14The resulting beliefs may be tacit. That is, you may believe that whatever has S
is perfectly square without thinking the thought, just as you have believed that none
of your grandmothers’ grandmothers were elephants, without thinking that thought
before now.

15This would include not only the possible case in which a is as it appears but also
possible cases in which a deviates from its appearance by an amount that would not
normally be perceived.

16Let a and b be similar, i.e. figures with the same shape. Imagine a contracting
or expanding uniformly until it forms a figure a′ congruent with b; then imagine a′
moving so as to coincide with b. A transformation of this kind, known as a similarity
mapping, maps each line through a onto a line through b. We count among similarity
mappings those which involve zero expansion, contraction, rotation, or translation,
including the mapping that involves no change at all.
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17This would not appear to be a square separated from (and competing with) the
seen square, but a representation whose activation is involved in recognizing the
perceived figure as a square. See (Kosslyn, 1994, Ch. 5).

18This is because what is causally operative is the activation of the description set
for e.g. perfect squares, whether by perceptually generating the descriptions or by
exercising visual imagination so as to access a stored description set.

19In particular, it is not clear that the Parallels Postulate (PP) has or could be
overthrown empirically. Perhaps the claim that PP is true of physical space has been
overthrown, but taken as a claim about a certain kind of possible space PP has not
been overthrown.

20The possibility involved is not physical realizability in actual space. I concede
that this needs clarification, and that the claim needs support.
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JAMES ROBERT BROWN

NATURALISM, PICTURES, AND PLATONIC INTUITIONS

1. NATURALISM

The principal objection naturalists offer to platonism is epistemic. We have
seen this over and over again in the writings of self-professed naturalists.
They find platonic intuitions incredible. Many, of course, object to the sup-
posed reality of abstract entities, existing as they do outside of space and
time. But the real sticking point concerns our ability to perceive them. Pla-
tonists say we can; naturalists insist we can’t. The debate, it seems safe to
say, is on hold. It’s been at a standstill for several years. However, the ques-
tion at issue between Platonists and naturalists has suffered from a lack of
development of platonistic epistemology. Naturalists typically (though not
always) borrow from the well developed epistemology of the natural sci-
ences. To perceive something, they point out, a mediating agent, such as
a stream of photons, is needed. And, of course, there is nothing like this
connecting us to the entities in Plato’s heaven. There are no little “platons”
emitted by perfect circles that enter the mind’s eye. Contemporary Platonists
have almost nothing to offer in the way of a detailed epistemology of ab-
stract entities. And the original Platonist, namely Plato himself, conjectured
a wholly implausible epistemology involving immortal souls that previously
existed in this abstract realm, that came to know mathematical objects di-
rectly, but forgot what they knew in the act of being born, and that now in an
embodied form are recollecting bits and pieces of what they forgot. We have
to do better than this.

Contemporary Platonists cling to the idea of perception. They talk of
“seeing,” or “grasping,” or “intuiting” abstract entities. It’s often metaphor-
ical, to be sure, but the idea is that we can have some sort of perception of
the objects of our mathematical knowledge. One of the more vivid versions
of this comes from a famous passage by G.H. Hardy.

I have myself always thought of a mathematician as in the first
instance an observer, a man who gazes at a distant range of
mountains and notes down his observations. His object is sim-
ply to distinguish clearly and notify to others as many different
peaks as he can. There are some peaks which he can distin-
guish easily, while others are less clear. He sees A sharply,
while of B he can obtain only transitory glimpses. At last he
makes out a ridge which leads from A, and following it to its
end he discovers that it culminates in B. B is now fixed in his
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vision, and from this point he can proceed to further discov-
eries. In other cases perhaps he can distinguish a ridge which
vanishes in the distance, and conjectures that it leads to a peak
in the clouds or below the horizon. But when he sees a peak
he believes that it is there simply because he sees it. If he
wishes someone else to see it, he points to it, either directly
or through the chain of summits which led him to recognize it
himself. (1929, 18)

Naturalists react to views such as this with impatience, or amusement, or
both. I don’t. I take Hardy’s account seriously. But there is one thing wrong.
Hardy sees all mathematical evidence as ultimately some sort of perception.
Eventually, according to him, with enough training and guidance, we can
directly see that any given theorem is true. We simply perceive the objects in
questions. This is surely wrong. And platonism needn’t go this far. We need
only commit ourselves to the perception of some mathematical objects and
some mathematical facts. And these perceptions are evidential grounds for
other mathematical objects and propositions that we don’t see. The situation
is similar to natural science. We don’t see elementary particles, but we do
see white streaks in cloud chambers. What we actually do see can be turned
into evidence for theories about what we don’t see. This brings us to Gödel’s¨
brand of Platonism.

Godel likened the epistemology of mathematics to the epistemology of¨
the natural sciences in two important regards. First, we have intuitions or
mathematical perceptions that are the counterpart of sense perceptions of
the physical world. Second, we evaluate (some) mathematical axioms on
the basis of their consequences, especially the consequences that we can
intuit, just as we evaluate theories in physics or biology on the basis of their
empirical consequences.

On Godel’s view, mathematics is fallible for a number of reasons. We¨
can have faulty intuitions, just as we can make mistakes in our sense per-
ceptions. And false premises can have true consequences, so the testing
of axioms by checking their consequences is not foolproof either. Many
people dislike the idea of giving up certainty in mathematics; perhaps they
expect axioms to be “self-evident” truths. Naturalists typically will not ob-
ject to the test-the-axioms-by-their-consequences feature of Gödel’s view.¨
But physicalist-cum-nominalist-cum empiricist-minded naturalists will ut-
terly oppose the idea of Platonic intuitions, fallible or not.

The plan of this paper is as follows: First, I’ll give a brief statement of
Platonism, or at least my version of it. It may differ from other versions float-
ing around, but not by too much. Then I’ll take up the idea of observation
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and of intuition. This is the main sticking point. I will try to develop the idea
in a number of respects and, perhaps thereby, to make it a bit more palatable.
A key feature will be the use of pictures as proofs. Next I’ll discuss a particu-
lar version of naturalism, Penelope Maddy’s. In order to challenge her view,
I’ll describe an interesting thought experiment that tries to refute the con-
tinuum hypothesis (CH). Finally, a negative moral for Maddy’s naturalism
and a positive moral for Platonic intuitions will be drawn.

2. PLATONISM

There are a few key points to mention. I take these ingredients to be more or
less central to Platonism.

1. Mathematical objects are perfectly real and exist independently of us,
and mathematical statements are objectively true (or false) and their
truth-value is similarly independent from us.

2. Mathematical objects are outside of space and time. By contrast, the
typical subject matter of natural science consists of physical objects
located in space and time. Some commentators like to say that num-
bers “exist,” but they don’t “subsist.” If this just means that they are
not physical, but still perfectly real, then I am happy to agree. But if
it means something else, then it’s probably just confused nonsense.

3. Mathematical entities are abstract in one sense, but not in another.
The term “abstract” has come to have two distinct meanings. The
older sense pertains to universals and particulars. A universal, say
redness, is abstracted from particular red apples, red socks, and so on;
it is the one associated with the many. Numbers, by contrast, are not
abstract in this sense, since each of the integers is a unique individual,
a particular, not a universal. On the other hand, in more current usage
“abstract” simply means outside space and time, not concrete, not
physical. In this sense all mathematical objects are abstract.

4. We can intuit mathematical objects and grasp mathematical truths.
Mathematical entities can be “seen” or “grasped” with “the mind’s
eye.” The main idea is that we have a kind of access to the mathema-
tical realm that is something like our perceptual access to the physical
realm.

5. Mathematics is a priori, not empirical. Empirical knowledge is based
(largely, if not exclusively) on sensory experience, that is, based on in-
put from the usual physical senses: seeing, hearing, tasting, smelling,
and touching. Seeing with the mind’s eye is not included on this list.
It is a kind of experience that is independent of the physical senses
and to that extent, a priori.
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6. Even though mathematics is a priori, it need not be certain. These
are quite distinct concepts. The mind’s eye is subject to illusions and
the vicissitudes of concept formation just as the empirical senses are.
Mathematical axioms are often conjectures, not self-evident truths,
proposed to capture what is intuitively grasped. Conjecturing in math-
ematics is just as fallible as it is elsewhere.

7. Many methods are possible in mathematics. There is no limit to what
might count as evidence, just as there is no limit in principle to how
physics must be done. We might discover new ways of learning. By
contrast, for formalist or constructivist accounts, the only source of
evidence is, respectively, rule governed symbol manipulation or con-
structive proof. In principle, nothing else could count as evidence for
a theorem according to those two views. Platonism is not similarly
constrained.

3. GÖDEL’S PLATONISM

In what are perhaps the three most famous and most often quoted passages
in all of Godel’s works, he asserts the key ingredients in Platonism: the¨
ontology of realism and the epistemology of intuitions.

Classes and concepts may, however, also be conceived as real
objects. . . existing independently of our definitions and con-
structions. It seems to me that the assumption of such objects
is quite as legitimate as the assumption of physical bodies and
there is quite as much reason to believe in their existence.
They are in the same sense necessary to obtain a satisfac-
tory system of mathematics as physical bodies are necessary
for a satisfactory theory of our sense perceptions. . . (Gödel,¨
1944/83, 456f)

. . . despite their remoteness from sense experience, we do
have something like a perception also of the objects of set the-
ory, as is seen from the fact that the axioms force themselves
upon us as being true. I don’t see any reason why we should
have any less confidence in this kind of perception, i.e., in
mathematical intuition, than in sense perception, which in-
duces us to build up physical theories and to expect that fu-
ture sense perceptions will agree with them and, moreover, to
believe that a question not decidable now has meaning and
may be decided in the future. The set-theoretical paradoxes
are hardly more troublesome for mathematics than deceptions
of the senses are for physics... [N]ew mathematical intuitions
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leading to a decision of such problems as Cantor’s continuum
hypothesis are perfectly possible. . . (Gödel, 1947/83, 484)¨

. . . even disregarding the intrinsic necessity of some new
axiom, and even in case it has no intrinsic necessity at all, a
probable decision about its truth is possible also in another
way, namely, inductively by studying its “success.” Success
here means fruitfulness in consequences, in particular in “ver-
ifiable” consequences, i.e., consequences demonstrable with-
out the new axiom, whose proofs with the help of the new
axiom, however, are considerably simpler and easier to dis-
cover, and make it possible to contract into one proof many
different proofs. . . . There might exist axioms so abundant in
their verifiable consequences, shedding so much light upon a
whole field, and yielding such powerful methods for solving
problems . . . that, no matter whether or not they are intrinsi-
cally necessary, they would have to be accepted at least in the
same sense as any well-established physical theory. (Gödel,¨
1947/83, 477)

I take these passages to assert a number of important things, many over-
lapping the ingredients of Platonism that I listed above. These include:
mathematical objects exist independently from us; we can perceive or in-
tuit them; our perceptions or intuitions are fallible (similar to our fallible
sense perception of physical objects); we conjecture mathematical theories
or adopt axioms on the basis of intuitions (as physical theories are conjec-
tured on the basis of sense perception); these theories typically go well be-
yond the intuitions themselves, but are tested by them (just as physical the-
ories go beyond empirical observations but are tested by them); and in the
future we might have striking new intuitions that could lead to new axioms
that would settle some of today’s outstanding questions. In a later part of
this paper I will describe a mathematical thought experiment that generates
a new intuition which in turn leads to a refutation of CH.

Beginning in the next section, I’ll take up the idea of intuition or percep-
tion of abstract entities. But the notion plays some role here, so we need to
have at least a minimal idea. Godel took intuitions to be the counterparts of¨
ordinary sense perception. Just as we can see some physical objects (trees,
dogs, rocks, the moon), so we can intuit some mathematical entities. And
just as we can see that grass is green and the moon is full, so we can intuit
that some mathematical propositions are true. These perceptual facts will
play a big role in deciding which propositions to accept or to reject when
they cannot be directly evaluated perceptually.
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Since Godel invokes the analogy with the empirical sciences, it is natural¨
to look there for information about the relation between our mathematical
theories and intuitions. Godel, himself, offered little in the way of details.¨

4. THE CONCEPT OF OBSERVABLE

It’s surprising how much counts as perception within the natural sciences.
Physicists, for example, regularly talk about “seeing the interior of the sun.”
How do they do this? The sun produces neutrinos which normally pass
through regular matter. Because of this, neutrinos produced in the deep in-
terior of the sun pass with ease to the outside, some in the direction of the
earth. In deep, abandoned mine shafts large tanks filled with dry cleaning
fluid will detect the odd neutrino on those very rare occasions when one is
absorbed by a proton which subsequently decays. Out of this whole process
a number of conclusions about the interior of the sun are drawn.

Is this really seeing the interior of the sun? Or is this such a stretch that
it amounts to an outright abuse of the concept of seeing? It seems plausi-
ble to object that all we really see is a few streaks in a photo, caused by the
products of the decaying proton. The rest is inference based on some rather
sophisticated theory. But this rather conservative account may be unjusti-
fied. We are happy to claim we can see things with a magnifying glass or
microscope that we couldn’t otherwise see with the unaided eye. This goes
for high-powered electron microscopes as well as for low-powered optical
microscopes. It’s hard to draw a line between the naked eye and any pow-
erful instrument. Perhaps the apparatus for neutrino detection should also
be taken as an instrument for seeing the interior of the sun—a new type of
telescope.

There is quite a different sort of thing that we also happily call observ-
able. Consider the sort of thing we often see in an article or textbook on
high-energy physics, namely, a picture of some sub-atomic decay process.
These pictures are often given to us twice over. One of them is a photo of an
event in a bubble chamber. The second (usually right beside the first) is an
artist’s drawing of the same event. The difference is that all the messiness of
the first is tidied up. There are just a few bare lines in the artist’s version, ev-
erything else in the photo is eliminated as irrelevant, perhaps stemming from
processes having nothing to do with the one we’re interested in, or perhaps
mere scratches produced in the process of photographing, and so on. There
is certainly a difference between these two pictures, yet it seems fair to call
both a representation of something observable.

There is a useful terminology for this. The original photo is of a da-
tum, while the artist’s drawing is of a phenomenon. (Bogen and Woodward
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1988, Brown 1993) Interestingly, scientific theories usually try to explain
phenomena, not data. Phenomena are doubtless constructed (in some sense)
from data and occupy a middle ground between data and theory. One of the
most interesting and important aspects of phenomena is that they seem to
legitimize inductive inference from a single example. They are not alone in
doing this. So-called natural kind inference has this pattern. If any sample of
water is discovered to have the chemical structure H2O, then we infer that all
water has this structure. True, for safety’s sake a few samples would typically
be considered, just to make sure the test was done properly. By contrast, for
many other properties (e.g., are all ravens black?), we would insist on a very
large sample before cautiously drawing any conclusions. Not so in a natural
kind inference where a single instance is in principle sufficient.

Chicken sexing provides us with yet another unusual sense of seeing.
Expert chicken sexers are remarkable people. They can classify day old
chicks into male and female with 98% accuracy, and they can do this at a
rate of about 1000 per hour. The vast majority of us get it right about 50%
of the time, which is to say we’re utterly hopeless. The skill is considered
economically important if you want to feed those chicks who will eventually
become egg-layers, but not the others. (In an article on the epistemology of
mathematics, it is best not to reflect on the fate of the males.)

How do chicken-sexers do it? No one could do it until the Japanese dis-
covered a perceptual method of discrimination in the 1920s. This method
was passed on to North Americans in the 1930s. Some of the initial practi-
tioners have only just retired. Heimer Carlson of Petaluma, CA, for instance,
spent 50 years classifying a total of 55 million day-old chicks. His expertise
has been the subject of psychological study. (Biederman and Shiffrar, 1987)

The ability to correctly classify is so difficult that it takes years of train-
ing in order to achieve the rare expert level; this training largely consists of
repeated trials. The difference between good sexers and poor ones consists
for the most part in where they look and what distinctive features they look
for, especially contrastive features. It seems that expert chicken sexers were
not aware of the fact that they had learned the contrasting features, nor were
they aware of the exact location of the distinguishing information. By telling
novices where the relevant information was precisely located the novices
became experts themselves at a much quicker rate.

For our purposes the crucial thing to note is that the experts had some
sort of tacit understanding of where to look and what to look for. It may
seem that chicken-sexing is similar to riding a bicycle. We may all know
how to do it, but we can’t say what it is that we know. These two different
types of knowing are usually called “knowing how” and “knowing that.”



64 JAMES ROBERT BROWN

Is chicken sexing just a case of knowing how, rather than knowing that?
There are certainly similarities, but there is one important difference between
classifying chicks and riding a bicycle. Knowing how to ride a bicycle is a
non-propositional skill; it results in actually riding. Knowing how to classify
chicks is also a non-propositional skill; it results in sorting. But it results in
propositional knowledge, as well, namely, being able to truly say “This is a
male.”

One might think that knowing how to ride a bicycle also results in propo-
sitional knowledge: “I am riding.” Not so. This instance of knowing that
does not come from knowing how, but from an empirical observation, a case
of knowing that: I see myself riding. The how-that order is reversed in the
two cases. In the bike example, the skill (riding) preceeds the knowledge
(knowing that I am riding), but in the sexing example the knowledge (his
knowing is a male) preceeds the skill (sorting).

Of course, there are lots of everyday examples such as seeing a cup on
a table just in front of us. This is certainly a legitimate case of perception.
I mention the other cases mainly to help prepare the case for mathematical
perception. Intuition may seem a deviation from the ordinary sense of seeing.
Perhaps it is, but so are a lot of other things, and it is not so great a deviation
as to be dismissed.

5. PROOFS AND INTUITIONS

Consider the following theorem and the picture that attempts to prove it. It
may take a few moments to see how the picture works, but it is certainly
worth the effort.

Theorem: 1+ 2+ 3+ . . .+ n = n2

2 + n
2

Proof:

I wish to claim that the diagram is a perfectly good proof. One can see
complete generality in the picture, even though it only illustrates the theo-
rem for n = 5. The diagram does not implicitly suggest a “rigorous” verbal
or symbolic proof. The regular proof of this theorem is by mathematical
induction, but the diagram does not correspond to an inductive proof at all
(where the key element is the passage from n to n + 1). The simple moral I
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want to draw from this example is just this: We can in special cases correctly
infer theories from pictures, that is, from visualizable situations. An intuition
is at work and from this intuition we can grasp the truth of the theorem.

What is an intuition? A standard definition of intuitive knowledge runs
as follows.

A knows p intuitively if and only if:

1. A knows that p
2. A’s knowledge that p is immediate
3. A’s knowledge is not an instance of the operation of any of the five

senses. (Dancy, 1992, 222)

This is good for a start, but there are problems with this definition. For
one thing, “knows” should be qualified to acknowledge the fallibility of in-
tuitions. Perhaps we should be talking about intuitive beliefs instead of in-
tuitive knowledge. Second, “immediate” should be qualified too. It does
not mean temporally immediate, though typically the process of coming to
know is fairly quick. Moreover, background knowledge and reflection may
be involved. The crucial thing in calling it immediate is that p is not derived
as the conclusion of an argument from other propositions.

Following Gödel, Platonists think of mathematical intuition as similar¨
to the sense perception of physical objects. Indeed, we could imagine an
analogous definition of sensory knowledge. It would be exactly the same
as the definition of intuitive except for the final clause which would assert
rather than deny that some of the five senses are involved.

If we return to the picture proof above, it seems a perfect candidate for
intuitive knowledge. There is one objection that might be raised. It might
be claimed that pictures give us sensory information and that is sufficient
for the proof. After all, I could come to know that Alice has red hair just
by looking at a colour photo of Alice. It is very doubtful, however, that
something similar is happening in the number theory example. The most
that one can acquire from the diagram by means of sense impressions, is a
limited version of the proof, namely a proof that works in the special case of
n = 5. Clearly, the picture provides a proof of very much more than that. It
proves the theorem for every natural number, all infinitely many of them.

We might try, as Jon Barwise and his associates have tried, to take
the picture to be not isomorphic but rather homomorphic to the structure
described in the theorem. Barwise and Etchemendy remark that “a good
diagram is isomorphic, or at least homomorphic, to the situation it repre-
sents. . . ” (1991, 22) Hammer (1995) also adopts this account. The problem
with this proposal is first, that the picture is obviously not isomorphic to the
whole natural number structure, since there are infinitely many numbers, and
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second, that there are too many homomorphisms; the picture does not tell us
which is the right one. And yet, we can seem to “grasp” it, nevertheless.
So, I conclude that the diagram is not a representation in any strict sense,
but rather something like a telescope that helps us to “see” into the Platonic
realm. In short, it’s a device for facilitating a mathematical intuition.

Let me take stock with a brief summery of what I’ve tried to establish so
far. Mathematical intuitions are similar to empirical observations, immediate
but fallible. Pictures and diagrams in mathematics are usually taken as mere
heuristic devices, psychologically useful, but not genuine proofs. Particular
examples, however, strongly suggest this is not so, that some pictures pro-
vide genuine proofs and are just as legitimate as traditional verbal/symbolic
proofs. A mathematical diagram can be seen, but it does not work because it
is literally observed. The observation and the intuition may be quite different
things. Often this will be the case, since what is seen is a finite entity, while
the intuition involves infinitely many things. This means the picture is more
like a device for seeing something else, an implement for generating the ap-
propriate intuition. The connection between sensory experience and mathe-
matical observation is two-fold. In one sense, they are analogous—both are
perceptions. Having an intuition is similar to having a sensory experience.
They are connected in another sense: one sees a diagram (sense perception)
that induces an intuition (mathematical perception) of something very differ-
ent. This is what happens when a picture is not merely a heuristic aid, but an
actual proof.

Now I will turn to a topic that is apparently quite different, Maddy’s
mathematical naturalism. In criticizing her view, I will make use of and even
reinforce the idea of mathematical intuition. There are two issues to consider.
First, does the Platonism described above succumb to Maddy’s naturalism?
Second, does the use of picture proofs lead to any problems for Maddy’s
naturalism?

6. MADDY’S NATURALISM

Penelope Maddy has changed her self-description from realist to naturalist.
Her earlier realism has two main characteristics (Maddy, 1990). First, an
ontological aspect: mathematical entities and mathematical facts exist inde-
pendently from us. Second, an epistemic aspect: we can perceive sets, even
though they are abstract entities, and this perception is compatible with nat-
uralist accounts of the perception of physical objects. These philosophical
claims lead her to make a methodological claim about mathematical practice.
Mathematicians make decisions based on philosophical assumptions. Thus,
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set theorists who accepted a realist ontology tended to accept impredicative
definitions and adopt so-called large cardinal axioms.

More recently, Maddy has adopted a view she calls naturalism. She actu-
ally has not rejected the two ingredients in her realism, but she has rejected
the methodological outlook that she thought went along with the realism.
Her new naturalism is the view that philosophy does not matter to mathe-
matical practice. In other words, working mathematicians do not accept im-
predicative definitions or the axiom of choice because of their realist philo-
sophical assumptions. Rather they do so because impredicative definitions
and the axiom of choice work. It’s a kind of internal pragmatism. Noth-
ing else matters, not philosophy, not science, not theology, just the needs of
mathematics itself.

Her argument is disarmingly brief: “Impredicative definitions and the
Axiom of Choice are now respected tools in the practice of contemporary
mathematics, while the philosophical issues remain subjects of ongoing con-
troversy. The methodological decision seems to have been motivated, not by
philosophical argumentation, but by consideration of what might be called
. . . mathematical fruitfulness. . . ” (1998, 164) Hence, her conclusion: “Given
that the methods are justified, that justification must not, after all, depend on
the philosophy.” (ibid. See also (Maddy, 1997, 191).)

There are two methodological practices that Maddy finds in the history
of mathematics: maximizing and unifying. “If mathematics is to be allowed
to expand freely. . . and if set theory is to play the hoped-for foundational
role, then set theory should not impose any limitations of its own: the set
theoretic arena in which mathematics is to be modelled should be as generous
as possible. . . Thus, the goal of founding mathematics without encumberingff
it generates the methodological admonition to MAXIMIZE” (1997, 210f,
her capitalization).

There are several points with which one could take issue. But there is
only one that I want to discuss in this paper. She claims that the policy MAX-
IMIZE, rather than philosophical beliefs about ontology or epistemology, is
what drives mathematics. I wish to counter this claim (in effect arguing that
her older view was right) and to counter it in a way that appeals to the notion
of intuition (as developed above) in a very fundamental and quite striking
way. This will arise in the following remarkable mathematical thought ex-
periment.

7. REFUTING THE CONTINUUM HYPOTHESIS

One of the more striking developments in recent mathematics is the use
of probabilistic arguments. This has been especially true in combinatorial
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branches of mathematics such as graph theory, but the potential is much
greater and could even be quite revolutionary. Given Maddy’s attitude to
means-ends relationships and especially her principle MAXIMIZE, she is
likely to endorse probabilistic proofs and want to see room made for these
methods in the foundations of mathematics. Amazingly, this may have con-
sequences for the continuum hypothesis, CH, and perhaps could even re-
bound against her naturalism.

Christopher Freiling (1986) constructed the following “refutation” of
CH. He calls his argument “philosophical,” since he does not provide a proof
or a counter-example in the normal mathematical way.

Imagine throwing darts at the real line, specifically at the interval [0,1].
Two darts are thrown and they are independent of one another. The point
is to select two random numbers. As background we assume ZFC. If CH
is true, then the points on the line can be well-ordered and will have length
ℵ1. If we pick a point in the well ordering then the set of earlier points
will have a lower cardinality. Thus, for each p ∈ [0,1], the set of all points
{q ∈ [0,1] : q < p} is countable. (Note that < is the well ordering relation,
not the usual less than.) Call this set SpS .

Suppose the first throw hits point p and the second hits q. Either p < q,
or vice versa; we’ll assume the first. Thus, p ∈ Sq. Note that Sq is a countable
subset of points on the line. Since the two throws were independent, we can
say the throw landing on q defines the set Sq “before” the throw that picks
out p. The measure of any countable set is 0. So the probability of landing
on a point in Sq is 0. While logically possible, this sort of thing is almost
never the case. Yet it will happen every time there is a pair of darts thrown at
the real line. Consequently, we should abandon CH, that is, the assumption
that the number of points on the line is the first uncountable cardinal number.

If the cardinality of the continuum is ℵ2 or greater, the argument as
set out here would not work, since the set of points Sq earlier in the well
ordering need not be countable, and so would not automatically lead to a
zero probability of hitting a point in it. (Freiling actually goes on to show
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that there are infinitely many cardinal numbers, ℵ1,ℵ2,ℵ3, . . ., between ℵ0

and 2ℵ0 .)
It is important to note that this argument cannot be formalized within

standard mathematics. Many sketchy arguments that appeal to vague intu-
itions can be rigorously reconstructed. But this one cannot. If we try to recast
it in purely mathematical terms we would violate established mathematical
principles. CH is, after all, independent of the rest of standard mathematics.

Freiling’s argument is contentious. But the mere possibility of its cor-
rectness (for all we know) is enough to make it an interesting example and
one that is useful for my purposes. Any realistic example is likely to be
contentious and I suspect that the majority of set theorists don’t accept this
refutation of CH. But some mathematicians do, including (Fields medallist)
David Mumford who would like to reformulate set theory, in consequence.
This is enough to make the example especially worth considering in connec-
tion with Maddy’s naturalism.

Mumford would like to see CH tossed out and set theory recast as “sto-
chastic set theory”, as he calls it. The notion of a random variable needs to
be included in the fundamentals of the revised theory and not be a notion
defined, as it currently is in measure theory terms. Among other things, he
would eliminate the power set axiom. “What mathematics really needs, for
each set X , is not the huge set 2X22 but the set of sequences XN in X.” (Mum-
ford, 2000, 208) I won’t pursue the details of this, but instead get right to the
philosophical point that has a bearing on Maddy’s views.

In the light of this example, we have two proposals, both of which could
claim support from Maddy’s methodological principle MAXIMIZE. First,
we have standard set theory in search of additional axioms, guided by the
desire not to limit in any way the notion of an arbitrary set. On this version
of MAXIMIZE the standard axioms remain, the proposed axiom of con-
structability V = L is rejected as too restrictive, and various large cardinal
axioms are tentatively accepted.

Second, we have Mumford’s programme. He can be seen as a max-
imiser, too. But his focus is on maximizing the range of legitimate proof
techniques and, in particular, making room for a more fruitful notion of ran-
domness. In enlarging the realm of mathematics for the sake of stochastic
methods and taking random variables seriously in their own right, Mumford
would reformulate set theory so as to pare down the universe of sets to a
much smaller size. This version of MAXIMIZE is, I suspect, also a per-
fectly legitimate mathematical aim by Maddy’s lights. Though it is not one
she anticipated.
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How are we to settle this dispute? Clearly, appeal to MAXIMIZE will
not help, since both sides could cheerfully embrace it. Freiling called his
argument “philosophical” and that seems exactly right (see Appendix). Why
“philosophy”? Because, it involves beliefs about symmetry, randomness,
and causal independence that go well beyond existing standard mathematics,
and his approach will likely stand or fall with the correctness or incorrect-
ness of those philosophical assumptions. Remember, Maddy’s naturalism
excludes not just science and philosophy, but everything non-mathematical
from having mathematical influence. If Freiling is right about CH, then
Mumford’s programme to overhaul mathematics gets a big boost and so will
his version of MAXIMIZE. Obviously, this will affect mathematical prac-
tice. In other words, philosophy has an effect on mathematical practice after
all. Freiling’s “philosophical” assumptions may be false, of course, but that
is neither here nor there. His particular assumptions and the (arguable) le-
gitimacy of pictures, diagrams, and thought experiments in mathematical
reasoning are the kinds of considerations that matter, at least in principle.
It is enough that one allows the possibility of intuitions based on visualiza-
tion – diagrams or thought experiments – and that this possibility is open
to philosophical debate. That is sufficient to undermine Maddy’s brand of
naturalism, since she denies any role at all for philosophy.

The final moral I wish to draw from the dart throwing example is to
reinforce the initial part of this paper. There is some sort of mathematical
perception which cannot be reduced to either physical perception or to dis-
guised logical inference. This, I think, is clear from the example. Obviously,
we have not refuted CH on the basis of accepted mathematical facts, since
CH is independent of those facts. Could it be an empirical process? This
seems very unlikely, since we cannot really pick out random real numbers
with darts. The process of this thought experiment, though highly visual, is
at bottom an intellectual one. Platonic intuitions a la` Godel play a crucial¨
role. And pictures, diagrams, and thought experiments can generate them.
Maddy and other naturalists might dispare, but Platonists should be cheered
by all of this.
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APPENDIX: FREILING’S “PHILOSOPHICAL” REFUTATION OF CH

The refutation of CH that I gave above is based on Mumford’s presentation.
The original version by Freiling is different in some respects. His thought ex-
periment assumes the following four “self-evident philosophical principles”
(1986, 199):

1. Choosing reals at random is a physical reality, or at least an intuition
mathematics should embrace to the extent possible.

2. A fixed Lebesgue measure zero set predictably will not be hit by a
random dart.

3. If an accurate Yes-No prediction can always be made after a prelim-
inary event takes place (e.g., the first dart is thrown) and, no matter
what the outcome of that event, the prediction is always the same,
then the prediction is also in some sense accurate before the prelimi-
nary event.

4. The real number line cannot tell the order of the darts.

To Freiling’s four assumptions I would add one more: the line consists
of pre-existing points. Aristotle, by contrast, thought that points could be
constructed, say, by throwing darts, but those points do not already exist on
the line. If Aristotle is right, then Freiling’s argument will certainly not work;
so the assumption of pre-existing points is crucial.

Freiling’s argument runs as follows: We throw two darts, one after the
other, at the real line [0,1]. There are a few obvious things we might note.
For instance, the first dart will land on an irrational number with probability
1, because the set of rational numbers is countable and so has Lebesgue
measure 0. It is not impossible to hit a rational number, but the probability
is 0, nevertheless.

Let f : R → Rℵ0 be a function that assigns a countable set of real num-
bers to each real; the number hit by the second dart will not be in the count-
able set assigned to the number hit by the first dart. The situation is symmet-
rical; the order of throwing is irrelevant. Thus, we can say that the number
hit by the first dart will not be in the set assigned to the second. This leads to
the following intuitive principle that I’ll call Freiling’s Symmetry Axiom:

FSA : (∀ f : R → Rℵ0)(∃x)(∃y) y � f (x) & x � f (y)

Theorem (of ZFC): FSA ⇐⇒¬CH

Proof : (⇒): Assume FSA and let < be a well ordering of R. The existence
of a well ordering follows from the axiom of choice which we have assumed.
We will further assume CH which implies that the length of the well ordering
is ℵ1. Our aim is to get a contradiction. Now let f (x) = {y : y ≤ x}. Thus,
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f : R → Rℵ0 . The way cardinal numbers are defined implies that we are
always bumped down a cardinality when picking a set of earlier points in
a well ordering. Moreover, a well ordering is total, so if some particular
y � {y : y ≤ x}, then x > y. Consequently, by FSA, (∃x)(∃y) x > y & y > x,
which is a contradiction. Hence, ¬CH.

For our purposes the refutation of CH is sufficient, but I will include
the rest of the proof of equivalence for those who are interested to see that
¬CH implies FSA.

(⇐): Assume that CH is false, i.e., 2ℵ0 > ℵ1. Let x1,x2,x3, . . . be an
ℵ1-sequence of distinct real numbers and let f : R → Rℵ0 . Now consider
the set A = {x : (∃α <ℵ1) x ∈ f (xα)}, which is the ℵ1-union of countable
sets. Thus, the cardinality of A is ℵ1. Since, by assumption, 2ℵ0 > ℵ1,
∃y � A. Thus, (∀α<ℵ1) y � f (x). Since f (y) is countable, we have (∃α ∈
ℵ1) xα � f (y). Therefore, y � f (x) & x � f (y).
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M. GIAQUINTO

MATHEMATICAL ACTIVITY

Philosophy of mathematics has mainly focussed attention on bodies of mathe-
matical theory: How do we know that ZF is consistent? Are the theorems of
Euclidean Geometry true? What are the objects of Number Theory? And so
on. In recent years, by contrast, there has been a growing interest in mathe-
matical practice among philosophers—Jamie Tappenden gives a concise and
insightful overview (Tappenden, 2001). However, this interest is still rather
narrowly focussed. When philosophers of mathematics are asked to consider
mathematical activity, as opposed to bodies of established mathematics, they
tend to think of the research activity of professional mathematicians, typi-
cally, proving theorems.

What other activities might there be? It is the aim of this paper to lay
out a preliminary map of mathematical activities, in order to highlight some
relatively neglected philosophical aspects of mathematics. An initial broad-
stroke list with associated goals might be as follows.

• Discovery knowledge
• Explanation understanding
• Justification relative certainty
• Application practical benefits

For each of these there are three different kinds of activity. For a discovery
there is the primary activity involved in making it; but there is also the ac-
tivity of presenting it, by means of talks, demonstrations, journal articles, or
books; and there is the activity of taking in the presentation by audience or
readers.

Activities relating to Discovery

⎧⎨⎧⎧
⎩
⎨⎨ Making a discovery

Presenting a discovery
Taking in a discovery

The trio of making, presenting, and taking in obtains also for other kinds of
endeavour on the list. The makers are primarily research mathematicians,
pure and applied, though not exclusively. Physicists and in an earlier age,
amateur mathematicians, play a prominent part. The presenters, by contrast,
include not only mathematicians but also teachers. The takers-in include
not only mathematicians and teachers, but also apprentices, students, and
schoolchildren. So mathematical activity thus broadly conceived is some-
thing that most of us indulge in at some time. Philosophy of mathematics,
then, could engage a much wider audience, if it considered all mathematical
activity. Moreover, there could be practical benefits. Philosophical studies
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FIGURE 1.

of mathematical activity may well prove fruitful for teaching and learning
mathematics, especially in combination with cognitive and historical stud-
ies.

The list given above is not supposed to be exhaustive. But proof is so
central to mathematics that one might think that proving should figure on
a list of mathematical activities. Yet it is not listed here. Why not? The
main reason is that proving comes under justifying. Proving a theorem is not
the only kind of justifying, as I aim to show a little later, and so it should
not replace justification on the list. Furthermore, some cases of proving are
also cases of discovering or explaining. This has been pointed out by Karine
Chemla and is illustrated in some of her research on Liu Hui’s commen-
tary on The Nine Chapters on Mathematical Procedures in (Chemla, 1997)
and this volume. In what follows I will try to substantiate the claim that in
mathematics discovering, explaining, and justifying are distinct and do not
collapse into proving.

1. DISCOVERY

Here is an intuitive way of coming to believe a Euclidean theorem, which,
I will argue, is a way of discovering it but not a way of proving it. Imagine
a square. Each of its four sides has a midpoint. Now visualize the square
whose corner-points coincide with these four midpoints. If you visualize
the original square with a horizontal base, the new square should seem to be
tilted, standing on one of its corners, ‘like a diamond’ some people say. (Fig-
ure 1). Clearly, the original square is bigger than the tilted square contained
within it. How much bigger?

By means of visual imagination plus some simple reasoning one can find
the answer very quickly. I came across this example in (Kosslyn, 1983). By
visualizing the corner triangles folding over, with creases along the sides of
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the tilted square, one can come to view the corner triangles folded flat so as
to cover the tilted inner square exactly, without any gap or overlap. (If you
are in doubt, imagine the original square with lines running between mid-
points of opposite sides, dividing the square into its quadrants. The sides of
the tilted inner square should seem to be diagonals of the quadrants.) So it
becomes apparent that the total area of the corner triangles equals the area
of the inner square. At the same time it is clear that the area of the original
square equals that of the inner square plus the total area of the corner tri-
angles; so the area of the original square equals twice the area of the inner
square.

You may have known this already; you may have acquired this belief by
having followed a proof of it from certain other beliefs, or by being told, or
in some other way. But your experience should confirm that a person could
have acquired this belief in the way suggested. Now taking the proposition
believed to be about squares in the Euclidean plane, I hold that this way of
reaching the belief is reliable, hence delivers knowledge. I have found that
it is not at all a trivial task to substantiate this claim of reliability; I ask you
to take on trust that it can be done. Given that this route to the theorem is
reliable, it is a way in which someone who did not already believe it could
discover it.

Yet it is not a way of proving it. This is because, if we get this belief
this way, our confidence that the corner triangles can be arranged to cover
the inner square without gap or overlap is produced by a means that does not
constitute a proof of it. The activity of visualizing triggers some dispositions
of which we are not conscious, producing immediate belief, without any
steps of reasoning. Not all belief-producing dispositions that can be triggered
by visual experience are reliable. This is notoriously the case in geometry
(even more so in analysis). This fact, coupled with the fact that we very
easily acquire geometrical beliefs in this visual way, made it necessary to
develop a means of checking the correctness of beliefs thus acquired, that
is, to develop ways of justifying or proving them. In the case at hand it
is not at all difficult to see how such a proof might go. The core of one
proof considers the figure that results from dividing the original square into
its quadrants and proves that each outer triangle is congruent to the inner
triangle in the same quadrant. So the visual way of reaching the theorem
illustrates the possibility of discovery without proof.

2. EXPLANATION

The example just given shows that there may be discovery without proof.
Similarly, proof and explanation can come apart: there may be a proof that
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FIGURE 2.

a b

FIGURE 3.

does not explain its conclusion and there may be an explanation that does
not prove the fact explained. It is not straightforward to establish this, as it
is difficult to say what constitutes explanation in mathematics, and I am not
going to attempt that here. This is the subject of recent important work by
Paolo Mancosu, for example (Mancosu, 2000) and this volume. One role for
explanation is to help make a theorem that one already knows more intuitive.
Often this can be done for a theorem in analysis by means of geometric
illustration. A very simple example for Pythagoras’ theorem is the sequence
of stills in figure 2.

For another example, consider the commutativity of addition on the finite
cardinal numbers. A proof of this from the Dedekind-Peano axioms is pro-
lix and unobvious, involving nested induction. Such a proof establishes that
addition is commutative, but does not explain why. Yet our understanding
of counting gives us a ready explanation. Correctly counting the set of stars
(figure 3) from left to right gives a + b while correctly counting the same set
from right to left gives b + a. As a set has exactly one cardinal number, the
number a + b is the same number as b + a. This argument can be readily
generalised to any set divided into subsets A and B. To count the set it does
not matter which subset is counted first. The ease with which the commuta-
tivity of addition is understood is attested by the confidence children have in
it before they can grasp a proof of it, and before they are reliable enough at
simple additions to induce the principle from noticed instances of it.
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However, the two cases just presented instantiate only a rather weak,
subjective kind of explanation. This is explaining in the sense of making a
fact more intuitively compelling to a person than it was before. Mancosu and
others suggest that there is a stronger kind of explanation in mathematics,
one that has an objective basis. In contrast to the sequence of stills presented
earlier for making Pythagoras’ theorem more intuitive, Mancosu (2001) cites
an argument that draws the theorem out of two fundamental facts: (1) the
areas of similar plane figures (with at least one straight side) are to each other
as the squares of their corresponding sides; (2) any right angled triangle t is
composed of two right angled triangles similar to t, whose hypotenuses are
sides of t. The argument stays moored to intuition, but delivers the theorem
in a way that shows it as a special case of the more general truth that for any
kind K of plane figures such that all Ks are similar, the K on the hypotenuse
of a right angled triangle is equal in area to the sum of the Ks on the other
two sides. It will not be disputed that the argument given by Mancosu has
a much stronger claim to be an explanation of Pythagoras’ theorem than the
sequence of stills presented earlier. But at the moment no one has a clear
and satisfactory account of the criteria for mathematical explanation of the
objective kind.

Besides the explanation of theorems, there are explanations of the apt-
ness of definitions. For an example, consider Euler’s formula:

(1) eiθ = cosθ+ isinθ.

This is often introduced as a definition for extending the exponential func-
tion to complex numbers.1 Here, I hope you will feel, something does need
explaining. Euler’s formula is so useful, so much falls out of it or becomes
easier by means of it that the question ‘Why?’ arises quite naturally. It is not
the case that any other definition would have served as well; there must be
something beyond our conventions that makes the definition perfectly apt.

This can be explained by presenting the geometric significance of the
formula. Consider the point on the unit circle at angle θ (anticlockwise from
the unit vector on the x-axis), as in figure 4. That point has co-ordinates
〈cosθ, sinθ〉. So it represents the complex number cosθ + isinθ. Thinking of
this as the vector from the origin to the point 〈cosθ, sinθ〉, Euler’s formula
tells us that eiθ is that vector. If we expand (or contract) the x and y co-
ordinates of that vector by real magnitude r to rcosθ and rsinθ, it is clear
that the corresponding vector must also expand or contract by a factor of
r. This gives an immediate geometrical significance to the following trivial
consequence of Euler’s formula:

reiθ = r cosθ+ r isinθ.



80 M. GIAQUINTO

eiθ

sininθ
θ

cosθ0

FIGURE 4.

reiθ

r sinθ

θ

r cosθ

FIGURE 5.

It tell us that reiθ is the vector with length r at angle θ (figure 5).
Thus we have a notation for vectors which makes explicit its determining

geometric properties, its length r and its angle θ, properties hidden by the
pairs-of-reals notation. This is what explains the aptness of Euler’s formula.
For confirmation, recall the puzzlement one feels when first introduced to
vector multiplication in terms of pairs-of-reals. Given that i2 = −1, it is
clear that

(x+ iy)(u+ iv) = (xu− yv)+ i(xv+ yu).
But why does the term (on the right) denote the vector whose length is the
product of the lengths of the multiplied vectors and whose angle is the sum
of the angles of the multiplied vectors? Given the law for multiplication
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by adding exponents, the answer is immediate using the Euler notation for
vectors:

reiθseiη = rsei(θ+η).

3. JUSTIFICATION

The foregoing, I hope, will have convinced you that utility or aptness of
Euler’s formula as a definition of the exponential function on the complex
domain can be explained in terms of its geometrical significance. The util-
ity of Euler’s definition provides pragmatic justification for adopting it. But
is there not also some intrinsic justification of Euler’s definition? One can-
not prove a definition, so you may think that the answer must be negative.
Despite this, I think that there is an intrinsic justification.

There is a delightful argument, called the Moving Particle Argument,
that I have taken from (Needham, 1997), which provides what is needed.
The argument is less rigorous but more explanatory than alternatives using
power series expansions of e. Here is the argument. The starting assumptions
are that the exponential function is its own derivative and that its value at 0
is 1. Then by the chain rule it follows that for real constant k, the derivative
of ekt with respect to t is kekt . We want this to hold for the complex constant
i in place of k. So we should require our definition to permit the following:

(2)
d
dt

eit = ieit .

Now imagine a particle moving along a curve in the complex plane. Let
its position at time t be the complex number denoted parametrically as Z(t).
Let its velocity at t be the complex number V (t). Thought of as a vector,
the length of V (t) represents the particle’s instantaneous speed at t and the
direction of V (t) represents the particle’s instantaneous direction at t (tangent
to the trajectory in the direction of motion). Finally, let M denote the change
in the particle’s position between t and t + δ. Figure 6 illustrates this.

Then change of position Z with respect to time gives velocity V :

d
dt

Z(t) = lim
δ→0

Z(t +δ)−Z(t)
δ

= lim
δ→0

M
δ

= V (t).

We use this to find the trajectory when Z(t) = eit . According to formula (2),
the derivative of Z(t) with respect to t is ieit , or iZ(t). Noting that multipli-
cation of a vector by i is anti-clockwise rotation through a right angle, this
yields:

velocity V = iZ = position, rotated through π/2.
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0

FIGURE 6.

V = iZ

iZ

1

0

FIGURE 7.

The initial position of the particle is Z(0) = e0 = 1. So its initial velocity is
i, which means that at the starting point it is moving vertically upward with
unit speed. See figure 7. A moment later the particle will have moved a
smidgen in this direction, and its new velocity V (δ) will be at right angles
to its new position vector Z(δ); a moment after that it will have moved a
smidgen in the direction of V (δ) and its velocity V (2δ) will then be at right
angles to its position vector Z(2δ); and so on. Thus the trajectory forms a
regular polygon whose sides, in the limit, have infinitesimal length – in other
words, a circle, as illustrated in figure 7.



MATHEMATICAL ACTIVITY 83

eiθ

y

θ

x0

FIGURE 8.

As |Z(t)| = 1 for all t, that is, throughout the motion, the particle’s speed
|V (t)| = 1 throughout. Hence after time t = θ the particle will have moved a
distance θ round the unit circle, and so the angle of Z(θ) = eiθ will be θ. That
gives us the familiar picture in figure 8.

Now let eiθ = x + iy. As the length of eiθ is 1, x = cos(θ) and y = sin(θ).
Hence x + iy = cos(θ) + isin(θ), which gives us Euler’s formula (1).

The Moving Particle Argument shows that we should accept Euler’s for-
mula, given the small requirement that a certain uniformity in the behaviour
of the exponential function for real inputs carries over for complex inputs,
namely formula (2). Moreover, the argument shows this in a way that makes
it intuitively clear, by presenting the geometrical interpretation of each stage
pictorially, rather than leaving it hidden in strings of symbols. The argu-
ment, however, is not a proof. Perhaps it can be transformed into rigorous
argument without losing too much of its intuitive character. The resulting
argument would be a proof of the conditional ‘If (2) then (1)’; but the point
of marshalling the argument is to justify adoption of (1) as a definition, and
that is an activity distinct from proving a theorem. This kind of justifica-
tion is rare in textbooks, but it is not that rare in practice. In good textbooks
justifications of definitions are not uncommon. Another example is the jus-
tification or ‘motivation’ for defining the natural logarithm function as an
integral given in (Apostol, 1967):

ln(x) =
Z x

1

ZZ
t−1dt.
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Yet other kinds of justification distinct from proving a theorem arise in
connection with axioms. At a first approximation these fall into two classes.
Sometimes we have a structure or class of structures in mind, and a set of
axioms is proposed for a theory of the intended structure(s). Then the cri-
teria of justification would be the cogency of the axioms as truths about the
structure(s), their joint comprehensiveness, their individual independence,
and, in the case of a single structure, their categoricity. Axiom systems for
Euclidean geometry are suitable for this kind of justification. The other kind
of justification is sought when one has an axiom system with some intended
subject matter but not a clear intended model. Then justification would in-
clude finding a model that incorporates the intended subject matter, or that is
reasonably faithful to the original intentions. The history of set theory pro-
vides an example. We did not have a full justification of Zermelo’s axioms
until we had the idea of a universe of sets as a cumulative hierarchy.2

4. REFINING AND EXTENDING THE LIST OF ACTIVITIES

Reflecting on the kinds of justification mentioned here gives reason to look
back at the initial list of activities. Here is a kind of puzzle. Justifying axioms
might seem to be a self-defeating exercise, because if the justification is not
circular its premisses are shown to be the real axioms, i.e. starting points,
while the ‘axioms’ justified are really just theorems. Something similar can
be argued with regard to justifications of definitions. Will not a succesful
argument in justification of a ‘definition’ show that it is really a theorem?
The simple answer is that a successful justification of an axiom or axiom
system or definition does not so much prove its truth as warrant our adopting
it. Since the locution ‘justifying’ as applied to a statement usually means
establishing its truth, it might be better to talk of motivating axioms and def-
initions, as some authors already do. In any case it is clear that justification
falls into two different kinds: proving theorems and motivating definitions
or axioms. Whereas the goal of proof would be to achieve some degree of
certainty about the truth of a theorem, the goals of motivating a definition
or axiom system would be to achieve some degree of assurance about the
wisdom of adopting that definition or axiom system.

To motivate a definition or axiom system one must already have the def-
inition or axioms. The activity of formulating definitions or axioms is no
trivial matter in mathematics. One only has to think of the struggle to make
rigorous differential calculus. Algebra provides a current example. There are
several definitions of weak n-category on offer that are not obviously equiv-
alent. Leinster (2002) discusses ten of these definitions. Homing in on the
intrinsically important ones will take time. This case is rather different from
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the calculus. We have concepts of category and bicategory, and definitions
thereof. The task then is to find a suitable way of generalising to n-category
for n > 2 (and perhaps to α-category for transfinite α) in the absence of a
prior concept of weak n-category. But in the case of calculus there were
prior perception-based concepts of continuity and convergence. So formula-
tion is an important kind of activity in mathematics, with its own subkinds. I
suggest then that the list of activities that we started with should be expanded
to include formulation, with the goals of precision, explicitness and rigour.

Related to the kinds of formulation just mentioned is the invention of
symbol systems and associated algorithms for problem solving. The prime
case is the invention of the place system of numerals and the associated al-
gorithms for multidigit addition and multiplication. Another case is matrix
algebra. Should these come under formulation? Or do they belong under a
separate heading?

Of no less importance is the invention of types of diagrammatic repre-
sentations, and their conventional links with symbolic notations. Here the
prime cases are the number line and the Cartesian co-ordinate system. The
importance of the link established by these representations between number
and space, and between algebra and geometry, can hardly be overestimated.
More recently the use of arrow diagrams helps to anchor our grasp of quite
abstract levels of algebra to spatial representations. I suggest that the con-
struction of symbol systems and diagram systems deserves to be listed as a
separate kind of activity, construction of systems of representation, which I
will call ‘representation’ for short.

Revising the list to incorporate these points gives the following.

• Discovery

• Explanation

{
Subjective
Objective

• Formulation

• Application

• Justification

{
Proving theorems
Motivation definitions / axioms

• Representation

{
Symbol systems
Diagram systems

It is clear that mathematical activity is rich, varied and complex, so that
any preliminary account such as this one is bound to need overhaul, if not
outright replacement. The value of this is only that it may serve as a spring-
board for more thorough philosophical study of mathematical activity.
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5. CONCLUDING REMARKS

In drawing to a close I would like to change direction a little and raise some
questions for further investigation. The mathematical activities I have dis-
cussed have associated goals. But often mathematical activity has intrinsic
rewards for the active participant, rewards that may differ from the primary
goals. I have in mind the pleasure of new understanding, and aesthetic plea-
sure. For example, we might notice some surprising equivalences between
propositions in two quite distinct mathematical domains; then we discover
that both domains are instances of a structure or kind of structure, and that
the equivalences are to be explained by the shared structure. This can be
rewarding, and if we have some intuitive grasp of the structure there can
be an aesthetic reward accompanying the intellectual reward. I am struck
by how often gains in understanding involve the use of visually presented
spatial representations, diagrams or mental imagery. Is the aesthetic reward
in such cases due to the aesthetic properties of the visuo-spatial representa-
tions? Or can the mathematical entities themselves, the abstract structures,
bear aesthetic properties? Mathematical explanations often involve visuo-
spatial representations. To what extent, in such cases, does understanding a
mathematical fact, as opposed to merely knowing it, depend on visuo-spatial
cognition? And when explanations are visuo-spatial in character, can there
really be distinct presentations of the same explanation? Is there really a dif-
ference between a presentation of an explanation and the explanation itself?

A more refined account of mathematical activities would raise many
more questions like these, whose investigation would restore to the philo-
sophy of mathematics its ancient depth and succulence. In this paper I have
merely attempted to indicate the wealth and variety of mathematical activ-
ities and to show that, despite our training, mathematical activity does not
reduce to applying algorithms and proving theorems.3

Department of Philosophy
University College London
England

NOTES
1Given the law for multiplying by adding exponents, Euler’s formula is trivially

equivalent to the equation ex+iθ = ex(cosθ+ isinθ). Sometimes this equation is
given as the definition.

2This is not to say that the conception of a cumulative hierarchy on its own
suffices to justify all the axioms. Cardinality considerations are needed as well.
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3I would like to thank Paolo Mancosu for helpful comments on a draft of this
paper.
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PART 2

MATHEMATICAL EXPLANATION AND PROOF
STYLES



JENS HØYRUP

TERTIUM NON DATUR: ON REASONING STYLES IN EARLY
MATHEMATICS0

Árpád Szab´´ o in memoriam´

1. TWO CONVENIENT SCAPEGOATS

Some philosophers of mathematics hold that real proof is quite recent and
that, for instance, Euclid’s arguments for the correctness of his theorems and
constructions do not count as “proofs” (those contributing to the present vol-
ume are less dogmatic!). The rest of the world (in as far as it knows at all
about the topic) sees things differently. Contemporary mathematicians may
find Euclid’s proofs insufficient or shaky, but they agree with their prede-
cessors that Euclid’s strings of arguments from the properties of the objects
involved do constitute proofs.1 According to this view, Greek theoretical ge-
ometry is thus based on proofs. Does that mean that mathematical proof was
invented by the ancient Greeks (and, by tacit but rampant corollary, that it is
thus yet another “proof” of “Western” superiority)?

Some writers on mathematics and its history have indeed claimed proof
to be a Greek invention (without necessarily deducing from that the corol-
lary that “our” saturation of selected spots of the world with napalm, cluster
bombs and depleted uranium is morally justified). In (1972, 3, 14), Morris
Kline wrote the following lines:

Mathematics as an organized, independent, and reasoned dis-
cipline did not exist before the classical Greeks of the period
from 600 to 300 B.C. entered upon the scene. There were,
however, prior civilizations in which the beginnings or rudi-
ments of mathematics were created.

[. . . ]
The question arises as to what extent the Babylonians em-

ployed mathematical proof. They did solve by correct sys-
tematic procedures rather complicated equations involving un-
knowns. However, they gave verbal instructions only on the
steps to be made and offered no justification of the steps. Al-
most surely, the arithmetic and algebraic processes and the ge-
ometrical rules were the end result of physical evidence, trial
and error, and insight.

Such blunt statements (as well as the less blunt but similar attitudes of many
fellow writers) have called forth objections from other quarters.2 As an ex-
ample one may quote George Gheverghese Joseph’s statement (1991, 89 f )
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that if “the Greek dependence on Egypt and Babylonia is now recognized,
the myth of the ‘Greek miracle’ will no longer be sustainable”.3 Unfortu-
nately for Joseph’s intended undermining of “one of the central planks of the
Eurocentric view of history of progress” (1991, 90), the whole discussion
of Egyptian and Babylonian mathematics is nothing but support for Kline’s
view.4 Admittedly, Richard Gillings (1972, 233) is quoted to the effect that a

nonsymbolic argument or proof can be quite rigorous when
given for a particular value of the variable; the conditions for
rigor are that the particular value should be typical, and that a
further generalization to any value should be immediate

– but Joseph does not show that (nor discuss in which sense) the various rules
applied to particular cases he quotes from Egyptian and Babylonian material
can really be read as paradigmatic (or “potentially general”) “argument or
proof” in Gillings’s sense.

In the following sections of the paper I shall show that much of Old
Babylonian mathematics was indeed reasoned in this sense; characterize the
type of reasoning involved; confront it with Euclidean reasoning about anal-
ogous cases; use this to characterize the approach of Greek theoretical geom-
etry as embodied by Euclid’s Elements; and briefly discuss a different type
of Greek mathematical reasoning. In the end I shall widen the perspective
toward other mathematical cultures.

2. OLD BABYLONIAN GEOMETRIC PROTO-ALGEBRA

Kline as well as Joseph speak about “Babylonian mathematics” as if this en-
tity remained the same as long as the Babylonian culture lasted; so did until
very recently almost everybody who dealt with the topic without being a spe-
cialist of exactly this historical field. At closer inspection, however, there are
important differences between the mathematics of the Old Babylonian and
the Seleucid periods (c. 1900–1600 BCE and c. 300–100 BCE, respectively).
The large majority of texts comes from the Old Babylonian period, on which
I shall concentrate at first.

The Old Babylonian mathematical corpus consists of three parts: tables,
tablets for rough numerical work, and problem texts. Only the third group
is relevant for the present discussion – actually only the “procedure” texts,
texts which prescribe how to solve the problem stated in the beginning.

A large part of the problem texts have been understood since they were
first interpreted in the 1930s to be of “algebraic” character.5 Taken at their
words, most of them deal with the measurable sides and areas of rectangles
and squares, but these were taken to serve as mere dummies for unknown
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numbers and their products. Correspondingly, the operations that were per-
formed were supposed to be arithmetical additions, subtractions, multiplica-
tions, etc. In this reading, the procedure descriptions look like mere prescrip-
tions of numerical algorithms, with no indication of the way these have been
found. A historian like Otto Neugebauer, who knew the corpus well, was
fully aware that the procedures could not have been found without genuine
mathematical reasoning, and presupposed that the texts had gone together
with a system of oral instruction explaining the reasons for the steps; those
general historians who knew only one or two simple examples in translation
often believed that they had been found by trial and error (Kline, as we see,
combines the two ideas).

Only a thorough investigation of the structure of the terminology and of
the discursive organization of the texts reveals that the texts have to be taken
at their geometrical words.6 The problems are indeed (in a loose sense)
homomorphic with those of numerical equation algebra, but many of the
operations are geometric, not arithmetical.

As a first example we may look at the text YBC 6967,7 which contains
a single problem dealing with two numbers igûm and igibûm belonging to-
gether in the table of reciprocals, “the reciprocal and its reciprocal”. This
problem thus illustrates another respect in which the technique is similar
to modern equation algebra: a functionally abstract “basic representation”
(with us abstract numbers, with the Babylonians measured or measurable
segments and areas) is used to represent magnitudes belonging to other on-
tological domains but involved in relations that are structurally similar to
those characterizing the basic representation.

The text goes as follows in literal translation:
Obv.

1. [The igib]ûm over the igûm, 7 it goes beyond
2. [igûm] and igibûm what?
3. Yo[u], 7 which the igibûm
4. over the igûm goes beyond
5. to two break:8 3◦30 ;́
6. 3◦30´ together with 3◦30´
7. make hold:9 12◦15 .́
8. To 12◦15´ which comes up for you
9. [1` the surf]ace append: 1`12◦15 .́

10. [The equalside10 of 1`]12◦15´ what? 8◦30 .́
11. [8◦30´ and] 8◦30 ,́ its counterpart,11 lay down.

Rev.
1. 3◦30 ,́ the made-hold,
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FIGURE 1. The representation of the igum-igibˆ ûm problem
of YBC 6967.

2. from one tear out,
3. to one append.
4. The first is 12, the second is 5.
5. 12 is the igibûm, 5 is the igûm.

What goes on may be followed in the diagram of Figure 1. We should ex-
pect the product of the two numbers to be 1, but it is actually meant to be
60 (whether due to the floating-point character of the number system or to
the origin of the table of reciprocals as a tabulation of aliquot parts of 60 is
uncertain). The two numbers are thus represented by the sides of a rectangle
with area 1` (as obvious, e.g., from the reference to 1` in obv. 9 as a “sur-
face”. Since we are told that the igibûm exceeds the igûm by 7, the length of
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the rectangle exceeds the width by 7. This excess (with appurtenant section
of the rectangle) is bisected, and the outer part moved around so as to con-
tain together with the inner part a square �(31/2// ), whose area will be 121/4// .
When the original rectangle (transformed into a gnomon) is joined to this, a
square with area 60+121/4// = 721/4// is produced. The “equalside” of this area
is 81/2// , and so is its “counterpart”. When that part of the rectangle which was
“made hold” is restored to its original position, we get the original length,
the igibûm, which will thus be 81/2// +31/2// = 12. But before we can restore it,
we must remove it from the place where it was put; this removal produces
the igûm, which must therefore be 81/2// –31/2// = 5.

As we see, no attempt is made to discuss why or under which conditions
the operations performed are legitimate and lead to the correct result. On the
other hand it is intuitively obvious, once we are familiar with the properties
of rectangles, that everything is correct. In this sense the prescription is,
as formulated by Karine Chemla ((1991), (1996), and elsewhere) regarding
Chinese mathematics, algorithm and proof in one.

The clay tablet contains no drawing; a few others do, but only as support
for the statement, never as a supplement to the prescription. For this rea-
son we cannot know the precise character of the diagrams that supported the
reasoning – they may have been drawn in sand strewn on a brick floor, on a
wall, or in any other medium that has not been conserved; we do not even
known to which extent trained calculators would make actual drawings, and
to which extent they would rely on mental geometry. We may be confident,
however, that drawings were made use of at some stage of the instruction –
mental geometry builds on previous experience with material geometry, just
as mental addition of multi-digit numbers presupposes previous exposure to
pen-and-paper algorithms for almost all of us; we may also be fairly con-
fident that the diagrams in question were structure diagrams and not made
carefully to scale – field plans, at least, had this character (see Figure 2, a plan
from the 21st century BCE). As we see, only the right angles (those angles
which are essential for the determination of areas) are rendered correctly; in
general, the Babylonians seem not to have regarded angles as quantifiable
magnitudes – expressed in a pun, an angle which was not “right” was simply
considered “wrong”.

The notion of a “naive” proof integrated in the algorithm may astonish
us, but should not do so. How, indeed, will we normally treat the correspond-
ing problem in symbolic algebra if we merely need to solve it? More or less
in the following steps:
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FIGURE 2. Field plan as drawn on the tablet (left) and in
true proportions (right). From (Thureau-Dangin, 1897,
13,15).
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FIGURE 3. The situation of TMS XVI #1.

x− y = 7 xy = 60(3)
x− y

2
= 31/2//(4)

(x− y
2

)2 = 121/4//(5)

(x− y
2

)2 + xy = 121/4// + 60 = 721/4//(6)

(x+ y
2

)2 = 721/4//(7)
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2

=
√

721/4// = 81/2//(8)

x =
x+ y

2
+

x− y
2

= 81/2// + 31/2// = 12(9)

y =
x+ y

2
− x− y

2
= 81/2// −31/2// = 5(10)

We would obviously be able to justify every step if asked by somebody who
did not follow the idea – but we would hardly justify the step from (3) to (4)
with exact reference to the appropriate Euclidean axiom (or corresponding
arithmetical theorem or axiom). Just as the Babylonian calculator, we thus
proceed naively; so did any equation algebra until the advent of the Modern
era. And just as that of the Babylonian calculator, our approach is analytic:
we take the existence of the solution for granted, manipulate it as if it were
known, and stop when we have disentangled the unknowns from the complex
relationships in which they were involved.

Whereas the geometrical diagrams on which the reasoning was made
have not survived, a few texts have transmitted the kind of explanations
which must normally have been given orally. All are from Susa, a periph-
eral area (which may be the reason that explanations which elsewhere were
transmitted within a stable oral tradition had to be put into writing). One –
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FIGURE 4. The transformations of TMS XVI #1.

TMS XVI – explains the transformations of two linear equations.12 The first
transformation runs as follows in translation:13

1. [The 4th of the width, from] the length and the width to tear out, 45 .́
You, 45´

2. [to 4 raise14, 3 you] see. 3, what is that? 4 and 1 posit,15

3. [50´ and] 5 ,́ to tear out, [posit]. 5´ to 4 raise, 1 width. 20´ to 4 raise,
4. 1◦20´ you 〈see〉, 4 widths. 30´ to 4 raise, 2 you 〈see〉, 4 lengths. 20 ,́

1 width, to tear out,
5. from 1◦20 ,́ 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3

widths, accumulate, 3 you see.
6. Igi 4 de[ta]ch,16 15´ you see. 15´ to 2, lengths, raise, [3]0´ you 〈see〉,

30´ the length.
7. 15´ to 1 raise, [1]5´ the contribution of the width. 30´ and 15´ hold.
8. Since “The 4th of the width, to tear out”, it is said to you, from 4, 1

tear out, 3 you see.
9. Igi 4 de〈tach〉, 15´ you see, 15´ to 3 raise, 45´ you 〈see〉, 45’ as much

as (there is) of [widths].
10. 1 as much as (there is) of lengths posit. 20, the true width take, 20 to

1´ raise, 20´ you see.17

11. 20´ to 45´ raise, 15´ you see. 15´ from 3015´
18 [tear out],

12. 30´ you see, 30´ the length.

The equation deals with the length (�) and the width (w) of a rectangle –
see Figure 3; in the actual case, however, this concrete meaning is relatively
unimportant. In line 1, we are indeed told (in symbolic translation) that

(�+ w)− 1/1 4// w = 45 .́

At first we are instructed to multiply the right-hand side by 4, from which 3
results. In line 2, the meaning of this number is asked for; the explanation
given in lines 2–5 can be confronted with Figure 4, which may correspond



TERTIUM NON DATUR 99

FIGURE 5. The configuration described in TMS IX #1.

more or less closely to something the author had in mind, and which is any-
how useful for us. As we observe, no problem is solved, the explanations
presuppose (and the student is thus supposed to know) that the length is 30´
and the width 20 ,́ their sum 50´ and the fourth of the width 5 .́

In line 6, the equation is multiplied by 1/4// , from which follows both
the “contribution of the width”, that is, the value of the member (1 – 1/4// )w,
and the coefficients (“as much as there is”) of length and width. All in all,
the explanations thus aim at giving concrete meaning to the outcome of the
multiplication and to the original equation, not “proving” anything to be cor-
rect – no statement is involved which could be true or false except the claim
that 4×45 = 3 – but making everything transparent, thus facilitating “naive”
understanding of the correctness of procedures.

Two other didactical expositions are found in the text TMS IX #1 and
#2.19 Both deal with geometry of the kind that was used to represent the
igûm and igibûm in YBC 6967. They run as follows:
#1

1. The surface and 1 length accumulated, 4[0 .́ ¿30, the length,? 20´ the
width.]

2. As 1 length to 10´ [the surface, has been appended,]
3. or 1 (as) base to 20 ,́ [the width, has been appended,]
4. or 1◦20´ [¿is posited?] to the width which 40´ together [with the length

¿holds?]
5. or 1◦20´ toge〈ther〉 with 30´ the length hol[ds], 40´ (is) [its] name.
6. Since so, to 20´ the width, which is said to you,
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FIGURE 6. The configuration of TMS IX #2.

7. 1 is appended: 1◦20´ you see. Out from here
8. you ask. 40´ the surface, 1◦20´ the width, the length what?
9. [30´ the length. T]hus the procedure.

#2
10. [Surface, length, and width accu]mulated, 1. By the Akkadian (method).
11. [1 to the length append.] 1 to the width append. Since 1 to the length

is appended,
12. [1 to the width is app]ended, 1 and 1 make hold, 1 you see.
13. [1 to the accumulation of length,] width and surface append, 2 you

see.
14. [To 20´ the width, 1 appe]nd, 1◦20 .́ To 30´ the length, 1 append,

1◦30 .́
15. [¿Since? a surf]ace, that of 1◦20´ the width, that of 1◦30´ the length,
16. [¿the length together with? the wi]dth, are made hold, what is its

name?
17. 2 the surface.
18. Thus the Akkadian (method).

In #1, as we see, we are told that the arithmetical sum of the length and the
area of a rectangle is A + � = 40 ;́ once again, the explanation of what goes
on presupposes the student to know that the length is 30´ and the width 20 .́
The text then explains how this is to be given a concretely meaningful inter-
pretation. The trick is to replace the length � by a rectangle ��(1, �), which
corresponds to joining an extra “base 1” to the width, as shown in Figure 5
(the orientation of which follows from the designation of the extension as a
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“base”). The resulting total “width” is 1◦20´; since the total area is 40 ,́ this
is seen to correspond to the length 30 ,́ as it should.

In #2, we are told instead the arithmetical sum of the length, the width
and the area, A + �+ w = 1. Once again, the dimensions are presupposed
to be known, � = 30 ,́ w = 20 ,́ as can be seen in line 14. This time we
are told to add ��(1,1) = 1 to the sum A + �+ w; the result is then shown
to be the area of a new rectangle with length L = 1 + 30´ = 1◦30 ,́ width
W = 1 + 20´ = 1◦20´ – cf. Figure 6.20 This section of the text is said to ex-
plain the “Akkadian method”; since the trick that distinguishes #2 from #1 is
the joining of a quadratic complement to a (pseudo)gnomon, the “Akkadian
method” is likely to be exactly this trick, basic for the solution of all mixed
second-degree problems. Once again, the exposition serves to make clear
why and how the methods works.

#3 of the tablet, the last problem and a problem in the proper sense (omit-
ted from the translation), combines the equation of #2, A + �+ w = 1, with
an equation of the same type as the one explained in TMS XVI though more
abstruse – namely

1
17

(
3�+ 4w

)
+ w = 30 .́

This is reduced, now without didactical explanation, to

3�+ 21w = 8◦30´

after which the corresponding equation for “the length and width of the sur-
face 2” (L and W ) is derived,

3L + 21W = 32◦30´

Since ��(L,W ) = 2, ��(3L,21W ) is found to be 2 · 3 · 21 = 2`6 (i.e., 126),
and in the end the resulting rectangle problem for Λ= 3L, Ω= 21W ,

Λ+Ω= 32◦30 ,́ ��(Λ,Ω) = 2`6

(the additive analogue of the problem solved in YBC 6967) is solved, and
first L and W , next � and w are found. No didactical explanation of how to
solve the rectangle problem is extant, but we may safely assume that such an
explanation was at hand and that its style was similar to what we know from
TMS XVI and TMS IX #1–2.

Before we leave the Old Babylonian period it should be pointed out that
certain aspects of the procedure descriptions reflect the presence of “cri-
tique”, that is, the question about the reasons for and the limits of the validity
of the procedure; this question is the antithesis of the “naive” approach. One
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instance is the precedence of “tearing-out” over “appending” in YBC 6967,
rev. 2–3, the other the explicit introduction of the “base 1” in TMS IX #1.

That these features of the text are “critical” only becomes visible when
the historical development of Old Babylonian “algebra” is understood, which
requires another structural analysis of the corpus, this time associating the
distribution of synonyms and characteristic phrases with orthography and
what (little) is known about the archaeological provenience of tablets (most,
indeed, have been bought by museums on the antiquity market), and corre-
lation of the problems found in the Old Babylonian corpus with those found
in a number of other historical contexts (Seleucid and other Late Babylonian
problem texts, ancient Greek theoretical, Neopythagorean and practitioners’
mathematics, Arabic algebra and agrimensorial texts, Jaina and Italian ab-
baco mathematics). I shall not attempt to reduce the necessary complex
arguments to what can be contained in a few paragraphs21 but only sum up
the relevant results.

In the later third and incipient second millennium BCE, a restricted num-
ber of geometrical riddles circulated in a lay (that is, non-scribal, non-school-
ed) and probably Akkadian-speaking22 environment of surveyors/practical
geometers. A number of these were to be solved by means of the kind of
naive cut-and-paste geometry which we have encountered in YBC 6967 and
by application of the trick of quadratic completion (thus for good reason des-
ignated the “Akkadian method”; the trick seems to have been discovered at
some moment before c. 1900 BCE, and probably after c. 2200 BCE): to find
the side of a square from the sum of the side or “all four sides” and the area,
or from the difference one or the other way around; to find the sides of a rec-
tangle from the area and the diagonal or from the area together with the sum
of or difference between the sides (with a few variants); problems dealing
with two concentric squares (with given sum of/difference between the sides
and the areas) were apparently solved by means of standard diagrams.

In the nineteenth century BCE, these problems were adopted into the Old
Babylonian scribe school, where they gave rise to the development of the so-
called “algebra” (which is much more refined than can be seen from the
above examples: solving mixed third-degree problems by means of factor-
ization – reducing biquadratic problems and even a bi-biquadratic problem
stepwise – inverting the role of unknowns and coefficients – etc.). As it turns
out, those text groups which are closest to the lay tradition do not respect the
“norm of concreteness” according to which “tearing-out” must precede “ap-
pending” of the same entity but use the elliptic phrase “append and tear out”;
some early texts, moreover, follow the habit of many non-Mesopotamian lay
surveying traditions and operate with a notion of “broad lines”, that is, with
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the idea that a line carries an inherent standard width.23 For this reason, they
are able to “append” sides to areas, which indeed they do.

The school environment, however, appears to have found it difficult to
accept the conflation of linear and planar extension, and therefore formu-
lated the inhomogeneous sums as “accumulations” (namely, of the measur-
ing numbers), devising moreover a variety of designations for the standard
width which transforms a side into a rectangular area.24 Some schools also
seem to have found it absurd to “append” something which is not yet at
hand, and therefore introduced the “norm of concreteness”. If “critique” is
understood as investigations of why and under which conditions our usual
naive ways and conventional wisdom hold good,25 then these are full-blown
examples.

The chronological dissection of the Old Babylonian corpus allows a final
observation of importance for our topic.26 All above examples were formu-
lated around paradigmatic cases, yet in agreement with Gillings’s criteria for
when an argument from a paradigmatic case can be considered rigorous –
cf. p. 2. This is no accident: almost all Old Babylonian mathematical texts
that present us with explicit or implicit arguments have this character. There
are, however, exceptions, and a few texts do indeed formulate rules in gen-
eral terms. These rules may build on insight and argument, and can hardly
have been invented without the intervention of some kind of mathematical
insight; the rules themselves, however, only prescribe steps to be performed,
and contain no trace of an argument.27 Interestingly, all such attempts at
general formulation belong in the earliest texts. The way such rules turn up
in later sources suggest that they were a borrowing from the lay tradition,
within which they may indeed have been very useful.28 Within the school,
however, they were soon eliminated, being both ambiguous when not sup-
ported by an example and pedagogically useless (probably because they were
deprived of argument). The absence of abstract general rules is thus, like the
compliance with the norm of concreteness, no consequence of a primitive
mind unable to free itself from concrete thought; to the contrary, both have
resulted from deliberate pedagogical or philosophical choice.

3. EUCLIDEAN GEOMETRY

Figure 1 is quite similar to the diagram of Elements II.6 – see Figure 7. Since
the underlying mathematical structures are also analogous (to the extent a
problem can be analogous with a justification of the way it is solved), it
seems obvious to look closer at this Euclidean proposition.

In Thomas Heath’s faithful translation (1926, I, 385) it states the follow-
ing:
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FIGURE 7. The diagram of Elements II.6.

If a straight line be bisected and a straight line be added to it in
a straight line, the rectangle contained by the whole with the
added straight line and the added straight line together with
the square on the half is equal to the square on the straight line
made up of the half and the added straight line.

Next follows what Antiquity would apparently see as a particular example
with indubitable paradigmatic value29 but which Kline (and most modern
readers) have come to regard as actually and not only potentially general: 30

For let 〈any〉 straight line AB be bisected at the point C, and let
〈any〉 straight line BD be added to it in a straight line; I say that
the rectangle contained by AD, DB together with the square on
CB is equal to the square on CD.

The proof starts by constructing the latter square (CEFD) and drawing the
diagonal DE. Next through B the line BHG is drawn parallel to CE or DF (H
being the point where the line cuts DE) and through H the line KM parallel
to AB or EF. Finally, through A the line AK is drawn parallel to CE or DF.

Now the diagram is ready, and with reference to the way the construction
was made ��AL is shown to equal ��HF. Adding ��CM to both, the
gnomon CDFGHL is seen to equal ��AM. Further addition of �LG shows
that ��AM together with �LG equals �CF , as stated in the theorem.

The second part of the proof follows the pattern of the cut-and-paste
procedure of YBC 6967 precisely. The important difference is the presence
of the first part. Thanks to this, things are not just “seen”, they are as firmly
established as required by the norms of Greek geometry – we do not move
areas around and glue them together, we prove that one area (��AL�� ) is equal
to another (��HF). Even the fact that the gnomon CDFGHL together with
�LG is identical with �CF , though not argued in detail, could be proved
rigorously by repeated use of proposition II.1.
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The first part of the proof of proposition II.6 can thus be seen as a critique
which consolidates the well-known. Other propositions and proofs from the
sequence Elements II.1–10 invite to make similar observations and interpre-
tations. To this we may add that the riddles of the surveyors’ tradition were
doubtlessly known in classical Antiquity – as we shall see below, the riddle
of “the four sides and the area” turns up in the pseudo-Heronian Geomet-
rica. The whole sequence repeats matters that were familiar in the survey-
ors’ tradition at least since the earliest second millennium BCE; many of the
propositions, moreover, are never used explicitly later on in the work, which
supports the interpretation that their critical consolidation was an aim in it-
self. Finally, all are proved independently, although a derivation of one from
the other would often have been easy (actually, II.5 and II.6 are equivalent,
and so are II.9 and II.10); what needs to be consolidated is thus not only the
customary knowledge contained in the propositions but also the traditional
naive-geometric argument.31

Greek theoretical geometry as a whole was evidently much more than a
consolidation of the well-known; in as far as its ideals of what constitutes
a proof are concerned, however, book II of the Elements may be regarded
as representative. In aiming at critique of the already familiar it is certainly
no first in the history of mathematics – as we have seen, something similar
was made in the Old Babylonian scribe school, and it is part of the dynamics
of any institutionalized teaching of mathematics at levels where appeals to
the reasoning of the students are required.32 In the Old Babylonian school,
however, the role of critique had been peripheral and accidental; in Greek
theoretical geometry it was, if not the very centre then at least an essential
gauge.33

4. STATIONS ON THE ROAD

In the Old Babylonian mathematical texts we find names for particular lines
(lengths, widths, various transversals, etc.); but we find no term for linear ex-
tension in general. Nor is any term for an angle (or a right angle) to be found.
This does not mean that surveyors could not speak about lines unless they
were already defined as the length or width of a field, the length or height
of a wall, a carrying distance, etc., nor that they were unable to refer to the
corner of a building; but tubqum (“corner”) was not used as a technical term
in mathematics. In general, it is doubtful whether the terminology of Old
Babylonian mathematics can at all be characterized as “technical”. Instead,
as concluded in (Høyrup, 2002, 302),
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it is rather a very standardized use of everyday language to
describe an extra-linguistic – computational and naive-geome-
trical – practice which was always more standardized than the
linguistic description. The linguistic description was thereby
analogous to our heuristic explanations in standardized ordi-
nary language of what goes on in those symbolic formulae
which with us constitute the level of real technical operation.

An early step in the unfolding of Greek theoretical critique was the estab-
lishment of definitions. Irrespective of Aristotle’s claim that Socrates “was
the first to concentrate upon definition”,34 discussions of semantic delimi-
tations go back as far in Greek (proto-)philosophy as we can follow it – a
very early example is Hesiod’s pointing out in Works and Days (ed., trans.
Mazon, 1960, 86) that the word “strife” (’′ερις) corresponds to two very dif-
ferent things (namely peaceful competition and cruel war). The definition of
number as a “multitude composed of units”35 is likely to go back at least to
the fifth century BCE, and many other definitions were known to, and dis-
cussed by, Plato and Aristotle. Of particular interest are the definitions of the
various classes of (rectilinear) angles (trans. Heath 1926, I, 181):

10. When a straight line set up on a straight line makes the
adjacent angles equal to one another, each of the equal
angles is right [. . . ].

11. An obtuse angle is an angle greater than a right angle.
12. An acute angle is an angle less than a right angle.

These were known to Aristotle, who refers to them in Metaphysics M 1084 b7.
But they may have been a relatively fresh invention in his days, since Plato’s
Socrates speaks in Republic VI, 510C (trans. Shorey 1930, 1935, II, 111)
of the three kinds of angles as things of which geometers “do not deign to
render any further account to themselves or others, taking it for granted that
they are obvious to everybody”.36

A clear notion of a right angle is evidently essential for making proofs
like that of Elements II.6. In Aristotle’s times the above definition was ap-
parently supposed to be sufficient. This follows from what can be derived
from Aristotle’s writings about the status of the Euclidean postulates. On
the whole, he does not seem to have heard of them (McKirahan, 1992, 133–
137), which would suggest that their need had not yet been felt. Only the
second postulate appears to have been known to Aristotle in a formulation
close to what we find in the Elements – Physics III, 207b29–31 (trans. Hardie
& Gaye, 1930) explains that mathematicians “do not need the infinite and do
not use it. They postulate only that the finite straight line may be produced
as far as they wish”.
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FIGURE 8. The procedure described in Geometrica 24.3.

This implies that no need had as yet been discovered around the mid-
fourth century for postulate 4, “that all right angles are equal to one another”,
and thus, since this principle is essential for a large number of proofs of the
equality of figures, that it was tacitly believed to be inherent in the defini-
tion. In Euclid’s time, on the other hand, it was recognized that this was not
the case. Although critique may have been just as compulsory for Greek ge-
ometers of the early fourth century as for their third-century successors, the
level at which critique was actually performed was raised in the historical
process – which of course cannot astonish if we recognize that mathematical
rigour is a human product in process, never absolute and never finished once
and for all.

5. OTHER GREEKS

The community of “theoreticians” (however that was delimited) was not the
only community of the classical world to deal with mathematics. On one
hand, the social need for mathematical practitioners was certainly not lower
than it had been in the older Egyptian and Mesopotamian civilizations (nor
probably significantly higher); on the other, the diffuse area encompassing
Neopythagoreanism, Hermeticism, Gnosticism and Neoplatonism was also
fond of mathematical metaphors and astounding mathematical insights.37 In
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sources stemming from either community, instances or traces of mathemati-
cal reasoning can be located. In both cases what we find is naive, not critical.
I shall present one example from each.

The first, belonging to the practitioners’ tradition, comes from the pseudo-
Heronian Geometrica.38 It is a Greek version of the riddle of “all fours sides
and the area”:

A square surface having the area together with the perimeter
of 896 feet. To get separated the area and the perimeter. I do
like this: In general [καθoλικω̂ς, i.e., independently of the pa-
rameter 896 – JH], place outside [εκτίθη´ µι] the 4 units, whose
half becomes 2 feet. Putting this on top of itself becomes 4.
Putting together just this with the 896 becomes 900, whose
squaring side becomes 30 feet. I have taken away underneath
[υφαιρ[[ έω] the half, 2 feet are left. The remainder becomes 28
feet. So the area is 784 feet, and let the perimeter be 112 feet.
Putting together just all this becomes 896 feet. Let the area
with the perimeter be that much, 896 feet.39

The procedure that is described is shown in Figure 8 (the manuscript only
contains a drawing of a square with inscribed value for the side and the area;
apparently, the geometry is meant to be either mental or performed indepen-
dently by the reader40). As we see, the procedure is identical with what we
have seen in the text YBC 6967, apart from those details that follow from
the fact that we are dealing with a square and not with a rectangle. The style
is certainly reasoned: “I have taken away underneath the half, 2 feet are left.
The remainder [when these too are removed] becomes 28 feet”; but it is fully
naive. The text also points out which numbers belong to the type in general
(square area and perimeter) and do not depend on the particular parameters
of the example, safeguarding thus potential generality; this is currently done
in the various Geometrica-components and also in kindred medieval trea-
tises, and already in one text from Old Babylonian Susa.

The various Neopythagorean writings are less generous when it comes
to revealing the reasoning behind the mathematical facts they relate – maybe
because astounding mathematical facts, once we understand their grounds,
tend to be less astounding and therefore less serviceable for the display of
wisdom beyond ordinary human reason. Sometimes, however, reasons shine
through. One interesting case is found in Iamblichos’s commentary to Nico-
machos’s Introduction:41 namely the observation that 10×10 laid out as a
square and counted “in horse-race” (see Figure 9) reveals that

10×10 = (1+ 2+ . . .+ 9)+ 10+(9+ . . .+ 2+ 1)
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FIGURE 9. 10×10 arranged as a “race-course”.

whence

10×10+ 10 = 2T10TT ,

TnTT being the triangular number of order n. This argument will have been
common Pythagorean or Neopythagorean lore, if we are to believe Iambli-
chos’s exposition, though hardly a discovery made within this environment.42

In any case, the naive type of reasoning will not have been left behind
when the Pythagorean scientologists took over from existing mathematics
that which they managed to understand (which could be neither the theory
of Elements X, Apollonian Conics, Archimedean infinitesimal methods, nor
“Heron’s” formula for the triangular area).

6. PROPORTIONALITY – REASONING AND ITS ELIMINATION

Does this mean that mathematics is always in some way reasoned, either
naively or critically? In some sense yes, simply because we are unlikely to
count as “mathematics” activities which are wholly devoid of understand-
ing, however much they have to do with countable items or take place in
geometrical space. But mathematics need not always be taught, nor to be
exercised as a reasoned practice. When learning to drive a car you probably
received a number of instructions and explanations, about changing gears,
about braking and aquaplaning, etc. But woe to your passengers if you use
your conscious mental reserves too intensively on thinking about these mat-
ters when you move in the traffic.
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A mathematician behaves no different. Most of the transformations of
symbolic expressions are performed automatically, leaving energy for con-
scious reflection on the more intricate and still unfamiliar aspects of the prob-
lem that is treated; the activity of the mathematician thus remains reasoned,
if only at a higher level.

But the routine activity of the mathematical practitioner may be different
in character. Remaining in the pre-Modern epoch, we may illustrate this
through a look at the way simple linear problems were dealt with.

A typical late medieval rule for solving such problems can be found in
Jacopo da Firenze’s Tractatus algorismi from 1307.43 It runs as follows:

If some computation should be given to us in which three
things were proposed, then we should always multiply the
thing that we want to know against that which is not similar,
and divide in the other thing, that is, in the other that remains.

After this follows a sequence of examples, beginning with this:

I want to give you an example to the said rule, and I want to
say thus, VII tornesi are worth VIIII parigini.44 Say me, how
much will 20 tornesi be worth? Do thus, the thing that you
want to know is that which 20 tornesi will be worth. And the
not similar (thing) is that which VII tornesi are worth, that is,
they are worth 9 parigini. And therefore we should multiply
9 parigini times 20, they make 180 parigini, and divide in 7,
which is the third thing. Divide 180, from which results 25
and 5

7 . And 25 parigini and 5
7 will 20 tornesi be worth. And

thus the similar computations are done.

This is the rule of three, and may be customary. But try to explain why it
works without using paper and symbolic manipulations to somebody who
is not too well trained in mathematics!45 The reason for the difficulty is of
course that the intermediate result 9 parigini × 20 tornesi has no concrete
interpretation.

Babylonian, Egyptian and ancient Greek calculators would have pro-
ceeded differently. Their normal procedure would have been to divide first
(by whatever method they would use for division) 9 parigini by 7 tornesi.
The result has an obvious concrete interpretation, the value of 1 torneso in
parigini. Next, this could be multiplied by 20 in order to find the value of 20
tornesi.

Why was this easy and didactically efficient procedure given up? The
key is inherent in the remark “by whatever method . . . ”. Division is diffi-
cult, and often leads to rounding (either for reasons of principle, namely if
you have to multiply by a non-exact reciprocal, or because it may lead to a
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very unhandy string of aliquot parts). Subsequent multiplication will lead to
multiplication of the rounding error, quite apart from the practical difficulty
of multiplying an inconveniently composite numerical expression. Better
therefore postpone the division and make it the last step.

Why, then, was it not given up before?46 Once again, the explanation is
straightforward and of a practical nature. It was set forth by Christian Wolff
alias Doktor Pangloss in his Mathematisches Lexikon (1716, 867):

It is true that performing mathematics can be learned without
reasoning mathematics; but then one remains blind in all af-
fairs, achieves nothing with suitable precision and in the best
way, at times it may occur that one does not find one’s way
at all. Not to mention that it is easy to forget what one has
learned, and that that which one has forgotten is not so easily
retrieved, because everything depends only on memory

– in other words, only procedures that are performed so often that you run
no risk of forgetting them (like changing gears in a car) can be safely taught
as mere skills. Probably the scribes of Near Eastern Antiquity did not per-
form the kind of proportional operations we are speaking of so often that the
appeal to their understanding could be given up safely.

More complex linear problems were often solved by means of the so-
called “double false position”, which is even more opaque. The intelligible
alternative to this rule can be illustrated by another quotation from Jacopo
(fol. 22r):

I have new fiorini and old fiorini. And the old fiorino is worth
soldi 35, and the new fiorino is worth soldi 37. And I have
changed 100 fiorini new and old together, and I have got for
them libre 178. I want to know how many new fiorini and how
many old fiorini I had. Do thus, posit the case that all were of
one of these rates, that is, all 100 of whatever rate you want.
And let us say that they are all 100 old fiorini. And know how
much they are worth for soldi 35 each, they are worth 175.
Now say thus, from 175 until 178 there is libre 3, which are
soldi 60. Now divide soldi 60 in the price difference which
there is from one fiorino to the other, that is, from 35 soldi
until 37, which is 2. Divide 60 in 2, 30 results. And 30 fiorini
shall we say have been of the opposite (sort) of those {. . . }
which we said were all old. And therefore we shall say that
these 30 have been new, and the rest until 100, which is 70,
have been old. And thus I say that they were.
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This is easily understood (once you know that 1 libra is worth 20 soldi) –
and precisely the same method (starting only from a fifty-fifty assumption)
is used in the Old Babylonian problem VAT 8389 #1 (ed. Neugebauer, 1935–
1937, I, 317 f , III, 58). If the double false position had been applied, the
procedure had been much less comprehensible. One false assumption might
be that all were old, in which case they would have been worth 3500 soldi =
175 libre – three less than I really get. The other false assumption might be
that only 10 were old47 and 90 hence new; in this case, I would have got 184
libre. The whole thing might be inserted in a graphical scheme

in which you were the to perform a cross-multiplication, add and divide by
the sum of the two errors as written at bottom,48 finding the real number of
old fiorini to be 100×6+10×3

9 = 70.
The principle can be explained as a linear interpolation; the real origin

may be the alligation rule. But the texts never give any explanation, they
simply set it forth as a rule to be followed. The obvious danger is that it may
happen to be applied to non-linear situations, and that the reckoner would
have no possibility to know that this was wrong.49

The moral is that Doktor Pangloss was right as soon as we get beyond
the most routine applications of mathematics. A fundament in reason is an
advantage not only in mathematical theory (where it belongs to the definition
and is thus no mere advantage) but also in every application that goes beyond
complete routine. It is therefore to be expected that mathematics teaching
in any mathematical culture which went beyond mere routine (on its own
conditions for what could constitute routine) did include appeals to reason –
whether naive or critical, and whether in Greek style (or that dubious reading
of the Greek style in which we project ourselves) is a different matter. If we
cannot find traces of this reasoning in extant sources we may safely conclude
that this is due, either to failing understanding of the sources on our part,
or to the insufficiency of extant sources as mirrors of educational practice.
Tertium non datur.
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NOTES
0The arguments of the following paper are largely distilled from a variety of

topics I have worked on over the years; in the interest of relative brevity I have been
forced to leave out almost all of the factual background for the conclusions I have
drawn on earlier occasions. To an unpleasant extent, the bibliography is therefore
dominated by my own publications; further references to sources and to works of
other scholars are found in these.

1Such “internal” arguments must of course be distinguished from other types
of arguments. To say that something is true because it is stated by Euclid or in
the Bible constitutes no mathematical proof; nor do deductions from metaphorical
connotations of the terms involved or from metaphysical postulates – for instance,
Cusanus’s postulate that the maximal and the minimal coincides in combination
with the observation that area measurement divides complex areas into triangles,
from which follows that God must be triangular, that is, Trinity.

2In some sense these anti-Eurocentric objections have often been paradoxical,
their aim being to show that “non-Western” cultures had the same kind of (me-
ta-)mathematics as the Greeks: implicitly, the ideals of (what we find in) Greek
mathematics are accepted.

As I shall argue in the end, certain mathematical cultures (not ethnic but pro-
fessional cultures) have had the attitude that under particular circumstances some
mathematics should not be reasoned, and have had it for a good reason.

3Elsewhere Joseph (1991, 125–129) goes into direct though imprecise polemic
with Kline.

4It is immaterial for the present purpose that it is often awfully mistaken in de-
tails (terribly wrong datings, freely invented “translations”, confusion of modern
interpretation and ancient text, similar confusion between algorithm and theoretical
algebra – see (Høyrup, 1992)) and thus allows opponents of the author’s general
aim to conclude that no good arguments can be found in favour of the existence of
non-Greek, not Greek-derived mathematics. In the view of anybody who shares the
aim, this is of course the most serious shortcoming of the book.

5The history of these interpretations is described in (Høyrup, 1996a).
6The first thorough exposition of this analysis is (Høyrup, 1990); equally thor-

ough but probably more reader-friendly is (Høyrup, 2002).
Part of the outcome of the structural analysis (and one of the reasons that the

arithmetical interpretation breaks down) is the sharp distinction between two differ-
ent additive operations (not merely synonyms for the same operation), between two
different subtractive operations, two different halves, and no less than four different
“multiplications”. Since we shall encounter the additions below, they may serve
as example. One of them I shall translate “appending”, the other “accumulation”.
The former stands for a concrete joining to a magnitude which conserves its iden-
tity (in the same sense as addition of the interest conserves the identity of my bank
account – interest on a loan is indeed called “the appended” in Babylonian); the
other may be used about the purely arithmetical addition of the measuring numbers
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of ontologically different magnitudes – e.g., of lengths and areas, of areas and vol-
umes, or of men, days, and bricks carried by the men in question during the days in
question.

7Based on the transliteration in (Neugebauer and Sachs, 1945, 129); as every-
where where no translator is indicated the English translation is mine. The num-
bers are expressed in a sexagesimal place value system (that is, a system with base
60), in which ,́ ´́, . . . indicate decreasing and ,̀ `̀, . . . increasing sexagesimal or-
der of magnitude (and ◦ when needed “order zero”); 30´ is thus 30 · 60−1 = 1/2// ,
15´ = 15 · 60−1 = 1/4// . These indications of absolute order of magnitude are not
present in the original – the number notation of the mathematical texts (obviously
not that of accounting and practical surveying!) is a floating-point system.

Words in [ ] are damaged on the tablet and reconstructed from parallel passages;
words in ( ) are added for comprehensibility.

8“Breaking” is a bisection that produces a “necessary half”, a half that could not
have been chosen differently – e.g., that half of the base of a triangle that serves in
area calculation. On the other hand, if a problem states that a square area and a half
of the side are accumulated, the other, “accidental” half occurs – it might just as
well have been a third.

9“Making a and b hold” stands for the construction of the rectangle contained
by the sides a and b – henceforth ��(a,b).

10The “equalside of A” (in the terms of other texts, that which “is equal along A”)
is the side of A when this area is laid out as a square; numerically it corresponds to
the square root of A.

11The “counterpart” of an “equalside” is the side with which it has a corner in
common.

12The use of the term “equation” is no anachronism. The equations of a modern
engineer or economist state that the measure of some composite magnitude equals a
certain number, or that the measure of one magnitude equals that of another; exactly
the same is done in the Babylonian texts.

13Based on the hand copy and transliteration in (Bruins and Rutten, 1961, 91 f ,
pl. 25), with corrections from (von Soden, 1964). Cf. revised edition of the full
tablet in (Høyrup, 1990, 299–302). The translation in the original edition should be
used with caution, and the commentary is best disregarded completely.

14“Raising” designates the determination of a concrete magnitude by means of
a multiplication, and presupposes a consideration of proportionality. Originally the
metaphor referred to the determination of a prismatic volume with height h, ob-
tained by “raising” the base from its virtual height of 1 cubit (presupposed by the
metrology, which measured volumes in area units) to the real height.

15“Positing” appears to mean “taking note of” materially, at times on a counting
board, at times by writing a length along a line as in Figure 2.

16igi n designates the reciprocal of n. For numbers where this was possible, di-
vision by n was performed as a raising to igi n (in administrative calculation it was
always possible, since all technically relevant coefficients were rounded to numbers
that possessed a convenient igi).
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Finding igi n was spoken of as “detaching” it; the idea was probably that one
part was detached from a bundle of n parts of unity.

17This step may refer to a distinction between a “real” field with dimensions 30
and 20 (180 m × 120 m, since the tacitly presupposed length unit was the “rod”
equal to c. 6 m) and a “model field” 30´× 20 ,́ i.e., 3 m × 2 m, certainly more
easily drawn in the school yard; since the text does not indicate absolute order of
magnitude this must remain a hypothesis.

18This renders the non-standard way ( ) in which “45” is written in this place
in the tablet.

19Based on the transliteration and hand copy in (Bruins and Rutten, 1961, 63 f , pl.
17), with corrections from (von Soden, 1964). Cf. revised edition in (Høyrup, 1990,
320–323). Even in this case, the translation and the commentary in the original
edition ask for benign neglect.

20This presence of several “lengths” and “widths” shows why the exposition
needs to presuppose that the measures of the configuration are known: these mea-
suring numbers serve as identifying tags, and are needed for this purpose in the
absence of letter or similar symbols.

Even many genuine problem texts refer to the value of certain entities before
they are found. This may give the impression that the problems are overdetermined
and their authors hence mathematically incompetent. That, however, is a mistaken
reading: the information which is made use of never exceeds what is necessary;
this constitutes the set of “given numbers”, which is always kept strictly apart from
those numbers which are “merely known” and used as identifiers.

21The structural analysis of the corpus is described in (Høyrup, 2000b), and (with
some extensions and minor revisions) in (Høyrup, 2002, 317–361). The place of Old
Babylonian “algebra” in the network of mathematical cultures was first investigated
in (Høyrup, 1996b); a more thorough exposition is (Høyrup, 2001). Information on
the latter topic is also given in (Høyrup, 2002, 362–417, passim).

22The hegemonic and scribe school language of the third millennium was Sume-
rian. However, the presence of Akkadian (later split into a Babylonian and an As-
syrian dialect) is attested already before 2500 BCE, gradually rising to become the
dominant language in the early second millennium. With extremely few excep-
tions the language of the Old Babylonian mathematical texts is Akkadian, though
the writing often makes heavy use of Sumerian word signs (as English writing may
make use of the medieval word sign for Latin videlicet, rendered as viz yet presup-
posing a pronunciation “namely”).

23As does cloth today, when we buy “three yards of curtain material”. The no-
tion of the “broad line” and its appearance in a number of practical geometries is
examined in (Høyrup, 1995).

24One of these designations is the “base” of TMS IX #1; but at least two alterna-
tives are attested in the corpus.

25“Untersuchung der Möglichkeit und Grenzen derselben”, as expressed in Kant’s¨
Critik der Urtheilskraft (B III (Kant, 1956–1964, Werke V, 237)).
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26See (Høyrup, 2002, 344, 383, and passim).
27Nor should they, this is not the nature or purpose of a rule – our multiplication

table contains no hint of the role of associativity and distributivity of the operations
involved.

28The general rule is an adequate tool for an oral tradition, being more easily
remembered mechanically and transmitted faithfully than the full paradigmatic ex-
ample; explanations and examples can then be improvised once the master knows
what is meant by a possibly ambiguous rule. A parallel is offered by the relation
between fixed formulae and relatively free use of these by the singer in oral epic
poetry, see (Lord, 1960, 99–102 and passim).

29Apart from the use of the habitual format rule–example and the precise word-
ing, this interpretation is supported, for instance, by Aristotle’s analogous reference
to geometric arguing which is correct if only we avoid including in the premises
we draw on the particular characteristics of the drawing made on the ground (Meta-
physics 9, 1078a19–20). See also the detailed discussions in (Mueller, 1981, 11–14)
and (Netz, 1999, 247–258 and passim).

30Trans. Heath (1926, I, 385), with minor corrections in 〈 〉.
31Being necessarily ignorant of the whole prehistory, Heath (1926, I, 377) formu-

lated this as follows:

What then was Euclid’s intention, first in inserting some proposi-
tions not immediately required, and secondly in making the proofs
of the first ten practically independent of each other? Surely the ob-
ject was to show the power of the method of geometrical algebra as
much as to arrive at results.

32This topic is dealt with in (Høyrup, 1985), and, more crudely but more precisely
in aim and with broader historical scope, in (Høyrup, 1980).

33In the introduction to the Method, Archimedes argues that “we should give no
small part of the credit to Democritus who was the first to make the assertion [that
the cone is the third part of the cylinder, and the pyramid of the prism] though he
did not prove it” (trans. Heath, 1912, 13). The rhetoric of the argument implies that
the opposite attitude prevailed; rhetoric may distort things but becomes ineffective
if the recipient knows that it is fully off the point – which we may therefore suppose
that it was not, the recipient (Eratosthenes) being as conversant as anyone with both
the mathematics and the norms that governed it at his times.

34Metaphysics A, 987b3, trans. (Tredennick, 1933, 1935, I, 43). The Greek term
is oρισµóς, related to the Euclidean term óρoς, the former meaning something like
“delimitation”/“marking out by boundaries”, the latter “limit”/“boundary”.

35Itself an outcome of critique, which remained fateful for more than 2000 years
and encumbered the theoretical justification of algebra in the early Modern era,
since this attempt to make unambiguous and stable sense of the notion of a number
excluded not only 1 (a fact which Euclid forgets when defining a “part” in Elements
VII, immediately after he has repeated the habitual definition of a number!) but also
fractions.
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36The passage may also mean, however, that they allow no further discussion
beyond the definitions they have given, in which case the definitions will obviously
have been older.

37(Cuomo, 2000) is a pioneering investigation of the situation and interplay of
these groups in late Antiquity, in particular as reflected in Pappos’s Collection.

38Geometrica 24:3, ed. (Heiberg, 1912, 418), photographic reproduction of the
manuscript (Bruins, 1964, I, 53). As with the Babylonian texts, my translation is
meant to be pedantically literal. Actually, we should speak of “Heiberg’s” rather
than of any pseudo-Hero’s Geometrica. Heiberg produced the bulk of the conglom-
erate from two ancient treatises which were already composite and cannot be traced
back to a common source (as told quite explicitly by Heiberg, but in Latin and in
a different volume of the Heronian Opera omnia (Heiberg, 1914, xxiii–xxiv), for
which reasons the fact has generally gone unnoticed). These two treatises are rep-
resented, respectively, by Heiberg’s mss A+C and mss S+V. Chapters 22 and 24,
however, are independent treatises (24 another conglomerate) which happen to be
contained in the same codex as Geometrica/S but at a distance. See (Høyrup, 1997,
77).

39Heiberg does not grasp the geometrical procedure that is described, for which
reason his commentaries are misguided, imputing the faulty understanding on the
ancient copyist.

40This is also the case in the Liber mensurationum, an Arabic treatise building
on the surveyors’ tradition (known from Gherardo da Cremona’s Latin translation,
ed. (Busard, 1968)): the sequence of problems about squares starts by a drawn
square, that of rectangle problems with a rectangle, etc. Only a few fourteenth-
and fifteenth-century Latin and Italian descendants of the tradition contain drawings
illustrating the whole procedure.

41Ed. (Pistelli, 1975, 7525–27), cf. (Heath, 1921, 113 f ).
42Firstly, in belongs squarely within the style of psephos¯ arithmetic that can be

presupposed to be at the basis of the “doctrine of odd and even”; this was gener-
ally familiar at too early a moment to be Pythagorean – Epicharmos Fragment B 2
((Diels, 1951, I, 196; earlier than c. 475 BCE)) refers to the representation of an odd
number (“or, for that matter, an even number”) by a collection of psephoi¯ as some-
thing trivially familiar. Secondly, the ensuing formula for the triangular number,

TnTT =
n2 + n

2

belongs no less squarely within a cluster of summation formulae shared between
Seleucid and Egyptian Demotic sources which betray no Greek influence in any
other respect (Høyrup, 2000a). Together with the whole technique of psephos¯ -based
reasoning it is thus almost certainly a borrowing from Near Eastern practical math-
ematicians.

43MS. VAT Lat. 4826, fol. 17r. I translate from my own transcription of the
manuscript (1999).

44The parigino and the torneso are coins, minted in Paris and Tours, respectively.
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45Or observe how even the mathematically well-trained person grasps a piece of
paper and starts writing down symbols when confronted with the verbal rule!

46In fact it was – but in India, where the characteristic terms of the rule of three
can be traced back to c. 400 BCE (Sarma, 2002), and in China, where it is introduced
in chapter 2 of the Nine Chapters on Arithmetic from the first century CE, trans.
(Chemla & Guo, 2004, 225ff5 ). Medieval Islamic mathematicians (and probably
practical reckoners) borrowed it from India.

47The Indians might have chosen that none were old, since they operated with
both zero and negative numbers; but this simple choice was not accessible around
the Mediterranean.

48Presupposing that one error is an excess, the other a deficit.
49I am referring here to Mediterranean texts. Even though Arabic writers ascribe

the rule to India, the simple form is not found in extant Indian sources. But what
may be a correct iterated use in a non-linear situation turns up in a Sanskrit text from
the fifteenth century (Plofker, 1996; 2002); – if so, Indian reckoners knew what they
were doing when applying the rule, and why.
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KARINE CHEMLA

THE INTERPLAY BETWEEN PROOF AND ALGORITHM IN
3RD CENTURY CHINA: THE OPERATION AS PRESCRIPTION
OF COMPUTATION AND THE OPERATION AS ARGUMENT0

In the 1960s, historians of mathematics in China drew the attention of the
international scholarly community to the fact that a Chinese text dating from
the 3rd century, in fact, contained mathematical proofs. Both their emphasis
on the phenomenon and, in some respect, their way of analyzing it bore
witness to the importance Western scholars attach to such facts.

As is well known, history of mathematics has regularly been used as a
battlefield where nations, even civilizations, were competing and producing
the evidence of their value. In this context, mathematical proof has played
a dramatic part. As a last resort for some, it represents that by which the
Western contribution to mathematics is deemed to be the most decisive. In
some of my colleagues’ opinion, it would be that which proves that only the
West developed a speculative approach to mathematics.

It seems to me useful to recall this context, since it deeply influenced
the way in which the proofs written by Liu Hui, our 3rd century author,
have regularly been analyzed. In the first place, they were compared with
Greek geometrical texts of antiquity, or measured by a yardstick inspired by
Aristotle’s Analytics. This approach led to two opposite kinds of statement.
Some scholars rejected the idea that these could be considered as proofs,
since they did not emulate the axiomatico-deductive model: the fact that
Liu Hui did not single out any axiom or definition ruined, for them, the
contention that he proved anything. In opposition to the latter, others tried
to elaborate ways in which one could consider some statements in Liu Hui’s
text as axioms, definitions and the like.

Despite the fact that they obtain opposite results, it seems to me impor-
tant to stress that these two types of statement share the same basis. They
all agree in taking a given practice of proof as an a priori norm, and they
measure Chinese texts by this yardstick. I have argued elsewhere (Chemla,
1997) why I thought the procedure was questionable. Indeed, should history
of proof be the history of proofs that mathematicians “should” have written,
whatever the meaning of this “should” may be? In any case, if the ques-
tion has to be: “Are there Greek proofs in Chinese texts?”, we need not do
research to guess that the answer will be: no! However, is this the question
that should be asked? I do not think so. This has been the trick which blurred
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discussion on the history of proof – a trick which, incidentally, had the prop-
erty of making what some call the “Western superiority in these matters”
indisputable.

History of proof, I would argue, has very much been dominated by
certain a priori ideas, normative ideas especially, concerning what a proof
should look like, how it should be constructed and why it should be carried
out. Liu Hui’s text shows how a mathematician in a given tradition dealt with
the problem of establishing why a given mathematical statement is correct,
in a way that differs from what we can find in Greek geometrical texts of an-
tiquity. This raises a couple of questions that seem to me worth addressing.
Why did Liu Hui get interested in this problem? What were his motivations
for it? What was he expecting from the answer? Which procedures did he
think were adequate to this end? Since the way in which he tackles the prob-
lem would seem satisfactory to a mathematician today, I do not hesitate to
call what Liu Hui wrote a proof. And, rather than worrying whether this
title is rightly deserved, I choose to describe this practice for itself and pay
attention to the way in which it inserts itself into the heart of mathematical
activity, in a given historical context.

My thesis, which I shall not be able to substantiate here,1 is that Liu
Hui’s proofs attest to a practice of mathematical proof as carried out in an-
cient China, which is sophisticated and which was produced through a pro-
cess of elaboration. This practice differs from what the known Greek texts
of antiquity attest to, and, apparently, it developed independently from them
historically. In other words, we may well have here the testimony of another
origin for mathematical proof.

Let me make clear that, in putting forward such a thesis, my intention is
by no means to enter the battlefield on China’s side and with new weapons. I
believe that such ideological questions prevent us from thinking about math-
ematics. However, we’d better be aware of them, rather than let them sur-
reptitiously creep into our assumptions. What is at stake here lies at another
level.

A detour through China could help us analyze our categories, in this
case, that of proof, in a critical way. These texts may attest to the elaboration
of functions for a proof other than establishing the truth of a statement. Ex-
amining these Chinese texts can thereby provide us with tools for inquiring
into some of the contemporary functions imparted to proving. This, in turn,
raises questions relating to how the contemporary practices of proof were
historically shaped.

To sum up, we may expect from our inquiry into such Chinese sources to
understand better the nature of the activity of proving in mathematics as well
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as the processes through which the related cultural practices took shape in
history. With these questions in mind, in what follows, I shall concentrate on
how Liu Hui dealt with the measure of a circle. Examining how he handled
a proof will put us in a position from which to analyze what is proved and
how it was proved2.

1. ELEMENTS OF CONTEXT

Before proceeding to dealing with our questions, we need to sketch the con-
text within which Liu Hui operated. In fact, our third-century author, whose
proofs we are to analyze, is a commentator. It is hence for the sake of ex-
egesis that the first known mathematical proofs were composed in ancient
China. The book that brought about such developments had been composed
around the beginning of the Common Era and was entitled The nine chapters
on mathematical procedures3 – a title that, in what follows, I abbreviate into
The nine chapters. This book, which carried out a compilation of mathemati-
cal knowledge available at the time, was to become the Canon par excellence
for mathematics. Most of the mathematicians who worked in China up un-
til the beginning of the 14th century and whose writings came down to us
demonstrate a knowledge of it, or refer to it.

Roughly three centuries after its completion, Liu Hui commented on
The nine chapters, and its commentary was to be selected by the tradition to
be transmitted, together with the Canon. The simultaneous use of the two
texts appears to have become so systematic that, today, there is no surviving
edition of The nine chapters that does not contain Liu Hui’s commentary.
The formation of such writings, composed of a Canon and commentaries
selected by the written tradition, is typical of Chinese history, where most of
the disciplines experienced prominence being bestowed on texts of this kind.
It is thus within the framework of a commentary that Liu Hui was led to deal
with the measure of the circle.

Here is, more precisely, the local context within which he inserts the de-
velopment we are interested in. Problem 31 of chapter 1 of The nine chapters
reads as follows4:

“SUPPOSE ONE HAS A CIRCULAR FIELD, WITH A CIRCUMFERENCE

OF 30 BU , AND A DIAMETER OF 10 BU. ONE ASKS HOW LARGE THE

FIELD IS.
“ANSWER: 75 BU.

(...5)
“PROCEDURE: HALF OF THE CIRCUMFERENCE AND HALF OF THE

DIAMETER BEING MULTIPLIED ONE BY THE OTHER, ONE OBTAINS THE

BU OF THE PRODUCT (JIJJ ).”
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It is, hence, in reaction to this piece of text that Liu Hui produces what
I call a proof. Two remarks should be made on this excerpt. First, The nine
chapters yield a procedure to compute the area of the circle that is exact.
If we denote by A, the area of the circle, C, the circumference, and D, the
diameter, the procedure can be represented as follows:

A =
C
2
· D

2

Secondly, however, the terms of the problem supply both the diameter
and the circumference as if they were independent of each other and both
were needed. The ratio between them is that of 1 to 3. Yet, immediately
afterwards, the Canon offers two other procedures, each of which uses only
one of the data, and none of which is exact:6

“ANOTHER PROCEDURE: THE DIAMETER BEING MULTIPLIED BY IT-
SELF, MULTIPLY BY 3 AND DIVIDE BY 4.”

“ANOTHER PROCEDURE: THE CIRCUMFERENCE BEING MULTIPLIED

BY ITSELF, DIVIDE BY 12.”
We shall analyze, in what follows, how Liu Hui comments on this set of

problems and procedures. Let us, for the moment, stress that the passage of
The nine chapters quoted gives a faithful idea of how the Canon is composed.
It is constituted of problems, answers and algorithms, i.e., as it appears, lists
of operations that rely on the data provided by the terms of the problems to
yield the unknown sought. We can, however, question this reading, as will
become clear below.

In echo with the composition of the Canon, Liu Hui’s proofs system-
atically tackle how to establish the correctness of algorithms. Thus we are
taken to a world different from, e.g., Euclid’s Elements, where proofs mainly
aimed at establishing the truth of propositions. Let us enter into it.

2. SKETCH OF THE PROOF

It will be useful, for developing our analysis, to start by outlining the proof
Liu Hui presents for establishing the correctness of the first algorithm men-
tioned above.

The opening remarks of his commentary are devoted to making clear
that the ratio between the circumference and the diameter, as 3 to 1, i.e.,
that between the two data provided by the terms of the problems devoted to
computing the area of the circle, in fact holds true for the regular hexagon
inscribed in the circle. The introduction of the figure of the hexagon initiates
a development that Liu Hui concludes by the following statement:
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“ Therefore/This is why (gu), when one multiplies the half-circumference
by the half-diameter, that makes the area (mi) of the circle.”

In other words, depending on how one interprets the first word of the
final statement, the commentator himself conceives of his development as
establishing the correctness of the algorithm, or bringing to light the reason
why the algorithm stated by the Canon yields the correct answer. Whichever
interpretation one prefers, it remains true that, in Liu Hui’s eyes, his com-
mentary on the algorithm relates to establishing its correctness. This con-
stitutes an additional reason why it seems to me adequate to refer to it as a
“proof”. This statement shows that it is not only from our perspective that
the commentary may contain proofs. It appears to have been one of its func-
tion in the actors’ own perspective. Therefore we must analyze how Liu Hui
argues to reach such a conclusion. Let us follow the course of this reasoning.

In a first step, relying on the figure of the regular hexagon inscribed in the
circle, Liu Hui brings to light that an exact relationship links the diameter, the
circumference of this polygon and the area of the regular 12-gon inscribed
in the circle. This relationship can be represented as follows:

the half-diameter multiplied by the half-circumference of the hexagon

=

Area of the 12-gon

This relationship can be easily grasped in Figure 1. The commentator
appears to conceive of the hexagon, as well as the n-gons introduced in what
follows, as a collection of quarters of polygons cut in sectors of the circle and
assembled around its center7. Consider, on figure 1.a, one quarter compos-
ing the hexagon, OBD, cut along the radius OC, which goes through A, the
middle of BD. If one introduces the two corresponding quarters of the 12-
gon, as reproduced on figure 1.b, figure 1.c makes clear that multiplying AB
by OC yields the area of these two quarters. Multiplying this by 6 yields the
relationship sought-for. In Liu Hui’s terms, cutting the quarter OBD along
OC yields two quarters of a regular 12-gon inscribed in the circle.

The repetition of the operation (see figure 2) leads to a similar relation-
ship between the 12-gon and the 24-gon, as follows:

the half-diameter multiplied by the half-circumference of the 12-gon

=

Area of the 24-gon

At this point, Liu Hui has introduced two elements that will prove fun-
damental in his reasoning: a sequence of n-gons, produced through cutting
quarters of polygons within the body of the circle; and a relationship linking
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the circumference of the n-gon, the area of the 2n-gon and the half-diameter
of the circle.

In what follows, he turns to considering these two elements separately,
dealing first with the evolution of the relationship between the circle and the
polygons generated by the successive cuts. He hence goes on:

“The finer one cuts, the smaller is that which is lost.”
The quarters of the polygons yielded by the sequence of cuts, Liu Hui

notices, are finer and finer. He then re-introduces the circle, through consid-
ering the evolution of the relation of the successive polygons to the circle.
With respect to the unknown to be determined, i.e., the area of the circle,
the area of the polygons formed, Liu Hui states, gets increasingly closer8.
Having thus made explicit the relation of the figures first introduced to the
problem considered, the commentator goes on:

“One cuts it and re-cuts it until one attains (zhi) what cannot be cut.
Then its body (ti) makes but one (he) with the circumference of the circle,
and there is nothing lost.”

The statement consists in two parts, each corresponding to a member of
the previous sentence.

The first part takes up again the cut introduced and prescribes to repeat it
until “attaining what cannot be cut”. What the commentator means exactly
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by this cannot be completely elucidated. Does he think of an actual infinity of
steps? Or, does he prescribe to carry out the operation until the moment when
our senses give us the quarters of the polygon as impossible to cut further?
Or else, does he believe that magnitudes are composed of finite elementary
constituents that can be reached after a given number of cuts? I have argued
elsewhere in favor of the first of these interpretations, without being able
to find evidence that would decisively rule out the other possibilities9 . The
main point, however, is that, according to Liu Hui’s own terms, there is a
moment when what cannot be cut any longer is attained. The term is not
used by accident: the character expressing this nuance, zhi, occurs in two
other contexts in which we would put into play an infinite number of steps10.

Whichever interpretation one adopts, we find ourselves confronted with
a direct reasoning, unlike the indirect arguments encountered in Euclid’s
or Archimedes’ treatments of similar problems11. This feature evokes pre-
Eudoxian fragments like Antiphon’s, a point to which we shall come back.

Whatever the manner in which this attainment is realized, the second
part of the sentence quoted formulates its consequences. First, the body of
that which is produced is said to coincide with the circle, by virtue of the
coincidence of their circumferences. Note that it is hence held to be different
from the circle, but the contours “make but one”. Secondly, from this, Liu
Hui moves on to stating that the areas do not differ. The process would have
thus yielded a polygon – the following sentences make clear that this is how
the commentator conceives of the figure produced as a result of the process
– the circumference and, hence, the area of which match those of the circle.

In what follows, Liu Hui offers an argument to establish this last state-
ment. The first step consists in introducing a magnitude that will constitute
the pivotal element in the reasoning: the so-called “diameter remaining”.
This expression refers to the part of the diameter that goes outside the n-gon,
beyond the mid-point of one of its sides, which offers a kind of measure of
the distance between the circumferences of the n-gon and the circle. On fig-
ure 1, it is measured by AC for the hexagon. The second step then introduces
the sequence of rectangles, whose dimensions are respectively a side of an
n-gon and the diameter remaining (see Figure 3). Their areas exceed that of
the circular segments that represent the differences between the successive
n-gons and the circle12. In other terms, the rectangles constitute an upper
bound for “that which is lost”. The point that will prove crucial is that their
areas are expressed with respect to the so-called “diameter remaining”.

Liu Hui has described the situation in general. In a third step, he fo-
cuses on the body produced at the point when one cannot cut the quarters
any longer – this is where he still refers to it as “a polygon”. Applying to
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FIGURE 3.

it the previous device, he notices that the matching of the circumferences
implies that the diameter remaining has vanished. As a consequence, the
areas exceeding the difference between the areas of the n-gon and the circle,
which depend on the diameter remaining, also vanish. Hence the equality of
the areas of the “last” polygon and the circle.

This constitutes an essential feature in the structure of the reasoning, and
one that distinguishes Liu Hui’s argument from the pre-Eudoxian fragments
evoked earlier, provided that we may judge them on the basis of the remain-
ing evidence13.

Liu Hui has thus exploited the evolution of the relation of the n-gons
to the circle, by bringing to light a polygon whose body coincides with that
of the circle and which shares the same area. In a final section of this part
of his commentary, he turns to considering the transformation of the algo-
rithm linking the circumference of the n-gon, the area of the 2n-gon and the
half-diameter of the circle, which he has introduced so far with respect to
the hexagon and the dodecagon. His next point consists in highlighting the
basic reason that grounds the correctness of this relationship for any n-gon.
The central operation of multiplying a side of an n-gon by the half-diameter,
he states, introduces two quarters of the 2n-gon14 and yields each of them
twice. This amounts to stating that what figure 1 shows holds true with full
generality.

Stating the relationship for the polygon yielded at the end of the process
provides the algorithm that The nine chapters offered for computing the area
of the circle. The circumference of the polygon fuses into the circumference
of the circle. Multiplied by the half-diameter, it yields the area of the poly-
gon, equal to that of the circle. Hence the conclusion, which completes Liu
Hui’s proof of the correctness of the algorithm provided by the Canon for the
area of the circle.
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3. FIRST REMARKS ON THE PROOF

Let us highlight some features of the proof just sketched.
It is interesting, in the first place, to notice that the proof proceeds through

exact relationships, holding for a sequence of polygons. The final part of the
commentary stands in contrast to this, since Liu Hui makes use of inequali-
ties – the areas of the sets of rectangles constitute upper bounds of the areas
left over, in which he is interested, and this is what makes the argument work.
However, this last feature occurs seldom in Liu Hui’s proofs, and this distin-
guishes them from, say, the arguments in Euclid’s Elements, which mainly
bring inequalities into play.

A second feature is worth mentioning. The proof actually embeds the
circle in the set of all inscribed regular polygons, and it brings to light a
common algorithm computing the areas of all these figures. The proof thus
connects various realities, and it is through this extension that the reason for
the correctness of the algorithm examined appears. This correlation between
establishing the correctness of an algorithm and bringing to light more gen-
eral operations underlying it is not an accident. On the contrary, it constitutes
a characteristic feature of Liu Hui’s proofs throughout his commentary. We
can observe here how it manifests itself within the context of geometry15. In
fact, this feature can be correlated with more general statements on mathe-
matics made by the commentator16. In brief, he conceives of his commentary
on a procedure as bringing to light its “source” (yuan), which, for him, ap-
pears to constitute the level at which it can be extended (shi) to deal with
other categories (lei) of problems. Hence the connection between proving
and bringing to light more general operations.

If we go back to the case of the circle and to the way in which the cor-
rectness of the algorithm is established, we notice that, once the algorithm
has been described for the hexagon, then for the dodecagon, the proof con-
siders the evolution of its terms – the circumference of the n-gon and the area
of the 2n-gon – and of the relationship between them, through considering
the transformations of the underlying polygons. It thus brings to light how
the algorithm for the circle is in continuity with those for the polygons. The
proof shows by way of which variation the circle can be embedded in the set
of all inscribed regular polygons.

A third point should be stressed. As already mentioned, the proof pre-
scribes carrying out an operation until reaching the point at which it cannot
be performed any longer. Such is the case also in the similar reasoning by
which Liu Hui establishes the correctness of the algorithm given for com-
puting the volume of the pyramid. The presence, in both cases, of this stage
in which the decrease of the remainder is assessed – which we emphasized
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above – underlines the character of necessity that, in Liu Hui’s view, it prob-
ably bore. The comparison of both reasonings shows that we are confronted
here, not with an argument ad hoc, but with a stable mode of reasoning. This
evokes the way in which the method of exhaustion manifests itself in Greek
geometrical texts of antiquity17. As a matter of fact, the mathematical ideas
used by Liu Hui and Euclid in the case of, both, the circle and the pyramid,
are the same. The stable differences in their way of bringing these ideas into
play in their proofs are all the more interesting and seem to refer to a stable
difference in the practice of proof. However, I would not like to dwell here
on such questions of comparison, all too frequently addressed. Nor am I
going to ask whether Liu Hui’s commentary outlined above offers a “real”
proof, since, as I suggested, here lies the trap ready to open under the feet of
the historian. Let us, instead go deeper in our analysis of the Chinese text.

4. THE OPERATION AS RELATION OF TRANSFORMATION

To this end, the first question I suggest to raise is very simple: what has Liu
Hui proved? The answer seems to be very simple. We find it in Liu Hui’s
conclusion:

“Therefore/This is why (gu), when one multiplies the half-circumference
by the half-diameter, that makes the area (mi) of the circle.”

But, immediately after, Liu Hui adds a remark concerning the terms of
“circumference” and “diameter” entering this statement:

“Here, by circumference and diameter, we designate the quantities that
attain (zhi) what is so, what the lü’s of 3 for the circumference and 1 for the
diameter are not.” (My emphasis)

We need to sketch the meaning of the concept of lü, which appears in
the statement, before commenting on it. Introduced in The nine chapters
within the context of the rule of three, lü designates numbers that are defined
only relatively to each other. For example, the numbers expressing a ratio
between entities are referred to as lü. This is the case in the sentence quoted
above. However, the extension of the concept goes beyond this case18.

This implies that, for Liu Hui, the algorithm, the correctness of which
was just established, bears on quantities different from those to be found in
the terms of the problem of the Canon after which the algorithm is stated.

This remark extends even further. Elsewhere, Liu Hui speaks of the ratio
between the diameter and the circumference of the circle as not possibly
exactly expressible19. If the terms of the algorithm proved to be correct
are “the quantities that attain what is so”, they cannot be simultaneously
expressed by actual values. As a consequence, we discover that Liu Hui
has proved the correctness of an algorithm that, in his view, can lead to no
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computation. This algorithm expresses a relationship of transformation, or
of production, between magnitudes, but cannot receive actual values for all
its terms. This entails that, here, the “algorithm” must be distinguished from
the “prescription of a computation”. This conclusion incidentally highlights
why the stand according to which mathematics in ancient China was only
practical is indefensible.

If we now look up again at the Canon, we see that, there, the algorithm
means, perhaps not only, but also computations, since an answer is provided
for the problem. The procedure is what yields the value of the area of the
circle, on the basis of the two data given for the circumference and the di-
ameter in the terms of the problem. This aspect of the algorithm has not yet
been addressed by the commentator, and Liu Hui will consider it in a second
part of his commentary on the measure of the circle.

Before turning to this other aspect of his commentary, let us draw some
general conclusions from what was just observed.

Such a case leads us to distinguishing the algorithm as producing a mag-
nitude, expressed in terms of the situation of a given problem – in our case,
the area of a circle –, from the algorithm as producing a value. We are to
distinguish the algorithm as expressing a relation from the algorithm as pre-
scribing a computation. In other terms, we are to dissociate the algorithm
viewed from a semantical point of view and the algorithm considered from a
numerical perspective. The same conclusions could derive from examining
other parts of Liu Hui’s commentary, the difference being that the field with
respect to which the interpretation of the result of the operations is expressed
is not always geometrical20.

The two aspects of an algorithm can run in parallel. But there are cases
when a discrepancy appears between the two, as is the case here. This situa-
tion results in having Liu Hui comment on the algorithm in two sections. He
first deals with the algorithm semantically, establishing the correctness of the
relation of transformation. It is only in a second section that he comments
on the algorithm as pure computation, relating to the context of an actual
problem, such as what can be found in the Canon.

What was first proved was thus the relation of transformation. But how
was it proved?

If we look again at the proof, we discover retrospectively that it makes
use of algorithms, as relations of transformation too, with no computations.

In fact, some of these algorithms are exact geometrically, semantically.
It is as such that they are involved in the proof. But they can lead to no
computation that would be exact from a numerical point of view: this is the
case for the computation of the circumference of the sequence of polygons. If
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we start from a circle with 2 chi of diameter, as is suggested at the beginning
of the commentary, attempts to yield the numerical values of the sides of the
n-gons would soon lead us to introduce kinds of quantities that go beyond
those considered by mathematicians in ancient China21. But, in fact, nothing
is done in this part of the text to turn them into actual computations.

For other operations that are introduced for the sake of the proof, the
point is in the value of the algorithm as argument, not in the computation it
would prescribe. This aspect is clear with respect to the so-called “diameter
remaining”. It plays a crucial role in linking, through algorithms, the conver-
gence of the areas to that of the circumferences of the n-gons. But its actual
value does not matter. The important point is that an algorithm expresses
how the convergence of areas towards the area of the circle depends on the
nature of the evolution of the “diameter remaining”, while the circumference
of the n-gons approaches that of the circle. This algorithm constitutes what
I would call an “operation-argument”.

This analysis hence reveals a whole world of such algorithms, as re-
lations of transformation, independently from algorithms as computations.
The proof examined shows how they are articulated to one another, produc-
ing one another.

So much for now. Let us at this point turn to the second part of Liu Hui’s
commentary, in which he tackles the algorithm from a numerical point of
view. And let us consider how it also reveals another characteristic of the
practice of proof as carried out in ancient China.

5. THE ESSENTIAL LINK BETWEEN PROOF AND ALGORITHM

The point I want to make on the basis of the second part of Liu Hui’s com-
mentary consists in showing that, as his practice of proof highlights, proofs
are not closed onto themselves. They do not only constitute an aim in them-
selves, as would be the case if they were understood as merely establishing
the correctness of algorithms. On the contrary, they can also serve, for in-
stance, as the basis for elaborating new algorithms. With this purpose in
mind, let us follow how Liu Hui deals with the situation numerically22.

To this end, the commentator puts forward an algorithm, the aim of
which is to yield more precise values for the relationship between the cir-
cumference and the diameter. At each step, this algorithm makes the mean-
ing of the computations explicit. Therefore, in the end, it is clear that the
values produced are approximations, for what they are approximations and
which kind of approximation they represent.
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In fact, this algorithm appears to be derived from the proof outlined in the
first part. Let us observe how this algorithm precisely relies on the operations
of the previous demonstration.

The “procedure of the right-angled triangle (gougushu)”, which, in the
realm of algorithms, corresponds to the so-called Pythagorean theorem, is
the object of the ninth of The nine chapters. Liu Hui brings it into play for
transforming the previous geometrical argument into an algorithm.

Let us first sum up the main points of the text, before stressing other
features of the practice of proof in ancient China.

The algorithm that Liu Hui now starts describing relies on an iteration.
With respect to figure 1.a, we can summarize the procedure to be repeated
as follows: in the right-angled triangle OAB, the hypotenuse OB is the half-
diameter, and the base AB is half the side of the n-gon. Applying the “proce-
dure of the right-angled triangle (gougushu)” yields the height OA. Further-
more, in the right-angled triangle ABC, the base is the difference between
the half-diameter and OA, the height is half the side of the n-gon. Applying
the “procedure of the right-angled triangle (gougushu)” yields CB, the cor-
responding hypotenuse, which turns out to be the side of the 2n-gon. Here
is how Liu Hui formulates the first application of this sub-procedure, to be
thereafter iterated:

”Procedure consisting in cutting the hexagon in order to make a do-
decagon:

Set up the diameter of the circle, 2 chi. Divide it by 2, that makes 1
chi and gives the side of the hexagon that is in the circle. Take half of the
diameter, 1 chi, as hypotenuse, half of the side, 5 cun23, as base, and look
for the corresponding height. The square of the base, 25 cun, being sub-
tracted from the square of the hypotenuse, there remains 75 cun. Extract the
square root, descending to the miao, to the hu, then retrograde the divisor
one more time24, in order to find a digit from the decimal part (of the root).
One takes as numerator the digit from the decimal part that has no name, and
one takes 10 as denominator. By simplifying that makes two-fifths of hu.
Consequently, one obtains 8 cun 6 fen 6 li 2 miao 5 and three-fifths hu for
the height. Subtract this from the half-diameter, 1 cun 3 fen 3 li 9 hao 7 miao
4 and three-fifths hu remains, that one calls small base. Half of the poly-
gon side then is called once again small height. Look for the corresponding
hypotenuse. Its square is 267949193445 hu, the remaining fraction being
abandoned. Extract the square root, that gives a side of the dodecagon.”

This subprocedure is repeated, and, in the course of the first iterations,
there is no computation carried out for determining either the area or the
circumference of the successive n-gons. It is when he reaches the 48-gon
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that Liu Hui first actually computes the side of the 48-gon. Moreover, he
uses the relation brought up during the previous demonstration to deduce
from it the area of the 96-gon, obtaining 313 and 584/625 cun.

Again in the next iteration of the subprocedure, Liu Hui computes simi-
larly the side of the 96-gon, and then the area of the 192-gon, obtaining 314
and 64/625 cun.

Having obtained values that are smaller than the area of the circle25, Liu
Hui turns to computing an upper bound for the value of the area of the circle,
by bringing into play the same rectangles as those used for the proof (see
Figure 3). The areas of the set of rectangles covering the segments of circle
left over by the regular 96-gon inscribed in the circle is, however, computed
with a new insight. The difference between the area of the 96-gon and that of
the 192-gon is doubled, which yields the value sought-for. It is then added to
the area of the 96-gon, providing the value of 314 and 169/625 cun as upper
bound for the area of the circle. Since the lower and upper bounds found
share the same integral part of 314 cun, it is kept to represent the lü of the
area of the circle, with respect to the lü 400 for the square of the diameter.
Thereby, new approximate values are offered for the area and circumference
of the circle, in a way that clearly indicates their nature.

This sketch of the algorithm enables us to examine further some inter-
esting features of the text. Notice, first, that the same figures as previously,
based on the hexagon, are considered, and that the same central ideas are
used. However, they are brought into play in different ways. The most
striking example of this difference relates to the computation of the areas
of the exceeding rectangles. When their areas were considered within the
proof, they were computed so as to highlight their dependency with respect
to the diameter remaining. However, when the operation-argument becomes
the operation-computation, these areas are computed in another way. Yet
the value of the diameter remaining (AC) is determined at each stage. This
difference between the two contexts sheds more light on the essential part
played by the circumference in the first part of the commentary we exam-
ined. It also highlights the process through which the proof is transformed
into an algorithm.

Furthermore, with the example of this algorithm, we are in a position to
observe another modality of the relation linking the proof and the algorithm.
As already alluded to, the algorithm proceeds along parallel lines. It pre-
scribes computations that are to be numerically performed. In addition, the
meaning of the result is always made explicit in terms of the geometry of the
situation. Look at, for instance, the concluding proposition of the passage
quoted above: “..., that gives a side of the dodecagon”.
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More generally, the various algorithms corresponding to the Pythagorean
theorem produce both a meaning and a result. In the latter example, one
of these algorithms determines the interpretation of what is yielded as “hy-
potenuse”, which is exact. It also produces a numerical value, which approx-
imates that of the hypotenuse with an accuracy that is explicitly provided.

All in all, the algorithm aims at yielding actual numerical values. It can,
in this sense, be compared to the algorithm as used by The nine chapters to
determine a value for the area. However, at the same time, the algorithm
shapes a semantical interpretation for each result, and is to be compared, in
this sense, to the proof examined above, in the first part of the commentary.

The fact that this algorithm also has this argumentative component here
can easily be deduced from the fact that some of the computations are stated
only for the sake of the reasoning, but are not executed. This is for instance
the case for the last computation of the paragraph quoted above, which gives
a side of the dodecagon. The computation is prescribed, but not carried out.
Instead, the square of the result is kept, since it is that which will be used at
the beginning of the next sub-procedure, where the square of the half-side is
needed.

This leads to another range of remark. In fact, one can prove that the
argumentative function of the algorithm has prominence over the compu-
tational dimension. The first application of the subprocedure theoretically
yielded a side of the dodecagon. This side was to be halved, and its half
squared, to start the next application of the sub-procedure. Instead, the
square is directly divided by 4. Rewriting the sequence of operations “search-
ing the square root, halving and squaring” as “dividing by 4” is absolutely
correct, at the algebraic level. This is also correct from a numerical point
of view, if the result of the square root is given as “square root of N”, when
needed. This is, according to Liu Hui, the reason why quadratic irrationals
were introduced in The nine chapters: he relates them to the requirement that
squaring the result of a square root extraction should restore the number with
which one started26. However, here, the results are given in an approximate
way, and rounded off. This implies that applying the sequence of operations
“searching the square root, halving and squaring” might not yield the same
numerical result as “dividing by 4”. Here, we have a point where the algo-
rithm provided for shaping the interpretation of the result and proving the
correctness of the computation diverges from the algorithm used for com-
puting. However, they are stated in parallel. At the level of pure operations,
extracting the square root and squaring, as relations of transformation, are
useful for making sense of the flow of computation, but, in fact, they cancel
each other. They do not at the level of the operations as carried out by Liu
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Hui here. This remark reveals that the proof requires an algorithm that gives
the meaning of the values computed. This algorithm is rewritten, at the level
of pure operations, to yield the algorithm actually used for the computations.
But we have clear evidence, here, that it is the level of the proof that guides
the numerical execution of the algorithm.

In his commentary on the introduction of quadratic irrationals, Liu Hui
compared them to fractions in that they allow cancelling the sequence of two
inverse operations. This implies that the results of the two types of algorithm,
that for proof and that for computation, remain identical. This property is put
into play in a kind of “algebraic proof in an algorithmic context”, as I call
it27. It involves taking algorithms as lists of operations and rewriting them
as such, without prescribing computations. This relates to what we just saw,
regarding rewriting the algorithm. However, this also evokes the operations
as practiced in the first part of the commentary, where Liu Hui addresses
proving the correctness of the algorithm.

However, quadratic irrationals are not introduced in relation to the circle
here. This results in having, right from the outset, a divergence between
operations as relations of transformation and operations as prescriptions for
computation.

If we go back to the algorithm analyzed, it is interesting to note that, in
parallel to the fact that we had pure operations in the proof, we now discover
argumentative operations in the algorithm. This reveals that this algorithm
prescribes computations to produce values, at the same time as it produces
the reasons for its correctness. Proof is not to be expected to be always a
text distinct from the text of what is proved. Here algorithm and proof have
merged into a unique text.

This text fulfils this double function simultaneously by making use of
the double face of an operation, carrying it out both semantically and numer-
ically.

This double face of an operation is reflected in two other features of Liu
Hui’s commentary. First, it corresponds, as we saw above, to the split of the
commentary in two parts here. Secondly, it can be correlated to a specificity
in the set of mathematical concepts to be found in the commentaries. In
fact, the commentators make use of two concepts of area. Ji refers to the
area as the number produced by the computation, which can be linked to
the operation as numerical prescription. In contrast to it, mi, which is to be
found only in the commentaries and not in The nine chapters, refers to the
area as the spatial extension corresponding to the multiplication between two
magnitudes. This concept may relate to the face of the operation as relation
of transformation.
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In the same vein, it is important to stress the part played by the prob-
lems for making possible the interpretation of the successive steps of an
algorithm28. If we go back to the example mentioned above, asserting that a
sub-procedure of the algorithm described by Liu Hui yields the hypotenuse
of a right-angled triangle requires having identified that the terms to which
it is applied are the base and the height of such a triangle. On this basis, one
can recognize the problem, for the solution of which an algorithm has been
shown to correctly yield the hypotenuse. As for any problem contained in
the Canon, not only do we have the situation to which the subprocedure can
be applied, but we also have numerical values for each of the term. Apply-
ing the algorithm yields both a value and a meaning for the number obtained,
which are exactly the two tracks along which Liu Hui’s text develops. In this
way, problems are building blocks to write down a proof, in that they offer a
field of interpretation with which to make explicit the meaning of the result
of an operation.

One can interpret along the same lines the way in which, in the first part
of the commentary, the meaning of the multiplication of the circumference
of the n-gon by the half-diameter of the circle is brought to light. Liu Hui
introduces a figure, that of the 2n-gon, the area of which corresponds to the
result obtained. It is the situation bringing together the circumference of the
n-gon, the area of the 2n-gon and the half-diameter of the circle that is rich
enough to yield the interpretation of the operation. Interestingly enough,
Liu Hui uses the same term yi to designate the meaning of an operation in
both cases: when it is expressed in terms of the situation described in the
terms of a problem and when its explicitation is made possible thanks to the
introduction of visual auxiliaries29.

6. CONCLUSION

At this point, let me gather the various threads that were followed, while
attempting to describe this practice of proof for itself and observing how it
was embedded in mathematical activity taken as a whole.

We stressed the fact that Liu Hui’s commentaries bore on algorithms.
Sometimes, they establish the validity of a relation of transformation, as in
our first case. Sometimes, they establish that a value obtained is indeed the
one sought-for, or in which ways it can stand for it, as in our second case.

In any case, Liu Hui’s proofs present stable modes of reasoning.
In contrast to what we would expect if we took for granted that the sole

aim for proving is to convince of the truth of a statement, we saw that proofs
can serve as a basis for the production of new algorithms.

In fact, we met with two examples of this fact.
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First, the algorithm constituting the second part of the commentary ana-
lyzed was produced on the basis of the proof delivered in the first part, and
we observed modalities of the transformation of proof into algorithm.

Secondly, the proof of the relation yielding the area of the circle pro-
ceeded through an extension of the algorithm to be proved to a whole set of
figures, thereby bringing to light the reason for its correctness as well as the
connection of the circle to these other figures.

This suggests that mathematicians had other reasons to get interested in
the question of knowing whether a statement was correct, besides establish-
ing its correctness.

Obsessed as we have been by this latter function of a proof, haven’t
we failed to describe the general part played by proof in mathematics and its
various articulations to other moments of mathematical activity? This failure
seems to me to have had a lasting impact on the history of proof.

In any case, Chinese mathematicians like Liu Hui might have been in-
terested in the correctness of algorithms for the mathematical productivity
of the question or for the understanding it provides of that which has been
proved.

Neither with respect to their nature, nor even with respect to the texts
that give expression to them, did we observe a clear-cut opposition between
what was proved and what proved it. The reason behind this is that proofs
are constituted of operations – equalities, as we stress, and not inequalities.
And, in order to describe the relationship between algorithm and proof in a
more precise way, we were led to oppose operation-argument to operation-
computation, with respect to the form of the operation. In another perspec-
tive, we opposed operation-relation of transformation to operation-prescrip-
tion of computation, as regarded their nature.

On such a basis, the enunciation of an algorithm and the writing of a
proof could interact in various ways with each other, a conclusion also sup-
ported by the analysis of other parts of Liu Hui’s commentary30. The proofs
thus open onto the production of new algorithms, whereas the algorithms can
go along with a proof.

These Chinese authors experienced it: there is no antagonism between
computation and reasoning. This remark sounds obvious to us, whose proofs
proceed so often through computation, in contrast to what Euclid did. How
did that happen? What are the consequences for the activity of proving? Liu
Hui’s text incites me to raise these questions. Perhaps it can help us answer
them both conceptually and historically. Perhaps history of proof, too, will
display a non-linear pattern.
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APPENDIX

“Commentary: half of the circumference makes the length and half of the
diameter makes the width; consequently the width and the length being mul-
tiplied one by the other, this makes the bu of the product (ji(( ).

“Let us suppose that the diameter of the circle is 2 chi; the values (shu) of
a side of the hexagon inscribed in the circle and half of the circle’s diameter
are equal. Corresponding to the lü of diameter 1, the lü of the polygon’s
circumference is 3.

“Once again, relying upon the drawing, multiplying the half-diameter
for a segment by half a side of the hexagon, that makes two pieces (er) of it
and, multiplying this by six, one obtains the area (mi) of the dodecagon.

“If once again one cuts it, multiplying the half-diameter for a segment
by a side of the dodecagon, that makes four pieces (si) of it and, multiplying
this by 6, then one obtains the area (mi) of the 24-gon.

“The finer one cuts, the smaller is that which is lost.
“One cuts it and re-cuts it until one attains (zhi) what cannot be cut.
“Then its body (ti) makes but one (he) with the circumference of the

circle, and there is nothing lost.
“If to the exterior of the sides of the polygon, there is still some diameter

remaining, when one multiplies the remaining diameter by the sides, then
the area (mi) extends to the exterior of the circular segments.

“In case this polygon attains a degree of fineness31 such that its body (ti)
coincides with the circle, then there is no diameter remaining to the exterior.
If there is no diameter remaining to the exterior, then the area does not extend
outside.

“When, with one side, one multiplies the half-diameter, this amounts to
cutting the quarter of the polygon (gu) and each piece is obtained twice.

“Therefore/This is why (gu), when one multiplies the half-circumference
by the half-diameter, that makes the area (mi) of the circle.”

NOTES
0This paper was completed, while I was spending a week at the Fondation des

Treilles, Tourtour. It is my pleasure to thank this institution for its hospitality. I am
grateful to John McCleary for his help in the process of polishing the English.

1See (Chemla and Guo Shuchun, n.d.), especially chapter A.
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2In the appendix, I give the translation of my critical edition of the proof by
which Liu Hui establishes the correctness of an algorithm yielding the area of the
circle. In Chemla (1996), I have discussed this passage of Liu Hui’s writings ex-
tensively, especially regarding the philological problems that it raises. Here, I con-
centrate only on discussing questions relating to proof. The reader interested in
the argumentation for establishing the critical edition, on which my analysis here
is based, is referred to this former publication. There, he or she can find a more
detailed discussion of the various received versions. This passage of Liu Hui’s com-
mentary has been previously discussed by several scholars, among whom: (Chen
Liang-ts’o, 1986), (Guo Shuchun, 1983), (Lam Lay Yong and Ang Tian-Se, 1986),
(Liu Dun, 1985), (Volkov, 1994).

3(Chemla and Guo Shuchun, n.d.) provides a critical edition and a French trans-
lation of this book and the earliest extant commentaries. I am glad to acknowledge
my debt towards Professor Guo Shuchun, with whom, since 1984, I have discussed
each character of this text. This book also contains a glossary discussing the mathe-
matical and philosophical terms of both The nine chapters and the commentaries,
which I established. I shall refer below to it, as Glossary.

4I use capital letters for the text of the Canon, in opposition to lower case letters
for the commentary.

5Here we skip the statement of a second problem, similar to the first one.
6(Chemla, 1996) offers an interpretation of these facts. I refer the reader to it.
7The 7th century commentator concretely describes how to produce the figure of

the 6-gon by assembling 6 triangles around the center of the circle, see (Chemla and
Guo Shuchun, n.d.). This is in agreement with the fact that the geometrical figures
to which the commentators refer seem to have been material objects, the spatial
extension of which appears to be their foremost feature. See (Chemla, 2001) and
see gu “quarter of a polygon” in the Glossary.

8Interpreting in this way Liu Hui’s statement is in agreement with several fea-
tures underlined above: the polygon consists in a set of quarters; cutting the quarters
of the n-gon yields the 2n-gon; the first element attached to a geometrical figure in
ancient China is its area.

9See (Chemla, 1996). (Volkov, 1994) offers a completely different interpreta-
tion, based on a numerical interpretation of the whole passage. In my view, the way
in which he suggests to link the two parts of the commentary (for the second part,
see the end of this paper) requires further examination.

10See the commentary on the area of the circular segment, after problem 36 of
chapter 1, and the commentary of the volume of the pyramid, after problem 15 of
chapter 5.

11(Chemla, 1992, 1996) touch the comparison between these reasonings from
different angles.

12The term mi used to designate their areas conveys both the idea of geometrical
extension and measure, see Glossary. Multiplying the two lengths to produce such
an area is an usual way of introducing a rectangle, through its length and width. One
can find another such example at the beginning of the passage translated.
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13(Chemla, 1992) shows that this step characterizes all such reasonings by Liu
Hui, and (Chemla, 1996) compares them to pre-Eudoxian fragments in a more de-
tailed way.

14This sentence justifies our interpretation that “cutting a quarter of a n-gon” is
meant to refer to the production of two pieces of the 2n-gon.

15(Chemla, 1992) discusses other manifestations of this feature in geometry.
(Chemla, 1997) shows its relevance for interpreting the proofs in other cases, and
discusses the correlations in terms of textual characteristics of Liu Hui’s commen-
tary.

16I have a paper in preparation on this topic, “ Une conception du fondement
des mathematiques chez les comme´ ntateurs chinois (1er au 13e siecle) des` Neuf
chapitres sur les procedures math´ ematiques´ ”, presented at the Conference “Fonde-
ments des mathematiques”, Nancy, September 2002. An abstract can be found in´
http://www.univnancy2.fr/ACERHP/colloques/symp02/PreliminaryProgram.htm

17This is the main point made in (Chemla, 1992).
18See (Li Jimin, 1982), (Guo Shuchun, 1984) and my Glossary, entry lü.
19See the discussion of this passage in (Chemla and Keller, 2002).
20Chapter A, in (Chemla and Guo Shuchun, n.d.), summarizes the argument that

problems in ancient China offered fields of interpretation for the operations of the
algorithm following them. More on this below.

21(Chemla and Keller, 2002) discuss the quadratic irrationals introduced in an-
cient China and India, but, if we wanted to carry out the computations exactly, the
iteration would soon break this framework and require the introduction of more
complex quantities. In the second part of his commentary, devoted to computations,
Liu Hui deals rather with decimal approximations of the quantities. See below.

22(Chemla, 1996) deals with this part of the commentary in a more detailed way.
I restrict myself here only to the points relating to the analysis of specific features
of the practice of proof.

2310 cun = 1 chi. Other units appearing below in the text form a decimal sequence.
24This is a reference to the algorithm for extracting square roots as described in

The nine chapters. The root is yielded digit by digit. Here, when one reaches the
last unit available, the algorithm is carried out a last time, yielding a digit that is
taken as numerator corresponding to the denominator 10. Concerning this aspect
of the algorithm, see the corresponding introduction in (Chemla and Guo Shuchun,
n.d.).

25In fact, the values are only smaller than the circle in the interpretation provided.
They are interpreted to represent the areas of inscribed n-gons and their circum-
ferences. As regards the actual values, Liu Hui seems to lose the control of the
approximation. (Volkov, 1994) examines the conduct of the computation with great
care.

26On this point, see (Chemla, 1997/98).
27For details about this, see (Chemla, 1997/98).
28This point is developed in (Chemla, 1997a) and (Chemla, 2002).
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29See Chapter A, in (Chemla and Guo Shuchun, n.d.) and yi “meaning”, in the
Glossary. In a forthcoming paper, I shall address the way in which visual auxiliaries
are used for determining the “meaning” of some algorithms.

30See for example (Chemla, 1997) and (Chemla, 1997/98).
31I.e., in case the quarters of the n-gon are the finest possible, those obtained at

the point when one reaches “what cannot be cut”.
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JAMIE TAPPENDEN

PROOF STYLE AND UNDERSTANDING IN MATHEMATICS I:
VISUALIZATION, UNIFICATION AND AXIOM CHOICE0

To the memory of Heda Segvic

1. INTRODUCTION – A “NEW RIDDLE” OF DEDUCTION

Mathematical investigation, when done well, can confer understanding. This
bare observation shouldn’t be controversial; where obstacles appear is rather
in the effort to engage this observation with epistemology. The complexity
of the issue of course precludes addressing it tout court in one paper, and I’ll
just be laying some early foundations here. To this end I’ll narrow the field
in two ways. First, I’ll address a specific account of explanation and under-
standing that applies naturally to mathematical reasoning: the view proposed
by Philip Kitcher and Michael Friedman of explanation or understanding as
involving the unification of theories that had antecedently appeared hetero-
geneous. For the second narrowing, I’ll take up one specific feature (among
many) of theories and their basic concepts that is sometimes taken to make
the theories and concepts preferred: in some fields, for some problems, what
is counted as understanding a problem may involve finding a way to repre-
sent the problem so that it (or some aspect of it) can be visualized. The final
section develops a case study which exemplifies the way that this considera-
tion – the potential for visualizability – can rationally inform decisions as to
what the proper framework and axioms should be.

The discussion of unification (in sections 3 and 4) leads to a mathemati-
cal analogue of Goodman’s problem of identifying a principled basis for dis-
tinguishing grue and green. Just as there is a philosophical issue about how
we arrive at the predicates we should use when making empirical predic-
tions, so too there is an issue about what properties best support many kinds
of mathematical reasoning that are especially valuable to us. The issue be-
comes pressing via an examination of some physical and mathematical cases
that make it seem unlikely that treatments of unification can be as straightfor-
ward as the philosophical literature has hoped. Though unification accounts
have a grain of truth (since a phenomenon (or cluster of phenomena) called
“unification” is in fact important in many cases) we are far from an analysis
of what “unification” is. In particular, the degree of unification cannot be
usefully taken to turn upon simple syntactic criteria such as counting axioms
or argument patterns. I’ll argue that existing unification – based accounts
need to be supplemented by an account of qualitative distinctions between
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homogeneous and heterogeneous theories, between “natural” and “artificial”
predicates. I’ll argue further that in both mathematical and broader scientific
practice, rational distinctions between more and less natural properties are
made systematically. The considerations brought to bear to rationalize these
distinctions are typically more complex and varied than philosophical ac-
counts tend to recognize. But though the principles we rely on to distinguish
“natural” from “artificial” categories are varied and case-specific, they are no
less rational for all that.1 I’ll emphasize one particular consideration among
those that are important in practice: the “natural formulation” of a problem
is typically expected to be fruitful (to generate further discoveries, “make
things easier” and so on).2 The later parts of the paper take up a specific
case: one among the considerations that is sometimes adduced in practice as
supporting the fruitfulness of a formulation is that it allows crucial problems
or objects to be visualized.

The role of visual reasoning, as represented by Artin’s Geometric Alge-
bra, is complicated in some cases where mathematical axioms and basic cat-
egories are chosen. This section is meant also to serve a particular dialectical
function. Considerations like “fruitfulness” and especially “visualizability”
are sometimes classed as “merely subjective” or “merely psychological” or
“merely pragmatic”, and therefore not of genuine epistemological signifi-
cance. This dismissive position can gain an initial force because, of course,
some cases where diagrams are preferred, or where “fruitful” techniques are
recommended, are epistemologically uninteresting. One point the conclud-
ing case study is meant to illustrate is that the most interesting cases are
simply too systematic and far-reaching to be shrugged off in this way. “Vi-
sualizability” is a more intricate and more methodologically interesting the-
oretical property than it seems on a cursory analysis. A similar point holds
for the more general case of “fruitfulness”: on examination it turns out to
be so extensively and systematically embedded in our theoretical practices
that to dismiss it on the grounds that it is “psychological” / “subjective” /
“pragmatic” is tatamount to a global skepticism of the “why should our best
theories be true?” variety. (Since this is everyone’s problem, it is not specif-
ically a problem for the student of visualization or fruitfulness.)

The first section is devoted to spelling out why I think these questions are
urgent for the student of methodology and why I am approaching it in just
the way I am. First I’ll note a key historical motivation that will otherwise
serve as an unarticulated background point of reference: the mathematical
revolution initiated by Riemann in the nineteenth century. The rest of the
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section discusses some of the issues the Riemann’s revolution in mathema-
tical style raises, to bring out how systematically embedded in mathematical
practice these methodological issues are.

2. UNDERSTANDING AND EXPLANATION IN MATHEMATICAL
METHODOLOGY: THE TARGET

2.1. Riemann vs Weierstrass: a classic opposition

Toward the end of the nineteenth century, developing into the twentieth, and
in some ways continuing to the present, a division emerged in the proof
methods in complex analysis that raises compelling questions for mathema-
tical methodology. One approach, whose driving force was Weierstrass, was
broadly computational in its outlook: it aimed at finding explicit representa-
tions of functions and explicit algorithms to compute their values. The other,
initiated by Riemann, has appropriately been called “conceptual”: it aimed to
describe functions in terms of general properties, and to prove indirect func-
tion existence results that need not be tied to explicit representations.3 The
ramifications of this split were (and remain) far-reaching. In the words of the
only philosopher to have discussed this development in print: “Mathematics
underwent, in the nineteenth century, a transformation so profound that it
is not too much to call it a second birth of the subject – its first having oc-
curred among the ancient Greeks. . . ” (Stein (1988)) There were differences
in what proof techniques were counted as acceptable, in what connections to
physical applications were available, in which generalizations were natural,
and even in what definitions were accepted for the basic objects of study.4

The opposition persisted through several other changes in the mathematical
scene and in some respects continues to this day.5

This work defined the mathematics of the late nineteenth century and on-
ward. It was so central to the development of contemporary mathematics that
it is a challenge to the philosopher, as an analyst of mathematical method,
to give an account of what was at stake.6 This prompts a second challenge:
once it is granted that these developments are of philosophical importance,
it requires work to find a philosophical niche to put them in.

The historical details and philosophical overtones in the development
of complex analysis are too complicated to be addressed in a single paper;
this paper is one installment in a divide-and-conquer strategy of slicing the
problem into parts. This installment will deal with the questions induced
by the following observations: A) among the points of separation between
the Riemann and Weierstrass approaches are a cluster of considerations that
could reasonably be described as constituting different ways of understand-
ing the subject–matter of complex analysis.7 B) Among the motives for the
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Riemann style is that it proved, and has continued to prove, fruitful both in
facilitating the solution of given problems and in unearthing new important
problems. C) The fact that Riemann surfaces (the basic context for analysis
in the Riemann style) allow complex functions to be easily visualized was,
and remains, a contributor to the fruitfulness of the Riemann approach.8 To
keep the discussion relatively simple and independent of specialized back-
ground, I’ll set the motivating case of complex analysis aside, and address
the phenomenon of styles of understanding proving fruitful, with special ref-
erence to visualization as a contribution to that fruitfulness in connection
with more elementary and tractable examples.9

2.2. Understanding as an objective guiding mathematical investigation

This methodological analysis is given a special urgency by the observation –
widely accepted by those familiar with the events – that in Riemann’s work
an entirely new style of mathematical thinking appeared, one that (in dif-
ferent subspecies corresponding to different interpretations of the style) has
come to be part of the core of contemporary mathematics. In this connection
it will be useful to glance at a discussion of some distinctive characteristics
of twentieth century mathematics, as they were perceived by Hermann Weyl
(who, of course, was right in the middle of this research).

We are not very pleased when we are forced to accept a mathe-
matical truth by virtue of a complicated chain of formal con-
clusions and computations, which we traverse blindly, link by
link, feeling our way by touch. We want first an overview of
the aim and of the road; we want to understand the idea of the
proof, the deeper context.

. . . Minkowski contrasted the minimum principle that Ger-
mans tend to name for Dirichlet. . . with the true Dirichlet prin-
ciple: to conquer problems with a minimum of blind compu-
tation and a maximum of insightful thoughts. It was Dirichlet,
said Minkowski, who ushered in the new era in the history of
mathematics. (Weyl, 1995, 453)10

In the essay Weyl contrasts the topological style for approaching Rie-
mann’s results – which he takes to be an orthodox descendant of the original
Riemann function theory – with algebraic approaches to the subject.11 (Both
approaches are seen as possessing different, contrasting strengths.) Weyl
echoes some of the themes noted above, singling out fruitfulness as a crite-
rion marking the “natural” generalizations:
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What is the secret of such an understanding of mathematical
matters, what does it consist in? Recently, there have been at-
tempts in the philosophy of science to contrast understanding,
the art of interpretation as the basis of the humanities, with sci-
entific explanation, and the words intuition and understanding
have been invested in this philosophy with a certain mysti-
cal halo, and intrinsic depth and immediacy. In mathematics,
we prefer to look at things somewhat more soberly. . . . I can
single out, from the many characteristics of the process of un-
derstanding, one that is of decisive importance. One separates
in a natural way the different aspects of a subject of mathe-
matical investigation, makes each accessible through its own
relatively narrow and easily surveyable group of assumptions,
and returns to the complex whole by combining the appro-
priately specialized partial results. This last synthetic step is
purely mechanical. The great art is in the first, analytic, step
of appropriate separation and generalization. The mathemat-
ics of the last few decades has revelled in generalizations and
formalizations. But to think that mathematics pursues gener-
ality for the sake of generality is to misunderstand the sound
truth that a natural generalization simplifies by reducing the
number of assumptions and by thus letting us understand cer-
tain aspects of a disarranged whole. Then it is subjective and
dogmatic arbitrariness to speak of the true ground, the true
source of an issue. Perhaps the only criterion of the natural-
ness of a severance and an associated generalization is their
fruitfulness. (Weyl (1995) p. 454–455 emphasis mine)

Among the many things in these remarks is: Weyl associates understand-
ing with the unification of “aspects of a disarranged whole”. I’ll revisit this in
connection with theories of explanation later. In this section I’ll set that point
aside, and concentrate on the idea of understanding and the indicated con-
nections to assessments of “naturalness” and “fruitfulness”. It is of course
a truism that in mathematical practice we seek understanding, not just logi-
cally cogent argument. A characteristic case is described by Michael Atiyah
in these words:

I remember one theorem that I proved, and yet I really couldn’t
see why it was true. It worried me for years and years. . . I
kept worrying about it, and five or six years later I understood
why it had to be true. Then I got an entirely different proof. . .
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Using quite different techniques, it was quite clear why it had
to be true. (Atiyah, 1984, 305)

A proof or proof sketch can give cogent grounds for believing a claim,
but it might fail nonetheless to provide the sort of illumination we can hope
for in mathematical investigation. It is not unusual, nor is it unreasonable, to
be dissatisfied with a proof that doesn’t convey understanding and to seek an-
other argument that does. Sometimes one proof may be counted superior to
a second even though both proofs are carried out within the same theoretical
context (same definitions, primitive concepts, formal or informal axiomatic
formulations, etc.) In other cases, notably those I want to consider here, the
advantages of one argument over another appear to derive partly from the
definitions and/or axioms in terms of which they are framed.12

One among the many reasons accepted in practice for preferring one
formulation over another is that one way of framing and addressing a topic
can be more fruitful than another. When a formulation (set of definitions
or axioms, etc.) is found to be fruitful, this fact often is taken as evidence
that the formulation in question is the “natural” one, that the problem or
subject is properly understood when it is set up this way.13 Moreover, it
is generally a necessary condition on a principle or definition proposed as
natural that it support interesting new proofs.14 Though it is difficult to lay
out with draftsman’s precision what “fruitfulness” is, the effort to devise
fruitful ways of setting up problems and topics is part of what constitutes
mathematical activity and makes it valuable to us.15

Whether or not a framework is “fruitful” is something that must be borne
out by the facts, in the long run. This was a test passed by the Riemann ap-
proach to complex analysis: as devices for visually representing complex
functions Riemann surfaces were indeed helpful, but they would have been
relegated to the marginal shelf labeled “mere handy tricks” had they not con-
sistently, systematically, and in unexpected ways continued to facilitate un-
derstanding and discovery. When they continued to bear fruit in novel and
unexpected ways they were stably accepted as the proper context in which
to study the functions of interest to complex analysis, as “not merely a de-
vice for visualizing the many-valuedness of analytic functions, but rather an
indispensable essential component of the theory; not a supplement, more or
less artificially distilled from the functions, but their native land, the only soil
in which the functions grow and thrive.” as Weyl put it elsewhere.16

That is: if it is judged that some framework or theoretical context is “the
right one” because it is judged to confer understanding in a way that facili-
tates the solution to important problems, the judgement is revisable. Subse-
quent investigation can reveal that the framework provided just the illusion
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of understanding, if its advantages prove short lived or one – dimensional
while another framework is more flexibly fruitful in the long run.17 This ob-
servation helps address a worry that is especially favored by Wittgenstein en-
thusiasts: the worry that an assessment of “being right” will be empty if there
is no independent criterion of success – if there is no difference between “be-
ing right” and “seeming to be right”. That might seem to be a problem here
if we concentrate solely on the psychological sense of “naturalness” that can
be generated by placing a problem in its “natural” context/finding the “natu-
ral” formulation. But there is more to being the “proper” context/formulation
than just generating that feeling: innovation and proof of important results
must be facilitated in practice, over the long haul.

What is “natural” about a “natural” formulation typically must be learned:
it will not be obvious on a simple inspection of the formulation.18 The nat-
ural formulation need not be the one that is most initially attractive to the
untutored. This runs counter to a suggestion that has been advanced, and
which has some initial plausibility, that to understand a problem or concept
is to reduce it to terms that are already familiar.19 In many of the most inter-
esting mathematical examples (Riemann surfaces in complex analysis, pro-
jective geometry for the study of (inter alia) conic sections, scheme theory in
algebraic geometry, and much else. . . ) what is counted as “understanding”
is achieved by reformulating familiar problems in terms which are initially
strikingly unfamiliar.

Another related point – one that will be crucial in section 3 and 4, and
will be explored in connection with an example in section 5 – is that these
judgements of “naturalness” and the like are reasoned. It is not just some
brute aesthetic response or sudden, irrational “aha!” reaction that brings
about the judgement that – for example – “the scheme is the more natural
setting for many geometric arguments” (Eisenbud and Harris, 1992, 5) or
that the Artin framework considered in section 5 is “the proper setting for
many problems in linear algebra.” (Hughes and Piper, 1973, 285).20 Quite
the contrary: elaborate reasons can be and are given for and against these
choices. One job facing the methodologist of mathematics is to better under-
stand the variety of reasons that can be given, and how such reasons inform
mathematical practice.

This factual observation should be beyond controversy: reasoned judge-
ments about the “proper” way to represent and prove a theorem inform mathe-
matical practice. I have found that more contention is generated by the dis-
ciplinary classification of the study of these judgements and the principles
informing them: is this philosophy, or something else, like cognitive psy-
chology? It is hard to frame this worry precisely, since it inherits all the
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unclarity of what, precisely, philosophy is. Much of the rest of this paper
will tacitly address the issue, but in addition I should say a few words di-
rectly.

The point of contention is the classification of advantages of theories
that appear to depend on psychological facts about the people who use the
theories. There seems to be a relatively widespread view that a property
of a theory must be “objective” to be the proper object of a philosopher’s
attention.21 (I should note explicitly that I am not endorsing this view, but
only reporting that it is widespread enough that it needs to be confronted.)
The relevant sense of “objective” is hard to pin down precisely, but one as-
pect of the idea seems to be that for an advantage to be “objective” in this
sense it must be an advantage for every possible inquirer. “Subjective” fea-
tures of theories – it is maintained – are someone else’s problem.22

This sort of objection might seem to be an obstacle here. No doubt ex-
traterrestrial beings with different wiring in their brains might differ from us
on what formulations of problems are “most natural”, and would discover
that different ways of setting up problems would be most fruitful, and bet-
ter at facilitating discovery or “making things easier”. And there are some
cases where mathematicians display nearly uniform preferences that do in-
deed seem to be of interest only to the student of psychology and not the
student of method. The use of “z” as the variable of choice for complex vari-
ables is so entrenched it can be distracting if a different letter is chosen, but
that is hardly a deep and interesting point of method. Using yellow paper
rather than white may reduce fatigue and hence foster creativity, but that is
not the methodologist’s concern.

But while acknowledging that some cases should be shunted into the
“not philosophically interesting” scrap yard, it would be a mistake to ig-
nore them all. The situation is similar to the (more widely recognized) one
that faces us when evaluating the role of judgements of “simplicity” in gen-
eral philosophy of science. The assessments of simplicity or fruitfulness we
make would no doubt be different if our brains were wired differently, and
this would affect the mathematics and science that we produced, but still
the judgements we actually make are too systematically embedded in our
actual practices to be simply shrugged off in studies of either scientific or
mathematical method.23 The advantages and shortcomings of the Riemann
approach to complex analysis as opposed to the Weierstrass approach is just
one among many concrete examples that illustrate and anchor the point.24

The reasons that can be cited for the preferences are so far-reaching and
systematic that to set the issue aside as philosophically insignificant would
be to abandon altogether the hope of a philosophically satisfying account
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of mathematical method. Given the thoroughness with which mathematical
method is intertwined with physics, this would be tantamount to conceding
defeat to skepticism of the global “Why should we think our best theories
are true?” variety. Here and in the coming papers of this series I’ll spell
out why we need not make such a drastic sacrifice: if not a refutation of de-
mon skepticism, we can at least get a better sense of what makes our best
mathematical theories deserve the status of “best”.

2.3. Visualization as factor in mathematical reasoning

In my opinion, a well-balanced introduction to topology sho-
uld stress its intuitive geometric aspect, while admitting the
legitimate interest that analysts and algebraists have in the sub-
ject. . . I have followed the historical development where prac-
ticable, since it clearly shows the influence of geometric tho-
ught at all stages. This is not to claim that topology received its
main impetus from geometric recreations like the seven bridg-
es; rather it resulted from the visualization of problems from
other parts of mathematics – complex analysis (Riemann), me-
chanics (Poincare) and group theory (Dehn). (Stillwell (1993)´
vii emphasis in original)

One among the many reasons that can be (and sometimes is) cited for
formulating a subject in one way rather than another is noted in the quoted
remarks: the ability to visualize can be among the factors that shape a sub-
domain of mathematical practice. To avoid unnecessary controversy it is
important to see that the importance of visualization in mathematical rea-
soning can be explored without making any assumptions about the nature
of visualization itself. We don’t have to answer the question of just what
visualization is, or take a position in the now classic debate among cogni-
tive scientists and philosophers of mind about how to make sense of talk of
mental imagery.25 We don’t need to address what it could mean to liter-
ally “form a picture” of an infinite dimensional figure or a Klein bottle. All
that will be needed here is the observation that we have enough of a na¨ve
grip on the notion of visualization or pictorial representation to acknowledge
that whatever such representation may ultimately amount to, in mathemati-
cal practice there are cases where people try to “visualize” (whatever we may
be doing when we do that), that such visualization often is helpful, and that
this often informs mathematical practice (more often in some fields than in
others).26 (This should not be philosophically contentious: it is just a factual
observation about the methods and theoretical preferences of many working
mathematicians and amateurs.)
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As mentioned above, this aspect of mathematical activity has tended to
be ignored by philosophers, in part because of a sense that the phenome-
non is accidental, or “pragmatic” or “subjective” or “psychological” in ways
that make it philosophically uninteresting. This response is reinforced by the
simple fact that a large number of examples in which visual representation
in diagrams assists reasoning and problem-solving, really are uninteresting
to the student of methodology. It has been well-known to memory system
designers from medieval times that it can be easier to remember information
if one can visualize or draw some table of pictures to list the information.27

In such cases, the fact that visualization is involved might not be particularly
interesting for the present purposes. Cases like this are ubiquitous in math-
ematics too. As an example, consider these two ways of representing the
multiplication table for octonions.28 Here is the multiplication table (with e1

= 1):

e2 e3 e4 e5 e6 e7 e8

e2 −1 e4 −e3 e6 −e5 −e8 e7

e3 −e4 −1 e2 e7 e8 −e5 −e6

e4 e3 −e2 −1 e8 −e7 e6 −e5

e5 −e6 −e7 −e8 −1 e2 e3 e4

e6 e5 −e8 e7 −e2 −1 −e4 e3

e7 e8 e5 −e6 −e3 e4 −1 −e2

e8 −e7 e6 e5 −e4 −e3 e2 −1

This is a lot to absorb. To assist the memory there is a standard picture.
The connecting lines, including the curved lines mark out the products.29

e2

e44

e3 e7 e5

e6

Unquestionably it is helpful to picture the multiplication operation of the
octonions this way. However, the visual representation in a diagram might
plausibly be said to function solely as a memory aid. That is, it might be that
the sole advantage gained from the visual representation in this case is that
most people just happen to find information easier to recall if it is encoded
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into pictures of this kind than if it isn’t. It isn’t an implausible suggestion
that it is an accidental feature of our cognitive makeup that memory can be
thus facilitated by visualization. If so, there might not be any philosophi-
cally interesting consequences to the fact that people generally have a strong
preference for the visual arrangement over the tabular one.30

I think that is the right thing to say in this case, and in many others like
it.31 The advantage gained by the diagram of the octonion table is one-off;
it has no interesting systematic connections to anything else. Most signifi-
cantly, the availability of the diagram doesn’t correspond to anything deep
about the basic concepts or proof methods used in the study of the algebraic
structure represented. The point here will be that this case is a misleadingly
simple exemplar. The function of visualization is much more intricate and
systematic in cases like the Riemann approach to complex analysis. This, of
course, is not so much an answer as a gesture in the direction of an answer: if
the Riemann approach is different, we should be able to spell out how. This
paper is a first step toward meeting that challenge.

One point that is worth noting is that the advantages of the diagrammatic
representation of the octonions table seem to be essentially visual: the dia-
gram helps because visual perception is an especially vivid mode of cogni-
tion, and the visual arrangement of the table allows it to be easily “taken in at
a glance”. The cases that interest us here are more complicated: though Rie-
mann surfaces (for instance) admit of visual representation in a particularly
straightforward way, the fruitfulness of this theoretical context for complex
analysis persists even if diagrams are eschewed altogether. One might put
the situation this way: there is a mode of organizing the subject which is
especially natural, and which happens to connect to visualization in a direct
way, but the mode of organization is theoretically valuable even without the
essentially perceptual features like the vividness and immediacy of repre-
sentation in diagrams. That is, the connection to vision is an intriguing and
useful bonus, but the issues raised by the Riemann – Weierstrass opposition
are of interest independently.

The distinction between the contexts of discovery and justification might
also be suggested to apply here, since theoretical formulations count as “fruit-
ful” at least partly because of how they facilitate the discovery of proofs.32

It could be suggested – in line with the usual appeals to this distinction –
that fruitfulness is only of interest in the “context of discovery” and that only
what matters to the context of justification is relevant to epistemology, so
once again these issues are someone else’s concern. This issue is compli-
cated and I can only indicate the shape of the answer here, deferring a more
extensive discussion for elsewhere.33 In brief, this is a case where the context
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of discovery/context of justification distinction blurs. The preferred, fruitful
formulation is not generally dispensable in the “context of justification” be-
cause there might not be any proofs available that do not use the fruitful
formulation.34 35

It will help us sharpen the issues to look for a philosophical niche served
up by treatments of explanation and understanding in the natural sciences,
since these have been extensively addressed. It will be especially helpful to
consider the treatments of explanation and understanding as bound up with
theoretical unification. I’ll argue that these accounts are correct only with
revisions and qualifications, but following out a presentation of the view and
some of its obstacles will be a useful springboard. This will be the goal of
the next two sections.

3. UNDERSTANDING, UNIFICATION AND EXPLANATION –
FRIEDMAN

Efforts to explain and understand also guide investigation in the natural sci-
ences, and mathematical theories and methods are integral parts of these
investigations. This is a truism. Even if a sharp and principled divide be-
tween “applied mathematics” and “pure mathematics” can be marked out, it
is unlikely that it would be so stark as to exclude unifying methodological
themes. So it makes sense to try to compare explanation and understanding
in science and mathematics.

Of course, there is a crucial disanalogy. The propositions to be explained
in mathematics are not contingent, and so we can’t appeal to the plausible
and widely accepted suggestion that the explanation of an event provides part
of the causal history of that event. If the plausible suggestion is right, then
whatever is involved in mathematical explanation and understanding must
differ from what is involved in at least some cases of scientific explanation
and understanding.36 This is not a problem here: I grant that the words
“understanding” and “explanation” are probably not used unambiguously to
pick out a single uniform phenomenon, and I agree that many things that are
properly called explanations appeal essentially to causal ancestry. However,
mindful of the fact that some explanations in physics and mathematics do
seem to be governed by the same principles, I’ll count it as an advantage of
an account that it supports a uniform treatment of some mathematical and
some physical explanations.

A promising candidate to support a uniform treatment of some pure
mathematical cases and some non-mathematical ones is the treatment of ex-
planation as unification as proposed in the seventies by Michael Friedman
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and Philip Kitcher. In this section I’ll pass through Friedman’s now clas-
sic account in his (1974). Friedman embraces the suggestion that in at least
some important cases, to provide an explanation of an event is to provide the
resources to understand that event, and motivates his account accordingly. A
further reason for considering Friedman’s treatment here is that he states ex-
plicitly a requirement that we noted earlier: accounts of understanding must
be objective. Scrutiny of the way that Friedman understands this condition
will help clarify what is at issue.

This discussion aims to shore up these two points: a) The unifications
that are regarded as valuable in practice involve some kind of qualitative ad-
vance, by producing a theory that is comparatively homogeneous to subsume
two or more theories that had appeared heterogeneous. Mere reduction in the
number of axioms or basic principles is typically not at issue. B) The con-
ception of “objectivity” that motivates Friedman’s account has to be relaxed
in order to be true to the kinds of example that make unification accounts
plausible. I’ll suggest that Friedman’s desiderata are actually better served
by effecting something of a rapprochement with the view of Stephen Toul-
min, which he examines and rejects.

3.1. Friedman: understanding as “objective”

The core of the Friedman approach is the compelling observation we’ve al-
ready noted, that often it is an important advance to bring about a unification
of theories or hypotheses that had previously seemed disparate, by crafting
a single theory or hypothesis that subsumes both. There are famous cases in
which such unification appears to have been a clear advance: two prominent
examples are Newton’s unification of terrestrial and celestial mechanics and
the unification first by Maxwell, and then within relativity theory, of electric,
magnetic and optical phenomena. The prospect of a super theory encompass-
ing quantum mechanics and gravitation is recognized as a motivating objec-
tive of current physical research. Looking back to the Riemann – Weierstrass
contrast with which we began this study, we find different variations on this
motif marking out Riemann’s style. Riemann’s approach to complex func-
tion theory admits of a variety of points of view in part because he effected
a unification of complex function theory with the theory of complex curves
and surfaces. Also, on a smaller scale, the “proper” choice of unifying def-
initions and basic principles was regarded by Riemann’s contemporaries as
one of the hallmarks of his work. A particularly clear expression appears in
these words of Casorati:

We believe that it is truly admirable with what assimilating
power [Riemann] knew how to gather and establish in some
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compact, simple, and general theory, together with his own,
all of the other studies that had an important relation to them.
Of particular importance were Cauchy’s many studies, spread
over numerous publications, which were conducted with dif-
fering purposes and often wrapped in a heterogeneous variety
of terms and special notations. . . . In paricular it is especially
worth observing how Riemann always sets up his own conven-
tions and definitions in such a way that every theorem can be
stated as true without exception, or how many formulas and
theorems ordinarily thought to be different from each other
can be united in a single formula or theorem. (Casorati (1868,
140 note 2); quoted in (Bottazini, 1986, 218)).

Though it is open to dispute whether such advances are reasonably de-
scribed as “explanations”, it is clear that they are successes, so I’ll treat it as
uncontroversial that unification (whatever it may amount to in the final anal-
ysis) does represent an objective implicit in scientific practice.37 What will
be at issue is the question of how to analyze these acknowledged successes.

Friedman argues that there is an irreducible advantage to reducing the
number of facts that have to be accepted as “brute facts”.38 Friedman faces
the elementary problem that we can reduce the number of axioms in any
theory generated by a finite collection of axioms A1 . . . An just by taking as
a single axiom the conjunction A1&. . . &An. But of course this wouldn’t be a
theoretical advance. Friedman refines the idea of reducing basic premises by
introducing a characterization of premises as “independently acceptable”. A
successful unification, on his account reduces the number of independently
acceptable premises.

Friedman’s treatment doesn’t seem to hang together unless a purely a
priori delineation of “dependent” and “independently acceptable” can be
worked out. Friedman’s efforts to craft a technical definition of “indepen-
dently acceptable” foundered on straightforward counterexamples, the ini-
tial efforts at patching the theory foundered on further counterexamples, and
nothing much has been done to revive this part of the account in the last cou-
ple of decades.39 In light of this I’ll regard Friedman’s theory in this specific
form as untenable. But it will be useful for diagnostic purposes to set aside
this problem: let us say for the sake of argument that we have managed to
fix which propositions are acceptable independently of which others. Even
so, Friedman faces the problem of distinguishing the valuable syntheses that
can plausibly be called “explanations” or “advances in understanding” from
those that cannot.
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By unifying the theories of electricity and magnetism, Maxwell brought
together two theories that had previously seemed to govern different kinds
of phenomena. But there is no reason to expect that the new, more encom-
passing framework of electromagnetism had fewer axioms. Say that in some
canonical axiomatisation, Maxwell’s electromagnetism had twelve axioms
and the two theories it replaced had just four each. So what? Would we
cease to regard Maxwell’s electromagnetism as a successful unification if
we discovered, upon actually doing the count, that it had more axioms than
the total axioms of the theories it replaced?40 Similarly, if relativity theory
and quantum mechanics were to be brought together into a single homo-
geneous theory, we would hardly reject the unified theory, or regard it as
a regressive, non-explanatory step, if it had an independent axiomatic ba-
sis with more sentences than the theories it subsumed. In short, reducing
the number of axioms need not increase understanding and increasing the
number of axioms need not detract from understanding.41 We need to focus
not on the number of axioms but rather on what makes a given theory more
homogeneous than just the conjunction of the two that it subsumes.42

Mathematical examples are worth adding, to be consistent with the theme
that the relevant issues arise in both mathematics and natural science. In a
classic paper (1882), Richard Dedekind and Heinrich Weber produced a uni-
fied theory of algebraic functions of one variable and algebraic numbers.43

It would be hard to overstate the importance of this work; much of the sub-
sequent development of German algebraic geometry in the first part of the
twentieth century can be traced back to this source (in both content and
style).44 Much of the jolt of this work comes from the unification of a
paradigmatically arithmetical subject (algebraic numbers) with another (one-
variable algebraic functions) that (in the Riemannian tradition Dedekind oc-
cupied) had been seen as geometric. Key insights were (as we would now put
it) that both algebraic numbers and algebraic functions can form a field, and
that the elements of these fields can be analyzed in terms of ideals, and many
of the crucial properties of both can be seen to depend just on this.45 (In
identifying the concepts of field and ideal as crucial, we can now recognize
that Dedekind and Weber were backing winners. As the subsequent history
has borne out, few concepts can rival these for fruitfulness within mathemat-
ics.) The uniform treatment of two apparently disparate subjects (achieved
in this case by general argument patterns exploiting a “truly central” idea)
gives a provisional credibility to the idea that the concepts involved, within
the theoretical framework as a whole, really laid out what is going on. (The
provisional credibility was, of course, ratified by subsequent research.) Once
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again, this advantage is completely disconnected with any issue of how many
axioms might be involved in the unifying theory.46

This is borne out by the account of Dedekind’s algebraic work in the
Weyl (1995) essay mentioned above. Weyl does say, in one quote given
above that “a natural generalization simplifies by reducing the number of as-
sumptions and by thus letting us understand certain aspects of a disarranged
whole”. But Weyl’s subsequent discussion reveals that these remarks should
not be understood in terms of a reduction of axioms. In the detailed analyses
of Dedekind - style approaches to the theory of algebraic functions of one
variable that form the main body of Weyl’s essay, the idea of “reduction”
in play is conceptual, in the sense that propositions incorporating a variety
of apparently disparate concepts can be reduced to claims incorporating just
one fruitful key idea: Dedekind’s concept of ideal, that “runs through all of
algebra and arithmetic like Ariadne’s thread” (1995, p.649). So far as Weyl’s
analysis is concerned, a reduction of two propositions containing a range of
heterogeneous concepts to more than two propositions framed solely in terms
of ideals would be a unification contributing to understanding. Ideal theory
is a natural framework for these problems, according to implicit and some-
times explicitly articulated criteria of “naturalness” that inform mathematical
practice. We need to address the extra qualitative condition – that the theory
doesn’t just effect a bare, gerrymandered unification but that it does so in the
right terms – before we can understand what gives the unification value and
leads mathematicians to regard it as an advance in understanding.

An example from geometry will be especially helpful in connection with
the discussion of section 5. A breakthrough in the understanding of gen-
eral geometries, and the algebraic structures corresponding to geometries,
was provided by Hilbert’s axiomatization in Hilbert (1899) (refined in sub-
sequent editions). This set out a single framework within which the range
of geometries studied up to that point could be deductively developed and
studied. However, this framework was remarkable in part for the number
of axioms it contained. Far from reducing the number of axioms, Hilbert
actually went out of his way to increase it: he aimed to isolate precisely
what axioms a particular theorem depended on. To this end it was impor-
tant to have available the axioms to support fine distinctions of deductive
strength.47 Consequently, even though the framework as a whole unified the
study of diverse geometries, this was not unification according to Friedman’s
analysis; indeed, on Friedman’s analysis it would be a regressive step.

The other mathematicians who set the tone at the turn of the century
seemed also to be indifferent to number of axioms, though they were alert
to differences between frameworks. Thus in his otherwise glowing review
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of Hilbert’s foundations, Poincaré, was silent on the increased number of´
axioms, but he indicated one felt lack: unlike Lie’s foundations, Hilbert did
not set the idea of transformation in an important place. (Poincaré, 1903) For´
his own part, Hilbert complained of Lie’s foundations that in Hilbert’s view
Lie’s axioms were insufficiently “elementary”. The points of comparison
and contrast were solely qualitative; which of the frameworks had the fewest
axioms didn’t come into the debate at all.

I’ll turn to the broader standpoint that informs Friedman’s discussion. As
noted above, Friedman suggests that his is the only proposal among those he
considers to be both objective and to capture something that might fairly be
called a notion of understanding.48 Friedman appears to take “objective”
to mean something in the ballpark of “ascertainable a priori”, though it is
not clear what positive account of objectivity he has in mind. However,
it is clear what he thinks isn’t objective in his sense: the view proposed
in Stephen Toulmin’s Foresight and Understanding, which Friedman calls
(uncharitably, as Friedman acknowledges) “the intellectual fashion view.” I
think this rejection is a mistake. The spirit of Friedman’s view seems to be
salvageable only if something like Toulmin’s position is grafted on, and it is
unclear why we should take this to involve any sacrifice in objectivity.

We’ll need a closer look. On Toulmin’s telling, what counts as “under-
standing” is conditioned by a broader “ideal of natural order”. The function
of these ideals that is interesting for our purposes is that they tell us when
something is in need of explanation and when it may stand unexplained.
Similarly, it colors our view of what properties are “natural” and which “ar-
tificial”. These ideals can change from one era to another. So for example,
action-at-a-distance explanations stood for a time as absurd, then became ac-
ceptable for awhile, and then became unacceptable again. Friedman objects
to incorporating this into an account of understanding because it represents
understanding as “not objective” – as depending on capricious or subjective
factors. But this is not obviously just: it depends on what kind of reasons, if
any, are given to support the ideal. If we take something as basic, we need
not be mute about why we take it as basic. Nor must the reasons we offer
be bad reasons just because other people in different conditions might offer
different reasons, supporting different conclusions. Quite the opposite: espe-
cially if the different conditions include different available data, as generally
they do, we should expect different answers. We don’t want to say that it
is just fashion that leads us to change our minds when we learn more. Our
judgements as to what is basic and what requires explanation, and so on, are
not independent of what is known about the world, and what is appreciated
about method, at a given time. It does not impeach this observation that there
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will generally be no uniform algorithm for going from a theoretical situation
and range of evidence to some fixed range of ideals and natural choices of
basic axioms and properties. The best arguments may be highly case – spe-
cific. But they need be no less rational for all that: there is no way to tell in
advance before we consider what the specific reasons are.

The argument of Friedman’s paper has an instructive instability on this
point. Friedman acknowledges explicitly that by Toulmin’s account the cho-
ice of a particular “ideal of understanding” can typically be defended with
reasons. This (appropriate) concession is in tension with both Friedman’s
core objection and the connotation of the label “intellectual fashion view”
that ideals of intelligibility are arrived at arbitrarily or as caused by indi-
vidual or group psychology rather than adopted as rationally justified. To
be sure, Toulmin invites this uncharitable reading, as at times he appears to
both assert and deny that reasons can be given for a preferred explanatory
framework. For example, he writes:

Those who build up their sciences around a principle of regu-
larity or ideal of natural order come to accept it as self-expla-
natory. Just because (on their view) it specifies the way in
which things behave of their own nature, if left to themselves,
they cease to ask further questions about it. It becomes the
starting point for explaining other things. Yet the correctness
of a particular explanatory ideal (as we shall see) can never
be self-evident, and has to be demonstrated as we go along.
(Toulmin, 1961, 41-42)

The statement that an ideal “can never be self-evident, and has to be
demonstrated as we go along” sits uncomfortably with the suggestion that
this basis cannot be explained further:

There must always be some point in a scientist’s explanations where he
comes to a stop: beyond this point, if he is pressed to explain further the
fundamental basis of his explanation, he can say only that he has reached
rock-bottom. (Toulmin, 1961, 42)

I think it is the first of these that is truer to the facts: even when some-
thing is taken basic or fundamental, this does not preclude the possibility of
arguments for and against regarding it as basic or fundamental, nor does it
preclude arguments for and against its truth.49 And in many of the interesting
cases (such as Toulmin’s example of magnetism in the nineteenth century)
the changes in the categories taken as central and the principles taken as ba-
sic could be, and were, provided with a detailed rationale. Again, this is
exemplified by the vicissitudes of German action-at-a-distance explanations,
in their course from rejected to accepted to rejected again over the course of
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a century.50 This was a dispute over what to regard as the basic shape of an
acceptable theory, but the proponents and opponents of action-at-a-distance
were hardly reduced to inarticulate grunts. Elaborate reasons were given on
both sides, involving appeal to reflections on general methodology and ap-
peals to the advantages of the known available theories, as well as the range
of known facts. It is hardly caprice or brute fashion if people come to prefer
a different framework when they have gathered more data and learned more,
or when they have formulated attractive theories that had previously eluded
them.

Toulmin’s (unnecessary and in my opinion regrettable) suggestion that
the basic concepts and propositions are the bedrock at which the spade of
argument is turned is (rightly) a sticking point for Friedman. It will be useful
to quote and comment on a long stretch of Friedman’s text to clarify what is
at issue:

There are many cases in the history of science where what
seems explanatory to one scientist is a mere computational de-
vice for another; and there are cases where what is regarded
as intelligible changes with tradition. However, it seems to me
that it would be desirable, if at all possible, to isolate a com-
mon, objective sense of explanation which remains constant
throughout the history of science; a sense of “scientific under-
standing” on which the theories of Newton, Maxwell, Einstein
and Bohr all produce scientific understanding. It would be de-
sirable to find a concept of explanation according to which
what counts as an explanation does not depend on what phe-
nomena one finds particularly natural or self-explanatory. In
fact, although there may be good reasons for picking one “ideal
of natural order” over another, I cannot see any reason but
prejudice for regarding some phenomena as somehow more
natural, intelligible, or self-explanatory than others. All phe-
nomena. . . are equally in need of explanation, though it is im-
possible, of course, that they all be explained at once.

Therefore, although the ‘intellectual fashion’ account may
ultimately be the best that we can do, I don’t see how it can
give us what we are after: an objective and rational sense
of ‘understanding’ according to which scientific explanations
give us understanding of the world. (Friedman, 1974, 13)

There is much in these words I agree with. I am of one mind with Fried-
man in resisting the suggestion that “some phenomena should be seen as
natural, intelligible or self-explanatory”, if this is to mean that the status of
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“natural” cannot be defended by good reasons. It was, I think, a misstep for
Toulmin to cast the issue in these ways. But we do, in practice, see some
categories and principles as “more natural, intelligible or self-explanatory”
in the sense that they are methodologically basic: they are taken as the most
reasonable principles to appeal to in addressing problems of a given kind,
or the most natural categories to employ in connection with a given subject.
That concepts and principles have this status is not inexplicable: part of the
practice of mathematics and science – part of what makes it valuable to us –
is that it incorporates reasons why the basic principles chosen are the good
ones. There can be general changes of mind, because more facts are learned,
or the theoretical situation comes to be better appreciated, or because new
problems are confronted that prompt a reappraisal of accepted techniques,
or just because people working in the field come up with some new ideas.
(Such changes in what is taken as natural and basic can, of course, also be
the result of irrational caprice, but they need not be.) If “natural” is under-
stood as here, there need be no loss of “objectivity”, and no appeal to caprice
or irrationality, in “a concept of explanation according to which what counts
as an explanation does [depend] on what phenomena one finds particularly
natural or self-explanatory.” Section 5 will deal with such a case, in which
choices are made of axioms and basic categories for good reasons.

These observations do not conflict with Friedman’s stated objective “to
isolate a common, objective sense of explanation which remains constant
throughout the history of science; a sense of “scientific understanding” on
which the theories of Newton, Maxwell, Einstein and Bohr all produce sci-
entific understanding.” Indeed, what I’ve written above even strengthens the
case for a (modified and weakened) version of the core theses that under-
standing is an objective of mathematical and natural scientific investigation
and that in some interesting cases something reasonably described as “unifi-
cation” is an important contributor to increased understanding. The quarrel
is only with the details of the analysis of “unification”: it isn’t a reduction
in the number of axioms, but something more complex. The bottom line is
that we can’t expect an account of the sort Friedman desires without con-
crete information about the reasons offered and accepted in scientific and
mathematical practice for choosing what is to count as the “natural” or “rea-
sonable” or “proper” primitive concepts and axiomatic formulations. If some
of the features of theories that make them good examples of “unification” are
more qualitative and (so to speak) “softer”, that doesn’t make them any less
real, important or objective.
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To nail down the point, let’s reconsider the concepts of “field” and “ideal”.
Dedekind and Weber (1882) helped bring out what has subsequently be-
come patent: these concepts are mathematically central. By contrast, during
roughly the same period, Frege developed the concept of “quantitative do-
main”, which is similar to the concept of field in some respects, and which
hasn’t caught on at all.51 The definitions alone don’t make it obvious which
of these would turn out to be the best choice of a framing concept: this has
to be discovered by seeing what they can do. That field theory became cen-
tral and the concept of quantitative domain sank below the waves was not
because of academic politics or mob psychology or the whims of capricious
fashion. Any working mathematician today who was introduced to Frege’s
definition could give a cogent rationale for the preference for the concept of
“field” over that of “quantitative domain” as a framing concept.

The explanation will be intricate, though. It is not just that the con-
cept of “field” is used to prove more theorems, since both concepts can be
used for the same number of theorems (i.e. infinitely many). It is rather that
field theory is needed for a striking number of “important” or “interesting”
or “central” theorems. That a theorem deserves such an honorific designa-
tion can in turn be justified in terms of some combination of the connection
to other mathematical subjects or physical applications, the importance of
further theorems, qualitative observations about what is unexpected or sur-
prising, and the like.

Other features of the concept can be invoked beyond just the results that
it supports. For example, it can be pointed out that the concept of field is nat-
urally refined into further fruitful subcases (zero vs. nonzero characteristic,
finite and infinite fields). Once again, the preferences and distinctions that
lead us to count one framework as more natural than another need not rest
on brute, inarticulate preferences or transient fashion.

In sum, to make progress in clarifying what is at issue when theories
are successfully unified, we need to learn more about qualitative features of
theories: what makes a framework, and the categories in it, “natural” and
“homogeneous” or whatever. Of course, there is only so far that a discus-
sion of whether or not a set of reasons count as “objective” in the absence
of the reasons themselves. This will of course depend on the specific case at
issue. It will be the goal of section 5 to illustrate how involved these sorts
of reasons can be in a case that is worked out in some detail. First I’ll look
more carefully at a specific touchstone: the problem of excluding gerryman-
dered predicates. This will provide the occasion to take up the potential for
visualization, as a feature of theories that occasionally (though not always)
contributes to an assessment of a category or framework as natural.
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4. KITCHER: PATTERNS OF ARGUMENT

The account in Kitcher (1976, 1982, 1989) shares with Friedman the em-
phasis on unification as an animating objective in scientific inquiry. An im-
portant point of agreement between Kitcher’s discussion and mine is in his
appreciation of the affinities between some mathematical explanations and
some natural scientific ones. He therefore sets this objective: an account
that will accurately represent explanations in both domains. (1989 p. 482)
Because of the above-noted technical problems in demarcating what is “in-
dependently acceptable”, Kitcher sets aside the suggestion that reduction in
the number of “independently acceptable” premises is the criterion for suc-
cessful unification. Rather, the goal of unification is taken to be a reduction
in the number of argument patterns. The background stance is that expla-
nation involves seeing connections among phenomena, with the degree of
unification depending on how economically this is achieved:

Understanding the phenomena is not simply a matter of re-
ducing the “fundamental incomprehensibilities” but of seeing
connections, common patterns, in what initially appeared to
be different situations. . . Science advances our understanding
of nature by showing us how to derive descriptions of many
phenomena, using the same patterns of derivation again and
again, and in demonstrating this, it teaches us how to reduce
the number of types of facts we have to accept as ultimate (or
brute). (Kitcher (1989) p. 432 emphasis his)

Kitcher’s view begins with a set K, “the set of statements accepted by
the scientific community”, with a set of arguments deriving some members
of K from other members of K a systematization of K. Argument patterns are
represented as sequences of schematic sentences, with a restricted class (the
“filling instructions”) of acceptable substitutions into the schematic places.52

(So for example, an argument pattern might have one place restricted to
chemical substances, another to real numbers for arguments relating sub-
stances and atomic weights.) An explanation, for Kitcher, is an argument in
the best systematization – which Kitcher designates E(K). Already – even
before we consider the criteria of goodness of systematizations – an inter-
esting stance on explanation is marked out. According to this view, whether
or not an argument counts as an explanation is a global matter, depending
on the overall structure of the theoretical framework. Explanations are argu-
ments belonging to some class which has theoretical virtues as a class. This
leaves open a range of different possibilities, depending on what criteria of
“bestness” for systematizations are proposed.



PROOF STYLE AND UNDERSTANDING 169

For Kitcher, the best systematization of K is the one that “best satis-
fies” the two constraints of “minimizing the number of patterns of derivation
employed and maximizing the number of conclusions generated.” (p. 432)
There is, of course, an important point of agreement here; the goal of “max-
imizing the number of conclusions generated” is close to the goal of identi-
fying fruitful formulations discussed above. Also as noted above, to make
sense of comparing two sets of infinitely many conclusions, and to get closer
to actual practice, we will have to introduce some refinements, such as plac-
ing special weight on “important” “interesting” or “deep” conclusions. But
this point will not be at issue here. Unification is thus taken to have this goal:
providing single argument schemes that apply to a variety of special cases,
with a special premium placed on keeping down the number of schemata.

As in the case of axioms, the suggested emphasis on keeping the num-
bers down isn’t a good fit with actual practice. Quite the opposite, it is
reasonable and common to seek many different arguments for a single re-
sult, each argument exemplifying different principles and exploiting different
techniques, and giving a different theoretical diagnosis. There is no shortage
of examples; the search for novel proofs of already established results is a
standard practice. In the more profound cases (the prime number theorem,
say, or the Riemann-Roch theorem) entirely different subfields are induced
by different proofs of one result.53 This reflects the fact that successfully
identifying unifying generalities is assessed not by counting the total num-
ber of patterns but rather by the quality of the patterns themselves: Are they
the right ones (are they deep or fruitful or revealing or whatever?) Again,
it is a challenge to clarify what these qualitative desiderata amount to, but
we have to tackle them before we can count ourselves as having clarified the
goal of unification in mathematics and science.

This section will address the following points. The first subsection will
take up the suggestion that finding general patterns allows a reduction in the
number of facts taken as brute; I’ll argue to the contrary that the general pat-
terns don’t supersede the particular ones. In the second subsection, I’ll argue
that unification according to Kitcher’s pattern does occur in important cases,
but it is not an unconditional goal. Additional constraints – for example
that the predicates employed in reasoning are not “gerrymandered” – come
into play as well. To lay the groundwork for the final section I’ll consider
one case – graphic statics – which is especially favorable to Kitcher and in
which visualizability is one of the contributing factors to the assessment of
the naturalness of the formulation.
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4.1. Unification: General patterns and Brute Facts

The identification of the general patterns of argument doesn’t reduce the
number of “brute facts” because the general cases typically don’t supersede
the special cases they generalize. The interaction of the special and general
cases is complicated. Kitcher emphasizes the economy of thought that is
gained by identifying these general patterns of reasoning, and he should, but
it is well to realize that generality of this sort is sometimes valuable for the
dual advantage that different special cases may have specific advantages, and
the ability to shift back and forth gives problem-solving advantages. Further-
more, when you have a single pattern of argument unifying two domains, the
pattern might be useful for different reasons in each: it might generalize in
different directions or admit different fruitful modifications in different in-
stances. That is, a unified general theory can be valuable in part because it
allows the systematic exploitation of residual differences.

A mathematical example – the duality of variety and ideal in algebraic
geometry – helps bring out this point.54 The example rests on the “dictio-
nary” connecting ideals in simple algebra and varieties in elementary alge-
braic geometry. It is useful to note how the process of working out this
duality is described in an intermediate – level undergraduate textbook:

In this chapter, we will explore the correspondence between
ideals and varieties. . . . [The Nullstellensatz]55 will allow us to
construct a “dictionary” between geometry and algebra, where-
by any statement about varieties can be translated into a state-
ment about ideals (and conversely). We will pursue this theme
in ##3 and 4, where we will define a number of algebraic op-
erations on ideals and study their geometric analogues. . . . In
##5 and 6 we will study [additional] more important algebraic
and geometric concepts. . . notably the possibility of decom-
posing a variety into a union of simpler varieties and the cor-
responding algebraic notion of writing an ideal as an intersec-
tion of simpler ideals. (Cox et al., 1992, 168)

Although the study of the “ideal” – “variety” duality (in contrast to the
duality in projective geometry that we’ll consider in a few pages) is not di-
rectly framed in terms of linguistic schemata, it still stands as a striking sup-
porting example for Kitcher’s picture of mathematical practice as pursuing
understanding and explanation by seeking out general argument patterns.
General arguments can be transformed into arguments in geometry or argu-
ments in algebra by systematic substitutions into general schemes. The ap-
parent qualitative difference between the subjects of algebra and (algebraic)
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FIGURE 1. y2 − x2 − x3 = 0.

geometry makes the discovered unity all the more compelling. However,
the two subjects remain importantly different. It can be a subtle question
whether a problem is more naturally addressed in one context or the other,
and the ability to shift between the formulations is itself exploited as a prob-
lem – solving strategy.56

Other, less involved examples are easy to come by. Theories of integra-
tion in the plane are indifferent to what the underlying coordinates of the
plane happen to be, but sometimes a careful choice of a specific set of co-
ordinates can transform an integral from nasty to nice.57 Another family of
simple examples appears in the birational geometry of the plane (the study
of properties of figures that are invariant under birational transformations).58

Identifying curves that are birationally equivalent turns out to yield an in-
teresting and useful theory, since certain key properties, such as the genus
of a curve, are invariant under birational transformations. But the resulting
generality does not mean that in studying these curves we should become
indifferent to the specific details. Consider for example the resolution of
singularities.59 Say that in the plane we have the curve (y2 – x2 – x3 ) = 0
(figure 1) which crosses the y-axis twice at a single point. (We count the
origin twice because it is approached in two different ways by tangents.)

It is a bit of an irritation that the intersections coincide like this, and so it
is helpful to exploit the fact that by a quadratic transformation – an especially
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simple birational transformation – the original curve can be mapped into the
parabola y2 − x − 1 = 0 crossing the y axis in two distinct places (figure 2).

So, as far as the properties of birational geometry are concerned, nothing
is lost if the more convenient representative stands as a proxy for the less
convenient one. This was a simple example; the gain in order and simplicity
is of course even greater when the zeros occur in clumps from cloverleaf
patterns and such. When we know we can “blow up” singularities in this
way, the fact that we have a general pattern of argument doesn’t lead us
just to focus on the general pattern to the exclusion of specific details. The
general pattern also affords us a way of squeezing more information and
efficiency out of a good choice of special cases.60

4.2. Kitcher Unification in Practice: Projective Duality and the
Gerrymandering Challenge

As we noted above, the goal of “minimizing the number of derivations” faces
a problem analogous to that faced by the candidate goal of “minimizing the
number of premises” in Friedman’s treatment: the quantitative restriction, to
reflect actual practice, needs qualitative reinforcement. The derivations have
to be “the right kind”, the unifying framework has to be “homogeneous”
and its basic categories “natural”. The point also arises in connection with
Kitcher’s account in two ways – one historical, one philosophical. One is an
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analogue of the problem Friedman faced in defining “independently accept-
able”: some “unifications” (like logical conjunction) unify in an artificial
way that doesn’t advance understanding. Another concerns the history of
some developments in mathematics and engineering that support Kitcher’s
account, but only part way. In the examples in question (general projective
geometry, and its particular application to engineering techniques for analyz-
ing the strength of components of physical structures) we find an a striking
example of a mathematical theory being used for the explanation of physical
events, in a way that reflects Kitcher’s theory of explanation to a striking de-
gree. The availability of dual patterns of argument is explicitly marked out
as a theoretical virtue. But also, in this example, the advantages of patterns
of argument that can be exploited in multiple ways is not treated as an un-
conditioned objective: it is also constrained by the assessed “naturalness” of
the basic categories, and the fruitfulness of the framework as a whole. I’ll
take up the second point after addressing the first.

The first problem is that unification will be too easy to achieve unless
we can rule out “gerrymandered” properties as potential substitutions into
argument schemes. If there is no constraint on what can count as a property
then using a device well-known since Goodman’s (1955) it is mere sport to
come up with a theoretical unification of any two claims. Say we have two
facts we want to explain/understand:

a) A ball of uranium under conditions of extreme temperature never at-
tains a radius of ten metres.

b) Actors playing alongside chimps never win Oscars.

Here is an easy recipe to unify these theses. Let’s define:

Pxy iff x is a ball of uranium in state y or x is an actor
playing opposite y

Qx iff x is a state of extreme temperature conditions or x is a
chimp

Rx iff x has a radius of 10 metres or x wins an Oscar.

Then, from the general proposition (x)(y)(Pxy & Qy ⊃∼Rx), and some ex-
tra specifications (No actor is a ball of uranium. . . ) we can derive both of
our specific theses. It isn’t difficult to set things up so that the derivations
will be instances of a single argument scheme. This will give us a unified
theory of critical mass and academy awards. We even get some unexpected,
novel verifiable predictions (though not very interesting ones) like “No ball
of uranium in a state of extreme temperature wins an Oscar”. But I expect
that it will be agreed on all sides that we haven’t managed to explain or im-
prove our understanding of either of the claims that we began with. In this
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case the artificiality of the properties defined is evident, and their disjunc-
tive character is written into the syntax of the definition. But of course we
can’t assume that spoiler predicates will always come with such a syntactic
advertisement.61 On what basis are we to distinguish the properties that sup-
port valuable unification from those that give us rubbish that isn’t worth the
effort? Kitcher is aware of this problem, and explicitly addresses a variation
on it, but his response only makes our problem more urgent:

We need some requirements on pattern individuation that will
enable us to block the gerrymandering of patterns by disjoin-
ing, conjoining, tacking on vacuous premises, and so forth.
The strategy sketched in the last paragraph attempts to dis-
guise two patterns as one, and it does so by making distinc-
tions that we take to be artificial and by ignoring similarities
we take to be real. Thus the obvious way to meet the challenge
is to demand that the predicates occurring in the schematic
sentences [and playing other critical roles] all be projectable
predicates of the language in which K is formulated. (Kitcher,
1989, 482)

Unfortunately, this answer loses one of the advantages of Kitcher’s ac-
count that was most attractive to us here: the prospect of a unified treatment
of mathematical and physical explanations. To the extent that we have any
grip on the idea of projectibility at all, it has only been specified with ref-
erence to empirical predictions, and it remains to be seen how we should
extend the idea to mathematical contexts.62 So Kitcher’s account of unifi-
cation is incomplete: we need to supplement it with an account of how the
range of acceptable substitutions is delineated in practice. This, of course,
gets us back to our main theme, of how in practice we ascertain the methods
of organization we will take as preferred and “natural”.

It will give us a foothold if we turn to mathematical cases that support
Kitcher’s analysis in an interesting way, though only up to a point. It is
true that uniformity of the kind he indicates has been sought, often quite
self-consciously in the history of mathematics, science and even engineer-
ing. But there is always a bottom line: if the uniform patterns don’t make
things easier, if they don’t support further discoveries, if they don’t provide
satisfying diagnoses, in short if they aren’t fruitful, then they are set aside.
A particularly illuminating example of this is embodied in the principle of
duality in projective geometry and graphic statics in the nineteenth century
and into the twentieth.

In the mid-nineteenth century, the development of projective geometry
is strikingly close to the pattern Kitcher describes.63 After extending the
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FIGURE 3. Pascal’s Theorem.

FIGURE 4. Brianchon’s Theorem.

Euclidean plane with points at infinity, reciprocal relations reveal themselves
in the theorems of the extended system. It is possible to pair up vocabulary
(“point” – “line”; “passes through” – “lies on” etc.; with induced pairings
like “circumscribes”-“inscribes” etc.) so that given any theorem in projective
geometry, the result of uniformly substituting each expression for its partner
is also a theorem. This can yield quite striking pairs, as in the canonical
examples of the Pascal and Brianchon theorems (see Figure 3 and 4):

Pascal’s Theorem: Given a hexagon inscribed in a conic section, the points
at which corresponding sides intersect all lie on a single line.

Brianchon’s Theorem: Given a hexagon circumscribed about a conic sec-
tion, the lines on which corresponding vertices rest all pass through a single
point.64

This fact induces a quite general duplication of reasoning, as the sub-
stitutions also transform proofs into proofs, so that a single schematic ar-
gument delivers two proofs in one. This feature of general geometric rea-
soning became a fundamental aspect of the discipline in the late nineteenth
century, to the extent that the standard convention in elementary textbooks
and advanced research monographs alike was to write arguments in parallel
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columns to display the dual arguments. This was an especially compelling
example because the observed logical affinities among arguments were seen
as more than just remarkable but idle epiphenomena. Duality came to be a
cornerstone of general methodology for many pure and applied geometers in
the mid-nineteenth century and subsequently. Producing theories that would
issue in such dualistic patterns was seen by some geometers working in the
area as a goal guiding the formulation of mathematical theories.65

Projective geometry and cognate fields, structured in this way in con-
formity to duality principles, are striking exemplifications of Kitcher’s ac-
count.66 But even in this highly favorable case, the issue is more compli-
cated. The self-conscious focus on producing general schemata is not an
unconditional goal. Once again it is important not only that the properties
unify but that they are otherwise the “natural” or “right” ones.

A useful illustration here is the application of projective geometry to
structural design, in the so-called “graphic statics” developed in the late
nineteenth century by Maxwell and Culmann and developed further by Cre-
mona. I will consider just the aspects of this rich history that are necessary
to the issues we’re addressing here. Fine details are available in secondary
literature.67

Graphic statics was a theoretical formulation of techniques for analyzing
engineering problems of structural reliability and strength of materials. Pro-
jective geometry is taken as the basic framework in the most ambitious and
systematic formulation, presented in Culmann’s Die Graphische Statik.68

The problems involved a range of forces and pressures on hypothetical struc-
tures. One crucial early breakthrough from Maxwell (1864) was a technique
for analyzing systems of forces in terms of reciprocal diagrams.69 These
worked by exploiting dualities to effect simplifications in the representations
of forces acting on a structure. We won’t need any further details here, ex-
cept the key observation that this reciprocity allows complex stress diagrams
to be reconfigured into diagrams that are easier to analyze, and which often
display explicitly the desired information about stresses. Here is a relatively
simple illustration:70 (See figure 5.)

Say that the figure on the right represents a bridge in equilibrium with
downward forces W1, W2 and W3 and upward reactions A and B. The lengths
of the lines represent the magnitude of the forces and the direction of the ar-
rows mirror the direction of the forces. The stress diagram is the closed
figure on the left. It will suffice for our purposes here to consider just one
application to illustrate the technique. We can obtain the force on the partic-
ular support marked s by measuring the corresponding line s’ on the stress
diagram. One thing we can learn even without measuring is that the line t’
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corresponding to t in the original diagram is far shorter than s’, reflecting the
fact that the stress on s is much greater than that on t. (s’ and t’ are the lines
between the circled points.) So if s and t are made of the same material and
have no flaws, and the structure collapses because of s buckling, we can read
off of the diagram a (defeasible) answer to the question “Why did s buckle
rather than t?”.

This example is satisfying from Kitcher’s perspective not just because
of the global role of duality in shaping the framework.71 Note also that the
preferred theoretical formulation doesn’t distinguish between physical and
mathematical situations. The account of (for instance) the stability of a con-
figuration is the same whether we are concerned with an abstract vector sum
or the stability of an actual bridge. It is of course an empirical question
what frameworks are adequate representations of given physical situations,
but solely mathematical/geometric criteria came into play in choosing which
among the many equivalent frameworks is to be preferred as the representa-
tion of decomposition into component forces.

This yields a compelling example in which the theoretical virtues that
led to the choice of a mathematical framework (and that consequently inform
the ideas of understanding and explanation that the framework induces) in-
fluence the explanation of physical events as well. The fact that a rooftop
can hold ten inches of dry snow, or that a cantilever bridge collapses, will
be explained not just by appeal to familiar physical properties (the weight
of the snow, the thickness of the roof, the weight of the girders, the tem-
perature,. . . ) but also by properties of the structure that are filtered through
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the theoretical framework (the distribution of the load, the shear stresses at
critical points. . . ). What counts as an explanation here is shaped by global
aspects of the theory, rather than merely by a picture of individual events
with simple causal dependencies. So for example, the most renowned can-
tilever bridge failure of the time – the Quebec bridge collapse of 1907 – was
set in motion when a single overstressed girder buckled.72 The explanation
of why that girder buckled of course required a grasp of not only the overall
downward force and the strength of the materials but also an account of how
the cantilever frame distributed the downward force through the structure as
a whole, so as to indicate why precisely that girder was the one to go.73

For the last two decades of the nineteenth century and well into the twen-
tieth, this was the dominant approach for studying the strength and stability
of engineering structures.74 Subsequently it was dislodged from its dominant
position for a battery of reasons, among them that engineers came to con-
front problems of greater complexity than the graphic approach could easily
address, and (more recently) because computers became more central to en-
gineering practice.75 However, our concern here is to address why graphic
statics held sway over its analytical rivals during the time it did hold sway.
Among the advantages that were noted, two are of special interest here: a)
the theoretical formulation borrowed the fruitfulness of the general projec-
tive geometry that informed the treatments of Culmann and Cremona.76 b)
the visual representations in diagrams systematically conveyed the informa-
tion in particularly vivid and effective ways; among the cited advantages
were that the visual arguments make mistakes easier to catch,77 that the vi-
sual presentation is easier to learn and teach without extensive mathematical
training78, and most importantly the graphic approach has that mysterious
but crucial theoretical advantage: it just makes things easier.79 Here too,
the latter preference cannot be just shunted off into an incidental “context of
discovery” since it shapes the terms in which justifications are given. The
graphic framework was not set aside after it did the work of spurring creativ-
ity.

This brings us to a juncture similar to the one we reached above in the
discussion of Friedman’s account. It turns out to be true that dualities of the
sort Kitcher isolates in his account of understanding have been taken to be
contributors to the fruitfulness of mathematical formulations of problems.
But even in the favorable case we are looking at, there is more going on. The
value of the unifying account is not given merely by the fact that there are a
variety of shared patterns (though in this case the sharing of argument pat-
terns is important). The status afforded to graphic statics as the preferred way
to address structural problems (during the period when it was so regarded)
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didn’t depend exclusively on how well the dualities of the background pro-
jective framework effected unification in Kitcher’s sense. In addition – as
the gerrymandering problem would lead us to expect – some additional con-
straints on the formulation have to be in place for the unified patterns of
argument to be seen as worthwhile.

Any case like this will be complicated, with many factors involved, but
we do have one foothold in the case of graphic statics since one of the princi-
ples taken to govern the theoretical formulation is stated unambiguously: it
was taken to be a selling point that the representations of forces are visualiz-
able. The interaction between visual representation and conceptual organiza-
tion can be intricate. In particular, a survey of the textbooks of the time gives
an interesting glimpse at a fact that will occupy us in the next section: some
textbooks which were explicitly directed at laying out the valuable features
of graphic statics didn’t contain a single diagram.80 The graphic framework
remains valuable even if we do not directly exploit diagrams or vision at all.
One reason for this is that rules for vector addition of forces is built into the
principles for manipulating and interpreting the diagrams. At the time, the
abstract versions of the ideas of vector space and vector sum were still imper-
fectly worked out and not well understood. Naturally the theoretical value of
studying forces as vectors subject to rules of vector composition and decom-
position goes well beyond the value that derives from the fact that they can
be represented in diagrams. That is: some of the value of the visual presenta-
tion derives from features of the organization of information that are shared
by the diagrammatic presentation and some analytic presentations. For these
advantages the visual presentation – the fact that we can see it in the way we
do – is incidental. This is true more generally of the projective framework
that forms the background of the Culmann – Cremona treatment of graphic
statics. Even in the abstract analytic presentation given by homogeneous co-
ordinates, where diagrams or other visual representations need not be used,
patterns of “geometric argument” are often judged to be especially acute.81

Let’s review the state of play before moving on. We began with the
challenge to clarify what was philosophically and methodologically at is-
sue in the nineteenth century revolution in mathematical thought initiated
by Riemann. We claimed a foothold in section 2 with the observation that
one type of success is recognized in both mathematical and scientific rea-
soning, and counted as a contribution to understanding: Unifying apparently
disparate phenomena within a single homogeneous framework. What was
at issue was clarifying what the valuable unifications should be taken to be.
The two candidate analyses we considered turned out to be at best incom-
plete, needing supplementation by an account of what reasons were given
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for basic principles and axioms and how preferred (“non-gerrymandered”)
categories were arrived at. This requires some appeal to an idea of “natural”
categories and principles, but contrary to what was argued by Friedman, we
do not have to set this aside as “non-objective” if the choice of candidate ax-
ioms and principles is based on good reasons. (This shifts the question of the
objectivity of the “natural” categories to the question of what the supporting
reasons are.) In classical projective geometry, especially in its application in
graphic statics, we found an example exemplifying, on a smaller scale, one
principle informing the hard case (Riemann’s complex analysis) that we set
out to approach. In some cases, a contributor to an assessment of the “nat-
uralness” of a framework and its basic categories is that the arguments and
analyses of the framework can be visualized. Finally, we noted that some of
the advantages of the visualizable frameworks we considered persisted even
when they were formulated in non – diagrammatic terms, as systems of ab-
stract analytic geometry or vector addition. This helps narrow our search:
we need to get a better sense of how this sort of indirect connection to vision
can inform our choice of theoretical frameworks.

5. ARTIN AND AXIOM CHOICE: “VISUAL REASONING” WITHOUT
VISION

Implicit in sections 3 and 4 was this answer to the problem of identifying
“gerrymandered” predicates: it may well be that there is no general a priori
principle that will divide categories into natural and artificial. But the ab-
sence of a general a priori answer doesn’t indicate that everything is caprice:
in particular cases, good reasons can be given for the choice of one frame-
work as preferred. We also considered one basis that is cited in at least some
cases: a framework can be preferred if it has a desired kind of connection to
visual representation.

A relatively tangible example of the choice of a framework is given by
the choice of axioms for a mathematical theory, which motivates the case
study of this section: the choice of axioms and basic concepts within Artin’s
Geometric Algebra (Artin, 1957). Before engaging the details we need some
ground – clearing concerning the use of the word “axiom”. Contrary to what
the expression may have meant in the past, in mathematical practice today
“axioms” are not “self – evident truths neither needing nor admitting proof.”
Most of the axioms we’ll see here are not self-evident, nor are they treated
as unprovable.82 What makes them the right candidates for axioms is that a
good case can be made that they divide up the topic in the proper way.

Artin’s volume has a polemical aspect. He is striving to revive a “geo-
metric” style of presentation, as he notes in his preface. (This is not just
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a casual remark: the preferences it indicates are followed out consistently
throughout the volume.)83

Many parts of classical geometry have developed into great in-
dependent theories. Linear Algebra, topology, differential and
algebraic geometry are the indispensable tools of the math-
ematician of our time. It is frequently desirable to devise a
course of geometric nature which is distinct from these great
lines of thought. . . (Artin, 1957, vi).

The specific orientation this stance involves is indicated later when Artin
indicates how an algebraic result should be restructured. Artin is discussing
the isomorphism connecting the ring of homomorphisms of an n-dimensional
vector space (over a field K) into itself and the ring of nxn matrices (with
entries from K). This isomorphism introduces two different modes of pre-
sentation, a fact upon which he comments as follows:

Mathematical education is still suffering from the enthusiasms
which the discovery of this isomorphism has aroused. The re-
sult has been that geometry was eliminated and replaced by
computations. Instead of intuitive maps of a space preserving
addition and multiplication by scalars (these maps have an im-
mediate geometric meaning), matrices have been introduced.
From the innumerable absurdities – from a pedagogical point
of view-let me point out one example and contrast it with the
direct description.

Matrix method: A product of a matrix A and a vector X
(which is then an n-tuple of numbers) is defined; it is also a
vector. Now the poor student has to swallow the following
definition:

A vector X is called an eigen vector if a number λ exists such
that AX = λX.

Going through the formalism, the characteristic equation,
one then ends up with theorems like: If a matrix A has n dis-
tinct eigen values, then a matrix D can be found such that
DAD−1 is a diagonal matrix.

The student will of course learn all this since he will fail
the course if he does not.

Instead one should argue like this: Given a linear trans-
formation f of the space V into itself. Does there exist a line
which is kept fixed by f? In order to include the eigen value
0 one should then modify the question by asking whether a
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line is mapped into itself. This means of course for a vector
spanning a line that
f(X) = nX.

Having thus motivated the problem, the matrix A describ-
ing f will appear only for a moment for the actual computation
of n. It should disappear again. Then one proves all the cus-
tomary theorems without speaking of matrices and asks the
question: Suppose we can find a basis of V which consists of
eigen vectors; what does this imply for the geometric descrip-
tion of f? Well, the space is stretched in the various directions
of the basis by factors which are the eigen values. Only then
does one ask what this means for a description of F by means
of a matrix in terms of this basis. We have obviously the diag-
onal form. . . .

It is my experience that proofs involving matrices can be
shortened by 50% if one throws the matrices out. (Artin, 1957,
13-14).

There is much to comment on here. First, a basic observation: The struc-
tures of matrices and of homomorphisms are isomorphic but the differences
between the structures are not, in this case, dismissed. Consider the open-
ing question Artin floats (sticking to just two dimensions, for simplicity).
Given a linear transformation of the plane with two independent eigenvec-
tors is there a way to change the basis of the plane so that the transformation
relative to that basis is representable as a diagonal matrix? There are two
different ways to arrive at an answer. Artin’s preferred approach sets up a
visualizable situation and – only when needed – appeals to an algebraic rep-
resentation of it. The second deals throughout with the computations that
can be performed in the algebraic representation.

My informal canvassing has turned up the expected result that almost
everyone is of one mind with Artin that the first of these approaches is
preferable.84 As noted earlier, this is echoed in print. In one example Hughes
and Piper (1973) speak of Artin’s framework as “the proper setting for many
problems in linear algebra.” (p. 285) There are many reasons for this. First
of all, as a pedagogical observation most people find his preferred approach
much easier to grasp on first exposure, as Artin observes. There are also
gains in the most elementary kinds of economy like proof length, if Artin’s
observation that proof length can often be shortened “by 50%” is correct, as
I will take it to be. These are important advantages of Artin’s perspective
that need to be taken seriously. But there are deeper, more systematic ad-
vantages as well, which will come out as the picture unfolds in more detail.
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However, the point cannot be that pictures are an essential part of “geomet-
ric” presentation, since Artin has hardly any!85 86 There are only 6 diagrams
in a book of over 200 pages (all but one of these are meant to clarify the
axioms to be considered in a moment.)87 Rather, we find that a “geometric
language” (p.26) which facilitates certain “intuitive pictures” (p.26) and vi-
sual handwaving is developed and fleshed out with axioms, but the power of
the framework lies principally in its systematic theoretical fecundity.

The core concept of the approach is that of a transformation (or sym-
metry): the idea of moving a point from one position to another, thereby
tracing a line. (This perspective is actually much closer to some “philosoph-
ical” analyses of space and intuition than it might appear to those unfamiliar
with the tradition, but since this point will take us too far afield, I’ll leave
it to be developed in other work.88) Two axioms are set down to ensure the
basic structure of parallelism: I) given two distinct points there is a unique
line connecting them II) Given a point P and a line l, there is a unique line
parallel to l passing through P. Also there is an axiom that states that there
are three distinct non-collinear points. Given this, as Artin puts it “We can
hope for a ‘good’ geometry only if the geometry has enough symmetries.”
(Artin, 1957, 58). Hence the remaining axioms posit the existence of sym-
metries, where these are dilatations: mappings σ such that given a line l,
the image σ( l ) is parallel to l.89 A sub-class of the dilatations is distin-
guished: a translation leaves no point fixed. (That is: τ is a translation if
there is no point P such that τ(P) = P). The only dilatation leaving more than
one point fixed is the identity, which leaves everything where it is, so every
non-degenerate dilatation that isn’t a translation or the identity leaves exactly
one point fixed. (Among the reasons to regard these as reasonable choices as
basic ideas are algebraic: the dilatations form a group with the translations
as a normal subgroup.)

Thus we have the general framework: there are points and lines, and
symmetries mapping lines into parallel lines. The axioms will take the form
of statements as to the existence and properties of symmetries. Given what
we are looking for, these are the choices that suggest themselves right away:

Desargues Axiom 1: Given any two points P and Q there is a translation P
such that τ(P) = Q.

Desargues Axiom 2: For any points P, Q and R, there is a dilatation that holds
R fixed and such that σ(P) = Q.90
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Just by inspection we can say that these axioms certainly seem natural, in
this framework. A deeper point, which comes out when we consider the rea-
sons for regarding the axiom as a good axiom candidate, is that these axioms
ought to seem natural: it is a strength of the framework that these axioms
come out as natural – seeming as they do. First, though, it should be noted
that the framework itself – representing the subject in terms of transforma-
tions of objects – has a compelling rationale of its own. It would require a
separate paper – a long one – to even begin to develop the manifold ways that
it has proven to be valuable to formulate a subject in terms of transformations
and invariants. From physical theories of space and time to classifications of
general geometries in the Klein program, to Galois theory and the theory
of Lie groups, and untold other areas, pure and applied, this framework has
shown itself to be a good one to choose, and the Artin framework of geome-
tric algebra inherits these bona fides.

This point is worth emphasizing in connection with efforts to cut through
the gerrymandering challenge by emphasizing elementary syntactic features
of predicates – that they are “disjunctive” for example – as reasons to ex-
clude them. This example illustrates a fairly general moral: whether or not
something admits of a simple expression is going to depend upon global fea-
tures of the framework it is studied in. In this particular case, the broader
framework of studying geometries in terms of symmetries makes the Desar-
gues axioms simple and immediate; the fact that we should treat especially
seriously things that look simple in this particular framework is not justified
by any a priori argument employing purely philosophical or linguistic cri-
teria or appeals to principles of basic metaphysics. The justification of the
framework has to appeal to the details of the subject – matter, including our
amassed experience with frameworks of this type.

I’ll return to the axioms themselves. For orientation it will be helpful to
consider their classical forms:

(Classical) Desargues axiom 1:

If l1, l2 and l3 are parallel lines in the (affine) plane and P1, P1’, P2, P2’, and
P3, P3’ be points on l1, l2 and l3 respectively. Say that the line P1P2 is parallel
to P1’P2’ and P1P3 is parallel to P1’P3’. Then P2P3 is parallel to P2’P3’.
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Diagram:

P3 P3’

l1

l2

l3

P2 P2’

P1 P1’

(Classical) Desargues axiom 2:

If l1, l2 and l3 are lines in the (affine) plane intersecting in a point P* and P1,
P1’, P2, P2’, and P3, P3’ be points on l1, l2 and l3 respectively. Say that the
line P1P2 is parallel to P1’P2’ and P1P3 is parallel to P1’P3’. Then P2P3 is
parallel to P2’P3’.

P∗

l1

l2

l3

P1

P1’

P2 P2’

P3’
P3

There are canonical reasons why these are good axioms.91 A simple
point is that the first Desargues axiom is equivalent to the uniqueness of a
vector sum.92 A more intricate consideration derives from the structure of
familiar school analytic geometry. It is possible to assign coordinates to any
collection of objects and introduce functions on those coordinates, so long
as we are not too picky about what properties the coordinates and functions
themselves have. If we assign coordinates in a general way to the objects
of our geometry, the first Desargues property is equivalent to the statement
that we can introduce operations of plus and times on the coordinates so that
the equations of lines will be the familiar linear equations from school: ax +
b = y.93 A further, distinct consideration arises from the relations between
planes and space: (relative to a reasonable axiomatisation of the geometry of
space) the second Desargues axiom is equivalent to the thesis that the plane
can be embedded in three dimensional space. The second Desargues axiom



186 JAMIE TAPPENDEN

corresponds to further algebraic conditions on the addition and multiplica-
tion (the distributive law for the multiplication and addition operations on
the coordinates) to form a skew field. (i.e. a field minus commutativity of
multiplication)94 These reasons for regarding the Desargues axioms as dis-
tinguished draw on the fact that they are “robustly” central, in that when
we reformulate our theory in other terms, with quite different structures and
motivations, the Desargues axioms in their new forms remain rationally de-
fensible as natural axiom candidates.

A further consideration that tells in favor of the Desargues theorems as
axiom choices is the interest and richness of the divides they mark. Geome-
tries in which the Desargues theorem fails have proven in practice to be a
class of uncommon interest, sustaining extensive, interesting programs of
research. On the positive side, the theorem itself is of considerable intrinsic
interest, both for the consequences it supports and for the depth and intri-
cacy the theorem reveals under more detailed study.95 There is more that can
be said to support the claim that the Desargues theorem really does deserve
to be granted a distinguished status as axiom, but what has been said so far
will suffice to illustrate the key point: Artin’s choice of transformations as
a basic category and of Desargues’ Axioms as basic principles can be ra-
tionally defended by appeal to a range of different considerations. Even in
this context, where empirical predictions are not directly in the offing, the
distinction between natural and artificial/gerrymandered properties can be
objectively made out.

In connection with the issues we have been concerned with, here is
where we have arrived:

i) The theory developed by Artin does have a deep and important con-
nection to visual reasoning but

ii) as a means of organization of the subject – matter it has value inde-
pendent of the connection to vision and furthermore

iii) The basic details of the framework – its fundamental concepts and its
axioms – admit of extensive justifications. That something is “basic”
or an “axiom” is not bedrock at which the spade of explanation and
argument is turned. Some of the reasons for shaping the framework
as it is shaped may seem to be immediate brute responses or appeals
to the brevity and simplicity of the expressions used (for example: the
Desargues axioms in their symmetry forms just “look natural” in this
context, and the statements don’t invoke “disjunctive” properties or
other funny looking constructions) while others reach far afield even
to applications (for example: the “rightness” of the framework taking
transformations as basic extends to physics).
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Of course, these judgements are defeasible. We might decide, when we
come to learn more about the subject, that this framework is not the right
setting for the problems addressed within it. But of course, the fact that
in a different epistemic situation we would call different frameworks and
categories “natural” for different reasons doesn’t impeach the reasons we
actually have, in the epistemic situation we are actually in, for our actual
decisions as to what we regard as natural and what we don’t. Much of the
reasoning that goes into this decision is “quasi – empirical”: among the infor-
mation that the decision about what is a natural formulation or a good axiom
choice draws on is information about what is fruitful, about what works and
what doesn’t. This makes it especially unlikely that a purely philosophical
criterion of “gerrymanderedness” will suffice to exclude artificial, Goodman
style properties. Our decisions about how to formulate the mathematical
theories that we apply don’t rest on a priori philosophical bedrock, and it
appears unlikely that any a priori “rational reconstruction” could reproduce
our best mathematical practice on abstract philosophical or logical grounds
alone.

6. SUMMARY – THE “NEW RIDDLE OF DEDUCTION”

The paper began with two related questions. What philosophical niche can
we find for a discussion of what was at stake in Riemann’s revolution in
mathematical method? What significance for general methodology should
we grant to the role of visual representation as a mode of organization color-
ing some mathematical reasoning? We’ve arrived at a kind of mathematical
analogue to Goodman’s problem, but without the direct connections to cau-
sation and empirical prediction that are often taken to ground answers in the
more familiar gruesome cases. To find a place for unification as a scientific
and mathematical success, as it is treated in practice, we need to clarify cer-
tain qualitative features of theories and the properties they deal with. Which
classes and theories are homogeneous and which are heterogeneous? Which
classifications and properties are natural and which artificial? We need to
be clear about what sorts of considerations are brought to bear, in deciding
what formulations are the right ones to use. The conclusion suggested here,
especially as exemplified in the case of Geometric Algebra, is that these dis-
tinctions are, in practice, made out in a way that is rationally justifiable, but
also that they appeal to details of mathematical and scientific practice that
are more involved and case-specific than philosophical accounts of expla-
nation as unification have appreciated. This suggests that we reorient our
conception of the methodology of mathematics in a “bottom up” direction:
we can’t hope to understand what mathematics contributes to our overall



188 JAMIE TAPPENDEN

view of the world by shuffling philosophical abstractions alone; we need to
get our hands dirty with the details of mathematics as it is done. To invert a
famous Kripkean slogan, in this case there is also no philosophical substitute
for mathematics.
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NOTES
0Special thanks for comments and criticism to Ian Proops, Larry Sklar, Colin

McLarty, Jim Joyce, Rich Thomason and Peter Railton. An early version of some of
this material was presented at a conference in the University of Toronto; Thanks to
the audience, especially Jan Zwicky, Ian Hacking, Margaret Morrison, Jim Brown,
Francis Sparshott and Achille Varzi for helpful reactions and/or encouragement.
Thanks too to the audience at the Roskilde conference, especially Paolo Mancosu,
Marcus Giaquinto, Reviel Netz, Jim Brown again, and Karine Chemla. Also spe-
cial thanks for a range of assistance to Klaus Jørgensen. Thanks also to my extra-
departmental colleagues Andrzej Nowak and Karen Smith for patient answers to
questions on civil engineering and algebraic geometry respectively. Finally, a very
early version of some of this material was presented at Princeton and a meeting of
the Association of Symbolic Logic many years ago; thanks to those audiences, es-
pecially Gil Harman, Gideon Rosen, David Hilbert, Paul Benacerraf, Neil Delaney,
Ed Nelson, Phil Ehrlich and Pen Maddy.

1This negative point – that there is no principled general delineation of the “es-
sentially general” predicates – is argued in Railton (1993). This paper may be seen
as a follow – up: if we accept that there is no general a priori account that will seg-
regate the “essentially general” from the “gerrymandered” predicates, our attention
naturally turns to working out the details in specific examples, with an eye to iden-
tifying defeasible heuristics and shared patterns that may be displayed in a range of
cases. We can learn a great deal so long as we don’t obsessively cling to an unre-
alistic picture of how simple a “philosophical” account of uniformity is allowed to
be.

2I’m not, of course, suggesting that this idea of “fruitfulness” is clear or sharply
defined, or even that it is a single uniform phenomenon, but only that it is a consider-
ation that is in fact is appealed to in practice (under a variety of names). Explaining
more clearly what “fruitfulness” amounts to is of course one of the jobs that has to
be done.)

3The label “conceptual” is adopted for Riemann’s innovative style in Laugwitz
(1999) among others. The broader change in mathematical style that emerged in
Gottingen in the mid-nineteenth century is explored with special reference to Dirich-¨
let in the superb philosophical essay Stein (1988).
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4The core details of the split in the approach to complex analysis have been
well-explored by historians in recent years. An illuminating presentation of the
Riemann stance is in Laugwitz (1999). On Weierstrass, Laugwitz (1992) is a helpful
counterpoint. Good presentations of both sides of the split are Bottazini (1994) and
Neuenschwander (1980) and (1981). Currently Jeremy Gray and Umberto Bottazini
are carrying out joint work which promises to shed further light on the situation.
I explore some of the philosophical ramifications of this split, and its historical
connections to the development of the foundations of mathematics, in a manuscript
in progress.

5Contemporary texts in complex analysis tend to be unreflectively Riemannian
in outlook. One historically sensitive text that is self-consciously Riemannian is
Remmert’s textbook of function theory. (Remmert (1991) and (1998)). Textbooks
that are avowedly Weierstrassian in general outlook are harder to find, but they do
exist: Abhyankar (1964) is one example. The fact that this division of styles has
been robust enough to persist this long reinforces the point that more than merely
transient “spurs to discovery” are at issue.

6By contrast, the historical details of the events constituting this contrast have
been reasonably well – explored in recent years, and current research promises to
push our historical understanding even deeper. In my own work I am exploring
some of the philosophical overtones of the mathematical developments (with special
reference to Frege) (see Tappenden (2001c)). The Frege connection appears because
Frege was trained in the Riemann tradition (then a minority stance) and continued
to work in that vein in his subsequent teaching and research. This can be seen to
have colored his methodology in several respects, such as his stance on the “Caesar
problem”, his definition of magnitude, and his regular criticism of Weierstrass.

7I am sure that only the loosest family resemblance unites all the things that we
call “understanding”. I am certainly not setting out to provide anything like an anal-
ysis of “understanding” in the sense of a set of necessary and sufficient conditions
such that all and only persons who satisfy those conditions understand something.
However, even in the absence of an analysis of the notion of understanding, it is
possible to isolate aspects of what we commonly associate with the idea, and work
out their significance for epistemology and logic.

8I do not mean to suggest that the visualizability of Riemann surfaces is the
sole advantage, or the most important one. It just happens to be the one feature of
Riemann’s approach that I am addressing here. In fact, it is one aspect of the revolu-
tionary character of Riemann’s research that there have been, historically, so many
different ways of cashing out what is important in it. Just to consider the point at
issue here: some Riemann students – notably Dedekind – strove to purge Riemann’s
results of their visual character, while others (Felix Klein, the Italian tradition of al-
gebraic geometry, much contemporary theory of functions of one complex variable)
embraced the visual character and strove to exploit it. (For an especially forceful
discussion of the importance of visual intuition to this mathematical tradition see
Segre (1904) (especially p. 454–455)).
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9So as not to leave the impression that these issues pertain solely to the nine-
teenth century, it is worth mentioning another example exemplifying the themes dis-
cussed here: the concept of scheme in algebraic geometry. Though scheme theory is
an extremely compelling example in the current connection, and I will consequently
refer to it from time to time, it is also complicated enough that I will have to defer a
sustained treatment for some later part of the project, when Colin McLarty’s work
on Grothendieck is ready to circulate. (Why do today what someone else is going
to do tomorrow!) However, to reinforce the connection of the issues discussed here
to contemporary mathematics as well as that of the nineteenth century, I’ll carry on
a running commentary of scattered remarks about schemes in the footnotes.

Among the many reasons why scheme theory is especially interesting here is
that one of its acknowledged virtues is that it supports a unification of number theory
and algebraic geometry. It is an interesting question of methodology whether this
theoretical unification is analogous to the benchmark unifications in physics, like
Maxwell’s or Newton’s or in any important way different. In this connection it
is worth noting that Grothendieck himself reportedly had equally grand hopes for
the theory of “motives”, envisioning a potential unification of Galois theory and
topology. (cf. Cartier (2001, 405)).

10For smooth exposition I’m (inessentially) fudging some distinctions between
Weyl’s essay and my project, but it is worth a footnote to avoid leaving a misim-
pression. In my studies of the mid-century Göttingen revolution in mathematical¨
methodology I have emphasized Riemann and his successors. Weyl (like Stein
(1988)) emphasizes Dirichlet, Riemann’s predecessor as professor at Gottingen;¨
the reference to the Dirichlet principle could indeed be taken as a bit of a jab at
Riemann’s lack of contemporary rigor. For the issues I am most concerned with,
Riemann is a better representative, and he is more important as a figure in Frege’s
intellectual environment. (Or at least he can be more easily documented to be a sig-
nificant figure in Frege’s Jena context.) But both figures represent, in different ways,
the “conceptual” reorientation: Dirichlet was far more rigorous at the level of detail
in argument, while Riemann’s contributions to the stylistic innovations were more
profound (full of what Ahlfors calls Riemann’s “cryptic messages to the future.”)
though less rigorous. The work of both exemplified, in different ways, the style that
in retrospect was a critical revolution laying the support for the twentieth century.

That it isn’t distorting to take Weyl’s words about Dirichlet’s mathematics as
remarks about Riemann’s is borne out by the subsequent discussion in Weyl’s essay:
most of the mathematics he uses as his illustrations of contemporary work traces
back to Riemann rather than Dirichlet.

11I speak about “algebraic approaches” in the plural here because Weyl runs to-
gether here what I count as two very different traditions and styles with the label
“algebraic”: a computational tradition of Kronecker and a distinctive “structural”
algebraic approach exemplified by Dedekind. There is no reason, in the present es-
say, to refine Weyl’s classification further, but I don’t want to leave a misimpression.

12A useful illustration of this point is the article Harris (1992). There the devel-
opment of algebraic geometry in the twentieth century is framed by the observation
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that “progress in algebraic geometry is measured more by its definitions than its
theorems.” (Harris, 1992, 99)

13I’m not suggesting fruitfulness is the only relevant consideration that bears on
whether a formulation will be taken as “natural”. One point of section 5 is to illus-
trate just how intricate the reasons for such judgements of “naturalness” can be.

14These remarks from Zariski give a typical statement of the mathematician’s
pragmatism in this regard:

There is no doubt that the introduction of the concept of “schemes”
due to Grothendieck was a sound and inevitable generalization of
the older concept of “variety” and that this generalization has in-
troduced a new dimension into the conceptual content of algebraic
geometry. What is more important is that this generalization has met
with what seems to me to be the true test of any generalization, that
is, its effectiveness in solving, or throwing new light on, old prob-
lems by generalizing the terms of the problem (for example: the
Riemann-Roch theorem for varieties of any dimension). . . . (Zariski,
1978, xvii)

15I do not know of any systematic studies of fruitfulness as a guiding criterion in
mathematics or elsewhere, but the basic observation has some antecedents. Frege
makes some fragmentary but rich remarks in Grundlagen which tie his logic and his
account of “extending knowledge” to what he calls “the truly fruitful concepts”. (I
develop this observation about Frege in my (1995).) Thomas Kuhn observes that a
crucial guide in practice to theory choice in the natural sciences is that the theory
be “fruitful of new research findings: it should, that is, disclose new phenomena
or previously unnoted relationships among those already known.” (1977, 322) I
don’t know anywhere that Kuhn, or anyone else, expands on this bare observation.
In the paper cited, Kuhn does not expand on his observation beyond the footnote
remark: “The last criterion [listed], fruitfulness, deserves more emphasis than it has
yet received.” (How true.)

16(Weyl, 1955, VII) My attention was originally drawn to this passage by (Wilson,
1992, 111). It should be noted in connection with these words that in context Weyl is
not endorsing them unequivocally. Rather he is describing an attitude he expressed
when, as a young man he wrote Weyl (1913), which the older Weyl spoke of as
revealing a certain youthful naiveté. “Even more than the text, the enthusiastic´
preface betrayed the youth of the author.” (p.VII)

17Once again, the history detailed in Harris (1992) is a useful illustration. Through-
out the twentieth century there was a sequence of better and better candidates for the
natural context for algebraic geometry. The reasons for one candidate succeeding
another was never merely that the preferred candidate “seemed right” but that it in
fact facilitated the solution to key problems.

18One simple example is the use of homogeneous coordinates/projective space
(“the unifier” in the words of Clemens (1980, 5) in the study of curves, especially
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over the complex numbers (“the great unifier” – (Clemens, 1980, 7)). This is ac-
cepted as the right context for a range of problems, and it does indeed bring out
forcefully many properties of (for example) conic sections. But it requires work to
see this; it is not obvious at first sight. People who have had a standard North Amer-
ican mathematical education find ordinary Cartesian coordinates over the real plane
so natural as to be almost inescapable; to come to see complex projective space as
the natural context requires re-education.

19See for example the venerable Bridgeman ((1938, 37 and passim) and (Camp-
bell, 1919/1957, 113 and passim)). I am grateful to John Norton for pressing me on
the “explanation/understanding as reduction to the familiar” line. I do think that in
an important range of cases we count something as an explanation, or as contribut-
ing to understanding, when it effects a reduction to the familiar, but the cases I am
looking at aren’t like that.

20It will be useful to give another example of broad motivating remarks concern-
ing the concept of scheme. Though nothing can substitute for an analysis of the use
of the concept in practice, some examples of what those mathematicians who use
the concept say about its importance may serve as a temporary buffer until such an
analysis is worked out. Here is how David Mumford puts it in a retrospective intro-
duction (in 1988) to the publication of his by then already classic 1960’s samizdat
introduction to schemes in algebraic geometry. This contains a (long) book-length
defense of the thesis that scheme theory provides the “natural language” of algebraic
geometry. The reasons on which the defense rests include the ability of the frame-
work to cleanly express results in a variety of different other conceptual frameworks,
its connection to “geometric intuition”, and its ability to support new and very ex-
citing results”:

It may be of some interest to recall how hard it was for algebraic ge-
ometers, even knowing the phenomena of the field very well, to find
a satisfactory language in which to communicate to each other. At
the time these notes were written, the field was just emerging from
a twenty-year period in which every researcher used his own defi-
nitions and terminology, in which the “foundations” of the subject
had been described in at least half a dozen different “mathematical
languages”. Classical style researchers wrote in the informal geo-
metric style of the Italian school, Weil had introduced the concept
of specialization and made this the cornerstone of his language, and
Zariski developed a hybrid of algebra and geometry. . . But here was
a general realization that not all the key phenomena could be clearly
expressed and a frustration at sacrificing the suggestive geometric
terminology of the previous generation.

Then Grothendieck came along . . . [with] the new terminology
of schemes as well as with a huge production of new and very excit-
ing results. These notes attempted to show something that was still
very controversial at that time: that schemes really were the most
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natural language for algebraic geometry and that you did not need
to sacrifice geometric intuition when you spoke “scheme”. (Mum-
ford (1988) p. V – VI)

The attitude that “scheme” was a thematically proper generalization and that
the test of this was effectiveness in problem solving was echoed even by members
of the old guard, as indicated by the quote from Zariski given in footnote 14.

21One illustration, especially pertinent here, appears in Steiner (1978) when he
dismisses the suggestion that something counts as a mathematical explanation only
if it can be visualized, on the grounds that such a condition would make mathema-
tical explanation “subjective”. (p. 139) I think he is right to regard the proposed
criterion as inadequate, but here I’ll be concerned also to spell out some ways that
visualization in mathematical practice is more intricate and systematic than it might
seem at first view. (This is in accord with another remark of Steiner’s, which is
that any “satisfactory theory of mathematical explanation must show why [the “ex-
plaining is making visual” thesis] is plausible.” (p. 139) I am indebted to Bertrand
Guilliou here.

22Sometimes “pragmatic” is also used as a pejorative with the connotation “on
to the ‘not philosophically interesting’ scrap heap with this one”. So for example
in his interesting account of the contributions of asymptotic explanations to our
understanding of physical systems, Batterman (2002, 44) uses ‘pragmatic’ to frame
a point with affinities to the one I am making in the text.

23One refinement is needed here. I’m not suggesting that no cases admit of anal-
ysis in “objective” terms. In some cases the advantages of a particular formulation
can be analyzed in terms which are indisputably independent of psychological pe-
culiarities of human reasoners. A paradigm of this sort of work is the analysis in
Pratt and Lemon (1997). There certain advantages of diagrammatic reasoning are
analyzed in the tangible terms of the computational complexity of algorithms. This
work is extremely revealing and interesting, and I look forward to learning from
further research of Pratt, Lemon and their collaborators. The attitude motivating the
current work is not incompatible with that work, but rather complementary, studying
some aspects of the choice of theoretical frameworks (especially in connection with
the potential for visualization) that don’t obviously admit an analysis in tangible
complexity – theoretic terms.

(Clearly there are interesting cases where an analysis in terms of computational
complexity is not going to help us much, even when what we gain are advantages in
facilitated practical computation. One simple example is the use of homogeneous
coordinates in computer modeling. The advantages of homogeneous coordinates
over Cartesian coordinates are, I gather, well-established in practice, despite the
(non-robust) complication of an extra parameter and the initial unfamiliarity of the
framework (for most students). However, it is unlikely that computational complex-
ity theory will support an analysis of the advantages of homogeneous coordinates,
since the transition from homogeneous to Cartesian coordinates and back can be
accomplished by operations that are insignificant from a complexity-theoretic point
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of view. And indeed, when advantages are explicitly noted for homogeneous co-
ordinates in visual modeling they are qualitative advantages rather than complexity
theoretic ones. (For example: the existence of dualities or the simplification of the-
oretically important expressions. See Reisenfeld (1981) and Stolfi (1991) especially
ch. 1.)

24Another is the formulation of contemporary algebraic geometry in terms of
the concept of scheme. See for example Eisenbud and Harris (1992), or the ex-
tended version Eisenbud and Harris (2000), which is largely devoted to explain-
ing why “The scheme is. . . a more natural setting for many geometric arguments.”
(1992, 5); (2000, 8) In formulations of arguments in algebraic geometry in terms of
schemes rather than antecedents like Weil’s concept of “specialization”, the concept
of scheme is taken by some algebraic geometers to represent an advance because
it is counted as “geometric”. Another reason it is counted as an advance is that it
supports a unified theory of key parts of algebraic geometry and number theory. The
default assumption is surely that this unifying function is no more to be dismissed by
the student of method as a “psychological” phenomenon than the unifying function
of Maxwell’s electromagnetic theories or relativity should be so dismissed.

Some functions of schemes are more complicated, and whether or not they are
appropriate concepts depends on what questions are being addressed. In particu-
lar, the concept of scheme initially arises as an effort to extend a basic duality that
occurs between restricted classes of rings, which appear in algebra, and varieties
(loci of zeros of polynomials) that appear in algebraic geometry. This is a simpler
version of a basic correspondence (“dictionary” in the words of (Cox et al., 1992,
168)) between ideals in simple algebraic settings and varieties in elementary alge-
braic geometry. This gives rise to a circumstance where two frameworks (algebraic
and geometric) that are – in some important sense – equivalent are also – in another
equally important sense as different as chalk and cheese. The philosophy of math-
ematics has emphasized the first sense, according to which the frameworks are the
same if they are deductively equivalent, over the second. One could see the point of
this paper as arguing that the sense in which the equivalent frameworks are crucially
different also needs to be clarified before we can take ourselves to have made sense
of the principles informing successful mathematical practice.

25The classic papers in this debate are assembled in Block (1981).
26The point here is not that the use of visual representation is uniform among

mathematicians: it isn’t. The point is rather that the preference is sufficiently wide-
spread to make a mark on mathematical method.

27This has long been known. (See for example Yates (1966) for some history.)
More recently it has been well-studied by cognitive psychologists. For some early
research into the mnemonic advantages of imagery, see Bower (1972).

28Here is a quick explanation of what these are. There are familiar extensions
of the real numbers gained by adding additional square roots of 1. The complex
numbers are obtained by adding i and closing under + and ×. The quaternions are
obtained by adding three new roots of –1: i, j,k. For this extension to be adequately
specified we need to say more than just that i2 = j2 = k2 = −1. The results of
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multiplying the new elements must be stated too: i j = − ji = k for example, and
further details need to be made explicit. The octonions are the numbers obtained
with eight roots of −1.

29So for example the curve from e4 to e7 extends to the product e6 = (e4·e7). The
sign of the product depends on the direction of travel: counter-clockwise products
are negative, clockwise are positive.

30To avoid misunderstanding, I should make explicit that my discussion of this
example is meant only to draw a contrast. Hence the discussion gives away sev-
eral points for dialectical reasons. For example, I don’t mean to grant more than
provisional credence to the idea that some advantages are “solely” mnemonic. The
facts about how memory interacts with reasoning are quite involved. Nor indeed
do I want to assert that the preference for diagrammatic representations would be
devoid of philosophically interesting consequences even in cases where the prefer-
ence turned out to have purely mnemonic advantage. My point only that there is
an at least prima facie plausible case to be made for these suggestions. In present-
ing this material, that prima facie plausibility has had a sufficiently strong pull for
sufficiently many people that it is worthwhile to make explicit that the case for the
philosophical importance of visualization in the cases I am studying here can be
made out even if these points are granted.

In fact, I think the question of how to separate the methodologically interest-
ing from “accidental” uses of visual representation is complicated. Even cases that
might seem to use vision in a philosophically uninteresting way, such as when pic-
tures are used as memory aids, can be surprisingly involved. I concede that there are
some uninteresting cases, but this doesn’t mean that I want to say that all cases that
might appear uninteresting in this way really are uninteresting in this way. In cases
where visual memory aids are well–developed and systematic, as in the elaborate
medieval memory systems studied in Yates (1966) and Rossi (2000) it is surpris-
ingly hard to make out sharp boundaries between visual coding as an accidental
concomitant of artificial memory techniques and visual coding that facilitates mem-
ory in virtue of being embedded in an broader system of reasoning. The intricacy
of the interweaving of systems of thought and systems of visual representation that
was involved in the medieval arts of memory is especially emphasized throughout
the uncommonly illuminating studies Carruthers (1990, 1998). Gaukroger (1995)
(p. 160-164 and passim) points out that this perceived connection between visual
imagery and thought informs Descartes’ Regulae in striking ways. Conversations
with Terri Palmer, Ian Hacking and Reviel Netz have helped me here.

Moreover, lest my frame of reference and choice of examples (stressing axiom
choice and de-emphasizing actual diagrams, pictures and mental images) leave a
misimpression, I should emphasize that I think that the study of the details of con-
crete visual representation (as in diagrams, etc.) and the manipulation of actual
diagrams is extremely interesting to the philosopher of mathematics. By approach-
ing the topic of visualization and geometry as I am, I am in no way meaning to slight
those who have approached the topic of reasoning with actual diagrams. Quite the
opposite, I regard the recent richness of work on the reasoning with diagrams and
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its connection to mathematical reasoning as of the greatest interest. (This work has
been advanced from different perspectives and with reference to diverse problems by
Barwise and Etchemendy (and their students), Oliver Lemon, Ian Pratt (and others
in the Manchester group studying visual reasoning) Marcus Giaquinto, Jim Brown,
Robert Lindsay, and others. Also of genuine interest in this connection is the work
of Achille Varzi and Roberto Casati ((1994) etc.) on the logical structure of theories
of spatial structure. Readers interested in such work can choose a beginning among
the papers in Allwein and Barwise (1996), or Glasgow et al. (1995) and follow out
the references. Also helpful for jump-off points from additional perspectives is Pratt
and Lemon (1997). An unusual and stimulating investigation of overlapping themes
by two mathematicians is in Carbone and Semmes (2000). Also worth mention-
ing in this connection is Hartshorne’s (2000) masterful reexamination of Euclid’s
elements.

31Several books by Tufte on the visual arrangement of information (see, for in-
stance, his (1983) and (1997)) are good collections of examples. What we find here
are visual representations (tables, graphs, maps) that are clearly the most effective
and forceful ways to present the information they present. In these cases, the func-
tion of visual representation appears to be important solely from a “pragmatic” point
of view – in the sense of “pragmatic” that seems to connote ‘not deserving philo-
sophical attention’ according to some philosophers’ usage. If there is philosophical
interest in such examples, it will be of a different kind from what we’re exploring
here.

32This is especially pressing in the case of the contrast of Riemann and Weier-
strass since just this comparison of the two was made long before Reichenbach
introduced the distinction into general methodology: “The method of Riemann is
above all a method of discovery; the method of Weierstrass one of proof.” (Poincaré,
1898, 7)

33I treat this point further in Tappenden (2001b).
34This was, for example, true of the concept of scheme. When Grothendieck

introduced it, one clear testament to its fruitfulness was that it opened the way to
a proof of the Weil conjectures. But to apply the context of discovery/context of
justification distinction makes no sense here. Not only did Grothendieck (and sub-
sequently Deligne) prove the Weil conjectures using his newly introduced scheme
theory, but he provided what still remain as the only proofs available despite exten-
sive attempts in some circles to find proofs that avoid the Grothendieck machinery.
(Here I am indebted to correspondence with Colin McLarty and a conversation with
Karen Smith.)

35This is, of course, an example of a widespread phenomenon in studies of con-
firmation: the familiar debates presuppose some language or framework remaining
fixed. When this can’t be taken for granted, many further assumptions break down.
Examples of this phenomenon are revealingly treated in Earman (1992) chapter 5
and chapter 8.4.

36There is one alternative that is worth attention, but I will have to leave it for
another place. In a paper (Kim, 1994) that touches on some of the issues addressed
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here, Jaegwon Kim suggests that the causal component of causal explanations might
be derivative from a prior idea of dependence. If the idea of metaphysical depen-
dence can be made out, it could in principle be extended to mathematical explana-
tions as well, to provide a unified treatment. Michael Strevens has developed an
account with this shape in unpublished work.

The idea that mathematical explanation turns on an idea of logical or meta-
physical priority over others was a feature of Bolzano’s account of mathematical
explanation as Paolo Mancosu has pointed out in recent work. (Mancosu, 1999)

37The thesis of Morrison (2000), which is the best general descriptive treatment
of scientific unification I know, is that unification is often an objective of scientific
inquiry but it has little if anything to do with explanation. I agree with much of
this, but my final position is a bit more concessive to the idea of unification as un-
derstanding: sometimes (but not always) we count ourselves as having understood
or explained some phenomena because we have set them in a unified framework,
though generally unification alone is not enough unless the framework has other
attractive features. (I’ll add in this connection that I’m completely in agreement
with this upshot of Morrison’s perceptive treatment: theory unification is far more
complicated in practice than it often is taken to be in the literature.)

38I should note that the positions Friedman takes in this early work need not
be preserved in his more recent writings. Indeed, his most recent work on scientific
theories and the “relativized a priori” has obvious affinities with the “rapprochement
between (early) Friedman and Toulmin” that I suggest is necessary.

39The most effective display of counter – examples is in Kitcher (1976). The
whole controversy is given a retrospective postmortem in (Salmon, 1989, 94 – 101).

40To simplify the discussion I am assuming that the theories we are dealing with
are given to us already rendered into axiomatic form. In practice, of course, this
can’t always be assumed. (For example, continuum mechanics was studied for many
years before Noll provided an axiomatization, as Clifford Truesdell often pointed
out. (Truesdell, 1984, 137 and passim)) But since I am just using the assumption
to simplify the formulation of this negative point against Friedman, the assump-
tion is harmless here. Clearly if we are dealing with an unaxiomatized theory, the
“reduction in the number of basic principles” account is even harder to defend.

41A variation on this point has already been made effectively by Humphries
(1993), who pointed out the disconnect between number of axioms and understand-
ing with respect to various axiomatizations of propositional logic.

42Readers familiar with the scholarly literature on William Whewell will recog-
nize echoes of the ideas here in Whewell’s notion of “consilience”. Though there
are no specific points at which this essay was informed by this literature, I do owe a
general debt to the papers (Butts, 1973) and Morrison (1997).

43Algebraic numbers are real number solutions to polynomials xn + a1xn−1 + . . .
+ an where the coefficients ai are rational. Algebraic functions result when the ai

are themselves one-variable functions. Useful treatments of this material in the sec-
ondary literature are W. Geyer (1981) and throughout Dugac (1976). (Dieudonné
(1985) is a good, though brief English – language discussion of the content of
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Dedekind and Weber (1882). A clear (mid-twentieth century presentation) of gen-
eral versions of results of Dedekind and Weber (1882), in a broadly Dedekindian
style, plus a nod to other styles of proving the same results, is in (van der Waerden,
1991, Ch. 19). Another textbook presentation of the theory of algebraic functions of
one variable that is avowedly in the spirit of Dedekind and Weber (1882) is Cheval-
ley (1951).

44In retrospect, Dedekind and Weber (1882) appears as one of a handful of papers
of the nineteenth century that inaugurated distinctive styles marking the twentieth
century in mathematics. Dieudonné (1985) lauds the paper for originality and im-´
portance, and counts it as second only to Riemann’s work in its “introduction of a
series of notions which have become fundamental in the modern era.”

45A field is a collection of objects with two associative, commutative operations
defined on the whole collection. Relative to one of the operations (addition) there is
an identity element 0 (one for which a + 0 = 0 + a = a) and every element a has an
inverse a−1 such that a + a−1 = 0. Relative to the other operation (multiplication)
there is an identity and inverses for the collection consisting of every element but
the additive identity 0. Distributive laws hold.

To convey what an ideal amounts to, I’ll define a special case (though the more
general definition exploits the concept of “ring”, which is weaker than “field”). A
field I contained in another field F is an ideal, if given any a in I and any b in F the
product ab is in I.

For the precise definition see any university level text, such as Jacobson (1974).
46Again we find this emphasis on the “qualitative” unification in contemporary

discussions in algebraic geometry. This is not just true of the schemes and motives
discussed in earlier footnotes; another instance – not at all exceptional – is the dis-
cussion in Smith et al. (2001) of the pre-Grothendieck work by Weil and Zariski as
distinguished by how it brought out “deep connections between previously separate
areas of mathematics, such as number theory and the theory of Riemann surfaces”
(p.2) Once again, it is hard to see that these connections would lose any value, or
be any less unifying, if they turned out not to reduce the number of brute facts in
Friedman’s sense.

47A historical aside: this is a point over which Frege and Hilbert simply stood at
cross–purposes. Frege held as Friedman does (mistakenly, I think) that there is an
intrinsic advantage to be gleaned from reducing the number of axioms, and indeed
he held that the value of an explanation was directly proportional to the reduction.
(1979, 36) A hint of this difference shows up in Frege’s reaction to his first viewing
of Hilbert’s foundations. Frege states that he (Frege) believed he could have made
do with fewer primitives. (cf. (Frege, 1980, 35))

48For example, Friedman argues that the well-known deductive – nomological
account Hempel proposes falls afoul of the second requirement – it fails to connect
explanation with something plausibly called “understanding” – though Friedman
counts it as appropriately objective.
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49I leave aside the expression “self-evident”, as it has epistemological resonance
that I want to shed. A proposition can be a reasonable choice as an axiom with-
out being obvious, and a category can be a reasonable choice as natural without it
appearing natural on first encounter. We’ll see some examples in section 5.

50An accessible discussion of the basic points of this historical evolution, with
glimpses at more recent showings of the action-at-a-distance view like the Feynman
– Wheeler incarnation, is in (Hesse, 1961, ch. VII and VIII and p. 279-289). The
discussion throughout Darrigol (2000) is illuminating on the give – and – take be-
tween action-at-a-distance accounts and rivals. A. Assis (1994) develops one of the
nineteenth century theories in considerable detail, from a contemporary perspective,
with an illuminating systematic comparison between theories in the Gauss – Weber
style and the Maxwell – inspired theories that dominate today.

51See (Frege, 1980, 57) and passim. Also (Frege, 1903, 160) and passim.
52There are additional details in Kitcher’s subtle analysis, but they will not be rel-

evant to the points I’ll be making here. For the full account of Kitcher’s presentation
of “patterns of argument” see his (1989, 432-435)

53More on the first example: the Erdos–Selberg (“elementary”) proofs of the¨
prime number theorem contrast with the (“analytic”) proofs exploiting the Riemann
zeta function following the path blazed by Hadamard and De Vallée-Poussin. The´
former have the advantage that they use only “elementary” techniques, while the
latter, though presupposing much more analytic machinery, seem to be widely held
to better “go to the heart of the matter.” (Even setting aside such a suggestion as
potentially too loaded it is clear that the analytic proofs are shorter, far less intricate
and more easily understood.) For a textbook presentation of both styles of proof
(presupposing only high school mathematics) see (Apostol, 1976, ch. 4 and ch. 13).

The many proofs of the Riemann-Roch theorem serve up a more complicated
story, which I hope to discuss in further work. The early history is illuminatingly
discussed in Gray (1998).

54It is worth pointing out as well that this is a twentieth-century example, which
raises issues that remain alive in current work. Indeed, preserving this duality in a
general setting is one of the more elementary functions of the concept of (affine)
scheme. I mention this to reinforce the point that the issues raised by the devel-
opment of projective geometry in the nineteenth century are not confined to some
distant time, irrelevant to mathematics as it is currently practiced.

55You don’t have to know what the Nullstellensatz is. I retained reference to it
in the quote just as a benchmark for discussions in future work. (The point is that
where the Nullstellensatz doesn’t generally hold (in finite fields, for example), a new
concept is needed to retain the algebra – geometry correspondence. This is part of
the work that the concept of scheme does for us.)

56A similar point noted in a different connection by Batterman (2000, 233), who
complains that the unification account “fails to respect the individuality of prob-
lems” (a neat phrase he attributes to Mark Wilson). I don’t see this as an objection to
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the unification account as much as it is a further subtlety that the account should in-
corporate. Unification is an important goal in scientific practice, but a multi-faceted
one.

57Anyone who reflects on the miraculous solution of the integral ∫∞−∞e−x2dx ef-
fected by recasting the question into polar coordinates will know what I mean.

58Birational transformations are 1-1 transformations that can be represented as
fractions in which both the numerator and denominator are polynomials; in the
plane these are also called Cremona transformations. An old-fashioned, concrete
presentation of the topic is in Coolidge (1959). A presentation in more contempo-
rary terms is in (Smith et al., 2000) see especially ch. 7.

59I’m grateful to Karen Smith for help with this example.
60Another example is the use of “reciprocal diagrams” to be considered in a few

pages. Here too we have a device which both creates a dual pattern of reasoning that
is interesting both because it isolates a significant general pattern and also because
it allows the exploitation of shifts from special case to special case.

Naturally we don’t see this interaction between general case and special just in
mathematics: it shows itself whenever one physical realization of a general theory
is used as a tangible model for another.

61There are very simple examples of properties that appear disjunctive in one
context but which are revealed not to be disjunctive in the “natural setting”. Whether
or not a property is “disjunctive” can depend upon ontology – on what objects there
are in the domain. The simplest example is perhaps the idea of “intersection” in
the projective plane. In the Euclidean plane, arguments typically have annoying
special cases that arise when two lines are parallel. By expanding the plane with
“points at infinity” where parallel lines intersect, the artificial predicate “intersecting
or parallel” becomes simply “intersecting”, thus eliminating the special cases. (This
motive for introducing points at infinity is discussed in many introductory level
discussions; see for example (Courant and Robbins, 1941, 180ff).)

62One point is worth noting in passing here, though it is sufficiently complicated
that I’ll have to set it aside here; I will be developing it in future work. There is this
much of an anchor to the idea of “projectibility” in mathematics, in that a judgement
to the effect that a definition or principle is fruitful incorporates a prediction that re-
sults of desired kinds will in fact be produced in the future by those who adopt the
definition or principle as part of their working repertoire. The connections between
these previsions of future discoveries and judgements of plausibility in mathemat-
ics are quite involved, and bear some affinities to versions of the problems of old
evidence that are familiar in the study of Bayesian methodology. Both seem to
arise from a common root, in which assessments of likelihood depend crucially on
expectations that the empirical event of the discovery of a necessary truth occurs.

63(I will concentrate just on the plane for simplicity – similar patterns emerge in
higher dimensions.)

64Some expressions – conic section, hexagon – are self-dual. In these theorems,
“hexagon” is understood more broadly than we learned in school.
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65Notably Chasles, in an influential essay of (1837) who called it a “general prin-
ciple of science”. For a statement of the general methodological significance of
duality in the English literature, J. Booth (1873) is an especially unrestrained exam-
ple. See especially p. xi - xiv

66Of course, it is important for the plausibility of Kitcher’s account that we should
find at least some cases where theories are consciously designed in a way that con-
forms to his general picture. If Kitcher is right that unification as he characterizes
it is a governing objective of scientific and mathematical practice, we should expect
that sometimes the pursuit of the goal would be self – conscious. So it is reassur-
ing that in the case of nineteenth-century duality, the pattern Kitcher presents was
self-consciously pursued.

Another case in which a variation on Kitcher’s picture was a self-consciously
adopted methodological guide was in the early nineteenth century debate over the
adoption of the Leibnizian notation in Great Britain. Babbage, in his essay “On
the Influence of Signs in Mathematical Reasoning” (1827) spells out examples of
how a careful choice of notation can unify a proof that consists of several distinct
arguments in Newton’s Arithmetica Universalis into one single pattern. I discuss
this in more detail in Tappenden (2001b).

67A good short overview of the subject is Scholz (1994). For further details, see
Benvenuto (1991), Timoshenko (1953) and Charlton (1982). The role of duality
considerations in the development of graphic statics is especially well brought out
in Scholz (1989). Dubois (1877) is an English – language textbook of the time
which gives a good glimpse into the subject and the attitudes toward it. Also helpful
is Graham (1887) which contains extended contrasts and comparisons of analytic
and graphic methods.

68Culmann (1865); the projective background is made more explicit and system-
atic in the second edition (1875).

69These are sometimes called textitCremona diagrams because Luigi Cremona
popularized the technique in his widely used textbooks Cremona (1872) and (1874).
(English translations in (Cremona, 1890).)

70This particular example is taken from Ziwet (1904) p. 226; I have chosen this
example both because it is a good illustration of the point and also for a somewhat
sentimental reason. The long – dead Ziwet has been a great help in my current
projects (in ways that it would take too long to explain) so I’m happy to grasp the
opportunity to cite him in some way. But similar examples are analysed in sources
that are easier to obtain today: so for example there are several examples like this
one worked out with characteristic clarity in the Schaum’s outline on statics and
strength of materials. (Jackson and Wirtz, 1983, 117 - 135).

71It should be noted, though, that graphic statics is not a perfect illustration in
one respect: there is only an indirect connection between the dualistic patterns that
best exemplify Kitcher’s picture of explanation and the applications to engineering.
(This is, of course, a price that has to be paid for choosing actual examples: the
real world rarely serves up events that are as clean as the thought experiments that
can be crafted at will in the thought laboratory.) On the abstract side, in general
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projective geometry, the parallel patterns of argument were, and were taken to be, an
important feature of the theoretical structure. In its applied form in graphic statics,
dual diagrams played a central role, but these dualities didn’t translate into a line-by-
line parallelism of proofs and arguments, as in the abstract case. (I have only found
one engineering textbook – Crotti (1888) – where the formal duality of argument
is spelled out explicitly and represented in the “dual columns” format of projective
geometry textbooks. (According to Charlton (1982, 155)) Crotti’s text was unique
in this regard.)) What we have in graphic statics is a case in which a framework
explicitly informed by Kitcher – type patterns of multiple argument is applied to
concrete problems, thereby coloring what counts as explanations of these concrete
problems. This is good enough for the present purposes, though the example would
of course be cleaner if the dualities of argument that shape the abstract mathematical
investigations figured more prominently in the engineering applications.

72On the Quebec bridge collapse see (Ferguson, 1992, 172-178). An illuminating
glimpse into the patterns of explanation characteristic of turn-of-the-century engi-
neering can be found in the pages of the professional weekly Engineering News
during the months after the disaster, where candidate reasons for the collapse are
dissected and discussed at length.

73I am indebted here to Nancy Cartwright (1983, 56-67) who advances the similar
point that against the background of realism about forces, patterns of vector addition
and decomposition may involve reference to theoretical fictions. My point here is
different – I am setting aside any questions of ontology – but Cartwright’s discussion
was helpful in nudging my thoughts at a crucial juncture.

74An illustration of its importance is that graphical statics was taken to deserve
a massive (90 page) chapter to all to itself in the Physics volume of Klein’s Encyk-
lopadie der Mathematischen Wissenschaften¨ . See Hennenberg (1903).

75Though it might be noted that a residual nostalgia for the older techniques per-
sists. In his discussion of graphic statics, Ferguson remarks: “Even though digital
computers are making graphical methods seem both old-fashioned and insufferably
slow, a few younger engineers, along with the old fogeys, are beginning to under-
stand that speed has sometimes been bought at the cost of understanding.” (Fergu-
son, 1992, 152)

In this connection it is worth noting further that some of the old results of
graphic statics have recently been revived and generalized. (See for example (Crapo
and Whiteley (1982)) and Whiteley (1985). On this work I am grateful to Wal-
ter Whiteley for email correspondence and to Branko Grünbaum for sending me a¨
copy of his unpublished lectures Grünbaum (1976).) Here too the interest of the re-¨
sults does not depend exclusively upon the visualizable character of the represented
structures, though the visual flavor of the work is still important.

76See for example (Dubois, 1877, iv) (Cremona, 1890, 121,123-4,131-137) (Cul-
mann, 1875, vii–xv etc.)

77So for example, the engineering professor Rankine remarks that an advantage
of the graphical methods compared to analytical methods that they make mistakes
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much easier to catch. ((Rankine, 1869, 411); quoted with tacit agreement in (Cre-
mona, 1890, 133)). The point was reiterated in these terms in more recent days by
a contemporary engineer defending the virtues of the old ways: “When nearly all
engineers carried out structural analysis using . . . graphic statics [and similar meth-
ods]. . . the advantages of visually monitoring one’s calculations (Does it look right?
Are the numerical answers reasonable?) were built into the graphical mathematics
they used.” (Ferguson, 1992, 152)

78As one textbook of graphic statics puts it, with a quaint Victorian flair: “. . .
the power conferred by the graphical method is to a large extent at the disposal of
those who have had but little mathematical training. The writer once had occasion
to explain a practical application of the triangle of forces to a class of working men,
who seemed at once to grasp and appreciate it.” (Clarke, 1888, v)

79A characteristic opinion is expressed in Rankine’s discussion of reciprocal fig-
ures:

When compared with algebraic methods, the simplicity and rapid-
ity of execution of the graphic method is very striking. . . If this is
the case when the loads are uniform or symmetrical, the advantage
is much more strikingly in favour of the graphic method when the
loads are not symmetrical, and when they are inclined. . . or as in
such cases as the framed arch and suspension bridge. In fine, the
diagram once drawn acts as a sort of graphic formula for the strain
on every part of the bridge or roof, and it is a formula which can
hardly be misapplied. ((Rankine, 1869, 441); part of this passage is
quoted with tacit agreement in (Cremona, 1890, 133))

80One example is Dubois (1877).
81This is an oft-repeated theme in the literature on analytic projective geometry;

I’ll mention just two examples that illustrate the point. Referring in particular to
the nineteenth century analytic geometer Plücker, Felix Klein commends his style¨
of argument in these terms:

In Plucker’s geometry, the bare combination of equations is trans-¨
lated into geometrical terms, and the analytic operations are led back
through the geometric. Computation is avoided as much as possible,
but by doing this, a mobility heightened to the point of virtuosity,
of inner intuition, of the geometric interpretation of given analytic
equations, is cultivated and extensively applied. (Klein, 1926/79,
110)

Bear in mind that Klein is here discussing someone who bucked the trend of
the then – dominant synthetic geometry in favor of streamlined analytic methods.
The praise is not for the use of diagrams but rather for a certain way of organizing
the analytic methods so as to gain an elegant means of addressing the subject. This
is reinforced by the Klein’s subsequent illustration of his remarks with “an example
of Plucker’s way of thinking” (p. 110). He presents a device (“abridged notation”)¨
Plucker used to systematically manipulate and transform analytic equations so as to¨
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better fix on the crucial parts of the underlying geometric situation. Even without
any connection to vision, the symbolic technique was, and remains a valuable (if
now somewhat old-fashioned) tool.

A more recent commentator on essentially the same phenomenon of Plücker’s¨
style of analytic argument is Dieudonné:

One of the attractions of [nineteenth century] complex projective
geometry is its relative independence from algebra and the formal
independence of its results, in contrast to the massiveness of most
of the coordinate calculations of the preceding century. . . . Mobius,¨
Plucker, and Cayley give projective geometry a solid base by the use¨
of homogeneous coordinates accompanied by a harmonious choice
of indexing notation that maintains a symmetry and a clarity in the
calculations so that they closely follow the geometric argument.
(Dieudonné, 1985, 9)´

Here again an advantage of the “geometric” framework is taken to include an
elegant way of formulating the subject matter, which happens to have an important
tie to visual representation but which is valuable independently of it.

82A particularly charming illustration of this point appears in Coxeter’s textbook
The Real Projective Plane where Desargues’ theorem is adopted as an axiom of
projective geometry. After providing one proof of Desargues’ theorem, Coxeter
remarks “Since we will eventually take Desargues’ theorem as an axiom, it seems
worthwhile to give an alternative proof.” (1992, 7) and he proceeds to give it.

83It should be noted that Artin’s use of “geometric” is somewhat idiosyncratic.
Artin was one of the greatest forces propelling the abstract turn of twentieth century
algebra, and even when working in a self-consciously “geometric” vein, his tastes
tilt to the algebraic. This makes his treatment especially useful for present purposes:
“geometry” for Artin turns out to have an exceedingly indirect connection to vision.

This peculiarity of Artin’s attitude hasn’t gone unnoticed. A noted algebraic
geometer told me in conversation that in his opinion Artin’s text was “not really
geometric” (except in the sense emerging from the Klein program of characterizing
geometries with groups of transformations). We also find a variant of this opinion
in a review of Artin (1957):

Most of this book is devoted to the study of algebraic structures
arising from various geometries. The approach is algebraic rather
than geometric. . .

. . .
In Chapter II [the focus of this article], affine geometry is intro-

duced axiomatically and then coordinatized. Even here the approach
is algebraic. (Jans, 1957, 604)

84Not everyone, though. The approach to matrices in Edwards (1996) is mo-
tivated by an explicit preference for computations that is apparently as strong as
Artin’s animus.
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85Another advantage, mentioned in some textbooks that adopt the Artin approach,
is that it allows a smooth introduction of coordinates, in contrast to the “messy”
algebraic approach of (for example) Hall (1943). See (Hartshorne, 1967, 101) and
(in nearly identical language) Kadison and Kromann (1996) (p. 105–106) Here too
there is nothing specifically “visual” about this advantage.

86In a treatment of overlapping material, with some ideological affinities to Artin’s
book (Dieudonne, 1969) the absence of diagrams is principled. After emphasiz-´
ing the importance of material which can be represented in visual intuition (p.12),
Dieudonne continues: “I have taken the liberty of omitting all diagrams from the´
text, if only to show that they are unnecessary” (p.13) Though Dieudonné doesn’t´
present himself as resurrecting a geometric presentation as Artin does, the approach
is nonetheless “geometric” in Artin’s sense to the extent that I) the concept of map-
ping rather than computation with coordinates is explicitly marked out as basic and
systematically developed. (p.13-14 and passim) II) the core intuitions are spun out
from a consideration of intuitive maps on linear varieties. (see especially chapter
III) So we can draw the same conclusion: that this material admits of representation
in diagrams is valuable, but it doesn’t exhaust the value of this particular framework
for organizing information.

87Though I should note that the point about the absence of pictures is slightly
softened by Artin’s instruction to the reader to draw pictures while reading. (Artin,
1957, 52) But even with this qualification it is clear from Artin’s discussion that he
sees the role of pictures as secondary in his “geometric” presentation.

88This historical point should be flagged, though it would represent too much of
a digression to work it out here. Artin’s approach to rendering the idea of geometric
intuition rigorous has a distinguished pedigree: many debates in the mathematics
of the nineteenth century are illuminated if this is recognized. In particular, as
Michael Friedman points out in a superb article, (Friedman, 2000) Helmholz in-
terpreted Kantian “intuition” in terms of transformations of space, setting aside the
idea of “construction in intuition”. (Friedman credits Robert DiSalle for key obser-
vations in this connection.) This forged a bridge with the new geometry that was
then emerging.

The Friedman-DiSalle insight that the Kantian idea of intuition was undergoing
a metamorphosis among scientifically informed students of geometry is of broad
significance for our understanding of mathematicians’ talk of intuition at the time.
In particular, the insight allows one to flesh out some gnomic remarks Frege makes
in Grundlagen about intuition and geometrical knowledge, and fit them into other
features of his mathematical environment. I develop this point further in Tappenden
(2001a).

89This version of the definition leaves aside a degenerate case that will be of no
interest here.

90The second axiom implies the first.
91It deserves mention, but I won’t expand on this point here, that classic versions

of the Desargues theorem have historically been quite important in applied geome-
try, especially in the development of the theory of linear perspective in painting and



206 JAMIE TAPPENDEN

architecture. A good general source is Field (1997). On the geometry and theory of
perspective of the historical Desargues see Field and Gray (1987). On Desargues’
theorem and the historical development of perspective, Field (1987) and (1988) are
detailed and helpful.

92This point is discussed in (Blumenthal, 1961, 81–84).
93Artin notes this fact on p. 51. It is discussed more extensively in this symmetry-

based context by (Kadison and Kromann, 1996, 116–120).
94The additional constraint that the multiplication operation be commutative (i.e.

that the coordinates are a field) corresponds to a further geometric axiom with a
classical pedigree: the Pappus theorem. The Pappus theorem is another illustration
of the themes of this section, but I will leave discussion of it for another time.

95An interesting discussion of the Desargues theorem from this point of view is
in (Rota, 1997, 140–146) especially p. 141 on the “zen ideal” combined with many
applications and 145 on the “horizon of possibilities” the Desargues theorem opens
up. Rota’s account of reasons for regarding the Desargues theorem as central draws
on a venerable analysis of Desargues’ theorem in connection with the underlying
combinatorial situation (the “Desargues configuration”) detailed at length in Baker
(1929). This, incidentally, gives yet another point of view from which the Desargues
axioms turn out to represent a natural carving point: it also corresponds to deep and
rich facts in finite combinatorics. I won’t be exploring this perspective further here:
for those who are interested a contemporary introduction to this point of view, in
which the Desargues configuration shows itself prominently, is Batten (1997).
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J. HAFNER AND P. MANCOSU

THE VARIETIES OF MATHEMATICAL EXPLANATION0

1. BACK TO THE FACTS THEMSELVES

When William James was faced with the task of writing in an encompassing
way on religion he emphasized the variety of phenomena that fell under the
topic and warned against the dangers of oversimplification:

Most books on the philosophy of religion try to begin with
a precise definition of what its essence consists of. Some
of these would-be definitions may possibly come before us
in later portions of this course, and I shall not be pedantic
enough to enumerate any of them to you now. Meanwhile
the very fact that they are so many and so different from one
another is enough to prove that the word “religion” cannot
stand for any principle or essence, but is rather a collective
name. The theorizing mind tends always to the oversimplifi-
cation of its materials. [...] Let us not fall immediately into a
one-sided view of our subject, but let us rather admit freely
at the outset that we may very likely find no one essence,
but many characters which may alternately be very impor-
tant to religion. (William James, The varieties of religious
experience, 1902, p. 31)

If we substitute ‘explanation’ for ‘religion’ in the above quote the result cap-
tures our point of view about the philosophy of explanation. Contemporary
work in scientific explanation has pursued to a great extent the project of a
single unified account of the nature of explanation. Unfortunately the drive
towards unification has also ignored an important number of phenomena.
In particular, many theories of scientific explanation do not address mathe-
matical explanation, either because they rule mathematical explanations out
of court from the outset or because they hold that their account of expla-
nation automatically takes care of mathematical explanation. Most of the
time, mathematical explanation is simply not mentioned. This is a symptom,
following James, of the dangers of the theorizing mind and like him we pro-
pose to begin “by addressing ourselves directly to the concrete facts”. Of
course, it is not our intention to downplay the importance of the work that
has been pursued in the area of scientific explanation and which has yielded
many remarkable insights. We do not even pass judgment on whether a more
careful analysis of concrete scientific case studies of explanatory activity in
the empirical sciences might have been beneficial for the subject as a whole.
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However, our topic demands a different approach. Indeed, in the case of
mathematical explanation we cannot rely, as people do in the natural sci-
ences, on well-entrenched intuitions concerning paradigmatic examples of
explanations.

In this paper we will begin with some general methodological remarks
about mathematical explanations. We will then point out that attention to
mathematical practice reveals the presence of a great variety of mathemati-
cal explanations. This realization affects two important aspects of the dis-
cussion of the nature of mathematical explanation. First of all, most of the
traditional debates (see Mancosu 1999, 2000, 2001) have focused on the op-
position between explanatory and non-explanatory proofs. However, there
are mathematical explanations that do not come in the form of proofs and
this has in fact been recognized by several scholars. Second, the variety of
mathematical explanations challenges the current philosophical accounts of
mathematical explanation, i.e. those of Kitcher and Steiner. As detailed dis-
cussion of case studies is necessary to see the limitations of such accounts,
in the second part of the paper we restrict our focus to Steiner’s theory and
to the discussion of an example of an explanatory proof which, we claim,
Steiner’s theory cannot account for.1

2. MATHEMATICAL EXPLANATION OR EXPLANATION IN
MATHEMATICS?

In the above we have been using freely the expression “mathematical expla-
nation”. The use was intentionally ambiguous and we should now clarify the
source of the ambiguity. “Mathematical explanation” could mean a) expla-
nations as they are given in mathematics; or, b) explanations that make use of
mathematics. The two definitions characterize different classes. In the first
case we intend to refer to explanatory practices that take place within the
realm of mathematics itself. In the second case, this would include, among
other things, mathematical explanations of physical facts which clearly do
not belong to the first class.

The second kind of explanation is part of a large problem area concern-
ing mathematical applications. Shapiro recently remarked that “a scientific
‘explanation’ of a physical event often amounts to no more than a mathe-
matical description of it.” His favorite example is given in the form of an
anecdote:

The story relies on the unreliable memory of more than one
person, but the situation is typical. A friend once told me
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that during an experiment in a physics lab he noticed a phe-
nomenon that puzzled him. The class was looking at an os-
cilloscope and a funny shape kept forming at the end of the
screen. Although it had nothing to do with the lesson that
day, my friend asked for an explanation. The lab instructor
wrote something on the board (probably a differential equa-
tion) and said that the funny shape occurs because a function
solving the equation has a zero at a particular value. My
friend told me that he became even more puzzled that the
occurrence of a zero in a function should count as an expla-
nation of a physical event, but he did not feel up to pursuing
the issue further at the time. (Shapiro 2000, p. 34)

Shapiro’s friend had all the rights to be puzzled. After all, it could be claimed
that the explanation why the equation in question has a zero at a particular
value rests on the physical situation and not vice versa. Of course, the equa-
tion has its zeros independently of any physical reality and thus the last re-
mark makes sense only under the assumption that the equation “represents”
the physical reality. But this only points to the fact that without a general
account of how mathematics hooks on to reality the role of mathematical
explanations in physics is bound to remain mysterious:

Clearly, a mathematical structure, description, model, or the-
ory cannot serve as an explanation of a non-mathematical
event without some account of the relationship between math-
ematics per se and scientific reality. Lacking such an ac-
count, how can mathematical/scientific explanations succeed
in removing any obscurity - especially if new, more trou-
bling obscurities are introduced? (Shapiro 2000, p. 35; cf.
p. 217)

This is a daunting problem indeed but fortunately we will not have to
discuss it here, as our major aim is to investigate the first sense of mathe-
matical explanation. Even with this restriction in place, things are far from
easy. “Explanation” is a notoriously ambiguous word and this ambiguity
shows up in mathematics just as much as in ordinary parlance. We can ex-
plain the rules of a certain calculus, the meaning of a symbol, how to carry
out a construction, how to fix or set up a proof. These are all “instructions”
on how to master the tools of the trade. There are however deeper uses of
“explanation” in mathematics which call for an account of the mathematical
facts themselves, the reason why. The distinction we just drew between “in-
structions” and deeper senses of “explanation” should be no more puzzling
than the equivalent one in physics. While doing physics we might ask for an
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explanation of a certain notation or of how to describe a certain phenomenon
by means of a new formalism. These uses of explanation are of a different
category from that involved in explaining, for instance, why salt dissolves in
water.

3. THE SEARCH FOR EXPLANATION WITHIN MATHEMATICS

In addition to “explanation” mathematicians and philosophers use a cluster
of expressions to refer to this phenomenon. Here is an illustrative sample
of expressions we found in the mathematical and philosophical literature in
which the search for explanations is sometimes characterized as a search for:

(a) “the deep reasons”
(b) “an understanding of the essence”
(c) “a better understanding”
(d) “a satisfying reason”
(e) “the reason why”
(f) “the true reason”
(g) “an account of the fact”
(h) “the causes of”

Of course, we are not claiming that the above expressions have the same
intension. However, we maintain that the cluster of notions we indicated is
not accidentally related.

That mathematicians seek explanations in their ordinary practice and
cherish different types of explanations is for us, after working on this topic
for so long, so obvious as to require almost no proof. However, some of the
philosophical literature on the topic has denied that there are mathematical
explanations and thus it will be useful here to provide some examples of
“explanatory” talk in mathematical practice.

First of all, the search for explanations is often the drive towards mathe-
matical research. What motivates mathematicians to look for explanations?
It is the old desire to know the reason why. This desire might be awakened
by different factors, a sample of which is given by the following illustrative
examples.

1. A number of mathematical phenomena are perceived as too complicated.
A desire to bring order in the “realm of facts” will drive the mathematician
to look for an explanation or a deeper explanation of what is going on.

Example 1. In the article “On the Kummer solutions of the hypergeo-
metric equation” Reese T. Prosser describes his aim as follows:
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One of the oldest, and still one of the most interesting ap-
plications of group theory arises in the study of the trans-
formations of an ordinary differential equation. If we know
that a given differential equation admits a group of transfor-
mations, then we know that the solution set must admit that
same group of transformations, and we can deduce proper-
ties of all the solutions from the properties of any one of
them. A case in point is offered by the celebrated hyperge-
ometric equation whose solutions include many of the most
interesting special functions of mathematical physics [. . .]
In 1836 Kummer published a set of six distinct solutions
of the hypergeometric equation. [. . .] A glance at the list
of these solutions reveals a rather complicated set of rela-
tionships which pleads for some simple explanation. We
show here that the Kummer solutions are related by a finite
group of transformations which serve to explain their rela-
tionships and to exemplify the use of transformation groups
in the study of differential equations. (p. 535)

2. Sometimes it is a desire of explaining “resemblances”, mysterious or
remarkable coincidences, as well as striking or deep analogies.

Example 2a. In “Eine Verbindung zwischen den arithmetischen Eigen-
schaften verallgemeinerter Bernoullizahlen”, Kurt Girstmair writes:

Let m ≥ 1, n ≥ 2 be integers. There are two kinds of gen-
eralized Bernoulli numbers which occur in the arithmetic of
Abelian number fields: on the one hand Leopoldt’s num-
bers [. . .], on the other hand, the cotangent numbers [. . .]
For both kind of numbers theorems of the v. Staudt-Clausen
type exist, which describe their (ideal) denominators. These
theorems resemble each other in several respects, a fact that
has not been explained so far. One aim of this paper is to
supply this explanation. (p. 47)

Example 2b. In the article “On the Betti numbers of the moduli space
of stable bundles of rank two on a curve” Bifet, Ghione and Letizia say:

The aim of this paper is to begin exploring a new algebra-
geometric approach to the study of the geometry of the mod-
uli space of stable bundles on a curve X over a field k. This
approach establishes a bridge between the arithmetic ap-
proach of G. Harder and M.S. Narasimhan and the gauge
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group approach of M.F. Atiyah and R.H. Bott. In particu-
lar, it might help explain some of the mysterious analogies
observed by Atiyah and Bott. (p. 92)

3. Very often the mathematical fact to be explained is understood from a
certain point of view but one looks for alternative explanations. When math-
ematicians speak about explanations they often modify the phrase by speci-
fying the nature of the explanation: analytical, algebraic, group-theoretical,
combinatorial, categorical, geometric, function-theoretic, measure-theoretic,
number-theoretic, probabilistic, cohomological, representation-theoretic, to-
pological etc. In some cases several of these goals are pursued at once.

Example 3. Iku Nakamura in “On the equations xpxx + yq + zr − xyz = 0”
writes:

We know two strange dualities - the duality of fourteen ex-
ceptional unimodular singularities and the duality of four-
teen hyperbolic unimodular singularities. The first purpose
of this article is to recall and compare them. The second
is to give explanations for the second duality from various
viewpoints. [. . .] In section 5 we give a number-theoretic
explanation for the duality. We see that the duality is es-
sentially the relationship between a complete module and
its dual in a real quadratic field. In section 6 we provide
a geometric explanation for the duality by means of gen-
eral theory of surfaces of class V II0II . In section 7 we give a
lattice-theoretic explanation for the duality. (pp. 281f)

4. However, most of the time explanations are provided for mathematical
facts independently of whether a particular point of view is emphasized.
While sometimes these facts might be “striking” or “curious” in many cases
the explanation is sought whether or not the fact in question might be strik-
ing.

Example 4a. Kubo and Vakil in “On Conway’s recursive sequence” say:

The recurrence a(n) = a(a(n−1))+a(n−a(n−1)), a(1) =
a(2) = 1 defines an integer sequence, publicized by Con-
way and Mallows, with amazing combinatorial properties
that cry out for explanation. We take a step towards unrav-
eling this mystery by showing that a(n) can (and should) be
viewed as a simple ‘compression’ operation on finite sets.
This gives a combinatorial characterization of a(n) from
which one can read off most of its properties. (p. 225)
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Example 4b. Leyendekkers and others in “Analysis of Diophantine proper-
ties using modular rings with four and six classes” write:

A modular ring ZAZ is described, and used together with a
modular ring Z6ZZ and the Pythagorean triple grid, described
earlier, to analyze various diophantine properties and ex-
plain why the area of a Pythagorean triangle can never be
a square.

4. SOME METHODOLOGICAL COMMENTS ON THE GENERAL
PROJECT

It should be obvious from the above that mathematicians seek explanations.
But what form do these explanations take? It is here that two possibilities
emerge. One can follow two alternative approaches: top-down or bottom-
up. In the former approach one starts with a general model of explana-
tion (perhaps because of its success in the natural sciences) and then tries
to see how well it accounts for the practice. In the latter approach one begins
by avoiding, as much as possible, any commitment to a particular theoreti-
cal/conceptual framework. We favor the second approach for the following
reasons. As a rule contemporary accounts of explanation have been devel-
oped within the philosophy of natural science without addressing the speci-
ficity of mathematical explanations. Hence the conceptual resources of those
accounts involving, e.g. the notions of causal connections or laws of nature
seem inappropriate for capturing explanations in mathematics. Furthermore,
even if some more abstract features of those accounts, e.g. construing the
general form of explanations as answers to why-questions could perhaps be
adopted for a theory of mathematical explanations2 proceeding in this way
would mean forcing the evidence from mathematical practice into a prede-
fined mould, thereby narrowing the perspective from the outset and probably
leading to distortions. The same holds for the few philosophical accounts of
mathematical explanation found in the literature (Kitcher, Steiner). Making
either theoretical unification or deformability (in Steiner’s particular sense)
the hallmark of mathematical explanations amounts to the imposition of a
defining characteristic feature on what ought to be counted as “explanation”
in mathematics.3 Proofs, theories, methods etc. which do not satisfy that
definition are then disregarded or discounted – regardless whether they are
indeed taken to be explanatory by working mathematicians!

Thus, in our mind, a fruitful approach would consist in giving a tax-
onomy of recurrent types of mathematical explanation4 and then trying to
see whether these patterns are heterogeneous or can be subsumed under a
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general account. We maintain that mathematical explanations are heteroge-
neous. However, neither giving the taxonomy nor arguing for the previous
claim is what we have set for ourselves in this paper. Rather, we would like
to provide a single case study of how to use mathematical explanations as
found in mathematical practice to test theories of mathematical explanation.
This can be seen, as it were, as a case study of how to show that the variety
of mathematical explanations cannot be easily reduced to a single model. In
what follows we will thus look at Steiner’s theory of explanation and discuss
a counterexample to his theory.

5. MARK STEINER ON MATHEMATICAL EXPLANATION

In developing his own account of explanatory proofs in mathematics Mark
Steiner discusses – and rejects – a number of initially plausible criteria for
explanation, i.e. the (greater degree of) abstractness or generality of a proof,
its visualizability, and its genetic aspect which would give rise to the discov-
ery of the result. In contrast, Steiner takes up the idea “that to explain the
behavior of an entity, one deduces the behavior from the essence or nature
of the entity” (Steiner 1978, p. 143). In order to avoid the notorious difficul-
ties in defining the concepts of essence and essential (or necessary) property,
which, moreover, don’t seem to be useful in mathematical contexts anyway
since all mathematical truths are usually regarded as necessary, Steiner intro-
duces the concept of characterizing property. By this he means “a property
unique to a given entity or structure within a family or domain of such enti-
ties or structures” (Ibid.), where the notion of “family” is taken as undefined.
Hence what distinguishes an explanatory proof from a non-explanatory one
is that only the former involves such a characterizing property. In Steiner’s
words: “an explanatory proof makes reference to a characterizing property
of an entity or structure mentioned in the theorem, such that from the proof
it is evident that the result depends on the property” (Ibid.). Furthermore, an
explanatory proof is generalizable in the following sense. Varying the rel-
evant feature (and hence a certain characterizing property) in such a proof
gives rise to an array of corresponding theorems, which are proved – and ex-
plained – by an array of “deformations” of the original proof. Thus Steiner
arrives at two criteria for explanatory proofs, i.e. dependence on a character-
izing property and generalizability through varying of that property (Steiner
1978, pp. 144, 147).

The following proof of the irrationality of
√

2 given by Steiner illustrates
the two criteria.5 Relying on the fact that each number has a unique prime
power expansion (the Fundamental Theorem of Arithmetic) we can argue
thus.
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Assume that 2 = (a
b )2, i.e. a2 = 2b2. The prime 2 has to appear with an even

exponent in the prime power expansion of a2. And since the same holds
for the prime power expansion of b2, the exponent of 2 in the expansion of
2b2 must be odd. Because of the uniqueness of prime power expansions it
follows that a2 � 2b2 contradicting our assumption.

This proof is explanatory according to Steiner, because it uses – as a
characterizing property of numbers – their prime power expansion. Also,
the proof is generalizable to numbers different from 2, i.e. one can establish
along the same lines the theorem that for any n,

√
n

√√
is either a natural number

or irrational. And generalizing further one can get the analogous result for
the pth root in place of the square root of n.

Steiner’s account has been criticized by Resnik and Kushner. They doubt
the existence of explanatory proofs in general, denying an objective distinc-
tion between explanatory and non-explanatory proofs. But more concretely
they also challenge Steiner’s account by proposing counterexamples, i.e. a
proof that meets his criteria but is not accepted as explanatory by Steiner
himself. And on the other hand Resnik and Kushner claim there are proofs,
namely a certain proof of the intermediate value theorem and Henkin’s proof
of the completeness of first-order logic, which seem to qualify as explanatory
but apparently fail to meet Steiner’s criteria. However, one may ask how well
these instances really work as counterexamples. To begin with, what justifi-
cations are put forward by Resnik and Kushner for the classification of their
examples as indeed (intuitively) explanatory? Besides simply claiming that
these proofs “would seem to qualify as explanatory if any do” (Resnik &
Kushner 1987, p. 147), it is contended with some – albeit rather vague –
reference to mathematical/logical practice that Henkin’s proof “is generally
regarded as really showing what goes on in the completeness theorem and
the proof-idea has been used again and again in obtaining results about other
logical systems” (Resnik & Kushner 1987, p. 149). And with respect to the
proof of the intermediate value theorem the authors “find it hard to see how
someone could understand this proof and yet ask why the theorem is true (or
what makes it true)” (Ibid.) and hence it has to be counted as explanatory.
Yet we are not given any hint as to what exactly the explanatory feature(s) of
this proof are supposed to consist in.

For counterexamples to Steiner’s theory to carry real weight they would
have to be much more closely related to mathematical practice. Contrary
to what Resnik and Kushner claim (p. 151), mathematicians often describe
themselves and other mathematicians as explaining. And their judgments
concerning explanatory vs. non-explanatory proofs (and other varieties of
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explanation in mathematics as the case may be) has to figure as the basic ev-
idence, however subjective or context dependent they may be. Claims to the
effect that certain proofs are explanatory come from within mathematics not
from philosophers of mathematics. Their sources, working mathematicians,
are furthermore precisely identifiable, and the case for explanatoriness will
be even stronger, if a certain proof is put forward explicitly with the aim to
explain a “mathematical phenomenon”, which has been acknowledged for a
long time to be mysterious and puzzling by (a subgroup of) the mathematical
community. A case of mathematical explanation rooted in this way in mathe-
matical practice can justifiably serve as a test case for Steiner’s account. It
certainly cannot be dismissed easily if it should amount to a refutation of that
account. And it is such a test case coming from the work of Alfred Pring-
sheim in the theory of infinite series which we want to present and discuss in
the following.

6. KUMMER’S CONVERGENCE TEST

The following exposition is adapted from Pringsheim (1916). In order to
make it more readable and clearly bring out the points which are relevant in
our context we have simplified Pringsheim’s account by stating some results
in a slightly less general form than they could be formulated. But nothing
essential is lost because of that (cf. footnote 7).

Let’s start with some preliminary observations concerning infinite series.
We will confine ourselves to infinite series ∑∞n=1 an of positive terms,6 i.e.
an > 0 for n = 1,2,3, . . . and we will consider different convergence and di-
vergence tests for them. Of fundamental importance are the following com-
parison tests.

(1) If ∑cn is a convergent series such that the terms of ∑an satisfy an ≤ cn

for all n (or at least for all values of n greater than some fixed value m), then
∑an is also convergent.

Similarly we have:

(2) If ∑dndd is a divergent series such that the terms of ∑an satisfy dndd ≤ an

for all n (or at least for all values of n greater than some fixed value m), then
∑an is also divergent.

It turns out that the comparison tests are often easier to work with in practice
when they are stated in a slightly different form. In order to simplify the
exposition we will for the remainder of this section adopt the convention
to denote arbitrary infinite series by ‘∑an’, convergent ones by ‘∑cn’, and
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divergent ones by ‘∑dnd ’. Let CnCC = 1
cn

, Dn = 1
dnd and let g and G be two positive

numbers (g can be thought of as arbitrarily small and G as arbitrarily large).
Now suppose for all n (or at least for all n ≥ m, for some m)

an ≤ G · cn or an ≥ g ·dnd .

Then we have

(3)
1
cn

·an = CnCC ·an ≤ G =⇒== ∑an converges.

and

(4)
1
dndd

·an = Dn ·an ≥ g =⇒== ∑an diverges.

Under the assumption that limn→∞CnCC · an and limn→∞Dn · an exist,7 hence
limn→∞CnCC · an ≤ G < ∞ and limn→∞Dn · an ≥ g > 0, we arrive finally at the
following formulations.

(5) lim
n→∞CnCC ·an < ∞ =⇒== ∑an converges.

(6) lim
n→∞Dn ·an > 0 =⇒== ∑an diverges.

Tests (1) through (6) commonly also known as comparison tests of the 1st

kind arise from a direct comparison of the terms an with cn or dnd . In contrast
comparison tests of the 2nd kind are based on quotients of two consecutive
terms of the series and their comparison. This method is frequently very
convenient since for many series of practical importance the quotient an

an+1

happens to be simpler than the general term an. With our conventions of
denoting convergent and divergent series in place we can state these tests
concisely as follows.

(7) If for all n (or all n ≥ m, for some m) an+1
an

≤ cn+1
cn

, then ∑an converges.

And

(8) If for all n (or all n ≥ m, for some m) an+1
an

≥ dnd +1
dnd , then ∑an diverges.

They easily follow from the direct comparison of terms of the series involved8

and again they can be reformulated in different ways. Simple transforma-
tions of the conditions in (7) and (8) yield an+1

an
≤ CnCC

CnCC +1
and an+1

an
≥ Dn

Dn+1
and

then in turn we get

(9) For all n ≥ m, (CnCC · an

an+1
−CnCC +1) ≥ 0 =⇒== ∑an converges.
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(10) For all n ≥ m, (Dn · an

an+1
−Dn+1) ≤ 0 =⇒== ∑an diverges.

And finally by assuming the existence of the involved limits,

(11) lim
n→∞(CnCC · an

an+1
−CnCC +1) > 0 =⇒== ∑an converges.

(12) lim
n→∞(Dn · an

an+1
−Dn+1) < 0 =⇒== ∑an diverges.

Having established the general form of comparison tests of the 1st and 2nd

kind it now remains to determine concrete examples of convergent and diver-
gent series, ∑cn and ∑dnd , which can be substituted in those tests in specific
applications. For our purposes we don’t need to proceed any further in this
direction, instead we focus our attention on another formulation of a compar-
ison test of the 2nd kind due to Ernst Kummer.9 Letting (Bn) be an arbitrary
sequence of positive numbers Kummer’s test can be stated as follows.

(13) lim
n→∞(Bn · an

an+1
−Bn+1) > 0 =⇒== ∑an converges.

This test is rather striking because of the extreme generality or arbitrari-
ness of the sequence (Bn) occurring in it. Whereas the tests (11) and (12)
above require the use of sequences (CnCC ) and (Dn) which derive, respectively,
from convergent and divergent series, any old sequence (Bn) will do in (13).
Pringsheim calls it a “most remarkable criterion” (Pringsheim 1916, p. 379)
of “indeed surprising generality” (p. VI) that stands in need of explanation or
clarification [Aufklarung] (p. 379). Pringsheim’s opinion was by no means¨
exceptional, many mathematicians must have been similarly puzzled and left
unsatisfied by Kummer’s original proof of his criterion in 1835. As Knopp
notes it wasn’t until 1885 that O. Stolz gave an “extremely simple proof, by
means of which the criterion was first rendered fully intelligible” (Knopp
1928, p. 311, fn. 52). Moreover, even after another 30 years had passed this
criterion was apparently still viewed as an anomaly of sorts defying smooth
integration into the theory of infinite series. Pringsheim notices (in 1916)
that Kummer’s criterion “appeared as totally erratic in other accounts [of
convergence and divergence tests], seemingly lacking any analogue among
the convergence criteria of the 1st kind”10 and he thus aimed at presenting
it “freed from this mysterious isolation” (p. VI). Pringsheim gives two dif-
ferent proofs of it, one explanatory and another one which only “proves the
correctness of the criterion a posteriori in a simpler way” (p. 379). Let’s
begin with the latter; it is essentially due to Stolz and it’s indeed very simple.
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If limn→∞(Bn · an
an+1

−Bn+1) > 0, then there exists a ρ such that from some
stage m on, n ≥ m implies

Bn · an

an+1
−Bn+1 ≥ ρ> 0

hence

(14) Bn ·an −Bn+1 ·an+1 ≥ ρan+1.

Since the difference on the left hand side is thus positive it follows that the
products Bn · an form a monotone decreasing sequence (of positive terms).
So this sequence has a limit, say

lim
n→∞(Bn ·an) = α≥ 0.

If we now add, respectively, the left hand side and the right hand side terms
in inequality (14) from stage m to k we get

(Bm ·am −Bm+1 ·am+1)+ (Bm+1 ·am+1 −Bm+2 ·am+2)+ . . .

+(Bk−1 ·ak−1 −Bk ·ak) ≥ ρam+1 + . . .+ρak

which reduces to

(Bm ·am −Bk ·ak) ≥ ρ(am+1 + . . .+ ak).

Consequently, for k → ∞

(Bm ·am −α) ≥ ρ ·
∞

∑
j=m+1

aj

Which shows that ∑an is indeed convergent. This proof certainly establishes
its result, i.e. it shows that Kummer’s test works. But it fails to explain or
even address the very aspect of this test which makes it so puzzling. – How
come that the CnCC in (11) can be replaced by terms Bn of a completely arbitrary
sequence (as long as they are positive) and we still get a convergence test?
Here is Pringsheim’s explanation.

We first note elementary results concerning the representation of the
terms cn and dnd of convergent resp. divergent series.11 For any ∑cn we
can pick a strictly increasing sequence (MnMM ) of positive numbers satisfying
limn→∞MnMM = +∞ such that

(15) cn =
MnMM −MnMM −1

MnMM ·MnMM −1
.

And conversely, every series whose terms are defined in this way is conver-
gent.
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In case of a divergent series ∑dnd we can find a sequence (MnMM ) as above
such that

(16) dnd =
MnMM −MnMM −1

MnMM −1
.

And conversely, every series whose terms are defined in this way is divergent.
Now let’s assume that for some sequence (Bn) of positive numbers we

have

(17) lim
n→∞(Bn · an

an+1
−Bn+1) > 0.

We have to show that ∑an converges.
Considering ∑bn, where bn = 1

Bn
, there are only two cases possible. Ei-

ther ∑bn converges, i.e. the sequence (Bn) is of type (CnCC ), then ∑an con-
verges because of criterion (11). Or, on the other hand, ∑bn is divergent,
hence (Bn) is of type (Dn) and we can reformulate our assumption (17) thus

lim
n→∞(Dn · an

an+1
−Dn+1) > 0.

This implies that there is a ρ> 0 such that for appropriate m ≥ 1 we have for
all n ≥ m

Dn · an

an+1
−Dn+1 ≥ ρ

equivalently

(18)
1
ρ
·Dn · an

an+1
− 1
ρ
·Dn+1 ≥ 1.

Now, clearly, if∑dndd is divergent then so is∑ρ ·dndd . Hence the terms ρ ·dnd can
be expressed by means of a sequence (MnMM ) according to (16) in the following
way

ρ ·dnd =
MnMM −MnMM −1

MnMM −1

which yields
1
ρ
·Dn =

1
ρ ·dndd

=
MnMM −1

MnMM −MnMM −1
.

By substitution for 1
ρ ·Dn in (18) we get

MnMM −1

MnMM −MnMM −1
· an

an+1
− MnMM

MnMM +1 −MnMM
≥ 1.

Subtracting 1 and multiplying by MnMM gives

MnMM ·MnMM −1

MnMM −MnMM −1
· an

an+1
−MnMM · (1+

MnMM
MnMM +1 −MnMM

) ≥ 0
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that is

(19)
MnMM ·MnMM −1

MnMM −MnMM −1
· an

an+1
− MnMM +1 ·MnMM

MnMM +1 −MnMM
≥ 0.

Yet according to the converse statement following (15) the terms MnMM ·MnMM −1
MnMM −MnMM −1

and MnMM +1·MnMM
MnMM +1−MnMM define terms CnCC = 1

cn
and CnCC +1 = 1

cn+1
such that ∑cn converges.

In other words, (19) can be written in the form

CnCC · an

an+1
−CnCC +1 ≥ 0

from which the convergence of ∑an follows because of (9).
This finishes the proof of Kummer’s test:

lim
n→∞(Bn · an

an+1
−Bn+1) > 0 =⇒== ∑an converges.

According to Pringsheim this proof gives “the true reason why the CnCC which
naturally occur in (5) can eventually be replaced by completely arbitrary
positive numbers Bn” (Pringsheim 1916, p. 379).

Although Pringsheim’s proof of Kummer’s test explains why an arbi-
trary sequence (Bn) occurs in it, it does not by itself solve a further mystery
about Kummer’s test, i.e. its apparent isolation within the general theory of
convergence tests. According to Pringsheim (as already quoted above) Kum-
mer’s test seemed totally erratic because of its surprising generality and be-
cause it completely lacks, as a convergence test of the 2nd kind, any analogue
among the convergence tests of the 1st kind. Pringsheim wants to free it from
this (apparent) isolation and “show how it naturally fits into a systematically
developed general theory”. (Pringsheim 1916, p. VI)12 To be sure, Pring-
sheim’s explanatory proof already achieves something towards this goal of
integration by making fully explicit how this test is connected with the ba-
sic form of comparison tests (9)-(12), but it doesn’t relate it in any way to
comparison tests of the 1st kind. In order to do that and to remove the struc-
tural asymmetry Pringsheim supplies the missing analogue to Kummer’s test
by constructing a test of the 1st kind exhibiting the same extreme general-
ity. What Pringsheim is engaged in here is yet another explanatory project
which goes beyond giving explanatory proofs. Rather, he aims at a “global”
explanation of Kummer’s test by embedding it in a reorganized theory. This
kind of explanatory concern ties in very well with Pringsheim’s approach to
the foundations of complex analysis (cf. Mancosu 2001), and it also shows,
again, that explanations in mathematical practice come in a wide variety. It
certainly deserves to be analyzed in more detail and we refer the interested
reader to part II of the appendix where we provide a derivation of Pring-
sheim’s analogue to Kummer’s test; however, since Steiner addresses almost
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exclusively proofs and their explanatoriness, we will focus in what follows
on Pringsheim’s proof of Kummer’s test.

7. A TEST CASE FOR STEINER’S THEORY

How well can Steiner account for Pringsheim’s explanation? An analysis of
the explanatory nature of Pringsheim’s proof would have to proceed from a
characterizing property of some entity or structure in the result to be proved,
i.e. in Kummer’s convergence test (13). The proof counts as explanatory
according to Steiner only if it makes it evident that the conclusion depends
on this property. But here we already face a major difficulty. All “entities”
in Kummer’s test are generic, no concrete objects are mentioned in it (apart
from the number 0 of course, but the proof is clearly not based on any char-
acterizing property of 0). This generality makes it hard to come up with a
property that uniquely determines some entity within a family of them. In-
deed, the complete arbitrariness of the sequence (Bn) in (13) makes Steiner’s
account come unstuck. It is obvious that this arbitrary sequence (Bn) is the
focus of Pringsheim’s proof. After all, it is the very feature of Kummer’s test
that makes it so puzzling, thus prompting Pringsheim to provide an explana-
tory proof (different from Stolz’s proof which verifies but doesn’t explain the
result). Yet, (Bn) cannot be “characterized” in any way – the imposition of
any constraining property would obviously result in non-arbitrariness! Ann
arbitrary sequence simply cannot be distinguished – qua arbitrary sequence
– within the family of all sequences by any property. That’s just what it
means to be arbitrary. Hence one couldn’t base any proof on a characteriz-
ing property of (Bn) (nor of (an) for that matter, which are equally arbitrary),
and so it’s no surprise that no such property appears in Pringsheim’s proof.
Consequently, Steiner’s account renders it non-explanatory because it fails
to satisfy a necessary condition for explanatoriness. In other words, with
respect to Pringsheim’s proof Steiner finds himself plainly at odds with the
practice of explanation in mathematics.

At this point one might object the following.13 Although (Bn) stands for
an arbitrary sequence of positive terms, any such sequence has the property
of giving rise to a series which is either convergent or divergent. And this
in turn holds if and only if the terms Bn can be represented according to the
formulas (15) or (16) respectively. These representational facts are central
to Pringsheim’s proof. Exploiting them distinguishes it from Stolz’s proof
and constitutes a distinctive feature of it as an explanatory proof – as Pring-
sheim would argue. However, Steiner could maintain his account and make
it work based on the following disjunctive property C(x) or D(x), which also
incorporates the representation expressed by (16). Define C(x) to be true of
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a sequence (Bn) if and only if for all n ≥ 1, Bn > 0 and Σ 1
Bn

converges; and
define D(x) to be true of a sequence (Bn) if and only if for any ρ> 0 there ex-
ists a strictly increasing sequence (MnMM ), n = 0,1,2, . . . , of positive numbers
satisfying limn→∞MnMM = +∞ such that for all n ≥ 1, 1

ρ ·Bn = MnMM −1
MnMM −MnMM −1

.
Pringsheim’s proof clearly invokes and relies on the property C(x) or D(x),

one can as it were “read it off” the proof structure directly.14 Moreover this
property is both necessary and sufficient for being an (arbitrary) sequence of
positive numbers. Thus we have apparently managed to identify a character-
izing property of (Bn) after all.

This, however, is not the case. Steiner’s account cannot be salvaged in
this way. On closer inspection it turns out that C(x) or D(x) won’t do as a
characterizing property. To begin with, we should like to point out how the
problem of characterizing arbitrariness recurs with respect to C(x) or D(x),
which can be seen as the dual difficulty of the one mentioned above. Let’s re-
call Steiner’s definition of ‘characterizing property’. It is defined as “a prop-
erty unique to a given entity or structure within a family or domain of such
entities or structures” (Steiner 1978, p. 142), i.e. such a property “picks out
one from a family” (Steiner 1978, p. 147). One of Steiner’s own paradigmyy
examples, as mentioned already earlier, is “having a certain prime power ex-
pansion”, which uniquely determines a number n within the domain of all
natural numbers. Now, it is obvious that the property C(x) or D(x) is not a
characterizing property according to this definition, it fails to pick out any
particular sequence of positive numbers. In this respect it is analogous for
instance to the property “n is even or n is odd”, which does not single out any
particular element from the set of natural numbers. So C(x) or D(x) cannot
be used by Steiner to account for the explanatoriness of Pringsheim’s proof;
as a (supposedly) characterizing property of sequences, being true of every
sequence in the domain, it fails as badly as it is possible for a property to fail.
We can now sum up Steiner’s predicament as follows. No property which is
indeed unique to a certain sequence. i.e. which in fact “picks out one from a
family”, can characterize arbitrary sequences in general. On the other hand,
a property like C(x) or D(x) which holds true of all (and only) sequences of
positive numbers fails to be characterizing in Steiner’s sense.

This conclusion is based on the most straightforward understanding of
the notion characterizing property in our context, namely as a property ap-
plying to an individual sequence. It might be tempting to think that the above
predicament could be avoided by an appropriate reconstrual of that notion.
So we have to explore in detail other options of interpreting ‘characteriz-
ing property’ and point out why none of them works. More precisely, we
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will show that neither construing C(x) or D(x) as characterizing a set of se-
quences (as opposed to an individual sequence), nor the weakening of char-
acterization to partial characterization (of individual sequences) succeeds in
the twofold task of (i) rendering C(x) or D(x) a characterizing property and,
in turn, Pringsheim’s proof explanatory; while (ii) remaining consistent with
Steiner’s theory in other respects especially concerning his own examples
of characterizing properties and of explanatory as well as non-explanatory
proofs. But before taking this up we need to address an even more basic
problem, which is completely independent of how we construe the notion
of characterizing property, yet whose solution is a prerequisite for a precise
statement of Steiner’s theory in the first place.

However ‘characterizing property’ might be defined in particular, it has
to be first of all a property of “an entity or structure mentioned in the theo-
rem” (Steiner 1978, p. 143 our italics, cf. also p. 147). And here we comemm
up against a difficulty in Steiner’s theory. Failing to provide any definitions
of ‘entity’,‘structure’, and most important ‘mention in a theorem’ Steiner
left his theory vague or incomplete in crucial respects. In the absence of
clear criteria to determine which, if any entities or structures are indeed men-
tioned in a theorem we may be unable in certain cases to even get started on
applying Steiner’s theory. What, for instance, is mentioned in Kummer’s
test? Certainly no object like the generic arbitrary sequence (whatever that
may be); earlier we were speaking loosely when we said that apart from
the number 0 all entities (or rather “entities”) mentioned in Kummer’s test
(13) were generic. There are no singular terms in (13) referring to (par-
ticular or generic) sequences. The expression ‘Bn’ is to be construed as a
variable in the scope of a universal quantifier (and the same holds for the
expression ‘an’). Hence unless we take (the elements in) the domain of dis-
course over which the quantifiers range as something which is “mentioned
in a theorem” – and prima facie it is by no means clear whether this is the
right way to go – there is no explicit mention of sequences in Kummer’s test.
Consequently, if we should have good reasons not to count quantifier ranges
among what is mentioned in a theorem, then the whole issue as to whether
or not C(x) or D(x) is a characterizing property would simply be preempted
– there being no appropriate, i.e. mentioned, entity in Kummer’s test which
it could be the property of. In other words this attempt to make Steiner’s
account work vis a vis Pringsheim’s proof would seem wrong-headed from`
the very start, and the same goes for any other attempt based on a supposedly
characterizing property of sequences.

It is important to emphasize that we are dealing here not just with a
marginal problem which comes up only with respect to quantifier ranges
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or in the context of Kummer’s test. The problem is much more general.
Take for instance a theorem containing the predicate ‘x is prime’. Does this
theorem mention the property (or the concept) of being prime, thet set of all
prime numbers, all the individual prime numbers, or none of the foregoing?
Steiner remains silent on how to answer questions like this one in general;
and some of the examples he provides rather than clarifying things add even
further to the confusion – witness his remarks concerning explanatory proofs
of the summation theorem

(20) For all n, 1+ 2+ · · ·+ n =
n(n+ 1)

2
.

Steiner’s remarks imply that he apparently takes the symmetry properties as
well as the geometrical properties of the sum 1 + 2 + · · ·+ n as something
– entities or structures? – mentioned in (20). This is very puzzling indeed
and just highlights the need for precise definitions here. In the absence of
such definitions, to repeat our point from above, we don’t even have a clear
enough grasp of Steiner’s theory in order to apply and assess it in general.

Luckily, for our purpose of assessing Steiner’s theory vis à vis Pring-`
sheim’s proof we don’t need to solve the general problem. And concerning
the question whether or not (the elements in) the range of quantifiers should
be taken, on Steiner’s view, to be indeed – explicitly or perhaps implicitly
– mentioned in Kummer’s test we don’t have to resort to mere speculation
either, since Steiner provides an answer to a question exactly parallel to ours
when he discusses the inductive proof of theorem (20) above. Steiner argues
that this proof is not explanatory because it lacks a characterizing property.

“The proof by induction does not characterize anything men-
tioned in the theorem. Induction, it is true characterizes the
set of all natural numbers; but this set is not mentioned in the
theorem” (Steiner 1978, p. 145, emphasis in the original).

The set N of natural numbers is the range of the universal quantifier in (20)
as the set B of sequences of positive numbers is the range of the univer-
sal quantifier in (13), Kummer’s test, (once its quantificational structure has
been made fully explicit). Moreover, although C(x) or D(x) clearly fails as
a characterizing property of any particular sequence it can be argued, very
much in line with one of Steiner’s own examples,15 that it does characterize
the set B since we have for every sequence s of real numbers

C(s) or D(s) ↔ s ∈ B.

However, if according to Steiner the principle of induction does not charac-
terize anything mentioned in (20), then by the same token neither C(x) or D(x)
nor, for that matter, any other property true of all and only sequences of
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positive numbers characterizes anything mentioned in (13). To paraphrase
Steiner: C(x) or D(x), it is true, characterizes the set B (within some family
of sets of sequences); but this set is not mentioned in Kummer’s test.16

This presents a real stumbling block for any attempt to account for the
explanatoriness of Pringsheim’s proof based on a property true of all and
only sequences of positive numbers. Insisting that any such property is in-
deed a (characterizing) property of something mentioned in (13) implies, to
repeat our point, by parity of reason, the rejection of Steiner’s explicit claim
that the principle of induction fails to be a property of anything mentioned in
(20). Now, Steiner might be willing to give up his position here in order to
account, in turn, for the explanatoriness of Pringsheim’s proof (that is, pend-
ing its deformability into related proofs), since prima facie this concession
might seem a relatively small price to pay.17

After all, it is not tantamount to pronouncing the inductive proof of (20)
explanatory – which would indeed be very counterintuitive! More would be
needed for that as Steiner himself emphasizes.

“[. . . ] a characterizing property is not enough to make an
explanatory proof. One must be able to generate new, re-
lated proofs by varying the property and reasoning again.
Inductive proofs usually do not allow deformation, since
before one reasons one must have already conjectured the
theorem” (Steiner 1978, p. 151 fn. 11).

Unfortunately for Steiner, though, the inductive proof of (20) does allow for
deformation. Let us briefly sketch how it works. The property to be varied
is the principle of induction which characterizes N within the family of, say,
sets in the power-set of N. As a property of sets it contains a free set variable
X .

1 ∈ X & ∀x∀∀ (x ∈ X → (x+ 1) ∈ X) &

∀P[(P(1) & ∀x∀∀ (P(x) → P(x+ 1))) → (∀x∀∀ ∈ X , P(x))]
We’ll use ‘IND(1,x+1)’ as a convenient shorthand thus also clearly display-
ing its parameters. It should be obvious that IND(1,x + 1) besides charac-
terizing N also passes Steiner’s dependence test which is necessary to make
a proof explanatory. This test requires

“[. . . ] that from the proof it is evident that the result depends
on the [characterizing] property. It must be evident, that is,
that if we substitute in the proof a different object of the
same domain, the theorem collapses” (Steiner 1978, p. 143).

Trivially, theorem (20) could not be established by an inductive proof with-
out IND(1,x + 1). In other words, if we substitute in the proof a different
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set of our domain, i.e. a proper subset of N, and a corresponding, different
(restricted) induction principle, then we are clearly blocked from concluding
(20).

Let’s now turn to “deformations” of the principle of induction. Appro-
priate variation of IND(1,x+ 1) yields characterizing properties of different
sets in the given family. Below we list in pairs deformed induction princi-
ples and the respective sets characterized by them (a and b denote natural
numbers).

IND(2,x+ 2) E = {2,4,6,8, . . .}
IND(3,x+ 3) T = {3,6,9,12, . . .}
IND(a,x+ a) Ma = {a,2a,3a,4a, . . .}
IND(2a,x+ 2a) Ea = {2a,4a,6a,8a, . . .}
IND(1,x+ 2) O = {1,3,5,7, . . .}
IND(a,x+ 2a) Oa = {a,3a,5a,7a, . . .}
IND(a,x+ b) La,b = {a, a+ b, a+ 2b, a+ 3b, . . .}
IND(2,x+ 1+

√√
4

√√
x44 + 1) Q = {1 ·2, 2 ·3, 3 ·4, 4 ·5, . . .}

We use lower case letters as variables ranging over the elements in the sets
named by the respective upper case letters. For any variable ‘v’ and its re-
spective range V , we use ‘v+’ as notation for the successor of v in V . The
following rendering of theorem (20), which incorporates this successor nota-
tion, will be the basis for the array of related theorems obtained by a process
of deformation.

(21) For all n, 1+ 2+ · · ·+ n =
n ·n+

2
=

n ·n+

2(n+ −n)
.

And here are the related theorems.

For all e, 2+ 4+ · · ·+ e =
e · e+

2(e+ − e)
=

e · e+

4
.(22)

For all t, 3+ 6+ · · ·+ t =
t · t+

2(t+ − t)
=

t · t+
6

.(23)

For all ma, a+ 2a+ · · ·+ ma =
ma ·m+

a

2(m+
a −ma)

=
ma ·m+

a

2a
.(24)
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For all ea, 2a+ 4a+ · · ·+ ea =
ea · e+

a

2(e+
a − ea)

=
ea · e+

a

4a
.(25)

For all o, 1+ 3+ · · ·+ o =
o ·o+ + 1
2(o+ −o)

=
o ·o+ + 1

4
.(26)

For all oa, a+ 3a+ · · ·+ oa =
oa ·o+

a + a2

2(o+
a −oa)

=
oa ·o+

a + a2

4a
.(27)

For all la,b, a+(a+ b)+ · · ·+ la,b =
la,b · l+a,b + ab−a2

2(l+a,b − la,b)
(28)

=
la,b · l+a,b + ab−a2

2b
.

For all q, 2+ · · ·+ q =
q ·q+

3
2(q+ −q)

.(29)

A few comments are in order. Each of the theorems results from de-
forming the inductive proof of (20) by substituting a different subset of N
together with its corresponding induction principle. Throughout the array of
these proofs the “proof idea”, induction (in various forms), is held constant.
Although theorems (22), (23), (24), and (25) show in a straightforward way
how theorem (20) changes in response to substituting in place of N, respec-
tively, the set of even numbers, the set of multiples of 3, then more generally
the set of multiples of a, and the set of even multiples of a; it has to be
kept in mind that as a rule the process of “deformation” involves reworking,
“not just mechanical substitution” (Steiner 1978, p. 147). In the case of (26)
concerning the set O of odd numbers we need to observe that the recursive
characterization of the members of O by IND(1,x + 2) yields o = 1 + 2k,
o+ = (1 + 2k)+ 2, for some k ≥ 0. Hence o·o+

2(o+−o) = 4k2+8k+3
4 . Each sum-

mand in the numerator, except 3, is divisible by 4, so in order to ensure
getting an integer as a result we add 1 to the numerator and thus arrive at
formula (26), which is then proved by induction according to IND(1,x+ 2).
(Of course, subtracting 3 may seem, prima facie, an equally plausible alter-
native here, but adding 1 is favored by staying closer to the original form of
the summation theorem, i.e. by keeping the deformation minimal. Also the
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choice between between “adding 1” and “subtracting 3” can be decided by
checking the resulting formulas against the summation of 1+ · · ·+ o letting
o = 1 (and o+ = 3). It has to be stressed, however, that this slight element
of trial and error can be completely avoided once the theorems (20) and
(22) have been established.18) Deformations of a very similar kind19 lead
to further generalizations expressed in (27) and (28). The latter is a general
theorem covering the summation of arbitrary linear progressions of natural
numbers. Moreover, one can generalize even beyond linear progressions, as
shown by (29), if one doesn’t stick exclusively to deformations by means of
additive terms involving only constants (and parameters).20

Although we could continue our list of generalizations of theorem (20)
we stop here because the point should be clear by now. The inductive proof
of theorem (20) meets all of Steiner’s requirements to count as explanatory21

– provided, that is, quantifier ranges are indeed taken to be entities whichd
are mentioned in theorems. This puts Steiner in a dilemma. If he main-
tains that in general theorems make no mention of quantifier ranges, then
C(x) or D(x) is ruled out out as a characterizing property. And since this
is the most promising, perhaps even the only, candidate for such a property
that could render Pringsheim’s proof explanatory, Steiner’s account seems
bound to undergenerate, i.e. it seems thus blocked from fully capturing thee
intuitive notion of explanatory proof operative in mathematical practice. On
the other hand, including quantifier ranges among the entities mentioned in
theorems results in overgeneration by declaring, as we have just seen, the in-
ductive proof of (20) explanatory, which it clearly isn’t – neither by Steiner’s
own lights nor, as a rule, according to the understanding of working mathe-
maticians (some mathematicians even take inductive proofs to be paradigms
of non-explanatory proofs). So either way Steiner’s theory runs counter to
mathematical praxis.

Let us note, for the records, that this gives rise to an independent criti-
cism of Steiner’s account, since we can easily restate theorem (20), without
any changes to its proof, avoiding sorted variables and making sure N is
explicitly mentioned in it.

For all x in N, 1+ 2+ · · ·+ x =
x(x+ 1)

2
.

Now overgeneration is inevitable. Furthermore, it seems quite odd that Stein-
er’s theory qua theory of the explanatoriness of proofs should turn out to be
so overly sensitive to what appears to be a rather minor detail in the exact
wording of a theorem which doesn’t affect its proof.

Setting aside now the issue concerning quantifier ranges, let us investi-
gate further how Steiner’s account fares in the attempt to render Pringsheim’s



238 J. HAFNER AND P. MANCOSU

proof explanatory in terms of C(x) or D(x) as a characterizing property of
the set B. After all, despite the fact that Steiner’s account overgenerates
there is still a question of independent interest as to whether or not it un-
dergenerates as well. So let us grant that the set B of sequences of positive
numbers is in some way or other indeed mentioned in Kummer’s test. Then
C(x) or D(x) does characterize B, and this property is also clearly exploited
in Pringsheim’s proof. But Steiner requires more, i.e. C(x) or D(x) has to
pass Steiner’s dependence test. In other words, it must be evident “that ift
we substitute in the proof a different object of the same domain, the theo-
rem collapses” (Steiner 1978, p. 143). This raises the question, first of all,
what the domain should be taken to consist of. When Pringsheim gives his
proof of Kummer’s test he is working exclusively with sequences of posi-
tive numbers, hence it appears most natural to take the power-set of B as the
domain – from which B is then singled out by our characterizing property.
However, this is already as far as we can get within Steiner’s theory, since
C(x) or D(x) obviously fails the dependence test. Once again it is the ex-
treme generality of Kummer’s test which creates a problem here. Since this
convergence test works for arbitrary sequences (Bn) of positive numbers, it
clearly won’t collapse no matter what subset of B gets substituted and its
proof won’t really be affected by it either! In order to make Kummer’s test
collapse we have to go outside of B and allow sequences to contain arbitrary
real numbers � 0, positive and negative.22 This constitutes already a de-
viation from Pringsheim’s original setting yet even further adjustments are
needed to make Steiner’s theory work. Letting S be the set of arbitrary se-
quences of non-zero real numbers and P the power-set of S, we could, as a
first try, take our domain D to contain the elements of P minus all the proper
subsets of B. However, a closer look at Kummer’s test, which is stated in
terms of a limit, and at Pringsheim’s proof reveals that neither of them de-t
mands (Bn) to consist exclusively of positive numbers. Kummer’s test still
holds good and Pringsheim’s proof goes through if we only require that all
but finitely many terms of (Bn) are positive, i.e. that there exists an m such
that for all n ≥ m, Bn > 0; finite initial segments of (Bn) don’t matter. In
other words, substituting for B the set B∗, the superset of B which comprises
all such “eventually positive” sequences, won’t make the theorem (nor the
proof of it) collapse. Hence C(x) or D(x) still fails the dependence test with
respect to domain D , that is, it does not fully capture – neither in the tech-
nical sense of Steiner’s theory nor in the intuitive sense – what property of
(Bn) Kummer’s test really depends on.

At this point Steiner has two options.23 He could either further tailor
the domain D to the purpose at hand by simply excluding B∗ (and various
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other sets) from it, thus ensuring by brute force that C(x) or D(x) passes the
dependence test. But this is unacceptable not only because it amounts to a
completely artificial, ad hoc “immunization manoeuvre” to save his theory
in the face of recalcitrant data. More importantly, such a move goes against
the spirit of Steiner’s theory. On his account the explanation provided by a
proof consists (besides generalizability) in showing that and how the proved
theorem depends on a certain characterizing property. In other words, an
explanatory proof makes it evident that the characterizing property in ques-
tion pinpoints the reason why, “essentially”, the theorem is true. As we have
seen, restricting quantification to elements of B is not essential for the truth
of Kummer’s test, it is a sufficient but not a necessary condition. So, pro-
nouncing Pringsheim’s proof explanatory in virtue of a spurious dependence
of Kummer’s test on the property C(x) or D(x) yields a correct result for a
wrong reason.

Steiner’s other option is to first generalize Kummer’s test by explicitly
turning it into a convergence test quantifying over sequences from B∗, i.e. to
get the dependence right, and then account with his theory for the explana-
toriness of an – equally generalized – proof of it. This would then have to be
done in terms of a correspondingly generalized property C∗(x) or D∗(x). But
now the property C(x) or D(x) as well as Pringsheim’s original proof are out
of the picture, instead we are dealing with a different proof (and a different
theorem), even though the difference consists merely in a slight generaliza-
tion. Steiner can’t claim that the two proofs are “essentially the same”, since
one turns out to be explanatory (if everything works out) while the other one
doesn’t. So we have to take them as in fact two distinct proofs. But in this
case rendering one of them explanatory doesn’t tell us anything about the ex-
planatoriness of the other. Hence Pringsheim’s proof still escapes Steiner’s
theory.

Let us finally look at the interpretation of C(x) or D(x) as a partially
characterizing property of sequences – if only to point out why it won’t help.
Steiner concedes that in order to account for the explanatoriness of certain
proofs the notion of characterization has to be weakened to that of partial
characterization. It is quite common

“to study domain X by assigning a counterpart Y to each
object in X . The object in Y need not uniquely character-
ize anything in X ; examples are Galois theory and algebraic
topology” (Steiner 1978, pp. 149f).

One worry one might have here at the outset concerning the introduction
of partially characterizing properties is the danger of inflation. Although
Steiner doesn’t give us much to go on, presumably any property counts as
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partially characterizing unless, in the extreme cases, a property happens to be
either empty or true of everything of the domain (which seem to be the only
cases in which we can’t plausibly claim that such a property characterizes
anything at all even partially). Thus once partially characterizing properties
are admitted to account for explanatoriness Steiner may find himself on the
slippery slope to a vast overgeneration of his account.

Given the plausible restrictions on the notion of partial characterization
just mentioned it follows that C(x) or D(x), being true of every sequence in
Pringsheim’s domain, won’t even pass as a partially characterizing property
of sequences. Which shouldn’t come as a surprise since the arbitrariness of
(Bn) excludes even partial characterization within the domain B. Again we
have to move beyond B and, in turn, the problem of passing the dependence
test recurs.

So far all our attempts to get Steiner’s theory off the ground vis à vis`
Pringsheim’s proof have failed. Our best candidate for a (partially) charac-
terizing property turned out either not to be (even partially) characterizing at
all or still unable to do the job of rendering Pringsheim’s proof explanatory.
And in the absence of a characterizing property it doesn’t even make sense
to ask whether or not Steiner’s second main criterion for explanatory proofs,
generalizability, is satisfied. Because generalizability presupposes that there
is in fact a characterizing property on which the theorem depends such that if
we substitute (the characterizing property of) a different object of the domain
we get a related “deformed” theorem. One has to be careful here, however,
to distinguish generalizability from mere generality. It is well known that
Kummer’s test, because of its generality, is the source of many other conver-
gence tests. By substituting specific sequences for (Bn) one can obtain from
it (or from Pringsheim’s proof) as special cases, for instance, D’Alembert’s
test, Raabe’s test, and Bertrand’s test (cf. Tong 1994). But these tests are
special cases of Kummer’s test they are not gotten by generalizing it in the
relevant sense of Steiner’s theory. And Steiner himself is very clear about it.
He states with respect to an analogous situation

“The new result is contained within the old. The point is,
however, that generalizability through varying a character-
izing property is what makes a proof explanatory, not simple
generality” (Steiner 1978, p. 146).

In other words, what has turned out again and again to be a difficult problem
for Steiner’s account, namely the generality of Kummer’s test, cannot simply
be declared a virtue which renders, by itself, Pringsheim’s proof explanatory.
There is no such “shortcut” in Steiner’s theory from mere generality to ex-
planatoriness.
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Although there are many more features of Steiner’s theory that deserve
thorough reconstruction and critical assessment they are not of major im-
portance in the given context so we conclude our discussion at this point.
Enough has been said to bring out the substantial difficulties Steiner’s theory
has to account for the explanatoriness of Pringsheim’s proof of Kummer’s
test – besides other problems of a general nature which came to light in the
course of our investigations. It is our hope that this kind of testing theories of
mathematical explanation against the practice of mathematical explanation
will pave the the way to further studies in the same vein. This seems to us
the most promising approach for making progress in this treacherous area.

Department of Philosophy
U.C. Berkeley
USA

APPENDIX

Part I.

We show how to arrive at the equations (15) and (16) above, i.e. how to repre-
sent the terms cn and dndd of convergent resp. divergent series by means of the
positive terms MnMM of strictly increasing divergent sequences (cf. Pringsheim
1916, pp. 326ff and 332).

(A) Let cn be the terms of a convergent series, i. e. ∑∞n=1 cn = s. We set
s0 = 0 and, for n = 1,2,3, . . ., sn = c1 + . . .+ cn. Notice that s− sn > 0 for
all n, since the cn are positive so s > sn for all n. We can therefore define, for
n = 0,1,2, . . .

MnMM =
1

s− sn
.

Since the sequence (s− sn) is strictly decreasing and converges to 0 it fol-
lows that (MnMM ) is a strictly increasing sequence such that limn→∞MnMM = +∞.
Furthermore, we have

s− sn =
1

MnMM
and, for n = 1,2, ...

s− sn−1 =
1

MnMM −1

Now, for n = 1,2, ... it holds that sn = sn−1 + cn and we can thus write

cn = sn − sn−1 = (s− sn−1)− (s− sn) =
1

MnMM −1
− 1

MnMM
=

MnMM −MnMM −1

MnMM ·MnMM −1
.
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To show the converse, assume (MnMM ) to be a strictly increasing sequence
(n = 0,1,2, ...) of positive numbers such that limn→∞MnMM = +∞. Let cn =
MnMM −MnMM −1
MnMM ·MnMM −1

= 1
MnMM −1

− 1
MnMM . Then

k

∑
n=1

cn =
k

∑
n=1

(
1

MnMM −1
− 1

MnMM
) =

1
M0MM

− 1
MkM

.

As limk→∞ 1
MkM = 0,

∞

∑
n=1

(
1

MnMM −1
− 1

MnMM
) =

1
M0MM

hence ∑cn is convergent.

(B) Let’s now turn to the case of a divergent series ∑∞n=1 dndd (such that dnd > 0).
We first observe that

(1+ d1)(1+ d2dd ) · · · (1+ dkd ) ≥ 1+
k

∑
n=1

dnd .

Since ∑dndd is divergent, the left hand side also diverges as k → +∞. Further-
more, every factor (1+di) in the product is > 1, hence the sequence (MnMM ) as
defined by

M0MM = 1

MnMM = (1+ d1) · · · (1+ dnd )
is strictly increasing. For n > 1 we have MnMM −1 = (1 + d1) · · · (1 + dnd −1) and
by division we get

MnMM
MnMM −1

= 1+ dnd

hence

dnd =
MnMM

MnMM −1
−1 =

MnMM −MnMM −1

MnMM −1
.

This equation also holds for n = 1 by definition of M0MM .
Conversely, let (MnMM ) be a strictly increasing sequence (n = 0,1,2, ...) of

positive numbers such that limn→∞MnMM = +∞. We have to show that ∑dndd
is divergent, where dnd = MnMM −MnMM −1

MnMM −1
. We start by noting that ∑(MnMM −MnMM −1) is

divergent.24 Because
k

∑
n=1

(MnMM −MnMM −1) = MkM −M0MM

hence
∞

∑
n=1

(MnMM −MnMM −1) = ( lim
n→∞MnMM )−M0MM = +∞.
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Applying the logarithm function to the terms MnMM yields a divergent sequence
(logMnMM ). Hence the previous result implies that also ∑(log MnMM − logMnMM −1)
diverges. On the other hand, because of the equation

logx < x−1 for x > 0, x � 1

and the fact that, for all n, MnMM
MnMM −1

> 1 we have

logMnMM − logMnMM −1 = log
MnMM

MnMM −1
<

MnMM
MnMM −1

−1 =
MnMM −MnMM −1

MnMM −1
.

So by the comparison test (2) we conclude that a series ∑dnd is indeed diver-
gent if its terms satisfy

dnd =
MnMM −MnMM −1

MnMM −1
.

Part II.

In the construction of a convergence test of the 1st kind that exhibits the same
kind of generality as Kummer’s test Pringsheim proceeds as follows.25

As a special case of comparison test (3) we have

If for all n ≥ m, for some m, CnCC ·an < 1 =⇒== ∑an converges.

Since all partial sums sn =∑n
k=1 ck are positive, this is equivalent to

If for all n ≥ m, for some m, (CnCC ·an)
1
sn < 1 =⇒== ∑an converges.

And by assuming the existence of the involved limit we get

(30) lim
n→∞(CnCC ·an)

1
sn < 1 =⇒== ∑an converges.

On the other hand, letting MnMM as before denote the positive terms of a strictly
increasing divergent sequence, we can show the following. (Its proof, though
not difficult, is a bit more involved hence we postpone it for the sake of
greater perspicuity of the main argument.)

(31) lim
n→∞(

an

MnMM −MnMM −1
)

1
MnMM < 1 =⇒== ∑an converges.

By setting

(32) d1 = M1 and dnd = MnMM −MnMM −1 (n = 2,3,4, . . .)

we obtain terms of a divergent series.26 Furthermore we have

MnMM = M1 +
n

∑
k=2

(MkM −MkM −1) =
n

∑
k=1

dkd = sn.
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Thus by observing that Dn = 1
MnMM −MnMM −1

convergence test (31) can be stated as
follows

(33) lim
n→∞(Dn ·an)

1
sn < 1 =⇒== ∑an converges.

The construction of the terms dnd (resp. Dn) out of the given sequence (MnMM )
does not - contrary to how it may appear - impose a constraint on the nature of
the divergent sequence that can occur in (33), since the terms of any divergent
sequence ∑dnd admit of such a representation (32) by simply defining the
required sequence (MnMM ) thus

MnMM =
n

∑
k=1

dkd .

(In effect, what we have obtained here is another, simpler and more straight-
forward, representation of the terms dndd than the one given by (16) above.)
Now we are in a position to state a most general convergence test by com-
bining (30) and (33). We only need to note that, obviously, any arbitrary
positive sequence (Bn) is either of type (CnCC ) or type (Dn). So we finally
arrive at

lim
n→∞(Bn ·an)

1
sn < 1 =⇒== ∑an converges

where sn = ∑n
k=1 bk.

This is the most general convergence test of the 1st kind and with regard
to its surpassing generality it thus represents in Pringsheim’s theory “the
perfect analogue to Kummer’s test” (Pringsheim 1916, p. 344).

To complete the foregoing proof it remains to establish proposition (31).
We first show that if α > 1, q > 0, and (MnMM ) a strictly increasing divergent
sequence of positive terms, then αMαα nMM eventually dominates Mq

nMM , i.e. there
exists an m such that for all n ≥ m

αMαα nMM > Mq
nMM .

To this end we start from the elementary inequality

ex > x (for x > 0).

Setting x = p
q+1 ·MnMM for arbitrary but fixed p > 0, q > 0 yields

e
p

q+1 ·MnMM >
p

q+ 1
·MnMM (for each n).

By raising both sides to the (q+ 1)st power we get

ep·MnMM > (
p

q+ 1
)q+1 ·Mq+1

nMM



THE VARIETIES OF MATHEMATICAL EXPLANATION 245

hence
ep·MnMM

Mq
nMM

> (
p

q+ 1
)q+1 ·MnMM .

Since limn→∞MnMM = +∞, there is an m such that for all n ≥ m the right hand
side is greater than 1, thus

ep·MnMM > Mq
nMM (for all n ≥ m).

If α> 1, then logα> 0 so we can set p = logα and conclude

αMαα nMM = elogα·MnMM > Mq
nMM (for all n ≥ m).

By letting now q = 2 and using the fact that for all n, MnMM −1 < MnMM we infer
further

αMαα nMM > M2
nMM > MnMM ·MnMM −1 (for all n ≥ m)

hence
1
αMαα nMM <

1
MnMM ·MnMM −1

(for all n ≥ m)

and by multiplying by the (positive) factor MnMM −MnMM −1

MnMM −MnMM −1

αMαα nMM <
MnMM −MnMM −1

MnMM ·MnMM −1
(for all n ≥ m).

We know already (cf. Part I above) that the terms on the right hand side are
terms cn of a convergent series, so comparison test (1) implies that also the
terms on the left hand side are of type cn. Substituting them in test (1) yields
the following (for α> 1)

If for all n ≥ m, for some m, an ≤ MnMM −MnMM −1

αMαα nMM =⇒== ∑an converges.

Equivalently

If for all n≥m, for some m, (
an

MnMM −MnMM −1
)

1
MnMM ≤ 1

α
=⇒== ∑an converges.

Under the assumption that the limit below exists and observing that 1
α < 1

we eventually obtain proposition (31)

lim
n→∞(

an

MnMM −MnMM −1
)

1
MnMM < 1 =⇒== ∑an converges.
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NOTES
0The work of both authors was carried out under the auspices of the NSF Grant

SES-9975628 (Science and Technology Studies Program; Scholar Award), for which
the second author was principal investigator. The authors would like to express their
gratitude to the NSF.

1For a discussion of unificationist theories of explanation, such as Kitcher’s, see
Tappenden’s contribution in this volume.

2This is far from obvious, see Sandborg 1998.
3Kitcher 1984 seems to accept the heterogeneity of mathematical explanations.

In his book “The Nature of Mathematical Knowledge” (1984) he recognizes that
mathematical explanations “appear heterogeneous”: “Thus, at first sight, mathema-
tical explanations, like scientific explanations, appear heterogeneous. Whether we
shall some day achieve a single model which covers all cases of scientific explana-
tion - or even of mathematical explanation - I do not know. However, we suggest
that any adequate account of explanation in general should apply to the mathema-
tical cases (“data”) presented here.” (p. 227) However, his later work seems to go
against the grain of the previous approach and to imply that a unification account of
scientific explanation will be able to account for mathematical explanation in gen-
eral – “the fact that the unification approach provides an account of explanation, and
explanatory asymmetries, in mathematics stands to its credit” (p. 437 of 1989).

4Sandborg 1997, chapter 3, developed a similar project but we envisage a differ-
ent taxonomy.

5The proof is given by Steiner, the proof idea being due to G. Kreisel.
6Since in what follows we are dealing exclusively with series and sequences of

positive real numbers, the qualification “of positive terms” will be omitted through-
out.

7As a matter of fact this existence assumption is not really needed. The criteria
in question can be stated, more generally, in terms of upper limit, in (5), and lower
limit, in (6), in place of limits (cf. Pringsheim 1916, p. 318; Bromwich 1942, p. 30).
However, the use of the weaker formulations allows us to simplify the exposition
without losing anything important in our context. The same goes for (11), (12), and
(13) below.

8In the case of the convergence test the condition an+1
an

≤ cn+1
cn

implies an+1
cn+1

≤ an
cn

,
hence the sequence an

cn
decreases monotonically and there is some number γ such

that an
cn

≤ γ. Consequentlyγγ an ≤ γ · cn for n ≥ m, for some m, which implies the
convergence of ∑an. The argument in case of the divergence test is analogous.

9Its history is somewhat entangled. When Kummer published it in 1835 he im-
posed the condition that lim(bnan) = 0, which was shown to be superfluous by U.
Dini. According to Knopp this test was later “rediscovered several times and gave
rise, as late as 1888, to violent contentions on questions of priority” (Knopp 1928, p.
311 fn. 52). Dini as well as Pringsheim improved it (cf. Bromwich 1942, p.37/38).
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10[... daß das Kummersche Konvergenzkriterium] bei der sonstigen Darstellungs-
weise vollig abseits stand und keinerlei Analogon unter den Kriterien¨ erster Art zu
besitzen schien (Pringsheim 1916, p. VI).

11Proofs of these results are presented in the appendix, part I.
12[. . . das Kummersche Konvergenzkriterium] aus dieser rätselhaften Isolierung¨

befreit als naturliches Glied einer folgerichtig aufgebauten allgemeinen Theorie er-¨
scheinen zu lassen. (Pringsheim 1916, p. VI)

13This possible objection was in fact suggested to us by Klaus Jørgensen.
14Another property, L(x), which can be drawn from Kummer’s test itself – as well

as from Pringsheim’s proof – and which appears to characterize perhaps even more
precisely than C(x) or D(x) those sequences which Kummer’s test and its proof are
really about, is defined as follows. Let L(x) hold of a sequence (Bn) if and only if
for all n ≥ 1, Bn > 0 and there exists a sequence (an) of positive terms such that
limn(Bn · an

an+1
− Bn+1) > 0. However, we can find for any (Bn) a sequence (an)

such that limn(Bn · an
an+1

−Bn+1) = 1 > 0 by setting a1 = 1 and an+1 = an · ( Bn
Bn+1+1).

Hence L(x) and C(x) or D(x) turn out to be co-extensional after all and any of our
arguments below concerning the latter property equally applies to the former. So we
will just focus on C(x) or D(x).

15With respect to an explanatory proof of the Pythagorean Theorem Steiner points
out that a right-angled triangle is characterized by the property of being decompos-
able into two triangles similar to each other and to the whole (Steiner 1978, p. 144).
Evidently, this property does not pick out any individual right-angled triangle, the
only way to render it in fact characterizing seems by taking it as defining the set of
right-angled triangles.

16Nothing hinges on the fact that the principle of induction as a property of sets
picks out N “directly”, i.e. characterizes it in a top-down way whereas C(x) or D(x)
characterizes S in a bottom-up way via its members. It is clear that C(x) or D(x)
characterizes, if anything, the set of sequences of positive numbers but certainly not
any particular such sequence.

17It should indeed be a rather small concession on Steiner’s part, given that he
has to make an analogous move in the context of the Pythagorean Theorem anyway.
As pointed out in footnote 15 Steiner declares a property characterizing which picks
out the set of right-angled triangles, and that set is no more explicitly mentioned in
the Pythagorean Theorem than N is mentioned in (20).

18The deformation at the level of characterizing properties, or sets, which occurs
in the move from IND(1,x + 1) to IND(1,x + 2), or from N to O, which is thus
evidently effected by skipping the even numbers (i.e. the members of E) translates
directly into the following subtraction at the level of summation formulas. 1+ · · ·+
o = n·n+

2 − e·e+

4 , where n = o, e = o−1, n+ = e+ = o + 1. So we have

1+ · · ·+o =
2o(o + 1)− (o−1)(o +1)

4
=

o2 + 2o + 1
4

=
o(o + 2)+ 1

4
=

o ·o+ + 1
4

.

In an analogous way we obtain formula (27) directly from (24) and (25).
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19In case of (28) we can prove, on the one hand, that adding (ab− a2) effects a
deformation which is minimal relative to a family of prima facie equally plausible
alternatives. On the other hand one may proceed, again, at the level of sets from
the deformation of N into La,b, keeping track of which elements of N get skipped.
This is then paralleled by a corresponding deformation of the summation formula
in the following way. We start by applying formula (20) to 1 + · · ·+ la,b taking into
account the necessary subtractions which correspond to the skipping of numbers in
La,b (with respect to N). To increase perspicuity we abbreviate ‘la,b’ by ‘l’, denote
1 + · · ·+ l by ‘Σ’ and also make further use of (20). Thus we readily arrive at the
equation

Σ=
l(l + 1)

2
− [

(a−1)a
2

+(b−1)(Σ− l)+ k · (b−1)b
2

].

The number k appearing here is some natural number ≥ 0 such that l = a+kb. From
this equation we now work out the resulting deformation of the formula l(l+1)

2 step
by step.

Σ+(b−1)Σ=
l(l + 1)− (a−1)a +2(b−1)l− k(b−1)b

2

Σ=
l(l + 1)+ (b−1)l−a2 + a +(b−1)(l− kb)

2b

Σ=
l(l + b)−a2 + a +(b−1)a

2b
=

l · l+ + ab−a2

2b
.

20Here is how we arrive at formula (29). q·q+

2(q+−q) = q(q+1+
√√

4
√√

q+1)
2(

√√
4

√√
q+1+1) = q(

√√
4

√√
q+1+3)
8 .

Checking against one or two concrete summations of elements of Q indicates the

change to q(
√√

4
√√

q+1+3)
6 . We try here, as before, to make do with just additive constants

in order to keep the deformation minimal. Expressing this change in terms of q and

q+ yields q·q+

3
2 (q+−q)

, which is then proved by induction according to IND(2,x + 1 +
√

4
√√

x + 1).
21It is important to note that nothing more is demanded of deformation (or gen-

eralizability) in Steiner’s account than that it should lead to related theorems; other
than that it is explicitly left undefined (cf. Steiner 1978, p. 147). In particular ques-
tions as to e.g. the efficiency (or “naturalness”, whatever that may mean) either of
the process of deformation or of the resulting proofs compared to other methods
don’t enter at all into Steiner’s criteria for explanatoriness. Hence they need not
concern us here.

22To construct a counterexample let e.g. an = 1 for all n, and Bn = −n.
23It should be clear that simply dropping the dependence requirement from the

account is not an option for Steiner. Dispensing with it leads immediately to over-
generation, i.e. it allows the construction of easy recipes for churning out “explana-
tory” proofs. For instance, take any proof of a theorem of the form ‘For all x, ϕ(x)’,
specialize to some element a in the domain and add on as an idle element in the
proof some characterizing property ψaψψ (x) of a. Thus we obtain an “explanatory”
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proof of ‘ϕ(a)’ (no matter how non-explanatory the proof may actually appear to
us intuitively): it makes reference to a characterizing property and can also be de-
formed to yield related results ‘ϕ(b)’, ‘ϕ(c)’, . . . by specializing to other elements
b, c, . . . in the domain, substituting for ψaψψ (x) equally idle characteristic properties
ψb(x), ψc(x), . . . .

24The divergence of (MnMM ) is the only property that is needed here, neither mono-
tonicity nor the positivity of its terms come in.

25We’ll focus only on the main steps in the derivation and, as before, simplify
matters slightly. For the strongest formulation of the results the reader is referred to
Pringsheim 1916, pp. 337-334.

26For a proof of the divergence of ∑dnd see part (B) of Part I above.
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REVIEL NETZ

THE AESTHETICS OF MATHEMATICS: A STUDY

To the memory of Heda Segvic

1. THE PROBLEM MOTIVATED

Let us start with a trivial example, which however already suggests the out-
lines of the problem at hand. Imagine I have collected my lunch at a self-
service cafeteria so that now my tray holds, say, a paper plate with a sand-
wich on it, another one with fruit, and finally, a soda in a large cup (the kind
known as “small”). Now, as I prepare to detach myself from the counter, I
arrange the three objects on the tray. This can be approached through several
theoretical perspectives.

First, there is the mathematical-physical perspective, employing the spe-
cific field of statics (pioneered, as we shall note again below, by Archimedes).
The task is to arrange three objects on a plane, so that their individual cen-
tres of gravity, and the centre of gravity of the system as a whole, will ensure
maximum stability. One should in particular consider the problem of the
system’s robustness, i.e. how it may react with the disturbances it is likely to
undergo as I move towards a table. This is a very complex problem, and the
fact that we very often (not always) solve it in effective ways, may indicate
our powers of unconscious computation.

The mention of the “unconscious” immediately brings to mind a fur-
ther relevant theoretical perspective. It may be suggested that the desire
to arrange objects in neat, ordered ways could reflect either an obsessive-
compulsive disorder, or its more or less universal incipient form. Whatever
one thinks of any particular form of psychoanalysis, it is clearly a possible
way of explaining my acts as I rearrange the objects on the tray. While the
mathematical perspective provides a possible functional role for the arrange-
ment obtained, the psychoanalytic perspective provides a possible functional
role for the act of arrangement itself – by uncovering the desires and needs
which find their outlet in that act.

Finally, regardless of the desires that motivate the act of arrangement,
and regardless of the physical function of that act, one can study the formal
properties of the arrangement obtained, this time adopting the perspective of
aesthetics. Merely as a visual pattern on the tray, the objects possess prop-
erties such as symmetry and composition. The driving force that makes me
align my plates along a precise geometrical configuration is perhaps best un-
derstood by the psychoanalyst. However, some of the properties of the align-
ment I achieve are not psychological, but aesthetic: they belong, so to speak,
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not to the psychopathology of everyday life, but to the aesthetics of everyday
life. Anxiety was momentarily warded off; but on the tray itself, we observe
not the absence of anxiety, but the presence of, say, the golden section. In
general, then, statics studies the function of the arrangement obtained; psy-
choanalysis studies the function of the act of arrangement; and aesthetics
studies certain objective features of the arrangement obtained (which are of
course difficult to characterize precisely). We may perhaps say (if only so as
to have the word “function” available for our use on all occasions) that aes-
thetics studies the aesthetic function of an object. This is useful because now
we can note that the various functions differ as to their dominance in differ-
ent contexts. We may observe, for instance, how people rearrange their trays
as they sit down on the table: the tray safely in place, the physical function
lost its dominance and the aesthetic function is dominant instead.

I have introduced two theses. One is that the aesthetic function is ubiq-
uitous; the second is that, in different contexts, it may be more or less dom-
inant. Such theses have long been current (their best statement probably
remains Mukarovsky (1970), translation of a work written in 1936), though
perhaps interest in the aesthetic function of literary works has more recently
waned in the English-speaking world. At any rate, the trivial example I have
delineated is meant to introduce the idea of the aesthetic function of mathe-
matical texts.

Thus, we should not be concerned about the fact that mathematical texts
have obvious, overt functions (akin to the static features of the tray in my
example), e.g. to obtain the truth of mathematical results for some possible
mathematical or physical applications. This overt function can be separated,
analytically, from the aesthetic features of a mathematical text. (Of course,
there might be interesting interactions between such overt functions and the
aesthetic function.) Further, we need not be concerned about another fact,
that mathematical texts – like all texts – are motivated by all sorts of external
forces, such as the sociological realities of publication and tenure, compa-
rable to the psychological processes suggested to underlie my ordering of
plates on the tray. (Once again, though, sociological factors may interest-
ingly interact with the aesthetic factors.) Finally, I wish to stress – this is
the main point of my trivial example – the mundane nature of the aesthetic.
At least to begin with, in this article I do not intend to wax lyrical about the
beauty of mathematics. Mathematical works are sometimes great works of
art, sometimes (even when they are of considerable mathematical value) their
presentation is boring and pedestrian. It is not my contention that mathe-
matical texts are particularly beautiful, more so than other types of human
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expression. Rather, like all types of human expression, they possess, among
other things, an aesthetic dimension.

Yet the question of mathematical beauty is of special urgency. Math-
ematicians – it seems, more than most other scientists – often claim to be
motivated by the aesthetic dimension. To take the most famous example,
Hardy insisted that “The mathematician’s patterns, like the painter’s or the
poet’s, must be beautiful. . . Beauty is the first test: there is no permanent
place in the world for ugly mathematics” (Hardy, 1967, 85).1 Hardy then
went on to contrast the beauty of mathematics with its – as he claimed –
inutility. To be precise, Hardy argued that the utility of a given piece of
mathematics is inversely related to its beauty (so that, say, the multiplica-
tion table - perhaps the most ‘useful’ part of ‘mathematics’ – is so devoid of
beauty as hardly to deserve the name ‘mathematics’). In other words, Hardy
considered the aesthetic dimension as dominant in mathematics. We should
not follow judgements such as Hardy’s blindly; what we need to do is to have
some way to position them in the reality of mathematical experience. What
is the objective feature that authors such as Hardy identify in mathematics,
when they identify a ‘beauty’ within it? Only after we have answered such
questions, we can return to answer usefully the question, why Hardy chose
to value this feature above others. One purpose of this article is as a prole-
gomenon for such questions.

Another purpose lies within the history and philosophy of mathematics
themselves. It appears that there is a certain difference between arguing that
a certain piece of mathematics was created in order to get tenure, and arguing
that it was created in order to produce beauty. My intuition is that, in the first
case, we learn something about tenure, while in the second case we learn
something about mathematics. A mathematician, QUA mathematician, may
aim at truth, necessity, generality, and many other epistemic values – and at
the same time, and still QUA mathematician, he or she may also aim at non-
epistemic values such as beauty. Then again, he or she may aim at tenure –
but there we may be inclined to drop the ‘QUA mathematician’ clause.

This then may be the contribution of the following discussion to the his-
tory and philosophy of mathematics. Working in this discipline, we naturally
tend to concentrate on the epistemic values of mathematical activity – which
were of course at the heart of the philosophy of mathematics from its in-
ception with Plato onwards. If any non-epistemic values may be recognized,
their role might be acknowledged, but then they are considered as extrinsic to
mathematics itself. I would suggest that aesthetic value is a key example of
a non-epistemic value that, however, is intrinsic to mathematics. The thrust
of the articles collected at this volume is, I believe, to widen our picture of



254 REVIEL NETZ

the field of mathematical practice as a rational activity: one that appeals to
the visual and not merely to the symbolic, that aims at explanation and not
merely at proof. It also appeals, I suggest, to the aesthetic. Among other
things – and still as rational practitioners – mathematicians aim at beauty.

2. SOURCES OF BEAUTY IN MATHEMATICS

2.1. An Outline

I propose in this section a typology of sources of mathematical beauty. How-
ever, I warn immediately of the simplifications I adopt, selecting from the
complexity of the problem to focus on what is, I hope, a tractable and still
significant domain.

To start with, the problem of mathematical beauty might be addressed
at several levels, as beauty is encountered throughout the mathematical life.
First, most mathematicians feel that there are aesthetic qualities to the mathe-
matical pursuit itself. The states of mind accompanying the search for mathe-
matical results are often felt as sublime; an aesthetic study seems warranted.
This then is mathematical beauty as a property of states of mind. Second,
beauty resides in the products of this pursuit – in mathematical theorems and
treatises. This then is mathematical beauty as a property of texts. Finally,
beauty resides in the entities studied by those theorems and treatises – in the
many mathematical worlds – groups, spaces, numbers and sets. . . This then
is mathematical beauty as a property of the ontological realm of mathemat-
ics. This ontological interpretation is perhaps the main context in which we
think of “mathematical beauty”.

In this article I focus on beauty as a property of mathematical texts. I do
this for two extrinsic reasons and for one intrinsic reason. The first extrin-
sic reason is that texts are most readily available for our study: we have a
clear and well-defined corpus for investigation. The second extrinsic reason
– closely related to the first one – is that there is already a body of theory, in
poetics, which I can take as suggestive for the study of beauty in mathemati-
cal texts.2 Finally, and more intrinsically, I suggest that the study of beauty
in mathematical texts may shed some light on the question of beauty in the
mathematical pursuit and in the mathematical world. I shall try to argue for
this in the conclusion, when we have completed the typology.

One simplification, then, is to focus on a single layer of mathematical
beauty. Simultaneously, I limit myself to a single field. In recent years, it has
been a tacit assumption of much of the work in the philosophy of mathemat-
ics that mathematical practice is heterogeneous. The nature of mathematics
changes, depending on the discipline, the time and the place. In this inves-
tigation, we concentrate on properties of mathematical texts, which are even
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more obviously dependent on culturally specific settings than mathemati-
cal “ideas”, say, are. Thus it seems prudent to start not from some global
overview of the beauty in mathematical texts as such, but instead from a
single genre of texts. In this article, I concentrate on ancient Greek mathe-
matics, in particular geometry. This, once again, has extrinsic and intrinsic
reasons. The extrinsic reason is that I am most familiar with this genre; the
intrinsic reasons are that this genre is the foundation of western mathematics
– and is often invoked as a model for the role of beauty in mathematics3.

Briefly, then, this article offers a typology of the aesthetic issues in Greek
mathematical texts. We now finally come to the subject matter itself, and let
me explain how I intend to carve up this large field into a typology.

A very obvious initial distinction to be made is between the large scale
and the small scale. On the one hand, beauty is felt at the level of whole
treatises (or at the level of a proposition, taken as a whole). On the other
hand, beauty is felt at the level of the mathematical text as it unfolds – in
the immediacy of the texture of read words. The main difference suggested
by this comparison, it seems to me, has to do not with scale itself as with
the different kinds of experience it implies. At the large scale, beauty has to
do more with the ways in which mathematical contents are arranged; at the
small scale, the contents are less important, and the form of the arrangement
becomes more important. To offer a rough analogue, one can liken the large-
scale structure of a treatise to the narrative structure of prose works, e.g.
novels – which of course is to a large extent an arrangement of the contents
signified by the novels. On the other hand, one can liken the small-scale
structure of a single mathematical statement to the prosodic structure of po-
ems – which of course to a large extent has to do with phonological form
independent of content. In the next two subsections, I shall discuss first the
“narrative” properties of mathematical works (subsection 2.2) and then their
“prosodic” properties (subsection 2.3). That this crude analogue is of service
is part of what I need to show.

Narrative has to do with content; prosody has to do with form. Those
are the two essential layers of any discourse, and it is often suggested that
aesthetics has to do precisely with the clashes between layers of discourse.4

If so, we should expect the relationship between form and content, itself, to
be a source of beauty in mathematical texts. I try to show that this is the
case in subsection 2.4 below. This area, of the relationship between form
and content – signifier and signified – does not lend itself to an easy label
but, for reasons which will be made clearer in subsection 2.4 itself, I title it
“correspondence”.
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2.2. “Narrative”

The question of narrative often enters contemporary poetics in the form of
narrative as a process: what may be called narration. Thus for instance
one may note the distances between writers, authors and narrators, so as to
follow the aesthetics of ironies and gaps (Booth, 1961). A defining feature of
Greek mathematics is its implicit claim to transcend subjective perspectives:
this approach is thus largely irrelevant for mathematics.5 Narrative enters
mathematics not as process, but as structure: ignoring the question of the
identity of the narrator, something is being narrated, and we may note how
elements are selected and combined along this narrative.6

Take for example Archimedes’ first book on Sphere and Cylinder. This
has for starting point a discursive introduction (addressed to Dositheus, a
colleague), where the goal of the treatise is set out explicitly. Archimedes
proudly says he had discovered fundamental results about the sphere, in par-
ticular that its surface is four times its great circle, and that its volume is
two-thirds the cylinder enclosing it. Having said that, he moves on to offer
a set of axioms or postulates (none of which is very closely related to the
sphere), and plunges into the mathematical detail.

There is nothing about spheres or cylinders, their volumes or their sur-
faces. The main substantial sequence of results (propositions 2-6) deals with
polygons and circles in proportion. Next, propositions 7-12 deal with sur-
faces of pyramids; propositions 13-20 – the surfaces of cones (and of various
figures composed of segments of cones). Still no word of the sphere (though,
with cones, we at least move into something resembling the cylinder). Then
the following two propositions 21-22 move out to a totally new territory. In-
stead of having anything to do with three-dimensional figures, they return to
the polygons of propositions 2-6 and state for them very complex and special
results, having to do with proportions of lines drawn through the polygons.
Those lines do not seem to have any relevance to anything – certainly not to
spheres. (fig. 1).

Then, in proposition 23, we are asked to make a thought experiment.
We rotate the circle, polygon and lines from fig. 1, and obtain in this way a
sphere in which is enclosed a figure composed of segments of cones. It now
becomes obvious that the results concerning polygons, and the results con-
cerning cones, can be put together and (with the aid of the specific claims
made about proportion, as well as about pyramids), can immediately give
rise to the proportions determining the surface and volume of a sphere. The
seemingly irrelevant and long preparation – just about half the book – is sud-
denly found to be directly relevant so that, indeed, the main line of reasoning
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can now proceed quickly to obtain Archimedes’ main results in propositions
33-34.

As I promised already, it is not my intention to wax lyrical about mathe-
matics. That Archimedes was a genius of narrative is what I subjectively
feel. In more objective terms, however, all I am concerned with is that
narrative structure is indeed a proper perspective through which to analyze
Archimedes’ performance. The simplest way to show this is by noting that
he had alternative ways of presenting his argument. The most obvious one
– and the one with potentially the greatest harm for his narrative achieve-
ment – would have been to start with the thought-experiment of proposition
23. Clearly then the sense of a brilliant master-stroke would have been com-
pletely eroded. Thus we notice a fundamental fact: the mathematical kernel
of an argument – whatever we take this to be – only very weakly under-
determines the form it may take. The mathematician makes decisions for
the form, decisions that are mathematically undetermined (in a traditional,
narrow sense of mathematics) and therefore may well be dominated by the
aesthetic function.

We should not think of Archimedes’ Sphere and Cylinder as representing
the only type of mathematical narrative structure. As one further example,
let us now take Euclid’s Elements book I. We may first note that Euclid does
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not use the device of setting out his goal explicitly. Instead, his work starts
truly in medias res, with some definitions, postulates and common notions.
The text has to start from nowhere, but it is quickly infused with momen-
tum. A subject matter is implicitly defined – the triangle – and a string of
ever-stronger results follows, very often in a neat sequence where one result
leads on to the next. Thus we move almost imperceptibly from the state of
nil knowledge, at which we start, to relatively remarkable results such as the
congruities of triangles (propositions 4 and 8, to begin with). We also see the
relationships between angles and sides (the famous proposition 5 – base an-
gles in isosceles triangles are equal – and its converse 6). Problems, showing
how to obtain a task, and theorems, showing the truth of a result, are neatly
intertwined: problems 1-3, then theorems 4-8, then again problems 9-12. We
thus establish a pattern: problems lead on to theorems, which in turn lead on
to problems, and then again to theorems: theorems 13-21, and then again
problems 22-23. At this stage we get to some very strong and general con-
structions: a triangle from any given appropriate three sides, an angle equal
to any given angle. Now we press on again and, during the next phase of the-
orems, a variation on the theme of triangles-and-their-angles is offered, with
the notion of parallel lines, introduced from proposition 27 onwards. This
quickly leads to a problem, in 31, and then an application for the theme of
triangles-and-angles (the famous “sum of angles equal to two right angles”,
in proposition 32), as we move on to widen our field to quadrilateral figures,
from proposition 33 onwards. Parallelograms are studied, mainly through
the perspective of triangles-and-parallels, until we reach again a sequence of
problems on this set of issues, propositions 42-46. (45 is especially strong
and general – to construct, in a given angle, a parallelogram equal to a given
rectilineal figure – and Mueller (1981, 16) claims this is in some sense the
goal of book I.) Finally the book ends with the coda of Pythagoras’ theorem
(understood through triangles and parallelograms) in proposition 47, with a
quick converse, 48.

The movements of the text are all handled implicitly: the author never
interferes, never speaks on behalf of the propositions. They do the narrative
work on their own: pressing ahead with an even pace, moving from the ab-
solute nothingness of the foundations of geometry and obtaining a full struc-
ture, reaching the capstone theorem of I.477. (The architectonic metaphor is
hard to avoid.) A few figures are elaborated throughout, gradually evolving.
The evolution has a cyclical pattern – from problems to theorems and vice
versa – and a linear pattern – from more elementary results, to stronger re-
sults based on them. Thus there is an overall structure of a widening spiral
where every cycle of theorems and problems is capable of developing further
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the main themes. Finally we get to Pythagoras’ theorem, obviously a most
interesting result about triangles: triangles, the main character of the book,
make the most remarkable journey, from nothingness to Pythagoras.

This does not work at the level of surprise and irony of Archimedes’
Sphere and Cylinder, say, and the aesthetic principles are clearly different.
Euclid does not aim to startle, in a quick stroke, but to impress, in a stately
progression. Once again, Euclid could have made other choices, which
would have given the work as a whole a different aspect. He could have
introduced the circle at this stage, and so develop simultaneously the ele-
mentary results for all main plane figures (instead, he postponed the circle
to book III). This would have made this book more comprehensive in scope,
but lacking in narrative coherence. Or he could have ended this particular
book with the results on parallelograms, for instance, leaving Pythagoras’
theorem to another book. This, however, would be to miss on the sense of
closure which this theorem provides in its great inherent interest, and in its
reverting to the main character, triangles. In such ways, we can begin to sub-
stantiate one’s immediate impression, that in Euclid’s Elements I, narrative
structure is a dominant organizing principle.

We have thus seen two special examples of narrative structure in Greek
mathematical treatises. One can compare them, perhaps, to narrative struc-
tures in verbal art in general, for instance in the novel. Some novels are
organized in complex structures of suspense and irony, which work by evok-
ing expectations and then playfully subverting them; others are much more
directly progressive, and create their sense of structure from a certain bal-
ance and directionality about the work as a whole. Archimedes’ sudden
revelation, (polygon)=(figure composed of conic segments), is perhaps com-
parable to, say, Charlotte Bronte’s sudden revelation in Jane Eyre, (cries
at night)=(mad wife). An earlier stage of the narrative is suddenly found
to have a new, unanticipated meaning, by being retrospectively reinterpreted
through a piece of information provided at a later stage of the narrative. Take,
on the other hand, the stately progression of the triangle in Elements I, go-
ing through cycles of theorems and problems, in the process constructing
a thick world. This is perhaps comparable to, say, the stately progression
of the lives of Russian aristocrats in Anna Karenin, moving cyclically from
the Anna plot to the Lyovin plot and finally leading to the fulfilment of the
strands of narrative with Anna’s suicide and Lyovin’s family life. The ex-
amples are not meant with any great seriousness, and I certainly wouldn’t
like to suggest that, say, Euclid was a “realist” whereas Archimedes was a
“romantic” etc.. I merely wish to point out that one can plausibly point to a
variety of types of narrative structures which may be implemented to various
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aesthetic effects, and which can be found in mathematics just as they can be
found in literature. In the above, I have suggested two possible types, and
doubtless others can be observed as well.

It is immediately clear that narrative structures can be found in scales
smaller than the treatise taken as a whole. In the genre of Greek mathe-
matics, works are composed of a sequence of a few dozen smaller textual
segments, today referred to as “propositions”. Each of those units has inter-
nal structure, and some aspects of it closely mirror the narrative structures
suggested already. A proposition is a sequence of statements about objects.
The pace in which objects are introduced, and the ways in which statements
create expectations, fulfil or subvert them, may all be used for an overall
aesthetic function. I have touched upon this topic, from a separate angle,
in (Netz, 1999, 198-216), noting the Greek tendency to have smooth, linear
progressions in their proofs. I have identified there what I still consider to be
the dominant function: the desire to have the proof fit a certain model of per-
suasion. This may serve as an example of a more basic point. Persuasion, as
such, is not an aesthetic function: but the practices of persuasion and of nar-
rative are in fact closely implicated in each other. To persuade, the text must
be perceived to have a certain unifying structure - and a structure that may be
endowed with aesthetic properties. Furthermore, the very act of persuasion
is about the structure of introducing objects, raising expectations about them,
and fulfilling those expectations (or perhaps subverting them, e.g. in refuta-
tions). The structures that give rise to persuasion are precisely the structures
that give rise to narrative structure. Thus, while the aesthetic may not be the
dominant function of persuasive texts, it is an inevitably relevant function.8

I take a quick example. In (Netz, 1999, 213), I have suggested that
Archimedes’ Method 1 is different from most other, “smoother” proposi-
tions. Instead of a clear linear structure, it has several hiatuses in the ar-
gument and, in particular, it has a very complex, quirky structure near its
middle (I numbered the statements in sequence, so that the proof had 34
statements, and the complex passage is statements 13-18). I have suggested
that there might have been a particular motive involved: Archimedes intro-
duces here his surprising suggestion (to identify an area with a sum of lines).
The structure is all designed to delay this suggestion, and then to bring it out
in a startling way: exactly the same structure as we saw in larger scale in
Sphere and Cylinder I as a whole. We may indeed have identified a feature
of Archimedes’ style.

At any rate, it now seems plausible that narrative may sometimes serve
in mathematics as a source of beauty. I shall now briefly suggest, in more
metaphysical terms, why this, I think, may be the case.
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As noted above, narration – the use of narrators’ perspectives – does
not play a role in Greek mathematics. The medium of truth, par excellence,
is ordinary language. It is thus natural that verbal art – the art whose ve-
hicle is language – should so often dramatize the issue of truth and belief,
of objectivity and subjectivity. This however does not get dramatized inside
individual Greek mathematical texts, precisely because Greek mathematical
texts markedly dramatize this issue, when they are taken as a genre. In quite
simple terms, I argue that Greek mathematics was read, partly, against the
background of other forms of persuasion. Its claim to possess absolute ob-
jectivity and truth is reflected by a rigid form from which perspective-hood,
so to speak, has been eliminated. Perhaps this basic decision may be read in
aesthetic terms, so that the genre, as a whole, possesses beauty in its sublime
impersonality.

However, another kind of narrative structure is allowed: the author may
chose to reveal as much or as little of the plot as he or she pleases; he or she
may structure this information in many possible sequences. Such choices
may possess aesthetic value, and in this way mathematical texts may possess
an aesthetic dimension. I now suggest that this aesthetic dimension reveals
something fundamental about the relation between mathematics and beauty.

It might perhaps be considered strange that the author has so much
choice in mathematics. After all, is not mathematics governed by neces-
sity, so that mathematical truth simply unfolds as a matter of logic? In fact
this image is deceptive. It is true that, in a valid argument, the conclusion
does follow from the premises. If C follows from the combination of A and
B, it is possible to argue “A, and B, therefore C”, and C does not only appear
to be inevitable: it is inevitable, in the sense that it cannot fail to be true.
But it can easily fail to be made. In general, each mathematical text makes
a double set of choices: which premises to assert, and which conclusions to
draw explicitly from the premises. The fact that a premise is true, just as the
fact that a conclusion follows from asserted premises, both do not constrain
the mathematician, do not force the mathematician to make them. The math-
ematician works in absolute freedom – creating a fabric of text that is woven
together by the ties of logical necessity.

This dialectic of freedom and necessity is, I suggest, often at the root
of the beauty of mathematical narratives. What is, after all, a surprising
result in mathematics? It is a result whose perception of inevitability is not
determined by the text preceding it, so that it is perceived twice: once for
the freedom of the author who uncovered it, and then for the necessity of
logic the author has uncovered. Similarly, “smooth” structures work through
the perception of effortless inevitability, which is striking both persuasively
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and aesthetically. Now, it has been frequently suggested that the dialectic of
freedom and necessity is essential to art as such.9 Narrative art, certainly,
has for its protagonists individual persons, and for its form, structured plots.
It thus cannot fail to dramatize the theme of freedom versus determinism.
Among the many options open to persons, the author selects a single plot;
and similarly, among the many options open to mathematical objects, the
mathematician selects a single logical thread. Thus, mathematics cannot
fail to dramatize the theme of freedom versus necessity. This is one way in
which we see not only that mathematics possesses an aesthetic dimension,
but also that this dimension is essential to it, and closely implicates it with
other verbal forms that are more obviously “artistic”.

2.3. “Prosody”

The concept of “narrative” applies almost directly to mathematics, in that
mathematical works – just like many other works of verbal art – tell a story:
they have characters, and our information about the characters gradually
evolves. The same, of course, cannot be said about “prosody”. Literally
speaking, the prosodic dimension is completely suppressed in Greek mathe-
matics. The sequence of long and short syllables – the foundation of Greek
poetic prosody – never seems to be an issue at all.10 Here however I take
the notion of “prosody” in a very metaphorical sense, referring to any com-
positional device that may be analyzed apart from the meaning of the text,
referring purely to its form.

There are many compositional devices we can point out, some of them
familiar, indeed, from literature. To begin with, let us return once more to the
role of narrative. In literary theory, narrative has not only the global sense
of “plot” and “subject” in the work as a whole, but also the local sense of
a narrative textual segment, as opposed to other types of textual segments,
most importantly description. One of the main literary compositional de-
vices is this alternation of narrative and description. Some passages – de-
scriptive – add detail to the fictional world, constructing its underpinning
of reality; other passages – narrative – unfold the plot that takes place in
that fictional world.11 Description brings up things, narrative brings up the
events which happen and which are true of those things. Things and events
cross-determine each other, and in general narrative and descriptive passages
may work together in interesting ways. The same is true of mathematics.
In Greek mathematics, the two types of passages are technically known as
kataskeue, “construction” and apodeixis, “proof”. Construction is a descrip-
tive passage where things are brought into existence, proof is a narrative
passage where we are told what follows to those things. One should also
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FIGURE 2.

add the (shorter) ekthesis, “setting out”, which is a descriptive passage, and
the (shorter) diorismos, “definition of goal”, which is narrative.12 The main
difference between the “constructive” and the “argumentative” modes is that
the constructive mode is hardly structured in the syntagmatic dimension13.
The order of constructions is not set out as meaningful: they are merely a
sequence of one observation after another, “and let”, “and let”. The syn-
tagmatic dimension, however, is all-powerful in the “argumentative” mode,
strongly structured by the sequence of “since – therefore”. (It is perhaps for
this reason that the binary structure constructive/argumentative closely re-
sembles the binary structure descriptive/narrative: literary narrative, too, is
characterized by strong syntagmatic structure, absent from literary descrip-
tion).

Take for instance the first proposition in Apollonius’ Conics (I skip the
protasis or enunciation whose function is separate): “Let there be a conic
surface, whose vertex is the point A, and let some point – B – be taken on
the conic surface, and let some line – AΓB – be joined”. So far we have the
“setting out”, in mathematical terms a construction and in literary terms a
description (or, more precisely, an ekphrasis of the accompanying diagram,
fig. 2). “I say that the line AΓB is in the surface”. This is the “definition
of goal”, formulaically employing the first person to introduce the narrative
sequence. “For if possible, let it not be” (a meta-narrative statement, hard to
classify in terms of “construction or “proof”), “and let the line drawing the
surface be ∆E, and the circle, on which E∆ is carried – EZ”. (The “construc-
tion” proper: the ekphrasis of the diagram is now complete). “So if, the point
A remaining in its place, the line DE is carried along the circumference of
the circle EZ, it shall also pass through the point B” (the “proof”: we were
now told a story, and here comes its point:) “and there will be the same limits
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<shared> by two lines” (the end of the story proper) “which is impossible”
(a final meta-narrative statement).

David Fowler uses to say that Greek mathematics is about “drawing a
figure and telling a story” and Greek mathematical texts – to be more pre-
cise – are about “describing a figure and telling a story”. This is their basic
texture. In a miniature such as Conics I.1, the aesthetic effect derives from
the modal variety itself – the very fact that there are both descriptive and
narrative passages. In longer propositions, the alternation of description and
narrative can be used for more precise stylistic effects. This is because there
is a degree of freedom: the precise sequence of description and narrative is
far from rigid. One can chose to have a complete ekphrasis of the diagram
first, presented in great detail, then to move on to the proof (where no further
constructions are being made). This is often the path taken by Apollonius: in
Conics I.13, for instance, the “setting out” and “construction” take up (with
the brief intervention of the “definition of goal” between them) 20 lines, fol-
lowed by 30 lines of “proof”. The very long and very static stage of the
“setting out”, in particular, has a certain ponderosity that is very characteris-
tic of the style of Apollonius, and was clearly intentional. Compare this, say,
to the third proposition of Aristarchus’ On the Sizes and Distances of the Sun
and the Moon. The text starts with a brief “setting out”, immediately moving
on to draw a conclusion (“proof” mode) from it, and then back to construc-
tion, and so on. With D for description, N for narrative, and the number of
lines for each in brackets, the structure is

D (4) – N (1) – D (4) – N (1) – D (5) – N (15) – D (8)14 – N (4)

Aristarchus, correspondingly, has a much more “lively”, discursive style.
The binary structure of description and narrative is thus the chief com-

positional device of Greek mathematics. There are many other, more local
compositional devices, all due to the fact that the mathematician actively
selects from a variety of available modes. To begin with, mathematical argu-
ments are characterized by their sources of validity. Some claims are based
on visual considerations unpacking the diagram. Others are based on more
formal, linguistic manipulations (e.g., that if A is to B as C is to D, then
as A is to C as B is to D: proved in Elements V.16 and frequently used in
Greek mathematics). In more general, there is a tool box of results the Greek
mathematician knew well, and this tool box clearly has an internal structure:
some results fall together to form clusters; (Netz, 1999, 216-235) (e.g., as
we have seen for Book I of the Elements, elementary results about the tri-
angle are more closely related to elementary results about parallels, than to
elementary results about circles.) Thus the mathematical argument works by
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using sources of necessity of different kinds: a palette, from which the math-
ematician chooses and combines. This introduces the aesthetic dimension
of variety. Consider for instance the capstone theorem to the last book of
Euclid’s Elements (which is an appendix to XIII.18), proving that there are
only five regular solids. I quote a passage:

“For a solid angle cannot be constructed with two triangles, or indeed
planes” (a direct visual intuition) “With three triangles the angle of the pyra-
mid is constructed, with four the angle of the octahedron, and with five the
angle of the icosahedron”; (we enumerate numerically, going through the
ordinal sequence, certainty secured by the finite, inspectable nature of that
sequence) “but a solid angle cannot be formed by six equilateral and equian-
gular triangles placed together at one point, for, the angle of the equilateral
triangle being two thirds of a right angle, the six will be equal to four right
angles”: (this uses the properties of the triangle of Book I – together with a
quick calculation, which is yet another source of necessity) “which is impos-
sible, for any solid angle is contained by angles less than four right angles”
(this is proved in book XI, and is thus a very distinct part of the tool box).
This brief passage works then through visual intuition; through numbers per-
ceived as ordinals and as an object of calculation; through results from book
I and from book XI; all coming to function together organically. An obvi-
ous contrastive comparison would be propositions such as Euclid’s Elements
I.5, which work through an iterative application of a single source of neces-
sity. Elements I.5 is often felt to be dull (it is the famous pons asinoroum),
whereas the appendix to book XIII is obviously delightful. The difference
is essentially that, by the time he has reached book XIII, Euclid has enor-
mously widened his palette – he now has thirteen books to draw on whereas,
in I.5, he had only a handful of basic presuppositions.

“Variety” has to do with texture, but it is “prosodic” only in a very
metaphorical sense. My next example is nearly literally prosodic. For while
the rhythm of long and short syllables is not itself a marked feature of Greek
mathematical texts, the texts are marked by other rhythmic patterns, which
are of clear aesthetic significance. The rhythmic pattern of verse represents
the fact that verse is built from clearly defined units – lines – that partici-
pate in larger-scale structures – stanzas – and possess an internal structure
– feet. Greek mathematical texts – perhaps more than any other prose style
– are similarly built from clearly defined units, which allow a similar struc-
tural analysis. This is especially true of proofs which (as mentioned above)
possess the strong syntagmatic structure of the “since – therefore” sequence.
This sequence works on assertions, and combines them into arguments.



266 REVIEL NETZ

1 2

3

4

5

FIGURE 3.

FIGURE 4.

When analyzing mathematical proofs, I number the assertions and draw
the “trees” of the structure of the proof, e.g. representing an argument such
as “(1) and (2), therefore (3) (for (4), too), hence (5), as well” by fig. 3

Thus we can compare the logical structure of Elements II.5 (fig. 4) – a
prototypically “smooth” Euclidean proof – with that of Method 1 (fig. 5) – a
complex proof I have mentioned above. To begin with, we can see how the
notion of a “smooth” proof can be given concrete form. We may also begin
to note further features of this, quasi-prosodic structure. First of all, the proof
alternates between starting-points (assertions which are unargued for inside
the proof itself and appear in the tree “on top of nothing” – in Euclid’s Ele-
ments II.5 these are 1, 2, 5, 7, 10, 12, 13, 15, 16) and conclusions (assertions
which follow from other assertions and which thus appear in the tree “on



THE AESTHETICS OF MATHEMATICS: A STUDY 267

FIGURE 5.

top of” other assertions). Although one could, as a matter of logic, struc-
ture proofs so that all the starting-points are asserted first, followed by all
the conclusions, this is in fact awkward both for the cognitive computation
of the validity and for the aesthetic appreciation. The structure adopted in-
stead is a constant interplay between starting-points and conclusions, which
form together minimal units: arguments.15 (Thus, in a tree, every triangle,
or independent line, stands for an argument). Starting-points are the mo-
ments in which the proof is recharged, building its energy for the charge
of the conclusion. I have offered a comparison of the mathematical asser-
tion to a line of verse; I now suggest a further analogue – which I consider
to be relevant almost in a literal way – comparing the structure of starting-
points, conclusions and arguments, to the structure of unstressed syllables,
stressed syllables and feet. It is indeed difficult not to think of structures
of proof in terms of their “flow” or lack thereof (the presence or absence of
regular meter) of becoming “quicker” or “slower” (shorter or longer feet).
Consider figures 4 and 5: the precise pattern of figure 4 (iamb-troche-iamb,
iamb-troche-iamb, anapest-anapest – if you see what I mean), the very com-
plex structure of figure 5 (a radical free verse, where feet are consistently
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changed, though notice a gradual transition, from a very rough meter to start
with, to a sequence without hiatuses in assertions 14-34, and in particular
a sequence of three “iambs” right towards the end16). It is clear that some
sort of rhythmic patterning is going on, and my intuition as a reader, at least,
is that this pattern contributes to my appreciation of the text. Following a
proof as it unfolds, you are carried along it; the structure of this intellectual
motion has significance in both cognitive and aesthetic terms.

Moving back from rhythmic patterns as such to more general relations
between signs, one finally notes the following. In Greek mathematical texts,
signs are constantly being reformulated and co-related with each other, thus
creating a rich texture. Consider for instance a passage from the construction
in Euclid’s Elements II.5:

“. . . [A]nd, through the <point> ∆, let a line, ∆H, be drawn parallel to
either of the <lines> ΓE, BZ, and, through the <point> Θ, let again a line,
<namely the line> KM, be drawn parallel to either of the <lines> AB, EZ,
and again, through the <point> A, let a line, <namely the line> AK, be
drawn parallel to either of the <lines> ΓΛ, BM”.

It will be seen that we have here the same formula (for drawing a par-
allel) repeated three times, with the substitution of different letters and the
addition of connecting particles. The effect in this case is probably one of
sheer monotony, but the formulaic nature of the text is aesthetically signifi-
cant. The Greek mathematical text is composed of nearly fixed expressions,
such as the formula for drawing a parallel above. These stand to each other
in several relations. First, they allow some freedom (for instance, the words
“to either of”, in the example above, are a local variation on the more stan-
dard formula which makes lines parallel only to a single other line). Second,
formulae are subject to substitutions (as, in this example, that of letters). Be-
cause of these two factors, different tokens of the same formula type tend to
be different (indeed, otherwise there would hardly be a mathematical point
in repeating them). Third, such tokens are often related in meaningful way.
This does not happen in the example above, as it is from the construction,
where the syntagmatic arrangement is weak. A typical structure in which
formulae figure inside proofs is, for instance, the result of Elements V.16,
mentioned already:

“As A is to B so is C to D. Therefore, as A is to C so is B to D”.
(In actual appearance, A, B, C and D would be spelled out as some ge-

ometrical object, providing the text with a richer pattern). We can now see
that this is a sequence of two tokens of the same formula (that of propor-
tion), arranged in the relation “since – therefore”. This is a textbook case of
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a patterning of the syntagmatic and the paradeigmatic dimensions. This pat-
terning is essential to Greek mathematics:17 it is also “prosodic” in a rather
direct sense, in that it is (at the abstract level suggested here) a form of al-
literation (“cat, therefore mat”). Why is that beautiful? Partly, the answer
has to do with the sheer presence of structure, but partly it has to do with the
basic relation between sign and signified, and in this respect we shall return
to discuss alliteration in the next subsection.

Before moving on, we need to point out the general moral of this sub-
section. The phenomena described are in a way heterogeneous. I have dis-
cussed several levels of formal structure – of selection and arrangement –
the alternations of construction and proof, of various sources of necessity,
of starting-point and conclusion, of different tokens of the same formula-
type. They are all similar only in that they are all alternations; no deeper
unity combines them all, and no generalization is possible at the level of
their contents. But the very fact that mathematical texts support many lay-
ers of structure indicates an essential reason for the presence of an aesthetic
dimension. Aesthetic appreciation is often based on the perception of struc-
tures inside the artistic object. A mere concatenation of objects, devoid of
any structure, cannot function as a vehicle of communication, let alone a ve-
hicle of beauty. Any perception is structural; by imposing structures on the
sequence of objects, perception makes them meaningful – and opens up the
possibility of aesthetic value.

Now mathematical perception, particularly in its Greek form, imposes
not merely structure, but some very definite structure. Bringing in logical
categories, its boundaries and markings are extraordinarily sharp. The asser-
tion begins here and ends there; it is definitely a proof and not a construction;
it is a conclusion from precisely those premises; it works through precisely
this type of reasoning; it is made precisely of this sequence of formula-tokens
that belong to precisely the same type as that used above.18 Note further that
it is in the nature of mathematics to make the signs themselves, taken for-
mally, contribute to the logical sequence (A:B::C:D therefore A:C::B:D! -
More on this below). Thus, the kinds of structural relations picked up by
mathematical perception are directly relations of signs, and thus are directly
of potential aesthetic significance. Nothing surprising, then, in that mathe-
matical texts may display aesthetically pleasing forms: the more structured
a text is, the more it is implicated in the pattern of objects and structures –
that is, in an aesthetic pattern.
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We saw above that mathematical texts are essentially implicated in the
dialectic of freedom and necessity; now we see that they are essentially im-
plicated in the dialectic of object and structure. I move on to discuss what I
call here “correspondence”, the locus of yet another dialectic.

2.4. “Correspondence”

“Correspondence” is a thick jungle, and, to make some progress, I start with
Jakobson’s helpful terminology (which I have already used above without
explanation).

Jakobson stressed the bipolar structure of language: selection and com-
bination, similarity and contiguity, the paradeigmatic and the syntagmatic.
For the notions of “selection” and “combination” note that, in a text, the
speaker (a) selects, for each slot in the text, a unit of speech out of a large
pool of available candidates, and also (b) combines the selected units in a
certain order. Thus two kinds of structure are at work: similarity (of the var-
ious candidates for a single slot) and contiguity (of units which happen to
lie next to each other). The “similarity” kind of structure is known as “pa-“
radeigmatic”, the “contiguity” as “syntagmatic”. Now, in even more gen-
eral terms, we may say this. One possible textual device is to represent an
object through its possible equivalents or near-equivalents, in other words
through that to which it stands in the relation of similarity – and this is what
Jakobson calls “metaphor”. Another device would be to represent one ob-
ject through that to which it stands in the relation of contiguity; this naturally
would be Jakobsonian metonym.19 While very typical of a certain theoretical
approach, this set of notions is at bottom an analytical, indeed terminologi-
cal exercise, in itself theory-free. Stripped of all jargon (and of the cognitive
and linguistic assumptions which do make it stronger and more interesting)
Jakobson’s theory of metaphor and metonym is very simple indeed. Some
signs are similar to each other, some are contiguous to each other; one of
the devices of art is to put such similarities and contiguities on display. It
is especially on the paradigmatic kind of correspondence that I concentrate
here.20

Many mathematical signs stand to each other in close paradeigmatic re-
lations. We already began to see this in the preceding subsection: several
tokens of the same formulaic expression, say

A is to B as C is to D, C is to D as E is to F, A is to B as E is to F
are like several inflections of the same verbal root. In full form (where the
A, B etc. are spelled out as full geometrical objects) this may be obscured at
the level of performed text – just as, in ordinary language, the words sharing
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the same root may appear, in phonological form, rather distinct. Here, for
instance, is a passage from Apollonius’ Conics IV.46:

“Since it is: as the <square> on MΨ to the <square> on ΨI, so the
<rectangle contained> by AΠB to the <rectangle contained> by ∆ΠE, but
as the <rectangle contained> by AΠB to the <rectangle contained> by
∆ΠE, so the <square> on ΛT to the <square> on TI, therefore also: as the
<square> on MΨ to the <square> on ΨI, so is the <square> on ΛT to the
<square> on TI”.

This is nothing more than a series of paradigmatically related signs, iden-
tical in some important ways. Now, the perception of hidden paradigmatic
identity is a tool often used in poetic alliteration – say, the “hundred visions
and revisions” of T.S. Eliot’s Prufrock – and now we see that it is an essen-
tial feature of mathematical perception, as well. Quite simply, mathematics
cannot work as a deductive exercise without the constant re-identification of
signs. It would be difficult to show that this has a specifically aesthetic effect
in mathematics, just because the deductive function is so central. As one
reads, one constantly notes with satisfaction, “yes, it is indeed the same”.
This satisfaction of sameness recognized is sung most loudly by the bass
section, exulting over the validity of the derivation; my own intuition is that,
listening carefully, one can also discern, in the chorus of one’s recognition,
an alt voice rejoicing over the finding of sameness in difference.

This, at any rate, is an example where paradigmatically related signs
are placed in syntagmatic order. We move a bit closer to “metaphor” when
considering the structure induced on the text by the presence of paradig-
matic relations that do not have syntagmatic meaning. To put this in simple
terms, mathematical texts often return to speak about the very same topic,
and thus they contain an element of repetition. Such repetitions may be han-
dled in various ways, and thus we have an aesthetically significant choice.
Parellalism is an extreme and therefore an illuminating case. As noted by
Jakobson (in the same fundamental study mentioned above): “Rich material
for the study of [metaphor and metonym] is to be found in verse patterns
which require a compulsory parallelism between adjacent lines, for example
in biblical poetry. . . This provides an objective criterion of what in a given
community acts as a correspondence” (Jakobson, 1987, 110-111) . Greek
mathematics possessed one such pattern of compulsory parallelism, namely
the relation between general “enunciation” and particular “setting-out” and
“definition of goal”. So for instance the first proposition in Euclid’s Ele-
ments:

[Enunciation] “On a given finite straight line to construct an equilateral
triangle”.
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[Setting-out] “Let there be the finite straight line, AB”.
[Definition of goal] “Thus it is required to construct an equilateral trian-

gle on the straight line AB”.
The two parts – enunciation on the one hand, setting-out and defini-

tion of goal on the other hand – are related paradigmatically. They are two
inflections, general and particular, of the same root meaning; two signs dif-
fering in their relation to a single signified. They stand to each other, in
this case, in very close explicit correspondence (although, of course, the “in-
flection” demands considerable rearrangement). This is the simplest, least
ambitious type of metaphorical relationship, namely near-synonymy (com-
pare, e.g. Psalms 2.1: “Why do the nations conspire / and the peoples
plot in vain?”). Close parallelisms are a feature of Euclid’s style, and while
they seem to have a didactic motivation, they are also important for the fabric
of the Euclidean text, contributing to its serenity and gravity.

In other authors, metaphor is often much more ambitious. I now quote
from Archimedes’ Balancing Planes, proposition 6 (this, incidentally, is the
theorem we use when balancing plates on a tray):

[Enunciation] “Commensurable magnitudes balance at reciprocal dis-
tances having the same ratio as the weights”.

[Setting-out] “Let there be commensurable magnitudes A, B whose cen-
tres are A, B, and let there be a certain distance, E ∆, and let it be: as A to B,
so the distance ∆ Γ to the distance Γ E”;

[Definition of Goal] “it is to be proved that Γ is centre of the weight of
the magnitude composed of both A, B.”

Now the transformation requires an unpacking of the mathematical mean-
ing of the enunciation. Instead of mere synonymy, we have two separate
signs, whose only connection is their shared signified. Thus the text displays
the paradigmatic structure of signs.

This relationship, between enunciation and the sequence of setting-out
and definition of goal, is a special case of a very general feature of mathe-
matical texts. They repeatedly need to speak about roughly the same objects,
saying roughly the same things. Several propositions all use the same piece
of construction; or they all rely on the same local argument (which did not
get enshrined as a separate lemma, and therefore gets repeated from one
proposition to another). Or, in the analysis-and-synthesis mode (used a few
dozen times in extant Hellenistic mathematics), the proof goes through two
parallel stages, inversely related, the analysis and the synthesis. In all such
cases, the mathematician has several options. They range between two ex-
treme positions that are, in themselves, aesthetically empty: exact repetition
(where no paradigmatic distance opens up at all), and the explicit deletion of
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a passage by “as has been said in the previous proposition” (where paradig-
matic distance becomes infinite, between expression and non-expression). In
between lie various forms of variation that may or may not be intended to be
perceived as such: in short, another avenue for aesthetic effect. (In more gen-
eral, an aesthetic effect may be obtained by the overall pattern of decisions
about which kind of repetition to employ – full, zero, or some metaphorical
repetition).

We saw several cases where the problem of repetition arises from some
mathematical functional constraint; the solution to this problem may then
involve an aesthetic function. In other cases, the mathematical function of
the repetition is much less obvious, and the aesthetic function may therefore
be dominant. The clearest example is the phenomenon of alternative proofs.
Inside a single book, say Archimedes’ second book on Sphere and Cylin-
der, one may find the same theorem proved twice. Proposition 8 shows that,
given two unequal segments of the sphere, the ratio of the greater volume to
the smaller is smaller than the (what we would call) the square of the ratio
of the surfaces, but greater than (what we would call) the 1.5 power of the
same. Having proved this remarkable result, the text goes on to prove the
same result, once again. Heiberg, the great editor of Greek mathematics,
considered this alternative proof to be spurious, and of course he may have
been right. (Heiberg, 1913, 217 n.1) It is always possible to argue that an
alternative proof resulted not from the decision of a single author to produce
more than a single proof, but from the decision of some later mathematician
to try his or her hand at finding an alternative proof, and then from the de-
cision of yet another later scribe, to put the two proofs together. Whether
this is the case or not is significant in historical terms (and has some bearing
on our aesthetic judgement), but it does not touch upon the basic aesthetic
interpretation of alternative proofs. We merely need to transpose the locus
of aesthetic judgement, from the original author to the later mathematicians
(who went on to offer what is, in mathematically functional terms, a “redun-
dant” proof), and the later scribes (who considered a juxtaposition of several
proofs, whose result is identical, to be of interest). Now here we touch on a
major theme of the history of mathematics. The development of mathemat-
ics is frequently motivated not by the desire to solve open problems, but by
the desire to solve problems that are solved already - the most famous case
in Greek mathematics is the duplication of the cube, for which see Eutocius’
catalogue of solutions (Heiberg, 1915, 54–106). (In general, for the Greek
accumulation of problems, see the fundamental study Knorr (1986).) Math-
ematicians went on proving the same enunciation, just as painters went on
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painting the same annunciation; in the first case as in the second, the desire
to replicate sustained a perfection of styles and techniques.

Needless to say, the desire is not to replicate in a strict sense. Once again,
we see that exact replication is aesthetically empty. The desire, instead, is
to replicate-with-a-difference – to achieve the same result (or paint the same
scene) through a different line of reasoning (or through a different mode of
painting). I shall now try to explain why this may indeed be of such aesthetic
significance. Before that, however, we need to widen even further our field,
to further possible relations between signs and signifieds.

So far, we saw several ways in which the mathematical text contains a
multitude of signs, all referring to the same signified. This was true at the
level of the text, in the strict sense: we have dealt purely with the modality
of written language. This is in some sense perhaps the main modality of the
signs of Greek mathematics (it is at this level that Greek mathmatical texts
are either true or false). But this is not the only modality of the signs of Greek
mathematics, and an appreciation of its aesthetics must refer to this presence
of many modalities. Greek mathematics relies essentially on at least two
modalities, language and diagram. It thus involves simultaneously verbal
and visual perception. Not only is it possible to have two written signs refer
to the same object, then: we also have the possibility of having an object
referred to simultaneously by both verbal and visual signs.

Greek mathematical texts, apart from their general enunciations, refer
throughout to a diagram labeled by letters. The A, B, Γ of Greek mathe-
matical proofs participate simultaneously in two semiotic systems, the text
(where they are manipulated inside expressions), and the diagram (where
they are spatially configured). I have argued in (Netz, 1999, Ch. 1), that, in
logical terms, the two can not be understood separately: the text does not
function unless we read it in the light of the diagram, the diagram is incom-
plete unless we interpret it through the text. We may now notice the aesthetic
significance of this situation. Put simply: the diagram is read; the text is vi-
sualized. Greek mathematics relies, therefore, on a kind of synesthesia. In
fact, the synesthetic structure is probably more complicated than that. The
diagram is, in reality, statically present to the eye, but it is also discussed as if
it were dynamically manipulated and constructed, in a language suggestive
of motion in and through it. In other words, the verbal and the visual are also
accompanied by the kinesthetic. An obvious case is the way in which par-
allel lines are mentioned so that they appear to “flow in the same direction”
(“AB is parallel to CD”, in fig. 6). Consider an even more beautiful example
– an expression of a very common type. I quote from Apollonius’ Conics
I.41:
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FIGURE 6.

FIGURE 7.

“. . .∆Γ has to ΓH the ratio composed of the <ratio> that ∆Γ has to ΓΘ,
and the <ratio> that ΘΓ has to ΓH”. (Fig. 7).

Note how the three modalities interact: the statement works as a struc-
tural manipulation of verbal signs (it is a complex structured formulaic ex-
pression). It is also premised on the visual expression of the same signs
– without which, indeed, the statement is hardly interpretable. But finally,
note the very typical switch in directionality. ΓΘ is transformed into ΘΓ, in
a kinesthetic metaphor (one can hardly avoid the term) for the canceling-out
involved in the operation. The motion “in and out”, across the single line
ΓΘ, introduces it and then cancels it.

Synesthesia is a key concept in romantic aesthetics. In its apparent ir-
rationality, untrammeled sensuality, it answers to a certain kind of aesthetic
temperament.21 Parenthetically, I note that many modern mathematicians
seem to have an enormous interest in synesthesia: in fact, I suspect it is fun-
damental to their reports of the mathematical process as beautiful. Friedberg
(1968), for instance, in a very personal introduction to number theory, starts
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with a long and fascinating excursus about the author’s polymodal synes-
thetic perception of numbers – colored, tactile, acoustic, what have you.22

Now, it is of course more difficult to show that such aesthetic concerns mo-
tivated the Greeks. They definitely did not seek, Baudelaire-like, the expan-
sion of perceptual experience for its own sake. A more modest claim, how-
ever, would be that we have here another kind of variety. The richness of
modalities – that are felt to be organically related – is very different from the
intended, jarring effect of the romantic juxtaposition of incommensurables.
Greek mathematical synesthesia thus comes down to yet another form of the
multiplicity of signs for a single signified, with the added complication that
the different signs cone from separate modalities, and can only function as a
whole: none stands on its own.

This mode of operation – simultaneously perceiving an object through
several systems – occurs in mathematics in other, more technical ways. Even
inside a given modality, two domains often interact. Most significantly,
Greek mathematics translates the synesthesia of the linguistic and the visual
into a dual set of mathematical domains: proportion theory, and geometry.
Very often, a Greek mathematical proof operates by thinking of an object,
simultaneously, through the more abstract properties revealed through pro-
portion theory, and through the more concrete properties revealed through
geometry: it is simultaneously a line in space, and a magnitude in propor-
tion. Further global metaphors were offered in Greek mathematics, espe-
cially in its interface with physics: for instance, rays of vision are lines (op-
tics), musical harmonies are numerical ratios (music), the motion of stars is a
configuration of circles (astronomy). Archimedes, to mention one example,
pioneered the science of statics with the global metaphor of balance as the
(composite domain of) geometrical proportions. He first used this metaphor
in On Balancing Planes, to obtain results on the physical balance. Then,
he went on, in the Method, to use this metaphor in the reverse direction,
now applying the results of On Balancing Planes to obtain new results about
pure geometrical objects (seen now through the metaphor of the balance). It
seems to me that this double metaphor is often considered Archimedes’ most
beautiful achievement.

The alignment of separate domains is mathematically functional: it al-
lows different kinds of understanding to operate simultaneously and thus
to generate results which would have been impossible with only one of the
kinds. The whole theory of conic sections, for instance, would be impossible
to develop on the basis of either geometry or proportion theory alone. At the
same time, this global metaphorical structure is clearly perceived in aesthetic
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terms: the duality of the concrete and the abstract, in particular, seems to lie
at the core of the Platonic fascination with mathematics.

In Greek mathematics, those bimodalities can be definitely mapped: be-
tween proportion theory and geometry, inside mathematics; between mathe-
matics and physics, outside it. The same cannot be said for modern mathe-
matics: just as modern mathematicians are fascinated by the specific notion
of synesthesia, they also set out systematically, in the 19th century and even
more in the 20th century, to seek out the global equivalences between do-
mains. This quest shaped the content of modern mathematics, which is a
tight network of poly-isomorphic disciplines.23 It is also, I would suggest, at
the core of the modern mathematical sense of beauty. This is very different
from the much more static structure of Greek mathematics, where isomor-
phism is much less actively sought after: in this respect, it appears that differ-
ent aesthetic temperaments are visible in ancient and modern mathematics.

We have made a long detour through synesthesia and global equiva-
lences, but ultimately we return to the very basic phenomenon of the mul-
tiplicity of signs for a single signified: the paradigmatic dimension. The
detour, however, may help us to perceive the special role this dimension has
in mathematics. Why is it that it so obvious to us that several mathematical
discourses are about ‘the same thing’?

In fact, with mathematics we seem to stand in an easier position than
with other verbal forms. The paradigmatic is especially easy to identify in
mathematics. Why?

In literary texts we always face a central question about the paradig-
matic: how is it to be defined? It would be natural to think of it in terms of a
shared “core” between the two verbal segments standing in the paradigmatic
relation – “cat” and “feline”, or “cat” and “dog”, or perhaps even “cat” and
“mat” – but, as the examples show, “core”, generally speaking, is a slippery
concept. Equivalence is perhaps indefinable in the natural lexicon. But now
it becomes clear that, in the mathematical context, the concept of “core”
has a special relevance. Consider “alternative proofs”: two proofs share a
core meaning, if they prove the same result, i.e. if they are mathematically
equivalent. Here is the concept organizing the paradigmatic dimension in
mathematics. As we have mentioned already in the preceding subsection,
the logical categories employed by mathematics make its structures much
sharper than those of ordinary discourse, and the same goes for paradigmatic
structure. “Equivalence” is a very clear term in mathematics, as perhaps
nowhere else.

However, even mathematical equivalence is a complex object. Hence its
aesthetic significance.
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Let us try to approach in aesthetic terms the most basic phenomenon of
mathematical equivalence, derivation. This is the major arranging principle
of a mathematical text: P→Q.

We have in fact mentioned derivations already, in the context of “rhythm”,
where I have suggested that the metrical pattern of a mathematical proposi-
tion is marked by the sequence of “unstressed”, argued assertions, alternating
with “stressed”, argued assertions. Thus, I suggested that the rhythmic pat-
tern of the proposition is given by its pattern of derivations. I now suggest
that this is also its main bind of correspondence. We thus see a certain dual
level for derivations: at the large-scale level, they create the pattern govern-
ing the proposition; at the immediate, small scale, they are a strongly marked
correspondence. This duality is very intriguing, since exactly the same holds
with rhyme. Derivation, one may say, is the rhyme of mathematics. For
rhyme, too, creates the strophic pattern of a (rhymed) poem - while being its
most strongly felt correspondence.

This analogy has an even more direct application: derivations, like rhym-
es, are aesthetically effective where there is sufficient distance between the
syllables/assertions – no “knight”/”night”, P→P.24 This is the principle that
tautologies must be avoided. Nor of course should distance be too large: the
rhyme must be heard, the derivation must be seen to be valid. Notice that the
constraints on derivation are aesthetic rather than logical. A “trivial” deriva-
tion (P→P, or nearly so) is logically valid; while a logically valid derivation
from P to Q, whose validity is, as stated, impossible to perceive, fails not as
a matter of logic but as a matter of persuasion and pleasure. Briefly then,
when following a derivation, we must see both that P and Q are distinct, and
that they are identical. The two signs must both refer to the same signified,
without being identical.

Consider e.g. the following type of derivation:25

“Triangle ABC is similar to triangle DEF. Therefore as AB to DE, so BC
to EF”.26

There is a beauty here, I feel: that two statements – one on a geometrical
shape, another on a much more abstract proportion – are found to be closely
related, indeed nearly “identical”. (The first implies the second; the second
does not fall much short from implying the first). Of course they are not
identical: they say different things, in very different ways; they belong to
different modalities; yet they are also nearly the same. Compare Larkin:

“Man hands on misery to man:
It deepens like a coastal shelf.
Get out as early as you can,
And don’t have any kids yourself”.
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Once again: there is beauty in the startling, irrational apposition of
“shelf” (metaphorical to begin with) and “self”: the two, suddenly, the con-
crete and the abstract, are found to be somehow “nearly the same”.

The relation between rhyme and derivation merits a closer look for it
may, I think, offer a key to the more general relation between poetry and
mathematics. Both rhyme and derivation share the same combination of
difference and identity: they reveal that two entities, seemingly different, are
at some level identical. In both cases, this can be done because the entities,
to begin with, subsist at two separate levels – the sign and the signified.
Thus we are shown that two sign/signified combinations are identical in one
respect, different in another.

Rhyme and derivation are thus similar; but they are also different or,
more precisely, complementary. Rhyme works by having two sign/signified
combinations that are similar as signs and dissimilar as signifieds; derivation
works by having two sign/signified combinations that are similar as signi-
fieds and dissimilar as signs.

Rhyme: sign → signified1, signified2 (“shelf” / “self”)
Derivation: sign1, sign2 → signified (similarity / proportion)

The two sides of a mathematical derivation are very dissimilar in form;
they approach each other at the level of content. In a complementary fash-
ion, the two rhyming words are very dissimilar in meaning; they approach
each other at the level of form. The mathematical relationship is anchored
in meaning, marks the meaning; the poetic relationship is anchored in form,
marks the form. In sum, then, mathematics and poetry both utilize the binary
nature of the sign/signified relationship, to combine identity and difference;
in mathematics, the identity is at the “signified” level, in poetry, it is at the
“sign” level. The patterns of identity and difference are similar but comple-
mentary. Inasmuch as they are similar – merely as patterns of identity and
difference – they both yield a pleasing aesthetic relation. But inasmuch as
they are complementary – in the different levels they mark – they tend to
have very different effects.

Let us see what – in a similar metaphysical level of abstraction – Jakob-
son had to say on the nature of poetry. I quote the conclusion of his article
“What is Poetry?”27:

“Why is [poetry] necessary? Why is it necessary to make a special point
of the fact that sign does not fall together with object? Because, besides the
direct awareness of the identity between sign and object (A is A1), there is
a necessity for the direct awareness of the inadequacy of that identity (A is
not A1). The reason this antinomy is essential is that without contradiction
there is no mobility of concepts, no mobility of signs, and the relationship
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between concept and sign becomes automatized. Activity comes to a halt,
and the awareness of reality dies out”.

Art, according to Jakobson, is about subverting our ordinary, automatic
acceptance of reality – in this case our ordinary, automatic acceptance of the
sign/signified relationship. Because poetry creates a web of relations that
mark the sign aspect of the sign/signified combination, it subverts this very
relationship. Why is that? Because in the ordinary, automatic acceptance of
speech, we take it for granted that the relation is

sign → signified

That is, the sign is there merely to mark the signified, and does not have a
significance of its own. The sign is supposed to do no more than invoke the
signified – that is, determine the signified.

But in poetry, this determination of signified by sign is subverted: it has
the structure

sign → signified1, signified2

I.e. similar signs yield very different signifieds and the determination fails.
The very function

sign → signified

Is thus being questioned: poetry, in this way, is a critique of language.
Mathematics, on the other hand, does nothing of the kind. It is fully

anchored on the signified, and its structure

sign1, sign2 → signified

Supports the intuition that signs are no more than entries into signifieds. The
combination of sign/signified is not subverted, but supported. Mathematics
is not a critique of language, but its affirmation.

Such considerations may seem perhaps rather removed from actual expe-
rience; perhaps they are. Yet this kind of metaphysical politics – the politics
of abstract subversion, as it were – is central to contemporary literary theory.
And certainly the sheer surprise of irrationality, of the breaking down of the
relation between form and meaning, is part of aesthetic experience. This is
especially true for a certain kind of romantic (or modernist) aesthetic temper-
ament. Perhaps one might even suggest the following. If poetic correspon-
dences undermine the notion of rational correspondence, while mathemati-
cal correspondences affirm the notion of rational correspondence, we should
predict that, to some temperaments, poetry would seem suspect while math-
ematics would seem praiseworthy, indeed a model. Such may have been
Plato’s temperament.

With all such differences, however, the main result is this: that mathe-
matics is shot through with the notion of correspondence. It fully partakes in



THE AESTHETICS OF MATHEMATICS: A STUDY 281

the dialectic of identity and difference. Thus it creates a pattern, of potential
aesthetic significance. Arguably, nowhere else is the dialectic of identity and
difference so rich and visible as in mathematics. Perhaps the best evidence
for this is, once again, the recent quotation from Jakobson:

“. . . Because, besides the direct awareness of the identity between sign
and object (A is A1), there is a necessity for the direct awareness of the
inadequacy of that identity (A is not A1)”.

Jakobson, of course, was not above using quasi-mathematical notation
to enhance the scientific credibility of his methodology. But could he really
have chosen a better way to express the notions of identity and its absence?
Nowhere else are those notions so central, so clear. Mathematicians keep
affirming just that: that A equals B. No one else – not even poets – affirms
such claims as often. The presence of the dialectic of identity and difference
in mathematics is far from accidental: it is, quite simply, what mathematics
is about.

3. CONCLUSION

I have offered a typology of possible sources of beauty in Greek mathema-
tical texts. They fell into three main categories. The first, “narrative”, is a
consequence of the fact that mathematical texts are freely written, and yet
display necessary connections. This allows mathematical texts to display all
kinds of combinations of surprise, invention and retrospective inevitability.
That is what I call the dialectic of freedom and necessity, a dialectic that
often seems to speak to our sense of beauty.

The second, “prosody”, is a consequence of the fact that mathematical
perception organizes its reality in well-defined units that are strongly struc-
tured by a web of relations. This allows mathematical texts to display rich
structures, in many interacting layers. That is what I call the dialectic of ob-
ject and structure, which is at the heart of art and indeed communication in
general.

Finally, “correspondence” is a consequence of the fact that mathematical
texts constantly restate their contents in equivalent ways. Statements are
subtly transformed and restated in derivations, and objects are perceived in
sequence through several separate perspectives. This may be at the heart of
mathematical beauty since this constant re-shuffling of equivalent statements
is what allows mathematical texts to display, finally, both the combinations
of surprise and necessity mentioned in the context of “narrative”, and the rich
structures mentioned in the context of “prosody”. In a more narrow sense,
the relations displayed in mathematical texts – true identities that bridge truly
different objects – somehow pick up a kind of surprise and structure that is
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of special value. That is the dialectic of identity and difference, which is
perhaps one of the major themes of the aesthetic experience. At any rate, in
a sense, this dialectic is most perfectly instantiated in mathematics.

In this article, I narrowed the questions of mathematical beauty to the
question of beauty in mathematical texts (concentrating on Greek mathema-
tical texts). I have largely ignored the question of beauty as a property of
mathematical states of mind, and of beauty as a property of mathematical
objects.

I shall not try to offer here any generalizations across historical periods.
I did make a few suggestions for possible historical discontinuities: the ap-
pearance of a personal voice in some early modern genres of mathematics;
the valuation of synesthesia and metaphor as such in some fields of modern
mathematics. I suspect the typology offered here has considerable continuity
with many other genres inside the western tradition, if only because of their
genetic dependence upon Greek mathematics. But it will be necessary to
study each genre separately, uncovering its own internal aesthetic principles.
In the study of experience there are no shortcuts.

Further, I have little to say on beauty as a feature of states of mind. Seen
in an abstract light, such states of mind are “text”, as well, but texts to which
our only access is the mathematician’s introspection. This I do not possess,
and I can only salute Polya or Poincare, Hardy or Hadamard. The study of
such mathematician’s reports is important, and may, with caution, be used
in a historical study (more on this below). I shall not try to pursue this here
except noting that, once again, I suspect there are continuities between the
texts of mathematics and “texts” of mathematical intuition. Perhaps surprise
and inevitability, the concrete and the abstract, conspire first in the mathe-
matician’s imagination, bringing forth in his or her mind what will later on
be enacted in writing.

Something similar may be said with greater confidence on the question
of the beauty of mathematical objects. Here, I would suggest, we have a spe-
cial or limiting case of the forces shaping the beauty of mathematical texts.
This is most obvious with one major type of mathematical objects, namely
mathematical facts. Mathematical facts (or results), such as Pythagoras’ the-
orem, or that a sphere’s surface is four times its greatest circle, are all clearly
beautiful. They are also, simply, a limiting case of a narrative. A result is a
narrative, stripped to its bare structure: instead of telling the elaborate story
of the first book of Euclid’s Elements, or of Archimedes’ first book on Sphere
and Cylinder, you reach directly for the punch line. But what makes this
beautiful is the promise of a narrative. Any fool can tell you that a sphere’s
surface is four times its great circle – or indeed that it is three times its great
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circle (which sounds even nicer). The beauty resides in the statement’s be-
ing demonstrably true. It is surprise and inevitability combined that make
a mathematical statement beautiful: exactly the “narrative” mechanism we
saw operating in the beauty of mathematical texts.

Moving on to “objects” in a more narrow sense – to the worlds of parabo-
las and perfect numbers – our observations on the mathematical perception
in texts become relevant to the mathematical objects themselves. Mathema-
tical perception is structural; aided by logic, it brings sharp contrasts, con-
tours and connections. These may then be beautiful. This principle is true
of derivations in the mathematical proof – and of objects in the mathema-
tical world. We are able to perceive, through mathematics, that a parabola
has infinitely many diameters, around which it is, in a clearly defined sense,
symmetrical; we are able to perceive that a perfect number is precisely equal
to the sum of its parts. I have said almost nothing so far about “symme-
try”, “harmony”, “equality”, “proportion”, perhaps the notions that spring
to mind most naturally when considering the beauty of mathematics. These
are structural notions; “harmony” is perhaps nothing more than a structure
we are able to perceive. At any rate, the continuity between the beauty of
texts and the beauty of objects, based in both cases on structural perception,
seems plausible. Finally, I would suggest the same for the final source of
beauty in mathematical texts – the dialectic of identity and difference. This
after all is a way in which texts refer to objects. It is the same parabola
which is seen both as a geometrical cut in a cone, and as the site for abstract
proportions; the same perfect number which is perceived both as a sum of
numbers and their multiple. Mathematical perception is not only structural,
but multi-layered. In particular, we repeatedly see things – when we see
them mathematically – as both concrete and abstract. This is the Greek,
and then western, bifocal vision of the mathematical object, simultaneously
particular and general. And this is further repeated throughout the mathema-
tical disciplines, whether “pure” (where a visual diagram is simultaneously
an abstract, language-defined object), or “applied” (where the same object is
simultaneously “mathematical” and “physical” – magnitudes in proportion
that are plates on a tray). From Plato onwards, this coincidence of the con-
crete and the abstract seems to have informed the aesthetic appreciation of
mathematical objects.

I now move on to a number of objections to the approach delineated in
this article.

I can imagine a perplexed response, wondering how valid my account
can be given its novelty. The very fact that mathematics is so little explicitly
analyzed in aesthetic terms, while art is, seems to indicate a real distinction
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between the two. This response has to be qualified – in some ways, an aes-
thetic appreciation of mathematics is not novel, but commonplace – but it
is essentially valid. A theoretical approach to the aesthetics of mathematics
should also offer an account of its own absence.

Something has already been said in this respect at the end of the preced-
ing section, where I pointed out the complementary nature of mathematics
and poetry. In fact, mathematical texts do differ fundamentally from other
forms of verbal art. Because their essential organizing principle is that of
logical equivalence, they foreground a set of relations which is in principle
independent of specific linguistic form. When the speaker and the audience
share a large body of linguistic tools (as was true inside Greek mathemati-
cal communication), specific forms such as Greek mathematical formulaic
expressions may be used to signal and support the logical relation of equiv-
alence. But when the linguistic tools are no longer shared (as happens, for
instance, when a Greek mathematical work gets translated by modern math-
ematicians), the specific linguistic tools are no longer of help at all. To per-
ceive the logical equivalence, then, the modern mathematician must substi-
tute new forms for the old ones. Typically, a modern rendering of an ancient
mathematical text would transform it into modern algebraic notation. This
would be done – here is a crucial realization – not to suppress its relevant
aesthetic properties, but to enhance them. The modern algebraic notation is
the restorer’s paint, retouching a surface that became worn with time. There
can be no aesthetic object where there is no perception, and the perception
of mathematical relations is dependent upon using the tools of mathemati-
cal perception available in your own culture. Briefly, then, most aesthetic
properties of mathematical texts become visible only under translation. This
is true for most properties of “narrative” and “correspondence”, and even
to many properties of “prosody” (the rhythm of a mathematical proof, for
instance, can only be perceived when the proof is perceived as a flowing se-
quence, i.e. translated to your own mathematical language). This is directly
the opposite of verbal art par excellence – lyric poetry – where the dominant
aesthetic properties reside in the specific linguistic form. It is for this rea-
son that mathematics appears not at all to be a form of verbal art. Indeed it
isn’t. It is enacted in words, but its dominant aesthetics are located not in the
verbal, but in the logical domain.

This, however, does not make it any less of an art. Logical relations are
not any less interesting than verbal relations. In fact, they allow rich and yet
precise structures, much more than verbal relations do. There should there-
fore be no surprise that poetics is applicable to science or to mathematics. In
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particular – just because of its great elegance – the glass slipper of structural-
ist poetics may, indeed, fit the foot of science even better than it fits that of
art. Here I approach another possible reaction against my study. Perhaps one
reason why many literary scholars are dissatisfied with the old structuralist
model is precisely because of its precision, of its search for structural har-
monies. In art, the ambiguous is sometimes as valuable as the precise, the
jarring as much as the harmonious.28 A theoretical model, where works of
art are analyzed as elegant solutions to problems, cannot apply directly to
works whose theme is failure and inresolution.29 But – with the interesting
exception of paradoxes - inresolution is not a theme in mathematics. Solu-
tions are; as are structures and harmonies; hence there is also a poetics – and
a rather straightforward one - of mathematics.

I am trying to reassure contemporary literary critics. No, I do not de-
mand of them to find in literature quite the same elegance we find in math-
ematics. But then I know they can hardly feel reassured. In this article, I
have argued for the presence of the aesthetic in mathematics, by arguing that
mathematics has a quasi-literary structure. I am not so naı̈ve as to fail to¨
realize that, in contemporary literary theory, the notion of the aesthetic in
literature has nearly become a taboo.30 Nor am I so hypocritical as to deny
that, in this article, part of my motivation was to challenge this taboo: I use
the metaphor of mathematics as literature as beautiful so as, implicitly, to
make more plausible the metaphor of literature as mathematics as beautiful.
Nor, finally, am I so naı̈ve as to believe it’s as easy as that.¨

The issue goes to the heart of my suggestion at the introduction to this
article, that while non-epistemic, beauty may be also a rational value: to put
roughly, that there is some objective reality corresponding to the experience
of mathematical beauty, which cannot be reduced to its historical construc-
tion. This is forcefully denied by contemporary literary theory, where the
historicity of value is often seen as a proved fact.

I believe that, in this respect, contemporary literary scholars have an
important and valid perception. Value should be historicized. But this, I
believe, is not contradicted by the kind of methodology advocated in this
article. To the contrary, I will argue that the approach of this article is a
necessary – and currently absent – component of historicism. In conclusion,
I shall now try to sketch this argument.

Let us start with the following methodological observation. The typol-
ogy offered in this article was intended, in the first instance, not as a contribu-
tion to the pure metaphysics of beauty (an interesting field in its own right).
My purpose was, indeed, historical: to find a way to describe a historical
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reality so that, among other things – armed with such typologies concern-
ing the various possible perceptions of the aesthetic – we may be able to
ask more specific historical questions. So, for instance, we could now fi-
nally turn to study, as historians, Hardy’s aesthetic statements. This must
be stressed: to be interested in the aesthetics of mathematics, does not at all
entail a blind, uncritical trust of, say, Hardy. Exactly the opposite: it is only
after we have built our own analytical tools for dealing with the mathema-
tical aesthetic experience, that we are in a position to approach Hardy in a
critical way. We may approach Hardy’s mathematics, and the mathematics
of his time, independently of Hardy: poetics, as it were, gives us a privi-
leged access to texts and to the reality of mathematical experience, an access
Hardy never had. We can now study the actual forms of aesthetic experience
implicit in this particular genre of 20th century mathematics, comparing it to
other genres, from different times, places, and fields. And we may of course
compare them to Hardy’s words about the genre, in this way uncovering the
ideological valuation of certain kinds of experience at the expense of others.
All of this becomes possible only after we have made the aesthetic study.

Even without an aesthetic study, we could study, of course, the (rather
obvious) ideological positions adopted by Hardy. But we wouldn’t know
how to situate those positions: as if we had a schematic map of a terrain
we did not know. Hardy had a position where “aesthetic” is opposed to
“utilitarian”, and this is easy to find and to trace as schematic map. But
what is the terrain to which this “aesthetic” refers? This terrain is at the
level of experience. We just cannot read our map, then, without reference
to an understanding of this level of experience. What was the thing Hardy
was referring to when he was speaking about ‘beauty’? An answer to this
question does not require of us to share Hardy’s valuation of the thing; but it
does require us to try to analyze the reality of experienced texts underlying
Hardy’s statements. And therefore – as historians – we need to understand
the whole range of phenomena described in this article – narrative and its
flow, perception and its structure, the way reality is taken in. It is all very
easy, to say that Hardy made an ideological valuation of something; the real
challenge is to say what this something was.

Of course cultures create their patterns of value. How else could value
become part of social existence? But they cannot make such patterns out
of nothing, into nothing. They make such patterns out of something (out of
the sheer facts of experience), into something (into another objectively felt
experience, that of value). The historicism of value is an empty claim as
long as it does not confront those – objective – realities, out of which and
into which the subjective is made.
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Having replied to my colleagues in literary theory, it is finally time for
me to turn to my colleagues in the philosophy of mathematics. Indeed I need
only glance behind my shoulder, to the preceding articles in this collection.
In a sense they do not question my very enterprise in quite the same way
the literary critics did. I imagined the literary critics questioning the very
notion of ‘mathematical beauty’. Not so the philosophers of mathematics.
Their worry, it appears to me, is different and – I concede – justified. Having
agreed on the existence of the category of ‘the beautiful’ in mathematics,
how does it speak to the concerns of the philosophy of mathematics?

It is of course a contribution to the aesthetics of mathematics, and the
main claim I now need to make is for the need for such a philosophical inves-
tigation, independent of the epistemic concerns that drive the other articles
in the collection.

One could address the question, why a mathematician may wish, for in-
stance, to have the narrative effect of surprise – in terms of the epistemic
significance such an effect might possess. One may argue perhaps that a sur-
prising result challenges us to uncover the links leading to its conclusion, in
this way possessing a specific epistemic value. I do not believe Archimedes,
for example, chose to have a surprising narrative in his Sphere and Cylinder I
for this reason (a plausible historical argument can be made that Archimedes’
aim was purely aesthetic), but in principle surprising narratives can definitely
be epistemically motivated. Or one may argue the converse (which, in this
case is, in my view, historically valid): one may argue that a stately, orderly
progression of narrative such as that of Euclid’s Elements I has a precise ped-
agogic effect, that helps the reader parse the text as it unfolds, in this way
making it easier to follow not the results alone but also their pattern of logi-
cal interrelation, so that the text as a whole becomes richer, to the reader, in
its explanatory meaning. I think it is likely that Euclid’s choice to prefer this
model of narrative, then, was pedagogically – that is epistemically – rather
than aesthetically motivated.

In other words, one strategy I could have taken while presenting this
paper to my colleagues in the philosophy of mathematics was to associate the
aesthetic effects discussed to their epistemic correlates, so that my aesthetic
styles would translate into epistemic styles in line with those discussed in the
preceding articles. This would have been possible and, for certain purposes,
valuable. Yet I have avoided, on purpose, doing so. And this was precisely
because my philosophical point was to make the claim for the theoretical
independence of an aesthetics of mathematics, as a philosophical domain
existing apart from the epistemological one.
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The issue is partly historiographical, partly philosophical. The historio-
graphical point was already hinted at above: I suggested briefly that I believe
Euclid’s goal, in his choice of narrative form for Elements I, was primarily
pedagogic, that is epistemic, while Archimedes’ goal, in his choice of narra-
tive form for Sphere and Cylinder I, was primarily aesthetic. Euclid wanted
his readers to learn something; Archimedes wanted to elicit a gasp of plea-
sured surprise. I will not try and advance the historical argument here (ad-
mittedly certainty is hardly possible with such questions having to do with
authorial intention). But the historiographical point is conceptually clear.
The position I describe concerning Euclid and Archimedes is obviously a
possibility. And, unless we allow the existence of a separate aesthetic realm
independent from the epistemic, then we cannot even formulate such a po-
sition. For our writing of the history of mathematics, then, the aesthetic is
a category we need in order to be able to state the full range of possible
motivations of authors in their writings: as simple as that.

The philosophical point – related to the historiographical one – is more
subtle. It has to do with the nature of mathematical experience itself.

It might appear strange for me to invoke, at this stage of the argument,
mathematical experience. After all I have eschewed the difficult question
of the mathematical states of mind, concentrating instead on the objective
features of texts. My approach throughout was structuralist, looking at the
semiotic properties of texts as vehicles for positively defined aesthetic ef-
fects. And yet my goal of course was to begin to stake a ground in this dif-
ficult terrain of experience. My approach throughout – here as in my other
studies in the cognitive history of mathematics – is to concentrate on the
surface details of texts, as offering us the best objective evidence to mathe-
matics as it is actually experienced (as opposed to some logical analysis of
its abstract content).

My philosopher colleagues will recognize my intention, if I stress my
interest in the phenomenology of mathematics. I ask the question: How is
mathematics present to the mind? And I concentrate on a more modest ques-
tion (where there is some useful evidence to work with): how are mathema-
tical texts present to the mind? My claim is that categories such as ‘truth’
or ‘validity’, even categories such as ‘visual’ and ‘symbolic’, cannot fully
provide an answer to this question. Part of the answer has to bring in other
categories of experience, such as ‘delight’, ‘pleasure’, ‘surprise’, or, indeed,
‘beauty’. All those terms of value are important not so that we may judge
mathematics, but so that we can describe it—in its phenomenal reality. A
phenomenology that disavows the experiences of value offers an abstracted,
synthetic vision of mathematics: as it were, a disembeautied vision, which
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therefore has to be also a disembodied vision. And so, to begin to outline the
actual phenomenology of mathematics, we must start from its real phenom-
enal reality—the full range of its experience of value and cognition, percep-
tion and appetite. Which indeed reminds me that I should get back to my
interrupted lunch.

Classics Department
Stanford University
USA

NOTES
1Contemporary mathematicians often refer to Erdös’ famous dictum on ‘the¨

book of beautiful proofs’ (out of whose enumerable infinity mathematicians seek
to find their proofs!) – see Aigner and Ziegler (1998).

2As is obvious by now, I am mainly influenced in my thinking by structuralist
poetics, broadly construed - mostly because of its tangible, immediate applicability.
I do not at all dismiss other possible approaches, and I would be happy to see my
typology of sources of beauty enriched by further methodologies. Nor do I think
“texts” exhaust the problem. The beauty inherent in states of mind seems to be a
central theme in mathematicians’ own reports, and thus deserves close study. The
notion of the intrinsic beauty of the mathematical realm of being is one of the key
issues of western philosophy from Plato onwards; see Burnyeat (1998). I shall
briefly return to those general issues in the conclusion.

3See e.g. (Lang, 1985, 3): “The Greeks did mathematics for the beauty of it”, or
the whole of Artmann (1999) – a passionate reading of Euclid by a contemporary
mathematician, arguing for the sources of many mathematical values, in particular
beauty, in Greek mathematics.

4This is the main theme of Lotman (1976).
5One should note however the interesting complications of orders of reality, for

instance in proof by contradiction, where an alternative reality is entertained “for
the sake of the argument” – the perspective adopted and then finally discarded. I
also ignore the role of the first person singular in some formulaic expressions such
as ”I say that”, which, because formulaic, perhaps do not have much real force. I
give an example of both phenomena at the beginning of the next subsection. Finally,
note that in early modern mathematics, the authorial voice frequently interferes in
the text, suggesting the line of discovery and playfully interweaving the subjective
narrative of the implied author with the objective narrative of the proof. (For a
celebrated example, see Descartes’ Geometry; I thank Heda Segvic for suggesting
this comparison.) The implicit claim of the absent perspective characterizes not the
aesthetics of mathematics as such, but rather the aesthetics of Greek mathematics.

6My choice of the term ‘narrative’ for this process of selection and combination
of information is not obvious. I could equally have called this ‘rhetoric’, which how-
ever I have refrained from doing, wishing to avoid the pointless debate of ‘logic vs.
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rhetoric’. Obviously the structures represented in mathematical texts are unlike the
plots involving human agents which the term ‘narrative’ brings to mind: I hope to
show that, even so, the term ‘narrative’ remains useful in mathematics as well. (For
an interesting discussion of the applicability of the term ‘narrative’ to mathematics
see Thomas (2002).

7The term ‘capstone theorem’ was suggested to me by Henry Mendell. Mendell
has also suggested to me the further observation, that most books in Euclid’s Ele-
ments seem to end with such a capstone theorem.

8As it were, the considerations of statics and of aesthetics, governing the ar-
rangement of the plates on the tray, are both organized by the same principles (e.g.
of simplicity of form and of proportion).

9The Kantian aesthetic program is to understand art through the dialectic of the
subject’s freedom and the world’s lawlikeness: see e.g. Krukowski (1992) chapter
1.

10That prosody was suppressed in Greek mathematics can be seen from the fate
of the Archimedean corpus: originally written in Archimedes’ Doric dialect, it was
at some point mostly transferred into the Koine dialect. Such dialect transformation
impacts almost exclusively on prosody: but clearly readers did not consider that the
text has lost any meaningful dimension.

11Sometimes “narrative” is given a wider sense, so that the contrast is within
narrative structure, between description and fabula: see e.g. (Bal, 1997, 36-43) .

12The terms derive from Proclus’ In Eucl. I 203.
13“Syntagmatic” is a technical term of structuralist poetics: I briefly explain a few

of those terms at the start of subsection 2.4 below.
14The D (8) passage – Heath 362.12-364.4 – is an interesting complication: a

mere unpacking of what the diagram stands for (description, then, in literary terms)
is of immediate argumentative context (and therefore functions here as part of the
proof, in the mathematical sense).

15On starting-points and arguments in general see (Netz, 1999, 169–198).
16I have noted the tendency to have a “smoother” movement towards the end of

a proof, in (Netz, 1999, 206-207) , calling it “the cadenza effect”. I have there
stressed the possible rhetorical function of this effect; once again, the rhetorical and
the aesthetic coincide.

17See (Netz, 1999, Ch. 4) for the role of formulaic expressions. I return to discuss
these in greater detail below, when introducing the general notion of “correspon-
dence”.

18Note however that there might, in principle, be aesthetic value not in clarity,
but in ambiguity. This is in fact exactly parallel to the case of irony, mentioned in
the preceding subsection. The mathematical text largely forgoes the aesthetic pos-
sibilities of ambiguity, just as it largely forgoes the aesthetic possibilities of irony.
This is a limitation on the aesthetic range of mathematics – though once again, a
certain beauty resides in the limitation itself, providing mathematics with its sharp
luminosity.



THE AESTHETICS OF MATHEMATICS: A STUDY 291

19For all this see especially Jakobson (1987) chapter 8, originally published in
1956.

20As noted by Jakobson himself (Jakobson, 1987, 113-114), metaphor is in gen-
eral easier to understand than metonym. It is in fact difficult to think of examples
of metonym in Greek mathematics. I note below the use of particular cases for gen-
eral statements, which is perhaps metonym-like; probably the clearest example of
metonym in mathematics in general is mathematical induction, where the argument
relies on the ineritence of properties by objects contiguous to each other (this is a
modern method: see Unguru (1991)). Perhaps even: when mathematicians say that
proofs by mathematical induction are “strange” and do not reveal the “real reasons”,
they, among other things, display the typical human preference for metaphor over
metonym?

21For a historical survey and interesting philosophical observations, see Dann
(1998).

22On this very widespread experience see Seron et al. (1992).
23For the quest and its results, see, e.g., Corry (1996). Note further a special

twist on this quest for global metaphor: the brilliant insight of some 20th century
mathematical works, that the signified can metaphorically act as sign – so that, for
instance, numbers are equated with statements about numbers.

24Indeed the effectiveness of rhyme often has to do with a distance which is not
only phonetic, but also semantic: compare e.g. (Wimsatt, 1954, 153–168).

25I concentrate on the simple form P→Q, ignoring the complication of the more
common structures, P&Q→R, etc. The presence of several premises for a single
conclusion is, among other things, a further device for creating a pleasing distance
between set of premises and conclusion.

26Note that this is not the definition of similarity of triangles – defined by equal
angles – but a result (Euclid’s Elements VI.4). The derivation is thus a substantive
equivalence between two different statements (rather than a disguised tautology).

27(Jakobson, 1987, Ch. 19), translation of an article from 1933-4. Jakobson
expresses here standard formalist positions, perhaps first articulated in Shklovsky
(1919).

28The preference for the disharmonious may be related to the widespread contem-
porary interest in literature as “subversion” (it seems at any rate that such an interest
in “subversion” was at the root of Bakhtin’s own distancing from Jakobson’s type
of structuralist poetics which of course, through Kristeva (1980) and other routes,
came to dominate contemporary literary theory).

29Of course, we will need the theoretical model to analyze how the effect of
inresolution is obtained; but it is true that the basic tenor of structuralist poetics is
alien to such an analysis.

30See Smith (1988) for a fascinating statement of the doubt in the aesthetic in
contemporary literary theory.
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