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PREFACE

Relevance logics came of age with the one and only International Conference on relevant
logics in 1974. They did not however become accepted, or easy to promulgate. In March
1981 we received most of the typescript of

IN MEMORIAM: ALAN ROSS ANDERSON
Proceedings of the International Conference of Relevant Logic

from the original editors, Kenneth W. Collier, Ann Gasper and Robert G. Wolf of Southern
Illinois University.1 They had, most unfortunately, failed to find a publisher - not, it appears,
because of overall lack of merit of the essays, but because of the expense of producing the
collection, lack of institutional subsidization, and doubts of publishers as to whether an
expensive collection of essays on such an esoteric, not to say deviant, subject would sell.

We thought that the collection of essays was still (even after more than six years in the
publishing trade limbo) well worth publishing, that the subject would remain undeservedly
esoteric in North America while work on it could not find publishers (it is not so esoteric in
academic circles in Continental Europe, Latin America and the Antipodes) and, quite
important, that we could get the collection published, and furthermore, by resorting to local
means, published comparatively cheaply. It is indeed no ordinary collection. It contains work
by pioneers of the main types of broadly relevant systems, and by several of the most
innovative non-classical logicians of the present flourishing logical period.

We have slowly re-edited and reorganised the collection and made it camera-ready.
While we have retained all the completed essays from the Conference sent to us with the
exception of essays that have, in the interval, been published elsewhere, we have not limited
ourselves to these essays but have, so far as space permitted, invited newer essays. As well we
have included overviews, which provide introductions to current directions of research on
broadly relevant logics and to many general problems in the area.

In an effort, then, to ensure that the book was rather newer and more up-to-date - and
not simply a rather dated collection of papers from a conference more than a decade ago - we
decided to
1. Remove all papers from the Conference that had been published in the interim or that
were to be published elsewhere. As a result the following papers given at the Conference, and
included in earlier unpublished collections of the proceedings have been deleted: Allen 82, Fine
79, Gupta, Belnap and Dunn 80, Hanson 80, Pottinger 79.

For different reasons, two papers delivered at the Conference were never received by any
editors, namely Woodruff’s on three-valued relevance logic and Stephenson’s ‘Law and
explanation in the new regime’. These it was easy not to include. A final paper, Anderson and
Meyer’s ‘Open problems II’, we managed to obtain only in very incomplete form; moreover,
owing to substantial progress in relevant problem solving, it is conspicuously out-of-date.
Accordingly, we decided against including what we had of it; but we have offered a partial,
though very different substitute, in the conclusion.

2. Update all the papers remaining from the Conference. Somewhat to our disappointment,
not many authors took much advantage of this opportunity; but perhaps this only reflects the
lack of recent movement in some parts of the field, not always sloth. An exception is van
Dijk, who replaced his original paper by a substantially new one.

3. Invite some newer significant papers in the area. So resulted the papers now included by

vii



viii
Belnap, Fine, and Priest and Crosthwaite.

4. Delete the long introduction by the original editors, which summarised the original papers,
and which tied the text to the Conference and to the state of relevant logics a decade ago.
We have in fact removed most allusions to the Conference from the body of the work. In
place of the original introduction we initially included, dispersed throughout the book,
introductory surveys, including historical and other guide material. But as a result of these
scholarly additions, the text became much too long. Eventually these seemingly integral
additions were removed to a companion volume, A Bystanders’ Guide to Sociative Logics;
then remaining blockages impeding production were quickly dissolved.

For the long delays in the final production of this scheme the present editors do accept a
due measure of responsibility. It is some little excuse that production of camera-ready copy of
a text of this magnitude and symbolic complexity proves to be a remarkedly slow business,
especially when it is slotted into the press of other departmental and personal activities. The
delays have understandably worried some contributors, and have undoubtedly cost others, less
worried but more damaged, proper credit for their original ideas.

Notes on citations, etc. We have adopted modes of referencing that are now fairly standard in
texts on relevant logic (that used in RLR, which is a straightforward modification of that of
ENT). Most work is indicated by author (or first author) and date (or abbreviated date in the
case of twentieth century work). But a few frequently cited works, such as ENT (i.e
Entailment) are referred to by mnemonics, which are listed alphabetically at the beginning of
the bibliography. All work cited will be found in the bibliography at the end.

Acknowledgements. We are much indebted to Lois Newman and especially Frances Redrup
who succeeded in producing a fine camera-ready copy from a typographically difficult text. In
early 1986 Jean Norman left the employment of the Australian National University, the
institution which generously, if largely unwittingly, supplied the infrastucture for production
of the camera-ready script. She was succeeded by Debbie Trew who carried on the complex
and not always rewarding editorial task. We want also to thank Conall O’Connell and David
Bennett, for their effort in proof reading, bibliographical excursions, and research into
sociative logics. In the final debugging of the typescript, we have been greatly assisted by
Arnold Giinther, who much surpasses ordinary mortals like us in his ability to discern
typographical errors and infelicities.

Jean Norman and Richard Sylvan

NOTES

1.  The Conference itself, organised from Southern Illinois University, was held at nearby St
Louis, Missouri. Only Wolf remains at Southern Illinois University, Edwardsville, which
was an important centre for relevant logics and source of the valuable, but regrettably
now defunct, Relevance Logic Newsletter. Collier and Gasper have both left academic
life, Collier for a ministry in the Unitarian Church, Gasper for parts unknown.

In fact, the drop-out rate of relevantly-disposed thinkers appears disconcertingly high.
The Conference gathering indicates a trend. There, not only have original editors left
academia and many others involved turned away to safer topics; one of the speakers,
G.H. Stephenson, seems to have disappeared without a trace. We have been unable to
obtain a copy of the paper he presented, despite much effort at a distance. Other
speakers, who submitted papers and whose papers are included, we have not heard from,
namely Myhill (now dead) and Parks, who is also out of academia.



FOREWORD

DEDICATORY NOTE
ON
ALAN ANDERSON

Nuel D. Belnap, Jr.

I'd like to share with you how I first got to know Alan and how we started working
together. Alan and I were at Yale, I as a graduate student and he teaching, for nearly two
years before we ever met. This is fully explained by the hypothesis that Yale is Yale.

In the spring of 1957, towards the end of these two years, I was taking a course from
Fred Fitch on Godel’s incompleteness theorem when in strode Alan to explain that Fitch was
out of town and to show us what those marvelous alpha and beta functions really amount to
and how they work. It was my first experience of Alan’s teaching, and let me just say that his
performance was beautifully typical. Though we may have said a few words of greeting after
class, I did not see him again for a year and a half. In the meantime I had gone to Belgium on
a Fulbright to study with Canon Robert Feys. Feys was interested both in Ackermann and in
Gentzen; he had written a little paper on Ackermann’s Strenge Implikation for Logique et
Analyse, and he gave me the problem of finding a Gentzen formulation of Ackermann’s
calculus. By the time the tenure of my fellowship was up, I had formulated an inordinately
complex conjecture as to what might count as the Gentzen formulation for a part of
Ackermann’s system, and I asked Feys for suggestions as to how I might go about proving the
conjecture. Though I now no longer recall the details, nothing seemed to work; so, since I was
about to return to the States, I asked Feys if anyone there knew anything about Ackermann.
He said he didn’t know of anybody, but recommended that I try Godel on the grounds that he
was the only one that Feys knew that could contribute to the solution of a problem, with
which he was totally unfamiliar, after ten minutes’ explanation.

My hopes dimmed, but when I got back to Yale I went in to see Alan to ask him if he
knew anyone who knew anyone who knew anything about Ackermann. His eyes lit up as
upon finding a long lost friend. He leapt from his chair, held his hand up high aloft, and said
“I do!” He had reviewed the Ackermann article for the Journal of Symbolic Logic and had
become deeply interested in the topic; but not knowing anybody else that was, he was equally
delighted to find a fellow Strengenite. He patiently listened to my enthusiastic Gentzenizing
and was able to suggest some generalized strategies, one of which ultimately worked. He also
proposed we take a leaf from Ruth Marcus’ research notebook and try to prove an appropriate
deduction theorem for Ackermann’s calculus. This was the germ of the “dependence” analysis
of relevance.

We began meeting an hour or two a week, but the deduction theorem project and
related Ackermann studies rapidly began to take up the lion’s share of both of our working
times.

Especially in those early years we worked together extremely closely. We spent hours
and hours and hours together, usually in Alan’s office in Saybrook College, blackboarding or
talking sometimes between ourselves but equally often with some of the first-rate
undergraduates such as Levin and Wallace, Gallagher, Snavely and Barwise. Our method of
composition was absolutely joint. We used to hammer out every sentence together while one
or the other of us, but mostly Alan, inscribed the words on paper. We both enjoyed our work
together enormously. Over the years never did we have anything remotely resembling an
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argument, neither about philosophical nor about practical matters.

But that’s not the big thing; what is really important is we had a lot of fun together.
Alan was superb in his ability to communicate the sense of fun - that’s not exactly the right
word but in English it will have to do - of the intellectual enterprise; his enthusiasms were
truly infectious.

How does one get from Ackermann to Entailment? That was really Alan’s idea, and 1
was shocked. Here was an old, venerable, ponderous and mysterious philosophical concept
with a history dating back into the mists of 1918, and here was Alan Ross Anderson
proposing that we had a decent formal explication of it. Though now the transition seems
entirely natural and easy, then it took someone with Alan’s combination of wide
knowledgeability and intellectual courage to conjecture. Soon, however, we were off and
running, gobbling up the mnemonic ‘E’ for our favourite calculus, after the required
consultation with Arthur Prior to see that no logician had as yet established a proprietary
interest in the fifth letter of the alphabet.

It was also in those early days that I was able to shock Alan a little bit. We had been
despairing over the fact that in Ackermann’s system one could not prove the disjunctive
syllogism, from A-or-B and not-A to infer B, as a strong or strengen implication. Then one
day, with great and suitable hesitation, I proposed that maybe this was because the argument
itself was at fault. Alan’s reply was of the “How absurd” genre, which pretty much laid the
matter to rest for the day. Then the next day Alan came back with “Well, maybe ...”. And
so forth. Nor was that the only time when somehow the two of us were able to convince the
two of us of something that both of us thought outrageous.

It was very early on that Alan saw there was a book in our work, and after our first
article on modalities in Ackermann’s system, we had the book continually in mind when
preparing articles. “The Pure Calculus of Entailment”, for instance, we always thought of as
the first chapter of the book. But never did we imagine that the research program would lead
to anything but a brief monograph, or rather duograph. Certainly neither of us guessed that
a mammoth two volumes was in the offing or that a number of researchers would be attracted
to the enterprise; though we did not need to be soothsayers to predict that there would be lots
of folks trying to shoot the enterprise down, or to ignore it.

Alan was certainly taken by the Collier-Wolf plan for the Conference, and was very
much looking forward to participating. It seems to me he would have taken it as an
altogether fitting sort of memorial, provided we were all relaxed about it, enjoyed ourselves
and didn’t go on too long.1

NOTE

1. These paragraphs were read at the memorial session for Alan Anderson of the 1974
Conference.
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CHAPTER 1

INTRODUCTION: ROUTES
IN RELEVANT LOGIC

It is an exciting time in logic, it is a dull and irritating time in logic; it is the best of
times, it is the worst of times; it is an age of relevant logical innovation, it is an age of
conformity, oppressed by restrictive practices under the dominant logical paradigm; it is a
season of brilliant shafts of light, it is a season of classical darkness; it is a spring of hope, it is
a winter of despair; we have everything before us, we have nothing before us; we relevantists
are all going direct to Heaven to inspect the keys of the Universe and what they open, we are
all condemned to go direct the other Way - in short it is a time so far like other periods of
major logical revolution that some of the noisiest anti-authorities insist upon it being received,

for good or evil, in the superlative degree of comparison on]y.1

In relevant logic, a main revolutionary force in contemporary logical unrest, there are
many extremely interesting directions to take. The essays included here indicate some
significant and exciting directions, and give out widely conflicting opinions and advice on
progress and directions - including such advice as: avoid these dangerous paths and byways,
and get back on safe and established highways! This introduction and the conclusion, which
ignore such well-meaning advice, try to give a wider impression of directions and unmapped
regions (the survey is further extended and given historical dimension in the companion

volume BG).

The book accomplishes, in somewhat desultory fashion, several of the things required to
put relevant routes and themes on less esoteric maps. It shows the extent of the region,
something of its importance and range of concerns, and reveals many difficulties confronted
there. But this is, once again, not an elementary book on relevant logics; though these are
movements in the requisite direction, those much needed elementary texts have yet to be
published. It is a further step on the way however to making relevant logic a curriculum
subject. For, although a few of the essays included are of a considerable level of complexity,
many are not technically demanding, and would serve well for discussion purposes. Nor does
much of the book comprise detailed historical or survey expeditions, though both are needed.
Only in the introductory sections and an occasional essay, conspicuously Parry’s, are
substantial connections made with the larger historical settings from which the problems and
issues investigated grew. The coverage of the rest of the book is that of a selection of topics
within a rich, growing, and intellectually unavoidable area; but it is neither particularly
systematic nor comprehensive. In sum, then. the book combines research essays many of them
extending the frontiers of relevant logical enterprises, with critical material, and some

synthesizing survey material.

Although relevant logics are ancient (as BG reveals), the systematisation of them and
accompanying systematic terminology is very recent. The exact origins of the American
1

J.Norman and R. Sylvan (eds.), Directions in Relevant Logic, 1-21.
© 1989 by Kluwer Academic Publishers.



umbrella term ‘relevance logic’ are allegedly lost in the shrouds of contemporary history.
However it became an easy case of transference once Belnap established in 1960 the weak
relevance (i.e. variable-sharing property) of system E, “of entailment”, and of the system soon
after to be called R, for relevant implication. The ill-suited name of ‘relevant implication’ for
(the main implication — of) R, or at least for the pure implication part R_, of it, was
established by 1964 (see ENT p.20; the main systems are displayed in the text below).
Anderson and Belnap certainly went on to encourage the dubious idea that systems E and R
were “relevance logics” by beginning to refer to them as ‘logics of relevance’, and to R as the
logic of ‘relevant implication’ (appellations entrenched with ENT, e.g. § 28). Meanwhile, Meyer
and Routley introduced the alternative title ‘relevant logics’ for a much wider spectrum of
logics than those favoured in the Anderson-Belnap stable; nor were they neglecting other
reasons such as those of topicality (nonetheless their reasons only overlapped, Meyer liking R
almost to the point of indecent fixation, Routley always preferring deep relevant logics, the D

systems of RLR).

None of these labels has proved particularly suitable in the light of later theoretical
developments; but poor labels are the order of the day in this underdeveloped area of science.
There is, for example, nothing very classical about “classical logic”, since it is primarily a
turn-of-the-twentieth-century ~development. Though the Philonian conditional was
contemplated along with other conditionals and logics in classical times, it remained a
minority position, rightly ridiculed, in the long debate upon conditionals. There is nothing
very strict about “strict implication”, though it is no doubt strict by Philonian standards.
There is nothing particularly intuitive about much of “intuitionistic logic”, but indeed much
that is arbitrary, not least Heyting’s inclusion of the scheme of Ex falso quodlibet, i.e. A &
~A — B. At least relevant logics are weakly relevant, even if only as an epiphenomenon. So
let us stick with more or less established titles, which in any case it is hard to change (despite
taxonomic efforts like that of ENT). ‘Relevance logics’ will refer to systems in the Anderson-
Belnap stable, primarily E, R and T. Thus relevance logics form a (“small”) subclass of
relevant logics, which are characterised in turn as those which, retaining lattice logic, avoid
the implicational paradoxes essentially by rejecting Disjunctive Syllogism, i.e. A & (~A V B)
— B, and its variants (a more detailed but narrower characterisation is attempted in RLR
p.153ff.).

These relevant logics are however by no means the only, or earliest studied, systems
which in fact meet technical requirements of relevance of one sort or another, which are
broadly relevant. This wider class of logics will be called broadly relevant or, to adapt an
older term, sociative. “Broadly relevant”, is intended to cover that stretch in the term
“relevant” often made nowadays, as for instance in several essays included in this book; and

the title of the book itself properly expands to Directions in Broadly Relevant Logics.

1. The relevant enterprise. The relevant enterprise is explained in the introductory and
concluding chapters. The essays in the body of the text are mainly concerned with furthering,

or else criticizing, some parts of the enterprise. As will be or become apparent, the enterprise



is a loose-knit one. It encompasses a variety of logics and of objectives (some of them, such as
constructivity, complexity, efficiency and the like, separate and apparently remote from the
original directions). Disturbingly, much of it has rather little to do with relevance, despite the

now conventional title for @ main band of the logics concerned. So what is it all about?

A short answer is: connection. One statement implies another (to take with implies a
representative con-junction), only if it is connected with it, only if the statements have
enough to do with one another; in symbols, if A — B then B is connected with A. The
connection must be genuine; it cannot be determined from features of (one of) the parts alone,
as with material-implication or strict-implication. The type of connection involved is often
put - though it doesn’t have to be, and sometimes oughtn’t to be, so put - in terms of

relevance.

The relevant enterprise has much the same focus as the logical enterprise itself. What
differentiates it is the divisive contention that central logical notions satisfy connectional
requirements that mainstream logics neglect, to their serious cost. It concentrates on a bundle
of fundamental logical notions, which remain, after more than 2000 years of investigation,2
still much confused and ill-explicated. This situation corresponds to, indeed is an integral part
of, almost 2000 years of neglect of relations,3 and repeated attempts to reduce those that
would not go quietly away to their components and to properties (e.g. of implication to the
property of logical falsehood or impossibility applied to the pair of components comprising the
antecedent and the negation of the consequent). These fundamental notions comprise
deducibility and its near equivalents (e.g. entailment, logical consequence, fully demonstrative
reasoning), sound argument, valid inference, implication and content inclusion, conditionality,
logical commitment, and the like. Investigation of the central notions is of course combined
with the study of other connectives and functions, in combination with which the logical
features of the original notions are especially revealed. The further operations include, in
particular, connectives such as those of conjunction (&), disjunction (v) and negation (~), and
quantifiers such as those of universality (U) and particularity (P), but are not confined, by

any means, to this now conventional set, or reducible to this set.

Bound up with the analytic attempt to exorcise connection is a fatal assumption of
much contemporary logic: that the meaning of core logical notions can be given in tsolation.
This separation assumption often appears in variant forms; when not expressed in terms of
meaning - often boiled down, with serious loss in value, just to reference or to truth - like
notions substitute for it, such as sense or content. Such an assumption is built into much of
what is taken for granted in semantics, and what gets called and passes for “semantic
analysis”, where logical labour largely stops with a model-theoretic truth-definition of some
sort. Similar ideas are at work in the misplaced contemporary emphases on pure systems, such
as pure implicational systems, behind which lies the faulty assumption that the (logical)
properties of implication can be captured in splendid isolation stripped of its connections; they
are also at work in the insistence upon combinations conceding minimal properties at most to

the interrelations of the isolated pure forms. These ideas have even crept insidiously into the



development of logics that are supposed to be about (re)introducing connection, and relevance
in particular, to a honorable place in logic - thus further encouraging the quest for un-duly
strong systems (cf. RLR p.240). Indeed programs like that of Curry, which has been accorded
high honour in the halls of relevance logic, incorporate just such ideas: that a core objective,
especially proof-theoretically (said to be the heart of the logical matter) but also semantically,
is to specify the role of each connective in isolation, shorn of interconnections. As regards the
separation of implication at least, the idea effectively fails. For, contrary to the appearances
of connective purism, in order to supply rules (which fall far short of meaning rules) for
connectives such as and or or, what amount to principles of a first degree implication (e.g.
formulated through a sequent relation) are required. Atomistic purism has no doubt played a
significant part in the development of cruder (mostly first attempt, but entrenched) logical
theories, which substantially dispense with connection. But the underlying individualistic
assumptions are seriously astray, especially in the idea that meaning can be completely
explained in such a way; the assumptions are far from compulsory; and, in the course of
reaching satisfactory connectional theories, they are better avoided. Put bluntly, many very
fashionable approaches to logic, including those transplanted to broadly relevant logic, should
be junked. As will become apparent, too, much of the relevant enterprise is not very radical
at all. Many of the (reductionistic) assumptions and analyses elaborated with the rise of the

classical logical paradigm are rather uncritically accepted.

Within the broad relevant enterprise there is little agreement to anything ezcept a
certain nonclassical connectional orientation: namely, that classical logic and its extensions
are inadequate to some of the main notions under investigation, and should be further
extended or (differently) replaced, that there is a need to develop better logical explications
which do not sacrifice connectional features. Of course, if critics, fellow travellers and hangers-
on were also included (e.g. all those who work negatively or critically on, or discourse upon,
broadly relevant logics), there would be nothing left, nothing agreed upon; but much the same
is true also of most human theoretical endeavours, especially when there is conflict regarding
a dominant paradigm. Count out, then, those who are not positive about the enterprise. Even
so, what those who are engaged agree about is basically negative and decidedly vague: some
nonclassical endeavour which retains connection. The reasons for this are simple enough.
There are many divergent ways of proceeding nonclassically, and many of these will retain
some sort of relevance connection for implicational connectives, at least when systems
involved are weak. Some of the key points of divergence deserve immediate emphasis (a fuller

classification of main nonclassical approaches offered in RLR and is reached again in BG).

2. Divergence within the relevant enterprise, and rival paradigms. There is a major
division between two types of connectional approach: on the one side, (narrowly) relevant
logics and (where irrelevant) pseudo-relevant logics which reject the principle of Disjunctive
Syllogism, A & (~A V B) — B in standard symbolism, its equivalents (e.g. A & ~(A & B) —
~B), and its mates (e.g. Antilogism, e.g. A & B —» C —. A & ~C — ~B); and, on the other,
traditionalist logics, which do not reject all these principles (always said to be traditional,
despite a main divergent tradition as regards disjunction). The reasons for the division, if not



evident, will become clear as the introductory discussion proceeds. Traditionalist logics
include connexive logics, containment logics and various nontransitive logics (such as
relational logics). Most of these logics are of course not historically authentic, but are recent
concoctions, with however some good historical roots. Those, such as connexive logics which
retain Antilogism, follow the main Aristotelian tradition in a more straightforward and
honest way than those which, while insisting upon Disjunctive Syllogism principles, reject
Antilogism.4 For (as fn 4 shows) these latter systems are bound, given their other
commitments, to reject one or other of the firmest historical rules: Transitivity and
Contraposition. The main research thrust in contemporary connectional resurgence, though
not historically rootless, has (like much American-dominated research) not been strongly
historically oriented; it has been in narrowly relevant logics, and specifically in relevance
logics (grouped around E and R). Traditionalist logics are presently a much more minor

affair, though they will feature quite prominently in this volume.

The main divisions in terms of which the introductory discussions are set are depicted in

the following diagram.

Diagram 1. A working classification of (statemental) logics.
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1. The classification does not pretend to be exhaustive. For example, nonponible logics, such
as the J systems, which are not considered in the text, are not included. Like nonmonotonic
logics they form, so far, a quite minor sidestream.

2. Nor is the classification, as shown, duly exclusive. For instance, stronger systems of the
types listed as sociative may be irrelevant, and sidestream systems of types listed as irrelevant
may be relevant, e.g. functionally incomplete many-valued logics.

3. Under several classes, there are subclassifications, with subtypes best developed in the case
of modal logic. The subtypes (which depend on the way the O modality, in particular, is
constrained and interpreted) include these: alethic (logical necessity, logical truth,
provability); physical (natural necessity, lawlikeness, causality); epistemic, doxastic,
assertoric; deontic, volitional; tense, chronological; conditional; etc. Then there are two-place
(dyadic) modalities, such as those of change, conditional obligation, conditional realisability,
and more generally n-place modalities. Moreover the subtypes can be multipled up, as in
multiply modal logics. Similar developments can be made of other types, notably of relevant
logics, as in essays infra (especially chapter 19).

4. Further explanation of most systems classified will be found in ENT or failing that RLR.
The same goes for technical notions applied but perhaps insufficiently explained herein, such
as those of degree of an expression, conservative extension, etc.

The history of logic can be helpfully viewed, though in a rough and ready way to be
sure, like the history of other sciences - in terms of a succession of paradigms and programs
(for a fuller account, an apposite adaption of the well-known Kuhn-Lakatos story, see Priest
in PL). In this century the formerly dominant traditional logical paradigm, based on the
theory of syllogism, has been gradually displaced by the classical paradigm, based on classical
two-valued statemental logic.5 That, now very mathematical, logic did not have an easy time,
by any means, in becoming established. For example, in USA, now a heartland of
mathematical logic, classical symbolic logic was, even until the second world war, ‘simply one
important contemporary school of logic’ - though one with ‘high hopes of its supplanting all
other types, a position which only lovers of symbols are ready to take’ (Robinson pp.340-1).
Nonetheless Robinson was able to write, in 1924 (from the University of Indiana, an
institution now linked with relevance enterprise), about the great advances in logic; but,
astoundingly, he was referring to the work of ‘that great logician, Bosanquet’, whose theory of
inference was ‘was bound sooner or later to revolutionize logic’ (Robinson p.vii, reiterating

Muirhead).

Certainly, the traditional logic was ripe for take-over and asset stripping, and for the
insertion of some fresh logical enterprise. For, except in the later medieval period, when a
theory of strict implication became widely accepted,6 the traditional position was not coupled
with now expected adjuncts, such as even an expressly formulated statemental logic. The
theory of “immediate inference” and of syllogistic transformation and reduction of modern
(pre-Boolean) traditional logics could, however, have been supplied by a range of competing
statemental systems, both relevant and irrelevant. Under “modern traditional” logic (or
‘traditional formal logic’ as the modern synthesis is often called), syllogism was the central
part of logic; other parts reduced to it or were supplementary to it. The new (and narrower)

classical paradigm inverted this position entirely. Statemental logic supplemented by



quantification was central, and the theory of syllogism (insofar as it was correct) reduced to
this (or, on a later more relaxed approach, was a minor supplement to quantificational

theory).

The dominant twentieth century paradigm, though it began in a narrow crusading way,
is no longer a monolithic structure. In particular, it is important to distinguish a narrower
classical approach, which is hostile to intensional, inexistential, and other extensions and
adjustments of classical theory, and a more liberal approach, which is rather more tolerant of
modal logics, free logics, and other nonstandard logics that can be recast as extensions of
classical quantification theory. The more liberal development views such extensions not
necessarily as antagonistic, not as a real threat to classical enterprise, but as perhaps useful

(or more often, useless but harmless) elaborations of it.

Thus, for example, the early, and initially radical, twentieth-century challenge to the
narrow classical paradigm mounted by modal logic (from which the first, Harvard, wave of
broadly relevant logics grew) was soon co-opted under a liberalised classical paradigm. Modal
logic was reformulated as a straightforward extension of classical logic. Modal logic continues
to afford a threat only to the narrower extensionalist program (a program the main
philosophical positions underlying classical logic do however yield: see 3B p.56ff.). The wider,
more generous classical paradigm, which includes extension programs, is now being ringed and
shielded by a protective belt of supplementary theories and pragmatical appendages, such as

modal logics, conditional logics, probability logics, etc.

Things look just fine, but are not. The wider paradigm, while apparently much
increasing the invulnerability of the classical position, begins to white-ant the paradigm from
within. For the justification of the classical program lies in the narrow program, which is
extensional, existential, and generally referential. But that program is inadequate, as the

wider program starts to reveal.

Nor was all opposition to the classical paradigm easily, or at all, co-opted. Intuitionism,
which continues to present a genuine threat, was not so easily accommodated. As a result of
much effort, however, significant posits of the original intuitionist critique have been
incorporated into the burgeoning classical picture, as for instance constructivity through a
theory of effectiveness, or else have been given broadly classical representation, as for example
with the rival intuitionist logic itself, through semantical and category-theoretic modellings.
Those ill-fitting substitutes do not satisfy bona-fide intuitionists. Nor will relevant logics,
which join with intuitionism in discarding Disjunctive Syllogistic principles, be easily co-
opted. Still less do paraconsistent logics, which run directly antithetical to classical thinking,

admit of co-option.

3. Paraconsistent relevant logics and relevantism. Sociative and relevant logics divide
in another way into two groups: those which are paraconsistent, and so are highly resistant to

classical appropriation (e.g. as extensions), and those which are not, such as Parry’s analytic



implication and Ackermann’s rigorous implication. A (genuinely) paraconsistent logic, to be
more explicit about that recurring notion, is one which can provide the logical basis for an
inconsistent but (genuinely) non-trivial theory. A theory is inconsistent if it (eventually)
yields a pair of contradictory statements such as A and its negation ~A, i.e. it has A and ~A
as consequences. A theory is trivial if it yields all statements in its field; it is genuinely
nontrivial if it does not yield all statements of some given syntactical type. Minimal logic, for
instance, fails the latter requirement, because given some contradictory pair A and ~A it
supplies all negated statements, i.e. ~B, whatever B. A crucial test for paraconsistency of a
logic is the nonderivability of spread principles such as A, ~A |- 6Comp, where 6Comp is some
syntactical nontheorematic function of its components. In considering genuinely
paraconsistent logics, the letter but not the spirit of some previous accounts of paraconsistent
logic has been violated.” Few there were, however, who wished to hail minimal logic as a
paraconsistent find, even though it met the letter of a narrow law, or who would wish to
exclude the medieval theory of obligationes as paraconsistent, because it vacuously “satisfied”
the crucial test, the pair A, ~A never explicitly appearing within one side or the other of a

discussion (except perhaps terminally).

There is a point, moreover, in pushing the notion of genuineness still further, to
authenticity, so as to exclude systems which, while technically paraconsistent, are useless for
fully logical inconsistent theories. Systems thus excluded as authentic paraconsistent ones
include both main relevance logics R and E.8 The argument which flunks R shows that, where
RL is a logic extending R (hence closed under substitution upon variables), should A and ~A
be theorems of RL, then an arbitrary B is also a theorem, i.e. RL is then trivial (for details
see ENT p.462). With E the situation is like that for minimal logic; while an arbitrary B is not
a theorem, all statements of a given syntactic class are (by an argument like that for R, but
using a permutable-forward implicational expression of form r — r). The main relevance logics
do not make a sufficient break from classical limitations, from mainstream inability to

accommodate reasoning in the precincts of inconsistency.

Those equipped with adequate logical tools, with genuine and especially authentic
paraconsistent systems, are strategically placed to investigate logical reasoning concerning
classes of principles, and involved in types of argument, which destroy mainstream logical
tools. The principles include, in particular, abstraction and characterisation principles (see
PL); the types of argument comprise all those which genuinely circuit through inconsistency.
For such important logical purposes, intuitionistic machinery is little better than classical.
For while intuitionistic apparatus can deal, in an enthymematic way, with incompleteness, it
is in no way equipped to cope with its dual, inconsistency. The issue of adequacy of logical
equipment for the full range of reasoning situations brings out especially sharply the
limitations of classical logic (cf. RLR introduction). It becomes evident that classical logic is
not simply inadequate in a limited, rectifiable way. It is not just that it set out with a rather
minimal and impoverished set of connectives (a hammer and hand-saw logical technology),
which was correct so far as it went and could be fixed up by additions. The approach through

the extended classical program has been to try to rectify it by additions, by adding on further



“compatible” apparatus (compatible at least with the extended classical theory, which relaxes
extensional constraints and tolerates a certain, often high, level of platonic pollution). The
apparatus includes both the approved syntactic, proof-theoretic equipment and the certified
semantic, model-theoretic machinery (what get certified, and applauded, are of course the
modellings that can be absorbed within the expanded program, e.g. platonic set-theoretical
representations of complete possible worlds and of other “non-existent” objects). It is thus but
a somewhat liberalised version of what keeps reappearing in different thin disguises (like the
recognisable movie-star trying to play different roles): the old reductionistic strategy, through
an underlying canonical (or deep) structure or ideal language, supplemented by logical (or

linguistic) constructions; in short, the old ideal language program.

A significant part of the emerging relevant program, that committed to authentic
paraconsistency, rejects such an approach, and is highly resistant to co-option under it (to be
sure, there are classical-looking modellings of basic relevant theories, supplied from the
program itself, but they do not get certified). For it contends that extension, though
important, is not nearly enough. For the core structure from which extensions are made is not
merely ramshackle, but seriously defective, and properly condemned. To be both blunt and
quite specific about it, the canonical structure, embodying classical logic, is incorrect. It is

rotten at the core.

There are several major defects in all classical programs, two of which are especially
important in what follows (others, such as unwarranted ontic commitments, are documented

elsewhere, e.g. JB).

D1. The basic rule of Material Detachment, in standard symbols A, A D B/B (or A, ~A V
B/B), is incorrect. Its scope is restricted to certain consistent situations.

D2. The (derived) rule of Strict Replacement, i.e. intersubstitutivity everywhere of provable
material equivalents (e.g. A = B/ ®(A) D ®(B)) is incorrect. Its correct scope of
application is restricted to narrowly modal contexts, a rather diminutive sub-class of
those of genuine logical interest.

There is major division within the broadly relevant enterprise about such contentions,
about such radicalism or atheism as regards the established classical faith. Undoubtedly the
majority of those interested in the broadly relevant enterprise, especially those in North
America, are either theists, believers in a substantial part of the extended classical program
and in its basic correctness, or agnostic hangers-on, for example logical technicians who have a
comfortable living and no wish to disturb the classical equilibrium. Most of those who have,
unlike the usual technicians, serious philosophical interests in traditional sociative logic, are,
underneath the liberal classical facade, theists, committed to a classical program. No, the
main divisions over the correctness of classical logic can be found alive and thriving within the
narrowly relevant reaches of sociative logic, where a fascinating intellectual dispute
(overlapping that between bourgeois classicists and non-conformists with relevant

commitments) is currently running.9



The main issue, within narrowly relevant logical theory, has been put in terms of
relevantism. Relevantism rejects classical logic as incorrect, and adopts instead a relevant
logic as supplying the basis of a theory of correct argument. In significant respects relevantism
is like intuitionism; it is likewise anti-classical, but bases its program on relevant rather than
intuitionist logic. Like intuitionism, relevantism sets a substantial theoretical program: that of
reworking logic and what hinges materially upon it, such as the foundations of mathematics
and science (much of the program is outlined in PL p.369, p.523; some will be looked at in the
concluding chapter below). Part of the close connection of relevantism - or relism as is more
easily and elegantly said - with paraconsistency is immediately appreciated. For one main
reason, the adoption of paraconsistent relevant logic as a most satisfactory type of
paraconsistent framework, itself a required anti-classical selection of framework, leads directly
to relevantism (both claims we argued for in detail in PL p.177ff.). The argument for
paraconsistent relevant logics as a superior choice, involves D1 and its restriction, essentially
for paraconsistency, crucially for relevance; and adjustment of D2 is intricately tied up with
replacement of classical and intuitionist logics by relevant logics in improved explications of
main logical notions. Relevantism does not, of course, exclude adoption of other logics for
limited or special purposes; for instance, use of classical logic as a shortcut technique in
certain recognisably consistent situations such as those of sentential metatheory, use of
irrelevant finite-valued logics, such as RM3, for preliminary investigations in inconsistent
mathematics, and so on. Nor does it block attempts at synthesis (and a certain relevant co-
option), for instance, explication of relevance logics such as E and R as relevance preserving
enthymematic systems, or relevant adaption of leading items of analytic implication and
relational logical theory in explication of auxiliary notions, such as relevant containment,
adaptions designed to resolve better and relevantly some of the problems rival broadly
relevant logics were introduced to meet (e.g. frame problems, of many types, difficulties in

fallacy theory, etc: see further BG and RCR).

Nor, certainly, need relevantism militate against decent pluralistic admission of other,
different or rival positions. This book for instance, is presented in the spirit of a generous
pluralism. Should such an assertion astonish some readers, they should consider the evidence,
impartially. Very few of the essays, outside the edited introductory and concluding sweep,
espouse relevantism. A plurality of other positions gain admission, and several much exposure.
It is not even denied that the dominant paradigm represents an admissible position, which can
be hung onto despite its defects (perhaps come what may); only that it is very far from
adequate. As it happens, there is much input from defenders of the dominant paradigm,
inveighing against relevant defections and deficiencies.!? Classical logic gets more space than
some proper sociative business. Owing to the rather haphazard method of selection of the
essays, the book does not offer a representative coverage of sociative logics; for instance, it
includes comparatively little upon the historically important direction of connexive logic and

nothing much on relational logic.

In fact, the book has ended up taking the peculiar shape it has largely as a matter of

accident (of conference offerings and adjustments), combined with the tolerant pluralism of
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the original Anderson and Belnap venture, which allowed for and encouraged investigation of
a wide range of logics. The background conference, from which most of the essays are drawn
was scheduled and planned as a relevance logic conference. It was intended to further critical
investigations of relevance logic (thus papers both for and against relevant enterprise were
invited). It was set against the immanent appearance of Anderson and Belnap’s paradigmatic
text, Entailment, and, as it turned out, the death of Anderson. It was only by accident (a
trend in fashions, Parry’s appearance which surprised many participants, last minute changes
in papers offered, etc.) that easily tolerated sociative logics outside the relevance range, Parry
logics especially, obtained so much exposure. Otherwise this volume too would presumably
have been a collection focussed on narrowly relevant logics. It is only by what passes for
accident also that this volume consists of the strong strange mix of technical logic and
philosophy that tends to diminish both types of audience but that has become the fashion in

relevant enterprise.

4. The technical and philosophical mix in recent relevant logic research.!! Technical
developments are immensely important in logic, philosophy, and elsewhere. Indeed they are a
major source of genuine progress even in philosophy, where otherwise a great deal of
“research” consists in dressing up old ideas in contemporary gear and terminology. For one
thing, technical results can show that various positions, traditionally or conventionally ruled
out (such as inconsistent theories and theories of nonexistent objects), are in fact viable; and
conversely, technical results can reveal that projects and positions considered viable (such as
standard logicism, finitism, and empiricism) are not. For another, and more generally,
technical results help to advance knowledge of a subject and the sophistication of discussion.
But, as elsewhere, technical developments are by no means always a force for good; technical
virtuosity can, for instance, run out of control, as in parts of linguistics and mathematical

logic, dominating (philosophical) reasoning and forcing aside adequacy constraints.

Relevant logics have depended heavily on technical results to show their viability, merit
and interest, their ability to do what was previously ruled out as unachievable (but technical
results reveal as well their limitations and difficulties). In all the books published on the topic
thus far,12 beginning with Anderson and Belnap’s watershed text FEntailment, technical
results and development have been thoroughly interfused with philosophical themes and
arguments. Such a combination has made relevant theory difficult reading for most
philosophers and for those on the arts and humanities side of the educationally-fostered “two
intellectual cultures” (or even irrelevant in a fortunately diminishing British sphere of

influence), and has much restricted proper circulation of relevant ideas.

The publication of Entailment signalled the end of one important stage in the
development of relevant logics - the stage when there were no technically adequate systems
appropriately equipped with semantics, algebraic formulations, structural analyses and so
forth, to compete with the irrelevant systems which dominated the logical field. It also
heralded another stage, marked among other things by a profusion of formally relevant logics,
a stage which also saw some dissipation of the previously concentrated research endeavour.

While it is past time to break out of the pattern set by Fntailment, a time for moving beyond
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logic to applications, a time for introducing textbooks in relevant logics, a time for discipline-
oriented expositions of relevant theories for scientists, mathematicians and computer scientists
especially, and a time even for popular exposition of relevant ideas to a wider intellectual
public, this book, which has its roots in the period, more than a decade ago, of Entailment,

does not, for the most part, try to buck the older pattern.

Entailment had, it was said, two expressed intertwined purposes:- First, it contained a
sustained set of arguments designed to establish the conclusion that the relevance logics are
philosophically superior to classical and intuitionistic logics, indeed, to any logic which does
not take account of relevance. Secondly, it aimed to encompass detailed formal developments
of the various systems of relevance lngics, presenting a summary of most of the known results
in the field, especially those results relating to the favoured relevance logics, R, E, RD, and T
(at least that would have been close to true at the time, had the projected two volumes

eventuated then).

Central to the motivational arguments for relevance logics presented in ENT were certain
structural stability arguments - the important fact that the various presentations and
formulations of a given system such as R all generated the same theorems and acceptable
inferences; the Hilbert-style axiomatization, the Lemmon-style axiomatization, the worlds
semantics, the natural deduction formulations, the algebraization, and the Gentzen-style
consecution calculus all led exactly to the same places. (Of course to some extent, like parallel
classical results and limited stability results in mainline economics, they led to precisely the
right places because they were adjusted to do just that. As is known and will emerge, much of
the stability is artificially contrived, and falls apart under stress.) Such structural stability
had been important in entrenching classical and intuitionist logics in their mainstream
positions. Since, it was supposed any rivals should measure up to similar standards, and it
was suggested, no rivals could, much technical work was devoted to showing that relevance
logics could meet these difficult tests. In some respects the technical work was too successful;
for what was also shown was that a great many logics beyond the relevance stable could also
meet these sorts of technical standards (to various degrees at least, and often enough better).
Thereupon motivational argumentation has too often tended to fall back on older, and
unfortunately soft or bad, philosophical grounds (e.g. from the entrenched opposition: we
don’t like talk about nonexistent possibles, we can’t make much of impossible worlds or

partially-defined situations, we don’t need these things, etc).

As is known and will again emerge, by no means all the structural stability problems
have been satisfactorily resolved (e.g. the difficult business of consecution formulations), and
related technical questions (e.g. concerning interpolation) remain open even at the sentential
level. And beyond the sentential level the situation remains, even technically, in considerable

present disarray, as will emerge.

While the technical and the philosophical interact, they do not march precisely hand in

hand. Much philosophical argumentation does not depend upon proving new formal results,
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but involves for instance the interpretation and the assessment of the significance of what has
already been proved. Much formal analysis, on the other hand, seems at best of very indirect
motivational importance. Many of the papers which fill the professional journals give insight
into technical features of relevant logics, the philosophical resonances of which are muted, to
say the least. Yet such papers and such investigations are judged quite vital both to technical
progress and to the entire relevant enterprise. Assembled, they sometimes eventually provide
the necessary formal building blocks for grander arguments and can thus be of great

philosophical importance.

Yet the mix of philosophy and logical technology is an uneasy mix, because philosophy
and technique, which often tend in diametrically opposed directions, attract different sorts of
people.13 For example, logicians are typically immensely impressed with strength of system,
of result, or whatever; there is an underlying power drive manifested in certain sorts of
technical activity and virtuosity. Philosophers without logical ambitions are much more
concerned with adequacy, with reflecting (sometimes it seems) the ezact messiness of things -
which makes theory and proofs difficult at least, and bogged down with qualifications. A
logical or positivistically-inclined philosopher or philosophical technician will try to cut
through all this complication and detail, discarding the messiness of everyday discourse for
the clean bare but false lines of extensional classical discourse (whereupon much of discourse,

such as discarded intensional parts, becomes a serious problem).

The quest for strength, simplicity, power, and the like industrial virtues, typically takes
the logically inclined clear past the labyrinths of sociative logics into the grips of irrelevant
logics, which in their dominant forms undoubtedly manifest the industrial virtues to a far
greater degree (at least to superficial appearance). Especially is this so now, in the age of
computers which incorporate the two-valued logic. The never-dense ranks of relevant logic
research are thinning, as logicians are charmed away by the quiet anaesthetizing hum of this
new, presently impressive machinery. The imperatives of the mode of production call, and
these imperatives are presently, though inessentially, two-valued. The mix of philosophy and
technique of sociative logical investigation accordingly attracts few and turns away many.
Nonetheless as relevant logics set technical problems of high degrees of difficulty, they have
continued through their brief history to interest and attract a remarkable proportion of the

smartest logical technicians.

The need to solve technical problems concerning relevant logics that traditional methods
were incapable of handling has led to new techniques. This has been an extremely valuable
spin-off from the interest in relevance logics, both locally and in logic and philosophy more
generally. However, then, the philosophical value of the relevant enterprise comes to be judged
- if truth and reason ever become important operationally in philosophy, judgement can only
be favourable - the effort expended upon the technical problems of relevant logics has
certainly paid off; the enterprise has been a most fruitful one logically and intellectually. In
particular, the complex jig-saw puzzle delivered by more than 2000 years of logical

investigations can at last be largely solved - to the extent that the historical pieces survive.
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5. The proliferation of relevant logics, and the looming problem of choice of
system. One outcome of the technical successes has been that the number of systems that
can fairly be labelled “relevant” has ballooned. Where once the systems E and R, and

14, increasingly now these logics are simply two or three of

perhaps T, were the relevance logics
a score or more of systems, several with some claim to offer a viable analysis of relevant
implication or entailment or related notions. This proliferation, reminiscent of the
developments in modal logic, has meant that the criticism of relevant logics has become more
internalized; criticism of a given relevant logic no longer comes only from without the
relevance camps, but from within as well. The multiplicity of relevant logics has generated a
difficult choice situation. It is appropriate to consider briefly the route to variety before

confronting, still more briefly, the issue of choice within that variety.

The route Anderson and Belnap presented in ENT, as involved in reaching their preferred
system E, opened the door to much variety, to a plethora of systems, to Pandora’s box. For
their analytic route contrasted sharply with their original practice of simply reshaping
Ackermann’s rigorous implication to meet philosophical requirements (such as normality,
which required removal of v, i.e. Material Detachment). The analytic route started from the
pure entailment system E_, - the system comprised of those theorems with — as the only
connective - a system itself open to obvious variation. Thereafter the structure was built up
pretty much connective by connective to the full sentential system; and thus the route
revealed something of the range of options open at each stage of elaboration. Given the
considerable divergence in the philosophical views of the main erstwhile friends and architects
of relevant logics, it is unsurprising that some of the other options were seen as appealing, and

sometimes as superior to the way Anderson and Belnap wished to proceed.

Divergence in intuitionistic directions was particularly easy to motivate, and
accomplish. For the initial formulation of E_, was achieved (in ENT) by means of a Fitch-
style natural deduction system, the motivation for which (that of keeping track of what is
used where in a construction) ties up with intuitionistic themes (and, more exactly,
constructivist themes) in logic. E_, is motivated by combining, in an allegedly “natural” way,
H_, and S4_, with a weak relevance condition. Since S4_, already had close connections
with H__, the pure intuitionistic logic, the relation between intuitionism and the standard
pure (and positive) relevance logics was said to be a deep one. The choice of full system E was
partially motivated, however, by another different decision, a decision to have E include
Anderson and Belnap’s system of tautological entailment, a system whose affinities are rather
with classical logic. That E is a conservative extension of classical logic gives a classical slant
to E. But it is quite open to someone working with relevant logics to separate out the various
motivations and to argue for, say, a purely intuitionistic version of the relevant logics, or for
more classical versions. Insofar as affinities between the relevant logics and other views of
logic are found and followed, the way is open to accept the superiority, or various virtues, of a
relevant logic and yet deviate from the systems promoted in ENT (and to criticize them either

from a mainstream angle or from a perspective different from orthodox classical or



intuitionistic tangles).

The way was also opened for divergences in more thoroughly classical directions - those
of the so-called “classical relevant systems”, which are in fact substantially irrelevant.
Relevantly, the way was opened to stronger relevant systems, and, in opposition to this,
towards less classical, deeper relevant logics. Such room for divergence became apparent and
easier to elaborate with the development of semantical analyses for relevant logics (whence

the deliberate plethora of systems of RLR).

The quite proper analytical procedure of ENT, of stopping off to focus on one of the
several types of justification of relevance logics at a time (e.g. natural deduction,
Gentzenisation of a fragment, etc.), and of considering certain rival logics on the basis of that
type of justification, opened the way to still wider divergence from the original intentions of
the authors of ENT. In each case, part of the gain claimed by those proposing variations was
the separating out of differing or superior notions of relevance, conditionality, implication and

entailment, not duly separated, or sometimes conflated, by Anderson and Belnap.

Thus, for instance, one approach to the derivation and defence of systems of “analytic
implication” is through the Fitch-style natural deduction formulations of parts of E and R,
where various uses of a formula in a deduction are given subscripts and various constraints
are placed on the permissible inferences, by way of conditions upon the subscripts used. The
purpose of the restraints is to require variable-sharing between the premises and the
conclusion of a permissible inference.!® The restraints admit of much variation. In particular,
there is sometimes reason to take the variable-sharing property (the so-called “weak relevance
condition”) more stringently and require that no variable appear in the conclusion of a
permissible inference that is not also present in the premises (thus incorporating a
“proscriptive principle” which proscribes new variables). The formal systems that result are

quite distinct from, and prima facie incompatible with, the relevance logics of ENT.

Recent interest in analytic implication grew largely through variation upon themes and
procedures written up in ENT, and grew, not because it was reckoned right for something, but
even for paper-generating, empire-building, or other exploitative purpose; for instance
exploitation of techniques worked out for handling relevant and modal logics to standing
curiosities. But in fact the analytical enterprise itself, which has good historical credentials, is
significantly older, and some influences have worked in the reverse direction. Parry’s system
of analytic implication, Al, is after all twenty-five years older than the explicitly formulated
systems of Ackermann from which the technical relevance enterprise grew. And Parry’s
motivating Proscriptive Principle, criticised in ENT. is an historical source of the Anderson
and Belnap weak relevance principle. Far from viewing the analytic implication systems as
arising from taking the relevance principle too strictly, it is easy enough to re-view the
Anderson and Belnap systems as arising from not taking the Proscriptive Principle seriously

enough.
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Yet another variation focussed upon the justification of relevance logic as codifying
correct arguments. Along these lines it is sometimes insisted that all the connectives within
relevance logic be constructively interpretable. Such emphases lead to systems diverging from
E and R at least as regards negation behaviour, and perhaps both as to negation and
disjunction. How the divergence goes depends on which formulation of which part of E (or a
rival system) is selected as starting point. Since E and its neighbours have several parts, e.g.
pure implication, implication-conjunction, positive, etc., and also several formulations, e.g.
subscription, natural deduction, Gentzen, operational, semantical, etc., there is much room
for variation. And some of the better known variations have emerged from following
properties, expected for E or R, through from parts of the systems to full systems - which,
however, differ from E and R. Thus the orthorelevant system OR, of R minus Distribution
(i.e. A & (B V C) —. (A & B) vV C), emerges from straightforward extension of a simple
Gentzenisation of the pure implication R_, part of R (differing from Gentzenisation of
classical logic only in restricting Weakening rules). And unlike R, OR retains the decidability

property of the common implication part.

The applauded stability of £ and R looks most contrived, and falls apart most readily,
with the disjunction and negation rules of subscripted natural deduction procedures. And
since the rules for these connectives also require an unwelcome complication for first-located
operational semantics for E and R to succeed, variation of them is suggested by that approach
also. Some of the more likely variations have been followed through some distance by
Pottinger, who has worked on constructive relevant logics, by Urquhart (who has tried to
resist giving his name to the outlandish U systems), and by others. But much poorly explored

or unexplored territory lies in these directions.

Intuitionistic-style extension of relevance logics, and dually da Costa-style extensions,
are suggested by several considerations, not just “constructivity” and the like. For one, the
positive parts of E and R, the parts E, and R+ which do not contain negation, share several
of the appealing properties of the positive part, H, of intuitionistic logic (i.e. of positive logic).
For example, all these logics have the constructive features that A V B is a theorem iff A is a
theorem or B is a theorem.!® For another, it is widely-enough recognised that the full strength
of the positive part of intuitionistic logic (the higher degree part) is seldom or never used in
applications, so there is room for tighter logical theories, adding nonclassical negation theories
to less slack positive logics. (Several of the logics that result are investigated from axiomatic
and semantical angles in RLR 1I, chapter 6 and by Vakarelov in PL). In fact the motivating
argument offered by Heyting for choice of intuitionistic logic almost cries out for relevant
adaptation; and the whole constructive approach readily suggests theories of enthymematic

mathematical thinking controlled in one way or another by relevance.

These different directions are, furthermore, merely illustrative of the variety there is,
most of it yet to be explored. What all this rich variation of system reveals, and means, is

that there is much room for choice.
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6. On choice of systems, and correct choices. Choice is characteristically directed, it is
for some purpose or other. Choice of logic may be for rather local purposes, as in a game, or
for a logical exercise; or it may be more comprehensive or even global, as when a serious
philosopher is trying to select some fairly general all-purpose logic17 which is philosophically
adequate (as distinct from mathematically convenient), for instance, it does not bring with it
a series of gratuitous problems or constraints. The choice of system is never entirely a
technical matter, but is, in important cases, an ideological matter. Nevertheless, a system
may be selected for more local investigation because it presents some technical problems of

interest, of an appropriate level of difficulty, etc.

The philosophical arguments justifying a more comprehensive choice of relevant logic, as
appropriate for a given purpose, or as correct, tend to fall into two main types. The sortal
division is like initial rough classifications of ethical theories, as intuitive or consequential.
One, more intuitive, sort appeals to pre-analytic facts and intuitions about reasoning and
language, and argues that a given relevant logic fits such “facts” more closely and
satisfactorily than rival systems. The other more consequential sort appeals to post-analytic
results and states, to the harmonious outcomes of the analyses, to the usefulness of the
resulting systems in pursuing various systematic investigations, and argues that a given
relevant logic is more useful for theorizing about certain problems than rival systems. The
first type - the appeal to pre-analytic intuitions - is illustrated by Barker, who appeals to the
inferences he claims are actually made in epistemic contexts. The appeal leads to a
modification (indeed a betrayal) of the Anderson and Belnap systems; for, according to
Barker, the Disjunctive Syllogism for truth-functional ‘or’ must be admitted as a valid
inference in epistemic contexts, as it agrees with intuitively acceptable judgements(!). The
second type - appeal to post-analytic consequences applications, and utility - is illustrated by
those (like Stephenson) who explicitly reject any appeal to ordinary language and argue
instead that the value of relevant logic is precisely its ability to treat problems central in the
philosophy of science. An assumption underlying such scientism is that our intuitions as to
which inferences are valid are conditioned both by the structure of scientific theory and the

requirements of a developed logical theory useful for science.

Much of the more philosophical work concerning analytic implication, as well as some of
the work on intuitionistic relevant logics, can be regarded as making appeals of the first type,
to pre-analytic judgements. In the case of the systems of analytic implication, the appeal is to
certain notions of logical content and the guiding intuition is the Kantian one that the
conclusion of valid inference cannot have content not in the antecedent. In the case of the
intuitionistic systems, the appeal is to intuitions about the constructive meaning of the
various connectives to be used in a logical system. In both cases, of course, the “pre-analytic”
intuitions can be quite sophisticated, dealing not so much with the woman-in-the-street’s
intuitions about ‘logical content’ or as to the meaning of ‘or’, but with the usually more
informed and reflective intuitions of the reader of Kant or the logician who has been trained

to work with various Gentzen systems or with nonclassical logics.



But the border between the two types of appeals roughly distinguished soon begins to
collapse. When van Dijk, for instance, appeals to relevance logic as a significant tool for
constructing adequate linguistic theories about natural language connectives, what is at issue
is a systematic, useful theory about the intuitions expressed in the pre-analytic use of natural
language. This combination gives van Dijk’s long essay a double bite: the evidence he presents
relates both to the usefulness and application of relevance logics to treat scientific issues, in
linguistics, and also to disputes over what sort of inferences are grounded in our pre-analytic
intuitions. A connected virtue of his work (like that of Barker and others) is that it greatly
increases the richness and variety of examples in an otherwise unduly limited and tedious

philosophical diet.

A careful choice of system for some given, perhaps rather general, purpose will naturally
involve weighing up appeals of both sorts. Carried out in due detail it will require
application, much better explicit, of some model of rational choice-making. A satisfactory
choice of system, for the explication of suppression-free implication or entailment, leads, so it
has already been argued in much detail, using a rational choice model, to a choice of a
relevant logic. The arguments (the main details are set out in UC and RLR) also lead to
relevantism. But, firstly, while there are certainly constraints on choices for most purposes, it
is rare that these fix a choice uniquely. Sometimes they will exclude any choice at all; often
they will permit a range of choices. Secondly, the choice made is commonly free, the end-
results are not compulsory, and other researchers of good-will may make other choices. The
choices ultimately made form part of a pluralistic mix, of which this book represents a small
logical sample. There need be no conflict between the ideal of a universal logic and such
pluralism. A universal tool (so-called) can be one tool in a basket of tools, a rather inefficient
or awkward tool for many special purposes. Universalism, by contrast with universal devices,
insofar as it involves exclusiveness, insofar as it would not countenance rival positions or
18

logics, is different, and dangerous (as Galtung has explained) Unfortunately, it is

universalism that choice of a relevant logic, whether as universal or not, has often to combat.

The arguments which have been presented in the literature for adopting relevant logics
as the correct logics of nonenthymematic implication and entailment have not exactly taken
the philosophical or logical worlds by storm. That does not mean that the arguments lack
merit, but rather that well-entrenched positions can so far afford to ignore them, or even jeer
at them. But increasingly raiding parties are sent out, bent on inflicting substantial damage.
Objections to relevant logics from the perspective of classical logic are thus now commonplace
and nothing new. Newer, for contemporary times, are styles of disputes within relevant logics
themselves: as to the place of relevance, over the appropriate strength of “natural” negation,
over the respective merits of different proof-theoretic methods and, especially, different
semantics. Concurrently the external debate has altered; the level of the on-going debate
between classical logic and relevant logic recently exhibited has moved to a more
sophisticated level than the initial debate during the 60’s, largely as a result of technical
developments. The development of a formidable semantical theory has made the arguments

about relevant logic considerably more complex and, for the most part, better informed, but
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has also opened the door to new areas of choice and disagreement. Coupled with the more

developed stage of relevant logics are - or ought to be - more developed and sophisticated

critiques.19

NOTES

1.  With due apologies to C. Dickens, A Tale of Two Chities, opening paragraph.

2. In much of that time, however, there was no fundamental investigation, but, when logic
was studied, it was largely repetition of what had been accomplished earlier, with
perhaps minor correction (and perhaps accumulating error). Thus, for instance, the
tiresome sequence of pontifical and empty texts expanding upon the received theories of
syllogisms and fallacies. The traditional paradigm certainly needed ousting; but from
the point of view of fundamental notions and logical freedoms, the outcome of the
“classical” revolution was, like most revolutions, decidedly suboptimal.

3. For fuller discussion of this crucial neglect, see 1B p.753ff. The persistent neglect of
relations is also seen, to take yet another example, in the so-called calculus of
individuals, where any two individuals, however related, are said to make a further
individual. But in the ordinary sense, only suitably related individuals compose to yield
individuals. The neglect is seen, somewhat differently, in such group and collective
activities as decision-making, where there are repeated attempts to reduce group
relations to properties of individual members of the groups, such as their individual
preferences.

4.  Antilogism is often seen, quite inaccurately, as merely generalising Contraposition. It
would be nearer the mark to say that it amalgamates Contraposition and Disjunctive
Syllogism (DSyll). Firstly, given these principles Antilogism can be derived, in an
innocuous implication setting. Consider these derivations in the first degree, rule
setting, where the interrelations are more perspicuous. Then

A&B->C /~C— ~(A&B) Rule Contraposition
/A& ~C— A& ~(A & B) Rule Factor
/A& ~C— ~B DSyll, Rule Transitivity

Secondly, for the converse, there are two derivations. DSyll is but a one-step
application of Rule Antilogism (as above), using Identity, A — A. Further,

A-B /~B&A—-B Rule Monotonicity
/ ~B& ~B — ~A Rule Antilogism
/ ~B — ~A &-ldempotence

The first and last steps use Rule Transitivity, the first step just that and Simplification.
Rule Transitivity is critical for following through the implications involved. It is a trifle
puzzling that the obvious problems with full Antilogism were made nothing of in ancient
times. For, as Duncan Jones nicely observed, Antilogism yields p & ¢ — p <. p & ~p
— ~q, ‘which is one of the paradoxes we are trying to avoid’ (p. 77). But was it?
Maybe it was supposed that paradoxical content rubbed off on p & q — pj certainly
Simplification enjoyed no routine following in former times (see chapter 9).

5. As remarked, the now established label ‘classical’ is singularly unfortunate. To make
matters worse, the markedly nonformal logic of the post-medieval period (fifteenth to
seventeenth centuries) has been called ‘the classical logic’; thus e.g. Bochefiski, chapter
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10.

11.

12.

13.

36, on what he scathingly describes as ‘the so-called “classical” logic’ (p. 254).

Although adoption of some form of strict implication became the dominant position by
the fourteenth century, it was certainly not the only position. Furthermore, a unique
strict system was not supplied, though a common first degree system and certain second
degree principles can be extracted.

For steps towards an improved, but still inadequate, account (and typology) of
genuinely paraconsistent logics, see Batens 80, pp.201-2. Named and investigated logics
which are (weakly) paraconsistent but not genuinely paraconsistent include Curry’s
system D, which delivers all negated wff, and the Arruda-da Costa J systems, which
yield all implicational wif (see Urbas).

They also include, among irrelevant paraconsistent logics, the positive-plus C systems of
da Costa, which succumb to the Curry objection, trivialising upon addition of
unrestricted comprehension principles (see PL p.176).

On the issues surrounding relevantism, see Routley 84 and work cited and criticised
therein. Other fascinating disputes, overlapping relevantist issues, are mentioned in the
concluding chapter.

It has nonetheless been contended that the conference from which the essays originated
involved insufficient classical input! No doubt the same will be said of the book itself -
as if the dominant paradigm did not already enjoy excess representation, the inside
logical running, and so on.

The inclusion of such sentiments, and of classically supportive essays, within the book
does not imply that the editors are prepared to ascribe much, or any, credence to them.
They do not. Several of those essays rest on mistakes or confusions, interesting
confusions for the most part. Woods, for example, conflates rules of inference with rules
of belief-modification; Kielkopf mistakes restricted-situation application of classical logic
with its acceptance; Barker universalizes from select instances of Disjunctive Syllogism;
and so on.

The material in these next sections originally started out following, in a rough and
ready way, the Introduction, “Current status of the current situation in research in
relevant logics”, to the first unpublished edition of this book. We are indebted to the
previous editors.

By contrast with classical logical texts, the list is extraordinarily (and no doubt
commendably) brief, though during the editing of the present collection it began to
grow. The English texts include those of Diaz and of Kielkopf. Kielkopf’s interesting
and hard-working monograph, in particular, has been most unfortunately, and
undeservedly, neglected. But it includes many important discussions either found
nowhere else or carried so far nowhere else. (Kielkopf blotted his copy book badly with
both classical and many relevant theorists, by first heavily criticising relevant logics
from a classical stance, and then switching allegiances to relevance logic. Nor are
philosophical conversions of that significant, anti-paradigmatic, sort widely approved
academically.)

At many conferences combining logicians with philosophers, including the conference
from which this text eventually grew, there is an uneasy mixing of people, corresponding
to an uneasy mixing of technical logical with philosophical virtues. There is, for
instance, impatience of logicians with philosophical niceties and pernickitiness, and
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15.

16.

17.

18.

19.
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horror of philosophers (forgetting about some of their own colleagues) at logical clarity
and crudity of assumption, etc. There are some interesting, largely uninvestigated,
sociological issues here, concerning different disciplinary profiles and the like. For a
little more on such sociologic, see the conclusion.

Some opportunistic parties tried to throw in the technically useful but irrelevant system
RM, where early technical successes were being achieved.

Cf. Parks-Clifford, and the discussion in Urquhart, both in fra.
Other connections of £ and R with intuitionistic logics are presented in Meyer 73.

Even an all-purpose commodity will not generally be a strictly universal one, even if
advertised as such.

All these issues obtain some of the further detailed consideration they deserve in a
forthcoming series on correcting mainstream logic and logical ideology. There too some
of the themes on universal and natural logics (of UU and UC) are appropriately reset, in
terms of pluralism and of satisizing (rather than maximizing) choices.

Meyer, who early expressed such views, would now want to say that there are
exceptions who help (perhaps through apparent incompetence) to establish the point.
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CHAPTER 2

“RELEVANCE” IN LOGIC AND GRAMMAR

Teun A. van Dijk
1. Introduction

1.1. In philosophical and logical work on conditionals, entailment and the general principles
of deduction, the problematic notion of “relevance” has given rise to a heated debate and
genuine puzzlement. Although there have been attempts to account for the concept both
axiomatically and semantically, it can hardly be pretended that such formalization goes
beyond a rather intuitive understanding of the issues involved. As is often the case in the
recent development of many types of non-standard logics, the intuitions invoked are clearly
linguistic in character, i.e. pertain to properties of conditional sentences and arguments of

natural language.

Since our intuitions about natural language are supposed to be made explicit by an
adequate grammar, we would expect such a grammar to shed some light also on the rules and

constraints determining relevance relations in natural discourse.

In this paper an attempt will be made to provide a general and informal discussion of
‘relevance’ and related notions from this linguistic point of view.! More particularly, it will be
argued that the relevance requirement must be satisfied by any compound sentence, viz. by all
connectives, and by any coherent discourse, i.e. not only deductive or argumentative, in
natural language. Although such a claim might have feed-back in the philosophy of logic, we
will be concerned with the applications of some recent ideas from relevance logics in the

explicit characterization of these properties of natural language.

1.2. There are developments in actual linguistic theory which have some striking similarities
with the interest for relevance logics and conditional logics in logical theory. Whereas the
generative transformational grammars elaborated by Chomsky and others were originally
confined to algorithmic structural descriptions of isolated sentences, it has been noticed, from
different points of view, that both the syntactic and the semantic structures of sentences
should be characterized relative to the structure of other sentences of discourse on the one
hand, and relative to the structure of the speech context, on the other hand. The first
argument has led to the attempt to construct grammars to account for the abstract structures
of discourse, so-called ‘text grammars’?’, whereas the second argument has brought various
branches of pragmatics (logical, philosophical, sociological) within the scope of linguistic
research.’ Thus, much attention has been paid, both within the “textual” and with the
“contextual” perspective, to the notion of ‘presupposition’4. Mutatis mutandis, one could
say that presupposition in these linguistic investigations plays a role similar to that of
entailment in relevance logics: whereas a logical consequence is required to be relevant with
respect to the premises by which it is entailed, a grammatical sentence in a discourse or
conversation is required to be relevant with respect to the presuppositions ‘after’ which it may
25
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be significantly asserted. Of course, different concepts of “derivation” and “assertion” are
involved here, but the analogies are interesting enough to serve as a starting point for a more
general discussion about the relationship between formal and natural discourse, i.e. between

logic and grammar.

2. Natural connection

2.1. In order to be able to evaluate logical treatments of relevance we first should try to make
our linguistic intuitions more precise and systematic, and to formulate provisionally the

conditions of relevance in natural language.

Both in logic and in grammar relevance arguments pertain to relations between
sentences (or propositions). On the one hand such a relation may hold between sentences in
compound sentences, on the other hand between sentences in a discourse, derivation or proof,
e.g. between premises and conclusion. Let us start with some observations on relevance
relations in sentences of natural language, i.e. on the specific properties of connectives and
connection in natural language. For shortness, we will speak of “natural connectives” and

“natural connection”.

2.2 ‘From a logical point of view’ one of the notorious properties of natural language is its
vagueness and ambiguity. Connectives are no exception. That is, we may in ‘surface
structure’ express a certain connection, e.g. some type of implication, with a connective, e.g.
and, normally used to express another connection:

(1) John was not well prepared and failed his exam.

Similarly, an “underlying” connection need not be expressed by a connective at all:

(2) Peter won’t come; he is angry.

From such examples it may be concluded that natural connection should be studied at a
sufficiently abstract level, viz. at the level of “deep structure” or “logical form” of sentences.
Although grammatically crucial we will not be concerned here with specific surface

manifestations of natural connection.’

2.3 Another difficulty is the distinction between sentential and phrasal connection in natural
language:

3) Tl go to the movies or to the theatre tonight.

4) Ill go to the movies tonight or I'll go to the theatre tonight.

5) Harry and Larry failed their exam.

Harry failed his exam and Larry failed his exam.

)
7) Harry and Larry are good friends.
) Susy ordered fish and chips.

)

Sugar and water make syrup.

Such phrasal connections are possible especially for and and or (and in some special
cases, e.g. but + negation) and make noun phrases out of noun phrases and verb phrases out

of verb phrases. From the well-known examples given above we see that disjunctive phrasal
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connectives may be derived from underlying sentential connectives, i.e. (4) is the hypothetical
underlying structure of (3). The same holds for many cases of conjunctive phrasal connectives
as in (5) and (6). Examples (7), (8) and (9), however, show that such a reduction to
underlying pairs of sentences is not without problems. Instead of expressing a connection
between sentences (or rather, propositions) they seem to express roughly a meaning like
‘together with’ or ¢(...) each other’, i.e. an operation on individuals to make n-tuples or sets.
The difficulties involved here will be ignored in the present discussion and we will focus upon

sentential (propositional) connection.

2.4. Although we have decided to neglect the specific syntactic properties of natural
connectives in order to be able to focus our attention upon their abstract (‘logical’, semantic)
characteristics, it should be noticed that natural connectives are expressed in different
grammatical categories, viz. as conjunctions and as adverbs mainly, but also in modals
(counterfactuals) and larger phrases (e.g. the reason why). These distinctions in surface
structure are motivated by reasons of compatibility, distribution and substitutivity. Proper
conjunctions cannot follow each other (*and or), whereas conjunctions and adverbs and
abverbs and adverbs are compatible (and yet, so nevertheless). Again, such phenomena

require explanation at the semantical level.

2.5. With respect to their ‘meaning’, natural connectives are usually grouped in different
classes, viz. conjunctions, concession, condition, consequence, causal, final, circumstantial
(time, place, manner). These respective meanings must be made explicit in an appropriate
semantics. Since most natural connectives do not have a counterpart in logical languages
their interpretation is not formally straightforward. Nevertheless, one might reduce these
various classes of connectives to a limited number of basic connectives, for which an
appropriate formal language and hence an interpretation might be devised. Thus, it will be
argued that all natural connectives manifest different types of “conditionals”, varying
according to the “strength” (modality) of the connection and to the truth value status, with

respect to the actual world, of the connected propositions.

2.6. Arriving now at the heart of the matter we meet the condition that propositions related
by natural connectives in a compound proposition are to be (pairwise) relevant to each other.
This constraint seems necessary to mark off as “queer” the following sentences when used in
normal contexts:

(10) *Peter has a headache and Nixon will never resign.

(11) *John went to Paris or his uncle is very rich.

(12) *The film was terrible but the spring was early this year.

(13) *If Harry comes to the party, the grass will be green.

(14) *Because Susy was ill, the Russians did not land on the moon.

That the condition of relevance is general and not dependent on the individual meanings of
the respective connectives used can be concluded from the fact that in these examples no
connective would make the sentence acceptable. The unacceptability of the following sentence

in most contexts, however, is due to the specific meaning of the connective:
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(15) *John is very strong, but he could lift that stone.
What, then, are the conditions which determine the ‘connectibility’ of propositions expressed

by compound sentences?

One of the usual answers given in the logical and philosophical literature, at least for
conditionals and entailment, is that the two sentences or propositions must share a “meaning
component”.6 This requirement is pretty vague and needs further explication. In the first
place it is necessary to distinguish at least between “meaning” and “sense” along the usual
Fregean lines, or between intensional (conceptual, analytic) meaning and extensional
(referential) meaning. Although this distinction is notoriously problematic, we will take these
respective notions of meaning both as functions from expressions (terms, sentences) taking as
values concepts (thing concepts, fact concepts) on the one hand, and individuals (things, facts,
truth values) in some possible world(s), on the other hand. This is still rather inexact; in
particular we may want extensions to be determined by intensions, and hence reference by
conceptual meaning, e.g. as a function from intensions (conceptual meanings) to properties of

possible worlds.”

Now, although (conceptual) meaning relations may determine certain types of
connection (e.g. entailment), this condition certainly does not hold in general. The
propositions in example (10) and (11) above share a concept [human], but this does not make
them connected. Hence the condition is not sufficient. To see that it is not necessary either,
look at the following example:

(16) If it has rained the grass will be green.
This is a perfectly well-connected sentence of which the propositions do not seem to share a
concept. Again, this observation holds for any connective which may be substituted for :f ...

then in (16), and hence does not depend on the ‘meaning’ of the respective connectives.

As we indieated above there is one case where concept-sharing seems to be a necessary
condition of connection, viz. in analytic implications (entailments) expressed in natural
language:8
(17) Roger is a bachelor, so he is not married.

Notice however that such sentences are instances of general ‘meaning postulates’ from the
lexicon, and thus have a meta-linguistic character. This property explains the specific use of
such sentences in learning situations and in argumentative discourse; the consequent does not
satisfy the general principle of information increase in natural conversation. Notice further
that conception-sharing condition only holds for this type of implication. Sentence (17)
expresses a true proposition in all possible worlds where the proposition expressed by the
antecedent is true. In other implications different types of necessity may be involved, not
based on concepts but on the factual structure of the actual world and those worlds
compatible with it. Thus, the following examples express an implication (holding in all

possible physical-biological worlds) without sharing a concept relevant for the implication:

(18) It is spring, so the trees get new leaves.
(19) The king has been beheaded, so he is dead.
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(20) Peter stayed at home, so he didn’t visit us.
From this discussion it follows that a conceptual meaning relation between propositions is
neither a sufficient nor a necessary condition for them to be relevant to each other, except for

the specific case of analytic implication.

Now, let us consider relations of referential meaning between propositions, i.e. relations
determined by reference to the same things or facts in some possible world. As may be seen
already in the previously given examples, e.g. (19) and (20), this condition comes much closer.
In intuitive terms: Two propositions are relevant to each other if they are ‘about’ the same
thing. In more formal terms: if, under some interpretation and with respect to a given model
structure, the value of a term in the antecedent is identical with that of a term in the
consequent. This is precisely one of the semantic conditions which make pronominalization
possible as in (19) and (20). Since we often use words which conceptually overlap in order to
denote the same referents, relevance based on referential identities is frequently accompanied

by at least partial conceptual identity.

The values of terms need not be individual “things” like concrete, observable,
identifiable objects. They may also be other “facts” of a given possible world: time point,
event, action, property, etc.:

(21) John took his tea at 3 p.m. and at the same time the bomb exploded.
(22) The bomb exploded nearby, but we didn’t hear it.
(23) Pete has the measles, and so had Jill.

The picture, however, is more complex. Although rather generally formulated, the
constraint seems too strong. Consider for instance example (18), which is clearly connected,
but the two propositions do not seem to share identical referents. Relevance in this case
seems to be based on what might be called “circumstantial identity”. That is, the
circumstances in which the second proposition may have a truth value (viz. truth) are
specified by the first proposition - in this case, the consequent contingently implies the
antecedent. In other terms: the antecedent is a sufficient and necessary condition for the
second proposition. A similar connection holds for sentence (16) where the antecedent is

(weakly) sufficient for the consequent.

There are other examples where referential identity is not required for relevance:
(24) John is old, but Peter is young.
Here, connection is established on the basis of identical “property types”, viz. age. Although
the particular properties are different - in this case contraries - predication in both cases is, so
to speak, made from the same point of view, i.e. with respect to the same inherent feature of
the individuals (having age), which also determines the sort of correctness of the two

propositions.9

Whereas the necessity of referential identity conditions thus must be formulated in a
more general way, we may next ask whether the condition is at least sufficient. Let us again

give some examples:



*Peter passed his exam in mathematics and he is six feet tall.

*While I took breakfast Nixon started his tour to the Middle East.
28) *Since Peter wanted it, the moon rose at 1:30.
In these sentences we have, respectively, identity of individual object, partial property

identity, time identity and propositional (fact) identity. Nevertheless, the sentences seem

(25)

(26) *If John won that chess game, Mary won the beauty contest.
(27)

(

rather unacceptable for most normal conversational contexts. Apparently, referential identity
is not a sufficient relevance condition. Hence this basis is too small to relate propositions.
Looking at the examples in (25)-(28) we observe, intuitively, that although there is a
semantical relation, viz. between denoted objects, there is no apparent relation between the
facts denoted by the two propositions. Conversely, in the previous examples we saw that,
although there was no identity of individuals, there was a relation between the facts denoted
by the propositions, viz. a relation of necessary or sufficient conditioning of facts, e.g. a causal
relation. In other words, we may conclude that two propositions are relevant to each other if
and only if the facts they denote are related. Now, this condition is not surprising when we
assume that (natural) connectives may be interpreted as relations between (or operations on)

facts of some possible world or some possible course of events.

Of course, in case one should want to identify propositions with facts, the result is
trivial. We therefore keep conceptual and referential meaning, and hence the meaning of
sentences, viz. propositions, apart from the structure of the possible world itself in which such
meanings have general or particular values. Nevertheless, we might want to know under what
conditions facts are related. A simple formal answer would be: two facts are related if they
form an ordered pair which is an element of the set of ordered pairs which is the value of the
connective relation. At first sight this is a curious move back to the linguistic level because
the set of fact pairs (or, for that matter, of fact n-tuples) seems constructable only via
language expressions/meanings. Although we would not like to endorse such a claim without
qualification, it has an interesting pragmatic bite: two facts are related if a speaker considers
them to be related by uttering a sentence expressing a connection between propositions
denoting these facts. This brings relevance exactly where many have thought it should be

accounted for: in the pragmatics of natural language.

2.7 Conjunction. In order to specify the properties of natural conjunction we begin with some
examples:

(29) Peter went to the store and bought cigarettes.

(30) Peter, please go to the store and buy me some cigarettes.

(31) Mary took a sleeping pill and fell asleep.

(32) Susy read a book and John played the piano.

It should first be observed that in these examples and may be substituted by and there, and
then, and at the same time, respectively. If this is due to the inherent meaning of and, it

should be reflected in the truth conditions.'®

Sentences (29), (31) and (32) express a true proposition (i.e. a proposition having a fact

in the intended world as a value) if the component propositions are both true. This is as
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classical as it can be and uncontroversial. But it is only part of the story. First of all, e.g. in
(29) and (31), we would hardly want to have the conjunction true if Peter went to the store
yesterday and bought cigarettes today. Similarly for (31). Hence, we should build in the
usual possible world condition that the propositions have facts as values in roughly the
“same” possible world. Now, permute antecedent and consequent in (29) and (31), and we see
that this condition is still too weak. The possible worlds must be linearly ordered in time, at
least in (31), but with the proviso that the time points are sufficiently close. This is a vague
condition, which can certainly be falsified by other examples when it is not further qualified.
Intuitively, the two time points must define what we may call a single “situation”. As such,
neither possible worlds, nor time points, seem to be sufficient to achieve this task. That is, we
would at least need a third situation relative to which two possible worlds are related such
that they form one situation.!! Although we do not yet have an appropriate pragmatics, this
third situation may be taken as the contezt of utterance of the sentence. Formally, then,
expressed in the semantics by a primitive operation of “compatibility” or “accessibility”. In
other words, we may say that the two time points/worlds define a possible course of events
accessible from another course of events, viz. the context. A conjunction would then turn out
true in a course of events if both propositions are subsequently true in the same course of

events (accessible from the context).

Although these semi-formal conditions bring us a step closer, there are more aspects
involved in natural conjunction. Moreover, the ‘possible course of events’ device is not yet
very clear and even seems to beg our question concerning the relatedness of facts. Take for
example the following sentence:

(33) *Peter went to bed and bought cigarettes.

Why is this sentence clearly less acceptable in most contexts than (29)? In other terms: why is
there no (normal) course of events in which the proposition expressed by (33) can be
satisfied?1? One of the reasonable answers would be: Going to bed is not the usual condition
making cigarette buying possible, whereas going to the store is. At least for the mentioned
examples we arrive at the conclusion that natural conjunction is noncommutative and has the
character of a sort of conditional, where both propositions are to be true. but where the
consequent is true in a possible world determined by (selected by) the antecedent.!® Le. the

consequent is to be interpreted in a possible course of events in which the antecedent is true.

Apparently, example (32) does not seem to fit this condition. First, it can be commuted
salva veritate. Second, the antecedent does not specify a condition under which the
consequent is possible. Nevertheless, in order to be an interpretable conjunction, (32) must
exhibit, though implicitly, a conditional form. Indeed, without previous information (32)
would not as such be interpretable, and it may appropriately be uttered only after a sentence
specifying the condition with respect to which both propositions are true, e.g.

(34) After dinner Susy and John went to the library upstairs.
This is, the two propositions of (32) are not directly connected but via a third proposition.
The meaning of and in (32) may thus appropriately be paraphrased by (and) in the same

sttuation. Abstracting from implicit conditionals, this is the reading coming closest to logical
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conjunction.

Clearly, the conditional involved in natural conjunction is very weak. The fact denoted
by the antecedent is neither a sufficient nor a necessary condition for the fact denoted by the
consequent. That is, the condition is one of the possible conditions which allow the fact
denoted by the consequent to occur, i.e. the antecedent selects one of the situations in which

the fact denoted by the consequent is at least possible (or even probable, as in example (31)).

2.8. Disjunction. Natural disjunction plainly acquires the same weak conditional character as
natural conjunction. Take, for example, the following sentences:

(35) John went to Paris or he went to Rome.

(36) Love me or leave me!

Usually, natural disjunction is exclusive, i.e. expresses a true alternative only if at least one of
the propositions is false and the other true. Characteristic, further, is the fact that the
speaker, at the moment of utterance, does not know which alternative is or will be realized.
In the possible world terminology this would mean that the possible world (or course of
events) in which the propositions are true or false is not accessible to (the worlds of) his
actual knowledge. Sentence (35) is commutative and the disjunction there is thus based on a
conjunction with an implicit (presupposed) condition. This is, indeed, how we interpret (35);
we are expected to have the information that the alternative courses of events are to be
compatible with e.g. the fact that John spent his last holidays in Europe. Hence, if, with
respect to this initial situation, the first alternative is true, the consequent is false, and if the
antecedent is false then the consequent is true, and conversely. In some cases, e.g. in (36) the
disjunction, paraphrasable by or else, is noncommutative, such that only the first part of the
truth condition is required; nothing ‘follows’ from the satisfaction or nonsatisfaction of the
consequent. (At the moment we leave undiscussed the specific problem concerning the

interpretation of imperatives, which also requires an appropriate pragmatics.)

A disjunction is false if both propositions are true or both are false in a world accessible

from the context, i.e. the speaker knows that there is no alternative.

2.9. Contrastive, Concession. Whereas conjunctions and disjunctions in natural language

have a weak conditional character, all other connectives either directly express or indirectly

presuppose stronger conditionals, viz. contingent implications of various strength. Although
there are stylistic and pragmatic differences (different presuppositions), contrastives and
concessions have analogous semantic and truth conditions. Take for example the following
examples:

(37) John is very clever, but he could not prove the theorem.

(38) Although John is very clever, he could not prove the theorem.

(39) John is very clever yet/nevertheless he could not prove the theorem.

The basic condition, again, is that both components are true in a possible world accessible
from the context. Whereas in other implications the consequent more or less “necessarily”
follows from the antecedent, as we shall see below, the inverse holds here; the falsity of the

consequent “follows normally” from the (true) antecedent. Since, however, the consequent is
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true, these connectives somehow express an “exception” to an implication. This fact, hence,
excludes any kind of necessity of the connection, and we therefore have to resort to weaker
modals and corresponding quantifiers in the model-theoretic account, viz. probability and for
most, respectively (where ‘probability’ assumes the meaning it has in natural language: ‘it is
probable that’). So, whereas the basic condition is that both components are true in some
possible world - e.g. the actual world - the further condition is that for most alternative
possible worlds (or course of events) accessible from the context, in which the antecedent is
true, the consequent is false. Hence, there is at least one situation in which this is not the

case, and that situation is actualized.

The reading of contrastive but above, however, is not the only one. Consider, e.g.
sentences like (24) (‘John is old, but Peter is young’). Here nothing even of a probable
implication seems present. Indeed, in such cases and may often be used too. Intuitively, it
seems that whereas in the stronger but and in the concessions the truth value is contrary to
what is expected, the weaker contrastive expresses that the predicates of the two propositions
are somehow contrary, or mutually exclusive. The criteria involved are pragmatic: the
“contrast” expressed depends on the expectations of the speaker (and the knowledge of the
speaker about the expectations of the hearer) in a given context. So, whereas in the strong
contrast we have maximal difference, viz. contradiction. in weak contrast we have
contradictories of predicates or simple difference with what is expected, e.g. A and B instead
of A and C. As for conjunction and disjunction, we omit many details. The main task is to
briefly resume the systematic semantic properties of natural connection, manifesting the

different ways facts, and hence propositions, are relevant to each other.

2.10 Conditionals, Causals, Implications. We can be brief about the stronger natural

connectives, viz. conditionals, causals and implications of different types, because these have

had extensive attention in the philosophical and logical literature.

Notice first of all that not all conditionals have implicational strength. Weak
conditionals have semantic properties analogous to those of natural conjunction. Compare for
example the following sentences:

(40) If you go to the store, please buy me some cigarettes.

(41) 1 went to the store and bought you some cigarettes.

In neither case the condition expressed by the antecedent is somehow sufficient or necessary,
but only “possible” (cf. the paraphrase of this {f ... ithen| by in case). The only difference
involved is the fact that the speaker has no epistemic access to the truth of the antecedent
(which is a fortiori the case for all future possible worlds, and thus in all speech acts
pertaining to future acts of speaker and hearer: promises, requests, etc.). Thus, while some
conditionals are as weak as conjunctions, others have probable and necessary modalities which
also characterize causals and implications:

(42) If it rains the protest march will be cancelled.

(43) If it rains tomorrow the grass will soon be green.

(44) If Harry said so, it’s okay with me!

The facts denoted by the antecedents are sufficient conditions for the facts denoted by the
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consequents. That is, in all (or most) possible worlds where the antecedent is true the
consequent is true (in no, or nearly no, possible world is the truth of the antecedent
compatible with the falsity of the consequent). The further condition, specifically
distinguishing conditionals from conjunctions on the one hand and causals/implications on the
other hand, is that the speaker does not (yet) know whether the antecedent is true. Yet,
although the facts are unknown the relation between certain facts is known: or rather, the
relation between fact types (concepts) is known, e.g. in the form of lawlike propositions or
rules, holding all (most) possible worlds (compatible with the actual world). This general
inductive knowledge provides the access, from the context, to some distinguished possible
world, or possible course of events. This generality, of course, does not hold for examples like
(42), where possibly an ad hoc relation between facts is expressed, characteristic of conditions
functioning as sufficient reasons for action. Hence, in all possible (future) worlds compatible
with the intention/decision of an agent the antecedent is inconsistent with the negation of the

consequent.

Notice also that in many cases a natural conditional implies that the negation of the
antecedent is consistent with the negation of the consequent, i.e. if the antecedent turns out to
be false so will the consequent, because conditionals are often exclusive from a pragmatic
point of view. This is always the case for conditionals where the antecedent does not (only)
express a sufficient but (also) a necessary condition, as in an examples like:

(45) If I go to Paris, I'll visit the Louvre.

These remarks do not yet provide a full picture of the “truth conditions” of
(hypothetical) natural conditionals. As for the other connectives, the pragmatic status of
notions like “truth”, “assertion”, etc. have not been clarified. In this perspective there have
been attempts to formulate truth conditions for a (logical) relevant conditional with a
pragmatic clause stating when the sentence is assertive in a given possible world. 14 Only
assertive sentences can receive a truth value, whereas a conditional is assertive only when its
antecedent is true. Although such a proposal comes closer to a serious treatment of relevant
conditionals, it has several difficulties when it is not further specified. Clearly, the factual
truth status of the two propositions does not determine whether a sentence expressing them is
assertive or not. The pragmatic conditions of assertability are to be formulated in terms of
knowledge and assumptions of the speaker. Next, what is asserted is certainly not the
consequent-under-condition-of-the-truth-of-the-antecedent. ~ Assertion, as was noticed, is a
function of previous discourse and/or assumptions of the speaker, i.e. of contextual structure.

This can be seen from the following example:

(46) A: When will the protest march be cancelled?
B: The protest march will be cancelled if it rains.

The assertion made by B is certainly not (only) pertaining to the consequent (here, typically,
in topic position - indicating the standard position of presupposed elements), but rather to the

conditional antecedent.

From this very brief discussion it seems to follow that the conditional antecedent must
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be true, or rather thought to be true, only if it has presuppositional character, i.e. if it is
equivalent with a proposition (or its entailment) expressed in a previous sentence or
describing the knowledge of the speaker. Under that condition the utterance of a conditional
may be - under still further conditions - an appropriate assertion. Assertions are (speech)
acts, which are not true or false but appropriate or inappropriate, successful or unsuccessful.
Now, an assertion is appropriate if the speaker believes that the proposition expressed by the
sentence he utters is true.!® In case of a conditional, thus, neither antecedent nor consequent
are asserted, but the conditional relation between them. Hence, a conditional is true if that
relation exists in the intended possible world, i.e. if in all (most) alternatives to that possible
world the existence of the fact denoted by the antecedent proposition is incompatible with the
absence of the fact denoted by the consequent proposition. This is still a partial account, but

it will do for the moment.

In other conditionals, like (44), the antecedent is not hypothetical, but expresses a
proposition assumed to be true by the hearer. In that case, indeed, the antecedent has
presuppositional character, whereas it is asserted that the consequent is true and that this
fact depends on the truth of the fact denoted by the presupposed antecedent. The assertion,
then, is appropriate, tnter alia, if the antecedent is true, and if the speaker believes that the
consequent is/will be true and that this truth depends on the truth of the antecedent.
Abstracting from this pragmatic condition, thus, the proposition expressed by the sentence
(uttered) in an assertive act is true if both facts exist in the actual world and if the first is a
sufficient condition for the second (i.e. incompatibility of its absence with the presence of the
first in most alternatives). This gives precisely the truth conditions for causals. Indeed,
sentence (44) seems to be equivalent with sentence (47):

(47) Since Harry said so, it is okay with me.

In this example the first proposition is again presupposed. This is also the case in many other
causals:

(48) Because of the airline strike, we will not go to India.

(49) We will not go to India, because of the airline strike.

(50) We will not go to India, for the airline is striking.

In the first two sentences, the because clauses (nominalized in surface structure) are
presupposed, which is not the case in (50), where two propositions are asserted (plus the
causal relation between the facts denoted by them). From the truth condition given, we see
that causals are like natural conjunctions in that both propositions are true in the actual
world, and like conditionals in that the fact or situation denoted by the antecedent
necessitates or probabilizes the fact denoted by the consequent. Causals, themselves, may be
of different strength, and scope, depending whether the related facts are connected in most or
all alternative possible courses of events, and whether these alternatives are physical,
biological, psychological, etc. alternatives. We will not here discuss the numerous other

philosophical problems related with the notion of causation.

Whereas in causals the antecedent is known to be true in the actual world, and in the

(hypothetical) conditional it is unknown to be true in the actual world, the specific property
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of counterfactual conditionals, is that the antecedent is known to be false in the actual
world.1® As with the other conditionals, however, it is supposed to be true in some alternative
world, which may in this case, however, be basically different from the actual world in that
other basic postulates are true in it. The minimal difference is that in the alternative world
the antecedent is true but false in the actual world. All other things may be equal and indeed
are usually kept constant in case something is asserted about a possible alternative compatible
with the factual world. Since the antecedent “determines” the consequent, the fact denoted

by the consequent will also be false in the actual world.

Natural :mplications have, as we saw earlier, a specific status and are normally used in
meta-linguistic (language teaching) and argumentative discourse. The truth conditions are
well-known, and similar to those of the causals, but with more general necessity involved:
Truth in “all” possible alternatives (empirical or logical):

(1) Peter has been in Paris, so he has been in France.
(52) John went to the movies, so he is’nt here.
These implications may also be in the other connective “modes”: ‘If (since) Peter has been in

Paris ...”, ‘If Peter has been in Paris ...”, ‘If Peter would have been in Paris ...".

2.11. The previous sections were intended as a brief (incomplete) characterization of the main
semantic properties of the natural connectives. Using terminology and some proposals from
recent relevant semantics of logical connectives, we see that in principle all natural
connectives can approximately be defined in terms of various types of “conditionals”. Specific
differences are either stylistic (which we didn’t discuss at all) or pragmatic (presuppositions,
assumptions of the speaker, viz. the structure of the context) on the one hand, whereas on the
other hand the semantic differences are based on the following criteria:

(i)  strength of the connection!’

--possible:  conjunction, weak but, weak ¢ f (in case)
--probable: concession, conditional, causal
--necessary: causal, implication
(ii) truth in actual/non-actual/epistemically (in)accessible possible world(s) of one/both
proposition.

This is still rather confused and hardly a new result. Further conclusions should be drawn

from the brief analysis given.

First of all, we observed that all connectives have ‘conditional’ character. Hence it
seems to be misleading to talk about a (one) conditional connective, at least in natural
language. Secondly, it was shown that what usually is considered as a (relevant) conditional,
often expressed by ¢f ....[then|, covers the different degrees of connective strength, i.e.
represents different connectives. Put in other terms: all connectives have an 17 f-counterpart.

Consider e.g. the following pairs:

(53) (a) If I am in Paris, I’ll visit Madam Tussaud.
(b) I was in Paris, and visited Madam Tussaud.
(54) (a) If he didn’t visit Madam Tussaud, he climbed the Eiffe] Tower.
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b) He visited Madam Tussaud or climbed the Eiffel Tower.

a) (Even) if Holland played best, it didn’t become world champion.
b) Holland played best, but didn’t become world champion.

a) If Mary is ill, she won’t visit us.
b

)
(85) )
)
)
) Because Mary was ill, she didn’t visit us.
)
)
)
)

(56)
(57) a) If the king is beheaded, he is dead.
b) The king has been beheaded, so he is dead.

a) If John is a bachelor, he isn’t married.
b) John is a bachelor, so he isn’t married.

(
(
(
(
(
(
(
(58) E
Similarly, all connectives have a subjunctive (counterfactual) counterpart, expressed by if...
[then| and/or modal auxiliaries. The conclusion seems to be that if ... then is not a
connective at all, but rather, so to speak, expresses a semantic mode of connected
propositions. Whereas the “other” natural connectives denote a possible, probable or
necessary connection between facts which are known (and hence either asserted or
presupposed) by the speaker to exist (i.e. to be true in the actual world), if ... then
statements express the same connections respectively for a possible world (course of events)
which is epistemically inaccessible. The third mode of assertion, viz. counterfactuals,
expresses facts to be false in the actual world but true in some alternative world. Since
counterfactual worlds are strictly speaking also epistemically inaccessible. we could take
subjunctive conditionals as a specific submode of the second mode, although it shares with the
first mode, the factual mode, the property that the speaker knows or assumes something

about the actual world, viz. the falsity of the propositions.

Instead of speaking about, respectively, a factual and a hypothetical mode, we might use
terms like transparent and opaque. In transparent assertions the speaker knows whether the
propositions are true (whether the facts denoted by them exist) in a world accessible from the
context, whereas in opaque assertions the speaker does not know whether the facts exist (and
hence can assert only a relation between fact types, actualized in some world, most worlds or

all worlds).18

In seeking for the ‘relevance’ behind conditionals we seem to have overlooked the fact
that ‘conditionality’ itself is the criterion we needed, viz. as a requirement of any (at least

natural) propositional connection.

In reducing natural connectives to one basic type, viz. conditional, with different degrees
of strength, we also seem to be one step closer to the systematic relationships between
connectives and modalities, a central topic in the entailment discussion.!® Whereas
implications are usually associated with (different sorts of) necessity. now the weaker
connectives are associated with possibility. At the same time, we saw, a notion like
“epistemic accessibility” between possible worlds has been used to characterize
7 f-conditionals. Of course, all this requires a serious formal semantics, and the remarks here

are merely preliminaries in that perspective.

For reason of simplicity we use a provisional piece of notation for the three basic types
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of conditional connectives:20

A ¢— B:it an A situation it is possible that B

A V- B:it an A situation it is probable (likely) that B

A O— B: it an A situation it is necessary that B

Assuming ‘A * B’ to mean, in general, ‘A is a condition for B’, it may of course be asked

(%3]

whether the three basic conditionals can simply be defined in terms of with modal

operators:

AO—>B=0(A*B)

AV-B=Y(A*B)

AO-B=0(A*B)

Such a question can be answered only if we know exactly what the modalities used here mean
in natural language. It has often been pointed out that the modalities of natural language are
at least “empirical” modalities, in the sense that our use of ‘necessary’, ‘likely’, and ‘possible’
either corresponds to possible worlds which are compatible with our own, actual, world, or
with that portion of actual worlds (and those compatible with them) which are epistemically

accessible.

A first problem is whether A ¢— B, and hence (if the definition is correct) ¢(A * B), is
equivalent with A * ¢B, which might be inferred from the intuitive readings given above.2!
Indeed, there are examples in natural language where we do not easily find a difference in
meaning:

(59) It is possible that, if Peter comes to the club, Harry will throw him out.

(60) If Peter comes to the club, it is possible that Harry will throw him out.

(61) It is possible that Harry will throw him out if Peter comes to the club.

Apparently, the ‘it is possible (that)-clause at the beginning has only the main clause as its
scope, which is a normal phenomenon in complex sentences which have a subordinate clause in
initial position (e.g. “It is strange that, although she always wrote him, he never sent her a
letter”). This observation does not prevent sentences like (59) from having different
meanings. A more “logical” reading would be that there is at least one situation in which
Peter’s visiting the club is a sufficient condition for Harry to throw him out, whereas in (60)
Peter’s visit is a sufficient condition to make throwing him out possible. Sentence (59) is
already true when there is one (imaginable) situation of “coming-throwing out”, whereas in
(60) in any situation where Peter comes to the club the possibility may arise that he will be
thrown out. (60) is inconsistent with the information that usually (in most situations) Peter’s
visit is a sufficient condition for not being thrown out. Strictly speaking, it is always
“possible” (empirically and under appropriate circumstances, e.g. Harry’s abilities, etc.) that
Peter is thrown out of the club when he is there, which would make (60) trivial when the
phrase ‘it is possible that’ in the second clause would not pertain, as in (59), to the whole
sentence, that is to the connective. Moreover, in our examples ‘if’ has been used with the
meaning of a sufficient condition, i.e. with likeliness of necessity involved. The question, thus,
is whether in natural language ¢(A O— B) is equivalent with A O— $B. In this respect the
given examples seem to differ from sentences like

(62) If I (were to) throw a dice, a six may turn up (it is possible that ...).
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Here, the possibility is as such “necessitated” by the fact denoted by the antecedent. Indeed,
the antecedent expresses a necessary condition. In other cases the initial “operator” does
certainly not have the consequent as its scope, but rather, again, the connection, or the
antecedent:

(63) It is possible that George will hold the lecture only if he is well paid.

(64) George will perhaps hold the lecture if he is well paid.

(65) Maybe, if he is well paid, George will perhaps hold the lecture.

Notice that in (64) it is not the case that George will perhaps hold a lecture once being paid
well; rather the speaker makes a guess as to the sufficiency of the conditions which are
compelling for George to hold his lecture. In (65) a good fee is supposed to be a possible
condition for George to consider holding a lecture at all; maybe has the antecedent, it seems,
as scope, and perhaps the connection of the two propositions. Clearly, maybe and perhaps -
which are the usual natural forms to express ‘it is possible that’, which is rarely used - do not

have the same propositions as their scope.

The connectives considered so far have a rather one-sided character. Conditionality
(relevance) is so to speak asymmetric: A condition allows, probabilizes or necessitates its
consequence, but nothing seems to be said about the relevance of the consequence with respect
to the antecedent.?? Nevertheless, we make frequent use of the notion of, e.g. necessary
condition, as in the characterization of sentence (62). That is, throwing a six is a possible
consequence of a necessary condition of throwing dice. Similarly, jumping from the Empire
State Building is a possible condition for a (practically) necessary consequence: death of the
one who jumped. Finally, our being at the beach is merely possible with respect to the
possible consequence of playing football. Notice that, as such, the sentences or propositions
are not possible or necessary; they express proposition/facts which are possible or necessary
conditions relative to a consequence, and possible or necessary consequences relative to a
condition. Whereas the left-right relation has been called a ‘conditional’ or an ‘implication’,
we may use the term presupposition for the right-left (“backward”) relation with the same
qualification as to the “strength” of the relation. The usual notion of presupposition is that of

a necessary presupposition, which is logically entailed by the consequence.

Thus, in order to fully capture relevance in both directions we introduce a new piece of
notation, viz. a box, diamond or triangle with the arrow point to the left:
A —~OB: A s a possible condition (presuppositon) for B;
A «VB: A is a probable condition (presupposition) for B;
A —0OB: A is a necessary condition (presupposition) for B.
These backward connectives combine with the forward connectives, yielding nine complex
types of connection. There is nothing particular about such a notation; it is well-known from
the double arrow of logical equivalence. The informal semantics of the connective would
roughly run as follows: in at least one (in most, in all) situation(s) where B is the case, A is
also the case. A sentence like
(66) I was in the grocery store and met Fred

would thus be represented (globally) as p «+~{<{— q, because meeting Fred does not exclude
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my being at the store, nor does my being at the store exclude a meeting with Fred. Now,
backward connectives seem to have a meaning very close to, if not identical with, modalities
of forward connectives, in the following way:

A «$0— B = ¢$(AD0— B)

A~ 0O0-B=(AD0O— B)

A «0O0— B = 0(A O— B)

Indeed, if A necessitates B in all possible situations then A is a necessary condition for B, i.e.
B cannot occur without A, and conversely. In terms of selection functions: B is true in all
worlds determined (selected) by f , (in some world w,), and whenever B is true in some world

W Wy is a member of the range of each function determined by each world in which A is true.

There is another way of talking about possible worlds, at the same time accounting for
the fact that intuitively we seem to identify a possible world rather with a course of events
than with a state (or state description, partial or complete). That is in terms of (horizontal,
left-right) trees. Each path in the tree is a possible course of events, each node is a situation
where branching is possible, i.e. where different events may subsequently occur at the same
time in a different path. As usual there is one specific path, viz. the actual world (with its
factual history and future) with a variable point (node), viz. the “now” of the moment of
utterance of a sentence expressing a proposition “about” the tree. Each node is identified by a
set of propositions (true at that state of the course of events). The node levels are
characterized by the same points (assuming time structure to be constant in all empirically
possible worlds). The arrows relating to the nodes denote state changes. Further refinements
and explicit graph theoretical definitions will not be given here. We will now say that A
allows B(A ¢— B) if a node A leads to a node B in a path, A necessitates B if from a node A
(i.e. a node where A is an element of the node characterization) all paths (from A) lead to
B. A is a possible condition (presupposition) of B, if B may be reached from a node A in at
least one path, A is a necessary condition if in any path B can only be reached through a
A-node.

In the next sections we will see that the natural connectives are also closely linked with
derivational aspects of connection. That is, propositions are not only relevantly connected in
complex or compound sentences but also in sequences of sentences. More particularly, it
might be argued that the connectives we have been discussing should be defined in
derivational terms, where the antecedent plays the role of one of the particular premisses, and
the consequent the role of “conclusion”. This is a familiar relationship in logic, but it is worth
investigating as to whether it has a more general character. One of the main arguments for
such a derivational treatment of connectives is the fact that many assertions pertain to facts
we do not (yet) know or cannot possibly know to be the case. Hence such assertions must
incorporate at least part of an inferential structure, with a certain number of premises of a
more general character (about general relations between facts) remaining implicit.23
2.12.  Although we have argued above that non-truth-functional connectives of natural
language are of one basic type of “conditional”, having varying degrees of strength - which we

have rather classically captured by using the usual notions of necessity and possibility,
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together with the non-standard notion of likeliness - we are not yet in a position to
differentiate between sentences with an 1f-clause and sentences with e.g. a because-clause. In
both cases necessitation may be involved, in the first case, as we saw, in possible worlds not
directly accessible for the speaker’s knowledge, in the second case in the actual world (i.e. the

actual course of events which is epistemically accessible).

In the first place this difference in the “meaning” of these two “connectives” is not fully
correct. Causals may also express propositions which cannot yet be known, but at most
believed:

(67) Because he is ill-prepared, John will fail his exam.

(68) John is ill-prepared, so he will fail his exam.

The difference with a sentence with an 1 f-clause, here, is that only the consequence in the
causal is epistemically inaccessible, although doxastically accessible, whereas the condition is
known to be true in the actual world. However, the converse is also possible:

(69) Because he failed his exam, John must have been ill-prepared.

(70) John failed his exam, so he was ill-prepared.

Apparently, because need not introduce the clause expressing the conditional clause, but may
also introduce a conclusion from which (by “backward inference”) a hypothetical premise can
be asserted if that conclusion is (factually, epistemically) true. Now, in both cases also
1 f-clauses may be used:

(71)  1f he is ill-prepared, John will fail his exam.

(72)  If he failed his exam, John must have been ill-prepared.

These two sentences have each at least two readings. In the first place, the speaker does not
know (in 71) whether John is ill-prepared and (in 72) whether he failed. In terms of the tree-
semantics: In (71) the first clause, true in a path assumed to be close to the actual world
path, is likely to lead to a node where the second proposition holds, whereas in (72) this node
of the consequent proposition is asserted to be reached probably through a node where the
antecedent is true. The second reading runs parallel, but there the i f seems to mean ¢ f indeed
or since, expressing an assumption about the actual world based on indirect information
about the facts, e.g. inferred from the assertion of a previous speaker. With such proviso as to
the truth of the antecedent the speaker expresses that he is committed to the truth of the
consequent only for the world in which the antecedent is indeed true. Instead of introducing a
third operator for the propositional attitude of “(justified) assumption” - besides knowledge
and belief - we will simply call such worlds “weakly” accessible. In most cases such
epistemically accessible worlds will turn out to be identical with the actual world. Hence, ¢ f
is naturally used in those cases where the fact (a condition or a consequence) is true in a
world which is epistematically inaccessible or only weakly accessible. Notice that in both
cases at least one fact, either the condition or the consequence, remains unknown, whereas in

causals at least one fact is known.

These conditions determining the appropriate use of ¢f-clauses and because-clauses as
different manifestations of the same connective (necessary or probable conditional) have a
pragmatic character, i.e. pertain to the structure of the context at the moment of utterance,

viz. to the epistemic properties of the speaker. Similarly, differences as in sentences (69) and
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(70) between subordinate and coordinate clause connectives also are to be formulated in
pragmatic terms like ‘assertion’, ‘presupposition’, ‘focus’, etc. Having studied the derivational
aspects of connection and relevance, we therefore must also pay attention to the pragmatics of

relevance.

Of course, we might, in a formal language making natural language structures explicit,
try to express certain pragmatic facts in the formulas, as has been done with the semantic
differences (necessity, probability, possibility) in the connectives. Thus, we may use symbols
for ‘it is asserted that’ (‘}’), for ‘it is presupposed that’ (‘4’), possibly with indices ranging
over speakers, or follow the well-known road of epistemic and doxastic logics. Similarly we
may, “within” the connectives, introduce the different accessibility types: B is known
(believed, assumed) to be a necessary consequence of A (A’c — B), and/or use truth-or fact-
operators. Most of these possibilities have been explored elsewhere, especially in different
non-standard logics, and need not be discussed here because it is not our aim to set up an

appropriate formal language.
3. Natural derivation

3.1.  The two main uses of the term ‘derivation’ occur in logic (and mathematics) and, more
recently, in the theory of (generative) grammars. In this section a third, perhaps more
general, use of the term will be made, which however is linked both with the logical and the

grammatical notions.

There are different ways to characterize formal derivations in logic and mathematics:24

syntactically as an operation on sets of sentences; semantically as an operation on
propositions, truth values or facts; pragmatically as a certain discursive, goal-oriented act.
The usual characterizations of the notion of derivation involve several aspects of each of these
levels, although derivations (or proofs) are mainly considered to be syntactic objects. Such
objects consist of wif’s or sentences (of some formal language) which are sequentially ordered.
This ordering is pairwise determined by rules, such that a sentence S, may follow from
sentences <§,,S,,...,S; ;> “according” to the rules. These rules pertain to the (syntactic) form
of the sentences, i.e. they establish which formulas (sentences) are formal transformations of
each other. Here, a bit of semantics usually comes in: transformations are to be semantically
equivalent, i.e. have the same truth value under all interpretations. Transformation rules are
thus strictly truth preserving rules. Secondly, there are rules (deduction rules) which may be
called weakly truth preserving because they determine that a certain formula/sentence type B
may follow a formula/sentence type A iff when A is true B is also true (but not conversely, as
in the transformations). Thus, truth is preserved but not the “whole truth”, so to speak. The
set of rules defines a set of possible or admissible derivations and is thus characteristic of a
given system. Similarly each system may have a set of formulas/sentences which are
considered true a prior?, viz. axioms. It is possible to formulate transformation rules in the
form of axiomatic equivalences. Finally, there are other basic equivalences holding for any
derivation of the system: definitions. In general, thus, a (formal) derivation is any ordered

n-tuple of sentences/formulas satis fying, linearly, the azioms, definitions and rules of a given
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system. More particularly, the proof or derivation of a formula/sentence S, ts an ordered
pair of an ordered n-tuple of formulas/sentences (premises) <S,...,8, ;> and S (conclusion),
such that <<8,,....8, >8>, te. <5, )8 > is a derivation satisfying the axioms,
definitions and rules of a given system. Since the rules are truth preserving, the axioms are

true a priort, the conclusion is true if the premises are.

This is of course most elementary (and incomplete) but we must see in what respect a

notion of natural derivation differs from the principles recalled above.

A grammatical derivation of a given sentence, as it is usually understood in generative-
transformational grammatical theory, is also an ordered sequence of formulas, on which
formation rules and transformation rules operate.25 Formation rules (or rewrite rules) start
from an “axiomatic” symbol, rewrite it as an n-tuple (n > 1) of other symbols, representing
syntactic categories, which are each rewritten as another n-tuple, and finally substituted by
lexical elements of the appropriate category (rules and substitutions being submitted to
further constraints). These formation rules define the abstract underlying syntactic structure
(“deep structure”) of the sentence, of which the surface structure is obtained by sets of
transformations, which were originally intended to be meaning preserving (semantic
“interpretation” would apply to deep structures only). Notice that both formation rules and
transformation rules in grammar operate on abstract symbol sequences; unlike in earlier
grammatical theory, transformations do not relate sentences. A sentence which is
appropriately derived is said to be (syntactically) “grammatical”, and “meaningful” (or
semantically grammatical) if its deep structure can be appropriately interpreted by semantic
rules (or, in other versions of the theory, if its deep structure is a correct semantic

representation). Details are, again, left out.

3.2 There is a sense of derivation in natural language, or rather in grammar, which is closer
to the notion of a formal derivation. That is, a sentence S, can be said to be (naturally)
derived if there is a sequence of sentences <85S, 1> from which it may “follow” according
to a certain number of rules, principles, definitions and “axioms”. Whereas in the previous
section we considered relations between sentences (or propositions) in compound sentences, we
are here concerned with relations in discourse. In that perspective we may say that a sentence
in a discourse may be derived relative to the previous sentences in the discourse. Clearly, this
notion of derivation does not in general include truth preservation, neither strongly nor
weakly. But, if something should be “preserved” in such derivations, what else could it be? A
first candidate would be “grammaticalness”, but this is trivial when syntactic well-formedness
is concerned, and not sufficient when semantic interpretability is at issue; the mere fact that
each sentence of a sequence can be interpreted does not make it a discourse. Yet, taking a
somewhat stricter sense, viz. relative interpretability, we are getting closer; it is indeed a
property of discourse that each sentence is to be interpreted relative to the interpretation of
previous sentences (if any). There are various formal ways to account for such semantic
relations, e.g. by interpreting not only relative to a possible world but also relative to a body

of information (i.e. the previous sentences of the discourse, and/or information about the
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context,),26 or by progressive formulations of constraints on the set of model structures in
which each sentence is interpreted.27 Above we have seen that identity of individuals
(discourse referents), though neither necessary or sufficient, is an important feature of such
relations. The same holds for other set-theoretical operations and relations. Such relations
are also often expressed in syntactic (and lexical) structure, e.g. by the use of pronouns,
articles and sentential adverbs, and by specific syntactic structures, e.g. initial position,

embedding, etc. This is all well-known and needs no further discussion.?®

From these remarks it appears that natural discourse cannot simply be defined
syntactically (the presence of pronouns and articles, say, is not sufficient) but is based on
semantic constraints. In fact the same holds for a formal derivation, which could perhaps be
formulated in pure syntactic terms, but which would be pointless without the semantic
“intention” behind the pure syntactical rules, viz. truth-preservation. In natural discourse we
thus also “preserve” something of the sense or referential meaning of previous sentences. Only
in some cases does the truth of a sentence make the following sentences in a natural discourse
also true. More generally the preservation of reference guarantees that the following sentences
can be interpreted at all (classically: have a truth-value). A discourse satisfying these
constraints on reference will be called coherent. From the informal conditions given this
means that a coherent discourse need not be true (in the actual world), although it might be
the case that it should be true in some possible course of events (and the courses of events
accessible therefrom). In somewhat different terms we here meet the basic conditions of
relevance formulated in the previous section. Thus, a discourse is coherent if for each of its
sentences the previous sentences are relevant. More particularly, a discourse is mazimally
coherent if for each sentence all previous sentences are relevant, and mazimally coherent if
there is no more than one relevant sentence preceding that sentence. Most natural discourses
are not maximally coherent in the strict sense, although the previous sentences may be
indirectly relevant in that they are relevant for a relevant preceding sentence of a given

sentence.

In natural discourse other aspects of coherence are involved. Whereas coherence defined
in terms of relevance, i.e. as relative interpretability of sentences, is so to speak “linear”, there
seems to be a kind of coherence which has a more global character and which we may
accordingly call macro-coherence. This concept is not easily defined in usual semantic
terminology and will first be made clear with an example. Take, for example, a discourse
manifesting a story about my vacation in France. In such a story a sentence referring to my
sight-seeing tour in Paris may be relevant to a sentence referring to my climbing the Eiffel
Tower, since the first fact is a probable condition for the second fact (which is itself a possible
consequence of the first fact). In this sense my discourse is linearly coherent. Similarly, being
at the Cote d’Azur or swimming at Cannes. Yet, we intuitively interpret the whole story as
being coherent in some sense, viz. as a discourse about my vacation in France. Hence, the
whole discourse is relevant with respect to a sentence or proposition like ‘This summer I
passed my vacation in France’, which as such need not be expressed in the discourse. This
condition recalls the truth conditions of commutative conjunction. Thus, a discourse is
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macro-coherent if there is a sentence such that each sentence of the discourse is relevant with
respect to that sentence, i.e. if each fact denoted by the propositions of the discourse is a
possible, probable or necessary consequence of some conditioning fact. Visiting Paris, indeed,
is a possible consequence of being on vacation in France, and so is my stay at the Riviera.
Without such a condition of macro-coherence we might have discourses which although they
are linearly coherent are not interpreted as coherent at all, because they lack the intuitive
“unity” following from the condition that they are “about” the “same” complex fact.
Conversely, we would exclude discourses which are not linearly coherent but which are
nevertheless acceptable, e.g. the description of a room. The sentence or proposition with
respect to which a discourse is globally coherent has important empirical correlates. We may
see it as the “abstract” or the “title” of some discourse, in conversation often preceding the
discourse as an “announcement” or “opening”. Cognitively, such a proposition is important
for the complex procedures of planning and executing and of interpreting (in the non-formal
sense) a sequence of sentences as a discourse. Further details and a discussion of the
numerous theoretical problems involved in the explication of macro-coherence and macro-
structures of discourses will be omitted here. In the perspective of this paper, however, the
notion of macro-coherence is important because it makes sentences relevant to each other,

indirectly and at a higher level, which as such and superficially are irrelevant.??

Another feature of natural - and certainly of formal - discourses is consistency.30 Notice
first of all, that consistency is not strictly speaking a condition of coherence: both B and ~B
may not both be true (at the same time, and relative to the same possible world and the same
previous sentences and the same context). The consistency requirement is, however, not
always very strict in language use. Since we may have inconsistent beliefs we may engage in
inconsistent discourse. Perhaps the requirement should be formulated only for the sentences
uttered (and the propositions thereby expressed) and not for all sentences (propositions)
which somehow “follow from” them. In that case we may speak of surface or weak
consistency, which is to be defined in doxastic terms, and deep or strong consistency, which

has the absolute logical character.

3.3 The notions of coherence and consistency, briefly discussed above, are general properties
of natural discourse. In what respect, however, can we sensibly speak of natural derivation?
As we indicated above, the term ‘derivation’ denotes a binary relation, viz. between a specific
sentence (the conclusion) and a set of sentences (the premises). In case premises can at least
partially be identified with previous sentences in a discourse, the conclusion must be coherent
with those premises, i.e. the premises must be relevant (denote conditions) for the conclusion.
Coherence here may be minimal, in the sense that only one premise may be directly relevant
for the conclusion, although each premise must be relevant for another premise (or for the

conclusion, for that matter).

Although there are obvious relations between formal derivations (proofs) and
(argumentative) discourse, natural discourse cannot as such be identified with a derivation in
the strict sense. Whereas previous sentences may be necessary premises in order to “derive” a

given sentence in a discourse, they may not be sufficient. Natural discourse leaves many of
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the premises implicit. In conversation these may be omitted because the speaker knows that
the hearer knows them or can infer them from the premises given. General meaning
postulates and contextual features are examples in case. When talking about a house I may
utter a sentence like ‘The front door stood open’ without having explicitly specified that that
house has a (one) front door and that that front door can be open or closed. Yet such
information is necessary, e.g. in order to explain the grammaticalness of the definite article.
The speaker assumes that the hearer knows that, in general, houses have a (one) front door
and that the proposition ‘There is a (particular) front door’ may be inferred - by modus
ponens - from the asserted proposition ‘There is a house’. In other cases several inferential
steps may be needed. Previous sentences, thus, should be compared with previously derived
theorems in formal derivations, whereas meaning postulates, holding for any natural discourse
(of a given language system), are to be compared with axioms or definitions. The major
difference is that a sentence in a discourse does not logically follow from axioms and other

premises, and thus another notion of consequence must be involved.

Since discourse relations, as we saw above, are based on semantic relationships and not
on ‘syntactic derivability’, we must look for the natural counterparts of entailment between
“premise” and “conclusion”. Entailment itself is too strong and only pertains to some cases of
natural derivation (viz. natural inferences). Not truth but relevance (reference) is to be
preserved in natural derivation, so we need the derivational counterparts of our natural
connectives. Instead of saying that a sentence derived from previous sentences if “necessary”
with respect to these previous sentences, the conclusion may be probable or merely possible.
Given the premise/previous sentence ‘We were at the beach yesterday’ we may derive, in a
very weak sense of “derive”, the sentence ‘We played football at the beach’. In other terms,
having asserted the first sentence, we may assert the second sentence. As in formal proofs, we
here have a form of conditional assertion.3! According to the strength of the derivational
relationship we thus distinguish (three) degrees of assertion, viz. ‘-0’ for so necessarily,
‘L V’ for so probably and ‘|-<¢’ for so possibly (or, correspondingly, the vertical notation with
a line under the premises, if the premises are already given, viz. true). Thus the following
argument-derivation is “valid”:

(73)  Yesterday we went ﬁshingo

We caught five trout

But the following is not:

(74) Yesterday we went ﬁshingo
We didn’t like the film

This way of treating discourse further suggests a natural equivalent of the deduction
theorem: If given A we may possibly-assert B, then we may assert A and B (or if A, then-
possibly B), and conversely. Example: If we may assert ‘We caught five trout’ relative to a
sentence (or rather, once having asserted) ‘Yesterday we went fishing’, we may assert (under
the same contextual conditions) ‘Yesterday we went fishing and caught five trout’, and
conversely. The converse case is interesting for those contexts in which the first proposition is

already known by the hearer. This informal principle of natural derivation relates discourses
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with compound sentences at the level of assertion, i.e. at the level of pragmatics. Other

pragmatic aspects of assertion and derivation will be discussed below.

Until now, nothing has been said about the rules defining such derivations. Whereas
strong modus ponens holds for the implicative cases, weaker versions are required for the
other conditionals. Since natural conjunctions are also conditionals, simple detachment of the
components is not possib]e,32 at least not for the consequent, which is true only in antecedent-
worlds and hence not true “in general”, although both components are true in a natural
conjunction if the conjunction is true. The truth of the antecedent, although determining the
truth of the consequent, does not have this restriction and follows from the truth of the whole
conjunction, it seems (the antecedent is true in precisely those worlds in which the
conjunction is). Thus from A ¢— B, we may infer A (in the factual mode of this connective).
The same holds for the other connectives of this mode. Still, if B is really relevant for A it
seems difficult to detach A, at least in those cases where B changes or specifies the meaning of
A (i.e. the meaning of A in isolation):

(75) John beat his wife yesterday, and she won the game today.

Since following sentences may remove ambiguities or make meanings more precise (selecting a
specific reading), the detachment of the antecedent is possible only under a given
interpretation.  Since this interpretation is co-determined by the connection with the
consequent, we somehow must preserve, again, the relevance in the inference rules, viz. of
premises with respect to the conclusion. Hence, the antecedent may not be asserted in
isolation, but as-a-conclusion-from ... In that case we also may allow the detachment of the
consequent, since the relevance-qualification specifies “when-where-why” the consequent
holds. In other words: The assertion of a conclusion is always the assertion of a conclusion-
with-respect-to-its-premises. Hence the notions of derivation and proof are relative, not only

with respect to the “derivational history”.

Detachment of the consequent in the hypothetical modes of the connectives follows
roughly the well-known modus ponens pattern. Since in this case the connection is, as a
premise, asserted in general (for any world) or asserted for a world or situation which is
epistemically inaccessible, the assertion of the consequent (which presupposes that it is known
to be true) requires the assertion of the antecedent (with the same presupposition, and usually
with respect to the actual world). Notice that the strength of the inference depends on the

strength of the connective:

[AO—-B], A}OB
[AV-B|, A}VB

[AD> B, A}OB

The brackets indicate that the connection is asserted hypothetically (or generally). Again,
relevance is to be preserved in the sense that B only is asserted to hold for the particular
A-world(s). Similar rules hold for what may be called presupposition detachment, given a

(bi-)conditional and the truth of the consequent.
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From this brief discussion it follows that the derivation-argument in (73) further

requires a more general sentence as a premise.

The status of natural discourse is something in between a derivation within some
system, viz. as an ordered set of sentences related by certain rules, and the system itself,
conceived as a set of theorems which may be derived (proven) from axioms, definitions and
previously derived theorems. Pragmatically, the theorems/sentences are intended to be
asserted, e.g. because they are “interesting” or “characteristic® for some reason. The
derivations are rather the “underlying” logical/grammatical apparatus determining the
relative truth/grammaticalness of the respective theorems. Indeed, there is no strict
distinction between a derivation and a system of theorems; any derived sentence in a
derivation may be considered as a “theorem”, and any theorem may be considered as a
sentence in a longer derivation of other theorems. As we remarked above, the practical
difference in both cases with natural language discourse is that in language use we omit the
definitions and axioms (meaning postulates) and do not indicate by which rules our
derivational steps are defined. In that sense a logical derivation/system should be compared
with an explicit grammatical reconstruction of a discourse, i.e. with a grammatical
derivation. The specific status of argumentative discourse, then, is characterized by the
necessary probable character of the inferential assertions, the explicit mention of general

sentences, and the specifically intended (“aimed at”) conclusion.

3.4. The discussion about relevance, i.e. coherence in discourse, is still not very precise and
remained rather general. The general condition is roughly that a sentence S; may be asserted,
given the assertion of S8 if S, is at least a possible consequence of some sentence Si—k
(k > 1). At the object level this means that the fact denoted by the proposition(s) expressed
by S; occurs in at least one possible course of events determined by propositions(s) expressed
by S;_k (where k = 1 is usual, i.e. a sentence is mostly a possible consequence of the
immediately preceding sentence). The question now arises again what “sort” of facts are
usually thus connected in a discourse, and whether these connections are the same as those

necessary to make complex sentences connected.33

Starting with the latter question it may further be asked whether identity of connection
conditions for sentences and discourses implies that any discourse can, at least theoretically,
be reduced to one complex sentence, and conversely. Such a reduction is of course excluded
for dialogue-discourses, in case such theoretical units would be well-defined. The same,
however, often holds for (monologue) discourses if the respective sentences manifest different
“speech acts”:

(76) 1t is so cold in here. Will you please shut the door?
(77)  *It is so cold in here and will you please shut the door?
(78) What is the time exactly? I’m late.

(79) What is the time exactly, because I'm late.

Clearly, the utterance of a sentence is not merely the expression of one or more propositions
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but at the same time the accomplishment of some pragmatic act. In the examples given these
acts are e.g. assertion, question and request, which cannot be accomplished at the same time
(with the exception of complex or indirect speech acts if expressed by the same sentence: ‘Can
you pass me that hammer?’, ‘You are crazy!’ etc.). These pragmatic differences will be
treated in the next section. Conversely, hypothetical assertions are not easily transformed
into discourses because the consequent cannot be asserted independently of the antecedent,
which determines the worlds in which the consequent is true. Of course the same holds for the
other connective mode, but there each connective has a counterpart for separate, coordinate
assertion (so, there fore, yet, still, etc.). Differences here are again pragmatic, and pertain to
the presuppositions of complex sentences. Compare, for example, the following one- and two-
sentence discourse fragments:
(80) (i) This morning 1 met the minister. His plans were to cut our budget by fifty
percent.

(ii) *This morning I met the minister and his plans were to cut our budget by fifty
percent.

(i) As I met the minister this morning, his plans were to cut our budget by fifty

percent.

Apparently a two-sentence discourse can in such cases only be reduced to one sentence if
the antecedent is subordinate. The constraints on coordinate connection, thus, are stronger
than those on connection between independent sentences. Sentence (80ii) would be
grammatical if the second clause would be something like ‘... and 1 asked him whether our
budget would be cut’, or ‘... and he told me our budget would be cut’. For such cases the
constraint seems to be that in compound sentences the subject-topic of the second clause must
denote an individual referred to in the first clause. Although this is the rule for many cases,
we earlier have met examples where the constraint is too strong (certainly for indirect,
commutative conjunction; see example (32)). The only reason why (80ii) is ungrammatical,
then, must be the fact that the antecedent is not a condition for the consequent; the plans of
the minister do not depend upon his meeting with me, whereas my asking and his telling
about the plans do depend upon this meeting. The corresponding two-sentence discourse (80i)
thus must be grammatical for other reasons. One of these reasons is certainly the fact,
already observed above, that discourses mostly leave a number of sentences implicit, e.g.
when they are entailed or presupposed by other sentences. In (80) for example, I may only
tell about the plans of the minister when I somehow have heard about them, i.e. when told
about them during my meeting with the minister. Apparently such deletions are less free in

connected sentences.

Another rather intricate problem pertains to the degree of complexity of compound
sentences. That not all n-sentence discourses can be reduced to one-sentence discourse with
appropriate connectives has other than stylistic and cognitive reasons. Consider the following
examples:

(81) (i) This morning I met the minister. At first he didn’t recognize me, but then
suddenly he saw that I was his old school pal.
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(1) This morning I met the minister, but at first he didn’t recognize me. Then he saw
that I was his old school pal.
(iii) *This morning I met the minister, but at first he didn’t recognize me, but then he

saw that I was his old school pal.

One of the problems involved is the scope of the respective connectives. In compound
sentences with more than one connective it is not always clear whether the connectives relate
three propositions pairwise or one proposition with a pair of connected propositions. The
further constraints on combinations and iterations of natural connectives in compound and

complex sentences, however, cannot be given in the framework of this paper.

Finally, we must briefly try to answer the first question of this subsection: What kind of
relations determine whether facts denoted by the propositions of compound sentences have

continuity (individual identity)? We need some principles determining admissible expansion,

e.g.:

(1) Predicate Introduction: A sentence S contains a predicate expression denoting a
possible property of an individual referred to in a sentence S, or otherwise
contextually identified. This individual may be an object, but also a property, an
event or an action.

(1) Individual Introduction: A sentence S; contains a relation expression denoting a
relation between an individual which has been identified (contextually or in S, ;)
and another individual denoted in S, for the first time.

(11m) Relation Introduction: S, contains a relation expression denoting a relation between

two previously identified individuals.

“new”

Whereas in formal (deductive) derivations truth is preserved and hence no
synthetic truths are produced, natural discourse is “expansive” in that new informational
elements may be added according to the three principles of coherent expansion. These
principles also determine the relations of possible presupposition and possible consequence,
which are characteristic of natural discourse derivation. Coherence is thus guaranteed on the
one hand by admissible (possible) expansions of synthetic information and on the other hand
by relations of identity between individuals of different sorts (objects, properties, events, etc.).
This continuity may, in surface structure, be expressed indirectly, e.g. via set-theoretical
operations or relations of individuals with individuals already identified and referred to (for
example in ‘We went for a walk. The sky was blue and the birds were singing’, or ‘We came
to a small town. The streets were deserted’, where such relations are given by meaning
postulates in the lexicon, or by general knowledge about objects, circumstances and events
and their properties and relations). These semantic conditions of relevance in natural
discourse are still rather imprecise, and, although they may at least partially be reformulated
in explicit model-theoretic terms, much empirical work on different constraints of coherence

for various discourse and conversation types is yet to be done.



4. The pragmatics of relevance®!

4.1. For natural language the syntax and semantics of relevance needs to be embedded in an
account of its pragmatic features. By a pragmatic theory of language, however, we do not
mean the kind of contextual semantics or ‘formal pragmatics’ that has been proposed by
Montague and others.?® There contextual indices merely help determine truth conditions,
thereby defining contextually dependent (semantic) relevance, e.g. relative to time, location,
speaker or hearer.  Rather, the pragmatic component provides its own (pragmatic)
interpretation rules. Such rules assign speech acts, that is, specific elements from a set of
social acts (e.g. assertions, questions, requests, congratulations or accusations) to meaningful
sentences. Obviously, this is possible only if such meaningful sentences are actually uttered or
used. Hence we need a function, representing an ‘utterance act’, taking meaningful sentences
into some (pragmatic) context. Whereas well-formedness is the key concept of syntax, and
meaningfulness or truth that of semantics, pragmatics has appropriateness as its central
notion. And similarly, appropriateness, relative to some (pragmatic) context, is defined in
terms of appropriateness conditions. Thus, for an assertion some of these conditions are that
S believes that p, that S believes that H does not know that p, and that S wants H to know
that p. This means that a pragmatic model should feature two specific members, viz. S
(speaker) and H (hearer) of a set of language users, a set of cognitive states (knowledge,
beliefs, opinions or wants) paired with the set of language users, and finally a set of social
situations. The latter set is necessary because some appropriateness conditions require
formulation in terms of social relations, such as dominance between speech participants, as in
commands. Together, these properties define elements of the set of (pragmatic) contexzts, of
which the actual context, ¢, is a specific member. Obviously, pragmatic contexts are merely
a formal abstraction of the ‘real’ communicative and social situation in which speech acts take
place, and consist only of those features that systematically make utterances, interpreted as
speech acts, (in-) appropriate. Apart from contextualizing meaningful sentences and assigning
them speech acts, these pragmatic models at the same time provide part of the features for a
contextual semantics, such as knowledge or belief sets of language users, or indices such as t,
representing ‘time of speaking’ (now). Also the pragmatic component allows us to tie truth
conditions to specific subsets of speech acts, such as assertions. Requests or congratulations
would not have such truth conditions (in the strict sense). Hence a semantics for natural
language should not be truth conditional, but have more general intensional or extensional

interpretations, an issue that cannot be further dealt with here.

For our discussion of relevance, this brief summary of some of the basic notions of
pragmatics provides some further suggestions for an explication of its intuitive meaning.
Thus, a sentence, or the speech act performed by its appropriate utterance in some context,
would be irrelevant if one of the appropriateness conditions is not satisfied. Thus, if S knows
that H knows that p, then the assertion ‘that p’ is irrelevant in that context. In that case,

relevance simply collapses with the notion of appropriateness.

4.2. More interesting is an analysis of pragmatic relevance in terms of compound speech acts

or speech act sequences, just as we have treated syntactic or semantic relevance. Classical
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speech act theory is mostly about isolated speech acts. However, in more than ten years of
text linguistics and discourse analysis it has become a nearly trivial insight that [also] speech
acts do not come alone but appear in coherent texts or dialogues. It follows that pragmatic
appropriateness, relative to some context, also requires conditions on the relations between
subsequent speech acts.>® A speech act may be appropriate only after another one has been
appropriately performed, or before another speech act will be performed. For instance, the
assertion ‘I have forgotten my watch’ may as such be inappropriate in some context, but
relatively appropriate before (or after) the question ‘What is the time?’ in such a context.
This is obvious when we realize that speech acts, by definition, change the contezt. Once p
has been appropriately asserted, the context changes, with the result that H knows that p, so
that the same assertion would become inappropriate in the next state of the course of speech
(inter-) action. The same holds for a formal discourse semantics that keeps track of changing
model structures.3” Relevance of speech acts, according to this approach, would be defined in
terms of relative appropriateness for speech acts in compound speech acts or speech act
sequences. In that case a speech act A, is relevant iff it is appropriate in some pragmatic
context c;, such that c, is the result of the contextual changes operated by previous speech
acts A,...,A; ;. In that case we will also simply say that A, is ‘relevant’ with respect to the
previous speech acts. However, just as in the semantics, relevance is not only defined in these
‘linear’ terms, viz. with respect to previous or following speech acts, but also needs a global,
overall definition. Just as propositions need to be relevant also to a global theme,
macrostructure or topic of conversation, a speech act must be relevant with respect to an
overall or macro speech act, that is, the ‘point’ of a text or conversation.%® Thus, a whole
letter may pragmatically function as a request or as a threat, and the same may hold for other
discourse or interaction types. Such overall speech acts are appropriately performed only if
their component speech acts are appropriately performed in their respective (changing)
contexts. Thus, in the course of an overall request, the performance of a command may be
inappropriate or irrelevant with respect to the global context defined for the macro speech
act. Global (speech) acts are accounted for in terms of global intentions, with respect to final
results, and of component and auxiliary acts, against the background of a more general logic

of (inter-)action.

Speech acts pairs may be connected by (pragmatic) connectives.>? These connectives
seem to have different meanings from their corresponding semantic uses. Just as we have
above found intensional constraints of relevance on natural semantic connectives, we here also
have a number of specific constraints. Thus, we cannot simply link two speech acts with and:
‘It is cold in here and could you please shut the window’ is at least somewhat odd. Rather,
the second speech act requires an independent sentence as its realization, and such a second
sentence might be introduced with a pragmatic So. The kind of ‘pragmatic consequence’
involved would mean that given the context established by the first speech act, the second
speech act becomes a legitimate next ‘move’ in a dialogue. Similarly, pragmatic and would
mean something like an ‘addition’ to a previous speech act, as in ‘See you at the party
tonight. And, don’t forget those records!. Finally, pragmatic or does not denote some

alternative, but rather a questioning or correction with respect to previous speech acts (or its
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conditions), as in ‘Would you like a beer? or, aren’t you thirsty?” In other words, these
pragmatic connectives express specific functions following speech acts may have relative to
previous ones, e.g. a conclusion, an addition, or a correction. Similarly, pragmatic but may
express the function of an objection (often by a following speaker). Derivations, or formal and
natural arguments, are thus pragmatically ‘closed’ by an assertion (or other speech act) that

functions as a conclusion, often signalled by So.

Against this background we can proceed to define a number of classical logical notions
for this pragmatic component. We will find pragmatic tautologies such as ‘I am speaking’,
but may also link the semantics with the pragmatics by some kind of pragmatic
‘completeness’: truth iff appropriateness. For instance, performatives such as ‘I promise you
to take the record with me’ or ‘1 congratulate you on your new house’, would be true iff they
are used as appropriate speech acts. Limitations of space, however, do not allow us to
examine these implications here. It has become clear though that these notions cannot simply
be defined as straightforward analogies of their formal (syntactic or semantic) counterparts.
Thus, although the proposition ‘John will arrive by train this afternoon at 5 o‘clock’ entails
‘John will arrive’, the corresponding speech acts (assertions) do not entail each other in the
sense of preserving appropriateness (H may already know the proposition expressed by the
second speech act). At most, we could say that a speech act entails (presupposes) the
propositions characterizing its appropriateness conditions, such as ‘I know that...’ or
‘Probably you don’t know yet that...”. Further work will be necessary to elaborate these and
other notions for a discourse pragmatics. We have seen however that pragmatic relevance not
only requires some additional notions, or explains further aspects of language use, but also
provides a new dimension for the notions of syntactic or semantic relevance discussed above:
several expressions of natural language (such as ‘pragmatic’ connectives, but also particles)
require direct pragmatic interpretations in terms of properties of or relations between speech

acts.

5. Cognitive relevance?’

It has become clear in the past few years that a grammar or, more generally, a theory of
discourse cannot be adequate without a cognitive and social framework. Even the pragmatic
component briefly outlined above is merely an abstraction of various cognitive and social
features of the context. Semantic and pragmatic coherence, both local and global, need a
specification of beliefs, knowledge or opinions for which we should formulate systems of
cognitive representations, such as frames and scripts.41 Propositions and hence speech acts
may become relevant to such knowledge or belief schemata in memory. Sequences such as ‘I
went to the station. I bought a ticket. I went to the platform. I got into the train’ are
coherent, and each proposition relatively relevant, only with respect to a TRAIN TRIP script, for
instance. And the same may hold for (global) speech acts scripts, such as the sequencing of
speech acts in a court trial. This also means that the specific social situation needs to be
spelled out, such as the various features of a court trial (who is allowed to make which speech
acts, when, in what order, and to whom, with what social results?). But even these cognitive

or social components of a theory of relevance would be still too abstract. What is necessary in



54

a full-fledged empirical account is an explication of the actual processes or strategies that take
place in the on-line interpretations of the sentence or speech acts of a discourse. The
‘relevant’ production or understanding of a sentence or speech act in discourse will in that
case depend on successful strategies for the analysis of the communicative context, of
macrostructure formation, of establishing local coherence, of retrieval in episodic memory and

of knowledge use in general.

Cognitive interpretation theory, however, has been traditionally formulated in terms of
concepts or meanings, and not in referential or denotational terms. In order to define truth,
reference, co-reference, and the usual conditions of coherence for discourse, however, we also
need some sort of cognitive models. Recently there has been some theoretical and
experimental work on such models, often inspired by logical model theory.42 In our view such
models are episodic knowledge structures, representing accumulated episodic experiences
about similar ‘situations’. Language users form or retrieve such ‘situational models’ in order
to construct semantic or pragmatic representations of discourse, and conversely interpret
discourse in order to update such situational models (adding new individuals, new properties,
new events, or changing others). For each discourse, a particular model is constructed from
the relevant fragments of similar, more general models. Such models represent, cognitively,
what we ‘imagine’ when understanding a discourse. This means that they will usually be
‘richer’ than the semantic representation, because they also feature a large amount of episodic
or more general (social) knowledge about such situations. This information may be left
implicit in the text (and its representation), and provides the basis of an empirical definition
of the notion of presupposition. Most obvious is the use of such models in the on-line
interpretation of co-referring expressions, verb tenses, connectives, and so on, because they are
the cognitive representation of what the respective sentences of a text are about, and how
these sentences gradually build some possible situation (introduction of individuals, their
properties and relations, time and location, possible act or event sequence, etc.). Pronouns,
thus, can be strategically interpreted as the individuals in the model, under some description,
that are now relevant according to the sequential or textual topic. Yet, since models are not
only constructed on-line by bottom-up processing of input phrases, clauses or sentences, but
also top-down, by the retrieval of (expected) overall or local properties of the model or the
corresponding general knowledge scripts, (co-)reference is also possible to individuals that
have not earlier been mentioned explicitly, or to elements of propositions that can be derived

from earlier propositions, such as macropropositions (themes).

This brief account of some of the actual developments in a cognitive theory of discourse
shows that relevance in natural language ultimately requires an empirical foundation in terms
of a strategic approach to interpretation relative to memory models and social models of the

situation and the communicative context.
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6. Postscript 1981

Seven years have gone since this paper was written. During this time, not only
(relevance and other) logics, logical grammar, text grammar and linguistics have undergone
considerable developments which would require a completely new approach to the problem of
relevance and relevant connectives, but also my own domain of interest has changed. During
most of these seven years | have been predominantly engaged in the development of cognitive
models of discourse comprehension (mainly with Walter Kintsch of the University of Colorado
at Boulder). This work is a natural consequence of my earlier, more ‘formal’ or ‘abstract’
approach to such notions as connection and coherence in discourse. Very roughly speaking I
now would certainly at least add or integrate an approach in which ‘relevance’ among
propositions, sentences or speech acts in discourse would still be formulated in terms of local
and global semantic or pragmatic coherence, but 1 would formulate the conditions in terms of
constraints on the knowledge, beliefs and opinions of language users, the cognitive processing
(understanding, representation and retrieval) of such constraints and the strategies for
actually using them while understanding and ‘evaluating’ sentences, sequences and discourses.
In other words, the notion of ‘relevance for some speaker/hearer in some context’, as used in
this paper, would now have a more or less precise and empirically tested model. My actual
research is geared towards an extension of that model towards social-psychological contexts

and their features.

FOOTNOTES

1. See for an earlier discussion of some of the ideas in this paper my “Connectives in Text
Grammar and Text Logic”, in van Dijk and Petofi and for further development see van
Dijk 77. This and the following notes of this paper have been slightly adapted, mostly
bibliographically, in 83. Except for sections 4. and 5. below, the discussion in the paper
has been left unchanged. New references only pertain to the theory of discourse, not to
logical theory.

2. Arguments in favour of text grammars have been formulated in van Dijk 77. For a
survey of text linguistic work since the early seventies, see e.g. de Beaugrande and
Dressler 81.

3. See details in section 4 below, also for references.

4.  See Petofi and Franck 73 and, later, the papers in Karttunen and Peters 79, among
many other new publications about presupposition.

5. For references about the grammar of connectives see van Dijk 77.

6.  See Anderson and Belnap 62.

7. We will not here go into the intricacies of the notion of ‘meaning’. See e.g. the papers in
Davidson and Harman 72; Hintikka, Moravcsik and Suppes 73; Guenthner and Schmidt
79; and Lyons 77.

8.  See Urquhart 73 for details.
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10.
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13.
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

See Thomason 72.

See Woods 70, who concludes negatively because the intensionality fully derives from
the meaning of the connected propositions. See also Urquhart 72.

See Routley and Meyer 73a for an account of accessibility relations.

This argument requires ‘normalcy’ of possible worlds (regular laws or rules obtain). See
e.g. Goble 73 and Lewis 73. We are here concerned with worlds that are compatible
with our ‘own’ empirical world.

See Stalnaker and Thomason 70, for such selection functions 9and comments upon it in
Lewis 73.

Cf. Belnap Jr. 73.
See section 4 below for the notion of appropriateness (for assertions).

Lewis 73 does not adopt this condition, which obviously holds for natural language uses
of counterfactuals.

Lewis 73 gives a different account of degrees of strictness. See Stalnaker 70 for a
discussion of the relations between conditionals and probability.

Cf. the relation between connectives and opacity/transparence in such equivalent
sentences as ‘Mary wants to marry a millionaire’ and ‘Mary wants to marry (any) man,
if he is a millionaire’.

See Aqvist 73 for a discussion about the modal nature of connectives.

Lewis 73 uses similar notation, but with a different meaning. See van Dijk 77 for an
elaboration of the formal semantics of natural connectives, where ¢ f (then) is taken as a

modal operator rather than as a connective.

See Karttunen .. in Kimball .. and Kimball’s comments of that paper (pp.21-27).
Obviously we have a different view of modalities in natural language.

Gabbay 72 also only allows backward dependence of consequents upon antecedents, a
position which in general will also hold for natural language. Bi-directionals are only
used in order to show how consequents may require or presuppose specific antecedents.
For sufficient and necessary conditions, cf von Wright 71 in Hilpinen 71 pp. 159-177.
See Lewis 73 for this kind of derivational treatment of connectives.

van Fraassen 71 discusses these metalogical aspects.

Kimball 73 discusses these formal aspects of grammars.

See Urquhart 72 for a different use of this device.

A first model-theoretic account of discourse coherence is given in Ballmer 72 see also
Petofi and Rieser 74 and van Dijk 77. (See note 37 below).

See van Dijk, 77 and .., for these conditions.
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See especially the later elaboration of this notion in van Dijk 80.

For the relations between consistency and coherence for sets of sentences, see e.g.
Rescher 73.

Cf. Scott 71 for details about conditional assertions and entailment.

Urquhart 72 does not allow detachment for intensional conjunctions either, but does not
specify further reasons.

The relation between text and context will be discussed in the next section.

This section has been completely rewritten and abbreviated ten years after the paper
was written. Obviously, this means that many new insights and developments are
integrated, however succinctly, in this new version. In order to maintain the coherence
of the paper, we have tried to formulate some of the pragmatic notions of relevance in
terms that are familiar to formal linguists and logicians, but we have avoided trying to
devise a really formal pragmatic component. As will be clear from the next section, we
have in the last decade paid attention rather to the cognitive theory of discourse
understanding, and abandoned the formal approach. There is still too much text
theoretical and empirical work to be done before we can engage in really meaningful
formalization. Many features of discourse semantics and its empirical basis are still
unknown (such as many details of coherence), and the same hold for pragmatics. The
remarks in this section are a brief summary of e.g. van Dijk 77 and of the papers, van
Dijk 81 to which we refer for further details and many additional references.

See Montague, 74.

See van Dijk 77 for details, especially also the more general foundations of the theory of
speech act sequences within the framework of a philosophy of action.

Such (semantic) discourse models have revived increasing attention in recent years. See
e.g. Kamp 81 in Groenendijk et al 81 and the contributions in Joshi and Webber 81.

For these pragmatic (and semantic) macrostructures, see van Dijk 77 but also van Dijk
80.

See “Pragmatic connectives” in van Dijk 81.

For details and many references of this cognitive background of a theory of discourse
and relevance, see especially van Dijk and Kintsch 83. The various meanings of the
cognitive notion of relevance have been discussed in van Dijk 79.

See especially Schank and Abelson 77.

For details, and for discourse understanding both van Dijk and Kintsch 83 and van Dijk
84; see further Johnson-Laird 83.



CHAPTER 3

LITERAL RELEVANCE!
John E. Parks-Clifford

A student objected that standard logic permitted us to make bricks without mud, let
alone straw. In this he joined the logicians who complain that we may derive a sentence
which obviously has nothing to do with the premises we begin with. He objected first to
Addition: from p to infer Apq. The logicians usually object to the rules for C: from Np to
infer Cpq and from q to infer Cpq. They come together in the classic case, reductio: from p

and Np to infer q.

These four inferences all ampliate weakly, for the conclusion contains an atomic
sentence which the premises do not. This seems to contradict the informal explanation that
deduction merely brings out what is already in the premises. Not surprisingly, the four are
equivalent: given one, we can derive the others using otherwise apparently unobjectionable

rules.

I explained to the student why these rules were permitted in the standard system and
how they came within the informal explanation. He countered by forcing me to examine the
philosophical and linguistic objections to them. Finally, he led me to seek a system which
precluded drawing the objectionable conclusions but raised no new problems. In this paper, I

am reporting what we found.

We wanted to eliminate those arguments in which the conclusion contained a novel
atomic sentence, one not in the premises. Positively, we wanted to accept only those
arguments in which every atomic sentence in the conclusion was also in the premises. I called
this relation between sentences literal relevance® (LR): p is literally relevant to q iff every
atomic constituent of q is also an atomic constituent of p. We then sought arguments which
were valid in standard logic but in which the premises were literally relevant to the
conclusion, LR valid arguments. We could get the LR valid arguments by going through the
standard valid arguments and deleting those in which the conjoined premises were not
literally relevant to the conclusion. But we wanted to find these arguments independently. To
do this I suggested a natural deduction system in which I replaced the objectionable rules by
others with which I could derive the same conclusion when it did not violate the LR

requirement.

In particular, I took a Fitch-style natural deduction system with intelim rules and
subproofs (see Fitch 52). I allowed unrestricted borrowing into subproofs but required that
the lines to which a rule applied be in the same subproof as the results of that application.
(Originally, I could ignore this last requirement, because of the unrestricted borrowing.
However, I later wanted to place some restrictions on borrowing.) I then cut off the problem
with conditionals by requiring that the conjunction of the premises (and - for later purposes -
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other superordinate assumptions) under which the assumption lies must be LR to the
assumption. In other words, I required that the assumption be contrelevant to the premises

3. Thus, I could not introduce a novel antecedent to a

(and assumptions) under which it lies
true consequent. I could not get a novel consequent to a false antecedent because of the other
rules. I could meet the disjunction problem by using Conditional-Disjunction in place of

Addition. The complete rule set is:

Ki:  p,q/Kpq Ke:  Kpq/p
Kpq/q
Ai:  CNpq/ Apq Ae: Apq,Np/q
Apq,Nq /p
Ei: Cpq, Cqp/ Epq Ee: Epq/ KCpqCqp
Ci: -p Cia Ce: Cpq,p/q
-q
Cpq
Ni: -p Nia Ne: NNp/p
-q
- Nq
Np

We found, by straightforward induction, that we could not validate in this system any
argument that failed the LR requirement, for no rule - including those for subproofs - allowed
us to introduce novel sentences. We also found that we could derive all the LR valid
arguments in this system. We had rules enough to derive the full disjunctive normal form of
the conjunction of the premises.? From this we could derive the conclusion in almost the usual
way, reproducing each line of the truth-table. The only exception was that we had to leave

one contradictory disjunct from a contradictory premise set.

However, when doing proofs in this system, we found we often wanted to make use of
previous results. We tried keeping a record of what we had proven and using these as derived
rules, but we found this unwieldy. 1 suggested that we follow standard logic and cite

theorems in our proofs to cover what we had established.

But we could not prove theorems in our system. In a natural deduction system a
theorem is a sentence derived from no premises. But, if we had no premises, then we had no
set of atomic sentences in the premises and, thus, no atomic sentences which could occur in an
acceptable conclusion. In fact, we could not begin a proof with the assumption for a subproof,

for we could not meet the contrelevance condition.

To meet this problem, I suggested that we ease the restriction on Ci to allow us to begin
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with an assumption. We soon found, however, that this was unsatisfactory. We had only a
part of standard logic but could not explain why we did not have the remainder, for we did
not have any special definition of C to account for the missing theorems. So, I suggested that
we introduce a new connective, Z so that Zpq is a theorem just in case the argument from p to

qis LR valid.

The rules for Z were just those for C except that the assumption for Zi was always the
first line of a proof and, thus, did not have to meet the contrelevance condition. To use the
theorems we got with Z, we added a rule of Z injection: we could write a Z theorem as a line
in any subproof, provided that the antecedent of the theorem was contrelevant to the
conjunction of previous lines. Without this restriction, we could have introduced novel
sentences by citing theorems.” We did not need the stronger requirement that the whole
theorem be contrelevant, since the consequence of a Z sentence is always contrelevant to its

antecedent and thus to the earlier lines.

Perhaps we should have required that the antecedent of the injected theorem be
identical with some previous line in the subproof and that we perform Ze immediately after
the injection, to serve the purpose for which we devised Z. But we did not. Consequently, we
found we were validating inferences in which a Z sentence was the conclusion or part of the
conclusion. We had arguments in which Z was no longer the major connective in a theorem,
but the major connective in an embedded sentence, contrary to the way we had originally

explained it.

At this point, if we had stayed with the original problem, we would have gone back and
restricted the use of Z or returned to using derived rules. However, the student was now
looking for a conditional nearer his native “if”, “if” free from the paradoxes of the false-
antecedent-or-true-consequent reading of C. And 1 had been reading material on stronger
implications and entailment to deal with the problems so far. Thus we were both interested in

Z, a conditional that was not C, but was “stronger” and free from the usual paradoxes.

Pursuing this new interest, we changed the equivalence by which we had introduced Z
from a definition to a metatheorem we wanted to establish. That is, we did not require Z
sentences to be theorems but we wanted every Z theorem (without embedded Z’s) to
correspond to an LR valid argument in the usual natural deduction way. Thus, we could
have Z sentences among the premises of arguments (in the antecedent of Z sentences, even).
We could not have done this before, for such a Z sentence would have been either redundant

(if true and provable) or false.

We could also now have Zi subproofs subordinate to other subproofs. Thus, we had to
reexamine the conditions on Zi. As with any subproof assumption, we could only use as a Zia
line a sentence contrelevant to the previous lines. Further, we had to guarantee that the last
line of the Zi subproof is contrelevant to the assumption of that subproof. To insure this, we

had to restrict borrowing and subproofs within the Zi subproof. We restricted borrowing like
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injection: the borrowed sentence had to be contrelevant to the previous sentences in the
subproof, accepting a borrowed Z sentence if its antecedent met this condition. (We did not
impose the stronger restriction that only Z sentences could be borrowed because we could then
not derive some conclusions which seemed to fit our intended interpretation.) Subordinate

assumptions also had to be contrelevant to the sentences in the superordinate Zi subproof.

However, we found even this restriction too strong. Every sentence we could prove in
this way satisfied the requirements on Z, but we could not get all the Z sentences which
seemed to satisfy our requirements. For example, if f(p) is a sentence relevant to p, we could
not generally prove ZKZKf(p)qquf(p)p.6 In the direct proof we could borrow neither
ZKf(p)qp nor q under the assumption of f(p), for q need not be contrelevant to f(p). Trying
the negative proof, we ran into the same problem, at one remove, since we could only use

NZf(p) as the negative half of the contradiction in the Ni subproof.

I tried twice to meet this problem by modifying the rules. I first permitted free
borrowing again but required that a Zi subproof could be ended only if the last line was
contrelevant to the assumption. Alternatively, I continued to restrict borrowing but added a
rule for NZ: from NZpq to infer NCpq when p is LR to q. With either of these, I could

validate the arguments I wanted and none that I did not want.

Moreover, with either, I had a practical problem. To apply the new rules, I had to be
able to spot when one sentence was relevant to another. Since I allowed Z sentences which
were not theorems as premises, I could no longer just match up atomic sentences; I had also to
examine all the premised Z sentences and derive further cases of relevance. I often made
mistakes in this process. Further, while I derived the relevance of one sentence to another to

justify applying some rule, I nowhere in the proof displayed this derivation.

When I realized what was happening, I sought to introduce this reasoning into the proof
explicitly. This led me back to the original notion of Z. I had intended Z to be the truth-
functional conditional in which the antecedent was LR to the consequent. Thus, if I added to
the language a connective, R, such that Rpq is true iff p is relevant to q, I ought to have Zpq
equivalent to KCpgRpq. All that I needed was a set of rules for R. But I had originally
intended literal relevance to have a very simple structure, that of inclusion of atomic
sentences, and I wanted to keep this structure even though I could no longer insist on the
original interpretation. Thus, I introduced the following rules for R’

RA: Rf(p)p when f(p) includes all the atomic constituents of p
RR: Rpq, Rpr / Rpg(q,r) when g(q,r) is a compound of only q and r
RT: Rpq, Rqr / Rpr

Adding all of this to the system with unrestricted borrowing enabled me to make the
derivations involved explicit when I added also RZ: from Zpq to infer Rpq, and modified Zi to

include explicit reference to an R line relating antecedent and consequent:
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n  Rpq
m -p Zia
i -q

Zpq Zi(n,m-i)

I could then prove the equivalence between Z and the conjunction of its conditional and LR

components.

Adding the same set of rules to the system which kept restricted borrowing, I could also
prove the equivalence. Indeed, I could show the legitimacy of each borrowing by requiring a
reference to an R sentence outside the subproof. With the equivalence in place, I did not need
the suggested NZ rule to deal with the Ni subproof.s

But, once I had R as a separate item, either of these proof systems seemed unduly
complex for my purpose. 1 could just define Zpq as KCpqRpq and use the ordinary natural
deduction system, with no restrictions on borrowing, injection, or even assumptions, but with
the addition of the rules for R. Without restrictions, of course, I would validate all of the
standardly valid arguments, but I could isolate the ones I was interested in, the LR valid
arguments, by reference to the corresponding Z theorems. To be sure, I could say that I had
an LR derivation of q from p when I had an ordinary derivation of KqRpq from p, but this

seems to add nothing of interest.

Thus, I ended diametrically opposite where I started. I started by introducing Z to
record arguments I had shown to be valid in my primary system: I end by calling an argument
valid just in case I can prove the corresponding Z sentence in the primary system. But I have
a simple and transparent method for separating out the arguments 1 want. Indeed, Z, as
embodied in the definition, was so simple I wondered whether I had found the solution to my
original problem. That had been an interesting problem and this did not look likely to be an
interesting implication relation. However, Belnap suggested it was related to DAI, Dunn’s
demodalized version of Parry’s analytic implication (PAI), a system that provides an
interesting alternative to the standard (as we may call it) notion of relevance embodied in R
and E.

I found that the final Z system is equivalent to DAI® 1 can prove all of the axioms of
DATI in this system and the rules of DAI are rules of this system, so it is at least DAL It is
not more than DAI because I can prove in it no sentence falsified by some Parry matrix and
DAI is just the set of sentences verified by every Parry matrix. The only problem here is with
Z, since Parry matrices agree with standard truth tables for all the standard connectives. But
Rpq is true just in case the “content” component of the Parry value of q is included in that of
p, regardless of the “truth” component of the Parry value. Thus, Zpq, as KCpqRpq, is true
exactly when the requirements for the DAI arrow are met: the C takes care of truth, the R of
content. The Z system thus lies within a framework of systems developed quite independently.

The fact convinces me it is the solution I sought.



APPENDIX ONE: LR AND DAI

The axioms of first degree implications are proven like the corresponding C-theorems,
noting only that the relevance condition is satisfied in each case and proven simply by RA:

Al.  ZKpqKqp
A2.  ZpKpp
A3. ZpNNp
A4. ZNNpp

A5. ZKpAqrAKpqKpr
A6. ZApKqNqgp
The remaining axioms involve subordinate Z wffs and, therefore, subordinate uses of
R. In the following proofs, I will use a system in which Z is officially defined but in which RZ
and Zi and Ze are taken as derived rules - rather than explicitly using the definition. It is
worth noting that in these, as in earlier proofs, the relevance condition for the dominant Z is
proven by RA. I will also indicate borrowings into Zi subproofs explicitly, as what needs to be

borrowed has some relevance later.

1. RKZpqZqrZpr RA

2. - KZpqZqr Zia

3. - Zpq Ke (2)

4. - Zqr Ke (2)

5. - Rpq RZ (3)

6. - Rqr RZ (4)

7. - Rpr RT (5,6)

8. --p Zia

9. --Zpq B (3)

10. --gq Ze (9,8)

11.  --Zqgr B (4)

12. --r Ze (11,10)

13.  -Zpr Zi (7,8-12)
AT  14. ZKZpqZqrZpr Zi (1,2-13)

1. RZpKqrZpr RA

2. - ZpKqr Zia

3. - RpKqr RZ (2)

4. - RKqrr RA

5. - Rpr RT (3,4)

6. --p Zia

1. - - ZpKqr B (2)

8. - - Kqr Ze (7,6)

9. --r Ke (8)

10. - Zpr Zi (5,6-9)
A8 11. ZZpKqrZpr Zi (1,2-10)

1. RKZpqZrsZKprKgs RA

2. - KZpqZrs Zia

3. - Zpq Ke (2)

4. -Irs Ke (2)

5. - RKprp RA
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--p

RA
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RZ (4)
RT (5,7)
RT (6,8)
RR (9,10)
Zia

Ke (12)
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Ke (12)

B (4)
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5. --q Ze (3,4)

6. --Nq Ke (2)

7. - NZpq Ni (3-6)
Al4 8. ZKpNgNZpq Zi (1,2-7)

1. Ri(p)Zpp RA

2. - f(p) Zia

3. - Rpp RA

4. --p Zia

5. - Zpp Zi (3,4-4)
A13 6. Zf(p)Zpp Zi (1,2-5)

In A13, I could ignore the constituents of f(p) other than p; they play no role in the
proof. In A12, ZKXpgqf(p)f(q) (using X, pro tem, for analytic equivalence, KZpqZqp), these
constituents do play a role and so I cannot prove the schema directly. Rather I give here a
procedure for proving any given instance of it. The procedure is that of tearing f(p) down
step by step and building up f(q) from it, though the proof may involve building bits of f(p)

from bits of f(q) as often as not.

For the rest of the proof, once the overarching R-wff is proven, the antecedent is
assumed as a Zia line, then reduced by Ke, and Xpq is reduced to the two separate Z-wiffs.

Thus, f(p) appears as a line. This triggers the first application of the following chart.

In this chart, s stands for whichever of p and q is indicated in the triggering wif, s’ for
the other, which occurs in the wff to be proven. Thus, c(s) represents the indicated wff
already given and c(s') the corresponding one to be proven. Thus, at the beginning c(s)
stands for f(p) and c(s’) for f(q). However, at the next step, the character of ¢ will surely
change and that of s and s’ may reverse. In any case, given c(s), the proof now proceeds with
the proof of c(s') according to the following chart. At each stage a new given wiff is
introduced to play the role of c(s) and instructions then are given for what to do once c(s') is
proven. What comes between is covered by whatever steps the chart says apply in proving
c(s’). Since g(q), etc., are defined in terms of f(p) and f(q), they need contain no occurrences
of q, for they may be parts of f(q) in which no p was replaced by q in the move from f(p).
When this occurs, c(s) will just be c(s') and no intervening proof is needed. The chart is based

on the structure of c(s):

1) c(s) is Ng(s). Assume g(s') (the NEW c(s)) as an Nia line and prove g(s) (the NEW
c(s')). This phase is completed by borrowing the displayed Ng(s) and closing the subproof of
Ng(s’) by Ni.

2) c(s) is Cg(s)h(s). Assume g(s') and prove g(s). Borrow the displayed conditional and
get h(s) by Ce. On the basis of this, prove h(s’). Close off with Ci.

3) c(s) is Ag(s)h(s). Prove CNg(s')h(s'), by the chart except that what is borrowed is
the displayed disjunction and the rule used is Ae, not Ce. Then use Ai to get Ag(s')h(s’).
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4) c(s) is Kg(s)h(s). Separate the two components by Ke. Prove each corresponding s/
form by the chart. Combine the results by Ki.

5) c(s) is Eg(s)h(s). Prove Cg(s')h(s’) and Ch(s')g(s'), by the chart except that the
borrowed wif is the displayed equivalence and Ee is used rather than Ce. Combine the results
by Ei.

6) c(s) is Rg(s)h(s). Rg(s')s’ holds by RA, as does Rg(s')r for every constituent R of
g(s’) which is unchanged from g(s). Finally, Rs’s holds by RZ (or the corresponding RX) from
Xpq of the initial assumption of the proof. This gives Rg(s')s by RT and that combines with
the various cases of Rg(s')r to build up Rg(s')g(s) piece by piece using RR. In an exactly
similar way - using Rss' from the initial Xpq - Rh(s)h(s’) is constructed. These two
constructed R-wifs, together with the given one then give Rg(s')h(s') by two applications of
RT.

7) C(s) is Zg(s)h(s). Extract Rg(s)h(s) by RZ and prove Rg(s')h(s’) as above. Assume
g(s) as Zia line, then proceed as for conditionals, except that the borrowed wff will be the
displayed Z-wff and Ze rather than Ce will be used. Finish off with Zi.

8) c(s) is s, to be replaced. Borrow Zss' from the reduction of the original Zia line and

get s’ by Ze.

It is worth noting that, in this procedure, nothing is borrowed into any subproof except
the given c(s) that triggered it and Z-wffs from the initial Zia line. In particular, then,
nothing is borrowed into a Zi subproof except Z-wffs. In fact, this last feature holds of all the

proofs so far. It fails, however, for the proof of A15:

1. RpZNpp RA

2. -p Zia

3. - RNpp RA

4. --Np Zia

5. --p B (2)

6. - ZNpp 7Zi (3,4-5)
Al5 7. ZpZNpp 7Zi (1,2-6)

A15 is the last axiom of DAI. Thus, all of the axioms of DAI have been shown to be
theorems of LR. Since the rules of DAI are also rules of LR and uniform substitution is
clearly derivable in LR to accommodate the use of schemata in DAI, all of the theorems of
DALI are also theorems LR.

To prove the opposite direction, that every theorem of LR is also a theorem of DAI, it
is sufficient to note that every theorem of LR always receives a designated Parry value, one
with a T truth component. To show this, we need first to define the values for R and then
show that all the R rules are truth preserving. Since the remaining rules are known to be

truth preserving and the truth component of Parry values functions in accordance with



68

ordinary two-valued logic, this shows that every theorem receives a value which has a T truth
component. Since DAI contains all wifs which always receive a designated Parry value, LR is
included in DAL

R is meant, first of all, to be true when the set of atomic constituents of the second
component are included among those of the first and, then, to expand this notion to the
contents of the two components. Alternatively, it is meant to complement the false-
antecedent-or-true-consequent condition which C gives to the definition of Z with an
inclusion-of-content condition so that Z, as a conjunction, will be true just in case both
conditions are met. The content of Rpq, like that of any compound wff, will be the union of
the contents of its two components. The truth part of the Parry value will, from either way
of looking at it, be T if the content of the whole is just that of the first part. That is, Rpq is
true when q adds no content to p: the content of q is included in that of p. Otherwise, Rpq is

false.

With this way of assigning values to R wfifs, it is clear that wffs justified by RA are
always true. Since the content of a compound is exactly the union of the contents of the
components, and these contents are not affected by the environments in which they occur, the
content of every atomic wif which is a constituent of a compound must be in the content of
that compound. Further, nothing not in the content of some atomic constituent is in the
content of a compound. Thus, the content of q is just the union of the contents of its atomic
constituents. Since, in those cases in which RA is applied, all of these are also constituents of
p, the content of p must include that of q, for it included the union of the contents of these
constituents. And, since the content of q is included in that of p, Rpq receives a value with T

as its truth component.

The case of RT is quickly dealt with. Since inclusion is a transitive relation, R must be
also and RT simply makes use of that fact. Thus, if the content of r is included in that of q
and that of q in that of p, then the content of R must be included in that of p.

RR also requires only brief comment. The content of g(q,r) is just the union of the
contents of q and r. Both of these contents are included in that of p. Thus, their union must

be also.

Thus, all of the R-wifs that are not introduced either directly or as part of a Z wff in an
assumption are at least as true as the superordinate assumption. The R-rules, then, introduce
no falsity into the proof. And what falsities may come from assumptions are lost in the final
closing of their subproofs, by the merely truth-functional rules. Thus, every LR theorem
receives a designated value, i.e., a Parry value whose truth component is T. And, therefore,

every LR theorem is also a theorem of DAL
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APPENDIX TWO: PAI AND OTHER FINE THEOREMS

DAI (and so the Z system given here) is not PAI, the original Parry system. However,
the success at finding a natural deduction system of the present simple sort for DATI leads me

to seek a similar system for PAL

As noted in the previous appendix, all of the original PAI axioms (1 - 13 of DAI) and
Parry’s later addition to the set, 14, were proven using only restricted borrowing rules. Only
Z and R wfifs were borrowed into Zi subproofs. This suggests that PAI is just the system that
results from using this more restricted rule. After all, this restriction is just what distinguishes
C'i (strict implication introduction) from Ci in the natural deduction system for S4. That is,
it is a familiar way to modalize a system and PAI is modalized DAI (or, rather, DAI is
demodalized PAI). So let me add the C' with this introduction rule and detachment for

elimination, the strict implication of S4, as a connective.

With this, we could define Z'pq as KC'pqR/pq. Z' is to be the analytic implication of
this putative PAL. Once this identification is made, it is no longer necessary to restrict the
borrowing to Z'wifs. Any C'wif can be borrowed; Zi will then be handled with the external R’
condition. And, of course, Z'wifs can be borrowed into other C' subproofs than those buried

in Z/1.

R’ in the definition above is necessitated R, related to R as C’ is to C. The same rules
apply to this necessitated form as to the simple one: RA already gives wifs that are necessary
and RR and RT transmit necessity as well as truth. The analog of RZ is, of course, just
derived from the definition of Z/ as RZ itself derives from the definition of Z. Since, then, R’ is
inherently necessitated, it can be borrowed into Z' and C' subproofs as well as C' and Z'
(indeed, given the definition of Z/, such borrowing has implicitly already been permitted by
allowing borrowing Z' into such subproofs, for Z' contains R’. Further, as Fine has shown,
each R'wif is equivalent to a Z'wff, rounding out the circle of justification, though that proof

assumes the propriety of borrowing R’ already.)

Indeed, if we merely add the rules for C' to the LR system, we can get all of this system
by definitions. R’ is simply LR (defining L some convenient way in terms of C/, e.g., Lp =
C'Npp). The rules for R’ can be derived directly from the corresponding ones for R. RA gives
theorems and thus gives necessary theorems by the rule of necessitation (assumed already
derived; the direct way to get from RA to R’A would be to use RA under an NR assumption
in a Ci proof). The R” analogs of RT and RR are derived by the distribution of L over C'
and K (or Le and the borrowing rule for C'i subproofs, if we go back to basics) from the R

rules.

This gives a system equivalent to that proposed by Fine 79. He also introduces a
connective equivalent to R (he writes R'pq as “q < p”, not having to relate it to an earlier
unmodalized R and choosing the other - perhaps more natural - order for the components).

He then defines Z' as above and adds that definition to axioms and rules for PC and S4.
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together with axioms proper to R. These are R'A and

CKR/'pqR/qrR'pr
CKR'pqr'pqR'pKqr
CR'pqLR'pq (i-e., CR'pqC'NR/pqR/pq)

Since the part of the present Z' system that does not involve R (or, thus, Z') is
equivalent to S4, the whole will be equivalent to Fine’s system if Fine’s axioms and the R
rules are mutually derivable within S4. And they are. R'A is the same in both systems. R'Z’
simply drops out of the definition of Z!. The second axiom is just R'T, given detachment and
adjunction. The third axiom is similarly related to one case of R'R: g(p,q) is Kpq. This axiom
is obviously provable from the rule. To prove the full form of the rule from the axiom merely
requires the addition of R’Kpqg(p,q) by R'A and then deriving the desired conclusion using

the transitivity axiom (and some essentially PC shuffling of pieces).

The final axiom does not correspond to any of the rules given for R in the natural
deduction system. However, in that system, R is defined as LR and thus yields LR’ by the
transitivity feature of S4 (what is necessary is necessarily necessary). The axiom is provable

directly by simply borrowing the antecedent R’pq into the C’ subproof.

Thus, this natural deduction system and Fine’s axiomatic system are equivalent and,
since Fine has shown his system equivalent to PAI, the natural deduction system given here is

also.

APPENDIX THREE: QUANTIFIED LITERAL RELEVANCE

When I attempted to extend literal relevance from propositional to predicate logic, I
immediately bogged down in a semantic problem. The principles I wanted to generalize came

into immediate conflict. However, the literal approach pointed a way out.

My problem revolved around the “content” portion of Parry values for quantified wffs.
I thought it natural that the content of an atomic predicate wff contain the individuals
referred to in it and that the content of a quantified wff be the union of the contents of its
instances, the content of its propositional expansion in a domain. But this immediately
invalidates existential generalization: from Fa to infer SxFx, for the content of Fa surely need

not contain all the items in the domain, as I thought that for SxFx must.

To be sure, I could see a reason for not wanting this inference LR valid. It is, after all,
an analog of Addition as disjunction introduction. But I cannot see that it shares Addition’s
problems, for I can find no inference which existential generalization would allow me to prove

but which I wanted to reject for the kinds of reasons that led me to literal relevance.

Further, existential generalization seems to me the natural S-introduction rule. It is,

after all, the quantification rule least often questioned; it seems to carry its reasonableness on
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its face. Barring it, I could think of only two other possibilities: subalternation and duality.
But subalternation, from UxFx to infer SxFx, is one of the most suspect quantifier rules
(though not for literal relevance type reasons) and would place an enormous restriction on
inferences in the quantifier logic - restrictions which seem to have nothing to do with literal
relevance (the distribution laws, for example, would be unprovable). Duality, defining SxFx
as NUxNfx, does not have this problem and would be the natural analog to the move to avoid

Addition in the propositional case.

But the problem is not merely to find an acceptable rule for the system, it is to find a
way of expressing the connection between the existential wif and its instances. The only
plausible one is cut off semantically; no rule is going to work. For rules which do not allow
the inference from Fa to SxFx do not allow any such relation and those that would allow this
inference are LR-invalid, given the semantics suggested. To escape, then, I needed to change

the semantics.

The first suggestion is to bring it about that the content of SxFx is less than that of Fa.
This would correspond to our intuition that the existential “says less” than the instance.
However, it might “say less” as a result of the “underlying” disjunction and so the argument
might be used to justify Addition as well. To avoid this, we must make it clear that “ saying

less” is a matter of content.

But apparently the only item that the content of Fa has to contain is a. If this content
includes that of SxFx, the content of SxFx must either be just a or be empty - or be
something included in a. None of these will work. Having the content of SxFx contain just a
invalidates the inference from Fb to SxFx - for reasons that are related to literal relevance.
Making the content of SxFx empty goes against the principle that the content of a wif is a
non-empty set. And there just is nothing that need be included in a. Finally, any of these
alternatives would destroy the duality between universal and existential quantifiers, for,
whatever reasons there may be to change the content of SxFx, none have appeared for
changing that of UxFx, which ought to be the same as NSxNFx. To save this would require
changing the principle that negation affects only the truth-value component of a Parry value

and this change would have far-reaching effects, unwarranted on literal relevance grounds.

If I was to do quantified literal relevance at all, then, I was driven to give up my
“natural” assumption, that the content of a quantified wff was the union of the contents of its
instances. (The assumption that the content of Fa contains a still seems unassailable.) The
content of a wif is said to be “the objects that the (wff) mentions” (Dunn 72, p.204). But
only if I think of it as a compound of its instances can 1 think that a quantified wif mentions
any objects at all (except those explicitly named by free terms). Bound variables don’t

mention objects, however they may be related to them.

But this seemed to make the content of a quantified wif empty, contrary to the general

condition on Parry values. But did it? I looked again at the propositional case, trying to
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avoid this result.

In the propositional case, the requirement that the content contain all the items
mentioned was met by taking the content to be a set of atomic wifs, all the atomic
constituents of the wff together with those joined to it by Z-wffs. That is, the content could
be viewed as a set of literals, sentence letters, not of items from some domain. Could I

generalize this in a natural way?

Of course, I can. Sentence letters are also, in the context of predicate logic, predicate
letters, standing for o-adic predicates. Thus, it seems the content of a wif must contain all
the predicates that that wif contains - these are also “items” which it mentions, after all.
Further, we clearly do want to have predicates as part of the content, else we could validate
the inference from KFaNFa to SxGx. So the content of QxFx (with either quantifier for Q) is

not empty; it contains the predicates at least.

The content of Fa still contains a, but a wif without free terms will not contain any
“items” other than predicates. Bound variables do not mention items and certainly are not
items, in the way I could take predicate letters and terms to be. For we do not want to allow
that alphabetic variance changes content. Thus existential generalization is saved, for every

member of the content of SxFx - namely, only F - is a member of that Fa.

But now universal instantiation fails. Not all cases of it do, though. For, if a has
occurred free among the premises, then the inference from UxFx to Fa is surely justified
semantically. It is only the instantiation to a new term that fails. And this is justified on
grounds at least closely related to those for literal relevance. What is wrong with q in the
inference from KpNp to q is not merely that it might say something new about whatever p
was about but also that it might say something (even the same as what p says) about some
new item. We cannot add new items to the situation any more than we can add new

properties.

Thus quantified literal relevance comes to have a free-logic-like appearance, as though
only items named in the premises were guaranteed existence. But this appearance does not
involve the semantic complexities of a free logic. All the atomic wiffs receive Parry values.

The inference fails for reasons of literal relevance, not for lack of truth values.

This appearance does raise the question whether subalternation ought to hold. It seems
to semantically: the content of SxFx is included in (indeed, identical to) that of UxFx. But
the absence of unrestricted universal instantiation seems to block the proof. The obvious
solution here is to admit that the universal has existential import (in this sense) and to allow
a second form of Ue which exactly parallels standard Se:

UxFx
- Fy

- P
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P

where y is a variable not free before the beginning of the subproof nor free in p. The usual Ue

would have to be modified to mention the earlier occurrence of the instantiand:

Ga

UxFx

Fa
Si would be just existential generalization, and Ui and Se would have their usual subproof
forms:

SxFx -(y)

- Fy :

: -Fy

-p UxFx

P

where y is not free before the beginning of the subproof and not free in p or UxFx.

Throughout the subproof, y is available for Ue, of course.

This talk of restricted rules is rendered superfluous, however, by the reduction used in
the propositional case. I modified the R rules to deal with the content components in
predicate logic as well. I strengthened the conditions on RA to cover the subatomic literals,
predicates and terms, not just sentence letters. I can now proceed with the unrestricted rules,
that is, drop the special case of Ue and the restriction on the normal form, mentioned above.
Since this is an adequate set of rules for standard predicate logic and R is designed to catch
just the intended content portion of Parry values, the resulting Z-wffs will bear the same

relation to the classical C-wifs as in the propositional case.

There is, of course, the question whether Parry or Dunn would accept the extended
“Parry values” used here. This approach does generalize in a natural way (sticking to the
letters) the surface features which proved adequate for characterizing propositional analytic
implication. On the other hand, the features are merely surface features. Perhaps something
more profound is intended but only makes a difference in quantifier logic. In particular, the
minimal content given to quantified wffs seems suspect, as the naturalness of the first
extension proposed suggests. Perhaps the difficulties I met with in that extension can be dealt
with by some subtler moves. Or perhaps they can be endured and even justified on analytic
implication considerations. In this case, quantified literal relevance is another system, related

to quantified analytic implication in ways yet to be explored.

NOTES

1. This paper is mainly autobiographical, tracing my attempt to meet a student’s
objections to standard logic. 1 originally presented these results but omitted (or
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presented in a different fashion) what motivated me at each step. I have here rewritten
the paper to reflect these results more accurately. I have deviated from strict accuracy
in two ways. First, I have omitted several moves which proved useless (especially
looking for characteristic multi-valued matrices, a problem solved when I was shown
Parry matrices). Second, I have inserted two sketch metaproofs, and I have also
changed the forms of some rules to meet later objections. Other later developments are
dealt with in appendices.

I wish to thank Professors Belnap, Collier, Dunn, Fine, Parry, and Wolf for their advice
and for providing material which I needed to consider. I also thank my erstwhile
students, Thomas Oberdan - for material and useful discussions - and Edward Powers -
for forcing me to work through these questions.

To the term “literal relevance” Parry has rightly objected. In the first place, “literal” is
used in the sense of Quine’s literals, that is, it refers to sentence letters, rather than in
some more natural sense. So perhaps I ought to say “of literals” rather than use the
adjective alone. More importantly, “relevance” is misleading, for it would be understood
- in the context of this volume, at least - to stand for a relation that is symmetric but
not transitive, whereas the relation in this paper is transitive but not symmetric - an
inclusion relation, in fact. A more accurate title would have been something like
“implication with inclusion of sentence letter sets”, but no snappy form of this has
occurred to me.

I use the notion of contrelevance far more than relevance. Since it also corresponds to
the more usual “is included in”, rather than “includes” I might have been well-advised
to take it as the basic notion. I have retained the present terminology partly because I
continue to think of relevance as a relation between premises and conclusion and not the
reverse (pace all first semester logic students) and partly because I find some later
moves easier if I have a relation which goes the same direction as the conditional:
antecedent then consequent.

The proofs of these rules are exactly as in standard logic, for the relevance conditions
are met automatically. The only problem arises with KKpNpq / Nq, where it might
seem that the role of the q conjunct - to justify an Nia line - is just too slight to
legitimate the inference. However, this objection came from a different point of view
than that which led us to LR, so we rejected it in the discussion of the present system.

In 75 Kielkopf showed the need for this restriction. There he derived q from KpNp
within Parry’s system. But he injected AqNq under the premise as a crucial step. The
restriction would prohibit this.

In fact, our problems came with some particular sentences of this class. I have turned to
the general form because of its role in DAI, to which Belnap directed me.

In the original paper, I used Rpp for RA. In addition, I had rules RL: from Rpq to infer
Rf(pq), and RS: from Rpf(q) to infer Rpq. The effects of the present RA were achieved
in several steps. However, I later rejected RL because the corresponding Z wif could not
be proven. With all of the restrictions in force, no problems would have arisen. But they
would arise in the later, unrestricted, form of the rules. The present set of rules
obviously owes much to Fine’s system of 79 and is, consequently, more elegant than the
original.

At this point, we toyed with a number of different systems of rules using R explicitly
either for closing the Zi subproof or for justifying borrowings or for some combination of
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these. These were all superseded by the move in the next paragraph.

See Appendix One for more details of this proof. I have modified the sketch proof in
this paragraph (and the fuller form in the appendix) several times in response to
questions put by Dunn.



CHAPTER 4

THE RELEVANCE OF
RELEVANT LOGIC

John Woods

Part One

1. For years now one has searched in vain for a really competent account of the supposed
deficiency of the classical logical claim that a self-contradiction entails any statement
whatever. True, any number of incantations have been uttered - whether of irrelevance,l of

2 or even of non-compliance with objectives presumed to attend our

meaning disconnection,
voicings of the disjunctive parts of speech?’ - but by such devices the original problem has only
been exacerbated, not solved. What (we initially wanted to know) is the mistake in saying
that a self-contradiction entails anything whatever? One standard explanation is that the
antecedent and consequent would not relevantly be related if such were the case. But now it
would need to be shown how and why irrelevance, so understood, should give offence. Yet it is
precisely this that had not been shown (and similarly for meaning disconnection and for
ignored pragmatic parameters of disjunctive speech). These are potential solutions only for

the converted, only for those who already admit to heterodox intuitions.

Speaking of parti pris, consider, for example, the following remarkable argument. The
obverse of the claim that a necessary falsehood entails anything you like is that anything you

like entails a necessary truth. Lewis produced a proof of this latter, as follows:

(1 A

(2) (AA~B)V(AAB)

(3) AA(~BVB)

(4) ~BVB

Some of Lewis’s critics seized upon a device of Anderson and Belnap with a view to refuting
the proof. The device is tautological entailment. It is claimed first, that A .. B™1 is valid
only if A tautologically entails B’, where B’ is a conjunctive normal form of B. A is then said
tautologically to entail B’ only if for each conjunct C of B’, A entails C. A is then said to
entail C iff A strictly implies C, provided that A and C share at least one propositional

variable (i.e., that A and C are relevant to one another).

The refutation of Lewis’s proof proceeds at a furious, but brief, gallop:

Consider step (2) of the proof. It is properly derived only if
(a) A tautologically entails
TAA(AVB)A(AV~B)A(BV~B)T,

where the consequent of (a) is step (2) in conjunctive normal form. Now the required
tautological entailment obtains only if A entails each conjunct of the consequent of (a), in
77
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particular, only if A entails B V ~B7. But this is not the case; A and MB V ~B™1 share no

propositional variables.

Thus Lewis’s proof of A’s entailment of B V ~B7] is no good, because it yields the
“falsehood” that A entails ™B V ~B™! Possibly not everyone will be convinced by this artful

and bold manoeuvre. It is a circle tight enough to be a dot.

The primary problem requires a deeper diagnosis, yet up to now (even where the need
for it is acknowledged) much of the prognostication has been confessedly half-facetious (as in
Belnap, 60b, p.5). We who count ourselves among Anderson’s Them4, we who find it
unproblematic that a self-contradiction should entail anything, might be forgiven for
wondering whether the philosophic force of the contrary opinion would ever amount to
anything more grown-up than an undeclared expression of de intuitionitbus non est
disputandum. It is with some relief, therefore, that one notes in an interesting paper by
Robert Meyer, the non-facetious address of the question whether relevant logic has a
reasonable motivation (Meyer 71a). There are genuine arguments here, serious enough to be

taken seriously yet gaping enough to command refutation.

2. Well, then, just what is wrong with the classical claim (that a self-contradiction entails
anything)? It is, says Meyer, that, if true, the classical claim defeats the intuitive parity
between a theory’s ~-inconsistency (in which TA A ~A7] is a theorem) and its
~-incompleteness (in which neither A nor T~A7 is a theorem). In the one case the theory is
overdeterministic with respect to some sentence A, and in the other it is underdeterministic.
In each case the theory in question fails the ideal of announcing for each pair of its sentences
{A, T~A7}, which of them is the theorem and which the countertheorem. That such theories
both fall short of this ideal equally dismally - in the one case by telling us too much and in the
other too little - is certainly to suggest one kind of parity between ~-inconsistency and
~-incompleteness. But why parity in one regard should give rise to expectations of parity
across the board is not made clear. In fact there is one important respect, at least, in which
there is obvious disparity between the two: If you ask someone whether A or "~A™ and he
replies that he does not know which, you may understandably be disappointed; but if he
answers “Both”, you will be disappointed and shocked as well®. Allowing theoremhood as a
formal analogue of knownness, it is easy to see that theories preserving the classical claim
capture the disparity at hand. The shock of “Both” is represented by a psychosis in the
theory, the ubiquity of theoremhood. The mere disappointment of “Don’t know” is
represented by a less severe disorder - the semi-evanescence of theoremhood. The existence of
such a disparity is evident and only unreasonably ignored. Meyer himself admits concerning

the overdetermined case - the “Both” case - and only of it, to a bogglement of mind.

3. Now it might seem that Meyer’s concern with failures of parity was in truth a relatively
inconsequential eminently loseable piece in an opening gambit; but this would be a mistake.
For he expressly chides us for the fuss we make over inconsistency. In so doing, however,
Meyer engineers the downfall of his own parity-argument. For the point is that we do, even

at the most intuitive levels, fuss about inconsistency in ways in which we never do about
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incompleteness, and herein surely is a tale of intuitive disparity.

But Meyer is undeterred. He suggests that this is hardly what one would call an
intuitive disparity. He seems to think that it is a commonplace only of the textbook, that it
is an establishment doctrine and that it plunders our logical chastity. Why, he asks, why this
obsessive, semi-hysterical, consistency-directed single-mindedness? When will we realize that
the Russell set (e.g.) is only a set and that sets aren’t anything and that it is silly to be
bullied by not-anythings into the classical logical stance (or any logical stance, for that
matter)? Where is the sense in saying not-anythings? Or, if we must recognize in numbers
and sets beings of tolerable metaphysical probity, then we can only allow that they are
ertraordinary beings and that, for all we really know, a goodly aspect of their extraordinarity

involves the inherence in them of inconsistent properties.

Whether sets are of such low or fabulous ontological assay as to tolerate honest-to-
goodness inconsistency is (at best) an intriquing metaphysical conjecture. Though perhaps a
more compelling example of items which on the face of it are possessed of inconsistent
properties, without exciting so much as a murmur of protest, are the fictional characters of
fantasy, fairytale or science fiction. The philosophical masses, as Meyer calls them, still find
the Russell set offensive if not catastrophic, but it is rare to find persons who seriously want
to exercise themselves over the nomological misdeeds of a Ray Bradbury character - mark
you, not because the misdeeds are thought incorrectly (e.g. falsely) ascribed, but rather
because their inconsistency does not prompt so much as the hint of an impression that

something has gone wrong6.

Let us momentarily grant that a theory T might have certain intended interpretations
by virtue of which inconsistency need not be psychotic. In that event, we would have it that
an inconsistent sentence need not entail anything whatever when the intended interpretation
assumes entities so ontologically aberrant’ or suspect as to cast doubt upon the very
suitability of the classical logical framework to support the expression of their (de)natures.
While Meyer is happy to jettison the classical scaffolding, many of the rest of us feel the need
to query the sensibleness of the aberrant interpretation and are prompted to wonder whether
such interpretations might be happier interpreting consistent but syntactically non-classical
logics. And what is this, if not to caution against the representation of the allowable
inconsistencies by means of sentences of the classical form TA A ~A™1? It is not for nothing
that Meyer stops short of an invitation to suppose rocks open to inconsistent essences, natures
or accidents. You cannot bathe in a set or embrace or sue Madame Bovary, but apparently a
flying rock is so ontologically compelling as to demand for its theories nothing less than that

ole-time logic.

4. Still, even in order to promote the downfall of the classical claim it is not obligatory to
vindicate the inconsistency of theories via frivolous interpretation. It would be enough to
show that in perfectly ordinary, non-frivolous contexts, subscription to the classical claim
occasions consequences at least as unwelcome as it. In such a vein we have it thus from

'3

Meyer: “... it is downright odd, silly, and ridiculous that on classical logical terrain” the
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following two facts cannot co-exist, “ except on pain of maintaining that some people are

sometimes committed to absolutely everything” (71a, p.814):
(1) That “some people sometimes are committed to some contradictory beliefs”;

(2) “That a man committed to certain beliefs is committed as well to their logical
consequences”.

To be sure, it is downright odd, silly, and ridiculous that we should be ever obliged to own
that a man believes things that he and we perfectly well know that he does not believe. Belief
(I can only think) is a finitistic psychological component of the human make-up. No
indefinite collection of truths or falsehoods can ever be believed distributively. Not the
infinity of consequences of my belief that 2 is an even prime and not the different infinity of
consequences of the young Russell’s belief in the naive comprehension axiom for sets. That
belief is not closed under consequence is arguable, therefore, independently of the classical

claim.

It must be added, however, that it is far from odd, silly or ridiculous to speak of
commitments of a person of which he may be unaware. Commitment is infinitistic and is
indeed closed under consequences. If Zachary holds that 2 is prime, then Zachary may be said
to be committed, e.g. to "2 is prime V A7l for arbitrary A. Zachary’s commitment,
interestingly enough, is the commitment to avoid inconsistency. Given his acceptance of “2 is
prime” he is committed on pain of contradiction not to deny ™2 is prime V A71. It is a larger
part of human frailty that such commitments are sometimes betrayed unawares, that such
inconsistencies possess us innocently. Were not commitment closed under consequences we
could be guilty only of deliberate, or anyhow obvious, inconsistency; but so to pretend would
be to obscure, untenably, the difference between inconsistency arising from inattention,

forgetfulness, ignorance or dimness, and that arising from sheer irrationalityg.

Similar reservations are indicated for Meyer’s claim that obligation is closed under
consequence. Is one obligated to do all the consequences of what he is obligated to do? Not
unless he is obligated to exist, or to be self-identical or to be born of none but his parents at
approximately the time of his actual birth. For my part, then, it is wiser to dig in one’s heels
on the issue of consequence-closedness than to invent deficiencies for the disjunctive
syllogismlo.

5. In the early years of relevant logic the E’s and R’s of Meyer’s stout affection suffered a
number of abuses which, it may now be said, they probably no longer deserve, if ever they
did. Meyer, who along with Routley, Dunn, Urquhart, and others deserves credit for the
maturity of contemporary formulations of the Anderson-Belnap insight, is quite right to point
this out!!. True, there continue to be some doubts about the semantics for R and for NR and
E (e.g. is negation really all that complex?), but I think that anyone whose concern is just (or
basically) the sponsorship of the classical claim can safely allow that in R we have a decent
theory of the conditional, a theory good enough for counterfactuals, a theory that gives the

material conditional and intuitionist conditional as well, a theory that insinuates the
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entailment theory that E actually expresses. R also has a Kripke-style semantics, which
extends to NR and adapts to E. It has a deduction theorem and it offers a tidy natural
deduction organization. And, of course, it also banishes the classical claim. “What more could
one ask?” (Meyer 71a, p.818).

One could ask that it be established that the abandonment of the classical claim is not a
liability for R. R, after all, is not the only mature logic which accommodates the conditional,
which may boast of a semantics, which abounds in deep and pleasant theorems, but it (or its
variants) is the only grown-up logic that does all this and jettisons the classical claim as well.
The question whether to accept R over its classical vis-a-vis must turn upon the goodness of
Meyer’s and others’ reasoning in opposition to the classical claim at the intuitive level.

Meyer’s reasoning we have here examined and found wanting.

6. As I have had occasion to remark some years ago, casual strolls up and down the via
negativa seldom sanction anything more telling than a Scotch verdict. My claim against
Meyer’s case against the classical claim is that it is not proven. It may be, however, that R
has come of age, that a Scotch verdict is not quite vindication enough of the classical claim.
Perhaps we would do well to seek evidence in behalf of total exoneration, of not less than a
verdict of “Not guilty”. Fortunately this need not occupy us for long. It is sufficient to
remark upon the earlier point, adumbrated in sections 2 and 3, that it is an inescapable fact
about our mental make-up, that saying something inconsistent is thought incomparably worse
than saying something merely falsel. We are possessed of the rudimentary conviction that
there are consequences of what we say, and that some of these consequences are better or
worse than others. If I say that the Principle of Superposition of States fails (and mean it),
then, without compensating adjustments, I have spoilt quantum theory for myself. If I assert
TA A ~A71 (and mean it) the taint is on my total commitment store. I am (if I mean it) quite
mad. In classical logic the madness of a contradiction is represented syntactically by radical
disorganization; and semantically by being everywhere false, i.e. false under every admissible
valuation. In relevant logics there is no deductive significance to contradictions; they matter
only semantically. It is in this divorcement of the syntactic meaning of contradiction, in this
proof-theoretic indifference to it, that relevance logic is not the preferable treatment of theory-
endorsed contradiction. Yet it is precisely this “worseness” of inconsistency over falsehood
that is acknowledged by the classical claim, and precisely where it is soft-pedalled by R. So

much for R’s claim to intuitive advantage.

7. Even so, the classical claim can easily be misunderstood. It can be misunderstood to be a
part of a lawlike description of the typical aims of the speech-act of disjunctive assertion; and
it can be misunderstood as putting forth a regulative principle of inference, i.e. of belief!®
modification. We might liken inference to a function f from a set of statements I' to a not
necessarily distinct set of statements A such that for a statement A either A = 'U - {A} or
A = I - {B}, where B is some member of I inconsistent, in the appropriate sense, with
A. Thus our function might be called an “extension-restriction function” by means of which
you modify a given stock of statements by adding a new statement A or by deleting or

withholding it. The question is: what are the rules that it is reasonable to think f should
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obey? An elementary logic textbook reinforces the suggestion that f-rules (“rules of inference”
as they are sometimes called) are at least those of deductive logic. But this is untrue.
Confronted with a given statement A and a stock of statements I' it may be open to the free
flow of competent inference to compose A either by extension or by restriction. Thus if I
contains A and A — B 71, I may put for A either I'U {B} or I-{A} or I-{C A — B71}. But
the rule of modus ponens provides for just one manoeuvre: derive B. Thus the modus ponens
of deductive logic is not a rule of inference (not an f-rule). So, likewise, classical deductive
logic has the (derived) rule: from MA A ~A71 to derive arbitrary B. But that is not the way
with inference. If I discover my commitment store to be inconsistent, the correct procedure is
not to accept the “universal” set of statements, i.e. not to infer everything; rather it is to
restrict my store, to regain consistency or at least to find some way of quarantining the
contradiction!?. Thus the derived rule is not an f-rule; it is not a rule of inference. But that
just shows that the rules of entailment do not exactly coincide with rules of inference, of
belief-modification!®. Were it otherwise, there might be some intuitive vindication of Meyer’s

anxiety. But it is not otherwise, or so I believe.

Part Two

8. Whether the classical claim is true is a complex philosophical question. Its proper answer
will turn on a number of factors - on such empirical constraints as may be found in our
linguistic behaviour, on the force of logical “intuition”, but also, and perhaps most important,
on the difference to philosophical progress in kindred areas of inquiry, belief logic, probability
theory, epistemology, ethics, that could reasonably be supposed a reflection of the respective
positions taken on the classical claim. It does not do to deny the existence of relevant
implication. But it is open to ask what it is good for, and whether it is ever good enough for

anything so good as to sanction the dismissal of classical logic as trivial logic constraint.

Let us then, ask: Apart from badly conflicting intuitions concerning the nature of
entailment, might there be reason to think that relevance logic provides a philosophically
desirable or useful conception if not of entailment and the conditional, then at least of
something kindred to these? Are there philosophical theses which strike us as intuitive,
correct, right-headed, even deeply promising, except for imperfections rained upon them by

our acceptance of classical logic?

Consider, for example, Klein’s definition of knowledge (71, p.471) as follows: X knows
that A iff:

(a) X believes that A
(b) the set of X’s beliefs provides no grounds for doubt that A

(c) there is no true proposition, B, such that if B were added to the set of X’s beliefs, the
resulting set would provide grounds for doubt that A.
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A promising definition, as far as it goes. But the notion of a set of beliefs providing grounds

for doubt concerning a proposition still remains to be explicated.

I find it difficult to believe that this notion could be explicated without attending to
certain propositions that might not be members of the set of propositions that X believes,

without, that is, bringing in certain consequences of what X believes.

Suppose, in particular, that the set of X’s beliefs contained a proposition that entailed a
contradiction. Suppose, for instance, that X believed that there is a general method of
trisecting the Euclidean angle with straight edge and compass alone. This belief, let us say,
entails a contradiction, and a contradiction in turn classically entails all propositions,
including the denial of each proposition in the set of X’s beliefs. And by doing this, the belief
that there is a general method for trisecting the Euclidean angle with straight edge and
compass alone seems to generate grounds for doubts concerning each of X’s other beliefs, thus
foreclosing the possibility of X’s having any knowledge whatsoever so long as X continues to

hold to his view about the trisection of the Euclidean angle.

Yet if the relation that serves to define what counts as a consequence of X’s set of beliefs
for the purpose of determining whether this set provides grounds for doubt concerning a
proposition in it - if this relation is that of relevant implication rather than classical
implication, then X does not automatically forsake all title to knowledge by believing that
Euclidean angles are trisectable by straight edge and compass alone. And that, I think, is

desirable.

Here is an example which arises from work in formal ontology by Charles Daniels of the
University of Victoria. One thing, says Daniels, that has been missing from ontology is an
explication of the notions of identity defined for properties, propositions, and modalities. It
seems that these notions of identity can be specified in a natural way provided that one is
willing to quantify over modalities. Two properties could then be said to be identical when
they share all modalities for all individuals. Two individuals would be identical when they
share all properties under all modalities. Two propositions would be identical when they
share all modalities. Two modalities would be identical when they share all modalities for all

propositions.

In a system in which there is quantification over modalities the following two rules seem
appropriate: (1) if A is a theorem, so is TVvA™ (where v is any variable): (2) if T (A & B7is
a theorem, so is ["(d(A) « d(B))71 (where d is any monadic modal variable). If we define
identity for propositions as modal indiscernibility, these two rules give rise to a third: (3) if
(A & B)71is a theorem, so is [(A = B)7l. Now if both A and B are theorems, so is
"(A « B)7, and consequently by our third rule, so is T(A = B)7l. What this seems to show

is that all theorems assert the same proposition, say the same thing.

Now if it is one’s view that different theorems may say different things, one way to



84

preserve it is to treat the double arrow as the sign for relevant co-implication rather than
material equivalence, even where the double arrow appears in the definition of identity. In
that event, the reasoning above would not go through, since it would not follow, if A and B
are both theorems, that M(A « B)7is a theorem. Indeed, if the double arrow represents
relevant co-implication, there will be modalities enough to distinguish various things that

various theorems may say.

A third example. I implied earlier that the usual run of reservations about the classical
disjunctive syllogism exhibit unnecessary alarm, for they are reactions to invented, or anyhow
non-existent, deficiencies. True, according to some philosophers’ intuitions, the disjunctive
syllogism is invalid, but, I repeat, there has been precious little success in developing these
intuitions into thoughtful explanations and arguments by which philosophers of a different
(that is to say, classical) persuasion may be thoughtfully exposed to the possibility of genuine
error. It is just no good for a philosopher to say “I feel it in my bones that the disjunctive
syllogism is invalid” anymore than it will do to retort “But I myself am so drawn to the other
point of view”. How pleasant, then, to come upon an argument that the disjunctive syllogism
is invalid, an exotic argument, to be sure, but no less an argument for that. Allowing that
“intuitively correct principles should have sound ... supporting arguments”, R. Routley writes:
“Disjunctive syllogism is not intuitively valid; it is easily falsified by inconsistent situations

Briefly, A & (~A V B) is not logically sufficient for B because in inconsistent logical
situations both A and ~A may hold though B does not” (RLR, p.25).

According to Routley there are in fact self-contradictory states of affairs, bona fide
states of affairs correctly and adequately describable by pairs of propositions in the form A
and M~A71. (As to why Routley believes this, we shall return shortly.) On the other hand, it
is perfectly obvious that not every possible state of affairs obtains and that not every
proposition holds. So we would seem to have it that for some A, A and M~A™ hold true and

yet for some B, B does not hold true, which invalidates the disjunctive syllogism.

That the world is (if it is) simply inconsistent is, as Routley observes, a metaphysical
thesis. It is a metaphysical thesis that in Routley’s opinion is thoroughly confirmed by the
logical and semantical antinomies and the fact that “artificial hierarchies of languages or
types that classical semanticists appeared forced into, to avoid the catastrophic effect of
semantical antinomies in combination with classical logic, are frankly unbelievable” (RLR,

p.63, emphasis added).

Needless to say, not everyone will be convinced that the antinomies actually obtain, and
so not everyone will be satisfied with Routley’s metaphysical claim. But the point to notice
for our purposes in this paper is this: it is not fanciful or foolish to suppose that the invalidity

of the disjunctive syllogism is a requirement of an adequate metaphysics.

I do not offer these examples as knock-down vindications of relevant logic. I suggest

only that they indicate promising directions in which to take such questions as, “Is relevant
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logic significantly more than an abstractly mathematical accomplishment?”; “What

reasonably commends it to philosophical attention?”; “Is it defensibly an idiom in which

substantive philosophical issues should be reasoned about?”. Good questions, I think, and all

of them quite open.

10.

11.

12.

13.

14.
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NOTES
See, for example, Belnap 60b, Hockney and Wilson 65. Cf. Woods 64.
See Nelson 30. Cf. Bennett 54 and Woods 69.
See Anderson and Belnap 62, p.22. Cf. Woods 65.

Anderson 72, p.353. On the particular question of whether a self-contradiction implies
everything Them commands a huge membership: Philo, the Pseudo-Scot, Ockham,
Russell, W.E. Johnson, Lewis and Bennett. For a lengthy and careful review of the
worries of Anderson’s Us, see Bennett 69.

Even in the less dramatic case, “Which of A, T~A™1 is the case?”; “Neither”; “Both” -
the latter reply is a shocker, the other merely seeks accommodation in free logic.

Though a better example of permitted inconsistencies, the fiction example still won’t
quite do, a view that I sponsor and develop in Woods 74.

It should be borne in mind that at this point in Meyer’s ruminations mathematics is
being supposed ontologically vapid and of no serious realistic import.

Of course, in the quote from Meyer, the idiom of belief and commitment are both pretty
thoroughly intermixed. If, then, his two points (1) and (2) are points about
commitment, there is nothing whatever odd, silly or ridiculous in supposing that an
inconsistency commits me to absolutely everything, and (1) and (2) are correct. On the
other hand, if he is speaking of belief, a belief in everything whatever is indeed odd, silly
and ridiculous (and I would add, false); but so too is sentence (2).

There is, then, no sentence A of the infinite sentential store I' such that if we have it
that, for some believed sentence B, B |- A then I'U {I"~(A)7} is not consistent.

Not to say, however, that satisfactory counter-models for the disjunctive syllogism can
never be construed. My principal task is to preserve the classical role of self-
contradiction. I return to the disjunctive syllogism below.

See Meyer 76, Routley and Meyer 73a and 72a, Dunn 70 and Meyer and Dunn 69,
Urquhart 72.

True, if I deduce a falsehood, I deduce something inconsistent with a true proposition.
But there is no particular reason to think that that true proposition is in my belief-
store; and certainly no reason in particular to think that it is in my premiss-set. So
there are significant differences here.

The belief need not be one’s own, of course, if we are to allow e.g. for good inferences
from another person’s mistaken beliefs.

One typical strategy is to “split” the contradiction, treating its respective isolated parts
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15.

16.

as hypotheses, until their more particular contributions are known. Thereupon it is
usually possible to reject a part and remove the quarantine.

Ironically, then, Lewis is wrong about something, namely, that the classical theory of
entailment gives the ordinary meaning of inference. See C.I. Lewis 12. After this paper
was completed it came to my attention that essentially this point is made by Harman.
See, e.g., Harman 70 and also 73. It is also true that tests currently underway at
Stanford suggest, though not conclusively, that in our actual ratiocination we model not
classical but relevant logic. =~ But the parameters of the test show that by *
ratiocination” is meant what is here called “inference”, not “entailment”.

My thanks for help and encouragement to David Kaplan and the ever-beneficent Robert
Meyer, caricatured in this paper by a character of the same name; and to Nuel Belnap
for the forbearance it will have taken to suffer through two earlier readings of this
paper. Belnap is grudgingly to be applauded for the heretic’s magnanimity shown to a
representative of the True Faith - tolerant, uncondescending, though utterly
unrepentant. I should also like to express my appreciation to S.J. Surma and several
colleagues at the Con ference on the History of Logic, Cracow, Poland, April, 1978, for
discerning and helpful suggestions.



CHAPTER 5

THE CLASSICAL LOGIC OF RELEVANT LOGICIANS

Charles F. Kielkopf

Are relevant logicians committed to accepting as formally correct the same natural
language arguments as classical logicians? I have elsewhere suggested that they were (in my
74). 1 want to argue for this suggestion after discussing some terminology. By ‘relevant
logician’ I mean a logician who accepts a natural language argument A being formally correct
on a classical sentential analysis if and only if a classical sentential analysis of A produces a
sentential inference form (P;,P,,...,P .. Q) such that ((P; & P, &..& P ) D Q) is a
tautological entailment in the sense of Anderson and Belnapl. We give a classical sentential

analysis of A if we represent a form of A as (PI,P2,...,P .. Q) where .". symbolises ‘therefore’

and the premiss forms P; and the conclusion form Q arenin some notation suitable for classical
sentential logic in which (A D B) is (~A V B). Usually I shall regard the premiss forms
conjoined and talk of inference forms (P .. Q). I use ‘formally correct’ because a relevant
logician does not accept an argument as meeting the formal conditions for deductive adequacy
simply if a classical sentential analysis of it produces a classically valid form. (In the
remainder of this essay ‘valid’ will mean ‘classically valid’.) The relevant logician, of course,
requires that a form F of an argument A in virtue of which A is certified as meeting the
formal conditions of deductive adequacy be valid and also at least be such that in any natural
language interpretation of F some of the topics talked about in the premisses will be talked
about in the conclusion?. In other words, the relevant logician demands that the form in
virtue of which an argument is accepted guarantee that there be relevance between the

premisses and the conclusion.

I concede that relevant logicians are to be commended for trying to make relevance
between premisses and conclusion a formal condition of acceptability. Presumably, for a
relevani logician, soundness is the only material condition for acceptability of an argument
offered as a deductive argument. On the other hand, validity is the only formal condition of
acceptability required by a classical logician. So, a classical logician, sensitive to the cries of
Anderson et al., should require at least two material conditions for acceptability of natural
language arguments offered as deductive arguments. The sensitive classical logician should
require soundness and relevance between premisses and conclusions. As I see it, a relevant
logician would reject "It is raining and it is not raining, so 2 + 2 = 4’ on formal grounds while
the classical logician would have to reject it on material grounds. The goal of making
discriminations objectively requires trying to make conditions for argument acceptability
formal conditions. Also we would understand relevance better if we could make an
argument’s possession, or lack, of relevance a formal feature. So, I am sympathetic with the
tough-minded aims of relevant logicians in trying to develop precise criteria for rejecting an
argument on considerations of relevance. Some may accuse relevant logicians of tender-
mindedness because of their concern with the vague - ‘squishy’ is a term suggested by Meyer
(73) - topic of relevance. But really it is classical logicians who ignore it or regard judgements
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of relevance as subjective who are being tender-minded about relevance because they do not
try to give it rigorous formal treatment. Unfortunately, the commendable effort to make
relevance a formal feature may fail. But I will not here argue that that effort has failed. Here
I want to consider whether relevant logicians have failed in the following three ways. Does
their use of classical sentential logic in the set-theory of their metalanguage commit them to
the use of classical sentential logic and hence acceptance, in so far as acceptance is based on
formal features, of any argument that a classical logician accepts? Secondly, I shall consider
whether an alternative analysis for arguments, which has been suggested by the Routleys (in
72), leads the relevant logician to accept as formally correct any argument accepted as
formally correct by a classical logician. In the third place, I shall assess the following charge.
The system of tautological entailments admits as formally correct a version A’ of any
argument A which a classical logician accepts as formally correct; but A’ is not significantly
different from A. Because this last charge very likely holds, I conclude that relevant logicians
must suffer the suspicion that they have failed to attain their goal of selecting a proper

subclass of the valid arguments as the formally correct arguments.

The presentations of semantics for entailment systems and systems of relevant
implication, and hence semantics for tautological entailments, have used set-theories whose
sentential logic is classical sentential logic. Call such set-theories ‘classical set-theories’. Here
is my evidence for claiming that classical set-theories are used. Routley and Meyer3 frankly
admit that we may regard them as using classical set theory, although they suggest they
would not have to use classical set-theory. But they do not develop some non-classical set-
theory. So, I presume that they do not think its development is very important. Material
implication is used in crucial definitions®. If material implication is used in crucial definitions,
one would suspect that material implication is the interpretation of ‘if ... then ...". If material
implication is the interpretation of if ... then ...” one would suspect classical sentential logic is
being used. I have argued (in 74) that the Routleys’ acceptance of the set-up principle (A ¢ H,
(AeHorBe H),so B € H) committed them to the use of classical sentential logic in their
set-up semantics for the tautological entailments. So, I conclude that relevant logicians use a

classical set-theory.

Is this acceptance of classical sentential logic in the set-theories used in their semantical
metalanguages destructive of the relevant logicians’ aim to select a proper subset of the valid
arguments as the formally correct arguments? I must admit that it is not. The main point is
simple. Use of classical logic to reason about sets does not commit one to use of classical logic
to reason about dogs, cats or whatever else one chooses to talk about. The point is even more
clearly true if the sets one talks about are sets of sentential logic formulas and sets
constructible from such sets. Of course, the question arises: Why use classical logic for
reasoning about sets? There is a weak answer which says why it is permissible to use classical
logic for reasoning about sets but not about any topic whatsoever. A strong answer would
explain why it is crucial to use classical logic for reasoning about sets or about some special
sets, e.g. sets of formulas. 1 will say something about a weak answer and just a bit about a

strong one. It is permissible to use classical logic to reason about sets because when we talk
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about sets we have controlled discourse. If we are talking about sets and contradict ourselves,
any sentence about sets follows from our contradictions: but not any sentence whatsoever. If
we are talking about sets of formulas only every sentence about sets of formulas follows from
a contradiction. To me there does not seem to be such a rupture of relevance between
premisses and conclusion that one should reject any of the classical set-theoretic inferences
from a set-theoretic contradiction. After all, the primitive ‘€’ will occur in both premisses and
conclusion. I would go so far as to recommend that relevant logicians not only tolerate, but
confidently use, classical logic in formalized theories. In laying down the primitive notation
and making remarks about its intended interpretation, one controls what can be talked about.
Formalization provides a formal way to test for relevance. Sentences completely irrelevant to
premisses will not even be well-formed. Relevant logicians should only worry about adding
relevance conditions for formal correctness of arguments in natural languages where there are,
relative to formal languages, almost no controls on what can be talked about. Still, returning
to the topic of formally correct inferences in set-theory, I must admit that it would be
somewhat odd to draw a conclusion about real numbers, let alone sets of dogs and cats, from
a contradictory sentence about sets of formulas. But a relevant logician should be able to
control his semantical metalanguage so that he talks only of sets of formulas and sets

constructible from such sets.

Besides asserting that classical logic is the right logic, I cannot answer why classical
logic should be used for reasoning about sets. The question may be very deep if one takes it
as asking whether there is something about sets that requires an adequate study of them to
use classical logic. But I can give a shallow answer to the question: Why use classical set-
theory in the semantical metalanguage for entailment systems? Relevant logicians are
working in a classical set-theory culture. They want to show members of the culture,
including themselves, that entailment systems meet the standard conditions expected of
formal logic systems. The set-theory semantics suffice to show us such things as consistency,
independence of formulas, completeness and differences between systems. Whether or not set-
theoretic semantics gives an understanding of what the connectives really mean depends, I
believe, on the extraneous and controversial commentary, such as possible world
interpretations, on what the sets really represent. The pure set-theory, even restricted to sets
of formulas, does not seem to me to provide much undershandings. Of course, if one believes
he understands alethic logic better because of possible world talk about Kripke-type
semantics, he may well feel he understands entailment systems better if possible world
comments are made about their semantics. But here understanding is only a subjective matter
of feeling more familiar with. I am inclined to think that Meyer, if I read him rightly (73), has
a better way than interpretation of sets for understanding connectives in other systems of
logic. You start by frankly assuming you understand your own connectives. You then try to
represent other systems within your own. Thus you try to understand other kinds of
implication by representing them with some kind of formula in your own system which at
least meets minimal conditions for being an implication formula. Meyer’s way is gaining
understanding by making familiar; but it requires no suspicious commentary on what some

sets really represent. Considering all the preceding remarks on use of classical set-theory, I



90

conclude that it is unnecessary for relevant logicians to develop a set-theory based on a

system of relevant implication.

My next point concerns what I think is a slip of the Routleys’ (in 72). The Routleys
develop set-up semantics for the tautological entailments®. This semantics shows that, from
the point of view of a relevant logician, an argument cannot be certified as formally correct
simply because a classical sentential analysis gives it the form ((p, (~p V q)) .". q) or ((~p,( P
V q)) .. q), viz. a disjunctive syllogism. However, at this point the Routleys seem to suffer a
slight failure of nerve. They cannot bring themselves to say that all arguments whose normal
classical sentential analysis is a disjunctive syllogism fail to be formally correct. Hence, they
suggest what can be called a metalinguistic analysis of arguments so that some of these
natural language disjunctive syllogisms may still be certified as formally correct. Some
arguments that are normally symbolized as disjunctive syllogisms are instead symbolized as
Elimination Arguments. A typical Elimination Argument form is: ((p ¢ H, (p € H or q € H)),
so q € H), where H is an FD set-up. The Routleys do not say why they accept the Elimination
Argument form. But if they accept classical sentential logic for reasoning about set-ups they
must accept it because it is a disjunctive syllogism. I think I have made a good case elsewhere
(74) and earlier in this paper that they use classical sentential logic for reasoning about set-
ups. So, I am not criticizing the Routleys for accepting the Elimination Argument form. I am
only criticizing them for analyzing natural arguments as having the Elimination Argument
form. The apparent procedure for saving some natural language arguments normally analyzed
as disjunctive syllogisms leaves them open to accepting as formally correct exactly the same
arguments as those accepted by the classical logician. The procedure seems to be to rewrite a
classical sentential analysis by simply rewriting each variable p; as p; € H, each negated
variable ~P; as p; £ H, where H is an FD set-up, while leaving the rest of the inference form as
it is. The resulting symbolization of an argument I call the ml() translation of a classical
sentential analysis of the argument7. I call them ml() translations to indicate that they
represent a metalinguistic analysis of an argument because the atomic elements - the p; ¢ H
and P; £ H - represent something said about the basic sentences of the argument rather than
merely represent the basic sentences as do p; and Pj- Obviously, if a form of an argument is
classically valid, its ml() translation is classically valid. So, if the Routleys accept all ml()
translations as legitimate symbolizations and the validity of ml() translations as a sufficient
condition of the formal correctness of the natural language argument from which the ml()
translation is ultimately obtained, they agree with classical logicians on which arguments are
formally correct. I think the Routleys are committed to accepting any ml() translation as
legitimate symbolization of an argument. They give no reason why some ml() translations
should be accepted as legitimate analyses while others are to be rejected. Unless they are
willing to let subjective factors determine formal correctness, they should not allow the
analysis to be given to only some arguments. When a new method of analysis for assessing
formal correctness is developed we must be willing to apply it to all arguments. For instance,
we introduce predicate logic because we subjectively judge some arguments to be formally
correct but which are not formally correct on any sentential analysis. But once we introduce

and accept predicate logic as a way of analyzing arguments, we are willing to apply it to any
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argument even if it gives results contrary to our subjective judgements. Of course, if the
predicate logic introduced gives too many unintuitive results we could reject the entire
technique and try to develop a better predicate logic so that we can assess formal correctness
without paying heed to our intuitions. But to reject a whole system of formal logic and
develop a new one closer to our intuitions does not make us as subservient to our intuitions as
accepting a system of formal logic but not using it when its results would clash with our
intuitions. Another reason for saying that the Routleys have to accept ml() translations comes
from their suggestion (in 72) that we can read a sentence S of a natural language argument as
the metalinguistic ‘S is true’ as long as we do not make the move from ‘S is not true’ to ‘not-S
is true’. If we can so read sentences of a natural language and represent ‘is true’ with e¢H
where H is an FD set-up, an ml() translation gives a legitimate symbolization of the
metalinguistic reading of the natural language argument that satisfies the Routleys’ scruples
about negation and truth. So, I conclude that they are committed to accepting ml()
translations of every argument. But then 1 conclude they will agree with classical logicians on
formal correctness. For instance, an ml() translation of ‘It is raining and it is not raining, so 2
+ 2 =4is the valid ((p € H, p £ H) so q € H).

Now a way out of this difficulty is not to accept any argument as formally correct on
the basis of its having a valid ml() translation. This involves having the courage to reject all
natural language arguments which seem to be disjunctive syllogisms. Eliminate the
Elimination Argument! One reason relevant logicians should not accept ml() translations as
legitimate symbolizations is that they should not accept reading S as ‘S is true’, given their
use of ‘true’d. For a relevant logician, a contradiction can be true. But even if relevant
logicians tolerate assignment of true to contradictions, they should not admit that
contradictions can hold. So, they should not accept the part of Tarski’s convention T that
requires: If S is true, then S. Maybe relevant logicians do not have a genuine sense of ‘true’.
Perhaps their values are ‘accepted/unaccepted’ or ‘acceptable/unacceptable’. Thus we would
not have: S iff S is acceptable. Rejecting the ‘is true’ metalinguistic rereading of natural
language arguments eliminates a major reason for symbolizing them with ml() translations.
Also symbolizing arguments with ml() translations introduces a new type of analysis between
sentential and predicate logic; one should be hesitant to do this without much more
preparation. So, courageous adherence to the position that an argument is formally correct on
a non-predicate logic analysis if and only if its classical sentential analysis gives a tautological

entailment will avoid the Routleys’ slip into accepting all classically valid arguments.

The third classical logic problem for relevant logicians is that it seems that for every
classically valid natural language argument A there is a trivial variant A’ of A such that A’ is
formally correct by virtue of possessing a tautological entailment form. Let (P .. Q) be a
classically valid inference form which is not a tautological entailment. It can be transformed
into a tautological entailment by conjunction of tautologies (p; V ~p;) with P or disjunction
of contradictions (pj & ij) with Q. (Of course, disjoining (pj & ~pj) with Q is, in effect,
changing the conclusion to ((pj \% ~pj) D Q). Still, changing the conclusion of (P .. Q) to ((pj
\Y ~pj) D Q) is not to add (p v ~pj) to the premisses P because we cannot shift antecedents
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of D to the left of .. and always keep a tautological entailment.) For example, ((p D q) .-
(p O (p & q))) can be made a tautological entailment by transforming it to ((p D q) &
(PV~p) . ((PD2(pP&q)))-((pPDq). . ((p&r)D(q&r))) becomes a tautological entailment
by making it ((p D q) & (r V ~r) .. ((p & r) D (q & r))). The disjunctive syllogism (~p,(p V
q) .. q) becomes a tautological entailment when transformed to ~p, (p V q) .. ((p V ~p) D
q)). Also (p,~p .. q) becomes a tautological entailment when transformed to (p,~p .. (( p V

~p) D q)). I will not give a proof of my claim here®.

Of course, there are other ways to transform classically valid inference forms into
tautological entailments. For example, one could simply disjoin premisses with the
conclusion. But I choose conjoining tautologies and disjoining contradictions because such
transformations cannot affect validity and do not alter what is asserted in the premiss or
conclusion. I now want to argue that the transformed natural language arguments which
correspond to the transformed inference forms are not significantly different from the original
natural language arguments. Adding a simple (p V ~p) tautology to the premisses is not a
significant addition to the premisses. The addition cannot affect validity. The new simple (p V
~p) tautology does not make a significant change in what is asserted in the premisses even
though it may introduce a new topic into the premisses. For instance, even if the premisses of
an argument have been solely about the weather, one does not assert anything new by adding
(2+2=40r2+ 2 # 4). Maybe a complicated tautology would change what is asserted. But
certainly not such a simple one. Also the additional tautology will not introduce a topic new
to the argument since one of its disjuncts will have occurred somewhere in the original
argument. Similarly, disjunction of a simple (p & ~p) contradiction to the conclusion will not
significantly transform the argument. It cannot affect validity. I submit that the disjunction
of the simple (p & ~p) contradiction does not alter what is asserted in the conclusion even if
it introduces a new topic into the conclusion. Again, I grant that a complicated contradiction
may change what is asserted. But anyone can see that the disjoined explicit contradiction
offers no alternative to the original conclusion. For instance, if the conclusion has been 2 + 2
= 4, one hardly asserts more by saying ‘It is raining and it is not raining or 2 + 2 = 4’. Also
the contradiction does not introduce a new topic into the argument since one of its conjuncts

already occurs somewhere in the original argument.

So, I am arguing that ‘It is raining and it is not raining; so if it is raining or it is not
raining, then 2 + 2 = 4’, acceptable in relevant logic, is not significantly different from ‘It is
raining and it is not raining, so 2 + 2 = 4’, which is abhorrent to the relevant logician. If I
had a more precise notion of ‘what is asserted’ I would judge relevant logicians guilty of
having failed to select a proper subset of the classically valid arguments as formally correct.
Unfortunately for my advocacy of classical logic, I have to content myself with raising the

suspicion that relevant logicians have failed.
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NOTES

Anderson and Belnap 62. The fact, proved by R. Routley in section 5 of his 72, that an
extensive series of systems, including the major candidates for systems of entailment and
relevant implication, contain the tautological entailments as their first degree
entailments justifies my definition of ‘relevant logician’.

I am not suggesting that relevant logicians’ formal requirements for relevance can be
obtained simply by requiring variable sharing between premisses and conclusion - the
relevance condition C7 of Belnap’s 60b, sometimes called ‘weak relevance’. The
subscripting relevance requirements of Anderson 59 are, in my judgement, the best way
to present the relevance requirements of relevant logicians. But here my point is simply
to call attention to the fact that relevant logicians add relevance conditions as necessary
conditions for formal correctness.

See the first footnote in each of Routley and Meyer 73a and 72a.
R. Routley, 72, p.59, and R. and V. Routley, 72, p.348.

My suggestion that we simply use set-theory semantics without comments made with a
view to attaining understanding is taken from section 3 of Routley and Meyer 72b.

I assume familiarity with the Routleys’ set-up semantics. I call their set-ups FD set-ups,
i.e. first degree set-ups. Nothing in the argument of this paper requires great familiarity
with the details of their semantics.

In 74, I called them t() translations. The technique of ml() translation of sentential
logic formulas can be given more precisely. For a sentential variable p;, ml(p;) = p; € H
where H is an FD set-up. For complex formulas we have: ml(~A) = ~ml(A),
ml(A v B) = (ml(A) vV ml(B)) and ml((A & B) = (ml(A) & ml(B)), where ~, V and &

on the right of = are signs in the language for talking about FD set-ups.

See Routley 72, p.59; Routley and Meyer 73a, p.206; or Routley and Meyer 72a, p.54-55
for recursive definitions of ‘true’ for semantics of relevant implication and entailment
systems.

A hint of how the proof would go via set-up semantics is below. If (P .. Q) is classically
valid but not a tautological entailment, then the assumption that P € H and Q ¢ H
leads to case (i) or (ii) for finitely many variables: p,q.

(i) pEH, ~p£H,peH* ~peH*
(") qEHaNqEquﬁH*vNQ¢H*

By eliminating the occurrences of these two cases one blocks the relevant logic
counterexample to (P .. Q). To eliminate cases of type (i) conjoin (p V ~p) with P; this
requires that p or ~p be in H. To eliminate cases of type (ii) disjoin (g & ~q) with Q;
this requires that q or ~q be in H*.



CHAPTER 6

RELEVANCE PRINCIPLES
AND FORMAL DEDUCIBILITY

Larisa Maksimova

1. Among the so-called relevant logics the logic II’ of Ackermann and E and R of Anderson
and Belnap are the best known. The relevance principle of Belnap 60a and Don&enko 63
holds for the calculi II’, E, R and for many of their neighbours: i.e. if a formula o — B is a
theorem, then a and B share a variable. These calculi are also reasonable in the sense of

Hallden 51: i.e. if | @ V B and formulae o and 8 have no common variables, then |-o or }-8.

In addition to the abovementioned principles we establish the following:

THEOREM 1. Let £ be one of the calculi IT’,E, R, ET,R", and let <ap,.0> o a and
<ﬂ1,...,ﬁk> — B be formulae of £ which have no common variables, k > 1, where
<ap,0g,q)> = a 5 o = (ay = ..(ep > a)..). Then the following conditions are

satisfied:

a) i | <f...B> = @V Bin L, then | <B,,....Bk> —

b) if} <ByssBy.ps B & @> — Bin L (alternatively, if
F<a, & Bysay & Bi>— Bin L)
then | (ﬂl,...,ﬂk> — B

) iff<eg & Bprnsttpq & B> = a VB,
then | <@ yeeny@p 1> = @ 0T | <B By > — B,

This theorem holds for a larger family of relevant logics as well. We consider for
definiteness the logics investigated in Maksimova 73. A set [ of formulae (with connectives
&, Vv, —) is called a regular positive logic (Maksimova 73, p.455) if for any «, B, 7 these

conditions hold:

L1. (¢ = @) e L,

L2. (@a=B)elL=>(B—=1)—(a—) el
3. (a—f el ((r—a)—(r—8) <L,
L4. aelA(a—=Bel>pBel,

L5. ael>((a—p)—P)el,

L6. (& B)—a)e L,

L7. (a&B)— B) ¢ L,

8. (((a— B)& (@) = (a— (&) € L,
L9. aelABel>(a&p)el,

L10. (a = (aVvp)el,

L (= (Vi) el
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L12. (((a—=7&(B—17) - ((avp) —1) el
L13. (& (BVA) = ((c&P)V(a&q)))el.
L14. If o € £, and B is a result of some substitution into «, then 8 € L.

A propositional calculus is a regular positive calculus if the set of its theorems is a regular

positive logic.

Now let A1-A10 be the following formulae:

Al. (((a = B) & o) = P),

A2. ((a = (a = B)) = («— ),

A3. (e = B) & (B—1) = (= 7)),
Ad. ((a=B) = ((v— )= (v—A)),
AS. ((a=B)—=((B—7) = (a =),
As. (= (B—7) = (B— (e— 1)),
AT. (a = (8- B)),

A8. ((a = B) = (v = (e — B))),

A9. (a = (B— o)),

A10. (¢ = (= @)).

Recall that E is a regular positive calculus with additional axioms A2 and A5, RT=E' +
A6.

In the case when L is a regular positive calculus which has some formulae of A1-A6 as
axioms, Theorem 1 is true. If £ is a relevant calculus containing a propositional constant t
(“the strongest truth”), for instance the calculus SE (Maksimova 68), then theorem 1 is valid
for formulae a, al,...,ak,ﬂ,ﬂl,...,ﬂk that do not contain constant t. If £ is a regular positive
calculus containing, among its axioms, at least one of formulae A7-A10, then the statements

b) and c) of Theorem 1 remain valid, but a) is weakened to a’):

@) if | <B,..B) > = @ V B, then |- a or |- <B,,....0> — B,

where @, a,...,a;,0 are the same as in Theorem 1.

Next we consider logics whose language contains negation and which arise from E or R
by adding at least one of the axioms A7-A10. One can take S4 = E + AT (where — is a strict
implication: cf. Meyer 70b) and RM = R + A10 as examples. Then a) and b) of Theorem 1

are replaced by a’) and b’), respectively:
b’) if | <By,....By g5 B & @> — B, then F~aor b <By,...B; 1) B> — B,

where a, ﬂl, B are the same as in Theorem 1.

All the logics considered, possess the property c) of Theorem 1., except for those with
additional axiom A10. Here, on the contrary, the formulaq & ~(p =+ p) = (r = r) Vsisa
theorem of the calculus RM, but formulae ¢ — (r — r) and ~(p — p) — s are not provable.

Note that RM is Halldén-complete.
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2. We use Theorem 1 to investigate formal deducibility in calculi E, R, I, E* and RT.

The deduction of a formula o« from a set I of formulae is a sequence Oy ) = @ such

that for any i = 1,...,n one of the following conditions holds:

1) o is an axiom of E (respectively, RE"T or RY),
2) ol

3) a;j=ap = a for some j,k < i,

9

a; = a].& oy for some j,k <i.

We write I’ }—ﬁ a for “a is deducible from I'in the calculus £”.

The following lemma was stated in Maksimova 66 for E; it also holds for R, ET and

R*.
LEMMA 1. Let £ be one of the calculi E, R, Et, R". Then a }‘ﬂﬂ iff }—a (¢ & P) >
B3, where p = &?:1 (Pz — Pz) and all variables of (@ — ) are among P, .

Using this Lemma and Theorem 1 we obtain the following

THEOREM 2. Let £ be one of the calculi E, R, EY R'. fa, I |‘£ B and no variable
of a is contained in <I'> — 3, then I }—ﬂ B.

Although a set of theorems of IT’ is the same as that of theorems of E (Meyer and Dunn
69), the notion of deducibility in I is different from that of E because the inference rule

(7): @y~a V B B can be used in IT". Accordingly, a deduction of a from I'in I’ is &,...,a, =

a such that for any i = 1,...,n one of conditions 1) - 4) is satisfied or

5) a;= ~ap Vo, for some jk <l
LEMMA 2. I a b pBiff I'f g ~ oV 3 (see Maksimova 66).

Using this Lemma we have the following

THEOREM 3. If o,I" }—H, B and no variable of « is contained in
<I'>— B, then |-, ~aor I'| s B.

For proofs of all the results formulated see Maksimova 76.
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CHAPTER 7

ANALYTIC IMPLICATION;
ITS HISTORY,
JUSTIFICATION AND VARIETIES*

William T. Parry

1. Entailment at Harvard. Systems of relevant entailment - i.e. entailment systems
rejecting the paradoxes of Strict Implication (SI) - were first developed by graduate students
of philosophy at Harvard University in the late twenties and early thirties, stimulated by the
presence of C.1. Lewis himself and of other logicians, especially H.M. Sheffer, who rejected SI

but developed no entailment system of his own.

Doctorates were granted from Harvard for theses on the problem of entailment by the
following (with year of submission and/or degree): David Yule, Theories of Abstract
Implication (submitted 1921); K.E. Rosinger, Mathematical Logic and the Implicative
Function (Ph.D. 1928); E.J. Nelson, An Intensional Logic of Propositions (1929); W.T.
Parry, Implication (1931, 1’:)32);l D.J. Bronstein, Necessity, Implication and De finition
(Ph.D. 1933); Paul Henle, Implication Considered in the Light of the Laws of Abstract
Systems (Ph.D. 1933). Other Harvard students who published articles on these problems
include A.F. Emch (1936) and Paul Weiss. Callimachus reported that the crows in ancient
Alexandria cawed about the nature of conditionals. I do not recall a similar phenomenon in
the Harvard Yard. 1 attribute this to the fact that the English words ‘if’ and ‘implies’ are

harder for birds to pronounce than the Greek word ei (et).

The first relevant entailment system, as far as 1 know, was that of Nelson (30). Nelson’s
system rejects Sim(plification) and Add(ition) for entailment and holds that all propositions
are self-consistent. This system has counterintuitive consequences (Lewis 32, 68), and Nelson
in effect abandoned it by relenting in his opposition to Sim (in 33, 36). But two facts should
be pointed out. First, the shortest argument for a paradox derives one from T(riadic)

Tra(nsposition) in the form:

If p & q entails r, then p & ~r entails ~q,
by substituting p for r, then affirming the antecedent by Sim in the form
. 2
p & q entails p.

Hence, to reject the paradox one must reject either TTra or Sim. Surely both lines
should be tried. Secondly, in fact both lines are followed. From time to time some relevance
logician suggests the rejection of Sim. But most of them accept Sim,3 and consequently must

reject TTra, though they do not always mention this necessity.

2. Genesis of analytic implication. The second system of relevant entailment to appear
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was in Parry’s thesis Implication (Parry 32)4. After chapters on Strict Implication and

Nelson’s system, it developed a system called Analytic Implication (AI), claimed to give the

‘real’ meaning of ‘implies’ in logic. It proposed that the problem be formulated ‘in some such

way as this: What is that relation between two propositions p and q which is necessary and

sufficient to enable us to pass by logic alone from the assertion of p to the assertion of q? - or

this: What is the relation which validates formal inference within a system?’ (Parry 32, p.2)

Calling this relation to be investigated “real implication”, it followed Sheffer in abbreviating

‘p (really) implies q’ by ‘p im q’.

I agreed from the beginning with Sheffer, Nelson and others in rejecting such formulae

as ‘q implies p or not-p’. The question was, what precisely is the objection?

Perhaps the first thing noticed about this formula is that it permits the antecedent
and consequent to be “irrelevant” to each other, to “have nothing in common”. But
this can not be the only reason for rejecting such as these as principles for real
implication; for the formula ‘q implies (g, and p or not-p)’ ... is obviously as bad (for
its leads to the other), but here the possible antecedents and consequents, taken as
wholes, can not be said to have nothing in common (p.118).

The solution came largely as a result of an attempt to rationalize Sheffer’s intuitions: he took
‘p & q im p’ as a paradigm case of real implication, but objected to ‘p im p V q’. However, he

did not tell us what was wrong with this Add(ition); we had to figure that out for ourselves.’?

The dissertation notes:

. in propositions of the form ‘p im p V q’, the antecedent is not irrelevant to the
consequent taken as a whole. It was chiefly for this reason that, when I was first
considering the problem of implication, though it seemed evident to me that ‘p im p
V q’ might be valid, and could not understand why Professor Sheffer objected to it

(p-120).

To find the answer, one must consider concretely a formal deductive system such as Euclidean

geometry in a standard formulation. Then one finds, the dissertation pointed out, that

a system might contain the proposition ‘Two points determine a straight line’, and
yet not contain the proposition ‘either two points determine a straight line or some
angels have red wings’. In fact, a mathematician would rightly consider it, not only
ridiculous, but utterly erroneous, to infer the latter proposition from the former

(p.119).

Such a peculiar inference is made possible simply by exercising the license granted by an
implication formula having a variable in the consequent that did not occur in the antecedent.
Any such implication formula would justify the introduction of completely irrelevant terms;

such an implication may be “material”, but it is irrelevant and incompetent. The dissertation

generalize(s) concerning the formulae which must be rejected in virtue of the
principle that new terms cannot be introduced ad lib. in the consequences of a
proposition. This required that no formula can be universally valid which has ... real
implication for the main relation, and has any variable which occurs in the
consequent but not in the antecedent, and the scope of which extends beyond the
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consequent (p.121).

The principle proscribing new variables is called the ‘Proscriptive Principle’ (in contrast to
what Sheffer called ‘Prescriptive Principles’, i.e. transformation rules). This principle was
not used to certify or prove formulas, but to proscribe or reject proposed formulas. The
dissertation did not have a rejection sign nor a formal procedure for proving rejection
theorems; but of course it used the Proscriptive Principle not only for the rejection of
formulas violating it directly, but for rejections of formulas that lead from accepted principles
to those directly proscribed. As already mentioned, Triadic Transposition had to go, because
it leads from Simplification to an unacceptable paradox. It was also pointed out that the

dyadic form of Transposition (Tra) had to go; for

if we have any principle containing a variable which occurs in the antecedent but not
in the consequent, Transposition will immediately derive from it a principle
containing a variable which occurs in the consequent but not in the antecedent. But
this is precisely what should not be (in an entailment); for it is legitimate to
eliminate terms, but not to introduce new ones ad l1b. (pp.124f)

For example, either Sim, or transitivity in the form ‘(p entails q) and (q entails r)
entails (p entails r)’, would lead by Tra to a proscribed formula. (The passage quoted. by the
way, suggests an answer to someone who asks why we object to possible irrelevancies in Add
but not in Sim: it is logical to eliminate irrelevancies but not to introduce them.) Since I
recognize the existence of paradoxes of omission as well as commission, I will return to the

question of the dispensability of these forms of transposition later.

3. Concepts, principles and matrices for Al. Let us consider the fundamental concepts
and principles of the system. It is scarcely necessary to justify taking the truth-functions of
negation and conjunction as primitive (though there are psychological and technical reasons
for preferring conjunction to disjunction or material conditional as primitive in this system).
Also taken as undefined was ‘p analytically implies q’, written ‘p im q’ (in later papers
written ‘p — q’). This was to be understood primarily in the ‘structural’ sense, i.e. as
‘determined entirely by the logical structure of the propositions’, not depending on their non-
logical content. But it was claimed that the postulates given ‘could also be interpreted in
terms of an analogous intensional relation, i.e. a relation the applicability of which is
determined by the meaning of the terms (logical or non-logical) ...” (Parry 32, pp 168{). It
was pointed out that most of the definitions used or possible for strict implication are
impossible for analytic implication. Definition by impossibility: ~ &(p & ~q). or by necessity:
O(p D q), will not do, whatever kind of necessity or impossibility one has in mind. because the
commutativity of conjuction and the transposition of the material conditional would directly
lead from such definitions to transposition of the defined implication. Similarly. a definition in
terms of inconsistency - used by Nelson, and by Lewis in the Survey’s ‘Calculus of
Consistencies’ - would lead by the commutativity of inconsistency to Transposition of the
implication. Likewise, a definition in terms of intensional disjunction - used by Lewis in ‘The
Calculus of Strict Implication’, and possible for Nelson (by Th 2.9 of his thesis) - would lead

by commutativity of this disjunction to transposition. However, there is a possible definition
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of analytic implication in terms of conjunction and analytic equivalence:
P — q. =. p « p & q, analogous to a strict equivalence of S2. The thesis preferred rather to

define analytic equivalence as mutual implication.

(Material) disjunction and material equivalence are defined as by Lewis, and material

implication (and equivalence) as by Principia Mathematica.

The thesis took one-variable functions of propositions as primitive, viz. f(p). ‘This
stands for any proposition which can be constructed from p and any other proposition by
means of negation, conjunction and (analytic) implication. ... It is essential that p appear in

the resultant ...’. This is used in two postulates.

As transformation rules, the thesis had the following operations (given by “informal

principles” described):

(1) “Substitution”:

(a) Specification: What is asserted for every proposition
of a specific form ...

(b)  Substitution of values for variables:...(In the
development of the system, this is only used in the
case of substituting for f a function of one
variable: as, e.g. in substituting ~p for
f(p).)

(c) Replacement: A definiens, in any of its occurrences in
a proposition, may be replaced by its definiendum; and
(vice versa).

(2) Inference: If a principle P is asserted (for all

values), and a principle P im Q is asserted (for all

values), then Q may be asserted (for all values).

(3) Conjunctive Assertion: If P and Q are each asserted (for

all values), then P & Q may be asserted (for all values).

So a rule of Adjunction was in the system from the beginning, though omitted by
oversight in the published report of the presentation to Menger’s Colloquium in November,
6
1931.

The 13 axioms were as follows:’
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Al. p&q—q&p

A2. p—op&p

A3. p — ~~p

A4. ~~p = p

A5.  p&(avr)—-(p&q)V(p&r)
A6.  pV(q&~q)—p

AT, (p—d&(g-or)-(p—r)

AS8. p—oq&r—.p—gq

A9. pmq&(ros)—.p&kr—oqks
A10. (p—q)&(r—s)—>.pVr—qVs
All. (p—aq)—~(pDq)

A12.  (p+q) & f(p) = f(a)

A13. f(p)—.p—p

The first six are first-degree entailments. Each (i) replaces the main horseshoe of a
tautological conditional by the sign for analytic implication and (ii) satisfies the Proscriptive
Principle, i.e. has no variable in the consequent that was not in the antecedent. These two
together are the necessary and sufficient conditions for a first-degree entailment in AI. The
analogues of the first five axioms hold for Anderson-Belnap’s E, but A6, which is equipollent
in the system to Disjunctive Syllogism, does not.® Axioms 7-11 are second degree entailments.
In each the antecedent is an entailment or conjunction of entailments; the consequent is an
entailment in all but A11, in which it is a material conditional. The analogues of A7 through
Al1 also hold for E.

A12 puts a rule of Exchangeability into an axiom. A13 is unusual. It was wanted

especially to prove the theorem (numbered as in the thesis)

4.7lm.p - q.«.pep&q

which is important intuitively. A footnote on p. 187 of the thesis suggested that A13 might
be (non-equivalently) replaced by the pair of axioms, A13a f(p) — p V~p and A13b f(f'(p)
— f"(q)) — (p — p) & (9 — q). Only one theorem proved in the thesis would be lost. This
suggestion anticipates the later doubt about A13 stimulated by the (proscriptive) principle of
Ackermann and Anderson-Belnap, that only entailments entail entailments. But it still seems

to me that in any case a non-entailment may entail an entailment.”

The thesis provided 4-element matrices which show formally that the assumptions of the
system are consistent with the Proscriptive Principle. Matrices satisfying AI with 1’ and 1 as

designated values, are as follows:
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p | o101 & | 0o 10 1 — ] 0o 10 1
~p| 170 1 0 o 0o 0o 0 0 o 1”170 0
| o 10 1 1| 0o 10 0
0] 0000 0] 1111
1] 0101 1] 0101

No formula with the arrow for the main operator is satisfied if it has a variable in the
consequent not occurring in the antecedent. Put 0 for every such variable, 0/ for the other
variables; the resultant will be a primed number for the antecedent, an unprimed for the
consequent, hence 0 for the formula. The thesis also gave a propositional interpretation of the
element. 0/ and O respectively are interpreted as the self-contradictory propositions
a& ~a,a & ~a & b & ~b, where a and b are specific propositions differing in content, e.g.

‘Some cats drink milk’ and ‘Some lakes contain salt water’.

The matrices thus correspond semantically to a special kind of case; viz. a universe
consisting entirely of necessary and impossible propositions, and to a very special case of that
kind. Within such a restricted universe, Al - unlike SI - can maintain a distinction among
necessary propositions according to their content, and it can be seen that the Proscriptive
Principle is consistent with a system in which the (one-variable) modalities reduce as in S4 (or
even S5, though the reductions of the latter are not assumed).10

Unlike this model, the first model conceived for AI preserved the modal distinctions.
The elements were the 4 truth-functions of a concrete contingent proposition, the 4 truth-
functions of a contingent proposition with different content and the 16 truth-functions of the
two together. But evaluating the 13 axioms - two with four distinct variables each - by this
24-element model was a formidable task which I never completed. Instead, I decided it was
sufficient to show by 4-element matrices that the Proscriptive Principle was satisfied. As for
modal distinctions, Al taken as a subsystem of $4 must preserve the modal distinctions which
a 4-element “group” of the thesis showed held for 54.11 However, from the semantic point of

view, a 24-element model would have given a better idea of the intent of the system.

4. Paradoxes of Omission? Let us consider now what is likely to be the main objection to

Al for most modal logicians: the omission of familiar, commonly used formulas.

An important case of this sort, Addition (of an alternative), was provided with

substitutes in the thesis, viz.
1.31.p & (qV~q) = pV q
and, more generally,

2.465.q & f(p) = pVa.

In the usual cases where one actually wants to use Add, the alternative is already given

as a possibility. If I wish to infer, from the fact that I am over 65, that I am over 65 or blind,
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it is because I know already that if 1 am over 65 or blind, 1 get an extra income-tax
exemption. But these doctored forms of Addition do not give rise to the paradoxes of SI in

which new concepts apparently arise out of the air.1?

Any first-degree entailment formula that violates the Proscriptive Principle can be
amended in this way. The case is different for formulas of higher degree. Among the most

important of these are dyadic Transposition (Tra) and Triadic Transposition (TTra).

In a discriminating review of my ‘Logic of C.I. Lewis’, M.J. Cresswell writes

As far as the ‘paradoxes’ go Parry’s discussion of the defects in early attempts to
avoid them is sound enough. The reviewer wonders however why Parry should think
his own attempt, in which e.g. the principle of transposition in the form
(p — q) = (~q — ~p) fails, can capture the notion of logical deducibility;...(74).

The dissertation (which traced Transposition back to Aristotle’s Prior Analytics, 11.4.57b)

anticipated such objections as follows:

The reasons why Transposition seems to be valid are 1 believe, principally the two
following. In the first place, that Transposition is valid for weaker kinds of
‘implication’, e.g. material, formal, and strict, follows from their definitions. And
secondly, it tends to be confused with: p im g.~q. im ~p (valid a fortiori, since p D
g. ~q. im .~p is valid), through unconscious use of Exportation. (The reader will
doubtless observe that, in my eyes at least, Exportation is the ‘root of all evil’ in the
logic of implication) (p. 125).

However, contemporary relevance logicians will probably not be convinced by this old
argument. They do not have to use Exportation to get Transposition. If relevance logicians
like Nelson and Anderson-Belnap can have the neat principle of Transposition to which two-
valued logic and SI have accustomed us, how can we be expected to accept AI. which must

get along without it?

Before giving my “best” answer - that, like the grocer in the country store, “I have
something just as good” - let me call attention to an analogous problem. Have you ever
seriously tried to transpose concrete examples of subjunctive conditionals? Take for example
the following: ‘If the Watergate cover-up had not been exposed, Ford would not have become
president’. How is this to be transposed? How about: *If Ford had become president, the
Watergate cover-up would have been exposed’? That does not seem to follow. There is a
transposed conditional that follows from the original, viz. ‘If Ford has become president, the
Watergate cover-up has been exposed’. But note that this has been demodalized. We can now
cautiously reinsert some modality as follows: ‘If Ford has become President. it must be that
the Watergate cover-up has been exposed’. This is really a relative modality, i.e. logical
analysis indicates the form: ‘Necessarily, if p then q'. It is analogous to a strict implication,
except that the necessity is empirical. not logical. But the antecedent and consequent are not

individually modal, as in the original proposition.
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For analytic implication the situation is formally analogous. It is impossible to have
Tra with all three - or the first and third - implications analytic; for then any elimination of a
variable yields a proscribed introduction of a variable. But analytic implication entails

material implication, also strict implication; and each of these can be transposed. So we have:
P—q—.~qD~p
and

p—q—.~q3~p

(analogous to the valid transpositions of subjunctive conditionals).

In addition, we can get forms of transposition with an analytic consequent, by doctoring
up either the antecedent or the consequent. Supplementing the antecedent, we have the

theorem.
(pP—a) & (~q—pV~p)—. ~q— ~p.

By appropriate theorems, a proof could run

Hyp —.(p = pg) & (~q = p V ~p)
—.~q — (pq) V ~p

—.~q—>q& (pqV ~p)
—. ~q — ~qpq V ~p
—. ~q — ~p

This amended law of transposition has some analogy to the T-principles common in

Lewis’s SI: but the supplementary premiss is not a law of AL

Alternatively, amending the consequent, we have the theorem
P—q—.~qV~p—~p

where the “strict” analogue of the consequent is equivalent in S2 to ~q 3 ~p. This analytic

implication follows from the following equivalences:

P—=q .pePpq
~(pg) & ~p
~qV ~p & ~p.

We turn now to Triadic Transposition. Is it not anomalous to reject this while asserting
dyadic Transposition, as do Ackermann and Anderson-Belnap? At least there should be some
explanation, other than the ad hoc one, that relevant entailment cannot have both TTra and
Sim.13

AI rejects both forms of transposition. But it is easy to see why we can nevertheless
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recognize the validity of indirect reduction of the categorical syllogism, which symbolic
logicians are likely to justify by unrestricted TTra. In the categorical syllogism, any two
propositions contain all the terms of the argument, so the reduction cannot produce an
argument in which new content is introduced contrary to our Proscriptive Principle. We thus
hold it to be a merit of Aristotle rather than a defect, that he did not generalize the principle

of Indirect Reduction into TTra as an unrestricted principle of propositional logic.

5. Modality in AI. An appendix to the dissertation introduced the (monadic) modalities
impossibility and necessity into AI, starting with impossibility (as in Lewis’s Survey), not as

primitive however but defined

7.01. ~Qp =4fP — ~P
7.02. Op =g~ O~ p
The thesis stated without proof an obvious theorem:
7.1. Op <. ~p~+p14
and one not so obvious:
7.2, p—q—0(p—q)

(Theorems of the thesis readily yield Lemma 1, ~(p — q) —. pq — q; then one can prove

Lemma 2,p — q —: ~(p — q) —. p — g, which is equivalent to 7.2.)

From 7.2 (~p for p, p for q) and 7.1 we get p —» O O p, analogue of a form of the
characteristic principle of S4. Strict implication can be defined in terms of impossibility as by
Lewis; and 1 expected to be able to derive all the formulas of S4 as theorems of AI (though
not of course the analogues of all of them in terms of analytic implication). As the appendix
reports, I was unable to derive the transitivity of strict implication without adding an axiom,

which could be - preferring a 2-variable axiom to a 3-variable one - either
Alda. Op&(p—q)— q

or
Aldb.  (pdOp)—q—.(a2q)—gq

(the consequent of the latter being equivalent to ~q — q). Alda seemed self-evident to me,
and A14b not at all self-evident. For this reason, in “The Logic of C.I. Lewis” I proposed to

add a variant of Al4a, viz.
Al4. ~ O ~p & (p—q) =~ ~q (Al4 of Urquhart 73)

based on the definition: ¢ p = ~(p — ~p).

Subsequent reflection suggested that this discrepancy in “self-evidence” may arise
g pancy y

because Al4 and Al4a are intuitively taken as presupposing a more general conception of
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necessity than that involved in 7.1, e.g. a definition of p such as (3g)(q D q — p). If we
wanted to formalize this concept without propositional quantifiers, we should have to
introduce a necessity operator as primitive and add axioms for it, as did Urquhart. But there
would remain a concept of necessity as defined by 7.1 (or 7.01.02), which might be

distinguished as ‘internal necessity’ from a necessity which can be either internal or external.

The situation as regards the introduction of modality into AI is thus not completely
settled, in my mind at least. There is first the technical problem, is A14b a theorem of the
original Al system?15 (Here we use the form which carries its meaning on its face, in
preference to Al4a or A14, whose meanings depend on the modalities they contain.) If such a
proof of A14b is found, that would settle the question of its truth for me: for I deem it, if not
self-evident, also not so paradoxical as to cast doubt on a system which contains it. If (as I
would conjecture) it cannot be proved in the original system, further analysis would be
necessary. The distinction made in the previous paragraph between possibly different concepts
of necessity would be relevant. This in turn might correlate with the distinction made in
section 3 between structural and intensional relations. It might be appropriate, for example,
to take structural necessity as an “internal necessity”, and a non-structural intensional
necessity as an “external necessity”. These are only suggestions for possible interpretations

corresponding to formal syntactical developments.

6. Entailments of entailments and non-entailments. In “The Logic of C.I. Lewis” I
proposed to add to Al a second new axiom, there called 3b, here called A15 (as in Urquhart
73).

Als. ~(p2q) = ~(p—q)
This would follow by Transposition from our A11; but Tra is not valid in AI, and I found no
way to derive A15. Dunn (72) independently added to the original Al an equivalent axiom
here called Al5a (his Al4) to make what he called ‘the system of analytic strict
itmplication’(ASI):

Al5a. p& ~q— ~(p—q)
and showed it to be independent. Al5a has two advantages over A15: it avoids the defined

notion of material implication and presents the principle of the counter-example in a direct

form.

System E of Anderson-Belnap also contains this form of the principle. But the question
raised by Ackermann’s rejection of A — (A — A) is relevant here. Starting from the
intuitions underlying A, it makes sense to reject this formula and our A13 (of which it is a
special case) if entailment is treated as if it were an empirical concept which must be
accounted for - i.e. which must occur in the antecedent of an entailment if it is to occur in the
consequent - rather than a logical concept like the truth-functions which can be taken for

granted.

Of course entailment ¢s a logical and/or metalogical concept. Logic, Shen used to say,
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“comes free”. It seems reasonable to say that one cannot understand one truth-function
without (potentially at least) understanding its relation to any other truth-function. But type
problems have shown the need to distinguish different levels of logic. Just as understanding
the concepts of one kind of geometry does not necessarily entail understanding the concepts of
another kind, so understanding truth-functional logic does not entail understanding modal
logic. Analogously, it seems reasonable to say that propositions containing no proper modal
functions do not entail propositions containing such functions. Thus, while A13 of the
original AI still seems tenable, I also find it tenable to reject this and any entailment formula
which contains an entailment sign in the consequent but not in the antecedent. Hence
systems of Al should be available which include A13 as well as systems which have only
amended ways of deriving tautological entailments, requiring the entailment relation in the

antecedent (as suggested in my dissertation and in section 3 above).

But the “content” of a proposition is the same as that of its contradictory. If
entailments must be accounted for, so must non-entailments. If A13 requires amendment,
Al15 and Al5a do so equally. We give the name ‘extended Ackermann principle’ to the
principle here formulated, that if there is an entailment relation (main or subordinate
relation) in the consequent of an entailment, the antecedent must contain a (main or
subordinate) entailment relation (or an expression defined ultimately in terms of entailment).
One important division of systems of Al into families would be according to whether or not

they satisfy this principle.

The question then arises, is it sufficient that the antecedent (in amended forms of A13
or A15) contain an entailment sign (as suggested in “Comparison of Entailment Theories”,
next-to-last paragraph, amending A15a), or must the variables in the consequent also occur
within the scope of an entailment sign in the antecedent (as suggested in A13b of section 3
above)? The first alternative is simpler, but might be regarded as a meaningless formality.
With the second alternative, the conditions have more relevance but are more complicated,

especially for A15. We leave this question open at present.

Of interest in this connection is Dunn’s T1, which he found to be equipollent to our

Al5a (his A14) as an addition to the original Al system:

T1 (Dunn).  (p—p)& (q—q)—=.p—q—.p—gq

Note that this formula does not violate the extended Ackermann principle, though
equipollent in AT to Al5a or A15, which do violate it. But AI contains A13, which also
violates the principle; and Dunn’s derivation of T1 from Al15a makes use of A13, as does any
proof 1 can find for the converse derivation. With certain modifications of A13 and addition
of Dunn’s T1, we may expect Al5a to remain independent. T1 seems to me a very plausible
addition to an AI system modified to satisfy the extended Ackermann principle. 1 suggest
then the following strategy for development of such systems: To AI through A12 plus Al3a
(in section 3) and Dunn’s T1, add an amended form of A13 such as A13b (or a more

permissive form, as suggested in the previous paragraph); find what amended forms of A13



112

and Al5 can be derived; and show that the extended Ackermann principle holds for the
system. (The effect of our A14 should also be explored.) Such systems should be available as
an alternative to the original AI system plus Dunn’s T1 (or our Al5a). However, the latter
system, I think, will have a relative simplicity compared to the former systems which makes it
preferable for most purposes. I am aware of the analogous fact that systems of SI have a
relative simplicity compared with systems of AI, and that the system of ‘material implication’
is simpler than any of these. Where it is adequate for the purpose at hand, the simpler system
will generally be preferred. It is for the specific purpose of more precise and satisfactory
theories of entailment and intensional logic in general that I have hoped for - and now

welcome the beginning of - a greater recognition of the value of Al

7. Work of other writers related to AI. Though Duncan-Jones and Hallden following his
lead (48) worked in the direction of Analytic Implication, they did not know of my work and
did not formulate the Proscriptive Principle.16 Aside from a passing reference or two, AI went
unnoticed until 1959, when a British logician and a pair of Americans commented on it
briefly. Smiley, in his masterly survey of possible theories of entailment, lacked a neat niche
for AI, but characterized it in a footnote.1” Anderson corresponded with me about the missing
rule of conjunction introduction and published with Belnap a paper that incidentally showed
that A contained the two-valued calculus.1® They had already started on a road indicated by
Ackermann and naturally saw AJ (as I saw E) as an interesting rival on the wrong track. But
APs Proscriptive Principle barring new variables suggested, they told me orally, their
variable-sharing principle of relevance.!?

Most important contributions to Analytic Implication have been made by Dunn and
others following his lead. Dunn’s “A Modification of Parry’s Analytic Implication” (72)20
adds to the original system of AI the Axiom 15a of section 6 above (his Al4) to make a
system he calls ‘analytic strict implication (ASI)’, which I shall call AI4 (or AS4), i.e.
analytic implication system 4, since it contains analogues of the characteristic principle of
Lewis’ S4 but not of S5 (cf. section 5 above).21

Dunn’s main concern is with a demodalized system (he calls AI) which I shall call DAI,
made by adding to Al4 the axiom (he calls A15, Urquhart calls A16), which I call DA16:

DA16. p—.~p—p.

If the arrow here be interpreted as analytic or strict implication, DA16 says that any
proposition implies that it is necessary. DA16 would reduce strict implication to material.
But it is satisfied by the matrices used to show that AI does not violate the Proscriptive
Principle (section 3 above), so does not reduce AI to material implication. However, since
propositions do not in general entail their own necessity, this cannot be any kind of
entailment, except perhaps entailment among necessary and impossible propositions. Dunn
proposes an intuitive interpretation (suggested by Meyer): that a proposition analytically
implies a second proposition ‘iff the content of the second proposition is included in the

content of the first, and furthermore the first proposition is not true while the second is false’.
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The analysis is sound, but the term ‘analytic implication’ has had a different (though related)
meaning for 44 years. ‘Demodalized analytic implication (DAI)’ is acceptable but clumsy.
Since the relation in question is content-containing and truth-preserving, it might well be

called ‘content implication’.

Dunn points out that the relation of this DAI system to AI4 is analogous to the relation
of Anderson-Belnap’s system R (relevant implication) to their system E, since the first of each

pair can be obtained from the second by addition of
T3. p—=.pP—pP—PpP
(which is equipollent with DA16 on the basis of AI4 though not of Anderson-Belnap’s E).

Dunn establishes algebraic completeness results and decidability for DAI, incidentally proving

important results for AI4.

Urquhart in “A Semantical Theory of Analytic Implication” (73)22 forms a system AIN
by adding to DAI a necessity operator O, with five axiom schemata and a rule of necessitation
(from A to infer OA). He extends Dunn’s algebraic completeness and decidability results to
AIN. He has no theorems stated in terms of (Parry’s) analytic implication. He indicates that
it would be defined as the necessity of demodalized analytic implication. He conjectures that,
with this translation, a formula of AI4 (plus A14) is provable iff the corresponding formula of
AIN is provable.

It is remarkable that two contributors to this volume - Angell and Parks-Clifford - had
rediscovered Parry’s Proscriptive Principle without knowledge of his system. To be sure, they
did know of the Anderson-Belnap variable-sharing principle, which had been suggested by the

more restrictive principle of Al

Parks-Clifford (ch.3) was apparently the first to make public a name (‘literal relevance’
of a sentence to another), a symbol (Rxy), a syntactical definition (‘y contains no atomic
constituent which is not an atomic constituent of x’) and inference rules for a concept which
had been adumbrated (let us say) in earlier writings on AI (with clear syntactical formulation
only in the Proscriptive Principle) and expressed in Dunn’s intuitive analysis of DAI (after
Meyer) as ‘the content of the second proposition is included in the content of the first’ (cf. my
account of a paper by Fine below). The entailment relation (‘LR validity’) which Parks-
Clifford bases on this concept turns out to be a form of DAI This supports the position
(which I should have doubted without such corroboration) that DAI has intuitive value as a

kind of implication in its own right, not merely as a step in the analysis of AL

Angell (ch. 9) rediscovered not only the Proscriptive Principle, but also the 4-element
matrices used to show the original Al system (and incidentally DAI) satisfied the
Proscriptive Principle. He suggests that the formulas satisfying this matrix set come closer in
many ways to constituting a satisfactory entailment system - despite their failure to make
modal distinctions - than Anderson-Belnap’s E. However, he favors another entailment
system which is neither E nor Al nor DAL
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Fine”s “Analytic Implication’23 gives a new perspicacious formulation of AI, equivalent
to AI4 plus Al4, with appropriate semantics and completeness proof. It also has enlightening
informal remarks and suggested modifications. It is the most comprehensive study of AT ever
made. (My dissertation took more time and space for it but had inferior tools at its disposal.)
I could not deal adequately with all the questions raised even if time permitted, since I do not

know all the answers. I limit myself to a couple of minor points and one major.

Fine’s analysis of ‘p analytically implies q’ as conjunction of ‘necessarily if p then q’
((p D q)) and ‘the content of q is included in the content of p’ (g € p) (anticipated by Shen,
note 11) is better intuitively than the equivalent analysis (as in Urquhart) as necessity of the
content implication of q by p. The former uses the familiar and relatively simple notion of
strict implication with the relatively simple notion of content inclusion. The latter combines
necessity with the unfamiliar and relatively complex notion of content implication (DAI),

and thus explains the unknown by the more unknown.

Parks-Clifford’s term ‘literal relevance’ for content inclusion - or rather for the converse
of this, which I call ‘content containment’ - is an unhappy choice. Logical relevance as
ordinarily understood, for example, is not transitive (cf. Myhill on “Real Implication”, ch.10).

But Parkes-Clifford’s relation is transitive.

The development of the predicate calculus of AI is perhaps the most important next
step. As Fine says, it will of course be required that new content cannot be added in the
consequent of an entailment by way of predicate letters. In fact, in the statement of the
Proscriptive Principle quoted in section 2 above, it seems clear that the principle should apply
to new predicate variables as well as to the new propositional variables there being
considered. With regard to individual variables and singular names, however, Fine allows two
possibilities. Either “the content of (x)Ax is the intersection of the contents of Aa for a any
name of an object in the domain”; or “the content of (x)Ax is the union of the contents of all
such Ax” (Fine 79). I agree that the first account is “more natural”, since “to understand
(x)Ax I need not know ... the objects in the domain of the quantifier” (Fine 79). Though
“anything” is possible, the second account seems to me out of harmony with the tenor of Al
‘(x)Fx — Fa’ as a logical law would have a variable in the consequent that is not in the
antecedent. (The ‘a’ is here a variable, even if one calls it a constant, thinking of its
instances.) A system which contains the proposition ‘If anything is pure gold, it dissolves in
aqua regia’, does not contain the proposition ‘If the Queen’s necklace is pure gold, it dissolves
in aqua regia’ unless it contains the term ‘the Queen’s necklace’. On the other hand, I see
nothing wrong with the inference: ‘This is a gold necklace; therefore, (3x)(x is a gold

necklace)’, which would be barred on the second account.

8. Variety desirable in relevance logic. As those versed in relevance logics know -
though few others do - I am dean of relevance logicians. Perhaps this gives me the right to
make a few remarks, less formal in style, but equally serious in intent. We honour Alan

Anderson, who lives on in this conference, and his companion-in-arms Nuel Belnap, for their
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zealous labour in developing and defending their system. They have not only made the
rejection of disjunctive syllogism (DS) the best-known ploy of relevance logic, but have also
put relevance logic on the map as never before. We applaud the wisdom of most friends of
their enterprise in welcoming relevance logicians of all varieties, and also sceptics or
opponents of relevance logic, though the latter should perhaps be more numerous at future

relevance gatherings, to prevent the emergence of a mutual admiration society.

I am of course personally on the side of the Angells and Parks-Cliffords, who have
discovered independently the Proscriptive Principle, that entailment gives no new content.
We are not opponents of novelty, but alert to its appearance and expect little if any novelty
to come merely by logical deduction. Logicians as system builders may create something new,
but then they are not simply deriving consequences from given premisses. It is all the better
that these new analytic systems differ from each other and from Parry’s. This branch of
relevance logic has all the more weight since it has sub-branches. (Perhaps the suspicion of
additives in our food gives subconscious support to a suspicion of unwarranted additions in

our reasoning.)

Very promising is the fact that such competent logicians as Dunn, Urquhart and Fine,
less advocates than analysts perhaps, have found it worth their while to analyze AI with the
techniques of contemporary modal logic: and that Routley has found here a tool to be used in
his wide-ranging analyses. I believe that the concept of content containment will prove a

useful tool even for those who do not want it for a theory of entailment.

Finally, there are other branches of relevance logic that can be made to flourish. Smiley
has shown that an anti-simplification line can be made to work, and he and Geach have
shown that von Wright’s intuitions lead to an anti-transitivity line. Though the flowers on
the anti-addition branch seem to me the fairest, and the anti-DS branch has been flourishing
best recently, I look forward to the growth of other branches in friendly rivalry and

cooperation.

NOTES

*The research for this paper was supported in part by a summer fellowship from The
Research Foundation of the State University of New York.

1.  The committees for both Nelson and Parry consisted of Whitehead, Lewis and Sheffer.
Whitehead was my director, and also Nelson’s, I believe.

2. This kind of argument goes back to Lewis (60). To get the paradox in the form ‘p & ~q
entails ~q’ requires either using double negation or starting with TTra in such a form as
‘If p & ~q entails r, then p & ~r entails q”. But paradox is sufficiently egregious in the
form derived in the text, viz. ‘p & ~q entails ~q’.

To meet Quine’s well-known strictures, it would be more correct to read e.g. ‘that p
entails that q’ instead of ‘p entails . We follow the simpler form customary among
modal logians.
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Smiley (59) and Ashby (63); similarly Angell (62).

An abstract was published by Harvard in Summaries of Theses... for the [Ph.D.] 1932,
but did not contain the axioms nor matrices. I presented the system to Menger’s
Colloquium at the University of Vienna in November 1931; the brief report of this
(prepared by Godel) in Parry was the first published account containing the essentials of
the system. (But compare note 8 below.)

Another student of Sheffer’s also developed the basic conceptions of AI - at first
independent of my work - viz. Y.T. Shen (Shen Y-Ting). We exchanged ideas; I got
much more from him than he from me, though I cannot now say exactly what. If Shen
made a postulate set for AI, I never saw it. He developed an interesting conception of a
family of about six kinds of implication, including structural and intensional versions of
both analytic and strict implication, all defined in terms of im, i.e. structurally analytic
implication, and L(p), the “language” about p, i.e. what one knows about the
proposition and its terms from knowledge of the language. Shen later taught at the
University of Peking. He has published in The Journal of Symbolic Logic, which also
reviewed a Chinese work of his; But I do not know if he ever published on entailment.

The report in Parry (33) (see note 4 above) was written by Gédel on the basis of my
oral presentation, plus some papers I gave him with assumptions and the matrices. I
may not have mentioned the rule of “Conjunctive Assertion”, but I never had any list of
rules that did not include it. I did not get to read proofs. The omission did not bother
me too much: the propositional logics I took as paradigms - those of Principia
Mathematica and of Lewis - had such a rule, though Principia could have got on
without it. It seemed obvious that several of the postulates of AI would be almost
completely useless without it.

The first person to mention the absence of this rule - and one of the first to take any
notice of my system - was Anderson. He sent me a postcard on 3 July 1959, of which I
quote the complete text:

Doesn’t your system of Analytische Implikation (Ergeb. eines math. Koll.
1933) require a rule of conjunction introduction as primitive? The matrix rules
out the provability of A —. B — AB, and I don’t see any way of proving
conjuctions without such a primitive rule. If you have any other information
about this system, I would be very interested in learning about it.

In Anderson and Belnap (59), the last paragraph says: “Our formulation may be used to
show that Parry’s system of Analytische Implikation ... also contains the two-valued
calculus (granted that a rule of adjunction, obviously required, is added to his system)”.

The discovery that A7 is redundant in this set initiated changes resulting in a set of 10
axioms equivalent to the original 13 (Parry 68), but it is very difficult to get back the
original set.

Old notes pertaining to the thesis attribute the following to Shen:

If to tautological implication be added that the content of the implicans contain the
content of the implicate, [we| get deducibility.

[for example:] (q & ~q) & p V ~p. D .p

- this [is an instance of] deducibility. (Bracketed words added in 1975.)
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This means that any proposition p is deducible from the conjunction of any self-
contradictory proposition with any proposition containing the content of p, even a
tautology; whereas p would not be deducible from q & ~q alone, if the latter lacked the
content of p. ‘Deducibility’ here presumably is to be taken in the general sense of Moore
and Lewis, which I have called ‘ultimate deducibility’ (in Parry 72), with ‘Q is deducible
from P’ equivalent to ‘P entails (or “really” implies)Q’.

Shen’s explication and example of deducibility were not self-evident to me. But in the
chain

(q& ~q) & (pV~p) 2 (q& ~q&p)V(q& ~q& ~p) > pV (q& ~q) = p

I can see no weak link (though Anderson-Belnap must reject the last step), still less can
I reject transitivity.

Kielkopf 75 indicated that from the ‘hypothesis’ p & ~p, adjoined to the ‘theorem’ (q V
~q), one can derive q. He characterized this as showing “that addition of adjunction to
Parry’s system allows derivation of q from (p & ~p) by use of analytic implications ...
and modus ponens for —”. It may be pointed out that, while AI contains as theorem
the abstract formula ‘q vV ~q’, it does not contain or entail the concrete propositions
(such as ‘all bears swim or not all bears swim’) which exemplify the formula and would
be needed to supplement an irrelevant contradiction to get the paradoxical inference
(e.g. ‘All bears swim’).

A13 and the principle of the counter-example (added as 3b in 1963 and 1968, and
independently as A14 by Dunn in 71) are discussed in the last three paragraphs of Parry
76.

I thought at first that Dunn’s demodalized AI was intended to represent the logic of a
universe of necessary and impossible propositions, as conceived by analytic rather than
strict implication. It can indeed be so interpreted; and I did not realize till after
discussion with Dunn that that was not his intention. A more careful study of his paper
would have shown that he was making an illuminating analysis of my analytic
implication into its different aspects.

It is possible to construct a 6-element matrix satisfying both the Proscriptive Principle
and modal distinctions. To the four truth functions of e.g. ‘Every Scot is a
Presbyterian’, add ‘Every Scot is a Scot’ and ‘Not Every Scot is a Scot’.

As pointed out in Parry (76), if we adopted Smiley’s suggestion (in 59) of an n-place
entailment connective, so that we could have ‘p and q together entail r’ in place of ‘p &
q entails r’, we would not even need to make or indicate the explicit conjunction with
the supplementary tautology.

So thought Henle, who developed a relevant entailment system he never published.
When 1 objected that he had one kind of transposition and not the other, he
acknowledged that was one of the reasons he abandoned the system.

It would seem more natural now to start either with possibility, defined ¢ p = ~(p —
~p), as in Parry (68), or with necessity, defined after 7.1 of the thesis.

As Urquhart says in (73), A14 (see my 68) is redundant in his demodalized ‘AI’ - which
I shall refer to as DAI - and hence in the remodalized AIN, which adds a necessity
operator to DAI. By his A16, A —. ~A — A, together with A1l etc., Op is equivalent
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23.

to p in DAL (I am doubtful about the method of his proof of A14 at T14 (p. 215)
without use of A16. It seems to me the method would also give Transposition of his
arrow, which is no more valid in DAI than in the original AL) But I can find no proof
of A14 in my AL

Duncan-Jones (35) and Hallden (48). See brief comments on these in Parry (68), p.159
and note 121.

See Smiley’s note 22. He calls attention to Duncan-Jones in the same footnote.
See note 8 above.

This famous pair and Smiley have made other contributions or references to Al, notably
Smiley (62).

Cited in note 9 above; referred to in section 6.

The original Al system also contains analogues of the characteristic principle of S4; but,
as explained in section 6, I regard this system as either incomplete (in the absence of
A15) or too strong (with A13). Hence I do not wish to assign this system an integral
number (say) between 1 and 5. I would refer to it provisionally (besides calling it ‘the
original AI system’) as ‘[Al];gg," (or ‘AS|gs,’), assigning the date of submission and
defense of the thesis (and presentation in Vienna), rather than 1933, the date of the first
appearance in print, since the latter might be taken to refer to the system minus a rule
of conjunction introduction (which would not be a system of AI nor of any interest as
far as [ can see).

Since Sim can be proven in DAI, his A18 (distributing necessity over conjunction) can
be proven in AIN from the rule of necessitation and A17. However I do not see how he
gets T1, a generalized converse of A18, from A18 as he claims.

Now published; see Fine (79).



CHAPTER 8

DEDUCIBILITY, ENTAILMENT
AND
ANALYTIC CONTAINMENT

Richard B. Angell

The concept of entailment is often connected with deducibility: A is said to entail B iff
B is logically deducible from A.l'1t has also been connected to the concept of containment in
Kant’s sense of analytic containment: A entails B only if the meaning of B is contained in the
meaning of A. But the concepts of deducibility and containment are two distinct concepts,
and the failure to distinguish them leads to faulty attempts to merge them in formal systems.
One such attempt is Anderson and Belnap’s system, E, in which a Fitch-type theory of
natural deduction is modified to incorporate a certain sense of “containment”.? Another is
Parry’s system, Al, of “analytic implication” which began with a more restricted sense of

containment but has usually been presented as a theory of deducibility (cf. Parry 33 and 72).

In this paper I first consider several effective criteria or conditions which are plausibly
related to the containment, or sameness, of meanings in expressions. Secondly, I present a
formal system, AC, which is shown to meet these conditions, treating entailment as analytic
containment only, distinct from deducibility. Thirdly, concentrating on “tautological” first-
degree entailments (i.e., entailments only between those sentences which are instances of
truth-functional schemata), I relate this stronger concept of entailment to results in the
systems E and Al. All three systems agree in rejecting the “paradoxes of strict implication”,
(A — (BV-B)), (A&-A— B), etc., on the ground that they express neither relations of
containment nor of deducibility. But there are differences in the ways in which Anderson and
Belnap on the one hand, and Parry on the other, compromise the concept of deducibility to
accommodate a concept of containment, or vice versa. I conclude with some tentative
suggestions on deducibility, hoping to have shown something of the utility gained by a clear-

cut formalization of the stronger, less ambiguous, concept of analytic containment.

I

Turning to entaillment as containment, I want to be faithful in an effective way to the
dictum that S; entails S, only if the meaning of S, is contained in the meaning of S,.
Entailment in this sense is connected to synonymity: S, is synonymous with S, if and only if
S, entails S, and S, entails S;. Taken together these dicta yield the familiar proposition that
S, is synonymous with S, if and only if they contain all and only the same meanings. The
problem is to find an effective and plausible formalization which can represent containment of
meanings; this will occupy the centre of attention. It is helpful to begin with the following
criterion of adequacy for any proposed theory of entailment in the sense of containment of

meanings:
L A theory of entailment (as containment) is satisfactory only if: for all sentences S,
119
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and S,, if S; entails S, and S, entails S; according to this theory, then S; and S,

contain all and only the same meanings.

Let ‘A’, ‘B’, ‘C’, be metalogical variables taking standard truth-functional schemata as
values; i.e., they stand for any formulae built up by usual rules for formation and definitions
from sentential variables, ‘S,’, ‘S,’, ‘Sg’, ..., parentheses, and the logical constants ‘&’, ‘-, ‘V’,
‘D’ ‘=’. And let ‘(A — B)’ represent the claim that A entails B. The schemata A and B in a
theorem (A — B)7] of my theory, will be such that the meaning of B is contained in the
meaning of A. The question is, how can one determine, by reference to syntactically
determinate properties of the schemata A and B, that this relationship between meanings
holds or fails?

A point of departure is found in the concept of variable-sharing, a concept used in
different ways by both Parry and Anderson and Belnap (both are discussed below). If two
schemata have the same variables, then by joint substitution they will have occurrences of the
same sentences. It follows, by the principle that the same sentence has the same meaning in
all of its occurrences, that joint instances of two schemata containing a common sentential
variable will “contain” similar meanings in some parts at least. But this is much too loose.
The “containment of meanings” related to entailment is much more restricted than
“containment” in the sense of “occurrence in”. One could claim that the meaning of Sy must
have an occurrence in any sentence (S, V Sg)71 or -(S; & S3)7); but we surely do not want
to say that I(S; V S3)71 would entail Sg, or that ™-(S; & S3) 71 entails S3. Ordinarily, if S;
entails Sy, we say that if S; were true S, would have to be true also. But it is not the case
that if [(S; V S3)71 were true, then S3 would have to be true also (even though Sg occurs in
(Sy V S3)7); so we deny that ™(S; V Sg)71 entails, or contains in the logical sense, S; in
such cases. Since we are dealing only with truth-functional schemata this restriction on

containment amounts to laying down the necessary conditions:

la. Ifr(A — B)7lis a theorem, then (A D B)71is a theorem of standard logic;
if T (A < B)71is a theorem, then (A = B)71is a theorem of standard logic.

For on standard interpretations (A D B)71is a theorem of logic only if B must be true if A is
true, and (A = B)71 is a theorem only if B is true if and only if A is. Where classical
logicians went wrong was in the occasional suggestions that these were also sufficient
conditions; that e.g., if (A = B)71is a theorem then all instances of A and B must “have the

same meanings”.

But now how about variable-sharing, provided condition la is met, as a formal
counterpart of entailment? There is a weaker and a stronger version of this criterion. The

weaker version is:

Ib. If M(A — B)7is a theorem, then B must contain at least one variable which

occurs in A; if (A + B)71is a theorem, then A and B must share at least one

variable.
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This rules out the “paradoxes of strict implication”, [((A &-A) — B)7 and
(A — (B V -B))71 and related schemata which are theorem schemata of standard logic (with
2’ for ‘~’) and Lewis’s modal logics (with ‘3’ for ‘—’). Both Lewis (46, p.71) and Carnap
(47, pp.60-61), in trying to deal with synonymity, agreed that truth-functional equivalence
and strict equivalence were inadequate since they both make all inconsistencies equivalent and
all logically true statements equivalent. It follows that neither truth-functional implication
nor strict implication (i.e., theorems of the form (A D B)7 or (A 3 B)7) capture
entailment in the sense of containing meanings. The stronger version of variable sharing as a

necessary condition is:

Ic. If"(A — B)71is a theorem, then B contains only variables which occur in Aj; if
(A < B)71is a theorem, then A and B contain all and only the same variables.

This condition eliminates all schemata eliminated by Ib and in addition it eliminates
m(A—(AVB))1 and M(A e (A& (AVB))1 (the so-called laws of Addition, and
Absorption) among others. It leaves the principle of simplification, T((A & B) = A)7l as a
sort of paradigm of entailment. It is at this point that deducibility and containment begin to
part company. For it seems clear that if S, is true, then (S, V S,)71 must be true as well,
i.e., that we can deduce the truth of I"(S; V S,)71 from the truth of S;. But it is not all that
clear that the meaning of a sentence (S, V S,)71 is contained in the meaning of the sentence
S,. Similarly, it is clear that a sentence, S;, will be true if and only if (S; & (S; V S,))1is
true; the truth of each is deducible from the truth of the other. But it also seems obvious that
in general S; will not contain all and only the same meanings as " (S; & (S; V Sp))71. To
admit the principle of Absorption as a principle of entailment in our present sense, would be
to say that two sentences could contain all and only the same meanings even though one
referred to and talked about individuals the others did not, and/or used predicates the other
did not. Condition Ic guarantees that S, will not have an occurrence of any simple predicate
or singular term which does not occur in S;. Even on a referential theory of meaning this
seems necessary for a theory of entailment as containment of meanings. As we shall see,
Anderson and Belnap’s E satisfies conditions Ia and Ib, but not condition Ic; Parry’s analytic

implication, on the other hand, satisfies all three conditions.

Two more even stronger syntactical conditions are required by the principle that two
sentences can not have the same meanings if one says something false (or true, or inconsistent,

or tautologous) about certain individual entities while the other does not.

Consider first schemata of the form M((A & -A & B) « (A & -B & B))™; such schemata
satisfy conditions Ia, Ib and Ic. But by the principle just mentioned we should not want to
say that all of such schemata yielded true assertions of entailment in the sense of containment
of meaning. For example, ‘(Jo died and Jo did not die and Flo wept)’ does not mean the
same as ‘(Jo died and Flo did not weep and Flo wept)’; for the first contains a false and
inconsistent statement about Jo though the second does not, while the second contains a false
and inconsistent statement about Flo though the first does not. How can two sentences mean

the same thing if one contains a false and inconsistent statement about an individual while
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the other does not? A syntactical condition which will rule out such cases can be formulated
by using a distinction by Herbrand® between ‘positive’ and ‘negative’ occurrences of a variable
in a schema. Assuming (for simplicity) that we use just the primitive truth-functional
connectives ‘-’, and ‘&’ or ‘V’, a variable occurs negatively in a purely truth-functional schema
A, if and only if it lies in the scope of an odd number of negation signs in the primitive
notation for A, and a variable occurs positively in a schema A, if and only if it does not occur
negatively, i.e., if it occurs in the scope of zero or an even number of negation signs in the

primitive notation of A. Then the following yields the required condition:

Id. If T(A—B)7 is a theorem, then each variable which occurs positively
(negatively) in B, must occur positively (negatively) in A;
If (A < B)71is a theorem, then a variable occurs positively (negatively) in B if

and only if it occurs positively (negatively) in A.

This condition rules out M((A & -A & B) < (A & -B & B))71 which is a theorem in Parry’s
system, but not in Anderson and Belnap’s, as well as others to be discussed shortly. But it is
still not strong enough. For consider the schema M(((A & -A) & (BV-B)) « ((AV-A) &
(B & -B)))71; this satisfies all of the conditions la, Ib, Ic and Id but would still lead to
violations of the principle mentioned above. Putting ‘Jo died’ for ‘A’ and ‘Flo wept’ for ‘B’ in
this schema we get an assertion of mutual entailment or synonymity in which the left-hand
expression asserts something inconsistent and false about Jo as well as something tautologous
and true about Flo, while the right-hand expression asserts something true and tautologous
about Jo and something inconsistent and false about Flo. Even if it were argued (speciously in
my view) that inconsistencies and tautologies do not “assert” anything about anybody, the
fact would remain that the same inconsistencies do not occur, and the same tautologies do not
occur, in the two expressions. Thus on the view of Carnap and Lewis that different tautologies
and different inconsistencies have different meanings, the two expressions will not mean the
same thing or mutually entail each other. To give an effective syntactical condition which will
rule out this example we define a certain very precise type of normal form (to be called a
mazimal ordered normal form of A). A tautology will be said to be “implicit” in A if it is a
conjunct of the maximal ordered conjunctive normal form of A and an inconsistency will be
said to be implicit in A if it is synonymous with a conjunction of 2" different conjuncts of the
basic conjunctive normal form of A each of which have the same set of n letters. Leaving the
definition of maximal ordered conjunctive normal forms until later, the next condition can be

formulated as follows:
le. If (A — B)71is a theorem, then every tautology or inconsistency implicit in B

must be implicit in A;

If (A < B)71is a theorem, then a tautology or inconsistency is implicit in B if

and only if it is implicit in A.

As we shall see this condition rules out the schema last considered, a schema which is a

theorem in Parry’s system but not in Anderson and Belnap’s.
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A final syntactical condition for systems of entailment in the sense of containment is

expressed as follows:

If. If M(A—B)71 is a theorem, then every conjunct in the maximal ordered
conjunctive normal form of B is a conjunct in the maximal ordered conjunctive
normal form of A;

If (A« B)71is a theorem, A and B have identical maximal ordered normal

forms.

It will follow from the definition of maximal ordered normal forms that if this condition is met
then all of the preceding conditions, Ia to le, will be met as well, and I shall hold that this is
not only a necessary but also a sufficient condition for theories of entailment in the sense of
containment so far as truth-functional schemata are concerned. The intuitive or philosophical
justification of this rule is not as easy to explain as was the case in the previous rules;
although, if it be granted that the maximal ordered conjunctive normal form of a formula
preserves sameness of meaning, then principles in If amount to special cases of the principle of
simplification which is connected in an obvious way with the concept of containment.
Ultimately all justification must rest on a semantic theory of truth-conditions according to
which two truth-functional sentential compounds will have the same meanings if and only if
they have the same set of truth-conditions (not to be confused with “express the same truth-
functions”). It must then be shown that instances of two truth-functional schemata will have
the same sets of truth-conditions if and only if they have the same maximal ordered normal
forms. The third system of entailment and synonymity to be presented satisfies this condition
and thus all the others.

I

Now let us examine a system, AC (for ‘analytic containment’), which will provably
satisfy all of the criteria just laid down. Theorems of this system will be compared with
appropriate sets of theorems from Anderson and Belnap’s system E (for ‘entailment’) and
Parry’s system Al (for ‘analytic implication’) in the following section, with particular
emphasis on points at which the latter systems go beyond the strict criteria for containment
that we have laid down in the direction of different notions of deducibility. AC is formulated
so that its theorems are confined to entailments (in the sense of containments) only between
standard truth-functional schemata; i.e., to “first-degree entailments” or, when valid,
“tautological entailments”. Both of the systems, E and Al, contain higher than first-degree
entailments, with occurrences of ‘-’ lying in the scope of other occurrences of ‘—’, but
comparisons at this elementary level will be sufficient to establish most of the points relevant

to our present purpose.

All three systems will be formalized with the same primitive symbols and rules of
formation for truth-functional schemata, namely, ‘&’ for “and”, ‘-’ for “not”, parentheses for
grouping devices, and ‘S1°s'Sy’y ... as sentential variables, then, using ‘A’, ‘B’, ‘C’, ‘D’ as

metalogical variables taking truth-functional wffs as values, well-formed schemata include all
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sentential variables, [(-A7] and "(A & B)7], as well as what can be gotten from the usual
definitions of “v’ ("(A v B)T =df M-(-A & -B)), >’ ((A D B)7 =df F(-A v B)") and ‘=’
(T(A=B)1=df T((ADB) & (B> A))7). Further we have the symbols, ‘-’ and ‘<’ which
are the subject of discussion. In Al and E ‘=’ is primitive and M(A « B)7 =df
MA—B) & (B— A))7], while in AC ‘e’ is primitive and (A — B)7 =df
(A « (A & B))7 (although (A « B)7 is derivable from (A — B)7 and (B — A)7

and vice-versa in AC).4

The system AC has the following axiom schemata and rules of inference:

ACL. (A & --A) Double Negation

AC2. (A~ (A& A) Conjunctive Idempotence
AC3. ((A & B)~ (B & A)) Conjunctive Commutation
AC4. (A& (B&C)) < ((A&B) & Q) Conjunctive Association
AC5. ((AV (B&C)) < ((AVB) & (AVCQ))) Distribution

R1. From | (A < B)7 and | X, infer |—XA//B.

We use ‘X’ and ‘Y’ for wffs, including those containing ‘<’, since ‘A’, ‘B’ and ‘C’ are reserved
for truth-functional schemata only. The symbol ‘XA//B’ means ‘the result of replacing some
occurrences of B in X by A’. We quickly obtain from AC the following theorem and derived

rules:

AC6. (Ao A)
Proof: 1) (A« (A&A)) [AC2
2) (Ao A) [AC2,1,R1]

R2. (If } T (A < B) 1 then | M(B & A)7

Proof: 1) } (A« B)7 (Hyp)
2) I (Be B)] [AC6]
3) Fr(Be A [1,2,R1]

And by similar steps,

R3. If} (A & B)lthen | M(-A « -B)7
R4. If| (A« B)Ithen | M((A&C) e (B&C))T
R5. If}M (A« B)land | (B« C)then | M(A & C)T

The full systems of E and Al are presented and compared below; each of the axiom
schemata AC1 - AC5 are derivable in these two systems as is the rule, R1, of the
substitutivity of mutual entailments or analytic biconditionals. Thus biconditional theorems
of AC are a sub-set of the biconditional theorems in both Al and E. The virtues of AC lie in
the biconditionals it excludes as theorems, while Al or E includes them. By adding additional
primitive rules of transformation (namely, “From (A — B)7 infer } (A D B)™” and
“From |- A and |- B infer |- (A & B)™1”) we could add just the theorems of standard truth-
functional logic to AC; and by other axioms or rules we could extend AC to a system with
higher than first degree wffs as theorems. However, this is not needed for our present

purposes. Such extensions would still be sub-systems of Al and E but the basic distinctions
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can be made at the simpler level.

In this section we show that AC meets all of the conditions, Ia-If, mentioned in Section I
as conditions of entailment in the sense of containment. In the next section we show different
ways in which Al and E meet, or fail to meet, these criteria for containment as well as some
for deducibility. In the final section we venture a few remarks on distinctions between

containment and deducibility.

That AC satisfies conditions la through Id can be established fairly simply:

la. If (A — B)is a theorem of AC, then (A D B)71 is a theorem of standard
logic. If M(A & B)71 is a theorem of AC, then "(A = B)71 is a theorem of

standard logic.

Proof: Replace ‘>’ and ‘—’ throughout the system AC by ‘=’ and ‘D’ respectively; all axiom
schemata are then converted into truth-table tautologies, hence theorems of standard logic.
Also the definition of (A — B)71 as (A & (A & B))71 is admissible since [((A D B) =
(A =(A &B))1is a truth-table tautology also. Since the rule of substitution, R1, is a
derived rule for sentential logic, all derivable theorems will be theorems of standard logic.
Hence for every proof of M(A < B)or (A — B)71in AC, there is a corresponding proof for
(A = B)Tor M (A D B) 1 respectively, in standard logic.

(This proof also shows that AC is consistent, since it corresponds to a fragment of standard

sentential logic which is consistent).

Since Ic implies Ib, we prove Ic first:

Ic. I (A — B)7lis atheorem of AC, then B contains only variables which occur in
A; if T(A < B)lis a theorem of AC, then A and B contain all and only the

same variables.

Proof: Inspection of AC1 through AC5, all of which have the form (X « Y)7, shows that in
each of these axiom schemata X and Y contain all and only the same metavariables A,B, or
C; thus all axioms gotten from these axiom schemata will have all and only the same set of
sentential variables occurring on either side of ‘es’. This property is preserved through the
introduction and elimination of abbreviations, and by the use of the substitution rule laid

down in R1.

In general, then, no theorem of the form I"(A < B)7] will contain a sentential variable
in A unless B contains it, or in B unless A contains it. Thus the second part of condition Ic
holds of AC. But "(A — B)71is defined in AC as (A « (A & B))7); thus T(A — B)is a
theorem of AC only if (A & (A & B)) is. But in the latter case all sentential variables in B

must be contained in A by our first result. Hence the first part of condition Ic holds in AC.
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Ib. If (A — B)71is a theorem of AC, then B contains at least one variable which
occurs in Aj; if (A & B)7is a theorem of AC, then A and B have at least one

variable in common.
Proof: Follows as a special case of Ic.

The proof that AC satisfies condition Id is similar to that for Ic, but slightly more

complicated:

Id. If T(A— B)71is a theorem of AC, then each variable which occurs positively
(negatively) in B occurs positively (negatively) in A; if (A < B)71is a theorem
of AC, then a variable occurs positively (negatively) in B if and only if it occurs

positively (negatively) in A.

Proof: Inspection of AC1 through AC5 shows that in each of these axiom schemata a
metavariable A, B, or C, occurs in the scope of an odd number of negation signs (i.e., occurs
negatively) on the left of ‘e’ if and only if it has an occurrence in the scope of an odd number
of negation signs on the right of ‘e’; since this test is applied only after reduction to primitive
notation AC5 must first be reduced to ‘(-(-A & -(B & C)) « (-(-A & -B) & -(-A & -C)))’
where it is seen to apply - in AC1 through AC4 the application is obvious. Since the same
schemata will replace all occurrences of the same metavariables to get axioms the second part
of Id will hold of all axioms of AC gotten from AC1 through AC5. (Remember that
abbreviations do not affect negative and positive occurrence properties since these properties
are determined after reduction to primitive notation.) Further this property is preserved for
all theorems gotten by substitutions based on the use of R1, or of derived rules R2 to R5,
when applied to wifs which have the form (A < B)T, so that the second part of Id holds in
AC. But (A — B)71is defined as (A « (A & B))71 and from this (as in the proof for Ic) it
follows that the first part of Id must hold in AC as well.

The proof of condition le will follow from the proof that condition If is met in AC. The latter
proof is too long and detailed to include in toto in this paper, but hopefully the following

sketch of its main points will suffice.

If. Ifr(A— B)7lisa theorem of AC, then every conjunct in the basic conjunctive
normal form of B is a conjunct in the basic conjunctive normal form of A;
If T (A < B)7lis a theorem of AC, then A and B have identical basic conjunctive

normal forms.

Proof: 1. First, we must define ‘basic conjunctive normal form’. Using the word ‘atom’ for
elementary schemata (i.e., either a negated variable or an unnegated variable) we define first,

a mazimal ordered conjunctive normal formula, abbreviated ‘an MOCNF’:

Df(MOCNF): A schema, A, is an MOCNF iffas

(1) Schema A contains only atoms, logical constants ‘&’ and ‘V’, and parentheses;



127

(= A is a normal form)

(i1) no occurrence of ‘&’ lies in the scope of an occurrence of ‘v’ in schema A; (= A
is a conjunctive normal form)

(1ii) Schema A is ordered; i.e., atoms and larger components are arranged zy a fixed
rule of alphabetic and size ordering, are grouped to the right, and there are no
redundant conjuncts, or redundant disjuncts in conjuncts.

(iv)  Schema A is mazimal; i.e., if any atom, E;, occurs anywhere in A but not in
some conjunct C;, then there is a conjunct Cj in A which contains just the

atoms in C; plus E,.

Next we define ‘a basic conjunctive normal form of A’ abbreviated, ‘BCNF(A):
Df(BCNF): a schema, C, is a BCNF of A iffy;
(i) C is an MOCNF and
(i) T(A & C)71is a theorem of AC.
2. Next, we prove that for every truth-functional schema A, there is a schema C which is a
MOCNF and such that TA « C)71is a theorem of AC; i.e., every A has at least one BCNF.
To prove this we first have to prove that the following metatheorems and theorem schemata

are derivable in AC (we do not include the proofs here):
1. M(A e A)T

Rule 2. If (A « B)7 then | (C & CA//B)T [Where ‘CA//B’ represents a schema like C

except that an occurrence of A in C is replaced by B

3. T(-Ae AT Double Negation; cf. AS1
4. T(-(A&B) o (-AV-B))7 De Morgan Theorem 1
5 T(-(AVB)e (-A&-B))T De Morgan Theorem 2
6. T((B&C)VA)«e ((A&B)V(A&C))T Distribution 2;
AC5 = Distribution 1

7. T(((A&B)&C)e (A& (B&C))) &- Association 1

[_(((A VB)VC) e (AV(BVC))T V-Association 1

. M((B&A)« (A&B)T &-Commutation = AC3

10. T((Bv A) (A Vv B))T V-Commutation
11. T((A&A)e A)T &-Idempotence 1; cf. AC2
12. T((AVA) e A)T V-ldempotence 1
13. T((A&B)o (A& (B&(AVB)))T Conjunctive expansion 1
14, T((A&(AVBVC) e (A& ((AVB)&((AVC)&

(Av(BvCONNT Conjunctive expansion 2

A procedure is then presented which begins with (A « B)71 for any schema A, and ends
with -7 (A & C)71in which C is MOCNF. This procedure is:

1)  Write down | T (A < A)7 |by 1].
2)  Derive | (A < A )71 where A, is the result of removing abbreviations, except ‘V’,
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from A.

3)  Derive |- (A & A,)71 from 2), where A, contains only atoms, logical constants ‘&’ and
‘V’, and parentheses, using rule 2, and schemata 3, 4 and 5 to bring negation signs in A
only next to sentence letters, satisfying (i) of Df(MOCNF).

4)  Remove all occurrences of ‘&’ in A, from the scope of ‘v’ to satisfy (ii) of Df(MOCNF),
getting |- (A < A3)7 by using rule 2 with AC5 and 6.

5)  Order Ag, getting A, so that |- (A & A,)7] with A, satisfying (iii) of Df(MOCNF),
by using Rule 2 with 6-12 above to get ordering by size and alphabet, grouping to the
right, and elimination of redundancies.

6) Maximize A, (re-ordering if necessary) to get C, satisfying (iv) and all other
requirements in Df(MOCNF), so that |- (A « C)7, using Rule 2, with 13 and 14.

This procedure provably leads to the desired result. (This result can be gotten in Al and E

and indeed in standard logic as well as in AC.)

3. Next we show that for every schema A, there is only one schema C such that C is an
MOCNF and (A « C)71is a theorem of AC. In other words, in AC every schema A has
only one basic conjunctive normal form. (This result is peculiar to AC; it does not hold for
standard logic with ‘=’, for ‘¥, or for ‘-’ as defined by the systems E and Al this is the most

important formal result in AC.) The proof of this point may be sketched as follows:

When a schema is in normal form (satisfying (i) of Df(MOCNF)), all negative
occurrences of variables are just the negated sentential variables and all positive occurrences
are the unnegated sentential variables. Thus the set of atoms occurring in a normal form
schema - i.e., the set of negated sentential variables plus the unnegated sentential variables -
is the same as the set of variables which occur positively plus the set of variables which occur
negatively in that schema. Since AC satisfies Id, if A and B are both normal forms and
"(A « B)71is a theorem of AC, then A and B have the same set of atoms. Also it can be
shown that if (A « B)71 is derivable in AC, then ["(A* « B*)71 is derivable in a similar
manner, where A* and B* are like A and B except that new variables have been uniformly
substituted for each variable which has negative occurrences in just its negative occurrences
(or alternatively, all negative atoms are uniformly replaced with new variables). Further, it
can be shown that if both A and B are MOCNF and A lacks a conjunct B has, or vice versa,
then M(A* = B*)7] can not be a theorem of standard logic. Since we have just seen that if
(A« B) is a theorem of AC then M(A* & B*)71 is, and we know by Ia, that if
TA* & B*)71is a theorem of AC then M(A* = B*)7 is a theorem of standard logic, it follows
that if A lacks a conjunct that B has, or vice versa, then (A < B)7 is not a theorem of AC.
Hence two MOCNF's can be proved to mutually entail each other in AC only if they have all
and only the same set of conjuncts; and since they are ordered in the same way, they must be
identical. Since ‘e’ is an equivalence relation - transitive, symmetrical and reflexive - if a
schema A is synonymous with two MOCNFs, then they must be synonymous with each other.
Thus it follows that every schema A has at most one basic conjunctive normal form; i.e., there
is only one schema (type) C, such that C is a MOCNF and [M(A « C)71is a theorem of AC.
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4. It follows from 2 and 3 that condition If holds:

The second part of If, that if (A « B)71is a theorem of AC, then A and B have the same
BCNF, follows quickly from the fact that every schema has one (by step 2) and only one (by
step 3) BCNF. For if C is the BCNF(A) and C' is the BCNF(B), then ™ (A « C)71 and
FI™ (B « C)71 are both theorems (by definition of BCNF), and by hypothesis |- (A < B)7;
thus, by R2 and R5, it follows that |- (C « C')71 which by 2 and 3 is possible only if C and
C'! are identical. The first part of If, that if (A — B)71 is a theorem of AC then every
conjunct of the BCNF(B) is a conjunct in the BCNF(A), follows from the fact that
(A — B)Tlis a theorem iff T (A & (A & B))71is by [df ‘“—’}; for in the latter case the BCNF
of A must contain all and only the same conjuncts as the BCNF of (A & B) and this could not
be the case if the BCNF of B contained some conjunct not contained in the BCNF of A,
(though BCNF(B) could contain fewer conjuncts than BCNF(A)).

Thus both parts of If are satisfied by ‘—’ in AC.
The proof of Ie now follows fairly easily from the proof of If.

lee. IfM(A — B)71is a theorem of AC, then every tautology or inconsistency implicit
in B must be implicit in A;
If M(A < B)1is a theorem of AC, then a tautology or inconsistency is implicit

in B if and only if it is implicit in A.

Proof: Taking the second part first: By earlier definition, a tautology is ¢mplicit in a truth-
functional schema if and only if it turns up as a tautologous conjunct in the basic conjunctive
normal form of the schema. An inconsistency is implicit in a schema if and only if there is a
set of 2" conjuncts of the BCNF of that schema where each conjunct in the set has
occurrences of all and only the same n variables (e.g., .8, & -S,...", "..8¢ & -Sg¢....0,
“(S;VSs) & (S;V-Sg) & (-S; V Sg) & (-S; V -S;)...°, would be such sets). Obviously, by
If, if (A « B)71is a theorem of AC, the BCNF of A is the same as the BCNF of B and thus

A and B will have the same implicit tautologies and inconsistencies.

It is equally clear that the first part of Ie will hold in AC:

Since (A = B)71 =4 (A< (A & B))7, by arguments given in the proof of If, if
(A — B)71is a theorem of AC, the basic conjunctive normal form of B can contain only
such tautologous conjuncts, and such sets of inconsistent conjuncts, as are found in the basic
conjunctive normal form of A; which is to say that every tautology and inconsistency implicit

in B will be implicit in A.
Thus both parts of le hold in AC.
Thus AC satisfies all conditions for tautological entailment as containment of meanings set

forth in the criteria la through If. The semantic and philosophical import of some of these

conditions, particularly If, cannot be pursued here. But such discussion will be enlightened by
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an investigation of the systems E and Al in the light of the conditions and results in AC so far

presented.

111

Anderson and Belnap’s system E, and Parry’s system Al, are presented for comparison
in the tables below. Their full systems obviously include entailments of higher than first
degree; each have eight axiom schemata with occurrences of ‘—’ lying within the scope of
other occurrences of ‘—=’. Nevertheless, our main points can be made by reference only to the
first degree entailments between truth-functional formulae.  For, the conflation of
containment with deducibility which occurs at this level cannot be eliminated in extensions to

higher degree entailments.
Anderson and Belnap’s E®

°E1l.
°E12.

E13.
°E14.

& (BVC)) > ((A&B)VC))
A) -A)

°E1. ((A— A) - B) = B)
E2. ((A—-B)—> ((B—>C)—(A—CQ))
°E3. ((A—-(A—B))—(A—B))
°B4.  ((A&B) - A)
°E5. ((A & B)— B)
°Ee6. (((A — B) (A— C)) — (A - (B& C)))
°E7¥ ((NA & NB) — N(A & B))
ES8. (A— (AVB))
E9. (B— (A Vv B))
°E10. (((A — C) & (B — C)) — ((A \Y, B) — C))
(
(
(
(

[Axioms marked ‘* hold in both systems; if not so marked, they fail in the other.]

Rules:

MP. If}Xand }(X — Y), then | Y.
ADJ. If}Xand }Y, then (X &Y)
*NX =df (X — X) = X)

Matrices for consistency proof
Designated values: 1,2,3,4

&o
I
[\
w
-
ot
[=2]
-
[~
ot
[=2]
-
[e <]

8] -] A -] 123

00 =3 00 =1 v b NN
0O 00 O O W W W
00 OO 0G0 QO W W W W
0 =3O Ut O =3 U
0 00 O O 0o OO
00 =3 00 =3 00 00 =3 =
Q0 00 00 0O QO Qo0 0o GO
N WA Ot N

00 =1 O U W N
00 =3 O UL i W N
0 =3 O U AW N
00 =3 O Ut W WO N
e T
= BN 00 00 BN 00 BN OO
= 00 O 00 W W 00 0o
=4 OO0 QO Q0 W» Q0 0O QO
N W UTO N
= 00 W 00 O O 00 0o
BN 00 00 =3 00 =3 QO
= Q0 Q0 00 Q0 0o 0o Qo
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vV | 12345678 D] 12345678
1 J11111111 1 | 12345678
2 12121122 2 112125577
3 /11331313 3 111335656
4 | 12341234 4 | 11115555
5 11115555 5 ] 12341324
6 | 11335656 6 | 11331313
7 112125577 7 112121122
8 | 12345678 8 | 11111111
a.  References: Anderson and Belnap 62, pp.9-24. Axiom set and matrices above are from

this article, though matrices are translated so +3=1, +2=2, +1=3, +0=4, -0=5, -2=7,
-3=8. Cf. also Anderson and Belnap 75, Ch. IV.

OAIl.
OAl2.
OAI3.
OAl4.
OAIS.
AlS.
OAIT.
OAIS.
%AI9.
9AI10.
°AIl1.
°Al12.
All3.
OAT14*.

[Axioms marked ‘ hold in both systems; if not so marked, they fail in the other.]

MP.
ADJ.
*Added

Parry’s Analytic Implicationb

If - Xand | (X = Y), then } Y.
If Xand | Y, then | (X & Y).
in 1957.
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Matrices for consistency proof:
Designated values: 1, 3 (odd numbers)

&l 1234]-]A | 1234
1] 123421 11244
2224412 21144
334344/ 4 33434
4] 444434 43333
v | 1234 > | 1234
1 1133 1 | 1234
2 [ 1234 2 | 1233
3 13333 3 | 3434
4 | 3434 4 | 3334

b.  References: Parry 33. Axiom set, except axiom 14, and matrices taken from this article,
though matrices are translated so that 1’=1, 0’=2, 1=3, 0=4. Axiom 14 was added in
an unpublished paper in 1957, proved independent by Dunn 72.

That Al and E satisfy condition Ia can be shown in the same way this was shown for
AC; by replacing ‘=’ with ‘D’ and ‘e’ by ‘=’ throughout each system. The matrices
accompanying Al and E are not only useful to establish consistency; they can also be used to
establish results relating to conditions Ib to Ie. It is immediately obvious by inspection of the
axiom schemata of E, that E will not satisfy the criterion of complete variable sharing in Ic;
for E2, E8 and E9 all have metavariables in the consequent which are not in the antecedent.
But it is provable by the matrices that E will satisfy condition Ib: if (A — B)71is a theorem
of E, then at least one variable in B must occur in A. (Proof: Suppose A and B have no
variable in common; then assign 2 or 7 to every variable in A and 3 or 6 to every variable in
B. Inspection of the matrices shows that A must take the value 2 or 7 and B must take the
value 3 or 6. But the matrix for ‘—’ shows that (2 = 3) = (2 - 6) = (7 — 3) = (7 — 6) = 8;
thus in such cases [T(A — B)71 must take the undesignated value 8 for at least one assignment

of values to its variables and thus can not be a theorem of E.)

We can also prove, by Parry’s matrices, that Ic holds in Al; if (A — B)71is a theorem
of Al then every variable which occurs in B will occur in A. (Proof: Assign 1 or 2 to every
variable in A and 3 or 4 to any variable in B which does not occur in A. Inspection of all
matrices shows that A will take the value 1 or 2 as a whole, while if any variable in B has the
value 3 or 4, then B will take the value 3 or 4. But the matrix for ‘=’ in Al shows that
(1 -3)=(1—-4)=(2—3)=(2— 4) = 4. Thus if any variable in B is not contained in A,
there will be at least one assignment of values to the variables in (A — B)™1 which yields the
undesignated value 4 for the entailment. Hence in such cases M(A — B)71 can not be a
theorem of AI.5)

Neither system will satisfy Id, hence not Ie or If. For both have the theorem schema
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(A — (A Vv -A))71 [E from E8, Al from P13, P11 and Df*D’], which violates the condition
that the consequent shall not contain a negative occurrence of a variable unless the antecedent
does. On the other hand, we shall see that E comes closer to Id and Ie in certain limited
respects; for while Al includes T ((A V B) — (A V -A)) 71 as a theorem schema [by P13, P11
and Df*D’], such schemata do not yield theorems of E [Proof: assign A = 2, B = 1] so that
there are some cases where theorems of Al have tautologies in the consequent which are not
implicit in the antecedent, but which are not theorems of E. A more general view of this
difference will come later. In short we have just shown that E satisfies la, and Ib, but not Ic,
Id, or Ie or If, while Al satisfies Ia and Ib and Ic, though not Id, Ie or If; on the other hand E
comes closer in certain respects to Id, le and If than AI does. But to distinguish the different
strands of containment and deducibility in these two systems it is helpful to consider some of

the motivations involved.

Anderson and Belnap began with a critique of material and strict implication as
providing inadequate accounts of valid inference. Starting with a Fitch-style account of
natural deduction, which relies heavily on conditional proof, they devised a set of rules for
subscripting entries in natural deduction schemata so as to keep track of whether a given
formula was used or not in getting from a given assumption to a conclusion. They held that
™A entails BT if and only if there is a valid inference from A to B, that there can be no valid
inference from A to B unless A is relevant to B, and A can not be relevant to B unless it can
be used in the inference from A to B. When these rules were converted into entailment
schemata, it turned out that for A to be relevant to B, A must contain at least one variable
occurring in B. But Fitch-style deduction rules, even when restricted by subscripts, do not
involve any clear concept that the consequent or conclusion must be contained in the
premisses. They assume not only that A |- (A V B), but also that ((A — B) |- (B = C) —
(A — C)) and a great many other deductions, are valid in which various components of the
conclusion do not occur at all in the premisses. It seems hard to deny that in such cases if the
premisses were true the conclusion would have to be true also, i.e., it is hard to deny some
connection between these rules and valid deduction. But may not one be working at cross-
purposes if one tries to associate “entails” with both containment of meanings and
deducibility at the same time? Anderson and Belnap have tried to do both; and the result has
been that they have not completely succeeded at either. Calling M(A — B)71 a “primitive
entailment” if A is a conjunction of atoms and B is a disjunction of atoms, they say that a
primitive entailment is “explicitly tautological” if some conjoined atom of A is identical with
some disjoined atom of B and add “Such entailments may be thought of as satisfying the
classical dogma that for A to entail B, B must be “contained” in A” [cf. Anderson and Belnap
75, pp.154-5]. Then they show that in E a first degree entailment (A — B)7is a theorem if
and only if the disjunctive normal form of A, " (A; V...v A )71, and the conjunctive normal
form of B, M(B; &...& B, )7, are such that each (A, — Bj)—l is an explicitly tautological
entailment. Thus we have a syntactical condition for first degree entailment in E which may
be compared with the condition If (first part) which says that every conjunct of the
conjunctive normal form of B must be a conjunct of the conjunctive normal form of A. The

difference is explained by the fact that Anderson and Belnap wish to include Addition as a
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principle of entailment; but they do not settle doubts about their claim that, e.g., ‘(S4 & Ss)’
contains (‘S; V -Sg V S3)’ or the question why Addition should be considered as satisfying the
classical concept of containment. One can only conjecture that they have confusedly supposed
that if it is true that if A were true then B would have to be true, then B must be “contained”
in A; but in what sense of “contained”? Thus it seems that in a fairly straightforward sense of
“contains”, E fails to give a clear concept of entailment of meanings. But strangely this same
imperfect effort to capture containment in “tautological entailment” becomes the ground in E
for rejecting certain widely accepted patterns for valid deductions [Anderson and Belnap 75,
p.164];

(-AvB) -(A & B) (ADB) (ADB)
A A A (B> C)
Hence, B Hence, -B Hence, B Hence, (A D C)

which have played central roles in ancient and/or modern classical logic. The corresponding
principles, T ((A & (-A v B)) = B)71, " ((A & -(A & B)) — -B) 1, " ((A & (A D B)) — B)7
and I (((A D B) & (B D C)) — (A D C))71 are not theorems of E, as can be seen either by
assigning A = 2, B = 3, C = 4, or by reducing the antecedents to disjunctive normal form and
the consequents to conjunctive normal form and applying the syntactical test given above. In

addition, by the latter test we find that the following are not theorems of E:

F((AVB) = ((A&B)V (A &-B)V (-A & B)))
((ADB) - ((A&B)V (-A &B)V (-A & -B)))
(A =B) - ((A &B) V (-A & -B)))"

If we assume that all instances of sentence schemata must obey the law of excluded middle,
then from the truth of the antecedents and this assumption the truth of the consequents must
surely follow. Thus, despite Anderson and Belnap’s ingenious argument, the sense that E
omits valid patterns of deduction persists. The omission of these principles would be of no
consequence save for the fact that Anderson and Belnap purport to formalize entailment as
the converse of ‘is deducible from’. If that is their intent they seem clearly to be missing
something here. But the interesting thing is that their “independent proof” that these are not
valid forms of inference is based on their imperfect and partial treatment of entailment as
containment, i.e., in the syntactical test above; e.g., ((A & (-A V B)) — B)71 does not hold
because I ((A & -A) V (A & B)) — B)71is not a tautological entailment since the disjunct
(A & -A)71 does not contain B. In holding that the consequent, in all of these cases, is not
contained in the antecedent they are, by our conditions Ia-If, entirely correct. Further, in
these cases they are more correct than Parry’s system Al (which includes all of these omitted
schemata as theorems) if entailment is to be treated as containment. For Parry violates the
principle which refuses to say that B is contained (in the sense of entailment) in (A V B) in a
certain sense, by allowing B to be entailed by (B V (A & -A))71 [P6], and (A V -A)71to be
entailed by " (A v B)71 [by P13, P11 and Df*D’].

Turning then to Parry’s system AI, we find a different conflict between concepts of

entailment as deducibility and entailment as containment. Parry was also struck by the
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inadequacy of Lewis’s attempt to capture the concept of deducibility through strict
implication. And like Anderson and Belnap (only twenty-five to thirty years earlier) he held
that in some sense what is in the conclusion must be contained in the premisses. In his first
published work on the subject he connected the fact that (A — B)71 was a theorem of Al
only if all variables in B occurred in A, with the concept of logical consequence by which the
conclusion could not contain any concepts not contained in the premisses. This concept of
logical consequence is clearly different from a concept of deducibility based on the requirement
that the truth of the conclusion be deducible from the truth of the premisses; for the former
excludes immediately the principle of Addition, and various principles involving nested
conditionals in the consequent, such as ((A — B) = ((B — C) — (A — C)))71 and others
which are treated as valid principles of inference in Fitch-style theories of deduction, as in
Anderson and Belnap. But regardless of what concept of logical consequence Parry had in
mind, the relation of his system to a notion of logical implication or entailment in the sense of
containment was clear and strong. It is immediately clear by inspection of the formulae why
AT includes the theorem schemata in list I below but excludes the schemata in List II from

theoremhood:

L ((A & B) = A)

((A & B) — B)

((A & (A —B))—B)
(A - B) & (B—C)) » (A—C))
((A—-(B-C)~((A-B)-(A-C))

II. A - (AVB))
A= (B> B))

A — ((A - B) - B))

A B)> ((B—C) > (A—> Q)

(
(
(
(
(A=B)=(A-(B-=C)—(A-C))

(
(
In each case it is clear that the consequents of entailments in list II all contain variables which
do not occur in the antecedents whereas this is not the case for schemata in list I. Further it is
clear why transposition, " ((A — B) — (-B — -A))7], and exportation,  (((A & B) —» C) —
(A = (B — C)))7, are not admissible in Al; both of these would convert the first four
schemata in list I into schemata with variables in the consequent which were not in the
antecedent. Similarly, permutation, M((A — (B — C)) — (B — (A — C)))71 is inadmissible
because it would convert the fifth schema in list I into the fifth schema in list II or the obvious
example of containment [((A — B) — (A — B))71 into the counterexample M(A — ((A —
B) — B))71. On the other hand importation, " ((A — (B — C)) — ((A & B) — C))7, and
modus ponens, [T ((A & (A — B)) — B)7], are theorems of Al and provably free from such
deviations from containment. These relatively simple and straightforward explanations of
inclusions and omissions contrast with the much more complicated and often less clear
explanations offered for inclusions or omissions from E. Why for example, should we admit
((A - B) = ((B— C) = (A — C)))71 as capturing entailment in the sense of the converse
of “is deducible from”, but reject T(A — ((A — B) — B))71in E? Anderson and Belnap’s

answer claims that the latter commits a fallacy of modality, inferring a necessary proposition
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from a contingent one; but why is not the same objection raised against their principle of

syllogism? The responses, to say the least, are extremely subtle.

Yet Parry does not conceive of his system solely as a system of entailment in the sense
of containment. In various places he treats it as a candidate for the converse of “is deducible
from”. As such his elimination of such principles as Addition, (A — (A V B))7, the factor
T(A—=B)—= ((A&C)— (B&C))Toreven((A « B) — ((A & C) « (B & C)))7, not
to mention principles with nested conditionals like the last three in list II above, runs counter
to that notion of valid inference related to determinations of whether the conclusions would
have to be true if - or in the event that - the premisses were true. Thus Anderson and Belnap
and others might rightly dispute whether AI has captured precisely the concept of
deducibility. But unfortunately Al fails also to capture a completely clear notion of
entailment as containment of meanings. Several gaps in deducibility which we found in E are
filled in Al but in filling them AI forfeits the strict concept of entailment as containment.
Thus M((A& (-AVB))—=B),M((A&(ADB)) = B)L,M(((ADB)&(BD>C)) = (AD
C),rM(AvB) > ((A&B)V(A&-B)V(-A&B))Tand M((A=B) - ((A&B)V(-A
& -B)))71 are all theorems of Al. More broadly, in Al it can be proved that every schema
mutually entails (or analytically implies) its “full disjunctive normal form”. This is no small
consequence. The full disjunctive normal form can be formed directly from the standard
truth-table of a schema A as follows: construct a disjunction such that each row in the truth-
table of A in which A as a whole takes the value T is represented by just one disjunct, and
this disjunct is a conjunction of atoms such that each sentence letter in A which takes F in
that row occurs negated in the conjunction and each sentence letter which takes T in that row
occurs unnegated in the conjunction. Thus, for example, the full disjunctive normal form of
(A Vv B)isjust M((A & B)V (-A & B) vV (A & -B))7l. Every consistent truth-functional
scheme can be proven in Al to mutually entail (or be “analytically equivalent” to) a normal
form which uniquely represents its own truth-table! But however desirable this result may be
from the point of view of deducibility, such results are not tenable if entailment is taken as
involving containment in the strict and straightforward sense we have advanced (or in the
weaker sense of Anderson and Belnap either). Obviously, the full disjunctive normal form of
(A V B)7 contains negative occurrences of letters which do not occur negatively in (A V
B)7. This same result will hold for many other schemata, for to reduce all consistent
schemata to “full disjunctive normal form” we need more than the principles of Double
Negation, De Morgan Laws, Distribution, Association, Commutation and Idempotence
available in AC and in E. We need also such principles as M ((A V B) — (A V -A))land " ((A
V (B & -B)) — A)7], gotten by P13 and P6 in Al, by which we can drop inconsistent disjuncts
and see that every sentence letters occurs either negated or not in each disjunct. These
principles are not available in E or AC, nor should they be if entailment is taken as
containment of meanings. For, as we mentioned earlier, we do not want to say that (A V
B)7 entails A merely because A occurs in (A V B)7l. But why, then, should we want to say
that (A vV (B & -B))71 entails, or contains the meaning of, A? Any impetus to do so is not
on the grounds of containment of meaning in the sense required. Rather, mostly likely, it is on
the grounds that since we know, by the law of non-contradiction, that (B & -B)™ can not be
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true, we must conclude that if (A Vv (B & -B))71] were true, then A would have to be true.
But this argument concerns deducing the truth of A from the truth of (A Vv (B & -B))™, not
containment of A’s meaning, in the relevant sense, in (A V (B & -B))71. Anderson and
Belnap are right in saying that (A V (B & -B)) 71 does not contain the meaning of A since A
has no occurrence in one of the disjuncts. But they are wrong in omitting the fact that the
truth of A is deducible from that of (A Vv (B & -B))7. Their rejection of ™ ((A & (-A V B))
— B)71 is also right and wrong in the same two respects. B is not contained in either of the
conjuncts of the antecedent (or in both disjuncts of the equivalent schema M(((A & -A) V (A
& B)) — B)71; but assuming only the law of non-contradiction, B’s truth would surely be

deducible from the truth of the antecedent, despite their disclaimers.

v

We have argued that both Parry’s system Al and Anderson and Belnap’s system E
include too much for a theory of logical containment in the strict and plausible sense we have
advanced; though both systems move significantly in this direction away from standard logic.
On the other hand, we have argued that neither has presented an adequate formalization of
deducibility, though both have theorems which seem clearly related to ‘is deducible from’ and
go beyond our criteria for containment. Obviously, our position implies that logical
containment is a stricter concept than deducibility; we want to agree that if A contains, or is
synonymous with B, then B is deducible from A. But we do not want the converse, that
whenever B is deducible from A, the full referential meaning of B is contained in the meaning
of A.

What plausible suggestions, then might be made with respect to an appropriate theory
of deducibility?

It might be thought, in the light of the preceding discussion, that analytic containment
in AC is just the intersection of the systems of first degree entailments between truth-
functional schemata in Al and E, and that perhaps, since both Al and E included some
plausible claims for deducibility theorems beyond those covered by containment, that
deducibility plus containment might be captured by the union of Al and E. But this is wrong
on both counts. AC is even stronger than the intersection of the first-degree entailment
fragments of Al and E, for both of the latter have T (A — (A V -A))71 as a theorem, while AC
does not have this, since it violates conditions Id, le and If. (In E"(A — (-A V A))Tis a
substitution instance of E9; in Al it is gotten from AI13, AI11 and df'D’). Thus AC is not in
the intersection of E and Al. And the union of E and Al yields the very paradoxes of strict
implication which all three systems unite in rejecting as inappropriate deducibility principles.
For by E9 we have |- T((A & -A) — (B V (A & -A)))71, by Al6 we have | T (B V (A & -A))
— B)71 and thus by hypothetical syllogism, which holds in both systems, we get | ((A &
-A) — B)71. Thus the distinction between containment and deducibility cannot be defined by
inter-relationships of Al and E, nor can appropriate formalizations of each of these concepts

be secured by this method. What other approaches might be suggested?
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At various points we have suggested that though a given wif, A, may not contain (in
our sense) a wif, B, nevertheless the truth of B might be deducible from the truth of A. Thus
while we deny (vs. Anderson and Belnap) that A contains (A V B)7], we admit that on the
truth-functional interpretation of ‘V’, the truth of A is an analytically sufficient condition for
asserting the truth of (A V B)71. Again, while we deny (vs. Parry) that (A Vv (B & -B))7
logically contains A, we agree that from the truth of (A V -B & -B))71 we could logically
deduce the truth of A. One suggestion that seems worthy of study, then, is that the
distinction between containment and deducibility can be established by the introduction of a
truth-operator, ‘T’ such that TTA 7is read [ It is true that A71(just as M-A7] is sometimes
read Mit is false that A71). By this device we can express various principles which go beyond
containment, e.g., ™ (TA — T(A v B))7] for MIf it is true that A then it is true that either A
or BT, and M(T(A V (B & -B)) — TA)7 for I"If it is true that either A or both B and not B,
then it is true that A7l. Such a theory, with truth-operators, could be called truth-theory and
should be included in the corpus of formal logic. Provided the theory has a rule of Modus
Ponens for the conditional represented by ‘—’; the principles above would then immediately
yield derived deduction rules such as, TA | T(A VvV B). Although we can not present a
completely satisfactory formal system along these lines at this time, we will provide a four-
value matrix set which establishes the consistency of a very close approximation, and thus, we

hope, adds credibility to the project.

Before proceeding further, we must revise somewhat our interpretations of the notation
we have been using. For convenience we have associated the arrow, ‘—’, up to this point with
the concept of containment, and ‘>’ with that of synonymity. But now we shall treat ‘—’
and ‘>’ as symbols solely for conditionals and biconditionals; (A — B)71is read ["(If A then
B)™. Containment and synonymity (as mentioned earlier) are strictly speaking
metalinguistic concepts, better expressed formally in M (‘A’ contains ‘B’)7; e.g., “(Jo died and
Flo wept)’ contains ‘Flo wept”. All of the first degree theorems which we have presented so
far may now be viewed as schemata of biconditionals which are logically true by virtue of
mutual containment or containment of the consequent in the antecedent. In place of the
definition, M(A — B)71 =df (A « (A & B))7, we have ["(‘A’ contains ‘B’)71 =df M (‘A’ is
synonymous with ‘(A & B)’)71. A stricter presentation would develop first a formal theory of
containment and synonymity in the metalanguage, then link it with conditionals by some
deduction rules such as, from M(‘A’ is synonymous with ‘B’)71 deduce (A « B)7] is
logically true, or, from " (‘A’ contains ‘B’)71 deduce (A — B)7, or, from [M(‘A’ contains
‘B’)71 deduce M(TA — TB)™.

Our objective here is to separate the sheep from the goats, or more accurately, the
conditionals based on containments from those based on truth-theory, while allowing that
both groups are composed of logically true conditionals from which deduction rules will
follow. Thus we count (TA — T(A V B))71 as a logically true conditional, which yields the
deduction rule TA | T(A V B), not because T TA™ contains M T(A V B)7, but because from
the truth-functional meaning of ‘v’ it is clear analytically that if A is true then (A V B)7]
ust be counted as true also. On this account what have traditionally been treated as semantic
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rules for standard truth-functional connectives will be incorporated into the corpus of
propositional logic by means of the truth-operator, while kept distinct from containment. The
payoff is not only that we achieve a theory of synonymity and containment which is
unattainable in the truth-functional logic, but that we eliminate “paradoxes” of material and

strict implication in the process.

The conditional represented by ‘—’ in this approach can not be the truth-functional

conditional represented here by ‘O’.

This is because we reject (as do Parry, Anderson and
Belnap) the account of deducibility which goes along with standard truth-functional logic and
its truth-functional conditional although we accept, with all logicians (including Parry,

Anderson and Belnap), the following principle:

A. T (If A then B)71is logically true if and only if B is logically deducible from A [or, (}
M(A—B)leAfB)).S

We do not deny that M ((A & -A) D B)7Tis logically true - indeed it will be a theorem of logic,
because, on removing abbreviations it amounts to simply a denial of an inconsistency. What
we deny is that B is logically deducible from (A & -A)71 or from every inconsistency, or,
that every logical truth is deducible from any statement whatever, or, that I (If A then B)is
deducible from B or from M-A7], and so on. But all of these consequences, which we are
pledged to avoid, would follow if we accepted the principle A above and also accepted the

truth-functional conditional as an interpretation of ‘—".

We do not now have, nor do we need to have, a complete account of what conditional
must be put in the place of the truth-functional conditional. What we do have, and all that
we need for present purposes, is a set of necessary conditions which in addition to A above,
must be met by such conditionals. These conditions (which will leave all and only the present
theorems of standard logic intact as the logical truths of O-degree wfifs), are listed in B to G

below.

B.  The rule of Modus Ponens should hold. Thus the following should be laws of logic:

(TA — (T(A — B) — TB))
(T(A & (A — B)) — TB)
((TA & T(A — B)) —» TB)

C.  The truth of the truth-functional conditional should follow from the truth of a genuine
conditional - though the converse does not hold and the former does not contain the

latter. Thus the following laws of logic should obtain, as all parties will agree:

(T(A — B) — T(A D B))
(T(A — B) —» T(-A Vv B))
(T(A — B) — T-(A & -B))

But the following should not be laws of logic:
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(T(ADB)—= T(A — B))
(AD>B)— (A — B))

The set of logically true conditionals must not include “paradoxes” of strict or material
implication. In this we, along with Parry, Anderson and Belnap, diverge from standard

logic. Thus the following must not be logical truths:

(A &-A) ~ B)
(B—(-AvV A))
(B— (A —B))
(—A — (A — B))

(though D’ - for ‘—’ 0-degree analogues of these will be theorems). But also we must

not allow as logical theorems:

(TB — T(-A V A))
(T(A & -A) — TB)
(-T(-A v A) - TB)
(TB — T(A — B))
(T-A — T(A — B))

The following principles, without T-operators, which are axioms or theorems of
Anderson and Belnaps’ E, but are excluded from Parry’s system, should not be logical
theorems as they stand since (having variables in the consequent not present in the

antecedent) they can not be established on containment alone:

(A—>B) = ((B—~C)—(A—C)) (E2]
(A — (AVB)) [ES]
(B— (AVB)) [E9]
(-A—(ADB))
(B— (ADB))

On the other hand, the following principles, which seem to satisfy the intuitions

appealed to in support of principles just excluded, should be theorems of logic:

(T(A — B) — (T(B - C) = T(A — C)))
(TA — T(A v B)
(TB — T(A Vv B)
(T-A - T(A D B))
(TB — T(A D> B))

the logical truth of these latter being due to truth-theory, not containment.

The following principles without T-operators, which are axioms or theorems of Parry’s
system, but are excluded from Anderson and Belnap’s system E, should not be theorems

of logic, for various reasons referred to in preceding sections:

((AV (B & -B)) — A) (Al6]
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(f(A) = (A - A)) (A13]
(A—(A—4A)

((A&B) & ((AVB) & ((AV-B) & (-AV B))))
((A&(-AVB))—B)

((A&(A>B))—B)

On the other hand, the following principles seem to satisfy the intuitions appealed to in
support of all, except the second, of these excluded principles, and thus should be

theorems of logic:

(T(A Vv (B & -B)) — TA)

(TA->T(A - A))

(T(A&B)« (T(AVB)&(T(AV-B)& T(-A VvV B))))
(T(A & (-A v B)) — TB)

((TA & T(-A v B)) — TB)

(

(TA & T(A > B)) — TB)

The last two of course, yield the disjunctive syllogism and the standard rule of
detachment (often called ‘modus ponens’ in standard logic) in truth theory versions of
deduction rules. But this in no way allows that from the truth of T(A D B) one can get
the rule TA } TB; e.g., though M(A > (B D B))71 and TT(A D (B D B))71 may be
theorems, it does not follow that TA | T(B D B), A | (B D B), will be derivable as

deduction rules.

G. By E and F we have eliminated principles of both Anderson and Belnap’s system and
Parry’s system, which stand in the way of a theory of synonymity and containment,
while allowing suitable replacements for excluded theorems by means of the truth-
operator. But we still want to reject from our system the following, for reasons

explained earlier, though they are theorems in one, or both of these other systems:

(A— (-AVA))
((A & (B&-B)) = (B& (A &-A)))
(((A&-A) & (BV-B)) = ((AV-A) & (B&-B))
These are cases which violate the concept of containment by allowing a contradictory or

tautologous statement about a subject in the consequent of a conditional though it was

not contained in the antecedent.

H. Finally, we shall want all and only the standard truth-functional tautologies to be
theorems where there are no ‘T’s or ‘—’s or ‘+’s in the wffs. And we shall want all of
the axioms AC1 through AC5 and AC’s rule R1 [cf. above] to obtain.

With two exceptions mentioned below, the following set of matrices establishes the
consistency of any system which meets all the conditions, positive and negative, listed in A
through G above:
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Designated values: 2 TA -A (A&B) 1234 (A—-B) 1234
11 41 1 1234 1 1434
22 32 2 2234 2 1243
43 23 3 3334 3 1424
44 14 4 4444 4 1111

‘V’, ‘D’ and ‘=’ are defined in the usual fashion from ‘&’ and -’.
(A« B)1=df"((A— B) & (B— A))7.

This matrix set will also satisfy what have traditionally been treated as semantic rules for
truth-functional connectives, especially if we define ‘FA’ for ‘it is false that A’ (vs ‘it is not
the case that A’ for “-A’) as TFA™T =df T T-A™:

(T(A & B) — (TA & TB))

((TA & TB) — T(A & B)) |From which a rule of adjunction can be derived|
(T(A vV B) & (TA V TB))

(F(AV B) « (FA & FB))

(T-A & FA)

(TA < F-A) etc.

Although the matrix set rejects the implication fragment of E as axiomatized by E1, E2 and
E3 with Modus Ponens, it does include Modus Ponens and the following truth-theory
analogues of E1, E2 and E3:

(T((A — A) = B) = TB)

(T(A—B)— (T(B—C)— T(A—C)))

(T(A - (A — B)) - T(A — B))

A formula is tautologous according to this matrix set if and only if it takes only 1’s and
2’s in its truth-table. All of the wifs which have been proposed for inclusion among logical
truths above are tautologous and all of those scheduled for exclusion are non-tautologous,
with the following two exceptions: 1) in place of I((A & B) — B)71 we must make do with
(T(A & B) — TA)7 since the former is not a tautology on this model, and 2) although we
exclude M((A & -A) - B)7, (TB — T(-A V A))71 and (-T(-A V A) — TB)7 from
tautologies in this model, the unwanted M(T(A & -A) — TB)7] comes out a tautology.
Conceivably one or both of these difficulties could be accounted for or removed either by
finding a better model, or by some fine tuned revisions in the semantic theory underlying our
judgments above. But we are not here proposing any complete or final theory. What we have
presented has not been an axiomatized theory, much less a formal semantic theory, and even
less a proof of the completeness of some formal theory with respect to a plausible formal
semantics. Nevertheless, we hope that our main point has been accomplished, namely that of
establishing the credibility of the possibility of a theory of logic which eliminates the
“paradoxes” of strict and material deducibility, permits a rigorous and viable theory of
synonymy and containment, incorporates the semantics of truth-functional connectives in
logic, and preserves all the theorems of classical logic while excluding the classical non-
theorems - in short preserves the good, eliminates the bad, and adds improvements to the

classical theory of logic.
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FOOTNOTES

In particular, Anderson and Belnap, in 75, speak of entailment as the “converse of
deducibility”, so that “(A — B)” will be interpreted as “A entails B” or “B is deducible
from A”. Cf. pp.5,7.

Anderson and Belnap, 75. The system, E, of entailment is formulated axiomatically on
pages pp.231-232. However, we shall be dealing in this paper only with the fragment
fde, which contains only those theorems which are first-degree wffs, i.e., have no
occurrences of ‘=’ within the scope of another ‘—’. An axiomatization of fde is given in
§15.2. On “containment” cf. p.155.

In Jacques Herbrand 30, cf. paraphrase in van Heijenoort 67, p.528.

We would have preferred to use M(‘A’ contains ‘B’)71 and M(‘A’ is synonymous with
‘B’)71 instead of (A — B)1and (A < B)71in AC. But convenience and precedent
argue against this level of metalanguage. Preference and convenience can be reconciled
by supposing that in AC "(A — B)™ abbreviates ((A D B) & ‘A’ contains ‘B’)71 and
that (A < B)7 abbreviates ["((A « B)& ‘A’ is synonymous with ‘B’)71.

This same proof may be used to show that AC satisfies Ic; for the matrices given for Al
also serve as a consistency model for AC.

This principle is deducible in standard truth-functional metalogic from the rule of
detachment (called ‘modus ponens’) and the Deduction Theorem. But, as Anderson and
Belnap have correctly pointed out, the Deduction Theorem itself allows much too much,
including the paradoxes of strict and material deducibility which they, and 1, are
pledged to eliminate. Cf. Anderson and Belnap 75, §22.2.1.



CHAPTER 9

CONJUNCTIVE CONTAINMENT

Nuel D. Belnap, Jr.

The purpose of this paper is to introduce the concept of “conjunctive containment” as
an appropriate analysis of the concept of the articulation of our beliefs, hypotheses, etc. We
provide a prospective application for this concept by consideration of an amendment to
Rescher’s 1964 theory of hypothetical reasoning (HR) (Rescher 64), only introducing the
concept itself in section 4. The earlier motivational parts of this paper draw heavily on
Belnap 79, which, however, ended in different conclusions, as we make clear at the end of
section 3. Section 3 also indicates why we consider that relevance logic itself does not solve

the problem.

1. HR-consequence. We begin with a description of Rescher’s proposal. Suppose we have a
set of hypotheses P constituted by (a) some of our beliefs together with (b) an additional
hypothesis which is inconsistent with those beliefs. We may still want to say something about
the consequences of P - such is the topic of getting clear on counter-factual conditionals as
addressed by HR.

The first of three elements of Rescher’s proposal is modal categorization of all sentences
in our language. A modal family M is a list M(1),...,M(n) of nonempty sets of sentences,
called modal categories, (1) each of which is a proper subset of its successors, (2) each of
which contains the classical logical consequences of each of its members (but is not necessarily
closed under conjunction), and (3) the last of which contains all sentences. This definition is
slightly at variance with Rescher 64, p.46, but not (we think) in any way which makes a
difference. If each member of a family is also closed under conjunction, we will speak of a
conjunction-closed modal family; and we note that all modal categories of such, except M(n),

are consistent (on pain of violation of proper subsethood - see Rescher 64, p.47).

It is part of the proposal of HR that reasoning from a set of hypotheses P is carried out
in the context of some modal family M. In application to the belief-contravening hypothesis
case, we let M(1) be the hypothesis H together with all its consequences, and then sort our
beliefs into the remaining categories M(2),...,M(n) according to how determined we are to
hold on to them, where a lower index indicates a higher degree of epistemic (or doxastic)
adhesion - the beliefs in the lower-numbered categories are those with which we intend to
stick, if we can. This sorting is perhaps the critical notion of HR, and a good deal is said
there about the principles on which it might be based. But the amendment we have in mind

does not pertain thereto, and accordingly we shall say no more about it.

The second element of Rescher’s proposal begins to tell us how to put the hypotheses P
together with a modal family M in order to tease out the consequences of P. This is done
through the instrumentality of “preferred maximallv mutually-compatible (PMMC)” subsets
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of P, relative to M. And these may be defined inductively, by defining PMMC(i) for each i
(1 €1 < n), assuming that the work has already been done for i’ < i. Choose a member X of
PMMC(i-1), or let X be the empty set if i = 1. If all of the members of P N M(i) can be
consistently (classical sense) added to X, do so, and put the result in PMMC(i). Otherwise,
form each result of adding to X as many members as possible of P N M(i) without getting
(classical) inconsistency, and put each such result in PMMC(i). All PMMC(i) having been
defined, PMMC (“the PMMC subsets of P”) is defined as PMMC(n).

If one wants a more set-theoretical definition, it could go like this. PMMC(i) (for
1 €1 < n) is the set of all sets of sentences S such that there is a set U such that U e
PMMC(i-1) (or U is the empty set if i=1) and (a) U is a subset of S, (b) S is a subset of P N
M(i), (c) S is classically consistent, and (d) no proper superset S’ of S satisfies (a)-(c). (Recall
that the M(i) are increasing.)

The third and last element of the proposal of HR is to define the consequences of P
relative to M as those sentences which are (classical) consequences of every member of
PMMC. For this notion, where M is understood, we use the notation
P—-A

of HR, which we can read as ‘A is an HR-consequence of P’ (relative to M). We explicitly
note that the use of the arrow here is intended to remind the reader of HR, not of relevant

implication or entailment; see Example 2 below in order to reinforce this point.

It is also convenient to use
P~aA

for the failure of HR-consequence. Evidently P ~— A holds if (but not only if) there is some
member of some PMMC(i) which contains or (classically) implies ~A.

It is useful to have a transparent notation representing how the hypotheses of a set P
fall into modal categories of a fixed family M; to avoid endless subscripts, we introduce it by

way of example.

(A,B,C/D,E/F,G)

represents that the sentences to the left of a given slash fall into a narrower (‘more
fundamental’, ‘more important’, - Rescher 64, p.47) modal category than any sentence to the
right of the slash, but that sentences unseparated by slashes are themselves modally
indistinguishable. (This is related to but distinct from the notation of Rescher 64, p.50.) As

a special case, we write, for example,
(A,B,C,D)

(no slashes) to indicate that all members of P are modally indistinguishable. And
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(~A/B,C/A)

might indicate that we are considering a case in which we believe that A is a “fact”, and are

wondering what would have happened if instead ~A, in the context of “laws” B and C.

EXAMPLE 1. (Cvb /Fb D ~Ib, Fv D ~Iv, Cvb D (Fb = Fv) & (Ib = Iv)/Fb, Iv, ~Cvb)
— (Fb & Fv) V (Ib & Iv).
This is about Bizet and Verdi, of whom Rescher 64 gives a slightly different account on
pp.67-68: under the hypothesis Cvb that they are compatriots, together with strongly held
beliefs about disjointness of the French and Italians and about what necessary conditions for
being compatriots are, together with more weakly held beliefs about the nationality of Bizet
and Verdi, and that they are not compatriots, we can HR-conclude that either they are both
French, or both Italian. (We can also conclude that they are either both non-French or both
non-Italian; but this is less interesting since it does not use statements in the weakest modal

category.)

The remaining examples are kept wholly unrealistic in order to make certain points in

the simplest possible way.

EXAMPLE 2. (p, ~p V q) — q. If P is consistent, its HR-consequences (as we shall
say) are just its classical ones.
We can see from Example 2 that HR-consequence is not being treated by us as a competitor
to tautological entailment; the interest of the program seems to us to derive entirely from the
apparatus of modal categorization and its effect on the PMMCs in the presence of

inconsistencies.

EXAMPLE 3. (p /~p,q) — p & q. Rescher (64, p.53) notes of a similar example that
“q is an ‘innocent bystander’, not involved in the contradiction at all”, and that the modal
categorization is irrelevant to getting q (but of course not p). That seems right, and we shall

make much of it.

2. Objections. We have an objection to the concept of HR-consequence as described in the
preceding section: it is entirely too sensitive to the way in which conjunction figures in the
description of our beliefs. This complaint must not be taken too far: some segregation of our
premisses is essential for Rescher’s program to get underway at all - certainly the belief-
contravening hypothesis must be separated out, and certainly the categorization of our beliefs

requires segregation - not everything must be inextricable.

But within categories, Rescher’s method gives wildly different accounts depending on
just how many ampersands are replaced by commas, or vice versa. It depends too much on
how our doxastic subtheory of a certain category is itself separated into sentential bits. The

trouble is seen bare in

* EXAMPLE 4. (p /~p & q) ~— q, that is, HR does not get the ‘innocent bystander’ q of
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Example 3 if in describing the relevant beliefs one uses an ampersand instead of a comma.

That seems to us wrong. Furthermore, consider

EXAMPLE 5. Let P = (p, ~p & q), where modal categorization of P U {~p} yields
(~p/p, ~p & q). Here, because ~p is bound up with q in P, its narrower modal categorization
cannot on Rescher’s account come into play. So P has no HR-consequences other than
tautologies. But a sensible account should let P yield ~p because of its membership in a more

ferocious category - and of course q because of its not participating in the contradiction at all.

So sometimes HR doesn’t get consequences that we think it should. But sometimes it

gets too many. Consider the following pair.

EXAMPLE 6. (p / q, ~q & ~p) — q, since one can add q but not ~q & ~p consistently
to p.

EXAMPLE 7. (p / q, ~g, ~p) ~ q since one can add ~q consistently to p, so that at

least one member of PMCC omits having q as a (classical) consequence.

It seems to us that Example 6 only gets q ‘deviously’, because its negation ~q ‘happens’

to be tied to ~p. Example 7 seems to us right.

Here we were looking mostly at examples in which A, B, and A & B were all modally
indistinguishable. We do not mean to imply that we can always settle the consequence
question for A & B as a hypothesis in a certain context by looking at the question for A and B
separately in that same context; for one or both of A and B might be in a narrower category
than A & B. But if A & B, A, and B are modally indistinguishable, it seems a hard saying
that the consequence question for A & B should be different from that for A and B separately.

Since different ways of articulating our beliefs (of a single modal category) give different
results under Rescher’s proposal, and since we do not want this, evidently we have to have

some views about which articulations we most want to reflect.

Policy: try to reflect mazimum articulation. We note that this is a policy and not a
whim. For the opposite policy - the agglutinative policy - gives entirely too few interesting
results in central cases. Consider the very central case where some finite P is inconsistent. If
in that case we represent P by a single sentence, the conjunction of its members, evidently we
will have no HR-consequences beyond tautologies. In contrast, if we maximally articulate P,
we may be able to isolate the effect of its contradiction, adding the consistent bits and
obtaining something entertaining. Or, which seems just as important, we may be able to
block a consequence by freeing for use some conjunct of a conjunction which is itself not
consistently available, as in Example 6-7. (We remark that our reasoning invokes only

principles that Rescher 79 takes as “unproblematical”.)



149

3. Candidate amendments. So much for complaints. Our aim is to minimally modify HR so

as to avoid them. Our strategy is to amend the definition of HR-consequence at only one
place. We are going to keep the first element, the apparatus of modal categorization,
untouched. We shall also retain the third element, the account of consequence in terms of
PMMC: A is to be a consequence of P, relative to M, just in case it is a (classical)

consequence of every member of PMMC.

Further, we are going to keep the outline of the second element, the definition of
PMMC. We change it at only one place. Rescher considers the addition, at the i-th stage, of
only formulas in M(i); good. But he also allows only the addition of formulas which are
actually in P. This is what we suggest changing. We suggest allowing also the addition of
formulas in a larger set P*, which can be thought of as the articulation of P, the freeing of its
contents from such notational bondage as they might have in P. All of this is to be done

before the application of the device of modal categorization to get PMMC.

In what follows we shall experiment with various possible articulations P*. In all cases,
please spare all of us the pains of repetition by picturing the definition of PMMC in Section 1
as containing ‘P*’ whenever ‘P’ occurs. (Hence, the Rescher proposal can be described in

these new terms by simply identifying P* with P.)

The first thing one might try is to define P* as the closure of P under classical
consequence, but this is ridiculous; for typically P is inconsistent so that P* would contain
every sentence. It follows that the (amended) HR-consequences of P would be determined
entirely by the modal family M and be correspondingly wholly independent of P itself! In

short, we would be giving up all of Rescher’s gains. So much for classical consequence.

The second thing one might try is to define P* as the closure of P under relevant
consequence, in the sense of the concept of ‘tautological entailment’ of §15 of Anderson and
Belnap 75 or its generalization to quantifiers. Please notice that it won’t do to count on some
kind of relevant idea of entailment to do all the work. For it is quite essential, we should say,
that in Rescherian consideration of belief-contravening hypotheses we give classical
consistency its proper role, not letting in any inconsistent consequences. But at the level at
which we are working, it is not unfair to say that relevant entailment just doesn’t care about

contradictions at all: (p, ~p, q) relevantly implies p & ~p as well as q.

So the idea is to use a judicious combination of relevance notions and classical notions.
First use relevant implication to articulate our hypotheses P; i.e., define P* as the collection
of all relevant consequences of P. Then use modal categorization and plain old classical logic
to tease out its (amended) HR-consequences. Since contradictions do not relevantly imply
everything, we can at least be sure that this proposal does not have the same defect as the

first thing we tried.

The proposal gets some examples right. We ignore its virtues, however, because in



150

other cases it gives results which deviate not only from HR-consequence, but from what we

think is correct. Consider

EXAMPLE 8. (p / ~p, q) does not on this proposal yield q, although as indicated in
our remark on Example 3, we agree with Rescher that this P should give the ‘innocent
bystander’ q. The reason it does not is because the implication from A to A V B is relevantly
0.K., so that P* will contain ~p V ~q. Since ~p V ~q must be in every modal category
containing ~p, it certainly does not have a weaker modal standing than q. So in its turn it
will form with p the basis of a member of PMMC - which, since consistent and having ~q as a

classical consequence, cannot have q as a consequence.

For a while, after discovering this, we fooled around with some related proposals which
paid attention to the fact that ~p V ~q ‘threatens’ contradiction when put with p in a way
that q does not - sense can be made out of this by looking at the four-valued representation of
the set (p, ~p V ~q) according to the pattern of Belnap 77. But although there may be
something in the vicinity, as conjectured in Belnap 77, p. 50, we do not now know what it is.
Instead we think that the trouble lies deeper, and that in fact it is to be found in too free use
of the principle of “disjunction introduction”, as Fitch 52 labels the inferences from A (or B)
to AV B.

It is not that we have started thinking that the consequence from A to A V B is
somehow doubtful. But we are not speaking of a matter of consequence; instead, we are
searching for principles for articulating sets of hypotheses, and we already know that such

principles may be far weaker than consequence.

In any event, consideration of Example 8 makes it plausible to suggest replacing the role
of relevance logic in defining the set P* that articulates P by the set of implicates of P
according to some logic which in a natural way bars disjunction introduction. And there is
such a logic: the logic of “analytic implication” of Parry 33 (See Anderson and Belnap 75,
§29.6).

The idea behind Parry’s system is that A shall not analytically imply B unless every
variable occurring in B ‘already’ occurs in A - so that in this sense, B does not “enlarge the

content” of A. Of course the inference from A to A V B fails this test.

But it turns out that although we may be on the right track, Parry’s own system is not
enough help. For he wishes to mazimize the implicates of A relative to the above idea of
analytic implication, and hence allows the inference from ~p and q to ~p V ~q - note that
indeed all the variables of the conclusion lie among those already in the premisses. And since
this inference is allowed, if we define P* as the closure of P under Parry’s analytic
implication, we won’t get q from (p / ~p, q), since q will be missing from among the
consequences of every consistent extension of the set (p, ~p V ~q,) one of which, at least, will
be in PMMC - exactly as for Example 8.
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The upshot is that for our purposes, analytic implication is No Good. So relevance logic
and analytic implication are too strong to give satisfying results in defining P*. The weakest
solution to the problems so far found is just to let P* be the closure of P under “conjunction
elimination” (Anderson and Belnap 75, §23.1), the inference from A & B to A (or B). But
this is too weak. At the very least we must allow dissolution of conjunction inside of
disjunctions, as in the following example, which merely adds r as a hypothesis and then

uniformly disjoins ~r to the elements of Example 4.

EXAMPLE 9. (r, ~r V p / ~r V (~p & q)) does not yield q either as an HR-
consequence, or when P* is defined as the closure of P under conjunction elimination. But it
should; just as in Example 4, q is an ‘innocent bystander’, which becomes apparent if we put

~r V q in P* because ~r V (~p & q) is.

Further, any of our other examples can be modified in a parallel routine way to make
the same point: if we buy into the principle of dissolution of conjunctions at all, we need it as

well for conjunctions lying under disjunctions.

Evidently there are other ways in which conjunctions can be hidden. If we think of our
notation restricted to conjunction, disjunction, and negation, then they can lie under double
negations as well, or be concealed as denied disjunctions. And the disjunctions under which
conjunctions might lie might themselves be hidden or concealed, so that we should be adding

further principles of articulation; but we postpone this for a paragraph.

What about “conjunction introduction” (Anderson and Belnap 75, §23.1), the principle
that gets A & B from A and B? Should P* be closed under conjunction introduction? It does
not matter in a direct way, since at any stage of the formulation of PMMC at which A & B
could be added, A and B (which must be in any modal category containing A & B and which
must together be consistent with any set with which A & B is consistent) could be added
instead; and evidently the classical consequences of a set with A & B are exactly the same as
the set with A and B instead of A & B.

It is not clear that Rescher 79 keeps this in mind when complaining a little about
conjunction introduction, though we do not mean to imply that it is clear that he doesn’t. In
any event, the point here is that regardless of what one in general thinks of conjunction
introduction, in the context of Rescher’s account of hypothetical reasoning it just doesn’t
make any difference whether or not one does or does not close P* under conjunction
introduction; given any modal categorization and any P, the results are the same whether or
not one closes P* under conjunction introduction. This is a mathematical fact. In contrast, as
we have seen above, it does indeed make a difference in this context whether or not P* is

closed under conjunction elimination.

We do in fact decide to think of P* as closed under conjunction introduction for the

balance of this section (in section 4 we start afresh, without this commitment), for two
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reasons. On the one hand, it keeps our thinking straight to have P* closed under conjunction
introduction, since it reinforces the doctrine that it is irrelevant whether our hypotheses are
articulated with conjunctions or commas; and on the other, it allows us to state further
principles of articulation, needed for hidden conjunctions and the like, in a somewhat briefer

manner than would otherwise be possible.

The next (and penultimate) suggestion is that in addition to the principles of
conjunction elimination and introduction, we should use as our standard of articulation just
the equivalence principles sanctioned by a new logic, one which is stricter than either
relevance logic or Parry’s analytic implication: the logic of analytic containment of Angell 76,

77 and this volume. We describe it by reference to the following analytic equivalence

principles:
1. A&BeoB&A
2. (A&B)&CeoA&(B&C)
3. AV(B&C)e(AVB)&(AVC)
4. ~~vA e A
5. ~(AVB)e~A&~B

6. (A&A)eoA

In addition we suppose these analytic equivalences closed under transitivity, symmetry and
replacement (if A and A’ are equivalent, so are ...A... and ...A’...). Observe that it is easy to

add the following duals by taking a detour through negation:

7. AVBe~BVA

8. (AVB)VCe AV (BVCQ)

9. A&(BVC)e(A&B)V(A&C)
10. ~(A&B) e ~AV~B

11. (AVA)eoA

In the present context, these are to be used to generate closure conditions on P* in the
following straightforward way: if (...A..) is in P*, then so is (...A’...) if A is equivalent to A’
by any of the above principles, and of course we are still supposing that P* is closed under

conjunction elimination and introduction.

Let us say just a few words about Angell’s system. He sharply distinguishes the concept
of containment from deductbility, and sets out only to formalize the former: A is said to
analytically contain B if A is analytically equivalent to A & B. Angell accepts the Parry
intuitions for containment: A does not contain A V B. But he goes further, suggesting that it
is not enough, as with Parry, to have B’s variables occur in A. It must furthermore be the
case that variables occurring in B positively also occur in A positively, and those occurring in
B negatively also occur in A negatively. This immediately rules out the Parry-acceptable
(and relevance-acceptable) inference from ~p and q to ~p V ~q, since q occurs negatively in
the consequence but not in the hypotheses. In this way the problem of Example 8 is avoided.
Positively put: if P* is defined as suggested, then (p / ~p, q) — q, just as in Example 3.
Indeed, using the sharp normal form theorem of Angell (this volume), we can be sure that P*

contains no formula with a negative occurrence of q, so that q must be consistently addable to
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every member of each PMMC(i), hence in every member of PMMC.

One equivalence deducible from the above is
122 A4(BVC)=A&(BVC)&(AVC)

by means of which we are led to:

EXAMPLE 10. (p / ~p, q, T V ~q) ~= q when P* is defined as suggested via analytic
containment. (Compare Examples 3 and 8.) Reason: ~p conspires with r V ~q to put ~p V
~q in P*, via the above equivalence, and the rest of the reasoning is as in Example 8. This is
in definite contrast to HR-consequence, which continues to get q even when r V ~q is added,
as above, to the hypotheses of Example 3. So if a case is to be made against this suggestion, it

could be based on this example.

There is a subtle question here, on which we have shifted views. Belnap 79 was inclined
to think that adding the hypothesis r V ~q, in which q has a negative occurrence, is enough to
render q no longer a bystander of shining innocence; and accordingly Belnap 79 remained with
Angell’s analytic containment as the standard of articulation of our beliefs, in spite of
Example 10. But in the meantime reflection on this example, and in particular meditation on
the curious way in which Angell’s principles act so as to bar the production of q, has led us to
suggest that P* should be defined in terms of an even stricter standard than that provided by

analytic containment in the sense of Angell.

4. Conjunctive Containment. In order to come up with a truly stable suggestion, let us

reconsider the matter almost from the beginning. What is wanted is a definition of P*, where
P* is supposed to be the “articulation” of P (see the beginning of section 3). “Articulation”
immediately suggests “conjunction elimination”, except that, as we noted, conjunctions can be
buried or even concealed as denied disjunctions, etc. But this immediately suggests an
absolutely straight-forward account of P*, an account without detours. First follow the idea
of Anderson and Belnap 75, §22.1.1 by defining a positive or consequent part of a formula
(written in &, V and ~) as one lying under an even number of negations, and a negative or
antecedent part as one lying under an odd number of negations. Then define P* as the
smallest superset of P which contains both ...B... and ...C... whenever it contains either
...(B & C)... with the conjunction as a positive part, or ...(B V C)... with the disjunction as a
negative part. If quantifiers are present, one wants also to instantiate in all possible ways
each (x)B as a positive part and each 3xB as a negative part. Let us call this the strictest
conjunctive closure P* of P. Strictest conjunctive closure clearly has the following properties,

where we use “A*” for {A}.

CONJUNCTIVE CLOSURE FACTS. * is a closure operation: 0* = 0; P C P¥; P C Q
implies P* C Q*; P** = P. Furthermore, * distributes over union: (P U Q*) = (P* U Q¥);
accordingly, A ¢ P* just in case A* C P* and A* C (P* U Q*) just in case A* C P* or
A* C Q*.

Our view is that P* so defined is just right: neither too small, as is P itself, nor too big,

as have been the preceding proposed P*s. In the first place, note that this P* will get
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Example 10 right, like HR, instead of wrong, like the Angell-induced P*; for clearly for this
example, since P contains no conjunctions as positive parts nor disjunctions as negative parts,
P* will just be P itself. Agreement with HR is thereby assured: we are bound to obtain the
“in P bystander” q from the P of Example 10, as desired. In the second place, this P* will get
Example 9 right as well, for the suggestion is ﬁrecisely a generalization of “putting ~r V q in
P* because ~r V (~p & q) is”, which is all that our analysis of Example 9 required. But
beyond these two examples, and others, we think the idea of strictest conjunction closure so
closely bound up with our intuitions about what P* should be that we predict that no one will
find examples that would lead us to change our minds yet once again. It particularly gives us

confidence that the idea extends in such a uniquely determined way to the quantifiers.

Working back this time from the closure principle to a relation, we may say that a set P
conjunctively contains a formula A in the strictest sense if A belongs to P*. And we may
say that a formula A conjunctively contains a formula B in the strictest sense just in case
{A} conjunctively contains B in the strictest sense. Conjunctive containment in the strictest
sense is clearly reflexive and transitive - and doesn’t very often hold; A & (B & C), for

example, does not conjunctively contain A & B - in the strictest sense.

There are a number of containment relations that are less strict than conjunctive
containment in the strictest sense - or, equivalently, there are closure operations less minimal
than strictest conjunctive closure - that would nevertheless give us the same results. For
example, we could without making any difference whatsoever close P also under
commutativity of conjunction, or disjunction; or under double negation. Let us be clear what
we mean by “the same results”. In section 1 we defined “the consequences of P relative to a
modal family M” in terms of PMMC, the preferred maximal mutually compatible subsets of
P* (the substitution of P* for P was made in section 3). Accordingly, in the present context,
we will say that another closure operation, !, equivalently extends * provided that for all P
and modal families M, P! delivers exactly the same consequences as P* on this definition; and

provided that furthermore P!* = P!.

We leave as an open question the existence and determination of a strongest closure
operation equivalently extending *. In the meantime, the following seems a fine candidate for
a strong closure operation equivalently extending *: let A € P! just in case every member of
A* is classically equivalent to a conjunction of members of P*. We offer ! as our current
candidate for conjunctive closure (but not in the strictest sense). In other words, we are
englarging P* in two ways. First, we are adding all conjunctions of its members; we
mentioned below Example 9 that this addition cannot create a nonequivalence, even though it
is certainly not in the spirit of pure conjunctive dissolution. Second, we are adding formulas
classically equivalent to those we already have (that could not possibly create a
nonequivalence), but only provided that the addition does not lead by closure under * outside
of those we already have (up to classical equivalence). For example, {p}! will contain p V p;
but it will not contain p V (q & p), for although the latter is classically equivalent to the
member p of {p}*, there are members such as p V q of p V (q & p)* which are not classically
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equivalent to any conjunction of members of {p}* = {p}.

Accordingly, our current candidate for “conjunctive containment” (but not in the
strictest sense) is this: P conjunctively contains A just in case A € P!. And if it turns out that
! is in fact the strongest closure operation extending *, then we propose to drop the qualifier
“current” and offer this as our final candidate for “conjunctive containment”, and ! for

“conjunctive closure”.

Which of the analytic containments 1-11 of Angell survive as conjunctive containments?
Obviously all entries 1-6 of Angell’s original list are all right, in both directions; and so are 7,
8, and 10. Also 9 is all right from right to left; but of course its failure from left to right is (a)
obvious, and (b) precisely what is needed to obtain the right result on Example 10, as can
plainly be seen from our discussion thereof. 11 is acceptable from left to right. Somewhat
surprisingly, however, 11 fails from right to left: A does not conjunctively contain A V A.
The counterexample does not come when A is some variable p, but instead when A is a
conjunction, say p & q; for (p & q V p & q)* has a member, say p V q, that is not classically
equivalent to any member of (p & q)* = {p & q, p, q}.

One might suppose we are on the track here of a proof that ! is not the strongest closure
operation equivalently extending *; one might suppose that one would have an even stronger
such operation, say %, by adding as a new closure condition that A V B should be in P%
whenever both A and B are in P% (this would guarantee the “containment” of A V A in A).
But in fact the so-defined closure operation % would not be equivalent to *; the following

discriminates between them.

EXAMPLE 11. Let P be {p, q, ~p, ~q}, and let the modal family M in question put p
V q (and accordingly its classical consequences) in the most ferocious category M, with every
other formula being in the weaker category My; so the picture of P U {p V q} is (p V q / p, q,

* or !, or indeed the HR-principle itself, then P does not yield p V q

~p, ~q). If one uses
(that is, P ~— p V q)); for nothing in M, will be in the closure of P used to make entries into
PMMOC, so that the entire matter will be settled by M, - which certainly does not favour p v
q over ~p & ~q. On the other hand, if one used P%, or the Angell closure (which contains
it), then because p V q would be in the closure P% of P used in the definition of PMMC, p V

q would in fact be in every member of PMMC and one would therefore have P — p Vv q.

The example shows that in fact % is not equivalent to *, or to !. So much for the facts.
We may yet wonder if we ought to add a principle putting A V B in the closure of P (a
principle that is used in computing the consequences of P according to the HR plan) whenever
that closure contains both A and B. In considering this matter, we have not been able to find
an example more decisive than Example 11; and we certainly do not think that intuitions on
that example run very deep; but if we keep in mind that we are looking for principles of
containment rather than principles of inference, and that we know from previous examples

that we definitely do not want to say that A contains A V B, nor that B contains A V B, nor
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even that {A, ~B} (or {~A, B}) contains A V B, then it seems not so very difficult to deny
that A and B together also fail to contain A V B - and accordingly that A fails to contain A V
A.

As a final note, we remark on two inelegant features of our concept of conjunctive
containment. In the first place, it is not closed under uniform substitution: p conjunctively
contains p V p, but the statement fails if p & q is substituted uniformly for p. In the second
place, mutual conjunctive containment does not survive as a replacement principle: with
reference to the list of Angell principles displayed between Examples 9 and 10, numbers 1-6
are verified, but numbers 9 and 11, which arise therefrom by replacement (and transitivity),
are not. Both of these inelegancies seem to us to be essential concomitants of the conceptual

analysis on which the enterprise is founded.

NOTE

This paper was prepared in part in 1983 while at the Center for Advanced Studies in
Behavioural Sciences. I am grateful for financial support provided by National Endowment for
the Humanities Grant No. FC-20029-82 (Andrew W. Mellon Foundation).



CHAPTER 10

REAL IMPLICATION

John Myhill

The system E of entailment was designed to formalize the the insights of those
philosophers who oppose the notion that a true proposition is implied by everything, and that
a false proposition implies everything, on the ground that A false or B true does not establish
the existence of any “real connection” between A and B; this real connection they suppose to
be an essential part of the idea of implication. I believe that E rests on a confusion between
two distinct notions of real connection.

First Notion: A entail B iff there is a deduction of B from A which adds no new content
to A.

Second Notion: A entail B iff there is a deduction of B from A in which essential use is
made of A.

Despite the apparent vagueness of the notion of ‘content’, I believe that the first notion
has been adequately explicated by Parry (63) under the name of “analytic implication”.
Further, I believe that E either formalizes a notion intermediate between the first and second
notions, or, more likely, involves a confusion between them, For Anderson and Belnap admit
as a theorem
(1) A—=(AV(B&~B))
while rejecting
(2) A— (A& (B—B)).

It seems to me that the only reason to reject (2) is that the “new content” B — B is
introduced into the conclusion (certainly A is used in the derivation of A & B — B) - i.e. the
rejection of (2) depends on accepting the first notion; on the other hand (1) likewise

introduces the “new content” B & ~B, so its acceptance rests on the second notion.

Let us call the first notion by Parry’s name “analytic implication” and the second one
“real implication”. We hold that E rests on a confusion between analytic and real
implication, and we are bold enough to consider that no coherent philosophical justification of
E has yet been given, despite the elegant formal investigations to which it has given rise. Our
purpose in this paper is to explicate the notion of real implication, and to formalize it. We do
not quite succeed in the latter aim, except in a very weak sense of ‘formalize’; but we do give
a definition of validity for proposition-letter formulas involving &, V and — as well as the
propositional constant L for falsehood. In a sequel we intend to show that the set of valid
formulas is a proper subsystem of Heyting’s propositional calculus, which neither includes nor

is included in E.

Our discussion takes off from the idea, introduced by Brouwer and more recently
associated with the names of Howard and Martin-Lof, that the meaning of the intuitionistic
connectives is to be explicated in terms of a notion of “grounds for asserting” a proposition.
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A ground for asserting A & B is a pair <e,3>, where « is a ground for A and f is a ground for
B; a ground for asserting A — B is a map from grounds for A into grounds for B; a ground for
asserting A V B is a ground « for asserting A or for asserting B, together with an indication of
which of the two propositions A,B a is taken as being a ground for. This can be given a more
mathematical form as follows: a ground for A V B has the form i, where a is a ground for A,
or jB, where f3 is a ground for B. Here i is the canonical injection of the set Gr(A) of grounds

for A into the disjoint union Gr(A V B) = Gr(A) + Gr(B); similarly for j.

This conception can be formalized by a natural deduction system with the following

rules, where ‘-’ means ‘is a ground for’.

aFA, BEB af A&B
<a,B> }:A&B al':A, a2}=B
xF A
afFA aFA, BEA—B
(Az)aFA—B Ble)EB
aFAVB
b Al b B
afFA 7EC § EC

iaFAVB, jaEBVA  D(a,Azv, Ayd)EC

This formalism gives exactly the theorems of the minimal calculus. It is to be

supplemented by the rule of A\-conversion and the other conversion rules, e.g.

(3) (oz,ﬂ)1 conv a, (a, ﬂ)2 conv 3
(4) D(ie, B, 7) conv B(e), D(je, B,7) conv y(a)

for projection and definition by cases respectively. It can be extended to include quantifiers,
or it can be equipped with a typed rather than an untyped A-calculus; we shall not include
quantifiers, and for the moment we shall use the untyped A-calculus; later we shall find it
necessary to consider types. It can also be extended to include negation, so that - A is

defined as A — L and L has some such rule as

aFL

BEA
We shall avoid the whole problem of “a false proposition implies everything” by omitting any
such rule but still keeping L with no axioms, i.e. we shall use the minimal calculus rather
than Heyting’s calculus. (Nonetheless, in arithmetic for example there is no doubt that 0 = 1

really implies everything; but this has to be shown the hard way, rather than postulated by

fiat.) The non-trivial problem concerns “a true proposition is implied by everything”; let us
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look at a proof of this in the system.

[x | Al

ly F B

(Ay)x |B— A

(Ax)(Ay)x F A = (B — A)

The “irrelevance” occurs in line 3; the hypothesis B is not used in the proof of A, or, put
otherwise, the ground x of A does not depend on the ground y of B. Formally this is shown by
the fact that the abstraction-variable y does not occur in x in line 3, i.e. by the presence of
vacuous abstraction. A first step therefore is to exclude such abstraction, i.e. to require that
in order for (Ax) to be a ground for an implication, x must actually occur free in . Then we
can infer (Ax)a f A — B from

EA
a:}: B

only if « really depends on x, i.e. only if the grounds for B really depend on the grounds for A.

That this restriction is not strong enough, however, appears when we reflect that our
system contains terms, e.g. (Ax) (x,y)2, which are essentially vacuous abstracts even though
they are not such on the face of it. We can get rid of this trouble by requiring that in order
for (Ax)a to be a ground for an implication, x must be free not only in « but also in every
term to which « is convertible. But there is a more serious difficulty, as is shown by the
following considerations. The relation of real implication is clearly not transitive. For if B is

any theorem (e.g. C — C), and if A is any formula, both

A—-A&B
and
(A&B)—B
are true in the sense of real implication. (The former is realized by (Au) (u,r), where 7 is any

term realizing B; the latter is realized by (Az)z,). None the less we would not want
A—-B

to be a theorem just because B is; in fact the obvious term to realize A — B is (Ax)r, which
although it is the composition of the two innocuous terms (Au) (x,7r) and (Az)z,, does itself
contain vacuous abstraction. The source of the trouble is that innocuous terms are not closed

under composition. So we would not want
(A-B)&(B—C)— (A—-C)

to be a theorem; and yet it is, even after the restriction to non-vacuous abstracts is made.

Here is the proof:
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L kE(A—B)&(B0)
2 x,FA—B

3 Xy EB—C

4. [yEA]

5. Xy (y)EB

6 Xq (xly) EC

. () (xxpy) FA=C

8 (Ax) (Ay) (x2(xly)) EF(A-B)&(B—-C)—(A—=C)

Notice that both A-terms appearing in the proof pass our test, since they are non-
vacuous and in normal form (so that no conversion can render them vacuous). The trouble
must be with the penultimate line, since we know of formulas A, B and C for which A —- B
and B — C are (relevantly) realized while A — C is not; when it is put this way, it is evident
what emendation is needed, for though (Ay)x2(x1y) is in normal form and non-vacuous, it has
substitution-instances which are vacuous. For example, if x, is (Az)z, and x, is (Au)(u,7),
we get

(Ay) (x9(x1¥)) = (Ay) (((Az)z5)(Au) (u,7)y))
conv (Ay) (((Az)z,) (v,7))

)
conv (Xy) (y,7)q
conv (Ay)r

The remedy is therefore as follows:- In the rule of implication introduction, we should
only allow the inference of (Ax)a F A — B from a subordinate proof with hypothesis x | A
and conclusion a E B in case o essentially mentions x, i.e. in case, where a is a[x,yl,....,yn]
and all its free variables are explicitly indicated, no substitution-instance a[x,8;, ...8,] with
BB, closed is convertible to a term without free x. The given proof of (A — B) & (B —
C) — (A — C) fails to satisfy this restriction because x,(x,y) does not essentially mention y,
as witness the substitution x = ((Au) (w,7), (Az)z,).

In an earlier version of this paper I ended by posing several open questions, which I here
state for the record, though subsequent thought has either resolved or shown the

unimportance of some of them.

1. The restriction on (real) implication introduction is non-effective. Can it be replaced
by an effective one? It turns out that this question is of no importance, since later
considerations will show that we need a typed rather than an untyped A-formalism. However,
a corresponding question can be asked about the typed system, and it seems to be a central

one.

2. What is the relation between our system and the system E of Anderson-Belnap? It
is clear that neither is included in the other, for E accepts the transitivity of implication
which we reject, and we accept (2) which they reject. However there may well be some

translation between the two systems; or there may be a large important class of formulas on
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which they are in agreement. Again this question should be asked about the typed system.

3. What rule should we postulate for implication elimination? Of course the one we
have is valid on the intended interpretation, but it in no way enables us to use the
distinguishing feature of real implication. We ought to be able to infer from (Ax)a F A — B
that a essentially mentions x, and to make use of this knowledge in later parts of the proof.

Otherwise it is hard to see how we could hope to prove such things as
(5) (A& A— B)— (A—B)

The nearest we can come to it is the following

x FA&A— B

ly F Al

(yY)EA&A

x(y,y) B

(Ay)x(yy) FA—B (?)

(Ax) (Ay)x(y,y) F (A& A = B) = (A — B)

But the step marked with a (?) is incorrect: there are substitutions 7 for x such that r{y,y)
converts to a term not containing free y; take for example r = AzI. We have somehow to use
the fact that x f A A A — B; it will turn out that for any closed r which in fact realizes A A
A — B, r(y,y) does in fact convert only to terms containing free y, but our present formalism
permits us no use of this knowledge, essential in justifying the penultimate step of the given
proof. The latter part of this paper will be devoted to further consideration of this problem,

which we claim to be able to solve completely by a typed rather than an untyped formulation.

4. Is “irrelevant implication” and in particular the principle A D (B D A) (where we
write D instead of — to emphasize its irrelevance) ever really needed in (constructive)
mathematics? It seems to be used very occasionally, e.g. in the inductive proof that every
natural number is either 0 or a successor; but a definite answer must await the formulation of

an arithmetic with our logic as the underlying one.

5. Is there any possibility of defining A D B in terms of A — B? The answer to this
question is a definitive “yes” in the following sense: if we consider a system which has both
ordinary implication D with the unrestricted rule and our real implication — with the

restricted rule, then
ADBe (A— (A& B))
turns out to be a theorem (here C « D abbreviates (C — D) & (D — C)). We leave the

(easy) proof to the reader.

We now present the typed A-calculus formulation which we promised as a solution to
question 3. We use for convenience both parameters and variables and they always have

proposition-like formulas as their types (written as superscripts). We introduce a new notion
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(SxA)a which is to be read “a essentially mentions x” and we strengthen modus ponens by

allowing the inference from ()\xA)a EA—-Bto (SxA)a. The rules of our system are

A, B
Rl.  atkaA Re,  oFA PEB
<a,f>EA&B
A&B A&B
R, CEAE g, cRARD
al}:A 02}:B
A :cA
afB, (Sz%)a( A)
R5. _ , if x does not occur in a.
A zA
(Az )a(aA)f:A—'B
A, BEA—B
Re.  GFA PEADB
Ala)FB
aFA—B
R7. — ,if x does not occur in a.
(5z7)e(z)
A A
. kA
iafF AVB jaEBVA

R9. aFAVB
sfC
1EC

A B
(DzyP) (e, BZ4), +(4B)=C

where x and y are distinct from each other and from all variables in o, 8 or ~.
R10. The obvious conversion rules.  The ones for D are

(DxAyB) (i, B( IA ZB) conv B(7A)

(DxAyB) (e, B( zA ZB conv y( IB)

under the same conditions as R9.

A
Here and in R5, R7 and R9, a(7A) represents the expression (not a term if a actually
occurs in «) obtained by replacing all occurrences of a in a by x; and a(ﬂA) represents the

term obtained by replacing all occurrences of a in « by £.

A
R11. Let o have exactly the parameters x4, b{gl,...,bfn. Then (SxA) o7A ) holds iff,
whenever T seT,, @re terms not containing a such that 7; = B, (i=1,...,n), then the term |

a(g1) (52) - (3n) | actually contains af.
1 "2 n
Here |a| is the normal form of o which can be defined recursively by

ja#] = a4



163

Bl = (lel, 8])

lay| = |af;, unless |a] is (B, 7), in which case |a,;| = §; likewise |ag-

A A
Oxa(zA)l = xlel(G4)

A
|a(B) = |a|(|B]), unless |a] is (/\xA)'y(zA) in which case |a(8)] = [|7](, lﬂ/l
lie| = ilal, [ja| = jlo]
A B A B

|(DxAyB)(x,8( ”A ZBH 4yP) lal, 18124, 1I({B))

unless |a| is 76 or j6. In the former case

|(Dx4yP)(a,B( zA ZB = |18I( |Ji)|, and likewise if |a] is jé.

Some commentary is necessary on R11. First observe that the substituends for the b,
may contain parameters. The restriction to closed terms made in our original formulation is
inapplicable here, because we certainly want e.g. (SxA)(xA,bB) to be true and yet there may
be no closed terms of type B. (This will be case for example if B is 1; and we will never know
that is the case if B is a single propositional variable.) Secondly, why do we restrict the
substituends to be terms not containing al. This can best be justified by considering an gla]

A and b4 of the same type. (Sx)a[x,bA] is mean to say that no

with just two parameters a
matter how b is chosen, a[x,bA] really depends on x; in fact we could formally define (in an

extension of the system)

B B z z
©  (sxha(®) = (vy, 1...ynn)—u(foxg)a(al)(Z})...(zz) :a(aZ)(:i)...(Z:))

where a contains exactly the parameters a,b,,...,b, of types ABy..B, respectively, and

where V and — are intuitionistic and = is intensional identity.

To return to our original example: if we were to require in R11 that |a(;A)| actually
contain a for every term 1 of type A, even those containing a itself, in particular we would
require [a[aA,aA” to contain a, i.e. we would require a[aA,aA] to really depend on a. In view

of our definition (6) this amounts to

(M —(fox?)a[xl,xz] = alXg,Xy
whereas all we need for ax,7] to depend on x is
(8) (VyA)—l(fox?)a[xl,yJ = a[xz,y]

It is clear that (8) does not imply (7); take for example a to be the characteristic
function of intensional identity. It is true that we have no such a in our system; but we
might one day extend it to contain such an «, and even if we do not, it is (6) that reflects the

intended interpretation of (Sx)a(i)‘, and not
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©) (A= By (vl A Bn)—v(foxf)a(:l)(iylfl)...(i:zl})
= a(az)(b} 2) (b:: 2)

which would be the result of allowing substitutions containing a in R11.

A more interesting point about R11 is that taken in conjunction with R5, it makes the
definition of the system circular! For in order to show that some particular term (Ax)a(7)
realizes an implication A — B we must show amongst other things that (Sx)a(7): now if «
contains a parameter b or type A — B we must, in order to apply R11, try all substitutions
(not containing a) of terms of type A — B for b in a, and among these we will not know
whether to include (Ax)a(f) or not. Thus it is not evident that Ri-R11 in fact define a
system; it is fruitless (prima facie) to define the set of our theorems as all expressions
belonging to every set closed under R1-R11, for there may be no such set. This leads to

another problem:

6. Does there in fact exist a system closed under R1-R11? (Such a system contains wifs
of three kinds: & F A, (Sx)e(7) and « conv 3.)

I have proved that there does exist such a system, and that the set of propositions
provably realizable in all such systems is properly contained in the intuitionistic propositional
calculus, and neither contains nor is contained in E (see Problem 2 above). The proof is too
long to include here, but I intend to publish it as soon as I have it in decent shape. In any
case the promised definition of validity can now be given. A proposition-letter formula A
build up from propositional variables and L by &, V and — is valid if there is a closed term
O such that © F A belongs to every system closed under R1-R11. This leads to two rather

embarrassing questions which I have been unable to answer.

7. Suppose that for each such closed system X there is a closed term © (possibly
depending on X) such that ® F A belongs to X. Can a 6’ be found which does the job

uniformly, i.e. is A valid in the sense of the preceding definition?

8. Is the intersection of all systems closed under R1-R11 still closed? (The usual

methods don’t apply because of the peculiar nature of R11.)

An affirmative answer to 8 would trivially yield an affirmative answer to 7; we merely
take ©’ as any closed © such that © | A belongs to the intersection. Since the formulation
R1-R11 was based on what I believe are clear intuitions of “real implication” and “essential
mention”, I strongly conjecture an affirmative answer to 8. If the answer is negative, I shall
have to examine my intuitions again and maybe conclude that the very notion of real

implication is a bugbear.

I conclude by giving a derivation, using R1-R11, of the formula (5) which started all the

trouble
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9 aA%4-BLAgAaB R1

(10)  bAEA R1

(11)  (bb)FA&A 10,R2
(12)  a(bb) EB 11,9,R6
(13)  (sxA & Aa(x) o,R7
(1) (Syaly.y) 13,R11
(15)  (wHalyy) FA—B 12,14,R5
(16)  (sxA &A= By Ax(yy) R11

(17) (Ax)(Ay)x(y,y) E (A& A — B) = (A — B) 15,16,R5.

The only step that requires justification is that leading from (13) to (14). By (13) and

A&A—*B(CA&A))

R11 (taking « as a , whenever B is a term of type A & A — B not

contatring c, the term |B(c)| actually contains c¢. By RI11 again, taking a as
a4 B(dA,dA) it suffices, in order to prove (14), to show that whenever v is a term of

type A A A — B not containing d, the term |y(d,d)| actually contains d.

Let the v be such a term. Let 4’ be '7(2), where ¢ is a new parameter of type A A
A. Then 7’ is a term of type A A A — B which does not contain c. But the italicized
statement |y(c)| actually contains c. Write down now the reduction of 4’(c) to its normal
form |y’(c)|, and at each step o write in a parallel column the entry o(d’cd). We shall then
obtain a reduction of 7’(d,d)(c) to |7'(c)|(d’cd).

The substitutions of (d,d) for ¢ in |y’(c)| leads to an expression actually containing
(d,d). Since |v’(c)| is in normal form, it contains no expressions of the form (Ax)a(7)(4),
(ia,é,(),(ja,é,(),(a,é)l or (a,6)2. The substitution of (d,d) for ¢ can introduce no new
expressions of the first three forms, and it can introduce expressions of the last form if and

only if [v’(c)| contains ¢, or c, respectively.

But then ]7’(c){(d’cd) will contain (d, d), or (d,d), precisely where |y'(c)| contained ¢,
and c, respectively, and € = |y'(c)| (d’cd)(d(d’d) ) (d(d,d) ) will be the normal form of 4’(d,d)
and will still contain d. Now write out in full the reduction of 4’(d,d) to © and in each line
replace e by c. We shall then obtain a reduction of §(d,d) to 9(?) which actually contains d.
Since © is in normal form, so is 9(?); for it differs from © only in replacing every occurrence of
the parameter e by the new parameter c of the same type A A A which does not appear in 6.
Thus |y(d,d)| = 6() which actually contains d because © does. By R11 again we have (14),

Q.E.D.



CHAPTER 11

WHAT IS RELEVANT IMPLICATION?

Alasdair Urquhart

In the work of Anderson and Belnap on entailment logics relevance rather than
modality emerged as the central concept (though modality is emphasized in one of
Ackermann’s early papers). In the present paper I propose to investigate this concept through
three closely connected analyses, one proof-theoretical, the other two semantical. On the
strength of these analyses I defend a concept of relevant implication which is intuitionistic

rather than classical (as in the work of Anderson, Belnap, Meyer, Dunn and others).

The earliest analysis of the concept of relevant implication occurs in the natural
deduction systems of Anderson’s paper “Completeness theorems for the system E of
entailment and EQ of entailment with quantification” (Anderson 59). It is worth noting that
the title of this paper is not inaccurate, although no “semantical” notions in the ordinary
sense are introduced. Anderson’s proofs in this paper do indeed show the completeness of
(part of) E with respect to a certain concept of relevant deduction. Let us see what this
concept is in the context of R (we ignore the complication of modality present in E). This
concept can be quite simply stated: a statement B is relevantly deducible from a set of
statements {Al""’An} just in case there is a deduction of B from {Al""’An} in which all of
the A, are actually used, i.e. in which B really depends on all of A, A. There may be
some room for cavilling at the slightly vague notions of “use” and “dependence”. However, the
consequences for the centrally important connective of relevant implication are clear.

Attaching subscripts to formulas to indicate their relations we have:

(=1): IHA—B_and A then B
z y zUy
(—2): If BzU{k} follows from Ay then A —»B_ (k £ x}.

These of course are simply restatements of the natural deduction rules for R (see Anderson
and Belnap 75 for a precise statement of these rules). If we add conjunction to our system the

rules are still clear:

(&1):  IfA&B,_ then A and B,
(&2): 1 A_andB, then A&B,.

Furthermore, these rules for — and & are also complete. It may seem odd to state this when
no notion of validity has been introduced. However, Prawitz has shown (in 71) that by
generalizing ideas of Gentzen and Curry we can give a proof-theoretical definition of validity.
In this context it emerges that to prove a set of rules is complete is in effect to prove the
elimination theorem for that system. To show that our rules do have the property required
consider the following proof on the left:
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V. ( I A{k} u’. | Ay
- .

w. || By w. | By,
X. I A —va{z } i
ool A

z. | B::Uy

Clearly, this proof is indirect and roundabout; we introduce A — B as step x, only to
eliminate it immediately at step z. This useless detour can be eliminated by transforming the
proof as on the right above. That is, we take the original proof, delete steps x, y and z, delete
the assumption line and replace each {k} by y. The result is a new proof without the useless

detour.

What we have sketched, in fact, is part of the proof of the elimination theorem (see
Prawitz 65 and 71 for more details). Examining the proof, we can see it depended on the
following fundamental feature of the system: the rules for the connectives come in pairs, one
for introduction, one for elimination. Furthermore, the introduction and elimination rules are
in a sense inverses of each other (again see Prawitz for a more precise statement of these

ideas).

Can we find appropriate introduction and elimination rules for disjunction in relevance
logic which have this property? The usual natural deduction system for R does not contain
an answer to this question. Two of the rules for disjunction have the form of introduction and

elimination rules:

However, the distributive law is not provable on this basis. It is simply postulated:

A& (BVvC)

z

{
I
|
l
|
|

(A&B)vC,
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Clearly, this is unsatisfactory. The intention underlying the Gentzen style of
formulation is that the introduction and elimination rules should provide an analysis of the
connectives - not just a convenient format for proofs. In other words, the deeper intention
underlying Gentzen’s analysis is that the fundamental laws satisfied by a group of connectives
are shown to be a consequence of the way in which we use statements containing them in
proofs. Each logical proof is broken down into its “atomic” steps - for each connective an
atomic step comprising the fundamental ways of arguing from and to a statement in which it
is the main connective. Clearly our present system does not fulfil these requirements. In any
case, why should the distributive law be valid in relevance logic? It is of no use to say that it
is classically valid, for the same remark applies to the paradoxes of material implication. We
can only claim it to be valid if it is seen to flow naturally from our basic intuitions concerning
the connectives, in the same way as the laws for — valid in R follow directly from its intended

interpretation.

In fact, the notion of disjunction in the context of relevance logic seems relatively
straightforward. The rules for conjunction can be summarized as: The set of statements X
relevantly implies A & B if and only if X relevantly implies both A and B. Similarly, why not
say: X relevantly implies A V B if and only if either X relevantly implies A or X relevantly

implies B? This immediately leads to the altered elimination rule:

w. | Av B,
l
w+l. | A, | B,
I |
| I
l |
y- i CzUy l C::Uy
y+1. | C:cUy

At step w+1 the proof splits disjunctively: the formulas on this line are not
assumptions, as in the earlier rule (see Anderson and Belnap 75, §27.1 for a discussion of this
rule). Now with this new rule (retaining the old introduction rules) we find: the distributive
law can be proved directly! Furthermore, the elimination theorem can be proved for this
formulation (see Prawitz 65, ch. VII). Thus I think it not unreasonable to claim that the
rules given above constitute the correct rules for disjunction in relevant implication. It would
be pleasant if they were equivalent to the original rules for R. Unfortunately, this isn’t so.
They are stronger. The formula ((A —. B Vv C) & (B — D)) = (A —. D v C) is provable in

our new system but not in R (as was discovered by Dunn and Meyer).

What are we to make of this? My own conclusion is: so much the worse for R! My
intuitions concerning disjunction favour the formula’s validity. If it is invalid in R, then R
simply gives an incorrect account of disjunction. As we have seen, the rules for disjunction in
R have a distinctly ad hoc character. It is quite possible (given the nature of the rules) that

some valid laws should have been omitted. In fact, the formula given above may not be the
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only one omitted, since no-one has yet succeeded in axiomatizing the new natural deduction

system (but see Addendum below).

That R is wrong about disjunction, though, is not all. There is more to come! The
rules for negation in R are almost certainly wrong. Before discussing these rules let us
attempt to find an approach to negation in relevance logic. This turns out to be easy. Add a
constant f to the language and define A as A — f. This gives us a form of negation which is
akin to intuitionistic, or rather minimal negation. Can this be correct? It is clear that in R
itself negation, while not completely classical (since A & A — B is missing) was nevertheless
intended as a kind of classical negation. For instance, the laws of excluded middle and double

negation are postulated for it.

All of this, I believe, is a mistake. In an earlier paper (72) I was content to assert this
as an opinion. However, I now have a proof. The fundamental premiss on which the proof
rests is the following basic fact: The laws of exluded middle and double negation rest on a
fallacy of relevance. This fact, surprising as it may seem, is quite simple to prove. First let
us consider a natural deduction system appropriate to classical logic. To construct such a
system, we have to allow the possibility of proofs branching downward, as in our modified
rule for disjunction; this is just the same thing as allowing multiple right sides in Gentzen

sequent systems. For example, here is a proof of Peirce’s law in such a system:

I P—q—p

| | p

-

| lp | a weakening
| | | p—gq —-int

| |

| p |l p —-elim

|

| p contraction
|

p—=q—=p—p
It is easy to see that this proof (though slightly odd-seeming) is essentially the same proof as

that given in the usual Gentzen sequent formulation with multiple right side.

Now what about excluded middle? Here is its proof:

1. | A

2. {"';‘ | f weakening
3. = { A—f  —-int

4 AVA i AVA  v-int

5. AVA contraction
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This proof is perfectly all right in a classical context. Can we transfer it to relevance logic?
The crucial steps are clearly 2 and 3. For A — f to be deducible at step 3 by —-int, it must
be the case that f depends on A. But how can this be? Step 2 is a raw fallacy of relevance!
An ezactly similar analysis shows that double negation (_A — A), the De Morgan Law (A &
B) » A V B and numerous other non-intuitionistic theorems all depend on a fallacy of

relevance. Thus relevance logic not only can be intuitionistic; it has to be intuitionistic.

The system defined by the new natural deduction rules together with minimal negation
represents, I claim, a correct analysis of relevant implication. Let us call is S. S almost forces
itself upon the attention once natural deduction systems are taken seriously (for more on this
topic see Prawitz 65 and 71, Kreisel 71).

S can be approached from other directions. One such direction is that of explicit model-
theoretic analysis. The result is the semi-lattice semantics, which I shall not describe, as it is
already given in sufficient detail in Urquhart 72. Of course, it has not been proved that the
system S coincides with that given by the semilattice semantics. 1 leave this as an open

problem for the reader.

What I wish to do in the concluding part of the paper is to describe a third approach
which also appears to be a natural analysis of relevant implication. The idea is to consider an
implicational formula as a type, that is, as a set of higher-order functionals. This idea has

borne fruit in the context of intuitionistic logic: here we adapt ideas of Lauchli 70.

First, some definitions. XY is the set of all functions from Y into X; <a,b> is the
function f with domain {0,1}, f0 = a, f1 = b, XxY = {<a,b>:a € X, b e Y}. X w Y is ({0}xX)
U ({1}xY). Now let Q be a denumerably infinite set, which remains fixed in what follows.
The set of all types over Q is defined as the smallest family of sets F such that Q ¢ F, {0,1} €
F and F is closed under the operations Xy, XxY and X & Y. We assign a type to each formula

in our language by the definition:

S(A) = Qif A is atomic
S(A & B) = S(a) x S(B)
S(A V B) = S(a) & S(B)
s(A — B) = s(B)S(4)

A remark on the intuitive interpretation of this construction may be in order. The set Q is to
be interpreted as the set of possible proofs of atomic formulas: similarly for each A, S(A) is

the set of all possible proofs of A.

The next construction shows how, if we know what elements of Q are actually proofs of
atomic formulas, we can compute what the proofs of any formula are. Thus let p(A) C Q for
each atomic A (including f). We extend the proof assignment p to the whole language by
defining:

p(A & B) = p(A) x p(B)
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p(A V B) = p(A) U S(B)
p(A — B) = {f e S(A - B): x e p(A) => x € p(B)}.

The last definition is the important one. Its intuitive content is very natural; it says that a

proof of A — B is a function which transforms a proof of A into a proof of B.

We are not interested in just any proof of A, however. The proofs which are important
to us must satisfy certain constraints. To define these constraints we introduce a language
suitable for describing the structure of proofs. We suppose that for each type X we have
available a denumerable list of variables V y, the variables of type X, where Vy N Vy = 0 for
X #Y. We now define the class of strictly definable terms (s.d. terms) as follows:

(1) Any variable of type X is a s.d. term of type X;

(2) The constants 0, 1 are s.d. terms of type {0,1};

(3) If t is a s.d. term of type YX and s a s.d. term of type X then t(s) is a s.d. term of type Y;
(4) If t,s are s.d. terms of type X,Y respectively which contain exactly the same set of free
variables, then <t,s> is s.d. term of type XxY;

(5) If t is a s.d. term of type X, x is a variable of type Y and x occurs free in t then Ax(t) is a
s.d. term of type xY.

(6) If t, s are s.d. terms, and t or s is of type {0,1} then <t,s> is a s.d. term.

The s.d. terms are to be interpreted as follows. Let V be an assignment of variables of

type X to elements of type X. Then V(t) for any term t is defined by:

V(Ax(t)) = the function with domain X taking the value
V[t] for a € X; V;‘ assigns a to x and agrees with V otherwise.

Let us say that a strict functional over Q is a functional defined by a strictly definable term
with no free variables. Finally, let us say that a formula A is functionally valid if there is a
strict functional © such that for any proof assignment p, © € p(A). Now the reader can check

for himself the following

Theorem: All the axioms and rules of inference of the negation-free fragment of R are

functionally valid.
We give a few examples:

AxAy(yx) e p(A —=. A - B — B)
Ax(x0) € p(A & B — A)
Ax(<0,x>) € p(A —. AV B)

(Notice that we have left the types of variables tacit, as they can be inferred from context; for

instance, in the first example, y must be of type S(A — B).)
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Actually, we can go further than this. It would seem that every theorem of S is

functionally valid. 1 am not going to give a proof of this, but shall content myself with a

single example:

Proof 2 |

(A — C) & (B—v C){l}

A— C{l}

(A—+C)&(B—+C))—+(AVB—»C)

x € p((A = C) & (B = C))

x0 € p(A — C)

x1 € p(B = C)

| yep(AVB)

ylep(a) y1 € p(B)

<x0(y1), x1(y1)> (y0) € p(C)

Ay[<x0(y1), x1(y1)> (y0)] € p[A V B — C]

AxAy[<x0(y1), x1(y1)> (y0)] e p)A » C& B - C —-.A VB — C]

This example shows that a proof of A in S corresponds to a proof that a certain strict

functional is in p(A). The general idea is clear enough; each application of a rule of inference

corresponds to an operation on the correlated term. Thus —-elimination corresponds to

functional application. The subscripts of the formulas correspond to the set of free variables

in the correlated terms.

It would appear that the converse is also true, that given a strict functional which shows

a formula to be functionally valid, we can translate the corresponding s.d. term into a proof of

the formula in S (for more details on the correspondence between proofs and terms see Kreisel
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71 and Prawitz 71). Honesty compels me to admit that I have not proved any of the claims
above - not so much because of inherent difficulty as because of inherent laziness. Hence,

rather than assert ( as I was tempted to do) what I have not proved let me state the following

CONJECTURE: The theorems of the natural deduction system S, the set of formulas valid in

the semilattice semantics and the set of functionally valid formulas all coincide.

A proof of this conjecture would add considerably to our knowledge of relevance logics.
Pending such a proof, it may seem rash to make claims about S. However, I feel convinced
that both formal and informal analyses point distinctly to the definite conclusion: S, not R, is

the logic of relevant implication.

ADDENDUM. Since this paper was completed, two important developments have occurred
in the theory. First, Kit Fine succeeded in axiomatizing the formulas valid in the semilattice
semantics. A somewhat amended version of Fine’s proof appears in Charlwood 81. Further,
my student G. Charlwood has also proved the equivalence of the natural deduction system
and the semilattice system (PhD thesis, University of Toronto, 1978). The decision problem
for the semilattice system, unlike the problem for all well-known systems of relevance logics,

remains open.
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CHAPTER 12

THE NONEXISTENCE OF FINITE
CHARACTERISTIC MATRICES FOR
SUBSYSTEMS OF R,

Dolph Ulrich

Let py) = Cpq, with p | = Cpup,. Then Meyer has shown (70a, p. 387) that for i < j,
Cuiuj is not provable in Church’s weak implicational calculus RI‘ It follows, of course, that
R} has no finite characteristic matrix; and Pahi has suggested in 72 ways of extending this
latter result to a wide class of subsystems of R In fact, however, modifications of the

method of (Ulrich 71) permit complete extension.

Where ¢ is a wif of R} in which the only sentential letter occurring is p and « and 8 are
any wffs of R, let us say that a wif ¢ is an a,B-affiliate of ¢ just in case ¢’ can be obtained
from ¢ by replacing zero or more occurrences of p with occurrences of & and the rest (if any)

with occurrences of 3.

Lemma. Let ¢ be any wif of R} in which the only sentential letter occurring is p, say
1 <}, and consider a valuation v in Meyer’s matrix (70a, p. 386) such that v(p) = 2 and v(q)
= -1. Then there exist Cuipj,Cujui-afﬁliates ¢’ and ¢” of ¢ such that v(¢”) > v(¢’) = 0.

Proof. We induce on the length of ¢, taking ¢’ to be C”i”j and ¢” to be Cyjpi in the
base case, where ¢ is p. Then v(¢”) = P50 = V().

Assuming on inductive hypothesis that such affiliates ¢’ and ¢ exist when ¢ contains
fewer than n symbols, consider any wff ¢ = C€¢ of length n. By hypothesis there exist
Cyiuj,ijui-afﬁliates € and ¢’ of £ and 1 such that v(€’) = v(¢’) = 0, so letting ¢” be C£,¢,
assures us that v(¢”) = w > 0. By the induction hypothesis we can also find a
Cuipj,Cujui-afﬁliate € of £ such that v(€”) > 0. Letting ¢’ be CE”W now completes the
proof, since v(C€»¢,) = 0.

Because no theorem of R takes the value 0 for any valuation in Meyer’s matrix, we

have:

Corollary. For each wif ¢ of Rjin which p is the only sentential letter occurring and for
all i < j, there exists at least one Cp.p.,Cp.p.-affiliate ¢’ of ¢ which is not provable in R,.
Lt K Lo I

And it is this corollary which permits us to extend Pahi’s results to all the subsystems
of R, (except, of course, the one with no theorems, which is characterized by any finite matrix
in which no values are designated):
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Theorem. No nonempty subsystem of R; has a finite characteristic matrix.

Proof. Let P be any such subsystem of R; and suppose P has an m-valued characteristic
matrix M. Then the set of theorems of P is closed under substitution and so, since nonempty,
contains a wif ¢ in which the only letter occurring is p. Since M is m-valued, there must exist
p; and K5 with i < j < m™ + 1 such that p; and K receive identical values for each
assignment of values of M to the letters occurring in them. Then C"i“j and Cyjyi must also
receive identical values for each such assignment and, consequently, every
Cuiuj,Cujpi-afﬁliate of ¢ must be an M-tautology. By characteristicity, then, every
Cuiuj,ijpi-afﬁliate of ¢ will be provable in P and so in R; as well, contradicting the

corollary to our lemma.



CHAPTER 13

RELEVANT IMPLICATION
AND
LEIBNIZIAN NECESSITY

Zane Parks and Michael Byrd

1. Introduction. Routley and Meyer (in 73a and 72a) have provided semantics for the system
R of relevant implication and the system R D, that is, R with an S4-ish modal operator.
Although RU is the standard modal extension of R, it fails to capture a central and
compelling view of necessity, the Leibnizian one. The purpose of this paper is to modify and
extend the system R in order to accommodate this view. We want to combine the semantical
insights of Routley and Meyer with the Leibnizian insight that necessity is truth in all

possible worlds.

The plan of the paper is as follows. We first explain why a better account of necessity is
needed in relevance logic and also defend our project from certain criticisms. We then discuss
the problem of introducing Leibnizian necessity in to R. The slogan that necessity is truth in
all possible worlds is only a guide - some footwork is required to come up with a satisfactory
framework for representing this view in R. The upshot of the discussion is a pair of systems
RL1 and RL2. Finally, we present semantics for these systems, discuss some of their

interesting features, and tentatively propose corresponding axiomatic systems.

2. Remarks on RY. Once RV held a privileged position among modal extensions of R in that

it was thought that the translation of E into RY defined by mapping entailments into
necessary relevant implications was an exact translation. Such, at any rate, was Meyer’s
conjecture (in 68). While proof was lacking, hardly anyone doubted that it was so. Although
the natural intuition about necessity is the Leibnizian one, nevertheless, as we all know,
intuitions can be retrained. Just as the logic student’s naive intuitions about “if ... then ...”
are often perverted by an undue familiarity with the classical account, so too the intuitions
about necessity of the student of relevance logic are often lost under the spectre of RY.
Meyer’s conjecture is false (see Maksimova 73b); in this fact we see reason to hope for a
recovery of innocence. In the absence of Meyer’s conjecture, grounds for thinking RC
significant rapidly fade, leaving room for serious consideration of alternative modal extensions

of R.

Indeed, there are good reasons for disenchantment with the treatment accorded
necessity in RY. First, the truth condition for necessity in R essentially involves an
alternativeness relation S; a proposition is necessary at a set-up @ just in case it is true in all
set-ups to which a bears S. If necessity is truth in all possible worlds, no such relation is
needed. The statement of the truth condition requires only that the set of possible worlds be
singled out - a proposition is necessary just in case it is true in all such worlds.
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Secondly, if, as in RD, an alternativeness relation is used, one would rightly expect the
postulates on that relation to have some fairly straightforward intuitive motivation. But the
only motivation we can discern for some of the RY postulates is that they are required to

verify the axioms of RE. For example, the postulate p5:
(3x)(Rabx & Sxc) = (3x)(Iy)(Sax & Sby & Rxyc)

is required to verify O(A — B) —. 0 A — O B, but motivation for this postulate which is not

based on purely proof-theoretic considerations is hard to come by.

Thirdly, validity, like necessity, should amount to truth in all possible worlds. Relevant
semantics generally and the Routley-Meyer semantics for R Oin particular proceed instead by
singling out a designated set-up 0 and defining validity in terms of verification at that world.
Just as Kripke’s semantic framework gained in clarity and elegance when Lemmon showed
how to dispense with “the actual world” G, so relevant semantics, and especially relevant
modal semantics, would benefit by replacing 0 by the set of all possible worlds. We note that
Routley and Meyer have made this modification in giving semantical analyses of some systems

(in 72b), but apparently for reasons other than those given here.

Finally, the demand for relevance should not obscure the insights of classical modal
logic. Thus, one would expect the —-free fragment of a relevant modal logic to be some
standard system - ideally S5. As Routley and Meyer note (in 72a), this is not true of RD,
since O(A D B) D. DA D OB is not a theorem of R

The above criticisms of RO contain a number of criteria of adequacy for a relevant
modal logic. These criteria are satisfied by the systems RL1 and RL2 that we discuss later in
the paper.

3. A question of compatibility. The predominance of RY has been bolstered by a feeling that

the Leibnizian view of necessity is incompatible with key tenets of relevance logic. This seems
to be the position of Routley and Meyer (see 72b), although it is not too clear what their
reasons for thinking this are. The principal one seems to be that Leibnizian necessity is
somehow incompatible with the view that A —. B — B, and related formulas, can turn out
false. They point out that if this formula is to be falsified, then B — B cannot be true in every
situation. Consequently seriousness about relevance requires allowing logically incomplete
situations. About all of this there is no disagreement. However, they then maintain that this
whole view of the matter will “seem strange” to those who have slipped off into the “pipe
dream” that logical truth is truth in all possible worlds. Here we disagree. The relevance
framework need not and should not seem strange to the proponent of Leibnizian necessity.
Necessity can be regarded as truth in all possible worlds, while at the same time recognizing
that a concern for relevance requires dealing with incomplete or incoherent situations. Only if
the Leibnizian erroneously regards himself as committed to the claim that all situations are
possible situations will he regard the Routley-Meyer framework as suspect. We do not mean

to suggest that Leibnizian necessity and relevance logic mix easily. In fact, on one natural
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explication of the matter - our system RLI - problems do arise. But they do not arise (contra
Routley and Meyer) because the Leibnizian account encroaches on the insights of R. Rather
they arise because of the absolutist character of necessity in RLI - that is, because in RL1 a

proposition is necessary in all set-ups if it is necessary in any set-up.

4. A semantical framework for relevant modal logic. Since incorporation of Leibnizian

necessity seems desirable, the problem at hand is how to accomplish this. Given the usual
semantics for R (see Routley and Meyer 73a), one (perhaps) initially plausible approach is to

introduce the valuation clause
4.1 (0 A,a) =Tiffforall beK,I(Ab) =T

so that necessity of A at a set-up amounts to truth of A at all set-ups. However, no formula
is true at every set-up in every model structure, and so, no formula of the form OA would be
valid on this account. This consequence is unsatisfactory. If validity is truth in all possible
worlds and some formulas (for example, A — A) are true in all possible worlds, then some
formulas of the form OA should be valid. Obviously, the problem with 4.1 is that not every
set-up is a possible world. It is an essential feature of the semantics for R that even logical
truths can be falsified.

The reasons for the failure of 4.1 suggest that we need some way of representing the set
of possible worlds in a model structure. The simplest idea, of course, is just to single out a
nonempty subset L of K as a set of possible worlds. Since these worlds are after all possible
worlds, it is natural to require that these worlds be normal - that is, a proposition is true in a
possible world if and only if its negation is false. This means that for a possible world a, we

will require that a = a*.

What should the valuation clause for necessity be? The natural suggestion is
42 1(0Aa)=TiffforallbeL,I(Ab) =T

Unfortunately, 4.2 seems to clash with certain of our intuitions about necessity in that
OA — A can be falsified. The truth of A in all possible worlds does not guarantee that A is
true at an arbitrary set-up. At this point, we have a choice of how to proceed. One option is
to stick to 4.2 and to (try to) explain in some way our intuitions about the relation between
OA and A. For example, it might be suggested that while DA does not relevantly imply A,
still we are justified in inferring that A is in fact true from the fact that OA is in fact true.
We are justified in making this inference because, and only because, the actual world is a

possible world.

The other option is to retain DA — A and to re-think the motivation for clause 4.2. In
this case, we might ask whether the Leibnizian intuition for guiding our discussion justifies
clause 4.2. For possible worlds, the members of L, it seems to. From the point of view of a
possible world, necessity should be truth in all possible worlds. But what about the other
members of K? For them, perhaps, it is just not clear how necessity should be construed.

The reflections suggest that we may revise 4.3 in such a way that we (i) adhere to the
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Leibnizian scheme as far as possible worlds go and (ii) arrange things in the other cases so
that other intuitions (for example, that DA relevantly implies A) are preserved. On the basis

of (i) and (ii), perhaps the most plausible revision is
4.3 I(oA,a) = T iff both I[(A,a) = T and for all b € L, I(a,b) = T

We shall not try to decide between 4.2 and 4.3. The former is the valuation clause for

necessity in the system RL1, and the latter, the corresponding clause in RL2.

However, the addition of the set L of possible worlds and the valuation clause 4.2 (or
4.3) for necessity still does not yield a satisfactory incorporation of the Leibnizian account.
Note that, given the standard semantic framework for R, it remains possible for A to be valid
while OA is not. This result conflicts with the Leibnizian view that necessity and validity are
truth in all possible worlds. For if OA is not valid, OA is false in some possible world and so A

must be false in some possible world. And hence, A cannot be valid.

The problem here is the role of the designated world 0 in standard relevant model
structures. Validity is determined by truth at O rather than truth in all possible worlds.
Consequently, a formula might be true at 0 in all model structures, although false at some
member of L. The natural solution to the problem is the one we adopt. Let the set of possible
worlds play the role in model structures that is usually played by 0. This involves both
redefining validity in terms of L and changing the postulates that refer to 0 so that they refer

instead to members of L.

So, to obtain a better account of necessity in relevance logic, we propose three basic

changes:

(a) the introduction of a set L of possible worlds;
(b) anew valuation clause for necessity (4.2 or 4.3);

(c) the replacement of the designated world O by the set L.

These changes yield two systems of relevant modal logic - RL1 and RL2 - to which we now

turn.

5. Semantics for RL1 and RL2. A relevant modal model structure (r.m.m.s.) is a structure

M = <L,K,R,*> such that K is a nonempty set of which L is a non-empty subset, R is a 3-

place relation on K, * is a 1-place operation on K, and for all a,b,c,d € K,:

5.1 a<b=4 (Ix)(x e L & Rxab)

52  RZabcd =4¢ () (x € K & Rabx & Rxcd)
5.3 aa

5.4 Raaa

55 RZabcd = R%acbd

56 a<b& Rbcd => Racd

5.7  Rabc => Rac*b*

58 a**=a
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59 aeL=>a=at*

A valuation v on an r.m.m.s <L,K,R,*> is a function which assigns each atomic formula
a truth-value at each member of K in such a way that for each atomic formula p and all
a,b € K, if a < b and v(p,a) = T then v(p,b) = T. I'is a RLI-interpretation associated with v
provided I is a function which assigns each formula a truth-value at each member of K in such
a way that I agrees with v on atomic formulas and evaluates complex formulas as follows:
5.10 I(A & B,a) =Tiff I(A,a) =1(B,a) =T
511 I(A Vv B,a) = Tiff either (A,a) = Tor I(B,a) = T
5.12 I(A — B,a) = T iff for each b,c € K, if Rabc and

I(A,b) = T then I(B,c) = T

5.13 1(-Aja) = Tiff I(Aa*) =F
5.14 1(0 A,a) = Tiff forall b e L, I(A,b) =T

I is an RL2-interpretation associated with v provided 1 is a function which assigns each
formula A truth-value at each member of K in such a way that I agrees with v on atomic

formulas and evaluates complex formulas in accordance with 5.10-5.13 and
5.15 1(0 Aa) = Tiff [(A,a) = Tand forallb e L, I(A,b) = T

A formula A is RLI-verified on an RLI-interpretation 1 (RL2-verified on an
RL2-interpretation 1) iff for each a € L, I(A,a) = T; otherwise, A is RLI-falsified
(RL2-falsified). A is RLI-valid (RL2-valid) in an r.mm.s iff A is RLI-verified
(RL2-verified) on all interpretations therein. Finally, RL1-valid (RL2-valid) iff RLI-valid
(RL2-valid) in all rm.m.s.

We note that in the presence of our other assumptions, 5.9 can be replaced by the

seemingly weaker
516 aeL=>a*el

since 5.16 would allow us to prove that for a € L, a formula A is true at a iff it is true at a*.

6. Conjectured axiomatizations of RL1- and RLZ2-validity. In this section, we set out

axiomatic systems tentatively called RL1 and RL2 that we conjecture axiomatise the
corresponding notions of validity. The systems are easily proved sound with respect to the

corresponding notions of validity. What is lacking is proofs of completeness.

What we need to begin with is a set of axiom schemes for R (say) A1-A13 from Routley
and Meyer (73a, p.204). These will be common to both systems. Moreover, the following

axiom schemes are common to both systems:

Al4 ODA-0O0A

Al5 O0(A—-B)—».0A—OB
Al6 OA&OB—0O(A&B)
Al7T O(ADB)—>.0ADOB

We note that A17 is a variant of the formula discussed by Routley and Meyer (72a, p.70).
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Addition of this as an axiom to R should yield S4 as a subsystem.

In addition to the above schemes, RL1 has the following:

Al8 OADA
Al19 OA-SQOA
A20 DA—-.B—-0OA

In addition to A14-A17, RL2 has the following schemes:

Al ODA-A
Al9° DADOCA

Both systems have the following rule for axioms in common:

AR1 If A is an axiom, sois O A

and both systems have modus ponens for D as their sole rule of inference:

R1 From A and A D B, to infer B

We note that both systems contain S5 and that both are conservative extensions of R.
While A20 is apt to be labelled a fallacy of relevance, it does not affect the O-free fragment of
RL1 - that is still just R. The situation here is similar to that described by Meyer and

Routley (73). Incorporation of a classical account of negation in R does not destroy the

positive insights - the negation-free fragment does not contain fallacies of relevance. So it is

with RL1.



CHAPTER 14

WHICH ENTAILMENTS ENTAIL
WHICH ENTAILMENTS?

Nuel D. Belnap, Jr.

We offer a procedure for deciding when a conjunction of entailments provably entails a
single entailment. First some relevant context. The context from below is chiefly supplied in
8§19 and §24.3 (all references via the “section squiggle” are to ENT). There we showed how to
decide provability for first degree formulas (no nesting of arrows). From above, the context
is provided by Meyer 79b, who shows by a surprisingly simple argument that the decision
question for second degree formulas (arrows within arrows O.K., but no arrows within arrows
within arrows) is equivalent to the decision question for the entire calculus - for just about
any calculus you can think of. Since we know from Urquhart 82 that the principal relevance
logics are one and all undecidable, we cannot hope to settle the general decision problem for
second degree formulas. This is what makes the result reported here for a special kind of

second degree formula have some interest.

We use section 1 to sketch with great brevity the argument of Meyer 79b for the
reducibility of the decision problem to the second degree. Then in section 2 we show how to
decide the positive case of a conjunction of entailments entailing an entailment, and in section

3 we add what is necessary to carry out the argument in the presence of negation.

1. Reducibility of the decision question to the second degree. We use Meyer 79b. Let t be

characterized as in §27.1.2 so that it is provable and provably implies all instances A — A of

identity. Let the horseshoe be material “implication”:

ADB=4~AVB.

Then it is perfectly clear that for an enormous range of calculuses S the following are

equivalent:

LEg(.A.)
2. Fglt&(p— A)& (A —p)]D(..p..)

In fact, given 1, it is easy to see by the Light of Natural Reason that we can establish 2 not

only as a material “implication” but even as a real implication

2. bgltk (p—A) & (A—p)] = (pe)
in any of a number of calculuses; the Light shows that it is a matter of having the right sort
of replacement principles. (¢ is needed to supply instances of B — B perhaps needed to help in
making replacements in conjunctive or disjunctive contexts, and in the weaker calculuses to
yield (...A...) itself; we skip the details.) And given 2’ one can move to 2 by easy steps. The
reverse direction, from 2 to 1, involves first a substitution of A for p, and then the rule () -
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detachment for material “implication” - as reported in §25 (the result is due to Meyer and

Dunn) for all the systems we care about.

It is also perfectly clear that if we choose A in 1 and 2 as a formula A; — A, where A,
and A, contain no arrows, we can gradually reduce the amount of nesting we need to consider
to that represented by p — (A; — A,) and (A; — A,) — p; that is, to the second degree.
And t itself can be replaced (as in Anderson and Belnap 1959) by a conjunction of identities

q — q between propositional variables.

2. The positive case. In order to highlight the main line of our argument, we first address the
positive case of the question as to when a conjunction of entailments entails an entailment.
We answer this form of the question by supplying a common decision procedure for all
systems between B, + Conjunctive transitivity, that is, (A - B) & (B - C) -». A > C,
and R,. (B, was defined in Routley and Meyer 72a and R, in §27.1.1.) The decision
procedure was found in 1966; the present version, which dates from a decade later, translates
the semantic basis of the procedure from an algebraic form to a form based on the three-

termed relational semantics described in Routley and Meyer 73a, 72a and in RLR.

First some notational conventions.
A;, B;, C and D range over zero degree (arrow-free) formulas.
P=4(A; = B)) &.&[A, - B))
U :dfP —-.C—>D

N =41, ..., n}
W, X, Y, Z range over nonempty proper subsets of N.
VA =4¢ Ail V..V Aip’ for X = {ij, ..., ip}

LAy =g Aj & Aip’ for X = ditto.

Define a set J of formulas to be a U, -set iff (1) every formula in J has one of the forms
C — VAy, &By — VAy, or &By — D, and there is a binary relation C on J such that (2) if
FCG then F has one of the first two forms above (so its consequent is VAy), G has one of the
second two forms (so its antecedent is &By), and X U Y = N; (3) for some X, Y,
(C — VA)C(&By — D); and (4) C is “strongly dense” in J: if FCG, then for some H € J,
both FCH and HCG. Hereafter by dense we mean strongly dense.

Define a set J of formulas to be provable in a given system if some disjunction of

members of the set is provable.

THEOREM. Let S, be any system between (B+ + Conjunctive transitivity) and R,.
Then a negation-free U is provable in S, just in case so also are C — VAy, &By — D, and

every U -set.
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This will provide a decision procedure for U because (a) there are only finitely many
formulas of the sort specified in (1) of the definition of U_ -set, (b) checking whether a subset
J of these has (2)-(4) is effective, (c) J is provable just in case one of its members is (by §19.5
and §24.3), (d) a member is provable just in case it is a tautological entailment (by §24.2),
which (e) is decidable (by §15.1 or §15.3 or §17).

PROOF. For sufficiency of the provability of C — VAy and &By — D together with all
the U -sets for the provability of U, we observe the derivability, in the weakest S
considered, of the following two rules (-X =4 N-X).

Rule 1. Conclusion: U. Premisses:
(C— VAY) V(P —. &A y = VB y) V (&By — D)

is a premiss for each X, Y, neither being N, such that X U Y = N. There are two more
premisses: C — VA and &By — D.

Rule 2. Conclusion: P —. &A_ y — VB_y, with neither X nor Y being N, and with X U

Y = N. Premisses:
(P—. &A x — VBy) V (&By — VA7) V (P —. &A 5 — VB y)
is a premiss for each W, Z, neither being N, such that XU W = Nand YU Z = N.

We may justify Rule 1 as follows. Assume all its premisses, and choose one disjunct
from each for a Big Distribution argument. Let {X;} be the set of index-sets on the chosen C
— VAy; disjuncts and let {Y } be the set of index-sets on the chosen &BY — D disjuncts
(these will be nonempty). Where {X’} is the set of all selection-sets over {X] } (ie., each X’}
has a nonempty intersection with each X;) and where {Y’_} is the set of selection-sets over
{Yj}’ we have (by modest distributions) both

C—(..V (&Ax,k) v..)
and

(--& (VByym) &...) - D.
To obtain the conclusion of Rule 1 it suffi-es to show every

P —. &AX,k - \/BY,m
We have this whenever X’} N Y’ # @ by the definition of P. And when X’y N Y’ = 0,

consider that since -X’y U-Y’ = N, we must have
C—-VAyv, )V(P—-. &Ay, — VBy, )V (&B.y» D
( X k) (P — X K Y m) ( Y m - )

among the premisses of Rule 1. Because X’y and Y’ are selection-sets over {X;} and {Yj}
respectively, our initial choice of disjunct for the Big Distribution must have been P —.

&Ay, — VBy, (for no set can select from its own complement).
X’k Y’

Our justification of Rule 2 is similar. With {-W,} being all the index-sets (on the Bs) of
chosen first disjuncts and {-Zi} being all the index-sets (on the As) of chosen third disjuncts,
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we have, for the families of all selection-sets {W’\} and {2’ } over {-W’} and {—Z’j}

respectively,

P &A y — (.. V (&Bw,k) V..)and
P —. (...& (VAzy ) &...) — VB_Y.
m

Now consider that we must have as one of the premisses of Rule 2 the instance with W’} for
W and 2’ for Z; and as for Rule 1, in each such case we must have chosen the middle

disjunct

&Bw» — VAg, .
wk Zm

These suffice with what we already have to yield the conclusion of Rule 2.

Having established Rules 1 and 2 as derivable in even the weakest calculus S
considered in the Theorem, we return to the sufficiency of the provability of C — VAy,
&By — D, and all the U -sets, for the provability of U; and we proceed by contraposition:
suppose U is unprovable. Then so is some premiss of Rule 1, and if it is either C — VA or
&By — D we are home free. Otherwise we are going to find a U, -set by constructing a
directed graph G - i.e., a collection of nodes and edges, each edge having a node as source and
a node (not necessarily distinct) as target. Further, every edge will be labelled. Distinct

edges might have the same label, but never both the same source and the same target.

Begin G by using “otherwise” to choose some unprovable premiss of Rule 1 having the
form of the displayed three-termed disjunction. Put in the outside disjuncts as nodes.

Connect them by an edge from the left to the right. Label the edge with the middle disjunct.

To proceed, let us say an edge E is densed in a graph if E is not a counterexample to
strong density: i.e., E is densed iff there is in the graph a node such that there is an edge from
the source of E to that node and an edge from that node to the target of E. If at a stage of the
construction every edge in the graph so far constructed is densed, stop. Otherwise, choose
some undensed edge E. Its label will be unprovable, and will be a fit conclusion of Rule 2.
Choose an unprovable premiss of Rule 2. The middle disjunct F of the chosen premiss
provides a node (possibly new, possibly already in the graph). Enter an edge from the source
of E to F (unless there already is one), labelling it with the left disjunct of the chosen premiss,
and also an edge from F to the target of E (unless there already is one), labelling it with the

right disjunct of the chosen premiss.

This construction is bound to stop since there are only finitely many possible nodes,
hence only finitely many possible edges. The desired graph G has then been constructed. The
set J of its nodes is clearly unprovable, and also clearly a U, -set, defining C by: FCG just in
case F and G are nodes in G such that there is in G an edge from F to G. Which finishes on

the side of sufficiency.
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For the converse we require the semantic theories of Routley and Meyer 73a, and of RLR,
which for present purposes we use in the following form. An R, model structure is a set K
containing a distinguished point 0 and admitting a three-place relation R satisfying the
following conditions: Identity (ROaa); Monotony (RZOabc implies Rabc, where RZ%abcd iff
Rabx and Rxcd, some x); Idempotence (Raaa); and Pasch (R%abcd implies R%acbd). An R .
model is such a structure together with a valuation of the variables that respects the
condition that if ROab, then any variable made true at a is also made true at b. Validity is
defined in terms of truth at the distinguished point 0; there are valuation clauses for each
connective. To obtain an R model structure (etc.), one adds an operation * on K, and relates

it to negation. See the aforementioned references for details.

Suppose first C — VA is unprovable. Take (say) the R, model structure K based on
{0, 1, 2} from near the end of Routley and Meyer 73a, noting that R021 fails while R121
holds. Use standard maximalizing techniques to find a prime R, -theory S(C — VAy)
containing C but not VAy. Make variables true at 2 iff in S(C — VAy), and false everywhere
else, so that all (positive) formulas are false everywhere but 2, the A, are false at 2 as well,
and C is true at 2. R121 implies that C — D is false at 1 (since C is true at 2 and D is false at
1); and since the A, are false everywhere, the A; — B, are true everywhere, so true at 1. So
RO11 implies that P is false at 0, hence unprovable in R, ; and the argument when &By — D

is unprovable is similar.

For the rest, let J be an unprovable U, -set. We need to show U unprovable in R, .
First some definitions, and then a lemma relating the strong density feature of U_ -sets to R
model structures.

DEFINITIONS. Given a binary relation C on a set J,

cli= C/C...C/C(i C’s; “/” for relative product).
CEI is the transitive closure of C, so that aCab iff aCib, some i (hence the notation; we need to
reserve the more usual *). C is (strongly) dense in J (“mediated” in Belnap 67b) iff aCb
implies aC2b.

CONVENTION. a, b, ¢, d, e, f range over J.

DEFINITIONAL FACTS (used only silently).

If aClb then aCb.

If aCJb then aCib, some i.

If aC'tJb then aClc and chb, some c.
If aC7b and bCTc then aCc.

DENSITY FACTS. If C is strongly dense in J:

1. If aC'b then aClb whenever i < j.

2. 1f aC7b then for each j there is a ¢ such that: aC3c and cClb.
3. If aC3b then for each j there is a ¢ such that: aClc and cCb.
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4. If aCab then there is a ¢ such that: aCac and cCab.

DENSITY LEMMA. Let C be strongly dense in J. Then there is an R, model structure <K,
R, 0> such that J C K and there is a point p; € K such that for a, b € J, Rp,ab iff aCb.

PROOF. First define K by adding to J a denumerable family of points, all distinct from those
in J and from each other: 0, py, ..., p;, ... . 0 is defined as 0. Now define R on K as follows.

(Recall that by convention, a, b, c, d, e, f range over J.)
1. ROxyiffx =y

RxOy iff x =y

Rxy0iff x =y =0

Rpipjx iff x = some py, and k < i+j

Rpiapj is TRUE

Rapipj is TRUE

Rp;ab iff aC'b

Rap;b iff aC'b

Rabp, is TRUE

Rabc iff one of

10.1. a=b=c

10.2. aCac

10.3. bC

© ® NP o s oo

—
e

(If it is desired to keep the R, model structure finite, this can be done when there is a
longest C3-chain in J; i.e., when there is an n such that C"t! = C™. Then it is only necessary
to add n+1 points 0, py, ..., p,, which keeps the R, model structure finite if J is. Nothing
would need changing in the definition of the R relation above. And the verification below of
Pasch would go through, too, except that when asked to choose Pitj with i+j over the

maximum n, choose p, instead.)

It is obvious that Rp,ab iff aCb. But to see that this is a R, model structure, we need
to verify four items. Identity and Monotony are trivial in virtue of 1-2; Idempotence is also

easy, so that Pasch is the only problem.

For Pasch, we are given szxyz, i.e., Rwxg and Rgyz - we sometimes call g “the given

link”. We want R2wyxz, i.e., for some m (we call it “ the missing link”), Rwym and Rmxz.
Trivial arguments suffice when any of w, x, g, y, z are 0.
Let z = p . If any of w, x, y are in J, the wanted R2wyxz holds quite generally - by 4, 5,
6, 9. The remaining subcase begins with Rzpipjpkpm. A little calculation using 4 shows that

we can choose the missing link as Pitk-

In the remaining cases, we are assuming z € J.
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Case 1. y = py. The given link cannot by 4 be p;, so, with g € J, we must have ngz.

Case 1.1. x = =Py Observe that since the given link is not p;, w cannot be p_. So we must

have w € J, and wC-]g, hence wCI Kz, Choose the missing link so that wClm and ka
Case 1.2. x €J.
Case 1.2.1. w =p;, s0 xCig, so xCitkz. Choose the missing link as Ptk

Case 1.2.2. w e J. Cases on Rwxg are given by 10. If w = x = g, kaz, so missing link can be
P If wCag, then wCJz. Use missing link promised for k by Density fact 3. If xCag, then
xCz. Use P, Where xC™z.

Case 2. y € J.

Case 2.1. The given link is p, so kaz. Four subcases. If w = p, and x = p;, k < i+j. By
Density fact 1, yCH-jz. Choose the missing link m so that yCim and mOlz. fw e J and x =
pj, use the missing link promised for j by Density fact 2. If w = p; and x € J, use the missing
link promised for i by Density fact 3. If w, x € J, use the missing link promised by Density
fact 4.

Case 2.2. The given link is in J, so not both w = = p; and x = Pj» and cases for Rgyz are
determined by 10. If w € J and x = = pj, we shall have either wCaz or yCaz and can use the
missing link promised for j by Den51ty fact 2. If Rgyz holds because yCaz we can use either
Density fact 3 for i (if w = pi) or Density fact 4 (if w, x € J). We examine the remaining

cases.

Case 2.2.1. w =p, x € J,s0 xCig. Ifg=y=z, xCiz, and the missing link can be chosen as

p; If gCaz, then wCaz, and missing link can be chosen as P, Where wC™Mz,

Case 2.2.2. w, x € J, so cases for Rwxg given by 10. Suppose w = x = g. Ifalso g = y = z,
the matter is trivial. If gCaz, then wCiz, and Density fact 4 can be used. Suppose next wCig.
Then in either of the remaining cases on Rgyz, wCz holds, so Density fact 4 can be used.
Suppose lastly, xCag. Then in either remaining case on Rgyz, xC¥ holds, so the missing link

can be chosen as a p; such that xClz. This closes the cases.

Returning now to the proof of the theorem, we have let J be an unprovable U, -set and

need to show U unprovable in R,.

First invoke the Density lemma to get the R, model structure there promised. We need
to find a valuation which will turn this into a R, model falsifying U. For each formula J = J,
— Jg € J, use a standard maximalizing construction to find a prime R_ -theory S(J) including
its antecedent J; and excluding its consequent Jy. This can be done because J is unprovable,
and accordingly all members J of J are also unprovable. Let S(J) determine the value of each
variable p at J. Further, set the value of p at points in K-J as always true. (By prime

R -theoryhood, the antecedent of J is true at J, and its consequent is not true at J.)

We show that U =P —.C — D is false at 0 by showing P true at p; and C — D false at
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P;- C — Dis false at p; in virtue of Rp;ab, where a = (C = VAy) and b = (&By — D), as
promised by (3) of the definition of a U -set. For C must be true at a, and D false at b. Of
course Rp;ab holds because (3) promises aCb, and Rp;ab was defined as holding just when
aCb.

P is true at p; because for each i, A; — B, is true at p;. For suppose A; — B, were false
at py; then Rpxy, where A, is true at x and B, false at y. y cannot be a point 0 or pj, since we
are positive, so all zero degree formulas are true at all of these. Since y € J, by the definition
of R, x must also € J; and indeed we must have xCy. But then by clause 2 of the definition of
U, -set, (the very end of that clause), either A, is a disjunct of the consequent of x, hence false
at x, or B, is a conjunct of the antecedent of y, hence true at y. Which is all most absurd.

This completes the proof.

3. The case with negation. Having given a straightforward answer to the positive case of the

question as to which entailments entail which entailments, we now indicate the complications
induced by negation. The only interesting one is the graph-theoretical fact referred to below

as the Dense graph lemma.

We want to decide
U'=(A —-B)&.&(A, —-B )—.C—D,

where although the As and Bs remain zero degree, they can now involve negation. To relate
this problem as much as possible to the notation outlined for the positive case of section 2,
define n = 2m, and Am1L1 = Ei’ and Bm+l = ‘I\i (1 €1 < m). Then we use without change
the definitions given for the positive case of P, U, N, W, X, Y, Z, VAy, and &Ay. In

particular,

P=(A,»B)&.& (A, —B )& (B, —-A)&.&(B,—A)).
Obviously, the original question for U’ is by contraposition equivalent to the question for
U. Adding now to the definitions for the positive case, define J to be a U-set if it is a U+-set

satisfying one further condition: (5) the transitive closure CFof CinJis “weakly connected”
in J: for F # G ¢ J, either FCIG or GCF (i.e., either FCH,CH,C...CH CG or vice versa).

THEOREM. Let S be a calculus between B, + Conjunctive transitivity + RI12
(contraposition) + R13 (double negation) of §27.1.1 and R. Then U is provable in S just in
case so also is C — VA, &BN — D, and every U-set.

PROOF. Suppose U unprovable. Dismiss C — VAN and &BN — D as before. Otherwise
using the graph construction of the positive case, obtain a graph G, which is a graph of a
U_ -set but not necessarily a U-set. To proceed, we need some graph terminology and a

+
lemma.

Since we are conceiving of a graph as a set of nodes and edges (assuming that
membership of an edge guarantees membership of its source and target as nodes), by a

subgraph we can mean just a graph which is a subset.
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A G-path from ato b is a sequence of edges <a, x>, <X{, X9, ... <X 4, X >, <X, b>, all
of which are in G. By G(a) - the G-leaf of a (Ore 62) - we mean a together with all edges and
nodes of edges that lie on some G-path from a to a. Every node a in G is a member of exactly
one G-leaf in G, though perhaps only of an edgeless leaf containing just a itself. Note that
G(a) = G(b) just in case b € G(a), and also just in case either a = b or there is both a G-path
from a to b and a G-path from b to a. A leaf G(a) is said to be in a subgraph H of G if it is
itself a subgraph of H. For G(a) and G(b) both in a subgraph H of G, G(a) H-precedes G(b) if
there is an H-path from a to b, but none from b to a; and G(a) immediately H-precedes G(b)
if G(a) H-precedes G(b) but there is no G(c) in H between them (in the sense of H-
precedence). All of these relations are independent of the choice of representatives of G(a),

G(b), G(c)-

We note that if G is dense (= strongly dense), so is every G-leaf G(a), since if an edge
<b, ¢> lies on a G-path from a to a, so do the edges <b, d> and <d, ¢c> known by density to be
in G.

DENSE GRAPH LEMMA. Let G be a graph which (1) contains an edge <c, d> and (2) is
dense. Then G has a subgraph G’ that (1) contains <c, d>, (2) is dense and (3) is weakly

connected, where by saying that any H is weakly connected we mean that for each pair of
distinct nodes a, b in H, either there is a H-path from a to b, or a H-path from b to a.
PROOF. Preparing for Zorn’s lemma, let I" be the family of all subgraphs H of G such that

I'l. H includes <c, d>, hence c and d.
I?. Ifaisin H,sois G(a).
I'3. The set of G-leaves in H is simply ordered by H-precedence.

I't. If an edge <a, b> in H is undensed in H, then (1) G(a) immediately H-precedes G(b) and
(2) no other edge in H from a node in G(a) to a node in G(b) is undensed in H.

I'is nonempty by containing the subgraph consisting of exactly G(c), G(d) and the edge
<c, d>. And it can be verified that the union of every nonempty chain in I'is itself a member
of I So by Zorn’s lemma, I" has a maximal member G’. By I'l-I3, G’ is evidently a weakly

connected subgraph of G containing <c, d>. We show that maximality leads to density.

Because G’ belongs to I', it must have a picture like this, where we are supposing for
reductio that the edge from x to y is undensed in G’ (the other displayed edges are supposed

to represent arbitrary other undensed edges, taking account of I'4).

GO-0O0C

G’-precedence of leaves is from left to right; note I' 3. By the density of G, there are
edges <x, z> and <z, y> in G. Define G” as the result of adding these two edges and also G(z)
to G’. Because of the new edges, G(z) cannot G”-precede G(x) or be G”-preceded by G(y).
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Consequently, it must either be G(x), or be G(y), or lie between them (in G”). So there are
three cases for G”, as faithfully represented by the following pictures.

e

e
Gos

Because <x, y> was not densed in G’, the displayed new edges outside of leaves must
really be new, so that G” is a proper supergraph of G’. And recalling that edges within a leaf
are one and all densed, one can see almost by inspection that G” is in I. This contradicts the

maximality of G’, and finishes the Dense graph lemma.

Choosing ¢ = C — VAy and d = &By, — D, apply the Lemma to the graph G of the
U, -set provided by the construction of the positive case (section 2), getting G’. Define J as
the set of nodes in G’, and let FCG hold just in case <F, G> is an edge in G’. Evidently J is a
U-set; and an unprovable one. So if U is unprovable, so is some U-set (or C — VA or &BY
e d D)-

The part of the converse involving C — VA, and &By, — D is left to the reader. For

the rest, suppose J is an unprovable U-set. We first invoke the

DENSITY-CONNEXITY/R LEMMA. Let C be dense in J and let its transitive closure 3 be
weakly connected in J. Then there is an R model structure (K, R, 0, *) such that J C K and
there is a point P; € K such that for a, b e J, Rplab iff aCb.

PROOQOF. Let * be a function mapping J one-one onto some disjoint set J*, and define J! as J
UJ*. Let 0,py, ..., P;y -3 P;*, -y P;*, - be all distinct and not in J!, and let K be the result
of adding these to J!. Let * on K be an extension of * on J such that 0* = 0, p.* = p,* (so to
speak), p,** = p,; and for a* € J*, a** = a € J. Note that x** = x. Extend C to all of J! by
declaring, for a, b € J, never aCb*, never a*Cb, and a*Cb* iff bCa. Note that in general for
a, b € J!, aCb iff b*Ca*, and similarly when C is replaced by Clor . Evidently C is dense

in JI. Define R on K as follows
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R1. ROxx, Rx0x, and Rxx*0 all hold.

R2. Rpi*xy*, Rxpi*y*, and Rxyp; all hold if neither x nor y is 0, and if at least one of x or y
is not some Py

R3. Rpl-pjpk, Rpl-pk*pj*, and Rpk*pipj* all hold if k < i+j. .

R4. Rp,xy, Rxp,y, and ny*pi* all hold if x, y € J! and if xCly.

R5. Rxyz holds if x, y, z € J!, and if either (x =y =zorx = y* =zorx = y* =z*) or (xCaz
or yCaz or xCay*).

Rxyz does not hold if not by 1-5.

One may verify that (K, R, 0, *) is indeed an R model structure. The only really new
case - i.e., the only case not taken care of either automatically or via density - is the following
instance of Pasch: Rxx*0 and ROyy imply szyx*y, when x, y € J!, and when neither x =y
nor x = y*. In this case we can argue by the weak connexity of ¢Fin J, and hence in J*, that
one of the following holds: xCHy or yCax (if x and y are either both in J, or both in J*) or
xCay* or y*Cax (if x e Jand y € J*, or vice versa). And in each of these cases an appropriate
missing link is available - a member of J! in the former cases, and a pi* or p; in the latter.
(We note for its interest that the weak connexity of J is a bit stronger than required; it would
be all right, too, if either xC¥x or yCay. That is, we really only need the connectedness of
distinct points neither of which is self-connected. Further, if in different circumstances J and
J* were being developed together so that there could be interesting C-relations between them,
and assuming xCy iff y*Cx*, then the form of connectedness required of J! is precisely that
when x # y and x # y* and neither x nor y is self-connected by Ca. then either x or x* bears
C7 to either y or y*.)

Resuming the proof of the theorem where we left off, we have an unprovable U-set J and
need to show U unprovable in R. The Density-connexity /R lemma gives us an appropriate R
model structure. For its valuation we find for each formula J € J a prime R-theory S(J)
including its antecedent and excluding its consequent. Let membership in S(J) determine the
value of each variable at J € J. And let p be true at a*, for a € J, just in case p £ S(a). Lastly,
let p be true at all members of K-J!. Calculate that E is true at J € J iff E € S(J).

The argument that P —. C — D is false at 0 proceeds as before, except for showing that
one cannot have Rp xy with A, true at x and B; not true at y. Consider only 1 € 1 € m,
noting that other conjuncts of P(m+1 < i < 2m) are contrapositives of these. As before, we
may restrict attention to x, y both in J!, and the argument does not change if x, y € J. Since
one cannot under the hypothesis Rp,xy (hence xCy) have one of x, y in J and the other in J*,
the only remaining case is when both are in J* - and furthermore y*Cx* (with both y*, x* €
J). In this case we note that A = Ei and B, = ;\i that by the clause (2) of the
definition of U-set, either B, is a disjunct of the consequent of y*, hence false at y*, hence
making B; true at y; or in a parallel way A, is made false at x. Which is even more absurd.

This completes the proof.
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OBSERVATIONS. This general type of decision method can be extended in various ways to
treat of somewhat more complex formulas, but nothing of much interest appears to emerge.

For a different type of method in a closely related setting, see Meyer 79a.

It might turn out to be interesting to look on the rule, from C — VAjyand &By — D
and all U-sets (each construed as a disjunction) to infer U’ (i.e., (A; — B;) &..& (A, —
Bm) —. C — D - noting m, not n), as a kind of Gentzen rule. In contrast with Rules 1 and 2,
it is “cut free” in the sense that no constituent occurs as both antecedent and consequent part.
It is to be noted that the rule is derivable, hence usable inside of disjunctive contexts, but not

itself an ertailment, so not usable inside intensional contexts.

NOTE

This paper was prepared in part while at the Center for Advanced Studies in the Behavioural
Sciences. I am grateful for financial support provided by National Endowment for the
Humanities Grant No. FC-20029-82 (Andrew W. Mellon Foundation). In addition I
thank Sandra Roper for help in the earlier stages and Daniel Cohen for help in the later.



CHAPTER 15

CATEGORICAL PROPOSITIONS IN
RELEVANCE LOGIC

John Bacon

0. The problem. How can we translate ‘All men are mortal’! into the idiom of relevance
logic? To this simple question no simple answers present themselves. Questions of translation
are interconnected with the relation of the object language of relevance logic to its
metalanguage. In the modern semantic tradition that metalanguage is extensional, and hence
prima facie irrelevant. Does it not nevertheless shed more light on R, RQ, etc., than would a
relevant metalanguage? From one point of view, undoubtedly so, but a point of view far

removed from the one that inspired relevance logic.

To get things off the ground, let me begin by correlating properties (propositional
functions) [S| and |P| with the two one-place predicates S and P of RQ. The idea is that |P|
is the set of things of which P is true in the world w, and similarly for [S| , | | being an
intensional valuation function. We can now ask two different questions:

Q0. What RQ sentence form in S and P is true in w iff

(0) 18], € [Pl
for all w, S, P, and | |?
Q. What RQ sentence form in S and P is true in w iff

(1) all members of |S|  are members of [P|, ,
for allw, S, P, and | |?

To QO there is an immediate answer:
AO. Vx(Sx D Px)
Q, on the other hand, is perplexing; for the time being let us refer to the sought-for answer as
A. AllSareP.
1. AO defended. In extensional metalanguages, to be sure, we are accustomed to infer
(2) from |a|, €S|, and [S| C|P|, that|a| |[P]|,,
where [a|, is a’s referent in world w. But in RQ, the inference
(3) Sa, Vx(Sx D Px) .. Pa

is problematic. Thanks to the heroic efforts of Meyer and Dunn 69, we know that (3) goes
through when Sa and A0 are theorems, i.e. valid. Material modus ponens being thus
admissible to RQ), there is no logical deterrent to our postulating that (3) also applies to
empirical facts (as in Bacon 66, pp. 121f). But what about the cases where Sa and A0 are
mere hypotheses? In that case, as we know, material modus ponens is inadmissible, so that Pa

does not follow?. Is A0 then an inept RQ-translation of [S| ~C |P|, after all? Not
197
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necessarily. More likely, our problem is that the notion of inference involved in the
metalinguistic (2) is classical, whereas the corresponding inference (3) from hypotheses that
fails in RQ is a would-be relevant inference. Once we look at it this way, the seeming

discrepancy in inferential power between A0 and (0) vanishes.

2. Universal relevant implication? Now consider the inference
[a],, € [S|,,» All members of S|, are members of |P|, .. [a], €|P],,
the metalinguistic counterpart of what I will call the
Socrates syllogism. Sa, All S are P .". Pa.
I claim that these are valid whether the ‘.. is construed classically or relevantly. Which
brings us back to Q. The seemingly obvious answer to that question is
A1? Vx(Sx — Px),
for
(4) Sa, Vx(Sx — Px) .. Pa

is RQ-valid even as applied to hypotheses. Ultimately, I believe that A1? is correct, but
doubts are cast by a little excursion back into syllogistic, suggesting that A1? may be too

strong.

3. Immediate inference: some desiderata. The logic of categorical propositions is the
oldest branch of logic to have been formalized. In its simplicity and fidelity to ordinary ways
of thinking, it has even more immediate appeal than R. Provided we skirt existential import
gingerly, we had better think twice before we flout the laws of syllogistic. Now, according to
the square of opposition, the A-proposition is the contradictory of O, while I is the

contradictory of E:
(5) Axz~O
I:~E
Furthermore, according to Aristotle (De Interpretatione 20a20-23), E is the obverse of A and
I the obverse of O:
(6) E(P): A(~P)
I(P) :: O(~P)
where the predicate term is shown in parentheses. So far as affirmative categoricals are
concerned, (5) and (6) yield a dual relation of equivalence between A and I,
DI. I(P): ~A(~P)

and a similar duality relates the negative categoricals. Problem: to find an answer to Q such

that the I-form resulting via DI really does say something like
L. Some S are P.

And it is right here that A1? runs into difficulty. For by DI we get
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(7)  3x(Sx o Px)
for the I-proposition. As (7) certainly looks too weak, its dual A1? would seem to be too

strong.

What we are looking for, then, seems to be something in between A1? and A0. That is,

if we can manage it, we want

D3. Vx(Sx — Px) .. All S are P, but not vice versa
D4. All S are P .. Vx(Sx D Px), but not vice versa

to be valid. The overriding condition is that

D2. Socrates be RQ-valid even as applied to hypotheses.

4. Universal intuitionistic implication? An interesting candidate suggested by D3 and
D4 at this point is the generalization of the Currian-intuitionistic conditional 1, which
Anderson and Belnap have defined in Rt (61) and Meyer in R (73):

A2? Vx(Sx 1 Px) ie. Vx3rfr & (r & Sx — Px)]
or Vx(t & Sx — Px).

If we interpret A as A2?, then D3 is valid but not the converse. What is more impressive,
Socrates goes through even for hypothetical premisses (D2), provided that the hypotheses are
correlevant, i.e. conjoinable. This would seem to be just what we are looking for. (4), with
—, is applicable to mutually irrelevant hypotheses. (3), with D, is applicable only to
theorems. And

Sa, Vx(Sx J Px) .. Pa
is in between, just as we wanted. But there are two rubs. First, D4 fails for an intuitionistic

conditional on the left. Second and more seriously, applying DI to A2? we get

Ix~(Sx 3 ~Px) i.e. 3IxVr[r O (r & Sx) o Px|
or Ix[(t & Sx) o Px]

for 1. This is hardly a recognizable rendering of "Some S are P 1.3

5. Many-sorted logic? Before getting desperate and reaching for extensional semantics, let
me touch upon a “solution” to our problem that occurred to me as a graduate student of
Rulon Wells’ trying to interpret Aristotle’s Analytica Priora (cf. Bacon 67; 71, section 25

n.16). It seemed to me that truth-conditions for Pa and
(8) VxPx
were unproblematic even in relevance logic. Perhaps we could get a hold of A by taking a cue

from the fact that natural languages give it essentially the same structure as (8), viz.

(9) Al are P4

Now, the ordinary-language similarity between the universal category word ‘things’ and the
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ordinary common noun ‘men’ as plugged into (9) is reflected in the similar behaviour of the
unrestricted variable x and the restricted sortal variable s (say) in many-sorted logic. My
idea, therefore, was to make an end run around connective interpretations of A by rendering it

as
A3? VsPs,

s being a restricted variable ranging over Dw(s) in world w, with D a domain function on
worlds and on variables of various sorts. In fact, a similar treatment of categoricals had been
worked out with great success in a classical context by Smiley 62 and Parry 66. The trouble
with this “solution” in a relevance context is that it begs Q semantically. A3? is presumably

true in w iff
All members of D, (s) are members of |P| ,

which brings us smack up against (1) again. Of course, this doesn’t mean that the many-
sorted approach, or its generalization in terms of qualifiers (i.e. variable-restrictors - cf.

Bacon 71, p.79 n.16) won’t work, but merely that it sheds no new light on our problem.

6. Conditional assertion? When in the dark, relevantists turn to Anderson and Belnap.
Sure enough, Belnap has already provided another, less trivial development of the insight that
categoricals are restricted quantifications. According to Belnap, restricted quantification is

quantified conditional assertion, so that e.g. A becomes

A4? Vx(Sx/Px),

where [-Sx/Px_I asserts the same proposition (if any) as Px unless Sx is false, in which case
I_Sx/Px_-] asserts nothing (Belnap 73, 53(5)). The dual of A4? by DI turns out to be

(10) 3Ix(Sx/Px),

whose virtues as a rendering of I Belnap has already ably pleaded. We even get

subalternation into the bargain!

It would seem, then, that what we need is an extension of relevance logic to include an
appropriate notion of conditional assertion. Since, however, the conditional-assertion
semantics is in fact finer-grained than relevance semantics, the task is more accurately put as

the extension of the logic of conditional assertion® to comprise a relevant conditional.

The difficulty with A4? and (10) is their failure to validate all of syllogistic, even the
part that admits empty terms. As Belnap notes, simple conversion of (10) fails (73, p.68). So

does the nontraditional but evident

(11) Some S are P .. Something is P
if we render I as (10).
7. Universal relevant implication after all.” When it comes to that, it turns out that

A1? and (7) provide a better fit for syllogistic in RQ after all. They too raise problems with

(11), but they validate simple conversion and in fact all of Brentanian syllogistic (Aristotelian
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syllogistic admitting empty and negative terms), including immediate inferences and CaAnp
are P . And it is no wonder that (11) is rejected in the form

Ix(Sx o Px) .. IxPx,

for the dual of this is the egregiously irrelevant
(12) ~3xPx .. Vx(Px — Sx).

We recall that (11) is not in any case a traditional law of syllogistic, even as purged of
existential import. Even so, we can recapture it if we revise our rendering of r—Somet,hing is
P Taking our cue from the parallel between Msome S ! and ‘some thing’, noted in effect in
connection with (9), let us make ‘thing’ an explicit term, for which the propositional constant
‘T’ (i.e. ‘dpp’) comes in handy (Anderson and Belnap 75, p. 342, Meyer 73, p. 172).

[—Something is P ! now becomes I—EX(T o Px)_‘, making (11) in the form

3x(Sx o Px) .. 3x(T o Px)

RQ-valid. Thus it appears that we were too hasty in rejecting (7) as too weak. The motive

for desideratum D3 accordingly collapses. A1? and (7) will do the job nicely.

8. Just relevant implication? Indeed, as Martin and Meyer in effect point out (86a), this
interpretation of syllogistic in RQ survives even if we simply delete all quantifiers and
variables. (The Socrates syllogism must first be subsumed under Barbara in the traditional
ways.) Simple sentences become for this purpose syllogistic terms, and innermost ~ and —
become term-negation and inclusion respectively. In fact, this interpretation doesn’t even
require the full R: R~, or E/df or their intersection alone will do. Call the latter, minus
simple sentences standing alone as well-formedg, the “syllogistic fragment” of R, or R_. It
turns out that R is precisely Brentanian syllogistic with negative terms: cf. Shepherdson’s
axiomatization A; (56, pp.137, 141), but imagine a natural-deduction rather than a

propositional basis and leave out the irrelevant axiom

A5. Aaa’ D Aab ie. P ~P.. P S.

R_ is also equivalent to the syllogistic part of Sommers’ calculus of terms (70), as 1 show

elsewhere (87). An empty domain is precluded for R, by the nonequivalent,lo deducibilities

~P5P..PoP
T—-P..ToP

According to Anderson and Belnap, the first-degree-formula fragments of R, E, and T
are all the same, viz. Efdf (Anderson and Belnap 75, pp.285f)11. Since syllogistic fragments
are the conjunction-disjunction-free parts of the corresponding first-degree-formula fragments,
it follows that R, E, and T all have the same syllogistic fragment, viz. R,. I conjecture that
the larger fragment of Efdf in which no arrow occurs in the scope of ‘&’ or ‘v’ is Brentanian

syllogistic with complex terms, i.e. with intersection and union.

The two rivals of Rs as a formalization of syllogistic are on the one hand the syllogistic

fragment of the classical propositional calculus, i.e. essentially Shepherdson’s A, and on the
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other hand Martin and Meyer’s S, which lacks P P lor T AllP are P . While it is true
that Aristotle nowhere explicitly endorses anything like TAll P are P_], I strongly suspect he
would have considered | Some P are not P ! contradictory. For by his procedure of ekthesis
(existential instantiation) (Analytica Priora 25al5, 28a24), he could let N, say, be a P which
is not P, which has a ring of falsehood. Thus, however interesting S may be in its own right,

R_ is, I think, more nearly Aristotelian (once we admit empty terms).

In eschewing immediate inferences corresponding to (12) and A5, Aristotle was
implicitly rejecting not just the universal inclusion of the empty class but also ex falso

quodlibet. For since he excluded empty classes, the premisses of (12) and A5 would for

Aristotle be always false. Thus Aristotle was the first relevance logxcxan12

NOTES

1. As Parry pointed out, it is not to be taken for granted that ‘All men are mortal’, ‘All
men are mortals’, ‘Every man is a mortal’, ‘Whatever is human dies’, ‘All men die’, etc.
all have the same form or even the same truth-conditions. If not, the problem I raise
here is multiplied. To be precise, then, the problem concerns ‘Every person dies’, for
which I shall continue to write the traditional ‘All men are mortal’ here.

2. However, suppose we define ‘D’ not by ‘~’ and ‘v’ but, with Meyer 73, in analogy to the

Currian-intuitionistic ‘3’ discussed in section 4. In that case, 't D Pa ' or

Vr(r - r) D Pa | does follow, provided that Sa and AO are correlevant, i.e. hypotheses

of like rank. We must bear in mind, however, that this ‘O’ does not behave exactly like

the ‘~...V’ discussed above, even though each in its own way maps the material
conditional.

3.  Similar objections apply to the use of the material conditional as defined by Meyer 73:
cf. the preceding note.

4. Cf. Belnap (73, p.66): “Almost everyone, I suppose has considered from time to time
that ‘All crows are black’ might profitably be read in this way, as...” ... the assertion of
VxBx with the domain restricted to crows”.

5. I should find Manor’s emendation of the logic of conditional assertion (74) slightly more
congenial than Belnap’s original version.

6. Belnap sketched how to do this. If A and B are both assertive, then let A - Bj
assert the proposition it expresses on the Routley-Meyer semantics; if not, let ' A — B
assert nothing. [This leaves open the question of what to do when A and B are not
simple and therefore not rigid assertors in the semantics of conditional assertion. In the
Routley-Meyer semantics, all sentences are in effect rigid assertors.|

7. Sections 7 and 8 were added in 1981. The original paper rejected A1? and (7) in favour
of A4? and (10).

8.  This is not the matter of course it is in classical logic, for in RQ™ [_Vx(x —a— Px)—I
implies, but is not implied by, Pa. Similarly Pa implies, but is not implied by,
Ix(x =aoPx) ,a p0551ble o J_(Iactlon to section 7. The question remains which of

these three best translates | ais P !into RQ™.



10.

11.

12.
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This deletion is inessential, since in the presence of the contextually definable constant
‘4’ (ie. _“Vp(p — p)’), a simple sentence P is equivalent in R to the A-categorical
t—P .

There are two ways for a class P to be empty in R; T— ~PandP — ~Pr_the former
implying the latter but not vice versa. While T & ~p! implies " P — S |,
P — ~P ' does not.

That is, if ‘t’ is omitted from these fragments, for A ..t - A lis valid in R but not in
EorT.

Dunn pointed out that the problem raised here is just the tip of the iceberg of
accommodating set theory in relevance logic.



CHAPTER 16

INCOMPLETENESS FOR QUANTIFIED
RELEVANCE LOGICS!

Kit Fine

In the early seventies, several logicians developed a semantics for propositional systems
of relevance logic. The essential ingredients of this semantics were a privileged point o, an
‘accessibility’ relation R and a special operator * for evaluating negation. Under the truth-
conditions of the semantics, each formula A(P,...,P ) could be seen as expressing a first order
condition A+(p1,...,pn, o, R,*) on sets py,...,p, and o, R, *, while each formula-scheme could
be regarded as expressing the second-order condition Vp,,...,Vp, A+(p1,...,pn, o, R, *). Tt
could then be shown that many standard systems of propositional relevance logic were
complete in the sense that their theorems were just those formulas true in all models whose
components o, R and * conformed to the second-order conditions expressed by the axioms of

the system.

In the light of this work, it seemed reasonable to extend the completeness results to
quantificational systems of relevance logic. But what systems should be chosen? One would
like, in the first place, to deal with the systems that already exist in the literature, such as
quantified R (RQ) or quantified E (EQ). This, at least, is a debt that we owe to the history
of the subject. But one would also like to prove completeness for the quantificational
analogues of propositional systems that have already been proved to be complete. These
analogues might be obtained from the propositional system by adding a standard
quantificational component, consisting of such and such axioms and rules. Such a component
might be chosen in terms of its intrinsic plausibility as a quantificational basis. Less
arbitrarily, it might be chosen so as to yield a complete system when combined with the
minimal propositional system (the one complete under no special conditions on o, R or *). Not
surprisingly, the pre-existing systems turn out to be equivalent to the systems obtained by the

other approach.

The construction of the quantificational analogue is not, in fact, as straightforward as
this description might suggest; for the extension of the propositional semantics to the
quantificational case is not unique. It must be decided whether the domain 1 of individuals is
to be constant or not. If it is not constant, then there are various ways of dealing with non-
existent individuals, individuals that do not belong to the domain of the world or point under
consideration. But once these decisions are made, the choice of the quantificational

component can be fixed.

There are perhaps two reasons why the quantificational analogues are natural as
candidates for complete logics. First, they can be regarded as extensions of a minimal
quantificational system (complete under no special conditions on I, o, R or *); and so there is
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the same reason, as in the propositional case, to expect them to be complete. But second,
they are extensions of a particularly simple form: all of the additional axioms are
propositional. In so far, then, as there exist complete systems of this form, we can expect the

quantificational analogues, with their complete propositional basis, to be complete.

To some extent, this expectation is realized. For many of the subsystems of R that do
not contain either Transitivity (A — B) — ((B = C) — (A — C)) or its counterpart
(B - C) - ((A > B) » (A - C)) as theorems, completeness of the quantificational
counterpart can be proved under the various assumptions concerning the domains of
individuals. These results can be established either by the use of semantic tableaux or by the
Henkin method, although the usual techniques, that work so well in the propositional case,

require considerable variation here.?

However, the situation is quite different for those subsystems of R that contain
Transitivity or its counterpart as axioms. In this case, the quantificational analogues are not
complete under the constant domain semantics. Indeed, there is a single formula A,
described in section 2, that should be in such systems (is valid for the corresponding
semantics) but is not in them. This result holds for RQ, EQ and many weaker systems. I
suspect that incompleteness also holds under some forms of the variable domain semantics

(not all forms). However, I have not gone into the matter.

It is interesting to observe that a similar situation prevails in modal logic. Add a
standard quantificational component for the constant domain semantics to T, K4, S4, B or
S5, and you get a complete system. Add it to S4.2 and you get (as Kripke has pointed out to

me) an incomplete system.

At least in the case of relevance logic, the incompleteness results raise questions of great
technical and philosophical interest. First, what does a complete axiomatization of the R
semantics with constant domain look like? Why not push through a completeness proof and
see what axioms it requires? I have tried to do this as best I can, but the method seems to
require such a complicated description of the axioms as hardly seems worth putting down. I
suspect that there is no simple or perspicuous axiom system for the constant domain

semantics; though, on such a matter it is hard to be certain or clear.

A second question is: what would a semantics for such systems as RQ or EQ look like?

Could it somehow be derived from the ternary relation semantics or must it be radically

different?

The last and most important question is: what should an axiomatization of quantified
relevance logic look like? Do we take the incompleteness results as showing that the standard
systems RQ and EQ do not fully capture our intuitions concerning relevant implication or

entailment? Or do we take them as showing that the ternary relation semantics does not

measure up to our intuitive notions? Or what?
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The answer to these questions is not straightforward. Suppose one insists that the
Barcan Formula for constant domains, viz. Vx(P — Fx) — ((P — VxFx), is intuitively valid.
Then one might argue as follows. Given Vx(P — Fx), the most one is justified in (relevantly)
inferring from P is Fn,, Fn,,..., where ny, n,,... are suitably pure names for all of the objects
in the domain of quantification. So the inference to P — VxFx is justified only if the
conjunction Fn; A Fny A ... relevantly implies VxFx. Given that VxFx relevantly implies each
of Fny, Fn,,..., this means that the intuitive validity of the Barcan Formula depends upon the
relevant equivalence, call it (#), of a universal formula VxFx to the conjunction Fn; A Fng A

... of ts instances.

Under such an equivalence, each formula A of quantificational relevance logic can be
replaced by formulas A’ of infinitary propositional relevance logic (formulas, not formula,
since the length of the conjunctions Fn; A Fngy A ... can vary). It then seems reasonable to
suppose that A is intuitively valid if all of A’ are intuitively valid. Take now the formula A,
of section 2. It can then be shown that each A(; is a theorem in the natural and seemingly
unobjectionable extension of R to a system with infinitary conjunction. (I leave it as an
exercise for the reader to formulate the extension and establish the A ’s as theorems.) So it

would appear that, despite its underivability in RQ, A is intuitively valid.

More generally, let us suppose that the ternary relation semantics is correct (delivers the
right valid formulas) for propositional relevance logic with infinitary conjunction. This then
means that the ternary relation semantics with constant domain is correct for quantificational
relevance logic; since the effect of the semantics is to make a universal formula equivalent to

the conjunction of its instances.

Now there may well be conceptions of the quantifiers, perhaps the substitutional
interpretation is one, under which the equivalence (#) is correct. However, it is far from clear
to me that acceptance of the validity of the Barcan Formula commits one to (¢). The
conjunction Fn; A Fny A ..., it might be argued, does not (relevantly) imply VxFx, since VxFx
says not just that Fn; A Fny A ... for the particular individuals nj, n,,..., but also that all
individuals F. However, Vx(P — Fx) does imply P — VxFx; for Vx(P — Fx) implies not just
P — Fny, P — Fn,,..., which will not get us to P — ¥xFx, but also the universal claim, which

will get us there.

It is important, however, to be careful about the nature of the universal claim. It is
sometimes thought that there is some constant factor 4 = ¥x(x = n; V x = ny V ...) (“n,
ng,... are all the individuals there are”) which each universal statement adds to the
conjunction of its instances. But it is not clear that the relevance logician should admit that
VxFx relevantly implies p, that ¥x(x = x), for example, relevantly implies Vx(x = n; Vx=ng
V ...). And certainly, if he does admit this, he is going to find it difficult to accept the Barcan
Formula. For from this implication it follows that VxFx is relevantly equivalent to u A Fn; A
Fny A ... (Ileave this as an exercise for the reader.) But then making this replacement in the
Barcan Formula reduces it to [u A (P — (Fn; A Fng A ...))] = [P = (u A (Fn; AFny A L))
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which looks most implausible.

It is hard for the relevance logician to be more articulate about the nature of the
universal claim. But if there is a coherent conception here, it would definitely suggest that
the constant domain semantics is wrong as to truth-conditions: for, as we have seen, this
semantics leads to the equivalence of a universal formula to the conjunction of its instances.
It would also suggest that the semantics is wrong as to the intuitively valid formulas: for on
examination, our formula A would not appear to be valid under such a conception. It is
therefore possible that we have here a conception of the universal quantifier that would lead

to RQ as the correct system of relevant implication.

The plan of the paper is as follows. Section 1 supplies background. Section 2 details the
offending formula A  and proves its validity. The remaining sections 3-6 then establish that
A, is not a theorem of RQ by producing a model M7 that verifies the theorems of RQ but not
A, itself; section 3 describes a somewhat simpler model; section 4 describes the model Mt
itself; section 5 completes the proof that M™T verifies the theorems of RQ: and section 6
establishes the failure of A in Mt

1. Preliminaries. Let us axiomatize the system RQ of quantified relevance logic under
consideration. The logical primitives are A, ~ and V. The non-logical primitives consist of
denumerably many predicate symbols of each finite degree. We shall suppose that there is no
identity predicate, function symbol or individual constant in the language, though nothing in

the proof will turn on this.

The formulas are constructed in the usual way. The axioms and rules of the system are

then:

Al. A—-A

A2. A—- ((A—B)—B)

A3. (A—-B)=((B—=C)—(A—0C))
A4 (A—-(A—-B))—(A—-B)

A5. AAB- A

A6. AAB—-B

A7. A—-AVB

A8. B—-AVB

A9. AA(BVC)—(AAB)V(AACQC)
A10. (A — ~B) — (B — ~A)

All. ~~A = A

A12. VxA(x) = A(y), y free for x in A(x)
A13. Vx(A — B) — (A — VxB), x not free in A
Al4. Vx(A V B) — A V VxB, x not free in A

Rl. A,A—B/B
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R2. A,B/AAB
R3. A/VxA

Axioms Al-All and rules R1-2 constitute a complete system for propositional R.
Axioms A12-A14 and rule R3 constitute a natural addendum for the quantifier. With their
help, all of the “obvious” quantificational validities can be proved.  The original
axiomatization for quantified R was given by Belnap in 67a; the present axiomatization

derives from that in Routley 80.

The standard ternary relation semantics may be explained as follows. (I adapt the
convenient formulation of Routley and Meyer 73a.) Given a ternary relation R, let R2abed
abbreviate 3x(Rabx & Rxcd). Let an RQ-model M be a sextuple <o, A, R, *, I, v> with A a
set, o € A, R C A x A x A, * an operation on A, I (individuals) a non-empty set, and v
(valuation) a function assigning, to each n-place predicate symbol P and to each point a of A,
a subset v(a, P) of I x Sox1 (when n = 0, the cartesian product is taken to be singleton of the

O-tuple). The components are subject to the following conditions:

pl. Roaa p4. R20abc = Rabc
p2. Raaa p5. Rabc = Rac*b*
p3.  R2abcd = R2acbd p6. a**=a

P7.  <ijyeni > € v(a,P) & Roab = <ij,...,i > € v(b,P)

Thus the RQ@-models are the constant domain quantificational analogues of the ternary

relation models for propositional R.
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