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EDITORIAL NOTE

The present volume collects together accounts of some new
departures in the area of logic. Each is, or was at its time a
novelty, each required inventive initiative to come to fruition,
each meant an advance in logic. The samples range over a wide
span of time, from the Classical Greek period to modern computer
technique.

Together the selection illustrates the fact that not only
developing logic as such, as distinct from merely utilizing alre-
ady perfected logical techniques, is an art, but that is a
typical art. By that we mean that it requires inventive intelli-
gence and ingenuity, qualities that cannot be taught, only per-
fected and developed under guidance. This contrasts with skills
that can in principle be taught to anybody of sufficient ability.
A person who cannot be taught skills is dense, but a person who
cannot be an artist is not dense, sometimes he could even be
abler than the artistic, creative individual. Of course, logic is
not the kind of art that can be practised by the less than able,
ability is a prerequisite, as it is for every type of art, but
that prerequisite is not enough. Like every other science,
creative ingenuity is a conditio sine qua non for the work that
really extends the domain of logic.

To illustrate this is a modest aim of the present volume. It
is of course impossible to present a history of creativity in
logic at all thoroughly in a small collection of articles, yet
the point is made without it, and it is hoped that each and
everyone of the contributions carries its own direct interest in
a way that gives the whole a strong appeal.

* % *x
The arrangement of contributions is organized as follows.

The volume starts with two essays concerning the great ini-
tiator in logic - Leibniz. Wolfgang Lenzen’s essay Leibniz’s
calculus of strict implication shows how Leibniz anticipated
Lewis’ modal calculi; the comparison gets possible due to the
suitable axiomatizations proposed by the author. A formally al-
ternative approach, that making use of algebraic means, is

v



wi Editorial note

suggested by Maciej Juniewicz’s paper Leibniz’s modal calculus of
concepts. These historical reconstructions are followed by a new
approach to conditionals, obviously related to modal logics, as
adopted by Ingemund Gullvdg in his paper entitled The logic of
conditions.

The next group of papers is devoted to foundational studies.
Among the pioneering thinkers in this field was Henri Poincaré.
His original views on the relations between logics and mathe-
matics, esp. set theory, are analyzed in Gerhard Heinzmann’s
paper Philosophical pragmatism in Poincaré. The following A note
on Zeno B3 by Nicholas Denyer recalls the Greek troubles with
infinity which lie at the beginning of historical chain ending in
set theory. Should the reader be interested in further fate of
Godel’s theorem up to early 1980’s, he will find it in Roman
Murawski’s paper Generalization and strengthenings of Godel’s
incompleteness theorem.

Some of the papers deal with less known Polish logical ini-
tiatives, both belonging to pure mathematical logic and to ap-
plication of logic to philosophy. Some of Mordchaj Wajsberg’s
results in mathematical logic are presented by Stanislaw Surma in
the context of Lvov-Warsaw School in the essay The logical work
of Mordchaj Wajsberg, while a specific Wajsberg result is criti-
cally discussed by M. N. Bezhanishvili in his Notes on Wajsberg’s
proof of separation theorem. In the Polish climate of 1930’s,
favourable both to logic and philosophy there appeared attempts
similar to those discussed by Edward Nieznanski in his Logical
analysis of Thomism - the Polish programme that originated in
1930’s; this covers also recent developments. In the same period
Kazimierz Ajdukiewicz initiated a logical theory of questions;
this field is the subject of Leon Koj’s paper On justification of
questions, where he suggests a pragmatic approach.

The contributions closing this volume have in common what
may be called an alogorithmic-oriented approach. Wojciech
Buszkowski’s article The logic of types belongs to the chain of
inquiries inftiated by K. Ajdukiewicz’ algorithm for checking
syntactic connexion, and developed essentially by Lambek’s re-
sults. Witold Marciszewski under the title System of computer-
aided reasoning for mathematics and natural language reports on
recent research in this field, especially in Poland; this dis-
cussion is complemented by two technical reports, by Leslaw
W. Szczerba, and by Anna Zalewska, concerning the use of such a
system in teaching logic and mathematics.

J.S. - W. M.
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WOLFGANG LENZEN

LEIBNIZ’S CALCULUS OF STRICT IMPLICATION

At first the title of this paper will provoke both logicians
and Leibnitians to shake their heads: while talking about calculi
of strict implication one rather associates it with the names of
C. 1. Lewis, W. Ackermann, or some other contemporary logician,
but hardly with the 17th century philosopher G. W. Leibniz!. Yet
already some 30 years ago in an essay on “leibniz’s interpre—
tation of his logical calculi” the wellknown Leibniz scholar,
Nicholas Rescher (1954), had put forward the then bold thesis: in
an interpretation that Leibniz himself had suggested, one of
these calculi would become "a precursor of C. . Llewis’ systems
of strict implication” (p.10). Unfortunately, Rescher did not
give a factual justification of this prophetic view. Had it been
done, it would have thrown some light on the real significance of
Leibniz’s logic. One reason for this omission consists, perhaps,
in the fact that Rescher incorrectly interpreted the important
logical constant ‘est Ens’, or, synonymously, ‘est Res’ or ‘est
Possibile’ as logical necessity instead of logical possibility.
Furthermore, he viewed his term ’Ens’, taken in itself, as & con-
ceptual constant, on & par with the "normal” terms A, B, C, ..,
such that it may enter into fundamental sentence-schema °...est
---' as a subject- and a predicate-concept’?. This misin-
terpretation of the Leibnitian intentions, however, leads to a
series of inconsistencies that shall be discussed briefly below.

The task of this paper will be

i to recunstruct and to axiomatise consistently (and
completely) the concerned Leibnitian logic calculus;
ii to describe in some detail the relevant Leibnitian
interpretation of this calculus as a sentential logic
and

iii to prove that this interpretation of the calculus does in
fact yield a system of strict implication - to be exact,
the so-called Lewis-modal system S2°.
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The Leibnitian logic-calculus L1

In the domain of logic, Leibniz’s main aim was to create a
comprehensive calculus that would allow him, in particular, to
prove the entire laws of the then "accepted” logic, i.e. the
syllogism. The generally accepted view is that Leibniz failed to
attain this goal. Thus, for example, W. & M. Kneale (1962) assert
"... although he worked on the subject in 1679, in 1689 [?] and
in 1690, he never succeeded in producing a calculus which covered
even the whole theory of the syllogism® (p.377).

Of course it is undeniable that Leibniz never came to a
definitive formulation or even publication of one such calculus.
Also, it can hardly be disputed that in his manifold efforts to
embed syllogism in his diverse drafts of a general calculus,
Leibniz  repeatedly failed to derive either certain concrete
syllogisms or some such general syllogistic principle as the law
of opposition, of conversion, or of subalternation. And it
appears that the pessimistic dictum “post tot logicas nondum
logica qualem desidero scripta est"™® reflects the sincere opinion
of even the later Leibniz. Yet it has to be noted that already in
the Generales Inquisitiones (GI) of 1686 Leibniz developed a
calculus which is substantially more powerful than he himself
(and his 20th century critics) suspected. At any rate, it easily
attains the above mentioned goal. That is, in the form of his
basic calculus L1 (without “indefinite concepts")* Leibniz had
laid out a complete axiomatization of Boole-Schroeder set-algebra
which  trivially includes the whole syllogistic logic. The
"problems” that arose for Leibniz while attempting to prove the
syllogism in L1 are mainly rooted in his somewhat uncertain and
partly erroneous theory of negation. A discussion of these two
topics transcends the framework of the present paper; the lacunae
are compensated for by two other papers, "‘Non est’ non est ‘est
non’” and "Zur Einbettung der Syllogistic in Leibnizens
allgemainen Kalktil"s.

The calculus in question, L1, can be characterized syntac-
tically as follows. Starting from a set of conceptual-constants
A, B, C,... the general concepts or terms are generated by means
of the operations of concept-negation and concept-conjunction.
Leibniz expresses the latter through concatenation and jux-
taposition of the terms involved (e.g. AB, BCD, ..), while the
former operation is expressed by means of "non” (with or without
hyphenation) in the form of "non A", "non-B".., where the scope
of the negation operator is sometimes indicated by a bar placed
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over the terms (to distinguish e.g. non-BC from non-BC. For the
sake of simplicity we like to use what is customary in set-theory
~ the raised-bar itself as the negation symbol and thus take, for
example, ‘BC’ as short for the negation of the conjunction
‘non-BC’. By contrast, the conjunction of the individual nega-
tions, ‘non-B non-C’ is formalized as ‘B C’. Leibniz’s idea of
how to construct the set of terms of L1 is captured by the fol-
lowing inductive definition

Def.1 i every conceptual-constant is a term of L1,
ii if 7 is a term of L1, so too is T,
iii if o and T are terms of L1, so too is o T,
iv only the expressions in accordance with i - iii are
terms of L1.

These terms are then connected into sentences especially by
means of the relations  ‘est’ (or ‘continet’) and ‘=’
(coincidunt), whereby each of these operators can be defined
according to one’s choice. In what follows we take ‘est’ as the
basic relation and symbolise it - as Leibniz himself once
suggested® -~ by ‘e’; accordingly we adopt his definition of
identity "A esse B et B esse A idem est quod A et B coincidere”
(GI, §30), formally,

Def.2 A =B : = AeB A BeA

L4

Leibniz normally preferred to define conversely ‘e’ by means of
‘=’ "Generaliter A esse B idem est quod A = AB" (GI, §83). In
our approach this becomes a provable theorem:

K6 AeB = A = AB

As both these formulae show, we represent the informal
Leibnitian sentential-operators ‘et’ and ‘idem est quod’ by the
modern symbols ‘A’ and ‘=’ of conjunction and equivalence,
respectively. Similarly, we -will use in the following the symbol
‘<> for the sentence negation ‘non’ and ‘v’ for disjunction
‘vel’; finally, the if-then relation, ‘si tunc’ (or, likewise
’infert’, ‘si .., sequitur ---’ shall be symbolized, for the
time being, by the operator of implication, ®3’. This should not,
however, prejudge the question whether or not in each individual
case Leibniz used his particles of propositional logic precisely
in the modern truth-functional sense. Indeed, the main aim of
this paper is to establish that for Leibniz ‘si tunc’ is
primarily a strict implication and not merely a material
implication. However, for a preliminary, provisional description
of conceptual-logic, L1, the use of the “critical” symbols ‘o’
and ‘=’ is not problematic; moreover, when in the next section L1
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is reinterpreted as a sentential-logic these symbols will be
formally replaced by other ones.

The construction of the set of sentences of L1 obtainable by
the term operators ‘e’ or ‘=’ and the propositional connectives
is, of course, not complete. One decisive element is still
missing: the operator ‘est Ens’ or, likewise, ‘est Res’ or ‘est
Possibile’. That the expression ‘possibile’ (in the Leibnitian
sense of being free from contradiction) is not itself an ordinary
concept denoting a property of things, but rather a 2nd order
concept denoting a property of concepts, is evident from the
definition: "A non-A contradictorium est. Possibile est quod non
est: Y non-Y" (GI, line 330-1).

Thus one could define in the framework of the stronger logic
L2 with ‘"indefinite concepts”, that B is possible if and only if
(iff) there is no Y such that BeYY. Alternatively, one could
postulate in L1, that B be possible iff -BeAA. In fact, however,
this definition can be further simplified, for on the basis of
some Leibnitian basic principles, the equivalence

P3 P(A) = AgA

is valid, where ‘P(A)’ stands for ‘A is possible’ and ‘AeB’ is
shorthand for the negation -(AeB).

The decisive logical law needed here to establish a relation
between a categorical proposition of the form AeB and a
corresponding (im-)possibility assertion about the complex
concept AB, is casually formulated in GI (cf. the ‘seu’):

"A non-B est impossibilis seu A continet B” (§128). More
explicitly, in the first sketch of Illatio, Veritas, Probatio
Duplex (AYV, 2, 403): "vera propositio est A continet B si A non-B
infert contradictionem”. l.e., the following law holds:

P1 AeB = -P(AB).

In view of the trivial principle of double negation,
"Non-non-A = A" (GI, §96),

N1

>il

= A,
and the equally trivial law
K5 AA = A

(GI, §171), P3 follows from P1 even though apparently Leibniz
himself  didn’t notice  this  simplified  definition of the
possibility operator?.
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Now, there is abundant textual evidence to show that at
least as applied to terms, i.e. to concepts, Leibniz always uses
‘est Ens’ as synonymous with ‘est Possibile’: the phrase ‘Ens seu
possibile’ is almost a standard idiom in many of his fragments®.
Accordingly ‘est non-Ens’ means the same as ‘non est Ens’ or ‘est
impossibilis’, as the following passage from C.261-4 shows:
"Impossibile est terminus, vel Non Ens, qui si ponitur esse,
sequitur esse contradictorium”. Therefore, in view of the
conjunction principle K& stated above, Leibniz can also express
the fundamental law in GP VII, 212 alternatively as follows:
"Universalis Affirmativa: A est B, id est aequivalent AB et A seu
A non B est non-Ens”.

A third paraphrase of the possibility—-condition is provided
by the words ‘est Res’, where occasionally ‘Res’ is even dropped.
Thus §151 of Gl provides a reduction of the four categorical
sentence-forms to the corresponding ‘Res’ propositions in line
with P1, especially "Omne A est B dat: A non-B non est res". And
the final paragraphs 199, 200 contain the shortened versions,

especially: "Universalis affirmativa A non-B non est” and "... si
dicam A non-B non est, idem est ac si dicam A continet ... B".

Thus, on the whole, there is overwhelming evidence showing
that Leibniz expresses the possibility-operator ‘A est possibile’
equally by means of ‘A est Res’, ‘A est Ens’ or even ‘A est’. In
one place of his writings, however, as a trial ‘Ens’ is assumed
as a conceptual-constant, and correspondingly the proposition ‘A
est Ens’ is interpreted as a predication of the form ‘AeEns’. In
the fragment on Difficultates quaedam Logicae (GP VII, 211-7) -
which otherwise contains very valuable ideas - Leibniz felt the
temptation to combine both ways of reducing the categorical
sentence-forms to identities a la K6 and to possibility propo-
sitions a la P1:

"Caeterum venit in mentem, etiam propositiones, Universalem
Negativam et ei oppositam particularem affirmativam, reduci posse
ad aequipollentiam hoc modo: Nullum A est B, id est AB est non
Ens, etiam sic exprimi poterit: non aequivalent AB et AB Ens.
Ita omnes propositiones logicas categoricas reduximus ad calculum
aequipollentiarum” (o.c. 213/4).

Surely if it were legitimate to interpret ‘Ens’ as a
predicate, i.e. as a concept on a par with the ordinary concepts
A, B, C, ... (and not otherwise as Leibniz always presumes - as a
concept of the second order, i.e. as a conceptual operator), then
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one could represent ‘AB est Ens’ qua ‘ABeEns’, and, in accordance
with K6, transform this into the equation ‘AB = AB Ens’. But this
attempt leads to inconsistencies and must therefore be considered
as one of the very few impasses that Leibniz reached in his
search for a suitable "calculus aequipollentiarum”.

The “predicative” interpretation of °‘Ens’ would allow us,
for example, to derive ‘ABeEns’ immediately from the possibility

of A - in the sense of ‘AeEns’ due to the trivial conjunction
law,
K2 ABeA

(cf. C.263, #(15)). le. for any self-compatible A, every conjun-
ction AB would also automatically be free from contradiction, a
fortiori even the conjunction AA! Even larger absurdities result
if the operator of concept-negation is applied to the “constant”
‘Ens’ as Rescher has attempted to do. As Leibniz remarked, both a
concept A and its negation, A, may simultaneously be self-
compatible: "Etsi AB esset Ens, tamen etiam Non AB potest esse
Ens™. Now, if A is some concept such that P(AJAP(A), then the
representation of these premises as AeEnsAAens in conjunction
with the law of contraposition ("Generaliter A esse B, idem est
quod non-B esse non-A", GI, §77),

N2 AeB = BeA,

would allow us to derive EnseA and hence, by transitivity,
EnseEns. This, however, as Dummett rightly remarked, is an
"absurd theorem"'°.

4

All  these difficulties wvanish if ‘est Ens’ 1is interpreted
correctly as a possibility-operator which is anyway the inter—
pretation that Leibniz elsewhere always had in mind. One gets a
unified “"calculus of (non-)equations” for the four -categorical
sentence—forms either in line with K6:

U.A. A= AB
P.A. A x AB
U.N. A = AB

P.N. A = AB
or in line with 1:

U.A. -P(AB)

P.A. P(AB)

U.N. ~P(AB)

P.N. P(AB)

By contrast one has to reject the hybrid forms of combination of
these “calculi” that are probed in the Difficultates quaedam
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logicae. In order to round off the syntactic construction of L1,
one should not therefore accept ‘Ens’ as a new conceptual-
constant, but merely postulate that for every concept B "B est
Ens”, i.e. P(B), be a sentence of L1. This condition would be
redundant if one were to introduce the possibility-operator by
definition & la P3. We are, however, presupposing it here as &
primitive concept and hence have to define the set of sentences
of L1 inductively as follows:

Def.3 i if o and T are terms of L1, then (cet) is a sentence;
ii if T is a term of L1, then P(r) is a sentence;
iii if a is a sentence of L1, then so is -q;
iv if a and p are sentences of L1, then so are (a A g)
and (a > p);
v only the expressions in accordance with i - iv are
sentences of L2.

The remaining two sentence-operators can be introduced -
according to Leibniz - by definition:

Def.4 (a v pg): = (a A p)
(a=p:=(a>p Ala>2rpM

i

The extensional semantics of L1, as intended by Leibniz, can be
characterized as follows: the conceptual-constants shall be
interpreted as the extensions of the corresponding concepts, i.e.
as sets of (possible) objects that fall under the respective
conicepts; concept negation and conjunction are to be interpreted
as set-theoretical complement and intersection, respectively; the
basic operator ‘e’ accordingly represents the inclusion among
sets, and the possibility proposition P(B) has to be interpreted
as true iff the extension of the concept B is not empty, ie. if
at least one possible object exists that has the property
expressed by B, As shown by the work cited in reference 11, one
can transform such an extensional semantics ~ in line with
Leibniz’s ideas - equivalently into an “intensional” one: in the
intensional semantics, a conceptual constant B has to be
interpreted as the set of those concepts which are contained in
B; and (AeB) becomes true under an “intensional” interpretation
if the "intension” of A, i.e. the set of concepts contained in A,
comprises the “intension” of B. In what follows, however,
semantic consideration do not play any role. We will first
present an axiomatisation of L1 (as a conceptual-logic) the
adequacy - i.e. consistency and completeness - of which follows
purely syntactically from proving L1 to be deductively equivalent
to the Boolean set-algebra.
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Regarding the relevant laws of logic put forward by Leibniz
mainly in the GI one may mention the principle of transitivity
and reflexivity of the ‘e’-relation: "..si A sit B et B sit C, A
erit C" (§19); i.e.

E1l AeB A BeC > AeC;

or (§37) "B est B", i.e.
E2 AeA.

The fundamental principle of concept-conjunction says: "A
continere B et A continere C idem est quod A continere BC" (§35),
formally:

K1 AeBC = AeB A AeC.

From this, one can easily derive the already cited conjunction
principle K2 and its symmetric counterpart (cf. §38):

K3 ABeB;

furthermore one easily obtains the previously mentioned K6 and
K5; the law of symmetry (cf. C.235):

K4 AB = BA
and finally the “praeclarum theorema”
K7 AeB A CeD > ACeBD

from the earlier ‘Ad specimen calculi universalis addenda’ (cf.
GP VI, 223).

The most important negation principles N1 and N2 have
already been stated above together with their formulation by
Leibniz. The last operator P can be axiomatized by P1, P3, the
trivial law "A non-A non est Res” (Gl §171),

P4 ~P(AR),
which follows from E2 with P1 plus the following principle:
P2 AeB A P(A) > P(B).

Leibniz rather incidentally formulated it in the remarkable §55
of GI: "Si A continet B, et A est vera, etiam B est vera. er
falsam literam intelligo vel terminum falsum (seu impossibilem,
seu qui est non Ens) vel propositionem falsam. Et per veram eodem
modo intelligi possit terminus possibilis vel propositio vera”.

That is, Leibniz envisages here the simultaneous inter—
pretation of the terms both as concepts and as sentences which
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will be analysed in detail in the next section. It allows him to
formulate at the same time the law P2 and the inference rule of
modus ponens. For, in the case of sentences, A, B, ‘A continet B’
or ‘A est B’ is taken to mean that A implies B: "..cum dico A
est B, e¢ A et B sunt propositiones, intelligo ex A sequi B"
(C.260). For concepts A, B, in contrast, AeB asserts that from
the "truth”, i.e., from the possibility of A the possibility of B
always follows'2.

To complete the axiomatic construction of L1, let wus
consider  briefly some principles for the identity relation
(introduced in accordance with Def.2). The law of reflexivity,

I A=A

("A et A sunt prima coincidentia”, GI, 284) follows trivially
from E2; the law of transitivity,

I2 A=BaAaB=CoA=C

("si A coincidit ipsi B etiam B coincidit ipsi C, etiam A
coincidit ipsi C", GI, 8) follows analogously; and the law of
symmetry,

13 A=B>B=A

("si A coincidit ipsi B etiam B coincidit ipsi A", GI, 269-70) is
an elementary consequence of the symmetry of propositional
conjunction. Further, one obtains a "weak” law of contraposition
for the identity relation directly from the “strong® contra-
position law N2 for the e-relation: "Si A coincidit ipsi B; non-A
coincidit ipsi non-B” (GI, 9). Thus

14 A=B>B=A

Since in view of the conjunction laws K1 - K6 "Si A = B erit
AC = BC" (GI, §171), i.e.

15 A =B > AC = BC,

also is valid, one can prove by induction that for any term T

16 A = B + T1[A] = T(B],

and for the sentence a

RI A = B+ alAl = alB]

6 and Rl are formalized explications of the famous “Leibniz law
of identity”: "Coincidunt A ipsi B, si alterum in alterius locum
substitui  potest salva veritate” (GI, 257-8), or succintly:
"coincidentia sibi substitui possunt” (Gl, §198).



10 Wolfgang Lenzen

As already mentioned, the conceptual-logic L1 as axiomatised
by these principles is deductively equivalent to the axiom system
of Boole-Schroeder set-algebra, provided that in both systems the
required laws of propositional logic are presupposed. In this
sense, therefore, the well-known “Boolean” algebra was not
invented only in 1847, but actually put forward already in 1686
in the GI'" as a Leibnitian algebra. In the following, however,
it is not the conceptual-logic L1 itself that is under
discussion, but just the (prima facie missing) propositional
logical foundation for it.

The interpretation of L1 as a propositional logic

With the exception of the early investigations of legal
logic', Leibniz was generally little concerned with working out
specific principles of propositional logic. He wused to make the
requisite  propositional  inferences and transformations rather
implicitly. Inference rules such as the cited modus ponens or the
related modus tollens were mentioned by him only in passing.
E.g., the latter was first put forward in §55 of GI in the form
"Si A continet B et B est falsa, etiam A est falsa”" but then it
was dropped in favour of the former. Leibniz did not do so, how-
ever, because he considered this rule as false; probably he just
thought it to be redundant. Anyway, in a marginal note to De
Formis Syllogismorum Mathematice Definiendis (C.410-6) he formu-
lated the related inference of so called regression as follows:
"In Regressu utimur hoc principio, quod conclusione existente
falsa ... et una praemissarum existente vera, altera praemissarum
necessario debeat esse falsa” (o.c.,p.412)‘5. Significantly, even
the important ("de Morgan”) laws concerning the reduction of
(nonexclusive and exclusive) disjunction to negation and conjun-
ction appear only in the margin of a text in the Analysis
Didactica (o.c., ref.11.) which is quite alien to propositional
logic. In view of this peripheral treatment of the laws of pro-
positional logic our thesis that Leibniz had access to a full
blown calculus of strict implication may appear somewhat impla-
usible. This prima facie implausibility disappears, however, when
one considers that in the course of the development of his logi-
cal calculus Leibniz became more and more conscious that all the
principles of sentential-logic are virtually contained in the
laws of concept-logic that he had invented. Already in 1678, when
his concept-logic existed only in a very rudimentary form, he
called attention to the parallel between the T"analysis®™ of
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concepts on the one hand and the "analysis” of sentences on the
other. In Analysis Linguaram (C.351-4) he wrote:

"Porro cum scientiae omnes, quae demonstrationibus constant,
nihil  aliud tradant, quam cogitationum aequipollentias seu
substitutiones, ostendunt enim in propositione aliqua necessaria
tuto substitui praedicatum in locum subjecti ... posse, et inter
demonstrandum in locum quarundum veritatum quas praemissas
vocant, tuto substituti aliam quae conclusio appelabatur; hinc
manifestum est, illas ipsas veritates in charta ordine exhibitum
iri  sola characterum analysis, seu substitutione ordinata
continuata” (o.c., p.352).

This idea that the conclusion K of an inference from premi-
ses P,,..,Py may be substituted for the premiss(tes) P, (or the
conjunction of P;) in the same manner as one can substitute the
predicate P for the subject S in a categorical proposition SeP,
is, of course somewhat inaccurate. For, from the truth of SeP it
follows that one may substitute P for S in those propositions
where S takes a predicate position: if, e.g, S5=PQ, it follows
that SePASeQ, but one may not deduce therefrom that PeQ or that
QeP. An analogous restriction applies to the substitutability of
K for the premiss(es) P,.

In the Notationes Generales, which probably was written
between 1683 and 1686'°, the parallel in question is expressed
more clearly. Just as the "propositio simplex: A est B" - in
which A is called the “subjectum”, B the "praedicatum” - is true,
"si praedicatum in subjecto continetur”, similarly a “propositio
conditionalis: Si A est B, C est D", — in which now ‘A est B’ is
designated as ‘antecedens’, 'C est D’ as ‘consequens’ - is true,
"si consequens continetur in antecedente” (c.f. o.c., Pp.184). In
works obviously written later, Leibniz compressed this idea into
formulations such as “"vera autem propositio est cujus praedicatum
continetur in  subjecto, vel generalius cujus consequens
continetur in antecedente” (C.401, emphasis is ours) and “Semper
igitur praedicatur seu consequens inest subjecto seu antecedenti”
(Primae Veritates, C.518).

On the basis of these parallels, the hunch dawned on Leibniz
that the logical laws for the “hypothetical propositions” could
be developed in complete analogy to the laws for the relation
'est” (or ‘continet’). In the GI, he expressed this hope
prophetically as follows: "Si ut spero, possim concipere omnes
propositiones instar terminorum et omnes Hypotheticas instar
categoricarum, et universaliter tractare omnes, miram ea Res in
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mea characteristica ... promittit facilitatem, eritque inventum
maximi momenti” (§75, emphasis ours).

Even though this “invention of highest significance” was not
systematically exploited by him in the sense that he did not
explicitly transpose or translate the conceptual-logical
principles such as E1, E2, etc. into corresponding sentential-
logical principles, yet he believed to be entitled to note in a
midresumee (§137): "Multa ergo arcana deteximus magni momenti ad
analysin omnium nostrarum cogitationum, invetionemque et
demonstrationem veritatum. Nempe ... quomodo veritates absolutae
et hypotheticae wunas easdemgque habeant leges, iisdemque
generalibus theorematibus contineantur, ita ut omnes syllogismi
fiant categorici” (emphasis ours). And at the end of the GI he
formulated as a general principle (§189, sexto): “quaencunque
dicuntur de termino continente terminum, etiam dici possunt de
propositione ex qua sequitur alia propositio”.

The decisive step, that was only hinted at in the GI, viz,
the step of formally identifying the propositional connective
’si, tunc’ with the conceptual connective ‘est’, was taken by
Leibniz in a series of - apparently later - fragments. Thus he
says in the draft of a calculus C.259-61, §16:

"Si a sit propositio vel enuntiatio, per non-A intelligo
propositionem A esse falsam. Et cum dico A est B, et A et B sunt
propositiones, intelligo ex A sequi B. Sed demonstrandus erit
harum substitutionum successus. Utile etiam hoc ad compendiose
demonstrandum, ut si pro L est A dixissemus C et pro L est B
dixissemus D pro ista si L est A sequitur quod L est B, substitui
potuisset C est D.”

Naturally, this substitution of ‘est” for ‘si .., sequitur
---’ should be wvalid not merely for the special case where
antecedent and consequent of the if-then sequence have the same
concept as its subject (L above), but quite generally: “ltaque
cum dicimus Ex A est B sequitur E est F, idem est ac si diceremus
A esse B est E esse F" (ibid.,, emphasis ours). In the same vein,
only more briefly, Leibniz says in the thematically related
fragment C.261-4: "Hypothetica nihil aliud est quam categorica,
vertendo antecedens in subjectum et consequens in praedicatum.
Exgr. ... A est B, ergo C est D. A esse B sit [, et C esse D sit
M, dicemus est M.”

These passages clearly show that Leibniz considered the
if-then  relation between  sentences as  logically  absolute
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equivalent with the ‘est’-relation between concepts, and that he
was therefore convinced that he could derive sentential-logic
from conceptual-logic L1 through a plain identification of the
sentence—operators with the corresponding concept-operators. In
line with this, in the next passage, he transfers the important
law P1 to the realm of propositions:

"Vera propositio est A continet B, si A non-B infert
contradictionem. Comprehenduntur et categoricae et hypotheticae
propositiones, v.g. si A continet B, C continet D, potest sic
formari: A continere B continet C continere D; itaque A continere
B, et simul C non continere D infert contradictionem” (C.407;
second emphasis is ours).

To formalize such sentential-logical principles, let us
replace both “implications”, ‘>’ and ‘e’, uniformly by a new
symbol ‘»’. Also, the two conjunctions - of concepts and of
sentences - shall be formalized uniformly by *A’. Finally, both
negations - for which Leibniz anyway always used one and the same
particle ‘non’ - shall be represented uniformly by *-’. In
consequence, the sentential-logical counterpart of P1, formulated
above, takes the following shape:

P15 (A > B) < -P(A A -B),

where ‘<3’ is to be understood (in analogy to the previous
definitions 2 and 4) as a mutual ‘>’ relation:

Def.5 (A<= B):=(A=B)A(B=>A)
Similarly, one gets the sentential-logical principle
K65 (A>B) < (A< ArB)

formalizing Leibniz’s definition: "Vera propositio hypothetica
primi gradus est si A est B, et inde sequitur C est D ... Status
quo A est B vocetur L, et status quo C est D vocetur M. Erit L o
IM jta reducitur hypothetica ad categoricam” (C.408; second
emphasis is ours).

As already noted by N. Rescher, Leibniz’s P1S represents a
definition of strict implication or of “entailment in terms of
negation, conjunction, and the notion of possibility” (o.c,
p.10). C.I. Lewis’s definition, formulated almost a quarter of a
millenium after the GI: "Thus .. ‘p strictly implies q’ is to
mean ‘it is false that it is possible that p should be true and q
false’ or ‘The statement ‘p is true and q false’”> is not
self-consistent”'”, reads like a literal translation of Leibniz’s
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definition given in another fragment: “"Itaque si dico si L est
vera sequitur quod M est vera, sensus est, non simul suponi
potest quod L est vera, et quod M est falsa™®.

The idea of reducing sentential-logic to conceptual-logic
was already described by L. Couturat rightly as a "idée capitale

peut—8tre sa plus belle découverte"®.  Similarly, other
authors such as Kauppi, Burkhardt and Schupp all have drawn
attention to it*°. But, apparently, to date, the exact extent of
this ‘inventio maximi momenti” has not yet been explored in a
systematic way, perhaps because Leibniz himself exemplified it
only in the case of the above cited principles, K&6(S) and P1(S).
With that much at hand, however, it does not require much of a
logical genius to derive further ‘S’-principles from the above
principles of the concept logic Li. The “translation scheme”
clearly outlined by Leibniz yields, e.g., transitivity and
reflexivity of strict implication:

E1S A>B)AB=>C)>»>»A=>Q0
E2S A > A

The  different  conjunction principles  will be transformed
analogously into

K1S (A>BAC)<= (A>B)AA>0)
K25 AAB=>A

K3s AAB=>B

K45 AAB< BAA

K55S AArAs= A

K7S A>BAC=>D)I=>AAC=>BaAD.

The sentential-logical counterparts of the negation-principles
are as follows:

N1S A <= A

N2S (A >B) < ("B > -A)

And for the possibility operator, one obtains besides P1S:
P2S (A > B) A P(A) > P(B)

P3S P(A) <= (A > HA)

P43 SP(A A HA)

We can forego an account of the sentential-logical counter—
parts of 11 - 15 (which now express the properties of the rela-
tion of strict equivalence); suffice it to mention that the ear-
lier substitution principles 16 and Rl transform themselves into
the rule of substitutability of strict equivalent expressions:
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RIS A < B + alAl < «alBl.

Undoubtedly all these principles may be viewed as authentic
Leibnitian principles of a logic of strict implication.

In spite of his tendency to neglect propositional logic,
Leibniz obtained the just now listed laws not only indirectly
through the general transition from conceptual- to sentential-
logic, but also put forward at least some of them independently
and explicitly in scattered fragments. For instance, in De
Conditionibus [ (o.c. ref.14) he characterizes the transitivity
of the inference relation, E1S, as follows: "Clonditilo
Clonditiolnis est Clonditilo Clonditionalti. Si posito A positur
B, et posito B positur C; etiam posito A positur C"?'. Concerning
the reflexivity of *2»’, i.e. E2S, one may point to the fragment
De Calculo Enutiationum Absolutarum et Conditionalium (AV,1,123-7)
where Leibniz adds to the law of concept logic "Veritas primitiva
absoluta A est A" (i.e. E2) the sentential counterpart “Prima
consequentia” "A est B ergo A est B" or the "axiom” "3) Si A est
B, etiam est B" (o.c., p.126). Moreover, he puts forward the sen-
tential conjunction principle K15 in De Veritatibus Enuntiationum
(AY, 1, B0-5) for the special case A = (a est b), B = (e est d)
and C = (1 est m) by asserting that the proposition "Si a est b
sequitur quod e est d et ! est m" is (equivalently) resolvable
into conjunction of the propositions "Si a est b sequitur quod e
est d" and "Si a est b sequitur quod ! est m"?’. Further senten-
tial versions of the principle of double negation, N15, are to be

found in the form "Coincidunt L .. et L esse falsam est falsa"
(GI, §4) or (in the special case where L = (A = B) or L = (AeB))
more formally: "ldem sunt AB ... et A non non oB" (C.235) or: "A

non non est B, idem est quod A est B” (C.262). Finally, the
Analysis Particularum (o.c., ref.18) contains along the with the
sentential principle of contraposition N2S: "Si ex propositione L

sequitur propositio M ... tunc contra ex falsitate propo-
sitionis M sequitur falsitas propositionis L" (o.c., p.145), also
the above cited paraphrase of P1S, according to which M follows
from L, if it is impossible ("non supponi potest”) that L is true
and at the same time M is false.

On the basis of this textual evidence it may be taken for
granted that the ‘S’-principles set out above were all viewed by
Leibniz as wvalid laws of sentential logic. In the next section we
want to axiomatise the corresponding logic L1S and compare it
with the modern systems of strict implication.
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L2S and the Lewis systems of strict implication

In accordance with the informal explanations of the last
section, we can give the following precise definition of the
syntax of the sentential-logical system L1S, generated via the
Leibnitian "translation rule” by the conceptual-logic L1:

Def.6 i every constant (A,B,C, ...) is a term of L1S;
ii if T is a term of L1S, so is -T;
iili if o and T are terms of L1S, so are (oAT) and (0 * T);

iv only the expressions in accordance with i - iii are
terms of L1S.
In this we assume - which, however, is inessential - the possi—

bility operator as a defined concept (in line with the previous
principle P3)%%:

Def.7 P(A) := (A # -A)

The "translation rule” in question thus has to be interpreted as
mapping L1 into L1S:

Def.8 The Leibnitian “translation” function ¢ (from L1 in L1S)
associates to every expression (i.e. every term and every
sentence) of L1 a term of L1S in the following manner:

i ¢(A) = A for every conceptual constant A of (L1)
ii ¢ = (1)
iii 9o = glo) A 9(T) for arbitraty terms o,
iv g¢(oetr) = ¢lo) > ¢(1)
v ¢(ha) = ¢la) .
vi plarg) = gla) A @(p) for ar:nra(xg; .lij;tences
vii ¢lasp) = @la) > @(p) i

Roughly speaking, the axioms of L1S shall be the g-images of the
axioms of the Leibnitian algebra L1. The necessary modifications
of this idea will be discussed below. First, however, we want to
deal with the rules of deduction of L1S, which have altogether
been neglected so far. For the purpose of comparison we will
refer to C.I. Lewis’ (and H.G. Langford’s) Symbolic Logic (1959).
There it is postulated: "Either of two equivalent expressions may
be substituted for the other” (p.125). But this is nothing else
but our rule RIS that was obtained by applying the function ¢ to
Leibniz’s law of identity, RI.

Secondly, Lewis has a general substitution rule saying "Any
proposition, or any expression ... may be substituted for [Al, or
[Bl, or I[Cl, etc, in any assumption or established theorem”
(ibid.). In the same sense, Leibniz explains in §26 of GI:
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"Admonenda adhuc quaedam circa hunc calculum quae praemittere
debueramus. Nenpe quod de quibuslibet literis usurpatis asseritur
generaliter, vel concluditur non tanquam Hypothesis, id de

quotlibet aliis literis intelligi"**.

Thirdly, Lewis needs the conjunction rule: “Any two
expressions which have been separately asserted may be jointly
asserted. That is, if [A] has been asserted, and ([B] has been
asserted, then [AAB] may be asserted” (p.126). Almost literally
the same rule is formulated by Leibniz in the short fragment
C.326-7 "Generalis transitus est, et positus A et B dicere liceat
AB". Since obviously a “transitus ab enuntiatione ad enun-
tiationem seu consequentia” is envisaged here, the ‘et’ (like the
corresponding ‘and’ of Llewis, too) has to be taken as a meta-
linguistic expression, so that the deducibility of the proposi-
tion ‘AB’ - i.e. in our standardized terminology, ‘A A B’ - from
the two premises gets asserted.

The last one of Lewis’ deduction rules is (strict) modus
ponens: "If [A] has been asserted, and [A =% Bl is asserted, then
B) may be asserted” (ibid.). While presenting the
conceptual-logic L1, we have already referred to §55 of GI where
Leibniz writes analogously: "Si A continet B et A est vera, etiam
B est vera”. Now, Lewis has drawn attention to the fact that from
a proof—theoretical point of view the rule of deduction:

MPS (A>B), A-B

has to be distinguished from the corresponding sentence (which in
Symbolic Logic carries the designation 11.7),

1.7 (A>B) A A3 B

"Contentwise” both say obviously the same thing; yet whereas for
an axiomatic calculus of strict implication the rule MPS s
indispensable, the principle 11.7 as an axiom can indeed be
abandoned?®. And since Leibniz’s formulation speaks in favour of
11.7 rather than MPS, one may suspect here a gap in the rule-
network of the calculus L1S.

A definite clarification of the question (often discussed in
literature) to what extent did Leibniz know the modus ponens (in
common or strict form), is rendered a bit difficult by the fact
that Leibniz often interprets the inferences quasi as propo-
sitions;2® at any rate he did not attach much importance to the
distinction between the inference: ‘A,,...,A,, therefore B’ - and
the corresponding proposition;: ‘if A, and .. and A,, then B’
Only in the context of grammatical investigations and linguistic
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analyses he refers explicitly to the distinction ‘si, tunc’ and
‘erge’. Thus, for example, one finds in the Analysis Particularum
the explanation: "Cum dico Sapiens est Rex, ergo felix est civi~
tas, non tantum dico si sapiens est rex, ergo felix est civitas,
sed etiam affirmo sapientem regem et civitatem felicem esse, ac
proinde totus syllogismus hypotheticus in his absolvitur ..”
(o.c., p.147). In the Notae Grammaticae (AV, 1, 102-6; C.243-4),
this “syllogismus theoreticus™ is described more precisely as
follows: "Ergo, significat: Si A est B, tunc C est D. Atqui A est
B. Ergo C est D."*” This, then, is an unmistakable version of
(strict) modus ponens or the special case of this deduction-rule,
in which the propositions a and g are categorical propositions of
the form AeB and CeD, and where from a plus a > g the conclusion
p is derived.

Thus all the four relevant deduction rules may safely be
regarded as genuine Leibnitian principles, and we can now turn to
an axiomatic comparison of L1S with the Lewis’ systems of strict
implication. In another place?® we have asserted, (somewhat
hastily), that L1S coincides exactly with the Lewis’ calculus S2.
This assertion, however, is somewhat problematic, because "the”
calculus L1S is, in a way, undetermined. No doubt the syntax of
L1S has been determined once and for ever by Def.6;, in view of
the preceding discussion the set of deduction rules of L[1S may be
taken to be determined once and for all; but it is not at all
clear whether those and only those ‘S’-principles that were
listed in the previous paragraph - i.e. the ¢-images of the for-
mer axiomatization of L1, - axiomatise the sentential-logic L1S.
More precisely, the problem consists in that there exist other
(logically equivalent) axiomatizations of the Leibnitian algebra
L1 which will generate by means of the translation-function ¢
variants of L1S which themselves are not necessarily equivalent
to each other. For example there is no reason to doubt that
Leibniz would have agreed to the following version of his law P2:

p2** (AeB) > (P(A) > P(B).
Its "translation” under ¢ is:
p2s** (A = B) > (P(A) > P(B)).

On the other hand, in the framework of the conceptual-logic L1,
the principle P2 could also have been replaced equivalently by
the special case

p2* P(AB) > P(B)
that follows directly from P2** (or from P2), and which,
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conversely, implies P2 or P2** For, according to K6, if AeB then
A = AB is true, so that P(A) entails P(AB), - hence P2* allows
one to infer the desired P(B). The ¢-image of P2* takes the shape

p2s* P(A A B) > P(B).

Whereas Leibniz surely would have accepted the conceptual laws
P2, P2* and P2** as equivalent, the sentential counterparts P2S,
P2S* and P2S** of L1S are not equivalent at all (e.g. on the
basis of Lewis’ S1): while P25 is a theorem of S1, P25* is the
characteristic axiom of the new stronger system S2, and replacing
by P25** leads to the even stronger calculus S3! Therefore our
provisional determination of the axiom of L1S as the set of the
¢—images of the axioms of L1 has to be taken with a pinch of
salt: this stipulation is not invariable with respect to equiva-
lent transformations of the set of axioms of L1.

In order to arrive at statements precise to some degree at
least, in spite of this tricky situation of the undetermined
nature of Leibniz’s sentential-logic, let wus consider three
axiomatic variants of L1S. The primary axiomatization should
contain  precisely those ‘S’-principles put together in the
previous section, i.e. {E1S5, E2S, Ki1S-K7S, NI1S, N2S, P1S-P4S} -
they are the ¢-images of those symbolizations of the laws of
concept logic that do best conform to Leibniz’s semi-formalized
versions. The secondary axiomatization of L1iS differs from the
first only in that it contains P2S* instead of P2S; finally, the
tertiary axiomatization contains analogously P2S**. Of course it
is possible to imagine giving variants in the case of certain
other conceptual-logical principles which might be proved as
authentically Leibnitian by citing appropriate texts; and this
should be taken care of for quartiary etc. axiomatizations of
L1S. But such considerations would undermine the framework of
this paper. With regard to the most important three
axiomatizations of L1S, it may be now shown:

Proposition 1 The primary axiomatization of L1S is deducti-
vely equivalent with the Lewis—system S2°.

In accordance with Zeman (p.96) by S2° we refer to the calculus
S2 minus the possibility-axiom A = P(A) or its equivalent 11.7.
As axioms of S2° the following laws from ch.6 of Symbolic Logic
are available:?®

111 AAB=2>BAA
11.2 AAB=>A
1.3 A>AAA

11.4 (AAB)AC>AABACQC
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11.5 A > A
11.6 (A>B)AB=>C)>(A=>C)
19.6 P(A A B) = P(A).

By the way, the first 6 principles axiomatize the weaker system
51°, and S1 is equal to S1° plus 11.7.

The proof of Proposition 1 is given in the Appendix. Suffice
it to mention here that the "lack®™ of the law of associativity
like Lewis’s 11.4, which has often been criticised by other com-
mentators, is not a real deficiency in the Leibnitian system
L1(S), since 11.4 can be proved by means of the conjunction
principle KI15. Furthermore it can easily be shown that the
alternative axiomatizations of L1S diverge from S2° - if at all -
only slightly®.

For one thing we have:

Proposition 2 The substitution of P2S through P2S* does not
alter the logical strength of L1S (i.e. the secondary axiomatiza-
tion of L1S also is deductively equivalentwith S2°).

Only when P25** replaces P2S(*) does one ascend one level
higher in the hierarchy of Lewis’s system:

Proposition 3 The tertiary axiomatization of L1S (P25**) is
deductively equivalent with with the Lewis—system S3°.

Again, proofs are supplied in the Appendix. The room for vague-
ness surrounding the axiomatization of L1S is thus not very
great. No matter whether S2° or S3° results, in the context of a
discussion of the Leibnitian logic only the following is impor-
tant: by way of his conceptual-logic L1, Leibniz only provided a
complete axiomatization of the Boolean algebra more than 150
years before Boole, but by explaining in detail the “translation”
of conceptual-logical into sentential-logical principles he also
developed a complete calculus of strict implication that was to
be "discovered” only more than 230 years after the GI. Indeed
Leibniz has even provided an answer - though, of course, only in
directly - to the question that occupied C.l.Lewis throughout his
life and for which he did not find a (definitive) answer, viz.
the question which modal logical system corresponds in a natural
manner to the Boolean algebra? The answer a la Leibniz is: S2° or
s3°.
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Leibniz’s modal logic

The outcome of Proposition ! through Proposition 3, however,
does not mean that S2° or S3° represent the modal logic favoured
by Leibniz in the sense that these systems would exactly mirror
his ideas about the logic of alethic modalities. S2° or,
likewise, S3° is merely the faithful ¢-image of his concept logic
L1. As we noted above in connection with the law of modus ponens,
11.7, he presumably accepted some further laws for the concept of
logical  possibility and necessity.  Although, e.g., 11.7 is
unquestionably  valid for Leibniz, unlike the coresponding
deduction rule this axiom does not appear in L1S, because,
roughly speaking, its “original® with respect to the mapping ¢
has no place in L1. More precisely: corresponding expressions
like (AeBaA)eB or (AeBAA) > B (which would be mapped by ¢ onto
11.7) are not well-formed formulae of L1.

As 1J. Zeman (1973) has shown (p.94), even in the framework
of the weakest system of strict implication 11.7 {is equivalent
with the more familiar principle (the designation which we borrow
from Lewis/Langford):

18.4 A > P(A).

This is also missing in L1S because its “original” is not a
syntactically well-formed sentence of the concept logic L1:
AeP(A) is not well-formed, because according to Def.2 terms and
not sentences must occur on both sides of ‘e’; similarly A > P(A)
is not well-formed because, according to Def.3, sentences but not
terms must stand on both sides of *>’. But P(A) is a sentence iff
A is a term!

On the other hand, it is certainly unquestionable that
Leibniz accepted this principle as valid. Onto-logical versions
appear, for example, in De Veritatis Realitate (AV, 1, 65-6) in
the form "Quicquid existit, est possibile® or in De Veritatibus
Primis (AV, 1, 115-5) as a marginal note: "Quod omne exisséns est
possibile, debet demonstrari ex definitione existentiae8’. It s
somewhat difficult to find unobjectionable logical wvariants of
18.4, because it is often unclear whether Leibniz speaks about
concepts or about sentences. Thus his remark in Dée Libertate et
Necessitate (AY, 2, 272-8; Grua 287-91) “"quod contradictionem
implicat esse falsum” (o.c. 275) may be well understood to say
that an impossible, contradictory concept is designated as false;
indeed Leibniz did this in the earlier cited §55 of GI*.
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However, the following passage from De principiis (C.183-4)
speaks clearly for a sentential-logical interpretation: "Duo illa
prima  principia: unum rationis: [Identica sunt vera, et
contradictionem implicantia sunt falsa, alterum expenentiae ...".
Since “identica® always have to be identical propositions, viz.
propositions of the form ‘A = A’, accordingly therefore, by
“contradictionem implicantia® one has to understand contra-
dictory propositions and not concepts. And if, as Leibniz
asserts, every impossible proposition is a fortiori false, then
by contraposition it follows that every true proposition must be
possible, as claimed in 18.4.

Thus Leibniz’s general theory of modal propositions goes
beyond L1S since it contains either 18.4 or 11.7 and is hence at
least as strong as the Lewis system S2 or S3, probably, however,
still considerably stronger. First it should be pointed out that
both the latter systems show two unpleasant characteristics that
Leibniz certainly would not have accepted. First they are
"unreasonable” (in the sense of Hallden), ie. they contain
certain theorems of the form avg although neither a nor p itself
is provable and although a and g are contentwise independent of
each other in the sense that they contain completely different
terms®>. Such a presumption clearly contradicts the basic
rationalist principle of Leibniz, according to which there must
be a sufficient reason for every true proposition and even more
so for every provable proposition. But, if there is no sufficient
ground either for a or g to be true, what reason could there be
for the disjunction to be true if both constituents a and p are
independent of each other?

A second undesirable characteristic of S2 and S3 consists in
the fact that in these systems the deduction rule - for every
theorem a, the necessity proposition -Pha also is provable -
holds only within limits®®. But, as noted already by Hans Poser,
for Leibniz the wvalidity of this “"rule of necessitation” results
"as the direct conclusion from his definition of necessity of a
proposition as the contradictoriness of the negation of the
proposition”™, - or somewhat more precisely: from his view
formulated in many places, that every (finitarily) provable
proposition is necessary. Unfortunately we could not discover in
Leibniz’s scripts a definitive version of this view - in the
sense of a logical inference rule®®. If one adds it to the
principles of 52 or S3 that are defended so far, then one obtains
either the so called calculus T or the more familiar (and more
attractive) system S4 as the extended Leibnitian modal theory?®.
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That Leibniz would have favoured the latter is discernible,
e.g. from the following fact. As is shown in Zeman ((1973),ch.11)
S4 can be axiomatized alternatively by adding to S2 or to S3 or
even to the weakest system S1° only one more axiom, viz., the
iteration law (cf. Lewis/Langford (1959), p.497):

C.10.1 PP(A) = P(A).

S4 is no longer "Hallden unreasonable”, and the “"rule of necessi-
tation® holds there without qualification. Poser has drawn
attention to a passage from De Affectibus (Grua, p.512-37), which
can be interpreted as a formulation of this central modal-logical
law: "Nam quod impossibile est esse actu, id impossibile est esse
possibile” (0.c.534). Provided that Leibniz here refers to the
possibility and the possible possibility of propositions, and,
furthermore, that he means that a proposition “actu est” only
when it "est”, i.e. when it is true, then this quote would really
represent a formulation of (the contraposition) of C.10.1.

Unfortunately this assumption is not fully corroborated by
the context. Besides, this (relatively early) fragment from 10
April 1679 contains in the sequel a series of statements and
definitions that are partly untenable and which do not quite fit
together with Leibniz’s later views on modalities. Thus, for
example, the concept of possibility is defined rather in a
confused manner: “"Possibile est quod esse aliquid et non-non esse
aliquid est idem” and this definition is taken to entail the no
less confused statement: “Possibile quod est, id non-non est.
Possibile quod non-non est id est”. Only the further conclusion
"Unde  sequitur impossibile est simul esse et non esse”
corresponds to some extent with the ripe view which underlies the
account given so far; and according to it a concept (or sentence)
is possible, if it does not contain (or imply) any concept (or
sentence) A and its negation at one and the same time.

Even though we have no firm proof that Leibniz adopted
C.10.1 as a logical law, still a plausibility case can be made
for the fact that he accepted it - at any rate as a meta-logical
principle. In the §§132-5 of Gl Leibniz unfolds his theory of
necessary and contingent truths:

"Propositio vera necessaria, probari potest reductione ad
identicas, vel oppositae reductione ad contradictorias; unde op-
posita dicitur impossibilis. Propositio vera contingens non po-
test reduci ad identicas, probatur tamen, ostendendo continuata
magis magisque resolutione, accedi quidem perpetuo ad identicas,
nunquam tamen ad eas perveniri ... Hinc veritatum necessarium a
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contingentibus idem discrimen est, quod Linearum occurentium, et
Asymptotarum, vel Numerorum commensurabilium et incommensurabi-
lium.”

But now C.10.1 says per contraposition, that every necessary
proposition is necessarily necessary. lf one considers any neces—
sary proposition A, it can be traced back, according to Leibniz,
in finitely many steps to an “identity” (i.e. to an axiom). But,
if this is the case, then a related and equally finite analysis
of the concepts that occur in A and of concept of necessity shows
that ‘necessarily A’ can also be traced back to an “identity”.
That is, the proposition ‘necessarily A’ is not simply true, but
itself necessary!

Therefore, the “material” wvalidity of C.10.1 as well as the
"validity” of the related “rule of necessitation® result from
Leibniz’s view of necessity as finitary probability. But, of
course, it does not follow from this that these principles would
be derivable as logical laws or rules from the laws of S2 or S3
that have been formulated explicitely by Leibniz. Even if one
would add the definition of necessity as finitary provability to
Leibniz’s  calculus of strict implication, still C.10.1  would
become provable only if one were to have the “"rule of necessita-
tion" at one’s disposal. If a is a theorem, ie. finitarily
provable, then indeed -P-~a is true by “definition”. But what has
to be shown is that this sentence is itself a theorem, i.e. (fi-
nitarily) provable, and this result is obtainable only by intro-
ducing the corresponding inference-rule:

a + Pa.

To put it in a nutshell: whereas Leibniz’s explicitly given modal
logic results in S2° or S3° depending on the choice of the
axiomatization, his meta-logical modal theory is at least as
strong as S54.

H. Poser (1969) has gone still a step further and has
asserted that the characteristic axiom of S5,

c1n P(A) 3 -P-P(A),

-~ according to which every possible proposition is necessarily
possible - should also be wvalid in Leibniz’s modal theory.
However, unlike the case of C.10.1 he did not even cite a single
quote as evidence for Cl11; and the following argumentation is
neither conclusive nor does it really express Leibnitian thin-
king: “"... alles, was mdglich ist, besitzt die Eigenschaft,
miglich zu sein, absolut und im Bereich der Ideen. Die Annahme,
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ein Element A dieses Bereiches, ein Ens, sei nicht mdglich, fiihrt
deshalb auf einen Widerspruch; folglich ist A notwendigerweise
mtglich” (Paser (1969), p.59).

Of course a plain contradiction would be involved if one
would assume of "an Ens” A, i.e. of some A for which ‘A est Ens’,
i.e. P(A) is true, that is A is not possible, -P(A). But this
interpretation of Poser’s argument only proves the all too
trivial law that the conjunction P(A)A-P(A) is impossible. If, in
contrast, Poser’s argument is understood in such a way that if A
is an "Ens" then this very proposition, P(A), may not be assumed
to be impossible, even then, granted for the time being that the
latter, -PP(A), be incompatible with the former, P(A), one would
have proved too little - viz. only -P(P(A))A-PP(A). But this is
just the converse of C.10.1, which as a special case of 18.4 is
at any rate valid for Leibniz. In order to accomplish the
intended justification of C11, one would have to show instead
that for an "Ens” A the assumption that it is possible that A is
not an "Ens”, P-P(A), contradicts P(A).

But, according to Leibniz’s view of necessity and contin—
gency, the proposition P(A) says that A can never be refuted in
finitely many steps, i{e. it cannot be led back to a
contradiction. So in case C11 would be wvalid, it would follow
that the meta-proposition P(A) - as a necessary proposition - is
finitarily provable. But, how is one to show in finitely many
steps — through analysis of the concept of provability as well as
of the constituent concepts that appear in A - that no (finite
analysis of A does lead to a contradiction? This itself appears
to be a sheer impossibility.

In contrast to Poser, therefore, one ought not subsume Ci1
in the Leibnitian modal theory. Leibniz’s conception of necessity
as finitary provability (and consequently, of possibility as non-
finitary refutability) not only does not speak in favor of Ci1,
but - as already noted by R. M. Adams* - really against it.
Leibniz’s modal theory, then, certainly may be taken to be
definitely weaker than S5 but at least as strong as S4. We have
to forgo the attempt at a closer demarcation.. For one thing, the
spectrum of the modal calculi between S4 and S5 contains an
endless number of systems®. For the other, Leibniz’s meta-
logical (or meta-physical) writings on necessity and impossibi-
lity are too imprecise to allow us to answer the question
whether, e.g., the characteristic axiom of S4.2: What is possibly
necessary, s necessarily possible - or the S4.4 - axiom: Every
proposition that is at the same time true and possibly necessary,
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is necessary - whether these hold under Leibniz’s interpretation
of the logical modalities®™ or not. To the best of our knowledge,
even amongst the most competent contemporary logicians there is
no agreement on the question, what is the precise structure of
the concept ‘logically possible’? This may be surprising, for the
alethic modalities have been investigated in the philosophical
and logical literature since Aristotle, thus essentially longer
than, for example, the deontic or epistemic modalities the
structure of which has been determined quite precisely*®. It is
presumptuous to expect an answer from a 17-th century philosopher
to a question the solution of which today still causes one to
rack one’s brains. Anyway, it is surprising enough that Leibniz’s
informal model theory fairly agrees with the results of modern
logical research. That is, according to the views of A. R. Ander-
son and N. D. Belnap, only the S4 laws hold for the notion of
logical necessity, whereas diverse objections (independent of
Leibniz’s considerations) have been brought forward against the
S5 principle*'.

Surely it is idle to speculate, what modern-logic would look
like if Leibniz had lived 300 years later. It appears to make
sense, however, to suggest to the contemporary logicians that
they take account of the Leibnitian work in their own researches.
Someone who - centuries ago - invented in one stroke both the
Boolean algebra and, by means of an ingenuously simple
translation, its sentential-logical derivate in the form of a
calculus of strict implication has at any rate graded himself as
an extremely competent dialogue—partner. He will have much to say
to every logician, even though, unfortunately, he cannot speak to
us anymore.
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Appendix

Proof of Proposition 1.

As we have seen, both calculi have the same deduction rules;
therefore it is sufficient to deduce all axioms of the primary
axiomatization of L1S in S2°, and vice versa.

(A) In one direction, we can make use of the work of Lewis
and Langford; in <ch.6 they have proved all the relevant
Leibnitian principles within their system S2. It only has to be
observed that the principle 11.7 or its equivalent 18.4 can
wholly be dispensed with in these deductions, so that the proofs
also hold in the weaker calculus S2° First, Leibniz’s EIS
coincides with Lewis’s axiom 11.6; E2S is Lewis’s theorem 12.1,
an immediate consequence of 11.2 and 11.6 along with 11.3; K25 is
an axiom for lewis, namely 11.2; K4S which constitutes the stren-
gthening of Lewis’s axiom 11.1 into a strict equivalence, is
proved as theorem 12.15; K5S, the analogous strengthening of
11.3, appears as theorem 12.7; K3S is proved as a counterpart to
112 in theorem 12.17; K6S arises relatively late as theorem
16.33**. And in contrast to the foregoing principles, all of
which are also theorems of the weaker system S1°, K1S, which is
Lewis’s theorem 19.63, is provable only in S2° with the help of
19.01; equally, K7S may be obtained only in S2° as theorem 19.68.
N1S is deduced by Lewis by means of 11.5 as theorem 12.3; N2S
similarly as theorem 12.44; for Lewis P1S is simply the
definition 11.02 of strict implication; P35S coincides with Lewis’
theorem 18.1; similarly P4S is theorem 18.8; and finally P2S
appears as theorem 18.51.

(B) Conversely, one obtains the definition 11.2 within the
Leibnitian system L1S as principle P1S; further, the axiom 11.1
is obtained from K4S with the help of K2S and the definition of
strict equivalence; 11.2 is identical with K2S; 11.3 follows
readily from K5S; 11.5 similarly from N1S; 11.6 coincides with
E1S; thus only 19.01 - the characteristic axiom of S2° - as well
as the law of associativity, 11.4, remain to be proved in L1S.

The latter is obtained as follows:

i (AAB)AC 3 C K3s
ii  (AAB)AC 3 (AAB) K2s
iii (AAB) » A K25

iv (AAB) > B K3s
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v (AAB)AC 3 A from ii and iii by means of
the rule of conjunction, EI15
and MPS

vi (AABIAC > B analogously from ii and iv

vii ((AAB)AC 3 B)A((AABIAC 3 C) by the rule of conjunction
from i and vi

viii (AAB)AC = (BAC) from vii with K1S

ix ((AAB)AC = AIA((AAB)AC > (BAC))
rule of conjunction applied
to v and viii

X (AABIAC 3> AA(BAC) from ix with KiS

Thus it is already proved that L15 contains at least the system
S1°. The proof of 19.01 that still remains to be given may be
simplified by wusing Zeman’s meta-theorem according to which for
every truth-functional tautology «, the sentence -P-a is provable
in S1° hence also in L15**. We will designate the applications
of this meta-theorem in the commentary by ‘MTZ’ and thus we can
show

xi B 3> BA(AA-A) MTZ
xii -P(B) * -P(BA(AA-A)) RIS (xi)
xili (B 2 AanA) 3 -P(BA-(ArnA))  PIS
xiv (B 3 AA0A) 3 (B = -A) K15, K35
xv (B 3 -A) 3 ~P(BAa-A) P1S
xvi (BA--A) <= (AAB) MTZ
xvii (B = -A) 2 -P(AAB) RIS (xv, xvi)
xviii P(B) = ~P(AAB) from xii, xiii, xiv and xvii
by means of E15
xix P(AAB) > P(B) from xviii with N2S

With this proof of 19.01 in L1S, not only Proposition 1 but at
the same time also Proposition 2 is verified. The remaining

Proof of Proposition 3

however, is also a rather trivial consequence of the former proof
of Proposition 1. For, according to Zeman (p.161) S1° extended by
the axiom P2S** just yields the system S3° i.e. the tertiary
axiomatization of L1S contains S3° and conversely, all the
principles of L1S including P2S** are provable in S3°.
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Notes

' We will use the following abbreviations for the Leibnitian
works on logicc A = G. W. Leibniz: Sdmtliche Schriften und
Briefe. Ed. by the Preufische (later: Deutsche) Akademie der
Wissenschaften; cited by series, volume and pages; AY = Voraus-
edition to the VI series of A, edited by the Leibniz Forschung-
stelle der Universitdt Mitinster; cited by fascicle and pages; C =
L. Couturat: G. W. Leibniz Opuscules et fragments inedits, Paris
1903, Reprint Hildesheim 1961; Gl = Generales Inquisitiones de
Analysi Notionum et Veritatum, ed. and translated by F. Schupp,
Hamburg 1982, cited by § or by number of the line; GP = Die
Philosophischen Schriften von G. W. Lleibniz, ed. by C L
Gerhardt, Berlin 1875 - 1890 (reprint Hildesheim 1960-1), cited
by vol. and pages; Grua = G. Grua: G. W. Leibniz Textes inedits,
Paris 1948.

2 Cf. Rescher (1954), where the author speaks of “"the ‘term’-
constant Ens or Res” and where, especially in the formulae 21-24,
he subsumes ‘Ens’ as conceptual-constant under the transformation
rules of the calculus. A related approach - that, however, leads
to even worse absurdities and misinterpretations of Leibniz’s
ideas - may be found in H.-N. Castaneda’s paper "Leibniz’s Syllo-
gistico-Propositional Calculus”, Notre Dame Journal of Formal
Logic 17 (1976), 481-500.

* This is the title of the fragment — unfortunately undated -
Nr. 66 in AV, 1, 176-79. A similar opinion was held by Leibniz at
least at the age of 50. In a famous letter sent to Gabriel Wagner
at the end of 1696, he defends the till then familiar logic with
the confession "... so muss ich zwar bekennen, daB® alle unsre
bisherigen Logicken kaum ein schatten deflen seyn, so ich wiind-
sche, und so ich gleichsam von ferne sehe® (GP, VII, 516); how
big the gap between what was achieved till then and what was
prophetically intuited as a hunch by Leibniz becomes evident by
the fact that for him the syllogistic “"diese arbeit des Aristote-
lis" represents "nur ein Angfang und gleichsam das A, B, C" (o.c.
p-519), and that "aber diese Vernunfft Kunst noch unvergleichlich
hther zu bringen, halte ich vor gewiB, und glaube es zu sehen,
auch einigen Vorschmack davon zu haben .. Was nun meines
ermefens darinn zu leisten mtiglich, ist von solchen begriff, daB
ich mir nicht getraue ohne wirkliche Proben genungsamen glauben
zu finden” (p.522).
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4 The “"indefinita” function as disguised conceptual-quanti-
fiers for Leibniz; for a detailed account of the Leibnitian logic
of the quantifiers, cf. our paper "‘Unbestimmte Begriffe bei
Leibniz" Studia Leibnitiana, XV1 (1984), 1-26.

% The first one appeared in Studia Leibnitiana XVIII (1986),
1-37, the second 1is forthcoming in the contributions to the
symposium Leibniz: Questions de Logique, Brissel, Louvain-la-
Neuve 1985.

¢ In the Definitiones from around 1679 (AV, 1, 146-7) one can
find a marginal sketch of a characteristic in which especially
‘est’” is abbreviated by ‘e’. Leibniz did not use this symbol,
however, in any of the known drafts of a calculus.

7 At least one half of the equivalence P3, namely P(B) » (BeB)
was, however, recognised by Leibniz as valid. Cf. §43 GI:

"B continere non-B est falsa ... Patet et ex aliter. B continet
B (per [E2]). Ergo non continet non-B alioqui foret impos-
sibilis.”

& Cf. GI, line 168, §73, §146, §148, §190; C.259, Principle
(2), C.261, Principles (3) and (4), C.271, C.421, Principles (6)
and (9); as well as Grua, pp.324 and 325.

9 C.262; the bar of course does not mean a second negation,
but only serves Leibniz as a bracket.

' Compare M. Dummet, Review of Rescher (1954) in Journal of
Symbolic Logic 21 (1956), p.198; also cf. Castaneda (1976),
ref.3, p.484, where Leibniz is blamed for the following: "... ha-
ving analyzed ‘some A’s are B’s’ as ‘AB exists’ [hel does not go
on to interpret this as ‘AB contains existence’ which would be
symbolized as ‘AB = AB (Existence)’. He takes this step [in GP
VII, 213] but he leaves the concept existence or entity somewhat
isolated.” Fortunately Leibniz did not further pursue this
mistaken approach otherwise, and the “serious troubles” that
Castaneda deduces later on (especially pp.489 ff) do not refute
the system of Leibnitian logic but only the miscarried
reconstruction of it by Castaneda.

That ‘Ens’ should not be viewed as a conceptual-constant has
first been noticed by L. Couturat: cf. his La Logique de LlLeibniz,
Paris 1901 (Reprint Hildesheim 1966), p.353, ref2. A very
detailed discussion of this point may also be found in R. Kauppi,
Uber die Leibnizche Logik, Helsinki 1960, especially pp.215-222,

Finally, it should be pointed out that analogous interpre-
tation of the truth concept as a 1st order conceptual-constant as
probed in §108 GI leads to the same difficulties. With ‘V’ abbre-
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viating ‘verum’ Leibniz attempts to interpret the proposition ‘A
est verum’ - in which ‘A’ stands for a concept such as ‘Homo’ -
predicatively and thus obtains in accordance with K6 the equation
A = AV: "A = A verum seu A est verum”. However, because of ABeA,
this interpretation would entail that if A is true, then every
conjunction AB is true as well, especially AA would be true. But
that is absurd.

" The definition of the disjunction is given (with a slip of

the pen) in the Analysis Didactica (C.424-6); as to the question
of the discovery of this "de Morganian” principle, cf. our
earlier paper “Zur extensionalen und ‘intensionalen’ Inter-
pretation der Leibnizchen Logik", Studia Leibnitiana 15 (1983),
and the further literature mentioned there, especially the papers
of H. Schepers and of Ph. Boehner. The definition of equivalence
(*idem est quod’ or ‘aequivalent’) as mutual implication is
always presupposed by leibniz but seldom formulated explicitly.
Thus he defines the (strict) equivalence of sentences by means of
the condition: “Coincidere dico enuntiationes, si una alteri
substitui potest salva veritate”, only to add just casually: “seu
quae se reciproce inferunt” (GI, lines 311-312).

2 Cf. also R. Kauppi’s (1960) similar interpretation of these
principles; however, she expresses a qualification: “In dieser
Form sind sie nicht ausdriicklich von LEIBNIZ aufgestellt worden”
(p.182, footnote 2).

3 A proof of this assertion is given in Lenzen, “Leibniz und

die Boolesche Algebra”, Studia Leibnitiana XVI (1984), 187-203.
L. Kruger hit this fact very nearly when he said in Rationalismus
und Entwurf einer universalen Logik bei Leibniz, Frankfurt 1969,
pp-17-8, "dah Leibniz die Boolesche Algebra sozusagen um
Haaresbreite verfehlt [hat]”.

" Those are the two parts of the juristic disputation De
Conditionibus (A VI, 1, 101-24 and 129-50) from 1665 and the
Specimen Certitudinis seu Demonstrationum in Jure (ibid. 169-430)
from 1667. For the discussion of the laws of propositional logic
developed here cf. H. Schepers: “"Leibniz’ Disputationen ‘De Con-
ditionibus’ Ansdtze zu einer juristischen Aussagenlogik”, in Ak-
ten des Il Internationalen Leibniz-Kongresses, vol.V (1975),1-17.

* In De Vero et Falso, Affirmatione et Negatione, et de Cont-

radictoriis (AV, 1, 86-8) it is sald analogously "12) Si positis
enuntiationibus sequatur nova et haec sit falsa, etiam aliqua ex
illis erit falsa”". By the way, Leibniz remarks: "Hoc est axioma”
instead of "Hoc est regula”l
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' AV, 1, 184-90; the following quotation does not appear in
the partial edition in Grua, 322-4, but is found in F. Schmidt
(ed.), G. W. Leibniz - Fragmente zur Logik (Berlin—-East 1960),
474-8. Later references to this fragment refer to the Edition in
Av.

7 C. 1. Lewis & H. G. Langford, Symbolic Logic, New York?
1959, S.124.

'® Analysis Particularum, ed. by F. Schupp in Studia Leib-
nitiana Sonderheft 8 (1979), 138-53; quotation p.145.

" Couturat (1901), p.354; Couturat also points out that this
idea was rediscovered by Boole; naturally he could not know that
it might be rediscovered by C. 1. Lewis in this century for a
second time. If Lewis had viewed the Leibnitian logic with some-
what less scepticism, then perhaps he would have noticed that the
question he left open: which calculus of strict implication
corresponds to the Boolean Algebra? - has been answered by Leib-
niz in an interesting and rather obvious way.

20 Cf. Kauppi (1960), especially ch.lV, §3; also Kauppi, "Zur
Analyse der hypothetischen Aussage bei Leibniz®, in A. Heinekamp
& F. Schupp (ed.), Die Intensionale Logik bei Leibniz und in der
Gegenwart, Wiesbaden 1979, 1-9; H. Burkhardt, Logik und Semiotik
in der Philosophie von leibniz, Miinchen 1980, passim (cf. under
the heading ‘hypothetisch’); H. Ishiguro in M. Hooker (ed.),
Leibniz: Critical and Interpretative Essays, Minneapolis 1982,
90-102 is indeed <concerned with the theme “Leibniz on
hypothetical truth” but she ignores the reduction of hypothetical
to categorical propositions that is advocated by Leibniz with
verve; cf. finally F. Schupp’s (1982) commentary to GI, o.c.,
especially 164-5, where further literature is given.

2 Qc., p.110; cf. similarly the versions in Specimen
Certitudinis, o.c., p.372.

22 QO.c., pB2 Lleibniz says that the former proposition
"resolvi potesti in hac duas" - ie., into the latter
propositions.

2 As to the legitimacy of this definition cf. the passage of
Gl quoted in ref.7?. That one might take over P3 from the domain
of concepts to that of sentences, is evidenced by the remark:
"Falsum esse B continere non-B, intelligendum est et de
propositione B, quae non continet contradictionem” (§43). Thus,
according to Leibniz, at least the implication P(B) = -(B = -B)
is true. If one would yet want to reject Def.7 as non-Leibnitian,
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because the converse implication, “P(B) > (B 3 -B), had not been
put forward by him explicitly, then one might treat P as an unde-
fined constant by adding the condition: ¢(Pt) = P¢(t) to Def.8 of
the "translation function”.

24 (Cf. also the earlier version in Ad Specimen Calculi Univer-
salis Addenda (GP, VII,221 ff): "P rincipia Calculli
1) Quicquid conclusum est in literis quibusdam indefinitis, idem
intelligi debet conclusum in aliis quibusscunque easdem conditio-
nes habentibus ..." (o.c., p.224).

% This need not mean that 11.7 were derivable from MPS and the
other laws of strict implication. If one drops 11.7 without sub-
stitution, weaker systems result that are designated as respec-
tive "nought systems’™ (S1°, S2°, S3°, ..) in the terminology
of J. J. Zeman, Modal lLogic - The Lewis Modal Systems (Oxford
1973).

% (Cf., e.g. the already quoted §137 of GI: "... Omnes syllo-
gismi fiant Categoricae”. Furthermore in Ad Specimen Calculi
Universalis Addenda (AV, 1, 107 ff; cf. GP VII, 221-7 and C.249)
axiom K1 is stated as the rule "a est bcd, Ergo a est b, et a est
c et a est d" (p.111) and similarly E! is described as a "con-
sequentia per se vera™ "a est b et b est c. Ergo a est c”
(p.110). Finally, one can also find a rule-version of the “pra-
eclarum theorema” K7: "Generaliter si sint quotcunque propositio—
nes: a est b, ¢ est d, e est f, inde fieri poterit una: ace est
bdf, per additionem illinc subjectorum, hinc praedicatorum”
(p-109).

27 A further version of the modus ponens is provided e.g. in De
Calculo Enuntiationum (AV, o.c., p.125): "Significatio particulae
ergo talis a me accipitur: Esto: si A est B tunc C est D item: A
est B tunc poni poterit: Ergo C est D.” Finally, cf. also the
Notationes Generales, o.c., where the "C o n s equentia
prima Hypothetia" is analogously formulated as fol-
lows: "5i A est B, C est D. Jam A est B. Ergo C est D." Therefore
the misgivings of Rescher (1954): “Leibniz cannot .. give a
wholly adequate statement of this rule modus ponens” (p.3, ref.8)
are without foundation.

2% In our contribution to the IVth International Leibniz
Congress, Hannover, 1983: "Leibniz und die Entwicklung der Moder-
nen Logik”, p.423.

* For the sake of uniformity Lewis’s sentential constants p,
g, r, .. have been replaced by A, B, C, ..; similarly, his
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different logical operators have been replaced by the symbols
used in this paper.

3 As to the "lack” of the law of associativity cf. K. Durr,
Neue Beleuchtung einer Theorie von Leibniz (Darmstadt 1930),
pp.53 ff; Rescher (1954) p.11; Kauppi (1960), p.173; and H. Burk-
hardt (1980), p.353 with suggestions to further readings
(ref.399).

3 Cf. also §194: "Terminus falsus est qui continet oppositos A
non-A. terminus verus est non-falsus.”

32 Cf. Zeman (1973), pp.176-7.

3% There the “rule of necessitation” is valid only for the
truth—-functional tautologies and for the sentences of the form
P P y; cf. Zeman (1973), pp.104 ff. and 184 ff.

3% H. Poser, Zur Theorie der Modalbegriffe bei G. W. Leibniz,
Wiesbaden 1969, p.60.

3 poser refers to a passage from Quod Ens Perfectissimum
existit (GP, VII, 261-2), where Leibniz attempts to justify the
compatibility of any "perfections”, i.e., simple, positive and
absolute qualities. But the explanation "omnes autem propositio~
nes necessaric verae sunt aut demonstrabiles, aut per se notae”
(p.261) shows at best that every (finitary) provable proposition
a is ipso facto necessary. In order to obtain an informal version
of the "rule of necessitation”, however, one would have to have
in addition that the necessity-statement -P-a itself is
finitarily provable or necessary.

3 54, unlike T, contains only finitely many non-equivalent
"modalities”; cf. Zeman (1973), 179-81.

3 Cf. his paper “Leibniz’s Theories of Contingency”, reprinted
in M. Hooker (ed.), Leibniz: Critical and Interpretative Essays,
243-83. On p.275 Adams remarks: "... the characteristic axiom of
S5 .. is not valid on the demonstrability conception of necessi-
ty. For a proposition may be indemonstrable without being demon-
strably indemonstrable.”

3 This follows from K. Fine’s investigation: "An ascending
chain of S4 logics”, Theoria 40 (1974), 110-6. In a letter dated
13.03.78 Steven Schmidt pointed out that there are even
infinitely many systems between S84 and S5 that can be
characterised by means of “one-variable axioms” alone, viz.
through the axioms -P-P(A)Aa,,, > a, with a, = "P4A; a,, = A >
Uzp-1; ANA gy = TA 3 Q.
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3 particularly in “Epistemologische Betrachtungen zu [S4, S5)"
Erkenntnis 14 (1979), 33-56, we have attempted to show, that
whereas the S54.2 axiom, in epistemic interpretation, should be
viewed as valid of a general concept of knowledge, the characte-
ristic axiom of S5S4.4 only holds of the specific concept of
knowledge as true conviction. The characteristic axioms of other
S4-extensions (cf. ibid., p.35) are, as a rule, so complex that
even a paraphrasing in ordinary language is hardly possible, let
alone a justified decision on its "intuitive” acceptability.

“° For a short outline of deontic-logical systems cf., for
instance, F. von Kutschera, Einftthrung in die Logik der Normen,
Werte und Entscheidungen (Freiburg 1973), ch.l. Systems of
epistemic logic are described in detail in our Glauben, Wissen
und Wahrscheinlichkeit (Wien 1980).

' Cf. A. R. Anderson & N. D. Belnap, Entailment 1 (Princeton
19756), 12 and 22.3.

*2 To be more precise, Lewis/Langford prove only the following
weakened version of K6S: (A = B) <= (A 2> AAB), in which one may,
however, strengthen the implication on the right side to an
equivalence.

4 Cf. Zeman (1973) p.86; as a corollary of this proposition
one obtains the further meta-theorem, that S1° - thus also
Leibniz’s L15 - covers the whole of propositional-logic.



MACIEJ JUNIEWICZ

LEIENIZ’S MODAL CALCULUS OF CONCEPTS

The aim of this paper is to uncover Leibniz’s modal calculus
of concepts. Here we employ the word “uncover” quite seriously,
because his ideas of modal logic, however sketchy in character
and obscured by the dust of occasional mistakes, are developed to
such an extent that bringing them to completion is almost
automatic for a modern "underlabourer”.

Our point of departure is the observation that what we are
after here is not a sentential modal logic (at least not primari-
ly), since for Leibniz a sentence to which modal operators are
applied has quite a definite structure: in the simplest case it
is of the form A est B or A =B, and therefore his system is a
modal extension of his calculus of concepts - in other words, a
theory of Boolean algebras with underlying modal logic.

Leibniz does not provide explicitly any axiomatization of
the modal calculus of concepts. In this situation we investigate
the part of his thought dealing with strict correspondence
between sentences and concepts, which enables us to notice in the
theorem on the reduction of hypothetical to categorical sentences
a whole series of modal formulas. These formulas, connecting in-
timately modal and Boolean structures, we admit as the most
fundamental axioms.

In the resulting system, necessity can be interpreted as de-
rivability. For reasons of space, we are not able to discuss this
interesting fact that reminds of Leibniz’s definition of
necessity as reducibility to identity. Instead, we concentrate
upon a group of formulas (which we would like to call "the calcu-
lus of strokes”) never, to our knowledge, commented on in the
literature of the subject in question. The acquired technique
turns out to be a useful tool for explaining these strange at
first sight expressions, confirming the correctness of our axio-
matization of Leibniz’s calculus of concepts.
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Leibniz’s calculus of concepts, presented, e.g. in Generales
Inquisitiones de Analyst Notionum et Veritatum (GI), can be
described rather adequately as a formalized theory of Boolean al-
gebras, using a quantifier—free language which has an infinite
set of concept constants (cf. the paper by Professor Lenzen in
this volume). More precisely, we assume that the language L of
the calculus has an alphabet consisting of the following symbols:
v, ~ (functional symbols), €, = (predicate symbols), 1, A, B,
(concept constants forming an infinite set Cn), v, A, ~, =, <«
(logical constants). The sets of terms and formulas, denoted
respectively by T and F, are constructed in the standard way. We
shall write t,nt, instead of t,ut,, t, #t, instead of ~t,=1t,
(t,,t,¢T), and O instead of 1.

The Leibnitian expressions AB (the composition of concepts A,
B), non A, A est B, A est Ens (equivalently: A est possibile, A
est res, A est verum, A est), A non est Ens (equivalently: A est
impossibile, A non est res, A est falsum, A non est) are
rewritten in L as: AuB, A, BS A, A#1 The fact that we read A
est B as B £ A, which accords with Leibniz’s generally synonymous
use of “est” and “continet®, and that we denote the umique
impossible concept by 1 shows that the intended interpretation of
the language is the so-called intentional one.

The calculus of concepts is now a theory B, = (L,Ax,Cons),
where Ax is a set of axioms, Cons is a consequence operation. Ax
contains any set of Boolean axioms, formed with respect to v, -,
1 and closed under the substitution of terms for constants. The
last property agrees with Leibniz’s statement that there are
infinitely many axioms ("propositions identiques”), because there
are infinitely many names for concepts (“termes® - C.186). Fur-
thermore, beside the substitutionali instances of axioms of
sentential logic, to Ax belong all formulas of the type t=t,
where teT (“Propositio per se falsa est A coincidit ipsi non A" -
C.365). B, is thus a theory of nondegenerated Boolean algebras -
an important fact in our subsequent constructions. Cons is based
on modus ponens as a sole rule of inference. a means that the
formula a is a theorem of B,.

Let C be the Boolean algebra of concepts. By an interpreta-
tion of the language L in C we shall mean any function v:Cn—C
such that v(1) =1 The interpretation v standardly assigns
truth-values to every formula of L. We write C +, a, if the for-
mula a is true in C under the interpretation v.
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1

Commenting in Gl on theorems of his calculus, Leibniz writes
often: “A autem B significare possunt terminos, vel propositiones
alias” (C.365). In the latter case, when, moreover, L, M, N are
sentences, non B is interpreted as the negation of B, MN denotes
the conjunction of M and N ("Scilicet sit A esse B=1, et sit
B=CD et A esse C=M, et A esse D= N, utique fiet: L = MN" -
C.372), and the expression A est B means that the sentence A
contains, i.e. implicates, the sentence B: “Propositionem ex
propositione  sequi  nihil aliud est quam consequens in
antecendenti contineri ut terminum in termino® (C.398).

Throughout the rest of the present paper we shall meditate
upon this idea of Leibniz’s, showing that what he has in mind is
surprisingly far more complicated than the “ordinary® Lindenbaum
algebra of the theory B,. The point is that Leibniz maintains not
only that the algebraic structure in the set of sentences is sim-
ply analogous to that in the set of concepts, but claims, more-
over, that the former originates from (is isomorphic to) the
latter via some operators associating terms with sentences
(concepts with interpreted sentences).

The Leibnitian reduction of “propositiones tertii adjecti”
(categorical sentences) to "propositiones secundi adjecti® is the
set of the following four equivalences (C.393):

(R1) Quoddam A est B dat: AB est res;

(R2) Quoddam A non est B dat: A non B est res;
(R3) Omne A est dat: A non B non est res;
(R4) Nullum A est B dat: AB non est res.

The form of sentences on the right-hand side suggests that the
reduction can be pushed on still further - to objects “primi
adjecti”. In this way there arise two operators which are more or
less explicitly present in Leibniz’s texts:

1. V: T—F, V() is the formula t # 1;

2. Z2T—F, 2Z() is the formula t=0 (or t est necessarium
in Leibniz’s notation — C 259).

Let us fintroduce at one stroke two remaining analogous ope-
rators:

3. V: T—F, V(v is the formula t = 1;
4, Z2T—F, Z@t) is the formula t = 0.
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In assigning terms to formulas, Leibniz employs, first of
all, the operator V-'. The following passage illustrates the pro-
cedure in question: “Ipsa propositio concipi potest instar termi-
ni, sic qu. A esse B, seu AB esse terminum verum, est terminus,
nempe AB verum” (C.397). AB verum means here just AB: “verum
facit hoc loco officium quod wunitas in Arithmetica (..) A=
A verum” (C.381, 382).

Let us now see how Leibniz fares with sentences which have
reduction of the form t=1 or t=0: "Sic omne A esse B, seu A
non B esse falsum, seu A non B falsum est terminus verus”
(C.397). The sentence A non B est falsum can be transformed into
the term A non B by means of V~'. However, if the initial sen-
tence is true, then the term denotes an impossible concept, which
is for Leibniz a perplexing situation. For this reason he chooses
the expression A non B falsum. If we interpret it as non(AnonB),
we obtain the transformation:

Omne A est B +— non(AnonB),

which  consists in applying the operator Z™', because B € A+«
AuB = 0. Perhaps our seeing in C.397 Leibniz’s allusion to Z is a
little simple-minded, but it should be stressed that the theory
under consideration just calls for the operator Z, which can
therefore be introduced in our model a priori.

On the whole, Leibniz is convinced that one can associate a
term with any sentence by means of the operator V™'. This is, of
course, not so, but the very idea remains clear, and his formu-
lations can easily be corrected. He says, for instance: "Et reve-~
ra omnis propositio seu omne complexum potest vicissim reduci ad
incomplexum per est primi adjecti ut vocant. Et si loco proposi-
tionis homo est rationalis, dicam t6 hominem esse rationalem,
est” (GP 1I, 472). Unfortunately, the sentence homo est rationa-
lis cannot be written in the form t » 1, where te¢T. Let us para-
phrase the above statement, substituting the sentence gquidam homo
est rationalis for the original one. The new sentence is
equivalent, on account of (R1), to: homo rationalis est (res),
and therefore we obtain

76 quendam hominem esse rationalem = homo rationalis.
If we want to retain Leibniz’s original example, we should,
of course, use the operator Z™! with the result:

76 hominem esse rationalem = non(homo non rationalis).
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One observes that the term Leibniz assigns to a sentence a
is, as a rule, denoted by té «, or solely by the acc. cum inf.-
form of a.

The converse transformation of terms into sentences can also
take place: “Propositio ipsa fit terminus si termino ipsi adji-
ciatur verum aut falsum; ut sit A terminus, et A est vel A verum
est, sit propositio, A verum, seu A verum esse, seu A esse erit
terminus novus, de quo rursus fieri potest propositio” (C.398),
or -1

A 'v_’ A est verum lv—-> A verum,

where, as we noted earlier, A verum = A.

The discovery of strict correspondence between terms and
sentences enables Leibniz to elucidate the nature of implication,
and, in particular, to “reduce” hypothetical sentences to
categorical ones. Now we pass on to a detailed analysis of an
example of such a reduction (C.260):

(1) Ex A est B sequitur E est F, idem est ac si diceremus A esse
B est E esse F.

We begin by establishing the sense of the implication on the
left-hand side. In Leibniz’s texts "ex a sequitur g" expresses
not material implication, but a much stronger connection between
the sentences a and g, which consists in a’s "contaeining” p, and
which Leibniz describes also in a way which amounts to saying
that g is a logical consequence of a and of a set of the defini-
tions of concepts (C.408). "Ex a sequitur p" is therefore a kind

of strict implication: N(a - g), where N is a sign of necessity.

Let us now consider alternative readings of the expressions
A esse B, E esse F in (1), which Leibniz might as well have writ-
ten 76 A esse B, 76 E esse F (C.389). According to what was said
earlier, A esse B, E esse F are just terms K(A est B), K(E est F)
where K s potentially one of the following operators: V-!, Z7,
v,z

As we have remarked, Leibniz assumes in the first place,
that K = V''. But in this case the operator K is erroneously app-
lied to sentences which cannot be written in the form t » 1, and
therefore we paraphrase (1) as follows:
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(2) Ex quoddam A est B sequitur quoddam E est F, idem est ac si
diceremus quoddam A esse B est quoddam E esse F.

In view of (R1), the sentences A quoddam A est B, quoddam E est F
lead to the following formulas of the language L: AvB =1,
EvF ¥ 1, and consequently K(q. A est B), K(q. E est F) are, res-
pectively, the terms AuB, EuF. We thus obtain

3) N(AvB = 1 - EvF # 1) «> EUF € AuB.

Assume next that K = Z°! in (1). Then, analogously, we get
(4) N(B € A = F € E) « EnF £ AnB,

Finally, when K=V or K=2Z" we obtaln, respectively
(in the latter case we consider (2) instead of (1))

(5) N(B € A = F € E) « EvF € AvB,
(6) N(AuB # 1 = EuF # 1) «— EnF < AnB.

To sum up, we see that the operators V and Z cannot be used
for associating terms with sentences in Leibniz’s sense (at least
as long as est=continet), because from (5) (or from (6)) by put-
ting A=0, B=E=F=1, even under very general syntactic
assumptions, one deduces the formula O = 1, which contradicts the
axiom t*t. On the other hand, Leibniz’s idea of reducing
hypothetical to categorical sentences, realized by means of the
operators V and Z, leads immediately to formulas (3) and (4),
which are particular instances of

7) Nit,=1->1t,=1) «>t <,
where t,t,€T.

We intend to regard formulas of the type (7) as structural
axioms of Leibniz’s modal calculus of concepts. It is easy to
perceive their Boolean sense. To this aim, denote the formula
ty;=1>t,=1 by a. Firstly, we obviously have Kt €t,—>a.
Secondly, it is not difficult to prove that if +p-a, where g
is any conjunction of equalities (of the form p =g, p,qe¢T), then
Fp—>t,€t,, The formula t,€t, can thus be called the wea-
kest, with respect to conjunction of equalities, condition
implying the truth of a. If in place of t,=1-t,=1 we consider
the more general formula: t=1-(t,=1v.,vt,=1) (denoted also
by a), we see that the role of t, $t, is now played by the set
{t€t,. t5¢t), because +Ht€t,>a, and if Fp->a, where
p is a conjunction of equalities, then Fp-t <t for some
i=1,.n
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v

The above investigations suggest that all formulas of the
type
(8) Nt=1=>(t=1v.vi=D)ert<t v..vtet,

where t,t,¢T, n is a natural number, should be candidates for
axioms of Leibniz’s modal calculus of concepts.

We shall now extend the language L by adding to its alphabet
the symbol for necessity N. The set F, of formulas of the new
language L, is thus closed under the operation a +> Na, where
a€F,, Ma will be an abbreviation for ~N~a. Leibniz’s moda! calcu-
lus of concepts is a formal system B, = (L,,Ax,,Cons,). The set
Ax, of axioms of the theory B, contains all axioms of the theory
B and all formulas of the type (8). Furthermore, Ax, contains
formulas of the form Na-—»>a, Na-=g)=> (Na->Ng), Na->NNa,
where ae€F,, and substitutional instances of axioms of sentential
logic. The consequence operation Cons, is based on modus ponens
and on the following rule of inference: if bk a then +, Na (for
a¢F,, i a means that a is a theorem of B,).

For reasons of space, we are not able to explain in this
place why exactly S4 should be chosen as the logic of Leibniz’s
modal theory. For the argument, based on his definition of neces-
sity as provability, we refer the reader to Juniewicz (1986) or
to Professor Lenzen’s paper in this volume.

We shall now present the main metatheoretical properties of
B, (for proofs see Juniewicz (1986)). These will not be of use in
the sequel, but should enable the reader to get a feeling of what
our formalization of Leibniz’s modal calculus is.

Proposition 1. B, is a consistent nonessential extension of
the theory of Boolean algebras B, (i.e. if -, a then + a, for aeF).

Proposition 2. The underlying logic of B, is in fact McKin-
sey’s system S4.1, {.e. - NMa -+ MNa for aeF,.

Let Id denote the family of all proper ideals in C (the Boo-
lean algebra of concepts). Let R be the relation on Id defined as
follows: I,R1I, iff the ideal [, is contained In the ideal I,.
We shall treat the partially ordered set of quotient algebras
({C/1},iR) as a structure of possible worlds in the sense of
Kripke. Given an interpretation v:Cn—C of the language L iIn
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C, a formula a is false or true in each possible world /I,
namely, under the interpretation v;:Cn-—C/l, v, = k;ov, where
k; C—C/l is the canonical epimorphism. Thus we obtain a
Kripke semantics for the modal language L,. C/I Kk, p means that
the formula p is true in the possible world C/1 within this
semantics.

Proposition 3. (Completeness theorem). Let a be any formula
of the modal language L,. Then +, a iff C/l k,a for every ideal
leld, and every interpretation v: Cn — C.

Let A} stand for the set of the atomic formulas (of L) which
are true in C/I under the interpretation v.

Proposition 4. For any aeF, we have C/I £, Na iff A} -, a.

Thus, unsurprisingly, B, belongs to the family of those for-
mal theories with modal logic in which necessity can be interpre-
ted as derivability. S. Kripke (1963) describes semantically a
similar system which is a modal extension of arithmetic. Kripke
does not provide any complete axiomatisation, but observes that
the logic is in fact S4.1.

The above-mentioned fundamental property of B, accords neat-
ly with Leibniz’s explanation of necessity in terms of provabili-
ty. This suggests that it is possible to arrive at the theory B,
in a completely different way, namely, starting from his famous
definition stating that a sentence is necessarily true if it is
"reducible” to identity. For this we again refer the reader to
Junjewicz (1986), where it is also shown how Leibnitian possible
worlds can be naturally described as the algebras C/I.

A4

Leibniz’s constructions using the operators which set up the
correspondence between terms and sentences point to the fact that
he regards the algebra of sentences not only as analogous but,
more strongly, as “isomorphic” to the algebra of concepts. Let us
return once again to the statement (1), which we interpreted ear-
lier as a formula of the modal language L,. Now we can look at
(1) from a slightly different point of view. Let viCn—C be an
interpretation. The equivalence (1) may be written as

(9 C k, N(a =+ p) iff C k, K(p) £ Ka),
where K=V or K=2Z' But the fact that the sentence a
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implies the sentence g means, according to Leibniz, that a
contains g. We thus obtain

(10) lal, € [pl, iff C =, K(p) € Kla),

where [al,, [p), are equivalence classes of a and g, ie. ele-
ments of some Boolean algebra of sentences. (1) states therefore
that the operator K preserves (at least) the ordering in that
algebra and in the algebra of concepts.

The technique of the theory B; enables us to formulate more
precisely the above observations.

Proposition 5. let tjt, t,e¢T. Formulas of the following form
are theorems of B;:

(a) Mrt 2l t 21

(b) MN(t, # 1 A t, #1) > tut, = 1;

(c) , =1 At 21) <> tnt, 2 1;

(d) Net =0 < t = 0;

(e) NM(t, =0 v t; = 0) « tnt; = 0;

) t, =0 A t,=0) «> tut, =0.
Proof.

(a) and (d). Substituting in (8) (where n=1) the constant 0O
for t, we obtain -, Nt # 1+—=>t =0, and dually H Mt = 1<t = 1.

(b) and (e). The following formulas are equivalent within B,
MN(t, # 1At 1), MINt, # 1 A Nt, # 1), M(T, =1 A T, = 1), Mt,nt, =1,
t,ut, # 1. Finally we have (b). We obtain (e) by duality.

(c) and (f) are theorems of B, and thereby theorems of Bi.

Let [a] be the equivalence class of a formula ae¢F, with res-
pect to the equivalence relation: a s g iff +, a+—>p. Denote by 5,
the set of all elements of the form ([t # 1], where teT. From
Proposition 5 it follows that S, is a Boolean algebra with
operations:

(i) (@) = M~a);
(i) lal v, gl
(i) [al ny p)

The class [1 x 1] is the greatest element, the class [0 = 1] is
the least (S, is in fact the Boolean algebra of regularly closed
elements in the topolagical Baolean algebra F,/s).

MN(a A glI;
[av pl
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Let [t] be the equivalence class of a term te€T with respect
to the equivalence relation: t,st, iff +t, =t,. From Proposi-
tion 5 and from the fact that if +t, #1e>t,»1 then
-t ~t, it follows that the function V:T/& —»S,, defined by
the formula V([t) =[t»1) is an isomorphism of Boolean
algebras.

Analogously, let S, be the Boolean algebra of sentences
which is the set of elements of the form [t = O], where teT, en-
dowed with the following operations:

(iv) (@ = [N~aj;
(v) l[al v* [p] = [a A p);
(vi) [al n* [p] = NM(a v p)l.

The class [1 = 0] is the greatest element, the class (0 =0] is
the least element (5, is in fact the Boolean algebra of
regularly open elements in the topological Boolean algebra F,/=).
Proposition 5 and the fact that if +t, =0 <> t,=0 then
+t, =t, show that the function Z: T/s# —5;, defined by the
formula Z({t}) = {t = 0] is an isomorphism of Boolean algebras.

It is now clear how to obtain the genuine Leibnitian alge-
bras of sentences, namely those which are isomorphic to the
algebra of concepts (and not of terms). To this aim, it suffices
to modify the above constructions, considering in F, the
equivalence relation: as,pg iff C k N+ p) instead of the
formerly used one : asg iff Ha+«>pg Here we omit the de-
tails, because the simpler algebras S, and S, equally well
explain the thought of Leibniz. We only point out that in these
algebras indeed [gl, € la), iff C F,N(a~ p), in accordance with
Leibniz’s interpretation of implication as a relation of con-
taining (the proof in Juniewicz (1986)).

We conclude that Leibniz’s ideas concerning the nature of
the algebra of sentences are quite reasonable, although we have
had to correct him at several points. Firstly, Leibniz seems to
be convinced that the algebra of all sentences is isomorphic to
the algebra of terms, whereas in reality this property is posses-
sed by the algebras S, and S,, which are proper subsets of F,/s.
Secondly, Leibniz proposes the classical negation as the opera-
tion on sentences, parallel to the operation non on concepts. We
take instead the strict negation N~ (in the case of S,). "Compo-
sition” of sentences in S, agrees with the Leibnitian operation
(which is conjunction), but in S, the situation is not so neat in
view of the defining formula (if).
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These divergencies could raise objections to our interpreta-
tion, were it not for the pleasant fact that the apparatus can be
employed to illuminate some of Leibniz’s ideas which are hardly
accessible within any other framework.

Vi

Our analysis of Leibniz’s “"calculus of strokes” from §107-
108 of GI is based on the following obvious consequence of Propo-
sition 5:

Proposition 6. (Leibniz’s principle of the duality sentence-
concept). Let t(A,,...,A,) be a term. Then:

(a) Hy HALLLAL) 21 e t (A1, A #1)
(b)  HA,,...,A,) = 0 «> t*(A;=0,...,A,=0),

where t.la,,...,a,) (resp. t™a,,...,a,)) denotes the modal ope-
rator that arises from the term t by indexing with the lower
(resp. upper) asterisk each symbol of Boolean operation on t.

In the above-mentioned fragment of GI Leibniz introduces a
very interesting method of notation of formulas of the calculus
of concepts. In this notation the meaning of an expression de-
pends on the context in which it occurs.

1. An expression of the type :

2: is in principle a sentence

in which A is the subject, B is the predicate. The numbers mark
empty places in which some symbols should be written, indicating
the kind of the judgement (in this role we shall use just the
sequences of natural numbers): “locus 1 designabit quantitatem
vel qualitatem, etc. secundum quam hic adhibetur terminus A (...)
et locus 2 naturam propositionis AB, locus 3 modum termini B"

(C.381). In this case we shall write
t(A,B) = 0, where t is a term.

1 2 : can appear in a context like

4
1

as t(AB)#1 or as

2. The same expression

5 6
23

A B C
Our previous considerations suggest that if C is a name of a con-
cept, and the sequence (4,5,6) codes the kind of judgement then
:2 : denotes not a sentence (this would be nonsensical), but the

corresponding (with respect to the operators V or Z) term, i.e.
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t(A,B). Leibniz writes about it, using in a characteristic way
the Greek article: "Locus 4 (designes) modum adhibendi té6 AB seu
L “(ibid.).

3. Although, as we have said, 22

is in the first place a

sentence with the subject A and the predicate B, it is syntacti-
cally also possible to substitute for A and B expressions which
are clearly sentences. In this case we shall interpret (1,2,3) as
the modal operator in two arguments t.(a,s) or t*(a,s) according-
123

A

ly, as the original interpretation of

t(A,B) = 0. For instance

is tAB)#1 or

28 29 30
789 10 11 12
B v C D

(C.382; a subformula of Leibniz’s formula) is a& modal formula of
this type, whose subformulas are the sentences B est verum and
10 1t 12
c o’

For the sake of illustration we shall now concentrate on a
formula of Leibniz’s “calculus of strokes®, showing at the same
time what modal machinery is involved in his synonymous treatment
of "ex ... sequitur” and “continet” or “est”.

Let (1,2,3) denote the Boolean relation est. The expression
123

in the position "categorical sentence” means thus: A est B.

Let us define A est, B = AnB. Since FAnB=0+>B < A, the ex-
pression under consideration in the position ‘term" is just A
est, B. One verifies easily that +, N(a -+ p) +—= an¥*p, when a and
p are formulas equivalent to t, =0 and t, =0, respectively
(t,tpeT). i:ﬁ-_—% is therefore the formula N(A =0->B=0), or,

introducing a new symbol est,, the formula (A = 0) est, (B = 0).

Consider now the expression

4 5
123
A B C

(.}

(C.381). Let us assume that also (4,5,6) designates initially the
relation est. If C is the name of a concept, then we obtain

(an (A est, B) est C.

According to the Leibnitian idea of associating terms with
sentences by means of an appropriate operator, or even of identi-
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fying terms with sentences, C may be regarded as the sentence
C = 0. Leaving without change the status of A and B we get

(12) (A est B) est, (C = 0).

Finally, treating A, B, C as sentences via the operator Z we
have

13) ((A = 0) est, (B = 0)) est, (C = 0Q),
The sense of this procedure consists in the fact that the
formulas (11) - (13) are equivalent within the modal calculus of

concepts by virtue of Leibniz’s duality principle.

Now we pass on to investigate Leibniz’s original example of
a transformation in which he makes use of the operator V. In the
fragment of GI under consideration we find the following formula
(C.381):

13 14 15
10 11 12
(14) ? [ °
123 458
A B ) E P

It is more or less clear that the letters are here the names of

concepts. This means that ’ R °
3

123 and 12

c D B c D
are in the same semantic category. For definiteness, we assume
that ;5 2 and the expression under (10,11,12) are sentences

(these may be treated as terms as well). Consequently, the sequ-
ence (13,14,15) codes a modal operator in two variables. In our
notation the formula (14) takes on the form:

(15) Px(q(A,r(B,s(C,D))) = 1, t(E,F) # 1),

where p,q,r,s,teT. (We choose the variant that is most convenient
for applying the operator V).

After recalling that "Omnis terminus etiam incomplexus po-
test haberi pro propositione”, Leibniz forms a new expression,
which is to be equivalent to the first (C.382):

43 44 45
a7 38 39 40 41 42
25 20 27 28 29 30 31 32 33 3 35 36

1
(6 123456708910 11 12 13 14 18 16 17 18 19 20 21 22 23 24

A vy ve vc DE vy VP vy v.
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The point of the transformation is clear., The letter B appears as
10 11 12

c D
sentence. The symbol A (and similarly E and F) has been replaced
by a more complicated sentence, containing three occurrences of
V. I leibniz was not intent on obtaining the symmetry of the
graph, he could as well have written:

the sentence B est verum, which automatically makes

25 20 27
22 23 24
16 17 18 19 20 21
(7
123 4356 786 1011 12 13 14 13
A VB VC DE v r v

or, in our notation:
(18) PalGu(A # 1,1, (B * 1,s(C,D) # 1)),t(E = LF = 1)).

The equivalence of (14) and (17) is thus again an application of
Leibniz’s duality principle.

There remains to explain the meaning of the formulas under
(25,26,27), (31,32,33), (34,35,36) in (16). The transformation of
(14) into (17) consists in applying several times the equivalence
tAB) 1+t (A»1B»1), where t is any term. But we ob-

viously do not have to stop at because the operation of

transferring "#1" to the inside of an expression can be carried
out once more just with respect to that seemingly closing
formula. If t is the term AuB, we have:

HAB*ler (A2 Du, (Bx1),
and putting 1 in the place of B:
HAle— (A Do, (A ¥1)

123
v we can therefore write

Instead of

23 26 27
123 45350
A v 1 v

(and analogm_x_.ily for E, F), where (25,26,27) denotes the modal
operator av,g@, or, equivalently MN(a A M~p). Leibniz’s mistake,
i.e. writing the letter V instead of 1 under the places 4, 16, 22
in (16) originates from the fact that he treats sentences of the
type A est verum as formally analogous to those of the type A est
B, where B is a concept constant.
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vii

We conclude our exposition with several remarks.

Let teT. Each of the following expression—forming operators
in two wvariables: t(A,B)» 1, t(AB), t.a,p) will be called
parallel to any of the remaining ones. We shall also say that the
expression A is parallel to the expression A # 1 (and vice verss;
this can be regarded as a particular instance of the first
parallelism). Let in an expression of the type (14) or (17) every
sequence of natural numbers designate an expression-forming ope-
rator of the form p(A,B) =1, q(A,B), r.(a,8), where p,q,reT (the
assumption does not concern the sequences occurring in an expres-—

: which is always interpreted as A » 1). An

sion of the form :

expression obtained in this way is a well formed formula of “"the
calculus of strokes”, while it is not, in general, a well formed
formula of the language L,. However, by substituting, if neces-
sary, expression-forming operators or expression for parallel
ones, we can get a well formed formula of L,, and Leibniz’s dua-
lity principle guarantees that the resulting formulas are equi-
valent to each other.

Analogous remarks can be made with respect to the context of
the operator Z. In that case, as noticed earlier, for example A
est B, A est; B, a est, p (B<A, AnB, Nla-p)), are parallel
expression—-forming operators.

Let us now return to Leibniz’s synonymous use of “antece-
dens” and “subjectum”, “ex .. sequitur” and "est”, "consequens”
and “praedicatum®, as formulated e.g. in C.518: “Semper igitur
praedicatum seu consequens inest subjecto seu antecendenti et in
hoc ipso consistit natura veritatis in universum®. According to
what has just been said, the strange expressions (A = 0) est
(B=0) or A est, B are well formed formulas of “the calculus of
strokes”, the corresponding equivalent formulas of L; being
(A=0) est, (B=0) and A est B. In brief: Leibniz’s synonymy is
a particular case of the phenomenon of parallelism (as to the ex-
plicit use of an expression of the form A est, B, where A, B are
concept constants, cf. C.259: “Sequitur (vel infertur) A ex B
(..). Per A (aut B) hic intelligo vel terminum vel enuntiatio—-
nem”). In view of the fact that - N(A#1=>B# 1)«>B < A, the
synonymy can also be explained in terms of the operator V, but we
shall not dwell on this point.

As remarked earlier, in Gl Leibniz emphasizes that "A autem
B significare passunt terminos, vel propositiones alias® (C.365).
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By virtue of the considerations developed in the preceding sec-
tions, it is clear that the sentences which can be substituted
for the concept constants A, B, .., occurring in the formulas of
the calculus of concepts, are by no means arbitrary, but they are
exactly A1, B#1, .. (or A=0, B=0, ..). We also know
that, as a result of such a substitution, the symbol est acquires
the meaning of strict implication. In this way there arise many
functions from the set F to the set F,. We shall precisely des-
cribe one of them, based on the operator V.

To begin with, we define an auxiliary function f,: T — F,
as follows: Let t(A,,...,A,)) be any term. Then {,(t) is the for-
mula t (A # 1,. A # 1) The  Leibnitian  transformation  of
Boolean formulas into modal formulas is the function f: F—F,
given by the following rules (for simplicity we assume that all
atomic formulas of L are of the form t, < t,, t,,t,€T):

1. If a is of the form t, < t,, then f(a) is the formula
N(fo(ty) - f5(t,)).

2. If a is of the form ~g, then f(a) is the formula ~f(g), and
similarly for the rest of logical constants.

For example, in Leibniz’ notation, f assigns to A est B the
formula ex A est verum sequitur B est verum.

From Leibniz’s duality principle and from the fact that
HNA=1->B#x1) «> B<gA,

it follows that H a <« fla) for any aeF. In particular, theorems
of the calculus of concepts are mapped into theorems of the modal
calculus of concepts.



INGEMUND GULLVAG

THE LOGIC OF CONDITIONS

1. Introduction

The logic of necessary or sufficient conditions has been
investigated by a number of authors, including C.D. Broad, G.H.
von Wright, KE. Trangy and A. Pasch. The first systematic dis-
cussion of it was Broad’s "The Principles of Demonstrative
Induction”, I, Mind (1930).

In A Treatise on Induction and Probability (1952), von
Wright gives the following definitions:

That (the property denoted by) A is a Sufficient Condition of
(the property denoted by) B means that whenever A is present,
then B is also present....

and

That (the property denoted by) A is a Necessary Condition of
(the property denoted by) B means that whenever B is present,
then A is also present....

Let "ASB" mean that (the property denoted by) A is a sufficient
condition of (the property denoted by) B; and correspondingly for
"ANB", mutatis mutandis. We may render von Wright’s definitions
formally as follows:

(D1) ASB =, (x) (Ax > Bx)
and
(D2) ANB =, (x) (Bx > Ax).

These definitions have the result that denials of statements
about sufficient or necessary conditions involve existential
commitments. Let "ASB" ("ANB") mean that (the property denoted
by) A is not a sufficient (necessary) condition of (the property
denoted by) B.

52
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From (D1) we get

ASB = -(x) (Ax 2 Bx) = (Ix) (Ax & Bx)
and from (D2)

ANB = -(x) (Bx > Ax) = (3x) (Bx & Ax).

In Logic and the English Language, Alan Pasch takes the
notions of necessary and sufficient conditions as basic. Let P,
Q, R, .. stand for nominalizations such as "being a man®, "being
a mammal®, "being mortal”. "PSQ" ("PNQ") may be read as “being a
P is a sufficient (necessary) condition for being a Q. Pasch
says that negations of these expressions, "PSQ" and “PNQ",
involve no existential commitments. But he does not analyze the
notions of necessary and sufficient conditions further. An
obvious way of avoiding existential commitments here would be to
regard PSQ and PNQ as modal statements.

2. Conditions and modalities: a first attempt

The first and most obvicus attempt to relate the notions of
necessary and sufficient conditions to modal logic is simply to
put an L in front of von Wright’s definitions:

PSQ =p L(x) (Px > Qx)

PNQ =, L(x) (Qx 2 Px),
This gives us interdefinability of S and N:
PSQ = QNP.

And it makes S and N reflexive, as von Wright requires, since, in
standard modal systems,

L(x) (Px 2 Px)

is a thesis, and this is equivalent with PSP as well as PNP. As
here defined, S and N are also transitive, as von Wright has
them; for, in standard modal systems the following arguments are
valid:

PSQ: L(x) (Px > Qx) PNQ: L(x) (Qx > Px)
QSR: L(x) (Qx > Rx) QNR: L(x) Rx > Qx)

PSR: L(x) (Px 2> Rx) PNR: L(x) (Rx > Px)
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These definitions of S and N also avoid existential commitments
of negative condition-statements:

PSQ = -L(x) (Px 2 Qx)
= M(3x) (Px & -Qx).

This merely says that it is possible for something to be a P
without being a Q. Analogously for N:

PNQ = -L(x) (Qx > Px)
= M(3x) (Qx & ~Px)

says that it is possible for something to be a Q without
being a P.

If we assume that the definitions of S and N are grafted on
to a modal system at least as strong as T, we get other theses:

PSQ = (x) (Px > Qx) (from A5 in T),
PsQ = QSP
PNQ = QNP.

The inference-rules called (by Pasch) "S-denial® and "N-denial”
become valid:

S=denial:

PSQ -L(x) (Px > Qo) = M(3x) (Px & -Qx)
QNR:  L(x) (Rx > Qx) = L(x) (-Qx > -Rx)

PSR: -L(x) (Px > Rx) = M(3x) (Px & -Rx)

Proof:

{1} 1. M(3x) (Px & -Qx) P

{2} 2. L(x) (-Qx > -Rx) P

1,22 3. M((Ix) (Px & -Qx) & (X) (-Qx 2 ~Rx)) 1,2by T

{1,2) 4. M((3x) (Px & -Rx)) 3, by PCand T

g.e.d.

N-denial:

PNQ -L(x) (-Px 2 -Qx)= M(3x) (-Px & Qx)
QR:  Lx) (Qx > Rx) = L(x) (Qx > Rx)

PNR: -L(x) (-Px > -Rx) = M(3x) (-Px & Rx)

This is proved in the same way as S-denial.
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Further, the rules called (by Pasch) “Sufficient-Condition
Satisfied” (SCS) and “"Necessary Condition Not Satisfied” (NCN)
become valid:

S

PSQ: L(x) (Px > Qx)
Pa: Pa

Qa: Qa

NCN:

PNQ L(x) (Px o Qx)
-Pa: -Pa

-Qa: -Qa

But we do not get the rules that Pasch calls “Premiss Introduced
and Eliminated” (PIE). This rule is

(PIE) (P & QSR + If P is the case, QSR.
If we reconstruct this in terms of propositions, we get
Lp& q >+ (p>Lg>r)

which is not wvalid in T. And if we analyze it in terms of
modal predicate logic, we get

Lix) ((Px & Qx) > Rx)
Pa

Lx) (Px > Qx)

which is not wvalid either. Hence our first and most obvious
attempt at a modal analysis of the theory of necessary and
sufficient conditions in Pasch’s version begins to seem in-
adequate.

And we encounter other problems when we look at Pasch’s
*Principles of Non-Triviality”. let us see what these principles
amount to in our reconstruction:

PSQ - P5Q
becomes

Lx) (Px > Qx) + ~-L(x) (Px > -Qx).
This is to say that something is a sufficlent condition of
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something only if it is consistent or satisfiable, for what this
principle rules out is

L(x) (Px > Qx) & L(x) (Px > -Qx),

ie.,
L(x) (Px > (Qx & -Qx))

or

L(x) -Px
or

-M(3x) Px.

PSQ + PSQ
becomes

L(x) (Px > Qx) - -L(x) (-Px > Qx).

This is to say that something has a sufficient condition only if
it is not a condition that 1is necessarily satisfied by
everything; for this principle rules out

L(x) (Px > Qx) & L(x) (-Px > Qx),
ie.,

L(x) Qx.

These requirements restrict the conditions or properties denoted
by P, Q etc. in S- and N-contexts, to contingent conditions or
properties: neither tautologous nor contradictory. Hence proper-
ties necessarily satisfied by everything, as well as properties
necessarily satisfied by nothing, are excluded from such con-
texts, for they would violate the requirements of non-triviality.

PNQ + PNQ
and _
PNQ +~ PNQ

are easily seen to be equivalent each with one of the previous
principles of non-triviality.

These principles, then, amount to requirements of contin-
gency for the conditions or properties which may occur in S- and
N-contexts. Assuming that expressions like “Pa”, "Qb" etc. are
substituted for variables in theses in T, the principles of non-
triviality amount to a restriction on the rule TR 1, of substitu-
tion for variables, in T. And we cannot use the rule of Neces-
sitation, TR 3, without restriction. For we have, for example,
(x) (Px > (Qx v -Qx)) as a truth in predicate logic, and from
this we get by TR 3

L(x) (Px > (Qx v -Qx))
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ie., _
PS(Q v Q.

But we also have (x) (-Px 3> (Qx v -Qx)) as a logical truth; hence
by TR 3 we get

L(x) (-Px > (x v -Qx)),
ie., _ _
PS(Q v Q).

But these two theses conflict with one of the principles of non-
triviality.

So our attempted reconstruction breaks down. We shall make
another attempt which will give us a rule corresponding to (PIE),
but the principles of non-triviality only in weakened versions.

3. Conditions and modalities; a second attempt

A. Introduction

In the following, | shall first develop a system where the
conditions considered are states of affairs or propositions.

Let "N.p" mean “(the state of affairs) p is a necessary con-
dition for (the state of affairs) q°, or the "necessary condi-
tions of q require that p°. "N,-p” will mean that the necessary
conditions of q exclude p, or: not-p is a necessary condition for
q- "~N,-p" will mean that the necessary conditions of q do not
exclude p, or, in other words, p is compatible with the necessary
conditions of q. Of course, p is compatible with all the neces-
sary conditions of q if and only if p is compatible with q. Let
"Mp" mean that p is compatible with the necessary conditions of
q, or, briefly, p is compatible with q. We have

(Def M) M;p =p ~Ng-p-
Assuming substitution for variables in theses, and that logically

equivalent expressions can be exchanged in N- and M-contexts, we
have

() Np = -M,-p,

that is, p is a necessary condition of q if and only if not-p is
incompatible with the necessary conditions of q.

"Ny,-p" will mean that not-p is a necessary condition for p,
hence in order for p to be the case, not-p must be the case;
hence the necessary conditions of p are inconsistent: p s
necessarily false.
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"N_p” will mean that p is a necessary condition for not-p;
hence in order for not-p to be the case, p must be the case.
Hence the necessary conditions of not-p are inconsistent: p is
necessarily true.

"M,p" or, equivalently, "~N,-p°, means that p is not
necessarily false, i.e., p is consistent.

It seems reasonable to assume

2) Mp = Mg,

that is, p is compatible with the necessary conditions of q if
and only if q is compatible with the necessary conditions of p;
or, briefly, p is compatible with q if and only if q is
compatible with p.

By (Def M), substitution and PC, we get from (2),

3) Nep = N_,-q,

that is, p is a necessary condition of q if and only if not-q is
a necessary condition of not-p.

p is a sufficient condition of q if and only if q is a
necessary condition of p:

(Def 3) S =p Nyg.

The following seem plausible as theses for N and M:
(4) Ny(q 2 ) 2 (Njg 2 Npr)

5) Nyg 2> (Mr 2 Mi(q & 1))

(6) Ny(q & 1) = (Ng & Nyr)

(7) Mg v 1) = Mq v M)

(8 (NJg v Ngr) 2 Ny(g v )

9 M(q & ) > Mg & M;n).
From (2) and (7) we get

(10) MiwnP = Mip v M,p).

Whatever is compatible with something is compatible with its
necessary conditions:

(11) Mg 2 (Nyr 2 M,q).
From (11) we get, by substitution,

(12) Mg > (Np > Mp),
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i.e., the necessary conditions of a consistent proposition are
compatible with it, that is, consistent. From (12) follows

13) Mg 2 (Ngp @ ~Ng-p).
From (13) we get, by (3) and substitution,

(14) M_,~q 2 (Nyg @ -N_,q),
and, by PC and (Def M),

(15) (Nyg & N_,q) > N_.q,

i.e., a proposition is a necessary condition of contradictory
propasitions only if it is necessarily true. (13) and (14) give
us the following rules, reminiscent of the Principles of Non-
Triviality in Pasch’s system:

Mg & Npp) F -N.-p
M_,-q & Ng) + -N_q.
By (Def S) we get from these
M & S.q) - -5_.q
M_g-q & S;p) F -5_¢p.

From (11) we get

(16) (Ng & Ngr) > Npr,
that is, N is transitive. From (16) we get
17) (5,9 & S.r) 2 Sr,

ie.,, S 1is transitive. (16) and (17) give us transitivity rules
for S and N.

N and S are also reflexive:
(18 N,p
($1)} Sep-

The necessary conditions of a state of affairs are satistied
if that state of affairs is realized:

(20) Nyg 2 (p > q).
From (20) we get, by (Def S) and PC,
21 Se9 2 (@ 2 pl

From (20) we get, by PC,
(22) Nyg 2 (-q 2 -p).
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From (21) and (22) we get rules corresponding to Pasch’s
Sufficient Condition Satisfied and Necessary Condition Not

Satisfied:
Nyg Sgq
-q q

P P

f p is the case and r is compatible with (the necessary
conditions of) g, then (p & r) is compatible with gq:

(23) (p & M) > M(p & 1)
(23) is equivalent with

(24) Npagt 2 (p 2 Ngr)

and

(25) S(q & 1) > (q > 5pr).

(25) gives us a derived rule of inference corresponding to
Pasch’s Premiss Introduced and Eliminated:

(PIE) Sy{q & 1) F (g 2 Spn).

In this system, we do not need to avoid a Rule of Necessita-
tion (corresponding to TR 3 of T). We have, for any p,
(N) Fa » kNa,

i.e, a logical truth is a necessary condition of anything. This
is consistent with (13) and (14) and hence with the weakened
versions of Pasch’s Principles of Non-Triviality. By (N) we get

Fa > +(Na & N ja)
and by (15)
Fa = N«

which simply says that if it is a thesis then it is also a thesis
that is necessarily true.

From (N) and (4) we get a derived rule,
(RN) F(a>p) = FNa>Npg)

i.e., whatever is entailed by a necessary condition of something,
is itself a necessary condition of it. From (RN) we get, by (Def
M) and PC, another derived rule,

(RM) Fla2p > FMa>d>Mp
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Further, by (2) we get
(RM") F(@a>p > F Mp>Mp),

that is, whatever is compatible with (the necessary conditions
of) some state of affairs, is compatible with (the necessary
conditions of) its logical consequences.

By (Def S), we get from (RN),
(RS) Fla2p) = F(S,p>5,p),

i.e., a sufficient condition of some state of affairs is a suffi-
cient condition of its logical consequences as well.

Another possible candidate for a thesis is
(26) Ny(Ngg 2 q),

i.e., it is a necessary condition of any state of affairs p that
its necessary conditions be satisfied (true).

A state of affairs q is compatible with the necessary
conditions of a state of affairs p if and only if (p & q) Is con-
sistent:

(27) Mg = M,p&q

If p is necessary and q is consistent, then (p & q) is con-
sistent:

(28) (N_,p & qu) > M,,,qp&q.
From this follows
(29) N,,,p:q 2 (N_,p ) N_,q),

i.e., if necessarily p implies q, then if p is necessary, so is q.

If p is necessary, then it is necessarily necessary:

(30) NP 2 Noy_ gN,p.
If p is consistent, then it is necessarily consistent:
(31) Mp > N v'M"P

Finally, it is compatible with a state of affairs q that a
state of affairs p is compatible with a state of affairs r, if
and only if p is compatible with (@ & r):

(32) MM,p = My.p.
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B. Basis

A sufficient basis for this set of theses and rules is PC
and the following:

(Def M) Mq =p -N,-q
(Def S) S,9 =p Ngp
(N) Fa - +FNa

Axioms:

Al Np

A2 N,p 2p

A3 Mgq = M, pé&q

A4 Ny(@ 2 1) 3 (Nyg 2 Nyr)
A5 (NG & Ngr) 3 Nor

A6 Ng > (> q

A7 (N_,p & Mq) > M, pé&q
A8 Mg = Mp

A9 N,(N,g > q)

A10 N_p 2 N__ P,N_,p

A1 Mp > N-”P,M,p
A12 Syq & 1) > (q 2 Spr)

A13 MMp = M“,p

C. Semantics

We interpret N and M in terms of a possible world semantics.
Let Q be a set of possible worlds, and let A, p, v be variables
ranging over Q. Let "(p)A" be short for “the state of affairs re-
presented by p is present in the possible world A" (or: "the pro-
position p is true in A"). Let H be a triadic relation between a
propasition and a pair of passible worlds. "HAu" may be under-
stood as “the necessary conditions of the proposition p in the
possible world A are satisfied in the possible world u”, or, in
other words, "u s compatible with the necessary conditions of p
in A". We interpret (N,q)A as truth of q in every world compati-
ble with the necessary conditions of p in A: (Vp) (Hap 2 (qp),
and (M;q)A as truth of q in some world compatible with the neces-
sary conditions of p in A1 (Ju) (HAp & (qu). (S,@A is inter-
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preted as truth of p in every world compatible with the necessary
conditions of q in A: (Vu) (Hap 2 (p)u). We assume the following
conditions on the relation H:

L

1L

1L

Iv.

(Tertium non datur). For any proposition (state of
affairs) p and worlds A, u, u is compatible either with
the necessary conditions of p in A or with the necessary
conditions of -p in A:

(VA) (Vi) (Hap v H_Au).

(Satisfaction). A possible world p is compatible with the
necessary conditions of a state of affairs p in a world A
only if p is present (p is true) in u:

(VA) (V) (Hu 2 (pp).
By substitution we get

(V) (V) (H_ \p > (-p)u);
and from this and 1 we get

(VA) (V) (Pl > Hoap).
Hence from 1 and II follows

(VA) (V) (Hau = (pp).
I and 1l also entail a principle of Limited Reflexivity:

(VA) (V) (Hap o Hopp).

(Compatibility with subset of conditions). A possible
world is compatible with a set (conjunction) of necessary
conditions only if it {is compatible with each subset of
the conditions:

(VA (Vi) (Hpadp > HAp.

(H-Transitivity). f a world v {s compatible with the
necessary conditions of a state of affairs q in a world u
compatible with the necessary conditions of a state of
affairs p in a world A, then v is compatible with the
necessary conditions of (p & q) in A:

(VA) (V) (Vv) (HAp & Heuv) 2 HpAv).

A4 is made valid by the interpretation of N. Principle II

(Satisfaction) makes A1, A3, A5, A6 and A7 wvalid. | (Tertium non
datur) and [I make A2, A8, A9, A10 and A1t valid. 11 and IV (H-
Transitivity) make A12 wvalid. And [, Ii, Il (Compatibility with
subset of conditions) and 1V make A13 valid.
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4. Constraints

A. Introduction

Let us consider Barwise & Perry’s notion of constraint (in
Situations and Attitudes (1983)). Constraints are said to be
systematic relations of a special sort between different types of
situations; e.g., every woman is a human (there is a constraint
to the effect that anything that is a woman is a human); no smoke
without fire (there is a constraint to the effect that if there
is smoke, there is fire); when the bell rings, the class ends
(there is a constraint to the effect that the class ends if the
bell rings).

Constraints can be analyzed by means of the notions of
necessary and sufficient conditions. Let "Con p,q" mean that
there is a constraint relating the state of affairs p to the
state of affairs q. We may construe this as meaning that p must
be a sufficient condition of g, in some sense of "must”. But we
may distinguish between various senses of “must® here, and
between corresponding kinds of constraints. We may take "p must
be the case® to mean that p 1is logically or conceptually
necessary, or that p is causally necessary or a natural law, or
that there is a convention or rule to the effect that p.
Following Barwise and Perry, we may distinguish between
(logically or conceptually) necessary constraints, nomic
constraints, and conventional constraints - without necessarily
regarding this as an exhaustive classification of constraints.

Let “Con,p,q" mean that there is a necessary constraint
relating the state of affairs p to the state of affairs q; let
"Con p,q" mean that there is a nomic constraint L relating p to
q; and let "Concp,q" mean that there is a conventional constraint
C relating p to q. In the following sections, we shall consider
how these concepts may be analyzed by means of the notions of
necessary and sufficient conditions.

B. Necessary constraints

let “Op® mean that p is necessary, and "0p" that p is
possible.

We assume the system of §3 as a basis, with the following
additions:
(Def 0) Op =p N_pp.

(Def ©) Op =p -0-p.



The logic of conditions 65

From (Def 0O) follows

(33) 0-p = N,-p.
From (Def ¢) follows

(34) op = -N,-p
and

(35) op = Mp.
TR3 of T,

Fa = F0aq,

may be derived from (N) by (Def 0). Hence all tautologies and all
the theses of §3, in necessitated form, are theses. Theorems
include

(36) op > p,,

(37) a(p > q) > (op > Oq),
(38) op > oop,

(39) op > 0op.

Hence this system includes S5 as a part.

Due to the definitions of 0 and ¢, their interpretations
are:
(op)A iff (V) (H_Au > (plp)
and
(op)A it (3u) (HAu & (piw).

But due to the principles 1 and II, these are equivalent with

(op)x it (V) HAu
and

(OpIA iff  (3u) HAp,
and these are equivalent, respectively, with

(op)x iff (V) (plu
and

opA iff (3 (plu.
Due to the definition
(Def Con,) Con,p,q =p OS.p
and principle I, we have the interpretation
(Congp, @A iff (Vp) (Vv) (Hpuv o (qv),
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i.e., there is a necessary constraint relating a state of affairs
p to a state of affairs q in some possible world if and only if q
is present in any world compatible with the necessary conditions
of p in any world.

C. Nomic constraints

We assume the system of §4B as a basis (including the one of
§3), with the addition of the letter “L" as a subscript to "N,
"M" and "S", to denote any set of nomic constraints, or natural
laws. "Nip" will mean that the state of affairs represented by p
is required by (is a necessary condition of) the actual nomic
constraints (natural laws) L; or, briefly, there s an actual
nomic constraint to the effect that p. "N, -p" will mean that the
state of affairs p is excluded by the actual natural laws L,
i.e., the occurrence of p would be “against nature®, or a
miracle. "M;p" will mean that the state of affairs represented by
p is compatible with the actual nomic constraints (natural laws)
L, hence the occurrence of p would not be miraculous.

The definitions, rules and axioms of §3 apply to N/M,.
Hence we have

(40) Mp = -Ny-p
and
(41) Np = -M,-p

as theorems.

As suggested, the occurrence of a state of affairs excluded
by a set of actual nomic constraints L, i.e., the truth of
‘N.-p & p’, would be a miracle. If we assume, as we shall, that
genuine miracles do not occur, we reject ‘N,-p & p’, or
‘Nyp & -p’, as possibilities. This amounts to accepting a further
axiom in addition to those of §3:

Al14 Np 2 p

i.e., actual nomic constraints are inviolable. This does not
preclude that what is at a certain time regarded as a miracle
may occur, or that what are believed or postulated to be
natural laws may be violated. The actual occurrence of some
state of affairs p believed to be ruled out by a set of nomic
constraints L will simply show that N -p is false. Either
the constraints in L are not actual, or they do not really
exclude p.
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We assume that actual nomic constraints do not violate
necessary constrains, hence that

(42) op > -M,-p
holds for any set L of actual nomic constraints. We shall adopt
an equivalent formula as a further axiom:
A15 op 2 Np.

The converse of A15 obviously does not hold: lawlikeness is a
weaker notion than logical necessity. 0 as well as N, constitute
squares of opposition, but the one of N, is “inside” the one of O.

From A15 and the rule TR 3 of §4B, we derive a rule
(L) Fa - F Na,

i.e., necessary states of affairs are required by any set L of
nomic constraints.

S4, applied to N,/M;, is a part of this system. ‘Njp > p’ is
an axiom; °‘N/(p3g) > (Njp 2 NgqJ’, ‘Ny(pkq) = (Njp & Ngq)’,
‘M (pvqg) = (Mp v M,q)’ etc. are theorems; and so is ‘N;p > N\N,p’.

Another theorem is
(43) Nuap,E 2 (1 2 NB),

i.e., if a set L of actual nomic constraints in conjunction with
a state of affairs 1 (the “initial condition"), require that the
state of affairs E be the case, then if 1 is the case, the nomic
constraints L require that E occur.

In the semantics, H;Au will mean that the possible world pu
respects (is compatible with) the nomic constraints L actual in
A, hence that p is a causally possible world from the point of
view of the natural laws L actual in A. We assume a principle in
addition to the ones of §3C:

V. (L-Reflexivity). Any possible world respects the nomic
constraints actual in it:

(VA) HAA

We may now define the notion that a nomic constraint L
relates two states of affairs p and g, as meaning that p is a
sufficient causal condition of q, or: there is an actual nomic
constraint L to the effect that p a is sufficient condition for q:

(Def Con,) Con p,q =p N.Sep.
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D. Conventional constraints

We assume the system of §3B as a basis, with the addition of
the letter “C" as a subscript to "N*, "M", and "S", to denote any
set of rules or tacit expectations of some group. "Ncp” will mean
that there is a (set of) actual conventional -constraint(s)
requiring or presuming that p be the case. "M p" will mean that
the occurrence of p does not (would not) violate the actual nomic
constraints C.

The definitions, axioms and rules of §3 apply to N¢/Mc. The
axioms of §4C, Al4 and A15, do not apply. Conventional cons-
traints are not necessarily consistent, and not inviolable. Nor
do they necessarily respect nomic constraints. Conventional pre-
sumptions may be (probably often are) in conflict with actual
namic constraints (cf. e.g. beliefs in magic or supernatural phe-
nomena).

Theorems for No/Mc include ‘N.(Ncp > p)’ (i.e. there is an
actual conventional constraint requiring or presuming that actual
conventional constraints be respected), ‘Nc(p2q) > (Ncp > Ncg)’,
‘Ne(p&q) = (Ncp & Ncq)’, "Mc(pvq) = (Mcp v Mcq)’, “Nep > NcNep'.

In the semantics, "HcAu” will mean that the possible world u
respects (is compatible with) the conventional constraints C
actual in the possible world A; or, in other words, u is an ideal
world with respect to the conventional presumptions C actual in
A. No principles beyond those of §3C are required.

We may define a conventional constraint relating a state of
affairs p to another one q, as consisting of conventional re-
quirement or presumption that p be a sufficient condition for gq:

(Def Cong) Conep,q =p NeSqp-

5. Universals and Involvement

As noted, in the previous systems the conditions considered
are states of affairs or propositions. But the notions of
necessary and sufficient conditions are commonly applied to
properties, or universals more generally. E.g.,, Pasch’s “P" and
"Q" in "PNQ", "P5Q", stand for nominalizations denoting possesion
of properties, such as being a man, being mortal, being old.
“PNQ" may be read, "being (a) P is a necessary candition for
being (a) Q°, or “having the property P is a necessary condition
for having the property Q".
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We may be tempted to render "PNQ", as here understood, as
(x)Ng,Px, ie, for any x, it is a necessary condition for its
being (a) Q that it is (a) P; and correspondingly for °PSQ". But
this will lead to existential commitments for denials of PNQ and
PSQ, which we want to avoid. We appeal to the notions of
necessary, nomic and conventional constraints and define as
follows:

ConP,Q =p O(x)Ng,Px

Con, P,Q =p N (x)Ng,Px
ConcP,Q =p Ne(X)Ng,Px.

Obviously, denials of these do not involve existential commit-
ments.

If we let the variables x, y, ... range over situations or
events, we may take "P" and "Q" as denoting types of events or
situations. We may then introduce another notion, the one of in-
volvement. Barwise & Perry construe involvement as a relationship
between types of events (situations), e.g., kissing involves
touching. One type of event P involves another type of event Q if
every actual event x of type P is part of an actual event
(situation) y of type Q This requires the notion of one event’s
or situation’s being part of, or extending, another event or
situation. Let "Ext x,y* mean that y is an extension of x, or x
is part of y. Let "Inv P,Q" mean that (the type of event) P
involves (the type of event) Q We may distinguish between
necessary, nomic and conventional involvement, and define these
as follows:

(Def Inv,) Inv,P,Q =p O(X) S 3aExt x,y & oy PX
= 0(x) Np, (3x)Ext x,y & Qy),

i.e., that the type of event P necessarily involves the type Q
means that, necessarily, it is a necessary condition for an
event’s being of the type P that it is part of an event of the
type Q. Analogous definitions apply to Inv, and Inv., mutatis
mutandis.
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PHILOSOPHICAL PRAGMATISM IN POINCARE*

At the beginning Poincaré is using the terms ‘intuition’ and
‘analysis’ in order to describe two psychological attitudes
involved in the logic of invention: Riemann and Klein represent
the attitude of intuition, Hermite and Weierstrass the attitude
of analysis. Later on, but usually without explicit indication,
these two terms stand likewise for two theories about the nature
of mathematical activity: on the one hand you concentrate on
investigations into the conditions governing the construction
(intuition) of mathematical objects, on the other hand you try to
describe (analyze) domains of already existing objects.

In arithmetic and fn foundational studies - in this paper |
exclude his approach to geometry - Poincaré is almost always an
intuitionist. Yet, even though the philosophy of Poincaré remains
on the whole an intuitionistic one, he displays analytical fea-
tures, too. Hence, you find a solution of the problem of predica-
tivity not only by providing limitations to the domains under
discussion (these are procedures on the level of construction)
but also by providing restrictive clauses with respect to the
rules of quantification (these are procedures on the level of
description), i.e. prima facie without limiting the domains of
quantification. Certainly, here, these two levels correspond and
you even arrive at logically equivalent presentations, if you
translate the underlying ideas into a formal language. In the
first case you end up with an ‘exclusive’ theory of types, in the
second case with a cumulative one.

* This paper, written originally in French, was dellvered as a
lecture at the University of Aix-en-Provence in October 1986; ft
derives from an attempt to improve on chapter I of my book:
Entre intuition et analyse. Poincaré et le concept de prédica-
tivite, Paris 1985.
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However, | want to argue for the claim that the modern idea
of a unitication of the approach on the level of construction and
of the approach on the level of description, these levels being
two inseparable aspects of the common ground of actions, can find
one of its roots In the philosophical pragmatism of Poincaré.
Nevertheless, an attempt of reducing Poincaré’s pragmatism to its
role as a forerunner of a philosophy conducted in a pragmatist
framework, would be a biased approach. Poincaré was first of all
an anti-logicist (and anti-formalist), afterwards, as a reaction,
he became an intuitionist, and only by retrospection he is found
as being placed between ‘the methodological fronts’.

In two consecutive papers under the common title ‘Les mathé-
matiques et la logique’, published in 1905 and 1906', Poincaré
argued against the logicist claim of being able to “démontrer
toutes les vérités mathématiques ... une fois admis les principes
de la logique"™®. For this would mean to give up either the
analytical nature of logic® or the synthetical nature of mathe-
matics, i.e. to advocate a solution to the problem of defining
the relation between logic and mathematics which rests basically
on a Lelbnitian tradition. Poincaré suspects that during the cen-
tennials in honour of Kant’s death an equivocation of the term
‘logic’ 1is Introduced such that ‘logic’ does not exclusively
refer to traditional logic but to a ‘new logic’ which comprises
both synthetic principles of demonstration and the formation of
non-logical concepts.

Poincaré sees very clearly here. Predicate logic is not only
richer than traditional logic which Kant referred to but in order
to deal with reductionism one should also take into account that
in the ‘new logic’ more freedom with respect to certain (set the-
oretic) existence postulates prevails. For example, is it really
an analytical procedure (of the second order) to turn predicates
into names and afterwards affirm their existence, i.e. the
existence of entities =signified? It i3 obvious that the ‘condi-
tional’ solution of Russell would not satisfy the constructivist,
nor had Poincaré been satisfied,

' Cf. Polncaré (1905/1906) and Poincaré (1906).
2 Poincaré (1905/1906) p.817.

 Poincaré follows Kant In calling propositions analytic when
the subject-concept is contained in the predicate-concept.
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But Poincare’s criticism of logicism extends even further.
If logicism pretends to derive all of mathematics from indefi—
nable ‘logic’ by means of deduction rules and direct definitions,
"{l faudrait que l’on et le moyen de démontrer qu’lls n’impli-
quent pas contradiction*®. And such a proof would have to make
use of a principle of induction which is not yet available. And
it it were, you would be in a vicious circle. According to Poin-
car@ this difficulty of using complete induction in a justified
manner connects Russell’s logicism with Hilbert’s formalism.
Hence, Poincaré’s reservation towards dealing in this way can be
understood as an anticipation of the constructivist attitude of
the intuitionists and of the descriptive attitude of the ana-
lysts: on the one hand he is in accord with Brouwer’s refusal to
distinguish mathematics from metamathematics, on the other hand
he acts in foresight - taken in a very large sense - of
difficulties articulated precisely and confirmed by Goddel in the
thirties.

Of course, it is not necessary to look at his criticism on
the methodological level only. For, the reductionist programme of
logicism seems to waver already by the antinomies occurring in
the new loglc. If, Polncaré says, "la logistique n’est plus
stérile, elle engendre !’antinomie, this has become poasible
because you have tacitly relied on a false Intuition. A ‘true’
intuition can be distinguished from simple evidence by the fact
that it refers to what can be done instead of merely do something
that is. So, the certainty with respect to complete {nduction
taken as a synthetic judgement a priori, derives from the fact
that it is the affirmation of a direct iIntuition into the capaci-
ty of the mind to comprehend the indefinite repetition of one and
the same act.

We would say today that such an intuition obtains with res-
pect to a schema (of an action) which is ‘pure’ (or a ‘forme’),
because it is not generated but only represented by indefinite
repetition, and that it is called ‘intuitive’ because it cannot
be determined conceptually, but only by singular actualization.
It is possible to trace a platonist feature within this inter-
pretation of Poincaré’s Inasmuch as the intuitive schema of
construction counts as a ‘forma intelligibilis’ which, like the
corresponding ‘forma sensibilis’ in Kant, precedes f{ts actua-

4 Poincaré (1905/1906) p.829.
® Poincaré (1906) p.316.
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lization rather than having been derived from them by
‘puritication’.

But, disregarding this aspect of pure intuition, Poincaré is
anti-platonist from about 1909 onwards. The antinomies are for
him in the last resort a necessary consequence of the erroneous
method of conceptual realism to invoke intuition with respect to
abstract entitles. For explication | want to examine Polncaré’s
conceptual interpretation of explicit definition of a set. The
existence conditions contained in it allow - according to
Poincaré - conclusions concerning the formation of classes, or
pseudo-definitions, which are impredicative and, therefore, res-
ponsible for antinomies.

According to Poincaré explicit definitions of a set follow
two procedures: "soit par genus proximum et differentiam specifi-
cam soit par construction”®, These two methods mirror the dispute
between realists and nominalists taken up again by Poincaré with
the terms ‘cantorians’ and ‘pragmatists’, the former acting from
the point of view of intension, the latter from the point of view
of extension:

"Sf on se place au point de vue de !’extension, une collection
se constitue par 1’adjonction successive de nouveaux membres;
nous pouvons en combinant les objets anciens construire les
objets nouveaux, puis avec ceux-ci des objets encore plus nou-
veaux .. Au point de vue de la compréhension au contraire,
nous partons de la collection ot se trouvent les objets préexi-
stants, qui nous apparalssent d’abord comme {ndistincts, mals
nous finissons par reconnaftre quelques-uns d’entre eux parce
que nous y collons des étiquettes et que nous les rangeons dans
les tiroirs; mals les objets sont antérieurs aux étiquettes, et
la collection existerait quand méme {1 n’y aurait pas le con-
sorvatour pour les classer.””

Poincaré places the logicists - they are in his eyes followers of
Peano or Russell - together with the adherents of Cantor and
treats himself as belonging to the pragmatists.

Though the term ‘pragmatist’ seems to have been chosen by
Poincaré rather accidentally - he introduces It with the words

® Poincaré (1912) p.5.
? Ibid., p.4.
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"l faut bien ... donner un nom"® - it does characterize the
interpretation of nominalism by Poincaré very luckily; in refu-
sing to start with an analysis of domains considered to be
already existing, he is not any more content with merely a
synthesis of elements to be constructed. To have useful construc-
tions one should rather follow them with a descriptive analysis
of the constructions themselves. In this sense we have here a
reconciliation of the two methods: they follow one another as
aspects of an ordered sequence and thus characterize the
pragmatic spirit as started by Poincaré:

"On a attaché, et & Juste titre, une grande importance & ce
procédé de la ‘construction’ et on a voulu y voir la condition
nécessalre et suffissante de progrés des sclences exactes.
Nécessaire, sans doute, mals suffissante, non. Pour qu’une
construction puisse &tre utile, .. {1 faut d’abord qu’elle
posséde une sorte d'unité, qui permette d'y voir autre chose
que la Jjuxtaposition de ses elements. Ou plus exactement, il
faut qu’on trouve quelque avantage & considérer la const-
ruction plutdt que ses éléments eux-mémes."

Only a statement expressing an ‘analogy’ among constructions will
lead to a level of abstraction afterwards where the analogous
objects can be identified:

"Une construction ne devient donc intéressante que quand on
peut la ranger & cBté d’autres constructions analogues formant
les espéces d’un méme genre.""

The ‘analytic’ feature here pertaings to the means of
construction. Hence, analysis is not any more the traditional
inverse of synthesis or "une marche du général au particulier”,
because the constructions are obviously not regarded as something
more special than their elements. In this sense "la mathématique
est l'art de donner le méme nom & des choses differentes”,'' and

not by their form but by their content. Yet, Polncaré did not

® Inid, p.2.

® Poincaré (1902), p.44.
[ oc. cit., Ibid.

" Poincaré (1908), p.29.
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know how to use the means now at his disposal in order to formu-
late a principle of abstraction for the genus. By "gravissant un
ou plusieurs échelons” he proceeds directly to propositions which
express a property of the genus: the statement of analogy is now
complete induction which serves to “démontrer les propriétés du
genre sans é&tre forcé de les établir successivement pour chacune
des espéces"'?,

Pragmatists, let us repeat, are not realists. They forbid,
so to speak, to read the arbor porphyriana from top to bottom,
l.e. to consider the “genre .. antérleur & 1’espéce”® and to
stop at an abstract level. Hence, a definition which does not
define an individua!l but a whole genus is incomplete,’ because
individuation cannot be derived logically from the abstract unit
{of & genus):

"lLa connaissance du genre ne .. {fait pas connaftre tous ses
individugz, elle .. donne seulement la possibilité de les
construire tous, ou plutét d’en construire autant que vous
voudrez. Ils  n’existeront qu’aprés qu’lls  auront @ été

construits, c’est-a-dire aprés qu’ils auront été définis."'

Even though the terms used by Poincare are traditional, he |is
giving them a non-traditional meaning: extension and intension,
e.g., appear only as metapredicates (on predicates). For, to
define a genus by means of a predicate is eo ipso an intensional
procedure, whereas extension is not connected with a predicate
but with a way of construction.

If you restrict definition of a set to its being an abstract
entity, you are deprived of the constructive aspect of
definition, which - in the eyes of the followers of Cantor -
counts as an artificial restriction. Following this way the
guaranty of individual existence of the elements of a set is
substituted by a proof of consistency. For the pragmatist, on the
other hand, a direct definition which you get by following the
inverse method of the Cantorians, can be ‘corrected’: you
supplement it by a second part which replaces the postulation of

2 Poincaré (1902), p.44/45.
3 Polncaré (1906), p.317.
* Cf. Poincaré (1912), p.5.
'S Poincaré (1912), p.7.
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an abstract entity as the reference of the genus. You have to
"sous-entendre 1’ensemble des individus qui satisfont & la
définition"'®. Since generality is - from the point of view of
extension - individua! or numerical universality, in that second
part of the definition the differentia specifica has to lead
directly to elements of first level, without such a supplement a
proposition about all elements of a set "n’aurait aucun sens" and
the object of the proposition would be unthinkable'”. In a paper
of 1912 the expression ‘aucun sens’ acquires even a philosophical
value. A pragmatist uses ‘having a sense’ with respect to a
definition, and that means existence of veridical {nstantiations,
together with consistency as a criterion for the admissibility of
a definition. He uses, so to speak, a restriction ‘from below’ to
the effect that the means employed for the transition from finite
to infinite do not go beyond the ‘legal’ one: the complete
(non-transfinite) induction.

Only against the background of such i{deas it is possible to
understand Poincaré’s refusal of impredicative definitions which
is a logical consequence already within his system; for, if
classes were considered to be real objects existing independently
the definition of their members, an impredicative definition
would not be circular. But 1t {s exactly this attitude of
Platonism which Polncaré attacks, and which he considers to be
responsible for the antinomies; here he reacts already like
Herman Weyl who wrote some twenty years later:

"Als Wurzel der Antinomien vermag man aber nur die schon von
Anfang an in der Mathematik begangene Ktihnheit aufzudecken:
dass ein Feld konstruktiver Mioglichkeiten als geschlossener
Inbegriff an sich seiender Gegenstdnde beohandeldt werde."'®

This is the essential difference between the pragmatists and
the followers of Cantor. The axiom-schema of comprehension
(Zermelo’s ‘Aussonderungsaxiom’)

Vy Ax (x ey +=> x€a a p(x))

is not always representable, and, hence, not admitted by Poin-
caré, even though It might be consistent. In assuming a set a

® Ibid., p.5.
17 Ct. Poincaré (1909b), p.479.
18 Weyl (1976), p.71.
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beforehand, Poincaré says, Zermelo "a élevé un mur de cldture qui
arréte les géneurs qui pourraient venir du dehors. Mais il ne se
demande pas s’il ne peut pas y avoir des géneurs du dedans qu’il
a enfermés avec lui dans son mur"®, Whenever Poincaré’s
pragmatism has been associated with an utilitarian philosophy or
with a pragmatic philosophy in the sense that a technician uses
results provided their consistency will eventually be proved, it
finally developed by wusing the formulation of 1912, into an
intuitionism of principle. Considerations of consistency, be they
conducted logically (analytically) or not, are not any more
sufficient unless they are supplemented by processes of verifi-
cation, i.e. by a concrete model. hence, in this context, the
verification 1is, wusing Kantian terminology, a construction of
concepts through instantiation in senuous intention.

Adopting the pragmatic reinterpretation of the Cantorian way
of definition the terms ‘analysis’ and ‘construction’ are not
only related to the strictly Cantorian way of definition on the
one hand and its pragmatic complement on the other hand, but must
be understood as referring to two aspects even within the level
of determining the individuals. Poincaré’s identification of
‘construction’ with ‘definition’?® signifies that the reduction of
the definiens to a definiendum i3 not effected by means of
language alone. In constructing the individuals of a genus, lan-
guage is in the beginning only an aspect of an action governed by
pragmatic norms. Language is its symbolic (analytic) aspect which
alone permits to understand an actual construction of individuals
as actualizations of an (intuitive) schema of construction, i.e.
of a rule. In this semiotic sense language and construction are
two inseparable features for the pragmatist. We suddenly find
ourselves in the tradition of the philosophy of the later
Witigenstein, where language has lost its role of being something
available on the metalevel with respect to the level of objects.

Of course, to look at Poincaré in this manner transcends the
given texts, but it confirms and explains two further aspects in
Poincaré’s writings.

At first a remark about the theory of types of Bertrand
Russell, which refers to the hypothetical admissibility of trans-
finite ordinals as indices of types in order to distinguish them.

' poincaré (1909b), p.477.
20Cf. quotation above at footnote 15.
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Such a theory of types, Poincaré says, remains incomprehensible
as long as as the theory of ordinals is not yet set up?. Polncaré
{s demanding a simultaneous reflection both about the constructed
objects and about the linguistic tools used. Much later, the
logicians G. Kreisel and S. Feferman tried to fulfil this demand
by proceeding from predicative well-orderings - those which are
of order type < w, - to orderings predicatively well-ordered,
i.e. orderings of order-type < T, which can predicatively be
ascertained as being a well-ordering®?.

A second corroboration of the proposed interpretation can be
found in the linguistic turn given by Poincaré to the pragmatic
identification of ontology with epistemology: to a pragmatist an
individual "n’existe que quand 11 est pensé .. d’un sujet
pensant” and only when it can be defined by "un nombre fini de
mots”. An a concept which cannot be defined In such a finite way
{s inadmissible because it cannot be conceived?®. It, therefore,
seems to be adequate to say with A. Heyting that definability
with finitely many words signifies (in the linguistic sense: ‘is
a sign for’) finite constructibility?. All elements of a genus
have to participate in this finite constructibility. This point
of view finds another confirmation when Poincaré takes issue with
a claim by Schoenflles that finite definability and construc-
tibility should be made independent from each other. The set of
constant functions serves as a neat example:

"Quand on dit ‘une fonction constante’, on a une formule d’un
nombre finl de mots et qul s’applique & une Infinité de
fonctions; mais qul ne les définit pas .. Il n’est donc pas
exact de dire que cette formule définit en un nombre fini de
mots un ensemble de fonctions."**

Since definition of a set enforces ‘knowledge’ of all its mem-
bers, the definition of an infinite set - infinite not in the
sense of potentially infinite but as actually infinite - by one

* Cf. Poincaré (1909b), p.469.

22 Cf. Kreisel (1960) and Feferman (1964).

23 1. Poincaré (1909b), p.482 and Poincaré (1912), p. 9/10.
24 C1. Heyting (1934), p.4.

25 Poincaré (1909a), p.195/196.
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and the same formula containing only finitely many words is
impossible:

"Et en effet ce qui caractérise précisément une définition,
c’est qu’elle permet de distinguer 1’objet defini de tous les
autres objets; si elle s’applique & une infinité d’objects,
elle ne permet pas de les discerner les uns des autres; elle
n’en définit aucun; elle n’est plus une définition,"2¢

From the point of view of extension, the infinite is
something in development and never a closed totality. It was
Borel who made the first precisification of Poincaré’s vague
notion ‘one could enumerate by distinguishing between a
denumerable set and its effectively enumerable subsets’: Borel
takes a set to be admissible only when it is effectively
enumerable, i.e. when it is possible to indicate “"au moyen d’un
nombre fini de mots, un procédé slir pour attribuer sans ambiguité
un rang déterminé a chacun de ses éléments*?’. Today we know that
relying alone on the concept of general recursiveness - a concept
doubtlessly envisaged by Borel - unfortunately does not lead very
far: a predicate defined on the natural numbers using
unrestricted quantification will not, in general, even belong to
the class of recursive predicates. This and the other fact that a
constructive interpretation of elementary classical arithmetic is
available, suggest a broadening of what Poincaré understood by
the term ‘pragmatism’: it seems desirable to admit the totality
of natural numbers and to distinguish the recursively undecidable
predicates on that domain by measuring the complexity of their
undecidability. The demands of pragmatism will then appear as a
predicativism of second order to be applied to the denumerable
infinite.

Whatever one decides, the pragmatic idea of Poincaré always
satisfies ~ what  Vuillemin has called the principle of
intuitionism. It refuses "a la disjonction de !’infini et du fini
une validité universelle, c’est-a-dire indepéndante des
conditions de !’intuition et de la construction*?®. Thus, Poincarée
belongs to the great intuitionistic stream which has started in

antiquity and passed through Descartes and Kant.

28 poincaré (1909a), p.195.
27 Borel (1908), p.446/447.
28 yuillemin (1981), p.27.
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Yet, with respect to Brouwer and his difference to Poincaré,
one could equally well extend the term ‘semi-intuitionism’ to
cover also the philosophy of Poincaré. The addition of ‘semi’
then marks - not taking into account the problem of justifying
the principle of excluded middle - the special manner in which he
conceives of the relation between intuition and analysis (or
language), i.e. between construction and description; an object
does not exist without being designated. Brouwer has never
assigned to language such an essential function of control;, for
him a language remained a mere auxiliary means.



NICHOLAS DENYER

A NOTE ON ZENO B3

Et noAA& ¢oTiv, &vaykn Tocabra efvat boa totf kaf
oBte niefova adtidv obite N&tTova. El 8¢ Tocaltd
éoTiv boa doTt, nenepacpéva &v eln.

If there are many things, it is necessary that
they are just as many as they are, neither more
nor less. And if they are just as many they are,
they would be finite in number.

Let V be the set of things that there are. Suppose that V
contains infinitely many members. We will now introduce the
premiss:

V contains just as many members as V, neither

(1)
more nor less.

This is the only premiss to be deployed in my reconstruction that
represents something explicit in Zeno’s Greek. But it has at
least the advantage of representing Zeno’s words quite literally.
Contrast the interpretation whereby Zeno contends in these cru-
cial words that ‘any plurality of things must consist of a
definite number of things and so be finite in number’’. The only
sense in which it follows from V’s infinity that it contains no
definite number of members would be that for no natural number n
does V contain only n members. But this is not a thought happily
framed as a denial that the members of V ‘are as many as they
are’; and in any case to infer this thought is merely to restate
V’s infinity, not to draw from {t an evidently absurd conclusion.
A similar contrast may be drawn also with the paraphrase of

' HD.P.les, Zeno of Elea (Cambridge, 1936) p.31. Lee’s inter-
pretation seems to be shared by practically all other com-
mentators.

81
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Barnes, whereby Zeno reasoned thus: ‘If there are many As, then
there is some true proposition of the form: "There are as many As
as Bs"™2 If Zeno’s thought was that any plurality must contain
just as many members as another plurality, then he was quite
inept in framing it as a thought that any plurality contains just
as many members as [tself. Furthermore, so to reconstruct Zeno’s
argument is to leave him with what is, as Barnes himself puts it,
‘an uninstructive sophism’. My more literal interpretation of
these words will in the end also produce a sophism: for how could
a ‘proof’ of falsehood be otherwise? Nevertheless | trust that it
will not be entirely uninstructive.

Our premiss (1) is not of itself enough to reduce to
absurdity our supposition that V contains infinitely many
members. My reconstruction must therefore, like others, supply
further premisses to give Zeno the semblance of a sound argument.
Let me therefore supply:

An infinite set is one that contains the same

@ number of members as some proper subset of itself.

(2) may seem to have a suspiclously anachronistic air. After all,
it first achieved a fully clear articulation and proof in the
nineteenth century. Nevertheless, intimations of it can be found
closer to Zeno’s time. Some Stoics held that ‘The man s not
composed of more parts then the finger, nor the universe than the
man; for division produces bodles to infinity, and of infinities
none Is greater or lesser’>. And it is not altogether implausible
to see such ideas as present in Zeno himself. For, as the second
horn of the B3 dilemma indicates, it was points on a line that
above all Zeno has in mind here. And, however hard it may be to
grasp (2) as a general definition of infinities, its particular
application to infinities of points on a line s evident enough.
For {t takes but little reflection to see that i{f a line can be
divided at an infinite number of points then the same holds of
any part into which it is divided.

2 Jonathan Barnes, The Presocratic Philosophers (London, 1979)
Vol.1, p.252.

3 Plutarch De communibus notitiis adversus Stoicos 1079a (=SVF
2.484).
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There is a third premiss we will use in our reconstruction.

Each set contains more members than any proper

3) subset of itself.

(3) is undeniably true if we restrict its application to sets of
tinite size, and it takes some sophistication to see that it is
false when applied to infinities. If I am to spend every day from
now for ever onwards in the Isles of the Blessed, and you are to
spend only every other day there, then you have evident cause to
envy me; and it would be only too natural for you to give the
reason that 1 am to have more days in the Isles of the Blessed
than you are. Again, it is only too natural to suppose that the
line ABC can be divided at more points than can its segment AB;
for the line ABC can be divided at all those points at which the
segment AB can, and also at those further points at which the
segment BC can be divided. The sophistication required to see the
error here was in all likelihood not possessed by Zeno’s
contemporaries. For it seems to have been lacked by Aristotle,
who in his argument against the view that infinity is a substance
treats as evidently absurd its alleged consequence that the
infinite has a part which is itself infinite’, Nor indeed is it
entirely stupid to suppose that (3) is in general true. For the
chief reason that we have to doubt (3) is simply that (1) and (2)
are ‘true, that V is infinite, and that (3) in conjunction with
(1) and (2) entails that all sets are finite in size.

How then does it entail this? How did Zeno’s argument from
(1), (2) and (3) proceed? V, we are supposing, contains
infinitely many members. Hence there is, by (2), a proper subset
of V, containing just as many members as V fitself. Call such a
subset S. The number of members of V is now the same as the
number of members of S. But by (3) the number of members of S Is
less than the number of members of V. So the number of members of
V is less than {tself. Similarly, the number of members of V lIs,
by (3), greater than the number of members of S. But this is, by
(2), the same as the number of members of V. So the number of
members of V is greater than itself. But all this contradicts
(1). We have thus reduced to absurdity our assumption that V
contains infinitely many members; and {f there are many things
they are in consequence only finite in number.

* Physics 204a20ff (- Metaphysics 1066b11f1.).



ROMAN MURAWSKI

GENERALIZATIONS AND STRENGTHENINGS OF GODEL’S
INCOMPLETENESS THEOREM

1. Historical background

In 1931 in the journal Monatshefte fiir Mathematik und Physik
a short paper (a bit more than 20 pages) of an Austrian mathe-
matician and logician Kurt Godel was published - paper which has
turned out to be one of the greatest and most important papers in
mathematical logic and foundations of mathematics. Its title was
“Uber formal unentscheidbare Sitze der ‘Principia Mathematica’
und verwandter Systeme. I". In it Gbdel proved that arithmetic of
natural numbers and all systems containing it are essentially in-
complete provided they are consistent. It means that there are
sentences which are undecidable in them, i.e. sentences ¢ such
that neither ¢, nor -~¢ are theorems. What’s more, we know which
sentence of the pair ¢, "¢ is true in the basic model of the
theory, i.e. in the model to the description of which the theory
was formulated. This incompleteness is essential, i.e. it cannot
be removed by adding the undecidable sentences as a new axioms
because new undecidable sentences will appear (undecidable in the
new, richer theory). This theorem (so called 1** Gddel theorem)
indicates the cognitive limitations of the deductive method. It
shows that one cannot include whole mathematics in a consistent
formalized system based on the first order predicate calculus -
what’s more in such a system one cannot even include all truths
about natural numbers! There will always be undecidable sentences
of the form Vx@(x) such that all substitutions of ¢, i.e.
sentences ¢(0), (1), ¢(2), ... are theorems.

Godel’s results struck the program of Hilbert’s formalism.
Namely, Hilbert proposed a program of justifying classical
mathematics. His proposal was Kantian in character. Hilbert
(1925) wrote as follows:
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Kant taught - and it is an integral part of his
doctrine - that mathematics treats a subject matter which is
given independently of logic. Mathematics, therefore, can
never be grounded solely on logic. Consequently, Frege’s and
Dedekind’s attempts to so ground it were doomed to failure.

As a further precondition for using logical deduction
and carrying out logical operations, something must be given
in conception, viz., certain extralogical concrete objects
which are intuited as directly experienced prior to all
thinking. For logical deduction to be certain, we must be
able to see every aspect of these objects, and their
properties, differences, sequences, and contiguities must be
given, together with the objects themselves, as something
which cannot be reduced to something else and which requires
no reduction. This is the basic philosophy which 1 find
necessary not just for mathematics, but for all scientific
thinking, understanding and communicating. The subject
matter of mathematics is, in accordance with this theory,
the concrete symbols themselves whose  structure s
immediately clear and recognizable”

Such concrete objects are just natural numbers considered as
numerals (certain systems of symbols): 1,11, 111,... One can
exactly describe them and relations between them. The part of
mathematics talking about those objects is certainly consistent
(because facts cannot contradict themselves). But in mathematics,
beside  such finitistic, real theorems describing concrete
objects, we have also infinitistic, ideal ones talking about the
actual infinity (to which no real objects correspond). And
therefore mathematics needs a justification and foundations. The
convincing proof of the consistency of mathematical theory ought
to be a finitistic one (i.e. a proof using no ideal assumptions).
Hilbert thought that such a proof was possible and proposed a
program of providing it. It consisted of two steps. Thee first
step was just the formalization of mathematics (Hilbert,, hist of
all, thought here about arithmetics, analysis and set. theery). It
ought to be carried out by fixing an artifical symbodldc language
and rules of building in it well-formed formulas. Fimther axioms
and rules of inference ought to be fixed (the rubes could refer
only to the form, to the shape of formulas and mot to their sense
or meaning). In such a way theorems of mathematics become those
formulas of our formal language which have a formal proof based
on a given set of axioms and given rules of inference. There was
one condition put on the set of axioms: they ought to be chosen
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in such a way that they suffice to solve any problem formulated
in the language of considered theory, i.e. they ought to form a
complete set of axioms. The second step in Hilbert’s program was
now to give a proof of the consistency of mathematics. Such a
proof could be carried out by finitistic methods because it was
enough to consider formal proofs, i.e. sequences of symbols, and
to verify if there were two sequences such that one of them
finishes with formula ¢ and the other with formula -¢. If there
were such proofs then mathematics would be inconsistent, if not,
then it would be consistent. But the study of formal proofs deals
with finite, concrete objects (namely sequences of symbols formed
according to some rules) and hence is finitistic.

Godel’s theorem showed that it is impossible to build a
consistent and complete system of mathematics. In particular it
showed that no formal system for arithmetic of natural numbers is
adequate with respect to the set of all arithmetical truths
(provided it is consistent). Such systems and their methods of
proving theorems are not (and cannot be) adequate with respect to
the usual mathematical practice. In other words: provability it
is not the same as truth - every theorem of formalized arithmetic
is true but there are true sentences which are not theorems, i.e.
there are sentences which are undecidable.

Godel had shown even more in the paper mentioned above. He
had announced (but not proved, promising to give the proof in the
second part of the paper which was never written) a theorem sta-
ting that there cannot exist a proof of the consistency of a for-
malized system of arithemetic which uses only the methods of that
system. This showed the unrealizability of the second step of
Hilbert’s program - namely of finitistic proof of the con-
sistency.

Both Godel’s theorems were obtained with the help of a new
sophisticated method of arithmetization (or gddelization, as we
often call it today) of syntax. Godel observed, namely, that one
can fix a one-one correspondence between formulas of a given
formalized theory (such formulas are simply sequences of basic
symbols) and natural numbers. In such a way to a formula ¢ of the
language of the arithmetic of natural numbers corresponds a
natural number which we denote by "¢'. Moreover, the correspon-
dence can be defined in such a way that to natural syntactic
relations between formulas ¢,y etc. (e.g. to the relation of
being a subformula or being a consequence) correspond some natu-
ral arithmetical relations between numbers '¢','y' etc. Hence
instead of talking about formulas we can talk about numbers. In
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this way, if a language of a considered theory contains the
language of arithmetic then one can talk in it about itself!

The method of arithmetization together with some ideas known
from old self-referential paradoxes (e.g. the ancient paradox of
a liar) enabled Godel to construct a sentence which, as he
proved, is true in the standard model of arithmetic (i.e. in the
structure N, = <N,0,S,+,-> where N is the set of natural numbers
0,1,2,.., S is the natural succesor function, + is the usual
addition, and -+ is the wusual multiplication) but is wundecidable
in the formal system of arithmetic he considered. This sentence,
though talking about natural numbers, had in fact a metamathema-
tical contents. It was stating: ‘I am not a theorem’ - hence it
stated its own unprovability'.

This metamathematical and not mathematical contents of
Godel’s sentence belittled the philosophical significance of his
results. It was known that arithmetic is incomplete but all known
examples of undecidable sentences were artifical from the
mathematical point of view (after Gobdel’s results some other
undecidable sentences were obtained; cf. sentences of Rosser,
Kreisel and Levy, Kent, Mostowski, Shepherdson - see Smoryriski
(1981)) because they all had metamathematical contents. Hence
there was an open problem (interesting also from the point of
view of the philosophy of mathematics): is it possible to indi-
cate examples of undecidable sentences of mathematical contents,
in particular of number-theoretical contents? The question was
even more interesting because after Godel’s results it was still
possible to cherish hopes that all sentences which are
interesting and reasonable from the mathematical point of view
are decidable.

On the other hand there was a methodological problem connec-
ted with Godel’s results. It was asked if, instead of using the
arithmetization of syntax, it was possible to indicate a sentence
¢ and two models of arithmetic M;, M, such that M,k ¢, M, E ¢
(cf. Mostowski (1955) where among problems to be solved he men-
tioned the following one: ‘To prove the incompleteness of the
axiomatic arithmetic without applying the method of arithmetiza-
tion by giving suitable models showing the consistency and inde-
pendence of an appropriately chosen number-theoretical axioms.’).
Observe that such a method was succesfully applied in the
foundations of set theory (result of Godel from 1938, showing the
consistency of the axiom of choice and of the continuum hypo-
thesis, and results of Cohen from 1963, showing their indepen-
dence).
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From now on we shall fix one particular formal system of
arithmetic, namely the so called Peano arithmetic PA (its axioms
are based on axioms for natural numbers given in 1889 by
G. Peano). This system is a standard system used in studies of
the foundations of arithmetic.c It is formalized in the first
order predicate calculus and based on the following nonlogical
axioms:

Sx =Sy »x =y,

Sx # 0,

x +0=x

x + Sy = S(x + vy),

x+«0=0,

X*Sy=x-y +x

(0) & Vx (p(x) - p(Sx)) - Vx o(x).

The problem mentioned above was solved only in 1977 (i.e. 46
years after Godel’s results). It was done by J. Paris (1978).
Working on nonstandard models? of PA he had invented a new method
of constructing sentences which are independent of PA, but true
in the standard model. The sentences of Paris were simplified by
L. Harrington and at the end a new elegant undecidable sentence
of a combinatorial contents was obtained (cf. Paris, Harrington
(1977)). Soon a lot of new such sentences were found (by McAloon,
Clote, Pudlak, Friedman, Mills, Murawski, Ratajczyk, Kirby,
Simpson, Tverskoj). But the solution was still not completely
satisfying. There was still no number-theoretical sentence. Only
in 1982 J.Paris and L.Kirby found such a sentence (cf.
Paris, Kirby (1982)) (it is interesting that the construction of
their sentence uses some ideas of R. L. Goodstein (1944)). Hence,
only 51 years after Godel’s results there was found an
arithmetical sentence proving (by its existence) the
incompleteness of arithmetic.

2. New undecidable sentences

Let us now describe the Paris-Harrington and Goodstein-
Kirby-Paris sentences. We need some notation. If X is a set of
natural numbers then (X]” denotes the family of all n-element
subsets of X. A function C: [XI"—c (c being a natural number
which we identify with the set of its predecessors, i.e.
¢ = {0,1,...,c-1})) is said to be a colouring function. It may be
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interpreted as a colouring of n-element subsets of X by colours
0,1,2,..,c-1. The English mathematician F.P. Ramsey (1929)
proved that if C is a function colouring [XI™ and X is big with
respect to ¢ and n then there exists a big set Y such that all
its n-element subsets are coloured by one colour. Such a set
Y ¢ X we call homogenous with respect to C. In fact Ramsey proved
the following two theorems:

THEOREM 1 (Infinite Ramsey Theorem). Let n, c be positive
natural numbers. For any colouring function C: [N]" — ¢ there is
an infinite set Y € N such that Y is homogenous with respect to
C, i.e. CMYI" is constant.

THEOREM 2 (Finite Ramsey Theorem). Let s, n,c be positive
natural numbers such that s> n + 1. Then there is a number
R(s,n,c) such that for every r > R(s,n,c), for any set X having r
elements and any colouring function C:[X)® — c there exists a
set homogenous with respect to C having s elements.

These theorems are not intuitively obvious and need proofs.
They can -be treated as generalizations of Dirichlet’s Scubfach-
prinzip. For n =1 Theorem 1 says that if one divides an infinite
set into a finite number of disjoint parts then one of these
parts must be infinite. Theorem 2 for n=1, s=2 and R(2,1,c) =
=c+1 is exactly the Dirichlet’s principle: if one divides a set
containing c + 1 elements (or more) into c¢ parts, then one of
them must contain at least 2 elements.

It turns out that Finite Ramsey Theorem can be proved in
PA®. Harrington observed that modifying it a bit we obtain a
sentence independent of PA. Call a set X € N relatively large iff
card(X) > min(X). Then for example the set {2,3,80,92) is rela-
vely large but the set {10,13,7,0) is not relatively large. The
Paris-Harrington sentence ¢, says now:

for any natural numbers s,n,c there exists a natural
number H(s,n,c) such that for any h > H(s,n,c), any set X of
cardinality h, any C:[X]"—>c there is a set Y homogenous
with respect to the function C and such that card(Y) > s and
Y is relatively large.

It can be proved that Ny ¢, (in fact ¢, is a consequence of
Infinite Ramsey Theorem) but PA non+ ¢, Hence ¢, is an undeci-
dable sentence of a combinatorial contents.

Now to describe the Goodstein-Kirby-Paris sentence let m, n
be natural numbers and define a representation of m by the basis
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n: we write m as a sum of powers of n (e.g. if m=266, n= 2
then 266 = 2° + 22 + 2'). We do the same with all exponents and
at the end we get:

22+

266 = 22"+ 2241 4 21,

We define now a number G,(m) as follows:

if m =0 then G,(m) = 0,

if m# 0 then G,(m) is a number obtained by replacing every-
where in the representation of m (by the basis n)
the number n by n+1 and subtracting 1.

For example: G,(266) = 3% + 331 + 2 & 10%,

Goodstein’s sequence for m is now defined in the following way:

o = m,
m, = Gz(mo);
m, = G_-,(m,),

For example:

my = 266, = 27 + 221 4 2,
266, = Gy(mg) = 3% + 3% 4+ 2 & 10%,
m, = 266, = Gy(m,) = 44" + 4% 4 1 & 109

m, = 266, = Gy(m,) = 55 + 551 & 1010000 gyc,

2244

m,

Observe that this procedure of constructing the sequence m, can
be described in the language of PA. Consider now the following
sentence ¢, of L(PA: Vm3k(m, =0). It can be proved that
No F ¢, but PA nont ¢, The unprovability of ¢, has its source
roughly speaking, in the fact that m, = 0 only for very big Kk,
eg. if m=4, m =0 for k= 3.2002053211 _ 3 4 {()!21000000
Observe that the whole number of atoms in the Universe is
estimated as 10%°,

There was also found (cf. Paris, Kirby (1982)) an inte-
resting example of an undecidable sentence of a ... mythological
contents! As we know Hercules after killing his wife and children
in a fit of madness went, regaining consciousness, to the oracle
to ask her how he could now expiate his crime. Pythia told him to
go to Mycenae and to enlist into the service with the king
Eurystheus. There he ought to follow his commands until he does
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12 works. One of Eurystheus’ commands was to kill the hydra of
Lerna. What did that monster look like? Mathematics helps us to
describe it. We can imagine it as something reminding by its
shape what we call in mathematics a finite tree. Schematically we
can represent it as follows:

« TOP

} HEAD

4 SEGMENT

4 NODE

4 ROOT

The battle between Hercules and hydra proceeds as follows: at
stage n (n > 1) Hercules chops off one head from the hydra. The
hydra then grows n "new heads” in the following manner: from the
node that used to be attached to the head which was just chopped
off, traverse one segment towards the root until the next node is
reached. From this node sprout n replicas of that part of the
hydra (after decapitation) which is “above” the segment just tra-
versed, i.e. those nodes and segments from which, in order to
reach the root, this segment would have to be traversed. If the
head just chopped off had the root as one of its nodes, no new
head is grown. For example (an arrow marks always the head which
Hercules decides to chop off):

L

after stage 1
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after stage 2 after stage 3

Hercules will win if after a finite number of stages nothing is
left of the hydra but its root. Of course he may chop off the
heads in any order. By a strategy we mean a function which deter-
mines for Hercules which head to chop off at each stage of the
battle and by a winning strategy we mean a strategy which enables
Hercules to win a battle with any hydra. It turns out that every
strategy is a winning strategy, i.e. by chopping off the heads of
any hydra in any order he always win!

Now consider the battle in a slightly different way. A hydra
can be coded by a single natural number (hence a mathematiclan is
more powerful than Hercules - he can reduce a hydra to a single
not dangerous number!). This enables us to talk about the battle
with a hydra in the language of Peano arithmetic. We cannot speak
in this language about arbitrary strategies but we can speak
about recursive (effective) ones. Consider now a sentence: ‘Any
recursive strategy is a winning strategy’. It is of course weaker
than the sentence stating that every strategy is a winning
strategy, therefore it is also true. But in turns out that even
such a weak statement is not provable in PA. Peano arithmetic is
to weak to prove some true sentences about the battle between
Hercules and a hydra.

The methods and ideas of Paris, Kirby and Harrington were
applied also to find sentences undecidable in sub- and
supertheories of arithmetic. Let us mention here only the results
of A. A Tverskoj (1980) and H. Friedman (cf. Smorynski (1982)).
With any recursive function f{ Tverskoj associates a formula
KTP(f) of L(PA) (below we describe its sense) and proves that
there is a sequence of recursive functions {_, o, f;, f;, ...
such that for any n > O:

) PA + KTP(,_,) - ", is total®,
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2 PA + KTP(f,) - KTP({,_,),
3) PA non + KTP(,_,) - KTP({,).

Hence we have a sequence of stronger and stronger sentences
KTP({,) such that KTP(f,) is independent of PA +KIP({,_,). More-
over, by (2), KIP ({,) is independent of PA + {KTP(f,): k < n}.
The function f_, may be chosen in such a way that the sentence
KTP(f_,) is equivalent to the Paris-Harrington sentence ¢,.

Friedman has found sentences of combinatorial contents which
are independent of some interesting (from the point of view of
not only foundations of mathematics but also of the mathematical
practice) fragments of the second order arithmetic called ATR,
and IN}-CA. (Second order arithmetic is a theory formalized in a
two sorted language - individual variables representing natural
numbers and set variables representing sets of natural numbers -
which extends Peano arithmetic and is already so powerful that a
big part of classical mathematics can be formalized within it.)
Friedman’s sentences talk about embeddability of finite trees.
The precise description of those sentences needs the introduction
of a lot of technical notions and details and we shall not give
them here.

3. Some words about proofs

In general, there are two types of proofs of undecidability
of those new sentences - call them syntactical and semantical.
Semantical proof (e.g. Paris’ (1977)) are based on the so called
indicator theory founded by Paris and Kirby studying initial
segments of nonstandard models of PA. To explain this method
consider a countable nonstandard model M of PA and a certain
property Q of initial segments of M (e.g Q = being a model of
PA). The indicator for Q is definable function which informs us
if between any two elements a,beM there exists an initial segment
I €, M such that Q.

Let M F PA be countable and assume that there is an indica-
tor Y(x,y) for the family of initial segments I of M such that
I F PA. It is proved that there is an initial segment I, ¢, M
such that I, = PA and I, nonk VzVx3y Y(x,y) > z. On the other
hand Ny F VzVx3y Y(x,y) > z. Hence the sentence VzVx3y Y(x,y) 3 z
is undecidable in PA.

This is a general scheme. The whole problem is now to find a
"good” (i.e. giving a sentence VzVx3y Y(x,y) > z interesting from
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the mathematical point of view) indicator Y. The indicator found
by Paris and Harrington and giving ¢, was based on Ramsey
theorem. (In the appendix we give a detailed, semantical type
proof for another undecidable sentence, namely for Pudlak’s
sentence.)

The syntactical method does not use any models or other
semantical notions. It was applied in the paper of Paris and
Harrington (1977). They considered ¢, constructed a theory
(extending PA) and proved that

PA + Con(T) » Con(PA),
PA + @, - Con(T),

where Con(PA) (resp. Con(T)) is a sentence of L(PA) expressing
the fact that PA (resp. T) is consistent. Hence, by Gbdel’s
second theorem, we get that PAnontk g, On the other hand
Ny F 9o and hence ¢, is undecidable in PA.

4. Philosophical remarks

Consider now the new undecidable sentences from the philoso-
phical point of view. First observe that they tell us more about
the incompleteness of Peano arithmetic PA than Godel’s results,
since they show some undecidable sentences of combinatorial and
number-theoretical contents, i.e. sentences interesting from the
usual mathematical point of view. Secondly, despite their mathe-
matical contents they are strongly connected with some
metamathematical sentences. McAloon (1979) has namely shown (and
the same can be proved about almost all new sentences) that

PA + ¢, = Ring(PA),

where Ring(PA) is metamathematical sentence: for every sentence ¢
from L(PA) which contains only existential quantifiers appearing
at the beginning, if ¢ is provable then ¢ is true. (By using the
technique of arithmetization Rfng(PA) can be written as a
sentence of L(PA).) Hence new sentences have in fact also some
metamathematical contents. In the third place the new sentences
are stronger then Godel’s sentence. Namely

PA + Godel’s sentence = Con(PA)
but
PA + Con(PA) non F Rfng(PA).

Hence ¢, is undecidable in PA + Con(PA).
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To give some ideas how strong Paris-Harrington and Friedman
sentences really are consider the following hierarchy of theories
(a is here an ordinal):

To=PA, T,y =T, +Con(Ty, T, = U T, (A limit).
a<h
It can be shown that:

1° PA + ¢, has the same proof-theoretic power as T, where
€, is the first ordinal p such that w* =p, ie ¢, is the ulimit
of the following sequence of ordinal numbers w, w“, w* ,...
(Recall on this occasion that €, is very well known in the proof
theory - G. Gentzen showed that with the help of induction up to
€, we can prove the consistency of Peano arithmetic PA.)

2° PA+F, where F is Friedman’s sentence undecidable in
ATR, is stronger than any of the theories T‘|, th, ey T“o,

where ¢, is the a' ordinal p such that w? =p. In fact PA+F
has the same proof-theoretical power as T, where y is a countable
ordinal which is strongly impredicative, i.e. such that it cannot
be described without any reference to the first uncountable
ordinal. The sentence F implies over a reasonable weak theory the
consistency of predicative analysis, i.e. of the fragment of the
second order arithmetic with comprehension scheme restricted to
formulas having quantifiers over natural numbers and no set
quantifiers.

What are in fact the reasons for the unprovability in PA of
true arithmetical sentences considered above, i.e. sentences of
Godel, Paris-Harrington, Goodstein-Kirby-Paris, Friedman etc.?
Recall that Godel’s sentence was of the form Vx @p(x) where ¢(x)
was a formula containing only bounded quantifiers® and such that
PAF 9(0), PAF o(1), PAF @(2), .., PAr (), .. for any na-
tural number n. The source of the unprovability of Vx @(x) is the
fact that proofs (in PA) of ¢(0), p(1), (2),.. are not uni-
form, i.e. there is no general method of proving ¢(n) for any
given n. In other words for every neN the proof of ¢(n) is
different from a proof ¢(m), m # n.

What about the Paris-Harrington sentence ¢,? One can see
that ¢, may be written in the form Vx3y y(x,y) where y contains
only bounded quantifiers. If now a formula of such type were
provable in PA then there would be a provably recursive function
f(x) such that PA would prove Vxy(x,f(x)), i.e. a provably
recursive function f giving examples of y’s for given x’s fulfil-
ling the formula y - we call such a function a witness. Recall on
this occasion that a function f: N— N is said to be provably
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recursive iff f is recursive and there is a term F of language of
Peano arithmetic PA such that F represents f in PA and

PA + Vx3ly [F(x) = y),

where 3ly means that there exists exactly one y. Observe that if
the term F represents a recursive function f in PA then for any
natural number neN: PA + 3y [F(n) =yl but it may happen that
PA non F Vx3ly([F(x)=yl. On the other hand any recursive
function can be represented by a term of PA and vice versa, any
term of PA represents a recursive function (which may be but need
not be provably recursive).

Coming back to our considerations, if PA nontF Vx3y p(x,y)
then the source of this unprovability lies in the fact that for
any provably recursive function f, if F is a term representing f,
then PA nonk Vx y(x,F(x)), ie. no provably recursive function
is a witness for y.

To explain this phenomenon better let us introduce the fol-
lowing hierarchy of functions of natural numbers. Let fy(x) =
=x+ 1, foa(x) = 12(x), where £29(x) = f,(f, .. (£, (x)...))
(x + 1)-times. Hence, e.g. fj(x) =2x+ 1, {,(x) is similar to 2*
and fy(x) is similar to

2
22’ } x times
2

We say that the function h; is something like the function h, iff
F(hy) = F(h,) where F(h) is the smallest class of functions
containing h, S, +, - and closed under composition. It can be now
shown that for any neN, f.,, is not something like f, and that
f,,, majorizes all functions from F(f)). We can extend the
hierarchy of functions f, to ordinal numbers a (e.g. if a is a
successor, i.e. a=p+1 then we put f,(x)=1,,x) =15""x)
and if a 1is a limit ordinal then we diagonalize, e.g.
f,(x) = 1,(x)). Let now ¢, be the smallest ordinal a such that
w* = a. The following fact now holds.

THEOREM 3. Functions belonging to the set Q F(,) are preci-
sely those provably recursive in PA.

After that necessary (but maybe a bit tedious) explanation
let us return back to the Paris-Harrington sentence ¢, I ¢,
were provable in PA, i.e. if PA + Vx3y yp(x,y) then there would be
(by Theorem 3) an a¢, such that PA F Vx3yd (%) p(x,y). But
PA + Vx3y y(x,y). Hence for any ale, PA non I Vx3ydf (x) p(x,y).
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Consequently, the function f which is the witness of ¢, grows
more rapidly than any f, for a<ey,. And in fact it can be proved
that the function H(x+1,x,x) (H is the function from the Paris-
Harrington sentence ¢,) is something like f‘o’ f.e. the function
witnessing ¢, majorizes all provably recursive functions and
therefore PA is not able to handle it.

Observe that Paris-Harrington sentence ¢, has a similar pro-
perty as, Godel’s sentence. Namely for any given neN, PA + 3y y(n,y).

A similar situation to the one described above we have in
the case of Friedman’s sentences and reasons for their unpro-
vability are also similar (recall that those sentences are also
of the form Vx3y x(x,y) where x contains only bounded quan-
tifiers). But here the function witnessing the formula x grows
even more rapidly than it was in the case of Paris-Harrington
sentence ¢@,. And as before, for any given neN, PA F 3y x(n,y).
How long are proofs of those sentences? The answer is: they are
very long. For example, in the case of Friedman’s sentence
Vx3y x(x,y) undecidable in ATR,, the proof of the sentence
3y x(10,y) has at least

2
22" } 1000 times symbols!
2

Do the new results fully satisfy logicians and “normal”
mathematicians? Is this part of the foundations of mathematics
already closed? We must answer these two questions negatively.
The new results are not completely satisfying because the
undecidability of new sentences is shown by proving that there
exists I, such that I, does not satisfy the particular sentence.
And this proof is not constructive. It is not convincing for a
usual number-theorist. He does not study nonstandard numbers and
the fact that some nonstandard model I, does not satisfy the
considered sentence gives him no information. On the other hand
he is not interested in the fact that in some system some
sentence cannot be proved. He asks if these sentences are true
among natural numbers. In practice he does not work in any formal
system but uses any “proper” methods. We can assume, to fix our
attention, that any of his proofs can be reconstructed in set
theory (say in Zermelo-Fraenkel set theory with the axiom of
choice ZFC). Hence there arises a problem of finding mathematical
(number -theoretical) sentences undecidable by any “proper”
method, i.e. independent of ZFC. The problem is still open (only
metamathematical sentences about natural numbers which are



98 Roman Murawski

independent of ZFC are known). Maybe Fermat’s theorem or
Goldbach’s conjecture are examples of such sentences?

5. Appendix

To give the reader an 1idea of what could indicators
generating undecidable sentences (cf. part 3) look like, we shall
present in this appendix a detailed proof of unprovability of
Pudlak’s sentence. It was described in an unpublished paper
‘Another combinatorial sentence independent of Peano’s axioms’.
We have chosen just this sentence because it has a clear and
easily understandable contents and one can provide clear and
readable proof of its independece. Describing Pudlak’s sentence
and its properties we shall follow Smoryriski (1980).

DEFINITION 1. Let f: N— N. We say that a finite set A € N,
A = {a,, a,, ..., a;}) where ay<(a;<a<..<a, s an appro-
ximation to f iff for any i < n:

Vx € a, [xedom(f) - f(x) < a,,, v f(x) > a,),

where dom(f) is the domain of f.

It can be seen that A = {10,12,13,14} is an approximation of
the function f(x) = x2. Observe that any set having 2 elements is
an approximation to every function.

DEFINITION 2. Let X be a finite set of natural numbers. We
say that X is O-dense iff card(X) > 3. We say that X s
(n + 1)-dense iff for any function f: N— N there is an n-dense
set Y such that Y ¢ X and Y is an approximation to f.

The set {0,1,2} is 1-dense. It is not easy to give other
examples of 1-dense sets. But the following theorem holds.

THEOREM 4. For any a,neN there is a,beN such that a {(b and
the interval [a, b] is n-dense.

This theorem cannot be proved in PA because its proof is
not effective and wuses facts and methods which cannot be
formalized in PA. Therefore it 1is really difficult to give
concrete, effective examples of n-dense sets though we know they
do exist.
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Consider the following sentence ¢:
VVo,vy 3V, (v > vo & (v, V,] is v,~-dense).

It turns out that ¢ is independent of PA. By Theorem 4 the
sentence is true in the standard model N, Hence it |is
undecidable in PA.

To prove that PA non + ¢ it is enough to find a model M, of
PA such that M, non F @. We shall do it now.

Let M be a nonstandard model of PA such that M is an elemen-
tary extension of N, i.e. the sentences of the language of Peano
arithmetic which are true in M are exactly those sentences true
in No. Hence by Theorem 4, M F ¢. Let a and c be any nonstan-
dard elements of M. There is a beM such that a<b and M k
"la, b] is c-dense”". The model M is model of PA, hence the scheme
of induction, and consequently the principle of minimum hold in
it. So let b, be the smallest element b from M such that a<b
and M = "[a, b] is c-dense".

The most important (and most difficult) part of the proof is
to show that the function

Y(x,y) = max(c: [x, yl is c-dense)

is the indicator for the family of initial segments of M being
models of PA (cf. part 3). We omit this proof of course.

Now if M, is an initial segment of the model M such that
a,ceM, and bytM, then in M, there is no b such that a<b and
[a, bl is c-dense. Hence M, is the needed model of -¢. Observe
that here we have used the fact that the sentence "[a, bl is
c-dense” for a,b,ceM, holds in M, iff it holds in M.

Hence we have shown that N, F ¢ but there is a model My = PA
such that M, = -¢. Consequently PA non + ¢ and PA non + -¢. Hence
¢ is the sentence of mathematical contents undecidable in PA.
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Notes

! Readers interested in details of Gbdel’s results may consult
e.g. Nagel, Newman (1959) or Smoryniski (1977). It is in order
here to mention two contributions concerning the independent
arithmetical propositions expected to appear:

R. Murawski, Appendix to paper ‘On the incompleteness of
arithmetic once more’, in Essays on Logic and Philosophy, Proc.
of the XXX International Conference on the History of Logic, ed.
J. Perzanowski.

S. G. Simpson, Nichtbeweisbarkeit von gewissen kombinato-
rischen Eigenschaften endlicher B&dume, Archiv f. Math. Logik und
Grundlagenforschung.

2 One of the consequences of the compactness theorem is the
existence of models of arithmetic of natural numbers different
from (i.e. nonisomorphic to) the basic model N, = <N,0,S,+,>.
This basic model 1is called standard, models which are not
isomorphic to it are called nonstandard. Nonstandard models
contain so called nonstandard natural numbers, i.e. objects a
such that they have properties described by axioms of the
arithmetic of natural numbers but are bigger than all standard
numbers (a>0, a>1, a>2 etc). Any nonstandard model of
arithmetic is ordered (by the natural order relation a <b iff
Jcb=a+c) in the type w + (wW* + w)p, where p is a dense
order type, w is the order type of the set of natural numbers and
w* + w is the order type .of the set of integers. In the case of
countable models p is the order type of rationals. Hence any
nonstandard model contains an initial segment isomorphic to N.

3 Observe that in PA we can talk about finite sets of natural
numbers. We can simply code them by single natural numbers. If we
have a set X ={a; a,, ..., a,) where a;<a,<..<a, then it
can be coded by the number pii..pin where p, is the i-th prime.

4 Talking about provability of some semantical facts we mean
always the provability in the metatheory which is e.g. Zermelo-
Fraenkel set theory with the axiom of choice ZFC.

° Bounded quantifiers are quantifiers of the form V x<t and
3 x<t where t is a term of L(PA) and we define

V x<t p(x) = Vx (x<t - p(x)),
I x<t p(x) = Ix (x <t & @(x)).
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i. Introductory Remarks

In this paper Mordchaj Wajsberg’s life and research work in
logic are described, and an attempt is made to situate the latter
among the accomplishments of the rest of the Polish school of

logic.

ii. Wajsberg and the Polish School of Logic

Wajsberg belonged to a research formation called in the
course of time the Polish school of logic. The undisputed leaders
of the school were S. Lesniewski, J. kukasiewicz, and at a later
stage, A. Tarski who since 1923 became responsible for many
outstanding  contributions and systematic studies in  logic,
metalogic and semantics.

Although the school members centered on modern logic and its
applications where they promoted a number of new trends and
opened many fresh fields of research, they also showed a lively
interest in methodology of deductive and empirical sciences as
they took up in modern logical form many of the traditional major
philosophical questions at the same time putting outside the
scope of philosophy some such philosophical problems which could
be either clearly stated or investigated by the methods of
science. In these efforts the school members were supported by
the prominent philosophers T. Kotarbinski and K. Ajdukiewicz.

It is this school which emerged as the most dominant force
in academic logic and philosophy of Poland as well as the Polish
intellectual life between the two world wars. And it is this
school which should be seen responsible for the spectacular rise
to prominence of formal and philosophical logic.

The leaders of the school soon became surrounded by a large
number of talented students, young assistants and followers.
Among those who essentially contributed to the school’s suc-
cess there were A. Lindenbaum, B. Sobocinski, S. Jaskowski,
J. Stupecki, and of course, M. Wajsberg.

A distinctive feature of the school and one of the secrets
of its success was the spirit of teamwork. The mutual colla-
boration among the members was so close and intimate that it is
often hard to decide who should be credited with which particular
results. Another its feature is that its members seemed to care
more about making research progress than about making the results
actually published or otherwise documented. Consequently, many
findings appeared in print only in the form of abstract with
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proofs and other essentials missing. Moreover, some important
findings were never published during their authors’ lifetime.
They became more and more dependent on oral communication thus
contributing to the growth of the school’s ‘oral tradition’. For
a general school’s background see KUZAWA 1968 and MOSTOWSKI 1957.

Many useful findings were summarized and systematized by
tukasiewicz and Tarski in their joint paper LEUKASIEWICZ-TARSKI
1930. A great number of references to the school’s results can be
found in TARSKI 1956. See also JORDAN 1945, 1963, and 1967.

Wajsberg emerges as a prominent representative of the
school. Many of his research results have profoundly influenced
further studies in the field. Among other things, he became a
pioneer in the axiomatization of many-valued logic. He was the
first to provide an adequate semantics for one of Lewis’s modal
systems. He also worked out an original method for the separable
axiomatization of intuitionistic = propositional logic. @ Wajsberg
made an impression on many things which he touched, perfected
many results by others, particularly by Lukasiewicz, Le$niewski,
Tarski, Lewis and Hilbert., His research work gave a new impetus
to further studies. And, although, unlike his teachers, Wajsberg
said directly nothing on philosophical subjects, his research
work has borne unquestionable philosophical implications.

Wajsberg published twelve papers. For the availability of
their English translations see SURMA 1977. See also McCALL 1967
which contains English translations of three of his papers,
WAJSBERG 1931, 1937, and 1938b.

iii. Childhood

Mordchaj Wajsberg was born on May 10, 1902 at Lomza,
Biatystok district. The years of 1909 to 1912 he spent in a local
primary school. Then he moved to an intermediary school but the
school was closed two years later when the first world war had
broken out. In 1920 a year of military service in the revived
Polish army followed thus interrupting his preparations for final
school certificate. After completion of the service he passed
successfully his entrance examination to the last but one form of
the local secondary school from which he graduated in June 1923.

iv. University Study

Wajsberg spent his formative years in Warsaw. In October,
1923 he enrolled as a mathematics student at the Philosophy
Department of the Warsaw University. He specialized in
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mathematical logic which he studied under FEukasiewicz. Apart from
those by tukasiewicz he also attended lectures on logic given at
that time by Les$niewski and Kotarbinski.

As a second year student he read two papers to the
Philosophy of Mathematics Section of the Association of
Philosophy Students, one on “Russell’s Theory of Functions of
Apparent Variable", the other one on ‘Invariants of Logistic
Transformation”.

v. Early Findings. Pure Implication

Already as a third-year student Wajsberg obtained some
original results. He described a number of alternative axiomatic
systems for various fragments of classical propositional logic.
In particular, he found new axioms for the logic of pure
implication and for that of pure equivalence. Among them there is
his 25-letter single axiom for pure implication:

CCCpqCCrstCCuCCrstCCpuCst

(Explanation of the symbolism: the above formula is rendered
using the so called Polish notation, due to Lukasiewicz (see
LUKASIEWICZ 1929), where *‘C’ denotes the connective of
implication, and where ‘Cab’ reads as ‘If a, then b’). This axiom
is organic in the sense that none of its proper subformulae is a
tautology; the notion of organic formula was also introduced by
Wajsberg (see LUKASIEWICZ-TARSKI 1930).

Unlike the above axiom, the 25-letter single axiom:
CCCpCqpCCCCCrstuCCsuCruvv

found by Lukasiewicz and also referred to in EUKASIEWICZ-TARSKI
1930, contains tautology CpCqp as a subformula, and so it is not
organic.

It has been shown by Lukasiewicz later that the following
13-letter formula:

CCCpqrCCrpCsp

is the shortest single axiom for pure implication (see
EUKASIEWICZ 1948). Still later Ivo Thomas, using the work of
R. Tursman (see TURSMAN 1068), has finally shown that there are
no more shortest single axioms for pure implication (see THOMAS
1970).
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vi. Pure Equivalence

Investigations into the logic of pure equivalence were
initiated in Poland by Lesniewski to whom we owe what is now
called Lesniewski’s decidability criterion to the effect that
each purely equivalential formula is a tautology if and only if
each propositional variable occurs in it an even number of times.
Lesniewski was also the first to prove that all pure
equivalential tautologies can be axiomatized with the help of
substitution and ordinary detachment for equivalence:

Eab, a - b

together with the following axioms:

EEEprEqpErq, EEpEQrEEpqr.

For reference see LESNIEWSKI 1920. (Explanation of the symbolism:
the above formulae are rendered using the Polish notation, where
‘E’ stands for the connective of equivalence, and where ‘Eab’
reads as ‘a if and only if b’).

The subject of pure equivalence attracted many members of
the school. Among them was Wajsberg. To Wajsberg belongs the
credit of showing that the logic of pure equivalence can be
axiomatized with the help of single axiom. In 1925, still as a
third-year student, he found the following two 15-letter single
axioms (see WAJSBERG 1937, footnote 1):

EEEEpqrsEsEpEqQr
and
EEEpEqrEErssEpq.

In 1930 five more 15-letter single axioms for pure
equivalence were found by Lukasiewicz, Sobocifiski, and J. Bryman
(see SOBOCINSKI 1932). Later all these results were sharpened by
bukasiewicz who in 1933 found the following three 11-letter
single axioms for pure equivalence:

EEpqEErqEpr, EEpqEEprErq, and EEpqEErpEqr.

tukasiewicz proved that each of these axioms i3 the shortest
possible single axiom for pure equivalence, thus solving the
problem of the length of single axioms for this logic (see
LUKASIEWICZ 1939).

In 1963 C.AMeredith found seven more shortest single axioms
for pure equivalence (see MEREDITH 1963 and PETERSON 1976). One
more such single axiom was added by J.A.Kalman in 1978 (see



106 Stanisiaw J. Surma

KALMAN 197B). Continuing earlier efforts by Kalman and Peterson,
L. Wos and S. Winker finally established that the number of all
single axioms for pure equivalence is thirteen (WOS-WINKER 1980).
More  historical information concerning investigations into the
logic of pure equivalence may be found in SURMA 1973b.

vii. Sheffer’s Connective

As a fourth-year student Wajsberg made a contribution to the
study of the Sheffer connective D (read as ‘Not both’). He found
the following axiom for D:

DDpDqrDDDsrDDpsDpsDpDpq

and he deduced from this axiom the following axiom:

DDpDqrDDtDttDDsqDDpsDpDps

which was found by J. Nicod as early as in 1917, and which became
the first single axiom for propositional logic ever known (see
NICOD 1917).

Wajsberg’s axiom improves Nicod’s one. First, it contains
one less propositional variable. Besides, it is organic while
Nicod’s is not as it contains the tautology DtDtt as a subformula.

Wajsberg’s own results on single axioms contributed to
similar  studies, already in  their full  swing, advanced
considerably by Lukasiewicz, Tarski, and Sobocinski, who found
many single axioms for various fragments of propositional logic.
For reference see LUKASIEWICZ-TARSKI 1930 and SOBOCINSKI 1932
All his early results were included into Wajsberg’s master’s
thesis, entitled "Contribution to the Research on Mathematical
Logic”", which was written under Ftukasiewicz’s supervision. It is
on the basis of this thesis that he was awarded his M.A. degree
on October 2, 1928.

viii. Early Observation on Modal Logic

Still as a student Wajsberg became involved into the study
of modal logic, the ancient subject which was revived by modern
logicians, especially, by C.I. Lewis. He was the first to prove
that none of Lewis’s modal systems is equivalent to classical
propositional logic. Following WAJSBERG 1937, footnote 7, his
separating four-valued truth tables, used in the proof, were
found by him as early as in 1926. He observed that formula ‘La’
(read as ‘It is necessary that a&’) is already a theorem in
Lewis’s system S1, whenever ‘a’ itself is a classical tautology,
an important fact pertaining to the so called Goedel-Lemmon-style
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formalization of modal logics. And for the first time in the
history of modern modal logic he outlined an adequate semantic
characterization of Lewis’s system S5. A detailed description of
the semantics was presented in his later paper WAJSBERG 1933a.

All these observations were communicated by Wajsberg to
C.I. Lewis at least as early as in 1927, as it is acknowledged in
Appendix ii of LEWIS-LANGFORD 1932. See also PARRY 1968.

ix. Wajsberg’s Work on Many-Valued Logic

From August, 1929 to September, 1930 Wajsberg served in the
army, first as a student in the cadet training unit, and then in
the 4th Regiment of the Tatra Highland Gunners. In September,
1930 he qualified for Ph.D. studies at the Warsaw University. As
a PhD. student he worked under Lukasiewicz’s supervision. His
research  project centered on the three-valued logic of
tukasiewicz.

The three-valued logic of Lukasiewicz was discovered by
bukasiewicz in 1920, that is already a decade earlier (see
LUKASIEWICZ 1919-1920 and 1921), and was described semantically
with the help of his well-known three-valued truth tables, at
that time referred to as the method of logical matrices (see
LUKASIEWICZ 1930). In 1922 the three-valued logic was generalized
by Lukasiewicz to n-valued logics, where n may be an arbitrary
finite or even infinite number. Researches on Lukasiewicz’s
logics were carried out by a growing team of talented and devoted
students and collaborators, which included not only Wajsberg but
also Tarski, Lindenbaum, Sobociriski, and, later, Stupecki and
Jaskowski.

Wajsberg accomplished his Ph.D. project in less than a year,
entitled his manuscript "Axiomatization of the three-valued
propositional logic”, and submitted it oficially to the Warsaw
University in fulfilment of the requirement for the degree of
Doctor of Philosophy.

In his thesis Wajsberg found the following system of
independent axioms for the three-valued logic of Eukasiewicz
based on implication and negation as primitive connectives:

CpCqp, CCpqCCqrCpr, CCNpNQCqp, CCCpNppp

(Explanation of the symbolism: ‘Cab’ reads as ‘if a, then b’, as
before; while ‘Na’ reads as ‘It is not the case that a’ so that
‘N’ stands for the connective of negation). He proved that each
three-valued tautology and only such tautology can be deduced
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from the above axioms using the rules of detachment and
substitution as the only rules of inference. This provided a
solution to the completeness problem for the three-valued logic
of Lukasiewicz, which was the first result of the kind in the
history of many-valued logic.

In his thesis Wajsberg also proved that no subsystems of
classical propositional logic can be axiomatized with the help of
axioms built up of at most two propositional variables. An
algebraic proof of this fact was given by AH. Diamond and J.C.C.
McKinsey in 1947 (see DIAMOND-MCcKINSEY 1947).

A paper based on the results contained in Wajsberg’s thesis
was presented by Eukasiewicz to the Warsaw Scientific Society for
publication as early as January 19, 1931. It appeared in the
Proceedings of the Society in the same year (see WAISBERG 1931).

Formal defence of Wajsberg’s Ph.D. thesis followed, with
bukasiewicz and S. Mazurkiewicz as referees, and the degree of
Doctor of Philosophy was conferred upon him at the promotion
ceremony on May 29, 1931.

Wajsberg’s Ph.D. thesis did not contain all of his findings
concerning tukasiewicz’s many-valued logics. At about the same
time he proved axiomatizability of all those n-valued FEuka-
siewicz’s logics, for which (n-1) is a prime number. This resuit
was later extended by Lindenbaum to all natural n (see
LUKASIEWICZ - TARSKI 1930).

Wajsberg also confirmed Lukasiewicz’s conjecture on the
axiomatizability of the infinite-valued Lukasiewicz’s logics,
namely, that the logic can be axiomatized by the detachments and
substitution rules together with the following axioms:

CpCqp, CCpqCCqrCpr, CCCpqqCCqpp, CCCpqCqpCqp, CCNpNQCqp.

He announced in WAJSBERG 1936, p.240, that he had found proof for
the conjecture but his proof has never been published (see
LUKASIEWICZ-TARSKI 1930). The proof that the above axioms suffice
for Lukasiewicz’s infinite-valued logic was shown in print by
A.Rose and J.B.Rosser only in 1958 (see ROSE-ROSSER 1958).
C.A. Meredith and C.C. Chang then showed, independently, that
axiom CCCpqCqpCqp is redundant and so can be omitted from above
list (see MEREDITH 1958 and CHANG 1958).

Wajsberg also found a relatively simple axiomatization of
the so called extended three-valued logic of FEukasiewicz. An
extended propositional logic was defined in the school as a
propositional  logic  admitting quantification over propositional
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variables (see LUKASIEWICZ-TARSKI 1930). As such it can be viewed
as a particular case of Lesniewski’s protothetic (see LESNIEWSKI
1929) in which also quantification over variable connectives is
admissible.

x. Axiomatizability of Negation

In the year of 1931, apart from the paper containing his
Ph.D. thesis, Wajsberg also prepared for publication his papers
WAIJSBERG 1932a and 1932b, which were published in the next year.
In WAJSBERG 1932a he presented an axiomatizability criterion for
the classical propositional logic based on implication and
negation. According to this criterion, a set X of formulae built
up of implication and negation in such a way that negation may
only be followed by propositional variables, when added to the
axioms for pure implication, axiomatizes the logic based on
implication and negation if and only if each unary connective
different from negation does not satisfy at least one formula
from X. For reference see also ZARNECKA-BIALY 1973.

In the paper WAJSBERG 1932b we find Wajsberg’s organic axiom
for the Sheffer connective along with his findings involving pure
implication and pure equivalence which he found already as an
undergraduate student.

xi. Wajsherg’s Semantics for Lewis’s Modal System S5

The year of 1932 Wajsberg also spent in Warsaw. [n February
and March he presented two papers to the Section of Logic of the
Warsaw Philosophical Society, entitled “From the Research on the
Theory of Deduction®, and “Axiomatization of Predicate Logic”",
respectively. The precise contents of the papers is unknown. One
may only guess that they were related to his papers WAJSBERG
1933a and 1933b which he prepared for publication at around that
time.

In the paper WAJSBERG 1933a the author constructed an
adequate semantic characterization of Lewis’s system S5, the
first example of an adequate semantics in the history of modal
logic. As we mentioned in Section viii, this semantics was known
to Wajsberg long before 1933 (see LEWIS-LANGFORD 1932, Appendix
if).

Using modern terminology and notation Wajsberg’s semantics
may be described as follows. Let A be a non-empty set, and let
P(A) denote the set of all subsets of A. Let —, denote the set-
complementation operation within A, ife, if X is a subset of A,
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then —,(X) denotes the set of all those elements in A which are
not members of X. Let n and v denote, as usual, the set-
intersection and the set-union, respectively. let I, be a unary
operation in P(A) defined, for every X ¢ A, as shown below:

A ifX = A
X)) =

P HX=A

where, of course, @ denotes the empty set. Let P(A) denote the
sequence:
(P(A), —,, n, v, 1)

Thus P(A) is a Boolean algebra of subsets of A with the
additional unary operation |. A formula is defined as true in
P(A) if and only if it takes on value A under every assignment of
members of P(A) to its propositional variables, where the valu-
ation function is defined in such a way that propositional
connectives: 1 (negation), A (conjunction), v (disjunction), and
L (necessity) correspond to the operations: —,, n, v, and |,
respectively. Now, the main result of Wajsberg may be expressed
as follows:

An arbitrary formula is provable as a theorem of Lewis’s
system S5 if and only if the formula is true in the system
P(A), for every non-empty set A.

For reference see also ZACHOROWSKI 1973.

To prove this theorem Wajsberg introduced a kind of normal
form procedure. More specifically, he showed that every pro-
positional formula of the form ‘La’ (read as ‘It is necessary
that a’) is reducible in S5 to a kind of conjunctive normal form
where each disjunct consist of ‘L* or *-L’ followed by a
disjunction of variables (negated or un-negated). It should be
noted, however, that this form cannot be used as a general
normalization procedure for S5 because only formulae of the form
‘Lta’ and not all formulae are so reducible. G.F.Schumm has
observed (see SCHUMM 1975) that a slight modification of
Wajsberg’s original form could do the normalization job. Namely,
each formula is reducible in S5 to another conjunctive normal
form where each disjunct consist of either ‘L’ or *-L’ followed
by a disjunction of variable or a negated variable.

Notice that Wajsberg’s sequence P(A), as constructed above,
appears to be a kind of the so called nowadays McKinsey-Tarski
topological Boolean algebras (see McKINSEY-TARSKI 1944) which are
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widely used to construct algebraic-type semantics for modal
logics.

An inspection of Wajsberg‘s proof also reveals that a for-
mula containing precisely n propositional variables is a theorem
of Lewis’s system S5 if and only if it becomes true in Wajsberg’s
sequence P(A), for every set A consisting of 2" elements. It
follows here from that implicit in Wajsberg’s proof is a
decidability procedure for S5.

At the end of the paper WAJSBERG 1933a the author observed
that the replacement of propositional variables: p,, p;, Pss -
by monadic formulae of predicate logic of one and the same
variable x: Pyx, Pyx, Pyx, ... and the replacement of the
connective ‘L’ by the universal quantifier ‘Y’ binding ‘x’ we can
get the (non-modal) monadic predicate logic in one individual
variable ‘x’. It should be added that similar relation between a
modal system and a system of predicate logic has since been found
also in respect to some other modal systems (see, for instance
THOMAS 1962).

xii. Papers on Predicate Logic

Unlike previous papers, the paper WAJSBERG 1933b concerns
the first order predicate logic. Let us call formula of predicate
logic k-true if and only if it is true in any of its k-element
models, and let us define a k-true formula, which is not
(k+1)-true, as exactly k-true. In WAIJSBERG 1933b the author
constructed an exactly k-true formula from which every k-true
formula is deducible,

(Axy) ViaFiX, > ViimexotFiXm
where the expression ‘Vi(B(x)’ abbreviates the disjunction
‘B(x,) v B(x,;) v ... v B(x,)’, and where ‘>’ stands for the
connective of implication. To see better the syntactic structure
of (Ax,) we give below three particular cases, for k=1, k=2,
and k = 3, respectively
(Ax;) (Fyx, 2 Fix, v Fix3) v (F,x, 2 F x;),
(Ax;) (Fix, > Fix, v Fixy v Fix,) v (Fx, o Fox, v Fox,) v (Fyx, o Fux,)
For reference see also WOLENSKI 1973,

The paper WAISBERG 1933-1934 also deals with predicate

logic. Applying Tarski’s notion of the degree of completeness of
a deductive system (see TARSKI 1930) Wajsberg provided in the
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paper a detailed proof that the degree of completeness, i.e., the
number of all maximal consistent extensions of the first order
logic is equal to the number of the continuum.

xiii. Wajsberg’s Criterion of Axiomatizability
of Finite Matrices

From Warsaw Wajsberg moved to Kowl in Volhynia where he
worked as a teacher to the end of June, 1933. Then he returned to
his native komZa where he continued his teaching career and where
the rest of his works were written.

The paper WAISBERG 1935 included author’s well-known result
concerning the conditions of axiomatizability of finite logical
matrices, including FEukasiewicz’s matrices and the so called
finite intermediate logics among others. According to his theorem
if the formulae below:

CCpqCCqrCpr, OCqrCCpqCpr, CCpqCNgNp, CNqCCpgNp, CCqqCpp

are all satisfied in a finite logical matrix, then the matrix
must be axiomatizable. The theorem, with formula CCqrCpp repla-
cing formula CCqqCpp, was stated as Wajsberg’s theorem without
proof in PFUKASIEWICZ-TARSKI 1930, i.e., as early as in 1930.
Wajsberg’s own proof of this theorem, included in his paper, is
lengthy and rather difficult to comprehend. A detailed expasition
of his proof, with only small changes in notation, can be found
in ACKERMANN 1971. See also SZCZECH 1973.

xiv. General Approach to Logical Matrices

The general notion of logical matrix was introduced by
Tarski (see EUKASIEWICZ-TARSKI 1930). The paper WAIJSBERG 1936,
written in 1934 and published two years later, was conceived as a
contribution to the study of logical matrices. In this rather
technical paper Wajsberg made an effort to classify logical
matrices into types (distinguished in the paper are various
special types of matrices such as congruence matrices; linear
congruence matrices and sum-matrices as their special case;
infinite linear matrices; and conditional matrices along with
interval matrices as a special case of the Ilatter) He also
described some systematic methods for deciding which formulae
built up of implication and negation are satistied in which
matrices of a given type. For reference see also SUCHON 1973. It
is rather striking that the discussed Wajsberg’s paper has
attracted almost no attention from the subsequent researches in
the field. In particular, in Los's monograph LOS 1948 Wajsberg’s
paper is not even mentioned. Neither is it referred to in
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J. Kalicki’s works on logical matrices (see, for instance,
ZYCGMUNT 1981).

xv. Separability Property of Intuitionistic Connectives

In WAJSBERG 1938a the separability theorem for a system of
intuitionistic propositional logic of axiomatic type was esta-
blished to the effect that no intuitionistic theorem, from which
any one of the four connectives:

(%) - (negation), > (implication), A (conjunction), v (disjunction)

is absent, requires for its proof any axiom in which the con-
nective is present.

Wajsberg also added a number of interesting results con-
cerning definability of propositional connectives to the effect
that none of the mentioned in (%) can be expressed in intu-
itionistic logic in terms of the remaining three, the result
which was also arrived at, independently, in a paper by J.C.C.
McKinsey published one year later (see McKINSEY 1939).

In connection with the separability problem it may be
worthwhile recalling that on A.Church’s suspicion (see his
errata to CHURCH 1956, footnote 211) Wajsberg’s proof were to
contain an error difficult to correct. Without further discussion
of the nature of the alleged error Church seemed to suggest that
the result should be, therefore, credited to H.B.Curry whose
paper CURRY 1939, solving independently, the separability problem
by a Gentzen’s sequents’ technique, appeared one year later. In
his monograph CURRY 1963 the author confessed that though he had
never examined Wajsberg’s proof, he trusted others in considering
it erroneous. The suspicion of error has since been repeated by
many, among others, by A.Horn who provided the first
modern-style  algebraic proof of  separability  property of
intuitionistic logic (see HORN 1962). Of the papers which have
attempted a detailed reconstruction of Wajsberg’s argument two
are in order, KABZINSKI-POREBSKA 1975, and BEZHANISHVILI 1981. In
the first paper it is shown that some of Wajsberg’s preparatory
lemmas admit, in fact slight strengthening which then implies the
separability property without complications. In the second paper
Wajsberg’s Definition 2, #8 of an n-order thesis, claimed to be
the source of the alleged error, was changed and so was the proof
of Wajsberg’s Theorem 14, #8. For reference see also KABZINSKI
1973b.

The formulation and the solution of the separability problem
for intuitionistic logic did not come as a surprise. It was well
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motivated by the parallel investigations into the axiomatization
of various fragments of the expressively complete ordinary,
two-valued propositional logic. The latter can be viewed an
investigations into the separation of properties of various
classical connectives.

xvi. Miscellany on Propositional Logic

In WAJSBERG 1937 and 1938b the author included a rich crop
of various ‘incidental’ results and remarks on different axiom
systems of classical propositional logic and its fragments. Some
of them come from his unpublished master’s thesis. Various axiom
systems for pure implication are listed in WAJSBERG 1937, #1 and
#6, and in WAJSBERG 1938b, #1; axiom systems for Implication and
falsum are discussed in WAISBERG 1937, #9, and in WAJSBERC 1938b,
#2, paper WAJSBERG 1938, #2 also contains various axioms for
implication and negation; paper WAJSBERG 1937, #7 is devoted to
axiom systems for equivalence. The completeness property of each
of the systems referred to above was established by syntactic
means, i.e., by deducing from each of them another axiom system,
already known to be complete. Paragraph 2 of WAJSBERG 1937
discussed the independence property of various axiom systems. For
reference see also STEPIEN 1973.

Paragraph 4 of paper WAJSBERG 1937, entitled "General Scheme
of a Completeness Proof for the C-Pure”, contains a schematic
description of Wajsberg’s method of proof of the completeness
property for the propositional logic based on implication as the
only primitive connective. To solve the completeness problem for
the three-valued logic of Lukasiewicz as well as for some other
many-valued logics, Wajsberg had to work out an original
completeness argument. Later he adjusted the argument to provide
a new proof of the completeness theorem for the two-valued logic
of pure implication (see WAJSBERG 1937). It should be mentioned
that the first proof of the completeness theorem for pure
implication was found by Tarski but it was not published by the
author (see EUKASIEWICZ-TARSKI 1930, and TARSKI 1934 -1935).

Wajsberg’s method can be characterized briefly as follows:

i. first one must prove that all tautologies built up of one
propositional  variable are formally deductible by the
axioms and rules of an axiomatic system under consideration
(a most laborious part of the completeness proof);oof);

ii. then, assuming that all tautologies built up of n different
variables each are formally deducible, one must prove that
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all tautologies built up of (n+1) different variables each
are also formally deducible in the axiomatic system (a
comparatively easy part of the completeness proof).

Wajsberg’s completeness argument has since been in frequent
use. In 1938 W.V. Quine followed the plan sketched in WAJSBERG
1937 to solve the completeness problem for the logic based on
implication and falsum as the only primitive connectives (see
QUINE 1938). In 1943 K. Schroeter provided a Wajsberg-type
completeness argument for the full classical logic based on all
usual connectives as primitives (see SCHROETER 1943). Wajsberg’s
method has often been used in Poland (see, for instance, SADOWSKI
1961, and SURMA 1973a). A detailed discussion of Wajsberg’s
method is also contained in the monograph ASSER 1959.

xvi. Closing Remark

Since the outbreak of the second world war there has been no
reliable information concerning Wajsberg’s fate. The only fact
known for certain is that he has perished prematurely and so all
his unpublished manuscripts have been lost.
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NOTES ON WAJSBERG’S PROOF OF THE SEPARATION THEOREM

In his well-known paper M. Wajsberg (1938) stated some im-
portant results on the intuitionistic propositional logic. But in
connection with Wajsberg’s proof of the Separation Theorem (which
was first formulated and proved by him), A.Church (1956) indica-
tes that this paper of Wajsberg’s contains an error which is dif-
ficult to correct (see the correction of footnote 211). Further
Church notes that the correct Gentzen-style proof of this theorem
for intuitionistic predicate logic was given by H.B. Curry
(1939) which was in print when Wajsberg’s paper appeared. After-
wards this proof was reproduced by S.C. Kleene (1952). Church
writes also that for Curry’s proof essential is the Gentzen’s Cut
Theorem but not the use of sequents which can be eliminated.
Therefore the Cut Theorem can be applied in a suitable form to
Hilbert type formulations (see H.B.Curry (1939) and K. Schiitte
(1950)). Concerning Wajsberg’s proof of the Separation Theorem
Curry (1963) writes that he has never examined this proof, but
judging by Bernays and an errata sheet to the book of Church
(1956) (see footnote 211), the proof contains an error (p.250).
In early reviews (e.g., Heyting (1939), Rosser (1938)) the error
of Wajsberg (1938) is not mentioned and in the preface to
Wajsberg (1977) St. Surma refers to the same important informa-
tion of Church. Repeating the same indication A.Horn (1962)
gives the algebraic proof of the Separation Theorem for the intu-
itionistic  propositional calculus. J. Kabziniski and M. Porgbska
(1974) give its proof by the Wajsberg’s method without indicating
the error in Wajsberg’s initial proof. They write that this error
is not indicated in the literature and they think that all the
objections to the Wajsberg’s proof of separability are caused by
his oversights rather than error and that the arguments presented
by Wajsberg for establishing some preliminary results prove in
fact slightly strengthened formulations of these results allowing
to obtain the separability without any complications (see p.31).
A. Tsitkin (1979) tried to find and correct all the errors. He
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thought that when stating the fact of separability Wajsberg
(1938) erred in case 3 of the proof of Theorem 2 (§11). He also
indicated an error in Wajsberg’s proof of identity of the sets of
all theses and all consequences of conjunction-free axioms,
namely, in the proof of Theorem 14 (§8). Although Wajsberg’s
proof of the separability is independent of this theorem, some
other interesting results of his depend on it. Tsitkin proposed
the correction of the proof of Theorem 14 by introducing an
additional parameter of induction and by strengthening the for-
mulations of Wajsberg’s Theorems 10 and 11 (§8).

The aim of the present paper, which mainly gives an account
of the author’s former results (see Literature), is also a cor-
rection of the same Wajsberg’s work.

For his investigations Wajsberg chooses the formulation W of
the Miinster School axiom system of the intuitionistic pro-
positional calculus modified by him. Formulae of W are called
propositions and are presented in the symbolic notation of
tukasiewicz. We will use the usual notation.

Formulae are constructed from propositional variables p, q,
r,s (with or without indices) and a propositional constant 0
(which means “false”) by means of the connectives 2, &, v (impli-
cation, conjunction and disjunction). Propositional variables and
the constant are called propositional signs. As metavariables for
them are used a,b,c,d and for formulae - a,p,y,d,c (with
or without indices). Capital Latin letters denote sets of formu-
lae and i, j, k, 1, m, n, u - natural numbers (including zero).

(ay...a, > p) is the abbreviation for formula
(ay @ (@ 2 ...2 (g > B)...))

When k = 0, this expression means the same as g. Each formula a
can be uniquely presented in the form (a,...a, 2 g), k > 0, where
> is not a principal sign of p. « .., o, are called thes parts
of a, and p is called the end of a. The length of a formukda a is
equal to the number of occurrences of the propositionall signs in
a (every propositional sign of a is counted as many thmes as it
actually occurs in a).

The consequences of the set of formulae. X are called
X-consequences or X-derivable formulase. o and” p are called
X-equivalent if ((a > p)&(p> a)) is X-derivable. Two formulae
should be called deductively X-equivalent if after adding one of
them to X, the other is X-derivable.
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For each logical sign (connective and the constant) the
calculus W contains corresponding groups of axioms:

2!

(p > (@ > p,

N

(p2(@g>rm)>Up>q)>((p>r)
(p & q) > p),

(p & q) > q),

po>q > Up>r1)>(p>(qg& M
(po>(pv g,

(gq2>((pvaq),
(po>n>WUg>r)>Wpv g >
0: 1. (0> p

W N =Wy

Rules of inference are: the rule of substitution for
propositional variables and the rule of modus ponens.

P, V and U will denote the systems of O-free, &-free and
v-1ree axioms respectively.

SEPARATION THEOREM (Theorem 6, Wajsberg (1938), §11).

Each consequence a of W is derivable from the group of
axioms for implication together with only those groups of axioms
which contain logical signs actually appearing in a other than
implication.

The plan of Wajsberg’s proof is the following: for every J
(J = & or v or 0), Wajsberg gives the method by means of which to
each formula a a formula g can be assigned (when J =&, then
g= &Pu where all p, are &-free) in such a way that if a is
J- free, then a =p and, a is W-consequence iff p (accordingly
each p,) is derivable from the J-free axioms of W.

When J = 0, g is given according to the following:

DEFINITION OF O-REDUCT (Definition 1, Wajsberg (1938), §7).

Let by, ..,b, be all different variables of a and «'
results from replacing every occurence of the constant 0 in « by
a variable a. We say that p is the reduct of a with respect to a
(p=RNa) iff p has the form ((a>b)..(a>b,)>a") when
0 occurs in a, or p=a otherwise. (The examples 1 -3 of §7
confirm that this definition coincides with that of Wajsberg).



Notes on Wajsberg’s Proof of the Separation Theorem 119

Proving the fact if & is a W-consequence, then each reduct
of a with respect to any variable is P-derivable (Theorem 2, §7
in Wajsberg (1938)), Wajsberg errs in one point: in case 3, when
RAp > y) and RYp) are P-derivable, it can be proved that
(@a>b)..@a>b)>y") 1is also P-derivable, where b, rep-
resents all different variables of (g >y) and a is a fixed one
which does not occur in y. But when g contains 0, y is O-free and
more than one variable occurs in it, from the formula
(t@a>b)..@>b,)2>y") it is impossible to obtain y =RXAy)
by the Wajsberg’s substitution (a instead of those b, which
do not occur in y). However, we can obtain it by the substitu-
tion (|§|b‘ instead of &) wused for this case in Kabzinski,
Porgbska (1974), lemma O, possibility (iii) (cf. Wajsberg’s note
2, §7). The same authors require associating with each
W-consequence the first (with respect to any well-ordering)
W-derivation and replacing each occurence of the constant 0 in
every reduct of W-consequence by a fixed variable not occurring
in that W-derivation. But the requirement is not necessary, as
Wajsberg’s Theorem 2 of §7 holds for each O-reduct of a formula
with respect to any wvariable. In fact if y and (6 > ¢€) are
P-consequence, where y is a variant of & (in Church’s (1956)
sense, p.86), then & and therefore € are P-consequences too.

Tsitkin  (1979) proposed also a certain reformulation of
Theorem 2 of §11 without changing Wajsberg’s initial proof of
Theorem 2 of §7. But actually the correction of the first is
superfluous when the latter holds. Wajsberg proves Theorem 2 of
§11 by induction on modus ponens rule. Substitutions are done in
axioms only, and the modus ponens rule is used for formulae
(py > @) and ¢, which satisfy the following condition: if ¢, is
O-free, the same holds for ¢,. This requirement does not limit
the generality of reasoning since if O occurs in ¢,, but does not
occur in ¢, we can eliminate it from ¢, according to Theorem 2
of §7. Thus each v-reduct of W-consequence is U-derivable and so
forth.

Wajsberg’s (1938) proof of the Separation Theorem gives the
original method by means of which every given W-derivation of a,
having no separation property, can be transformed into the
derivation of a, having this property. But it implicitly contains
also the method of searching for W-derivations with separation
property, founded on Fundamental Theorem of §8 and Theorem 3 of
§6. This searching method involves idea of another, Gentzen-style
proof of separability for the intuitionistic propositional logic,
at least so far as the idea of Curry’s proof of separability, by
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his own evidence, was involved in Gentzen’s (1934) Main Theorem.
However, Wajsberg did not realize that idea when chose his plan
of proving separability without the use of Fundamental Theorem
of §8.

From above mentioned Theorem 3 of §6 follows that to each
formula a can be assigned in standard way a finite set of &-free
formulae, such that a is W-consequence iff the elements of this
set are V-consequences. Therefore, in Wajsberg (1938) the
decision problem is solved for calculus V (see Theorem 1, §9, by
proving which Wajsberg describes a decision procedure which is
different from that one of Gentzen (1934).

A formula of the form (a,..a, > a), where a is a propo-
sitional sign (k > 0), is called modified if each of its part q
(1<€i<k) is either v-free, or has the form (p,..p2pvVvY)
where 1>0 and all p; (1€ j€1) are v-free, or has the form
(Bvy>268) where g, vy and 6 are v-free. The parts of the last
kind can be omitted, as by means of V-equivalent transformations
such a part can be replaced by two new parts (p > 4) and (y > 4).

It should be noted that using the methods of the proof of
Wajsberg’s (1938) Theorem 1 (§4) we can easily state that each
formula (in particular, each &-free formula) is V-deductively
equivalent to a certain modified formula.

One of the main Wajsberg’s (1938) concepts is the notion of
a thesis introduced as follows.

DEFINITION 1 (Wajsberg (1938), §8).

a is a thesis of the first order iff a has the form
(agp.ay 2 (b2 (p...p,2a)) where b=a o b=0 (k120
The part b is called the proof part of a.

DEFINITION 2 (Wajsberg (1938), §8).
a fs a thesis of the order n (n>1) iff n is the smallest
natural number such that at least one of the cases I-III holds:

I. a has the form (a;..a,2>p), k>0 and the following
three conditions are satisfied:

(a) p is a propositional sign or disjunction of formulae;

(b) for certain m (1 €«m< k) a, has the form (p,..5, 2 7)),
1>0, where 1° if p is propositional sign then y=p or y =0,
and 2° if p is a disjunction of formulae, then y is also a
disjunction;
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(c) for every i (1 € i € 1) formulae

(1) (@ 0. Ay @ By oo By 2 ¥) D (Apyy - Ay 2 BY))
and the formula
(2) (ay .. Ay 2 (¥ 2 (Ggyy oo Oy 2 BI))

are theses of order lower than n.

II. a has the form (a,..a, 2y v ) where k>0 and one of
the formulae

3) @y ...ay @ 7)
or
(4) (a; .0 2 68)

is a thesis of order (n - 1).

II. « has the form (a..a,, 2y v 8) 2 (ay,..ox 2> p))
and both the formulae

(5) (ay...ayy 3 (¥ 3 (0 ... ax > p)))
and
(6) (@) ... ayy 2 (6 3 (A ... g 2 pN).

are theses of order lower than n

DEFINITION 3 (Wajsberg (1938), §8).

a) If for a and a certain n holds the case I of Definition
2, then the part a, is called a proof part of a and the formulae
(1i) and (2) are called proof theses of a.

b) If for a and a certain n holds the case Il of Definition
2, then that one of the formulae (3) and (4) which is a thesis of
the order (n - 1), is called a proof thesis of a.

c) If for a and a certain n holds the case Il of Definition
2, then the part (y v §) is called the proof part of a and the
formulae (5) and (6) are called proof theses of a.

DEFINITION 4 (Wajsberg (1938), §8).
a is a thesis iff for certain positive natural number n a is
a thesis of the order n.

A formula a is said to be T-decidable if for a we can decide
in a finite number of steps whether a is or is not a thesis.
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FUNDAMENTAL THEOREM (Wajsberg (1938), §8).
The set of all theses is identical with the set of all
V-derivable formulae.

Wajsberg first proves that each thesis is V-derivable (Theo-
rem 1, §8). To prove the converse statement, that each V-deri-
vable formula is a thesis, he states that the result of any
substitution in every axiom of V is a thesis (Theorem 8 of §8),
and then shows that if (a > g) and a are theses, then p is also a
thesis (Theorem 15 of §8). Wajsberg uses this Fundamental Theorem
also for providing the decidability of calculus V. In §9 namely,
he shows that each modified formula is T-derivable and, as every
&-free formula is V-deductively equivalent to a certain modified
formula, from the Fundamental Theorem follows the decidability
of V.

But the counter example below shows that in fact the set of
theses which satisty the above definition of Wajsberg is smaller
than the set of V-derivable formulae. The cause of this is an
error, which was committed by Wajsberg while formulating the item
(b) in case | of the above Definition 2. Actually, as is easily
seen, the formula

(7) ((po2(g>r)>(p> (g >8> Ur>s)>s8))

is V-derivable, but with regard to the definition of Wajsberg it
is not a thesis (note that (7) is a modified formula). In fact,
(7) cannot be a thesis of the first order. Then if (7) is a
thesis, its order is greater than 1. Therefore, (7) must satisfy
one of the cases of Definition 2. (7) does not satisty case Il
because it ends with a propositional sign, neither does it
satisfy case Ill because no part of it has the form (y v 4).
Therefore, if the formula (7) is a thesis, it must satisfy
case I. The condition (a) is fulfilled, as the end of (7) is
the propositional sign s. Further, (7) has four parts. According
to the item 1° of condition (b) the end of a proof part of (7)
must be identical with the propositional variable s or the
constant 0. Therefore, a proof part of (7) can be only its
third or fourth part: (@>s) or (r>s) In the first case,
according to condition (c), proof theses of (7) must be the
formulae:

(8) (po(@vi)o>(p>dg>s)>Ur>s)>qgl)

and ((p>(@vr)o(p>a(s>Ur>s8)>s)). The latter actu-
ally is a thesis of the first order. But (8) is not a thesis,
according to the item 1° of the condition (b), because all the
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ends of the implicational parts of (8) are distinct from q and O.
Thus, (q >s) cannot be a proof part of (7). Similarly, we are
convinced that (r >s) also cannot be a proof part of (7). But
the end of the first part of (7) is a disjunction of the
propositional variables q and r, and again according to the item
1° of the condition (b) (p>(q vr)) cannot be a proof part of
.

It is not difficult to point to many other similar and even
more simple examples. The V-derivable formula ((p>(qv q) >
>(p>q)), for example, is not a thesis as its first part also
does not satisfy the item 1°,

The fact that the course of Wajsberg’s reasoning has not
been misrepresented above can be seen when considering the
correspondingly erroneous passage in his proof of Theorem 1
of §9 and his example 3 of §9. "As a modified proposition, a
should end in a propositional sign, and, therefore, is of the
type (a,...ay, 2 a) (k=12,.). The proof part of a should end
in zero or a (cf. Def. 2). If no part of a ends in such a way,
then a is not a thesis” (p.86 - 87; cf. Wajsberg (1977), p.160).
This is confirmed also by the example 3 of §9 in which, to state
that the modified formula

9 ((r >2p)>s8)>WUlr>qg)as)>Ur>(pvq)>s)

is not a thesis, Wajsberg verifies only its first two parts
(which end with a propositional sign).

In the formulation of the condition (b) in case 1 of
Definition 2, Wajsberg does not take into account that the end
of implicational proof part can be a disjunction of formulae
even when the given formula is ended with a propositional
sign.

The Fundamental Theorem of §8 will be valid, when instead of
Wajsberg’s Definition 2, we accept the Definition 2' in which
the item 1° of the condition (b) of case 1 is transformed as
follows:

1° if p is a propositional sign, then y =p or y =0 or y is
a disjunction of formulae.

Actually, in Wajsberg’s proof of the statement that each
thesis is V-derivable, the items 1° and 2° of the condition (b)
are not used. Therefore, this statement holds also for theses in
the sense of Definition 2'. As to the converse statement, its
proof requires the following
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CUT THEOREM (Theorem 14, Wajsberg (1938), §8; Fundamental
Lemma, Tsitkin (1979)).
If a thesis a has the form

(@ ayy 2 (6 2 (ap...o02p)), j=12,..,k
and the formula
(10) (@) oo gy 3 (Apyy oo Oy 2 8))
is also a thesis, then the formula
(11) (@ ... Ay 2 (Agy oo Oy 2 P))

is a thesis.

Wajsberg proves this statement by induction on the order n
and the length 1 of a. But formulating explicitly the induction
hypothesis, Tsitkin (1979) indicates that it is not sufficient to
prove the Cut Theorem. He reconstructs Wajsberg’s proof of
Theorem 14 introducing the third additional parameter of
induction on the length of the cut part § of a. Tsitkin modifies
Wajsberg’s notion of a thesis, but he repeats Wajsberg’s error
(see, the conditions of rule R,, p.244). This leads to the error
in case Ill.a.1) of the reconstructed proof of Theorem 14 (as
well as in corresponding case of the Wajsberg’s initial proof).

In fact, in that case a has the form
(@) e &gy @ (8 2 (agy ... ax > p)))

and is a thesis according to case Il of Definition 2. & is its
proof part and, therefore, it is a disjunction of formulae. Thus,
(10) is a thesis of order higher than 1 and one of the cases
I - 1l of Definition 2 occurs.

Suppose that (10) is a thesis according to the case I.
Without limiting the generality of reasoning we can assume that
a, is its proof part. Then «a; has the form (p...p, 2 V).
According to item 2° of the case I (b) of Definition 2, y must be
a disjunction as § is a disjunction. But the end p of a may be a
propositional sign.

The proof theses of (10) have the form
(121) By ... P 2 ¥) 2 (Ay ... Q5 y 2 (Apy .oy 2 £)), 1=1,..,m
and

(13) (y 2 (0 . gy 2 (g oo @y 2 6N
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Now through the m-tuple application of strengthened Theorem
10 (cf. Wajsberg’s §8 and Tsitkin’s Lemma 2'. If in a thesis a we
replace the part of the form (§ >¢) by ¢ we again obtain a
thesis the order of which is not greater than the order of a) we
obtain from « the thesis

(14) (r @ (@z .. &gy 2 (6 2 (@ ... ax 2 p))

which is shorter than a. Therefore, by induction hypothesis from
(14) and (13) follows that the formula

(15) (y 2 (6 ... ayy 2 (ag ... xy > p))

is a thesis. But in order to state that (11) is also a thesis in
a general case we have no right to apply Definition 2 to (12i)
and (15) because of item 1° of the case I, (b) (as y is a dis-
junction of formulae and p may be a propositional sign). However,
it we accept Definition 2' instead of Definition 2, the proof of
this case will be obtained directly from the transformed item 1°.

REMARK 1.

In the reconstructed proof of Theorem 14 the case I(a) must
be considered according to Wajsberg’s plan. Because in this case
the induction hypothesis (for uniqueness of presentation of
formulae in the form (a,..ay > p) where > is not a principal
sign of p) must be applied not to the pair of theses

(@) . &gy 3 (Qgy oo ay D (By 2 (By .. By 2 ¥
and
(16) (@) o ayy 3 (@gy ... ay 2 py)),

as it is done in Tsitkin (1979), but to the first of these
formulae and to the formula
(@ .. gy 2 (agyy oo ay 2 (py . By 2 By,

as it is done in Wajsberg, where the last formula is obtained
from (16) according to the strengthened Theorem 12 (cf. Wajsberg
(1938), §8). If a is a thesis, then (y,.y,2a), uz1, is also
a thesis the order of which is not greater then the order of a).

As it was shown above, by Definition 2' a proof part of the
formula (7) may also be its first part (p>(qvr). In this
case the proof theses of (7) must be the formulae

(p>2(qvr)o(p>(q>s > «Ur>s >pH,
which indeed is a thesis of the order 1, and
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(16) (g vr)y>(po>(q>s8)2 U > 8 2 s))
which by case Il of Definition 2' is a thesis if both formulae

(@ >(p2(g >8> (r >s)> 8N
and
(r>o(p> g >8> Ur>s)>sN

are theses of the lower order. But they indeed are theses of the
order 2. (q>s) is the proof part of the first formula and
(r>s) is the proof part of the second one. Therefore, the
formula (17) is a thesis of the order 3 and (7) is a thesis of
the order 4.

REMARK 2.

In Bezhanishvili (1981) there are proposed also other alter-
native corrections of Definition 2 and proofs of theorems
dependent on it. For example, the Fundamental Theorem of §8 will
be also valid, if we accept Definition 2" which is obtained from
the initial one by the omission of the items 1° and 2° of the
case I(b).

It must be emphasized that at the end of §8 of Wajsberg
(1938) gives another (this time correct) definition of a thesis
of the order n (see Definitions 1** and 2*¥), but when formula-
ting theorems and proving them he bases only on the above
mentioned incorrect Definition 2. Further, if we omit from
Definition 2 the conditions concerning the formulae containing
the disjunction sign, we obtain a correct definition of a thesis
of the order n for v-free formulae (see Definition 2%, §8). If we
omit the phrase "or 0" from the latter, we obtain also correct
definition for theses which contain only an implication sign.

Now consider the following

DECISION THEOREM (Theorem 1, Wajsberg (1938), §9).
Each modified formula is T-decidable.

Incorrectness in the proof of this theorem, as it was
indicated above, is connected with the use of the item 1° of
Definition 2 (case I, condition (b)) and it can be removed quite
simply. In particular, when a is a thesis according to the case I
of Definition 2°', it ends with a propositional sign as a modified
formula. Therefore, the end of its proof part must coincide with
the end of a or must be the constant O or a disjunction of
formulae. In the third case, which Wajsberg does not take into
account, the proof thesis of the form (2), as a shorter formula
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than «, is T-decidable according to the induction hypothesis:
Wajsberg proves this theorem by induction on increasing length of
a and (in case of equal length) on decreasing number of the parts
of a. All the other cases in Wajsberg’s proof of this theorem
remain valid.

In accordance with this, in his example 3 (§9) Wajsberg
(1938) does not bring to the end the solution of the question,
that the formula (8) is not a thesis, because the proof part of
(9) would have been its third part which ends with a disjunction.

REMARK 3.

Depending on acceptance of one of the alternative defi-
nitions of a thesis, we must correspondingly transform Wajsberg’s
decision procedure. Bezhanishvili (1983) considered the method
which corresponds to Definition 2'' (see Remark 2).

Wajsberg (1938) also gives the first proof of the indepen-
dence of logical signs of the intuitionistic propositional logic
(see Theorems 1 -6 of §10). In the proof of Theorem 2 of §10
Wajsberg states that in a certain case a certain ¢ cannot be a
propositional sign because (p>q) > ¢ cannot be a thesis. This
assertion requires an additional explanation if we recall that
Wajsberg’s decision method is erroneous: the assertion holds
because (p > q) > ¢ does not contain a disjunction sign.

In connection with this result of Wajsberg McKinsey noticed
that since writing his work of 1939 he has discovered that the
same problem was solved by M. Wajsberg in 1938. Wajsberg’s method
of proving this result, writes further McKinsey, is quite unlike
his, as it involves application of a decision method for the
Heyting calculus (see McKinsey (1939), p. 158). Kabzinski (1973)
does not mention either this peculiarity of Wajsberg’s proof, or
the fact that Wajsberg’s decision method needs a correction.
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LOGICAL ANALYSIS OF THOMISM
The Polish Programme that Originated in 1930’s

1. Introduction

In the thirties Poland was dominated by a style in philo-
sophy related in some respects to the Vienna Circle, and called
by Kazimierz Ajdukiewicz the Polish Antiirrationalism. This was
distinguished by three main  characteristics: 1°  antiirra-
tionalism, 1i.e. the decision to accept only fully verifiable
theses which can be demonstrated and verified; 2° the postulate
of linguistic precision and exactness; 3° inclusion of logistical
conceptual system, together with marked influence of symbolic
logic. While, however, the Vienna Circle opted for the death of
metaphysics and theology, the Polish philosophers were opposed to
that, and postulated the revival of these disciplines by the
means of improvement of linguistic clarity together with the
application of formal logic.

This new way of philosophical thinking originated in three
places: Lvov, Warsaw and Cracow. The precursors of this philo-
sophy, later linked with the tradition of symbolic logic, were:
Kazimierz Twardowski (1866 - 1938) in Lvov, a pupil of Franz
Brentano, Wiadyslaw Weryho (1868 - 1916) in Warsaw, and Wiadyslaw
Heinrich (1869 - 1957) in Cracow, a pupil of Richard Avenarius.
The centres produced such illustrious philosophers as: Jan
bukasiewicz (1878 - 1956), Leon Chwistek (1884 - 1944), Stanistaw
Lesniewski (1886 - 1939), Alfred Tarski (1902 - 1983), Kazimierz
Ajdukiewicz (1890 - 1963), and Tadeusz Kotarbirfiski (1886 - 1981).
Rev. Jan Salamucha (1903 - 1944) was a pupil of Jan Lukasiewicz,
father Jozef Bochefiski (b. 1902), graduate of the universities of
Lvov and Poznan, and Jan Franciszek Drewnowski (1896 - 1978), who
was taught by Tadeusz Kotarbifiski, were the main figures who
applied the new symbolic logic also to Thomism.

128
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2. A Programme of the Improvement of Thomism by Means
of Symbolic Logic

In the climate of interest in the precise language of
science and under the pressure of great discoveries in mathe-
matical logic, a new programme was developing in Poland. It was
the first to make use of symbolic logic in order to attain
maximum precision in Thomist philosophy and theology. As far back
as 1934, Jan Franciszek Drewnowski advocated in the paper An
Outline of a Philosophical Programme (1934) , an improvement of
the language of classical philosophy and theology by means of
formal logic. He sketched this idea in definite form. However,
the programme wasn’t given it’s final form till the Third Polish
Conference of Philosophy (Cracow, 24 - 27 Sept. 1936). It was
then presented in the book Catholic Mind in Relation to Modern
Logic (A 1937)'.

Members of the Conference first decided unanimously that "a
follower of Christian philosophy cannot shut his eyes to the
development of formal logic” (Michalski (1937), p.10), and that
"the development of science can neither be reversed nor is it
allowed to reverse it, since the new intellectual tools cannot be
denied. The thrust of the logistic criticism cannot be avoided by
simply turning one’s back on it" (Salamucha (1937), p.152).
Although the utilization of new logic “"for the creation of a
general world view exceeds the capacity of one generation”
(Drewnowski (1937), p.50), it has to be remembered that “the
followers of a world view have at least three tasks to perform:
to formulate that view, to defend it against objections, and to
promote it. It is clear that we are far from accomplishing the
first, the accomplishment of the other two is, in consequence,
badly lacking” (Drewnowski (1937), p.52). Therefore, the
programme of the improvement of Thomism should start with the
improvement of formulation and with the improvement of precision.
J. Bocheniski  ((1937), p.30) reminded the members of the
Conference of the fact that "the Catholic thought has from the
very beginning been characterized by a tendency to attempt
maximum precision”. He explained "what we mean exactly by
"precision”: as far as words are concerned, they must be unequi-
vocal signs of simple things, features, experiences, etc.; they
are to be clearly defined in relation to those simple signs, and
in accordance with precisely stated rules. Where propositions are
concerned, they cannot be accepted till we know exactly what they
mean and why we assent to them. Sometimes we accept them as
evident. Sometimes on the basis of faith or proof. A proof should
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be based on clearly formulated and verified logical rules”
((A 1937), p.28). Thus conceived precision implies deduction,
"but in the field of scholastic philosophy there exist vast,
strictly deductive domains. Those, if they are to represent a
scientific value, must be transformed right away and developed by
means of new tools” (Salamucha (1937), p.48). Mathematical logic
doesn’t remove the intuition, to which a philosopher often
appeals, but - as J. bukasiewicz points out ((1937), p.18) - it
is necessary to enter philosophy with a logistic apparatus “in
order to verify, regulate and rationalize the achievements of
easily fallible intuition. Logistics  strengthens our  critical
faculty and reveals an overabundance of error in philosophical
speculation”. In such circumstances Rev. Piotr Chojnacki ((1937),
p.68) suggests: “"First of all, it would be necessary to specify
ontology as the essential philosophical discipline. | would con-
sider it advisable to proceed with its axiomatization, according
to the requirements of epistemology and modern logic”.

Maximum precision is to be obtained only by the means of
formalization. As far back as the Eighth International Conference
of Philosophy (Prague, 2 -7 Sept. 1934), Kazimierz Ajdukiewicz
(1934) distinguished two general conceptions of formalization:
the first was descriptive in relation to the natural language and
followed the phenomenological method, the second was arbitrary
and placed propositions among postulates. He claimed also that
"one might well expect more from the second procedure than from
the phenomenoclogical method which should, however, be attempted
just in case” (p.137). The members of the Cracow Conference, who
opted for the formalization of deductive areas of both Thomist
philosophy and theology, obviously intended only the phenome-
nological method. Ajdukiewicz’s distinction evolved in time into
two different formalization practices. For those who stuck to the
phenomenological method formalization remained a sort of trans-
lation of a natural language into a symbolic one, and care was
used to preserve the meaning of the translated texts. For the
others, the formalization was an arbitrary procedure consisting
in creating formalized theories for the use of given concepts or
models, where the solution of the problems posed in the first
place was the only desideratum. The texts or opinions cons-
tituted, in that case, nothing but inspiration, while, if there
was translation, it was precisely reverse, from the symbolic
language of a formalized theory into the natural one.

Jan Salamucha wrote: "Scholastics generally admit that
philosophy is mostly a deductive science. Various simple deduc-
tions can be actually expressed in the syllogistic form. But in
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case of more complicated proofs, if one wants to formalize them
precisely in accordance with the schemes taken from a textbook,
it is necessary to do violence to the arguments, or to alter the
schemes to such an extent that the incommensurability of the
logical apparatus with the substantive material becomes obvious”
((A 1937), p.39). Therefore Salamucha maintains that it is neces-
sary not only "to opt for the application of logistics to philo-
sophy in order to preserve the traditional postulate of maximal
precision of tools” ((A 1937), p.47), but "perhaps it will be
necessary to develop the logic even more for the use of
philosophy” ((A 1937), p.47). Rev. Konstanty Michalski claimed:
“l, for my part, think that from the three parts of mathematical
logic, the third, that is to say, the theory of relations, provi-
des the most incentive for philosophic work” ((A 1937), p.10). He
shared here the earlier view of Rev. Stanislaw Kobylecki (1934).
The latter suggested that "all knowledge, and, in the first
place, all scientific and philosophical knowledge of the world,
depends in fact on two conditions: on relating the things that
constitute the world to each other and on ordering these
connections” (p.348), where "the idea of relation is the most
elementary, the most general and the most essential for both
philosophy and mathematical logic” (p.353).

It is of interest that the creators of the programme of the
improvement of Thomism by the means of symbolic logic, in the
heat of passionate and fervent discussions, faced with numerous
apparent problems advanced by their adversaries, were still aware
of some difficulties presented by their own programme. Rev.
P. Chojnacki warned: "Before the precise use of formal signs is
introduced, it is necessary to determine exactly what is to be
precisely stated, that is, it is necessary to determine exactly
the meaning and sense. Logistics will be helpful here, though it
won’t do everything, as it cannot replace semantics” ((A 1937),
p.67). Further, Michalski and Salamucha foresaw the inevitable
contact of formalization with the area of analogy. They thought
that “only the most precise formalization could protect us from
the deformation of Thomism by involuntary sliding into other
areas” (Salamucha (1937), p.147) and “block the way to a slide
into arbitrariness” (Michalski (1937), p.11).

As far back as the thirties there occurred the formaliza-
tion of two basic Thomist proofs, i.e. the proof of the existence
of God (1934) and the proof of the immortality of the soul
(1938).
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3. Formalization of the Thomist proof
of the immortality of the soul

Jézef Bochenski’s formalization of the proof of the immor-
tality of the soul, i.e. the formalization of St. Thomas Aquinas’
Summa Theologica I, 75, 6, is the only one so far attempted. It
appeared in the second appendix to the book Nove lezioni di
logica simbolica (Roma 1938, pp.147-155).

The essential part of Aquinas’ argument is in the form:
"every divisible being disintegrates per se or per accidens®. But
the human soul does not disintegrate per se or per accidens.
Therefore the human soul is an indivisible, that is to say, an
immortal being. Bocheriski says that the argument has its logical
form:

(p>@qv))é&~q& ~r = ~p.

Its detailed expansion, accompanied by reasoning the premises,
required formalisation in terms of predicate logic.

The formalisation begins with the introduction of 11 symbols
of extra-logical constants. There are 3 individual constants:

a =: the human soul, in suppositione simplici?,
s =: per se,
c =: per accidens;

and 8 extra-logical predicates (i.e. derived from outside logic):

Sx =: x is a substantial being (a substance),
Exy =: x exists in the way y does, where yé¢({s,c},
Dx =: x is a being subject to dissolution,
Bxy =: x disintegrates in the way y does, where ye¢{s,c},
Pxy =: y belongs to x per se,
Mxy =: x may exist apart from y,
Fx =: x is a pure form,
Ixy =: x is the existence of y.

Three kinds of numbering formulas are adopted: Roman
numerals indicate logical axioms, Arabic numerals indicate extra-
logical axioms and double Arabic numerals (e.g. 1.1,12,..)
indicate the main theorem and all the lemmata.
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The principal theorem states:

(1.3) ~Da. The human soul is not a divisible being (it is
immortal).

The thesis is proved from an extra-logical axiom (1) and two
lemmata (1.1 and 1.2).

1) Ax (Dx - (Bxs v Bxc)). Dupliciter enim aliquir corrum-
pitur. Uno modo per se, alio modo per accidens.

(1.1) ~Bas.
(1.2) ~Bac.
I 1= (1.1 » (1.2 > 1.3)), logical axiom.

One obtains theorem (1.3) from I, 1, 1.1, and 1.2 by means of the
rule of detachment.

At the beginning of the text Aquinas reasons in lemma 1.2
that the human soul is a substantial being, therefore, as such,
it is not a divisible being per accidens. Here is the
formalization of the argument:

(2) Ax (Sx = Exs),

3) Ax Ay (Exy = (Dx - Bxy)),
(4) Ax (Bxs - ~Bxc),

(5) Ax ((Sx - (Dx - ~Bxc)) - (Sx > ~Bxc)),
(6) Sa.

(2.1) Ax (Sx - (Dx - Bxs)),

(2.2) Ax (Sx = (Dx - ~Bxc)),
(2.3 Ax (Sx - ~Bxc).

11 2->(3 > 21),

1 4 > (21 > 2.2),

v 22 > (5 > 2.3),

\' 23 > (6 > 1.2).

Lemma (1.2) derives from logical axioms Il - IV by means of deta-
ching extra-logical axioms (2) - (6) and lemmata (2.1) - (2.3)
derived on the way.

The main idea of Aquinas’ proof of lemma (1.1), that the
human soul does not disintegrate per se is as follows: no pure
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form is a divisible being, for existence is proper to the form
per se. But the human soul is such a form, therefore it does not
disintegrate per se. Here is the formalization of the proof:

7 Ax Ay (Pxy - ~Mxy),

(8) Ax Ay (Fx = (lyx = Pxy)),

(9) Ax (Ay (lyx -+ ~Myx) - ~Bxs),
(10) Fa.

(3.1) Ax Ay (Fx = (lyx = ~Myx))
(3.2 Ax (Fx - ~Bxs)

A4 7 > (@B > 3.1)

Vil 3.1 > (9 = 3.2),

VIII 3.2 » (10 » 1.1).

If repeated detachment is used with respect to logical axioms
VI - VIII, extra-logical axioms 7 -10 and lemmata 3.1, 3.2,
derived on the way, lemma 1.1 is obtained as a conclusion.

Since logical axioms are valid a priori, the proof of the
immortality of the human soul, formalized by J. Bochenski, can be
seen as based on ten metaphysical propositions assumed without
proof, that is to say, axiomatically.

4. Formalized Thomist proofs of the existence of God

Where the formalized Thomist proofs of the existence of God
are concerned, we have to take into consideration the five “"ways”
of St. Thomas Aquinas, presented in his Summa Theologica (I, q.2)
and Summa contra Gentiles (I, 13). The following relations are
taken into account:

(1) xR,y =: x moves vy,

(2) xR,y =: x is an efficient cause of y,

(3) xR,y =: x is a reason for the existence of vy,

(4) xR,y =: x is no more perfect than y; or, x is less
perfect than y or equal to vy,

(5) xR,y =: x provides principles for intentional transfor-

mations of y.
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To express ourselves in a formalized language of the first
order, we assume that in its metalanguage there is a non-empty
universum U, as a range of variability of individual variables.
Set B of all real individual beings differs from the universum U.
Then for any relation R we have:

(6) DR ¢ {x: Vy xRy}, domain of relation R,
(7) D'R ¥ {y: Vx xRy}, counter-domain of R,
(8) FR 4 DR v D'R, field of relation R.

Now it is possible to show that in all formalizations of
Aquinas’ "ways" presented below, it is assumed implicitly that:

9 B # @& (where @ is the empty set),

(10) BcU and BcFR, i=1,2,..,5, i.e. the transcen-
dentality of the universe and of the field of relation
in question,

(11) RBcB, i=12..,5, ie. the image of B with
respect to the converse of R, is included in the set B;
or, B is closed with respect to R;; or, R, is real;, or,
the reality of the relation in question - the inhe-
ritance of real existence - is due to the converse of
the relation R>.

All the formalized Thomist proofs of the existence of God
deal with the problem of extreme elements in the respective
relations*. We are concerned with:

(a) the set of first elements of initial relation R (denoted as IR):
IR & {(xeFR: Ay (yeFR & x # y = xRy)},
or the set of last elements of R (marked by LR):

—

LR 4 [R;
(b) or at most a one-element set of initial elements of R (sym-
bolized by 1IR):
1R & {xeIR: Ay (yeIR - x = y)},
or at most a one-element set of last elements of R (denoted

by 1LR): _
ILR & 1IR;
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(c) or the set of minimal elements of R (marked by MinR):
MinR ¥ {xe¢FR: Ay (yRx =+ x = y)},
or the set of maximal elements of R (symbolized by MaxR):
MaxR € MinR;

(d) or the set of relatively initial elements of R (denoted as IR/y):
IR’y ¥ {xeMinR: x =y v xRy}, where
xRy &5 AX (xeX & RX ¢ X - yeRX), and
yeRX &% Vx (xeX & xRy),
or the set of relatively last elements of R (marked bty LR/y):
LR/y € IR/y.

The problems raised for the use of formalized theodicy can
be put together into the following groups of questions:
1°fori=1,235

a Iis,#ZorIR,”#@orLE,#ZorLE,‘”#Q?

b: Is 1R, # @ or 1R, # @ or ILR, # @ or 1R, * @ ?

Is MinR, # @ or MaxR, # @ ?

d: Is IR/y # @ or L§,/y # @ for any yeB?
2° for i = 4:

a: IsIR #@ or IRy, # @ or IR, # @ or IR, # @ ?

b: Is 1LR, # @ or 1LR,, # @ or 1R, # @ or R, * @ ?

¢ Is MaxR, » @ or MinR, # @ ?

a

All the formalized Thomist proofs of the existence of God
will be presented here in a metalanguage, that is to say, within
a kind of "applied” set theory. Llet’s assume further the follo-
wing indispensable set-theoretic notions:

(12) Reirr & Ax Ay (xRy = x # y),
where irr =: the set of irreflexive relations,

(13) Rerefl &5 Ax (xeFR - xRx),
where refl =: the set of reflexive relations,

(14) Reas &5 Ax Ay (xRy - ~yRx),

where as =: the set of asymmetrical relations,



Logical analysis of Thomism 137

(15) Reants &5 Ax Ay (xRy & yRx » x = y),
where ants =: the set of antysymmetrical relations,
(16) Retrans &% Ax Ay Az (xRy & yRz - xRz),
where trans =: the set of transitive relations,
(17) Recon &5 Ax Ay (x,y¢FR = (x =y v xRy v yRx)),
where con =: the set of connected relations,
(18) ord, ¢ irr n trans,
where ord, =: the set of strongly ordering relations,
(19) ord,, € refl n ants n trans,
where ord,, =: the set of weakly ordering relations,
(20) chain, ¥ ord, n con,
where chain, =: the set of strong chains (strongly linear
ordering relations),
21) chain,, € ord,, n con,
where chain, =: the set of weak chains (weakly linear orde-

ring relations),

(22) ReMQ &5
Ax Ay (x,yeFR - (x =y v xRy v yRx v Vz (zRx & zRy))),
where MQ =: the set of multiplicative quasi-half-lattices.

4.1 Formalized versions of the argument ex motu

[A] Rev. Jan Salamucha was the first to formalize in 1934
Aquinas’ argument ex motu of the existence of God, inserted in
Summa contra Gentiles (I, 13). J6zef Bochenski reviewed Salamu-
cha’s paper in 1935 and proposed some important modifications of
his formalization. William Bryar ((1951), pp.211-219) presented
his views on Salamucha’s formalization and Bochenski’s comments.
Salamucha’s paper was translated into English in 1958. A biogra-
phical note to this translation was written by Bolestaw Sobocinski.

Salamucha wrote in a tortuous style. Of his (numerous) as-
sumptions only the 9 following are significant in the proof:

(A1) R,etrans;
(A2) R, €con;
(A3) Ax (xeD'R, - Va Vb (aPx & bPx)),

where aPx =: a is a proper part of x. (A3) indicates that if
something is in motion, it consists of proper parts);
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(Ad) Ax (Va Vb (aPx & bPx) - ~xR;x).
If an object x comprises of two proper parts, a and b, it is
not true that object x makes itself move®;

(A5) D'R, ¢ C,
where x€¢C =: x is a body. If an object x is in motion, that
very object x is a body;

(A6) C n D'R, € D'H,
where tHx =: t is the measure of the continuity of the move-

ment of x. If a material object is in motion, a certain
segment of time is the measure of the continuity of that
movement;

(A7) Ax At (xeC & tHx - teFin),
where teFin =: t is a finite segment of time. According to
(A7), if a material object is in motion, the measure of the
continuity of the movement of that object is a finite seg-
ment of time;

(AB) Ax Ay At At, (xRyy & tHx & t,Hy =t = t,).
The measure of the continuity of the movement of a mover is
equal to the continuity of the movement of the object moved;

(A9) An infinite body, or even an infinite class of bodies which
seem to form a single body per continuationem or per conti-
guationem cannot be in motion in a finite segment of time.
Salamucha didn’t formalize the quoted assumption (A9).

In accordance with the assumptions, Salamucha first proves a
few lemmata:

L1. R,echain, & IR, » @ - IR,-D'R, * @.

This lemma can be considered as a particular instance of the
law of the calculus of relations:

AR (Rechain, & IR # @ » IR-D'R # 9.

In Summa contra Gentiles Aquinas provides three proofs of
the thesis omne quod movetur ab alio movetur, i.e.

Ay (yeD'R, = Vx (xRyy & x # y)).

Salamucha formalized the first proof basing on assumptions (A3)
and (A4). The second proof omitted, he formalized the third one.
But the thesis in question turns out to be insignificant to the
proof of the main theorem referring to the existence of the first
mover.
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Therefore, Salamucha demonstrates the following lemma separately:
L2. R,€irr.

Here is the proof of that lemma:

—

xRy, supp. (supposition of the proof)

2. yeD'R,, from the definition of D'R, and 1
3. VaVb (aPy & bPy), from (A3) and 2

4. ~yR,y, from (A4) and 3

5. x # vy, since 1 and 4.

From assumptions (A1) and (A2), and from lemma L2 follows the
lemma:

L3. R,€chain,.

The proof of the lemma referring to the non-occurrence of
the so-called regress into infinity in relation R, occupies a ma-
jor part of the argument:

14. DR,~-D'R, # O.

Apagogical suppositional proof of L4:

1. DR,-D'R, = @, s.a.p. (the supposition of the apagogical proof)
2. IR, = DR,-D'R,, from AR (Rechain, » IR = DR-D'R) and L3
3. IR, =6, from 1 and 2

4. TR > m,,_since AR (Rechain, & FR < #, - IR # @), L3, 3,
where X =: the cardinal number of the set X

FR, = D'R,, since AR (DR-D'R = @ -» FR = D'R) and 1

FR, ¢ C, from (A5) and 5

FR, ¢ D'H, from 5, 6 and (A6)

FR, ¢ H(Fin), from (A7), 6, 7, R(X) ¢ {y: Vx (x€X & xRy)}

Ax Ay (x,y€FR, = A, At, (x # y & t,Hx & t,Hy = t, = t,)),
from (A8), (A2)

© ® N o o

10. k ¥ the object being the mereologic sum of all elements of
the set D'R,

11. AaAx (aP*x & (aPx v a = x)),
where aP’x =: a is a non-proper part of x
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12. Aa (aP*x <> aeD'R)), from 11, 10

13. keD'R,, since kP*k (from 11, k = k) and 12.

14. keC, from (A5), 13

o€ ﬁ, where x =: the mereologic power of x

15. x
16. k = {a: aP°k} = D'R, = FR,, from 15, 12, 5
17. k > #,, from 16 and 4

18. keH(Fin), from 8, 13, 5

19. Ax At (X > Mg & tHx - ~teFin), ie. (A9)

20. Vx Vt (x > ®, & tHx & teFin), from 17, 18
contradiction: 19, 20.

Line 10 is undoubtedly the weakest item of the proof, where the
mereologic sum of all real beings is assumed as an individual
real being.

The last lemma and Salamucha’s main theorems follow simply
from the lemmata:

L5. IR, # @, since AR (Rechain, - IR=DR-D'R), L3, L4.
Th.l. IR,-D'R, # @, from L1, L2, L5.
Th.2. 1IR,-D'R, # @, since Th.1, AR (Rechain, - IR = 1IR), L3.

Salamucha’s formalization of the argument ex motu was rather
a loose translation of Aquinas’ text into symbolic language. Sa-
lamucha, as an author of the formalization, thought that he had
managed to demonstrate the formal correctness of Aquinas’ deduc-
tion or, in other words, its exemption from non sequitur errors.
But still, he correctly doubted whether the proof was convincing.
He was also wrong when he falsely assumed that the relations of
moving R, were connected and that they ordered their own field in
a linear fashion. He also misread Aquinas, attributing to him the
view that the relation was a chain.

(Bl Father J. Bochenski in his review (1935) opts for an
interpretation of Aquinas’ text, according to which the argument
ex motu does not prove exactly the existence of a primum movens
immobile but only the existence of movens immobile, i.e. the the-
sis: MinR, # @. Bocheniski, however, assumes also R,echain,. Hence
by the law AR (Reas n con - IR = MinR), we obtain IR, = MinR,..
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Bocheniski suggested also several important terminological
modifications of Salamucha’s symbolic language. Notably, he
introduced the notion of the triadic relation of motion:

Mxyz =: x moves y towards z.
The connection of notions R, and M is expressed by the definition:
(23) xRy &5 Vz Mxyz
Bocheniski presented the Thomist doctrine concerning relation
M, included in the thesis nihil enim movetur nisi secundum quod

est in potentia ad illud ad quod movetur, by the means of four
axioms:

(B1) Ay (yeD'R, = Vx Vz Mxyz);

(B2) Ax Ay Az (Mxyz - xAz),
where xAz =: x Is in act with respect to z;

(B3) Ax Ay Az Mxyz - yPz),
where yPz =: x is in potency in respect to z;

(B4) Ax Az (xPz -+ ~xAz).

{Cl1 A German philosopher, Johannes Bendiek (1956) was the
immediate continuator of Salamucha’s work. He didn’t so much for-
malize Aquinas, but rather presented three formalized proofs of
the existence of the first unmoved mover.

Bendiek accepts 7 assumptions in system | (among others
R, €chain,), but for the proof he uses only:

cn R,eirr n con,

together with the assumption of the absence of an regressus ad
infinitum:

(C2) ~Ax Vy (x # y & YR, X).

In accordance with the metalanguage compact: FR, = U, as-
sumption (C2) means that MinR, # @. Since AR (Recon -» MinR c IR),
thus MinR, c IR,, i.e. IR, n MinR, = MinR,, Since MinR, # @, thus
also IR, n MinR, # @, which is the final theorem of system I.

It is assumed in system [I that R,eas and IR, » &, hence by
the law AR (Reas - IR c 1IR) the theorem 1IR # @ is obtained.

Bendiek assumes in system III that 1° R,echain,, 2° R, # @,
3° D'R, ¢ D'S, where S =: causa sufficiens, and 4° D'R, n DS = @.
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Here is the proof of the theorem of that system:®

1. S#@, from 3° and 2°

2. AxAy Az (xSz -+ ~yR;x), from 4°

3. AxAyAz(xSz - (xRyy v x=vy)), from 2, 1°, FR, = U
4. VxVz xSz - Vx Ay (x # y - xR;y), from 3

5. IR, # @, from df.IR, 4, 1, FR, = U.

(D] The Italian Francesca Rivetti Barbo did a lot towards
the formalization of Aquinas’ text from Summa Theologica (I,
q.2,a.3) inclusive of the argument ex motu. She investigated the
problem in the papers (1960), (1962), (1966) and (1967). While in
the (1960) paper Barbo formalizes the whole of the "first way”,
in subsequent ones she limits formalization to the thesis omne
quod movetur ab alio movetur. With respect to the remaining proof
of the existence of an unmoved mover, she maintains that it can
be done only intuitively. Barbo’s parallel development of each of
the conceptual contents of the propositions, in relation to their
sense in the premises of every one of Aquinas’ "ways", makes for-
malization all but impossible in F. Rivetti’s opinion.

Barbo introduced many innovations with respect to the forma-
lization of the argument ex motu (1960). First of all she reje-
cted Salamucha’s, Bochenski’s and Bendiek’s idea that R,echain,,
opposing especially the assumption that R,econ. Adopting Bochern-
ski’s symbolic notation she yet formulated the problem of Thomist
deduction in a completely different way. She attempted to demon-
strate that Vx (IR,/x # 9).

In order to prove the thesis omne quod movetur ab alio
movetur Barbo assumes four axioms (where the meaning of the
symbols "A", "M", "P" is the same as for Bocheriski):

(D1) Ax Az (xGz - xPz),
where xGz =: x is in motion to z;

(D2) Nx Az (Vy Mxyz - xAz);

(D3) NAxAz (xPz - ~xPz);

(D4) Ax Az (xGz +— Vy Myxz).

It follows from the definition (23) and from the above axioms
that R,eirr. If it is assumed that for an x: xR;x, then by (D1),
(D2) and (D3) it would be valid that Vz (xAz & xPz), which con-
tradicts (D3).
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In order to prove the theorem of the existence of a relati-
vely first mover, Barbd uses three additional assumptions:

(D5) R,€trans;
(D6) Ax (xeD'R, > ~Ay (yR,,,x ~> yeD'R,);
(D7) D'R, # @.

Here is the proof of the theorem Vx (IR,/x # @)

—

R,cord,, since R,eirr and (D5)
Ripo
Ay (IRy/y = {xeMinR,: xR, ,y}), from df.IR/y and 2
Ax (x€D'R, = Vy (YR, x & ~y€D'R,)) from (D6)
Ax (xeD'R, = Vy (y¢FR~-D'R, & yR,,x)), from 4

Ax (xeD'R, = Vy (yeMinR, & yR, X)),
from 5, 2 and AR (Reirr » MinR = FR-D'R)

Ax (xeD'R, + IR/x # @), from 6, 3
Vx (IR/x # @), from 7 and (D7).

eirr, since AR (Retrans » R,, = R) and 1

S U

The above deduction is nothing but a simple transition "from
the general to the particular”. For axiom (D6) is strong enough
to assume that there exists a relatively first mover for each
moved object. While the conclusion only that there exists a rela-
tively first mover. But what the axiom assumes is evident neither
a priori nor a posteriori.

[E]l Ivo Thomas (1960) points out that assumption (D5) and
lines 1 -3 are idle in Barbd’s formalized proof. Assumption (D4)
is a mere definition of an extra-logical constant "G", and since
AR (R cR,) it s possible to reduce the assumption (D6) to the
following form: Ax (XeD'R;, - R {x}-D'R, # @). The proof should
stop at line 7 and, in consequence, assumption (D7) should be
eliminated.

However, it should be said in Barbd’s defernice, that her for~
malization was constructed with a different purpose than Thomas’.
While Barbo formalized Aquinas’ specific text in order to demon-
strate its final correctness, Thomas tried to create a clear
formalized proof of the existence of a relatively first mover.

[F1 In 1975 Fr. Korneliusz Policki (Academy of Catholic
Theology in Warsaw), also constructed a formalized proof of the
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existence of the wunique primum movens immobile, without
formalizing any Thomist text. If one disregards Bowman L. Clar-
ke’s remark (in his book (1966)), vis & vis the applicability of
Zorn’s lemma to the first "way”, Policki was the first to present
a formalized argument ex motu, using the mentioned lemma. To
begin with, he supposes that

(F1) FR, # @ and
(F2) R,eord,.
Then he proves that relation fil v leord,, where xly =: x=y.

Finally he assumes

(F3) for every two weak chains included in the relation E, vl
there exists a common upper bound.

Hence Zorn-Kuratowski’s lemma yields the following theorem:
(TF) 1L(R, u 1) n Max(R, v 1) = @.

Assumption (F3) and conclusion (TF) are equivalent inferentially
in Policki’s formalization, while the whole argument cannot be
written down in elementary language.

IG] Edward Nieznarski suggests ((1980), p.107) the weakening
of assumption (F3) by reduction to two assumptions:

(F3.1) MinR, # @, and
(F3.2) R, «eMQ.

It will be possible to write them both down in elementary langu-
age:

(F3.1Y) ~Ax Vy yRx;
(F3.2) AxAy(x=y v xRy v yRx v Vz (zRx & zR,y)).

From those assumptions follows the thesis 1IR, # @, since
AR MInR # @ & ReMQ ~ 1IR # @).

[H] The argument ex motu for the existence of God, presented
by Leibniz in Demonstratio Existentiae Dei ad Mathematicam Certi-
tudinem Exacta is worth attention as compared to Aquinas’ text
Summa contra Gentiles (I, 13). This argument was formalized by
Krystyna Blachowicz (1982).

The formalized argument of the existence of a primum movens
immobile is based on three primary theorems:
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(H1) Vy Ay (xPy +— &(x)).

This is Leibniz’s postulate, where xPy =: x is a non-proper part
of y, while ®x) is a metalanguage variable for propositional
formulas comprising free variable x (and not comprising free
variable y);

(H2) Perefl;
(H3) Ax Ay (xRyy » x #y & ~xPy).

Here is the proof of the main theorem: IR,/a # &, where a is any
individual constant and aeB:

1. IR/a = @, s.a.p. (the supposition of the apagogical proof)

2. Vy Ax (xPy <> x€D'R, & xR, a),
from (H1) and xR,y &5 (xR,y v x =)

3. Ax (xPk + xeD'R, & xR, a), from 2, k is a constant
4. keD'R,, from 3, (H2)
5. kR,4a, from 3, (H2)
6. Ax (xR,,a = ~xeMinR,), from 1 and df.IR/y
7. ~keMinR,, from 6, 5
8. Vx(x#k & xRk), from 7, 4, df.MinR
9. b=#k & bRk, from 8, b is a constant
10. bR,.a, from 9, 5
11. ~bPk, from (H3) and 9
12. ~beD'R,, from 3, 11, 10
13. beMinR,, from 12, 9, df.MinR
14. belR,/a, from df.IR/y, 13, 10
15. IRy/a # @, from 14
contradiction: 1, 15.
[I1 Lastly let’s mention some contributions to the formali-
zation of the Thomist theory of motion, movement and change, that
is to say, two papers by Witold Marciszewski (1959) and (1960), a

review of L. Larouche’s dissertation (1964) by Rev. Stanisiaw
Kaminski (1967) and a book by Stanislaw Kiczuk (1984).
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4.2. Formalized versions of the argument ex ratione causae
efficientis

[A] The first formalized argument ex causae efficientis,
which in its keynote refers to Aquinas’ second "way” (Summa Theo-
logica I, q.2,a.3), derives from an Austrian professor Wilhelm
K. Essler (1969).

It is assumed

(A1) R, # 9,

(A2) D'R, © R,(MinR,),

(A3) R €eirr

(A4) R, eMQ

and (implicitly) U = FR,. Proof of two theorems is provided:
(AT1) MinR, # @, from (A1) and (A2), and
(AT2) 1R, # @

from the law AR (ReMQ & MinR # @ - 1IR # @), (A4) and (AT1).

With respect to the argument it should be pointed out that
an equivalence occurs in it: (A2) <«— (AT1). Here is the proof of
the implication (AT1) - (A2):

1. yeD'R,, supp.

~y€R,(MinR,), s.a.p.

Ax (xeMinR, - ~xR,y), from df.RX and 2
aeMinR,, from (AT1), a is a constant

aelR,, since AR (ReMQ — MinR c IR), 4, (A4)
~aR,y, from 3, 4

a=y v aRy, fromdflR, 1,5

a=y, from7,6

© ® N O O oA W N

aeD'R,, from 1, 8

10. bR,a, from 9, df.D'R, b is a constant
11. b # a, from (A3), 10

12. b =a, from 4, 10, df.MinR

contradiction: 11, 12.
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(Bl Nieznanski develops two formalizations (1982) and
(1983/84), the first for Aquinas’ “second way” and the other for
the modern argument ex ratione causae efficientis. The latter
comes about under Kazimierz Kiésak’s, a distinguished Polish
Thomist, who wrote ((1973), p.205): “the thesis about the impos-
sibility of the regress into infinity within the efficient causes
should be replaced by the principle of sufficient reason”.

Here are the assumptions of the formalized argument:

(B1) U = FRy;

(B2) R, ¢ T,
where xTy =: x outpaces y in existence;

(B3) Teirr;

(B4) R, € R,;

(B5) U =D'S,,
where xS,y =: x is a sufficient reason for the existence of
y and S, € (MinR,)/R, (where x(X)/Ry &% xRy & xeX);

(B6) U=B#= 2.

From assumptions (B2) and (B3) by
ARAS (S ¢ R & Reirr - Seirr)

we obtain the lemma

(b7) Ryeirr.
From (B6) and (B5) follows the next lemma
(b8) D's, # 2.

The proof of the main theorem
(b9) MinR, # @
is as follows:
1. D'S; = D'R;, from df.S,
D'R, = U, from (B5) and 1
DR, ¢ D'R,, since DR, c U = D'R,, 2
FR, = U, since 3, D'R, = DR, v D'R; = FR,, 2
FR, = FR,, from 4, (B1)

MinR, # 9, since ARAS(ScR & FR=FS - MinR c MinS),
(B4), 5, (b8), df.S,.

e o o~ L N
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4.3 Formalized versions of the argument ex contingentia

Kiésak sees (1957) that modern Thomist proofs of the exis-
tence of a necessary being as having their origin not in Aquinas’
but in Leibniz.

[A]l Nieznariski (1977) attempted the logical analysis of the
notion of "the essence, to which existence belongs”. He supposes
two separate universes: B (the set of beings) and T (the set of
all intervals of time). He then assumes that B @, T @ and
BnT=@. The set of all beings present at moment t is

A, ¥ {x: xAt},
where A, =: x is a present being at moment t.

Hence A ¢ BxT, and B =|J A, The definitions of various notions
. €T

of essence are obtained in formalized elementary language. Here

are their denotations:

(1) for the present essence: F(x) & {x} n A,;
(2) for the real essence: F(x) !‘IEJTFJX), hence F(x) = {x} n B = {x};
(3) for the essence of the species: G(X) =Y & X =Y, and

(4) for the universal essence: H(x) %‘tf;]TF‘(x),
hence H(x) =J;]T((x) nA)=1{x}n ‘DTA‘.

With the help of the notion of H, there were also defined some
closely related notions of necessary existence. Here are their
denotations:

(5) N € {x: H(x) # @}, hence N = {x: xetf:]TA‘);
6) N ¢ {(Xc B:‘/(\T(X n A # @), and
7 N'E (XcB A V.(XnA =)

t6€T z€B

The main question of the theodicy, whether N = @, i.e.‘OTA. 0
is regarded as an open problem. It wants non-arbitrary solutions.

{Bl Nieznarfiski gives several versions of the formalized
proofs of the existence of a necessary existence (1979), (1981
and (1982b). The simplest system gets the following form:

1) assumptions:

(B1) U = B # @; (B2) R, c BxB; and (B3) B c D'S,, where S, € (MinR,)/R;
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2) conclusions:
(b1) DS, # @, from (B1), (B3) by AR (D'R # @ - DR » @);
(b2) Ax (XeDS; - xS;x), since:
1. xeDS,, supp.
x€MinR,, from df.S,;, df.(X)/R, 1
Nz (zR,x - x = z), from df.MinR, 2
xeB, from 1, df.5;, (B2)
xeD'S,;, from (B3), 4
aR,x, from df.D'R, 5, a is a constant

a=x, from3, 6

® N O O A Ww N

xR;x, from 6, 7
9. xS;x, from df.5,;, df.(X)/R, 2, 8.
(b3) N = @, since N € {x: xS,x}, (b1), (b2).
The formalism in question is developed further on by means
of some defined secondary notions:

[ € {x: B c Sy{x}},
where 1 =: the set of first beings,

11 & {xel: | c {x}},
where 11 =: at most a one-element set of necessary first existences.

The supplementary assumption is as follows:

(B4) S;eMQ.
We obtain the following conclusions:

(b4) N = MinR,, since AR (MinR ¢ DR), df.N, (b2), df.S;;
(b5) MinR,; # @, from (b4) and (b3);

(b6) FR, = FS,, since:

1. FR; ¢ B, from (B2)

2. BcD'S;=DR, cFR,, from (B3), df.S,, di.FR
3. FR; =B, from 1 and 2

4. B c FS,, from (B3), df.FR

5. S, c¢R,; cBxB, from df.5,;, (B2)



150 Edward Nieznariski

6. FS;cB, from 5
7. FS; =B, from 4 and 6
8. FR, =FS5,, from 3 and 7.

(b7) MinS; = @, since ARAS(ScR & FR=FS - MinR c MinS),
df.5,;, (b6), (b5);

(b8) 11 # &, since AR (ReMQ & MinR # @ - 1R = @), (B4), (b7);

(b9) 1INI % @, since AR(IR#@ & MinR#@ - 1IR n MinR # 9),
(b7), (b8), df.INIL

[C] Nieznanski (1983b) and (1984) presented the logical
analysis of three concepts of necessary beings. They are:

1) substantial necessary beings: N € {xeMinR;: xR,x};

2) distributive necessary totality of beings:
N' 4 (X c FRy: R,X ¢ X = @};

3)  collective necessary totality of beings:
N* & {x: R,y{x} c P{x}},
where P denotes the relation of non-proper parts.

The theorems: N# @, N'# @ and N* # @ are obtained in the three
simple formalized systems, based on Leibniz’s principle of a
sufficient reason of existence.

[D] We have a kind of combination of Aquinas’ third and
fourth “"ways” in Charles Hartshorne’s (1961, 1962) formalization
of St. Anselm’s ontological proof as found in Proslogion 3.

Let’s assume a few definitional abbreviations: EXX &, X = @
(where E!X =: X exists), CX & EIX & O~EX, C,X &5 OEX & O~EIX®
(where CX =: X is contingent in the sense i, for i = 1,2). Hart-
shorne (1962) and A.G. Nasser (1971) confirm that in terms of
modal logic S5 there is the equipollence: AX (CX <« C,X). Let us
assume two more abbreviations: G, # MaxR, (according to St
Anselm) and G, ¥ LR, (according to St. Thomas Aquinas), where
xeG, =: x is God in the sense i, for i = 1,2,

Hartshorne’s proof of the thesis E!G, is based on the two
assumptions (D1) ~C,G, and (D2) <¢E!G,, The conclusions are as
follows:

(d1) ~C,G,, from (D1) and AX (C,X «— C,X);
(d2) ~<QEG, v ~¢~E!G,, from (d1) and df.C,;
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(d3) ~o~E!G,, from (d2) and (D2);
(d4) E!G,, since (d3) and ~0~p = p.

It is possible to obtain a reduction of the proof done by
C.G. Vaught (1972), who assumed initially that ~CG, If G, is
replaced by G, in the proof, the proofs of Aquinas’ thesis are
obtained automatically. Theodor G. Bucher (1984), however, was
right saying that the arguments were of questionable value, since
it was enough to replace assumption (D2) with (D2') ¢~E!G, in
order to obtain the unexpected conclusion: (d4‘) ~E!G,.

The formalization of the ontological arguments for the
existence of God wasn’t popular among Poles. Only Nieznarski men-
tions them.

4.4 Formalizations of generalized arguments and a general
logical theory of extreme elements of relations for
the use of theodicy

Bendiek (1956) regards his formalized arguments to be cal-
culi suitable for various interpretations. Nieznarfiski (1980)
created a formalized system for the relations R,, R, and R; taken
together. He undertook the problems of Thomist theodicy within
that system. The generalizations of the above mentioned arguments
refer to some particular relations and are based on extra-logical
assumptions. However, it is also possible and necessary to
develop a purely logical theory or relations for the use of
theadicy. Anthony Kenny (1969) noted that numerous proofs of the
existence of the absolute are based on the following law of logic

ARR # @ & Reord, & ER < #, = MinR * @).

Dozens of other logical theorems, useful for the theodicy, were
proved by Nieznanski (1980), who constructed a general logical
theary of the extreme elements of relations.

5. Logical analysis of some Thomist notions

Several important Thomist notions, viz. “existence” (4.1),
"analogy” (4.2), "the omnipotence and omniscience of God” (4.3),
"authority and faith” (4.4) went through logical analyses in
Poland.

5.1. An extensive review of the symbolic demonstration of
the concepts referring to the notions of existence is given by
Nieznanski ((1980), pp.118-126). The same author also suggests
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(1983) some kind of semantics of the scholastic theory de modis
essendi. The definition of an arithmetical scheme for 2*-element
Boolean algebras, the wuniverses of which are Cartesian products
{0,1)*, is followed by the denotations of sixteen mod essendi and
by the description of the system establishing logical connections
among the mod.

5.2. The traditional knowledge of the analogy of notions and
beings derives mainly from Aquinas’, and particularly from his
question utrum Deus nominari possit. Bochefiski (1948) was the
first in the history of that field of research, who carried out a
thorough logical analysis of the notion of analogy.

To begin with, Bocheriski states that "the meaning of the
name” (denoted by symbol S) is a four-argument relation:
S(a,1,f,x) =: in the language 1 the name a means the property f
of the thing x. Bochenski states further on that the analogy is a
relation of two, possibly even isomorphic names and it is a form
of ambiguity. Thus, he defines first the relation of the ambigui-
ty of names Am(a,b,l,f,g,x,y) =: names a and b are ambiguous in
language | referring to properties f and g, and things x and y.

Here is the definition:

Am(a,b,l,f,g9,x,y) &, Sa,1,f,x) & S(b,l,g,y) & l(a,b) & f g & x = vy,
where I(a,b) =: names a and b are of the same shape.

The analogy of attribution (denoted At) has the following
definition:

At(a,b,1,f,g,x,y) €5 Am(a,b,1,f,g,x,y) & (Clx,y) v Cly,x)),
where C(x,y) =: x is a cause of y.

The notion of the analogy of proportionality (Apl) is defi-
ned by Bocheriski by means of the theory of relational isomorphism

Apl(a,b,l,f,g,x,y) &5 Am(a,b,),f,g,x,y) & VP VQ (fPx & gQy P smar Q°,
where P smor Q =: relations P and Q are isomorphic.

5.3. The Viennese professor Curt Christian presented (1957)
a -logical analysis of the notions: omnipotence (AM), amniscience
(AW) and God (G). He defined them as follows:'®

(1) AMx &4 Ap (WLxp - p),
where AM;x =: x is omnipotent in the sense i; and WLxp =: x
wants p to;

(2) AWx &, Ap (p -» WSxp),

where AWx =: x is omniscient; and WSxp =: x knows that p;
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3) Gix 45 AM;x & AWx,
where Gx =: x is God in the meaning i.

Nieznanski (1976) assumes that:

(4) AM,x &, AM;x & Vp WLxp and
(5) Gx &5 AM,x & AWx.

The Salzburger professor Paul Weingartner (1974) defined the
notions "onmipotence” and "omniscience” in another way:

(6) AM;x &5 Ap (p < Kpx),
where Kpx =: x can do that p, and
7 AW,x &5 Ap (p «> WSxp).

Rev. Czeslaw Oleksy (Academy of Catholic Theology in Warsaw)
holds (1984) that Weingartner’s definition 7) determines both
omniscience (AW) and infallibility (IN):

(8) INx &5 Ap (WSxp - p),
where INx =: x is infallible.

In that case he obtains a new definition of God:

(9) Gyx &5 AMx & AWx & INx, and
(10) Gex 4% AM,x & AWx & INx.

Oleksy suggests still other specifications of the notions “omni-
potence” and "God"™

(an AMx &5 Ap At As (~Apt & WL'xtp & t # s - A,ps),
where Apt =: occurrence p is actual at the time t; and
WL'xtp =: at time t x desires p;

(12) AMx &5 Aa At As (~Ajat & WL*xta & t # 5 - A,as),

where A,at =: the being a is present at the time t; and
WL*xta =: at time t x wants object a to become an actual
being;

(13) Gx &5 AMx & AWx & INx, for 4<i<9and 1<k <5.

Several formalized theorems referring to the notions of
omnipotence, omniscience and God were proved by Christian (1957)
and by Nieznanski (1976). Weingartner (1974) refuted the thesis
of the so-called religious fatalism:

(14) Ap (p = WLgp),
where g =: God; and g ¥ (1x) (AM,x & AW,x),
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while Oleksy (1984) rejected the thesis of negative predestina-
tion (reprobatio).

5.4. The notion of authority is essential for the definition
of the theological concept of faith. Bocherfiski (1965) and (1974)
was the first to carry out a logical analysis of that notion. He
distinguished and determined the notions of epistemic and deontic
authority. Nieznafiski (1985) unfolded the concept of authority
and faith on the basis of the logical theory of belief. Bochefi-
ski’s book (1965) is the first to be concerned entirely with the
problems of faith and religion considered from the logical point
of view.

6. Final remarks

The Polish programme of the logical analysis of Thomism was
accomplished to a considerable extent, and especially with
respect to the study of the formal correctness of the Thomist
deductions. Formalized proofs of the existence of God acquired a
desired standard of precision. However, the objection that the
proofs in question were too formal was not, so far, either
overcome or refuted. Even if the conclusions follow from the
assumptions without non sequitur errors, the assumptions remain
empirically undecidable. Proofs of that kind used to be seen in
traditional logic as subject to the error ignoratio elenchi, i.e.
they didn’t demonstrate what needed demonstration, since they
proved demonstratively nothing, being limited to implications
from the conjunction of premises to the conclusions. And, e.g.,
H. Scholz (1969), who maintained that “Ein Beweis ist verbindlich
fiir jedermann, oder es ist tiiberhaupt kein Beweis” (p.64), is a
contemporary logician who shares this opinion. It would seem that
the future of the application of logic to Thomism lies more in
the area of semantics of the language of this philosophy. Thomism
is a doctrine with a future, as long as it accepts the postulate
of maximum precision of proof and method.!



Logical analysis of Thomism 155

Notes

! Cf. the bibliographical list at the end of this book.

? Here (and everywhere below) the symbol =: is a sign of ab-
breviating.

3 The definition of the converse of relation R:
R & {Ky,x>: xRy}.
The definition of R-image of set X:
RX & {y: Vx (xeX & xRy}
4 Cf. E. Nieznanski (1981b).

5 It is possible to reduce Salamucha’s axioms (A3) and (A4)
replacing the expression: Va Vb (aPx & bPx) by the expression: Va aPx.

¢ Assumption 1° was used in the proof only as R,€con.

7 Segment "x ¥ y" is superfluous in axiom (H3), since it fol-
lows from segment "~xPy" and axiom (H2), already assumed.

8 Contingeas est quod potest esse et non esse (Summa Theologi-
ca I, q.86,a.3).

® Smor =: simili ordine.

1 All indices below denote the succeeding meanings of .the
extra-logical constants and "p" is a propositional variable.

" Translated by Stefania Szczurkowska.
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ON JUSTIFICATION OF QUESTIONS

Introduction

1. It is not unnatural to suppose, in view of the existence
of several kinds of questions, that different questions are
justified in different ways, and if so, then the theory of
justification of questions must depend heavily on the type of
questions considered. But one is tempted to formulate general
conditions under which asking questions can, in the majority or
in all cases, be justified. Thus we have to enumerate the types
of questions which will be taken into account in this paper and
have to see whether general rules of justification of questions
can be found.

The most interesting category of questions are cognitive
questions posited to obtain the information which the question
concerns. On the whole, the majority of theories of justifica-
tion, or theories of arising of questions or their evocation, are
concerned with cognitive questions or, to be exact, with their
subset. This paper departs from this body of practice, taking
into account a wider class of questions. It includes: examination
questions, asked about things very well known to the questioner
who is interested in whether the questioned person can give the
right answer; deliberative questions we ask ourselves without
expecting an answer; rhetorical questions which presuppose common
knowledge on the part of the questioner and the questioned person
alike: they both know the answer and know that they know it.
Sometimes a distinction is made between questions which are con-
cerned with analytical matter, as in: ‘Is 2=2?" or empirical
matter as in: ‘Who was Shakespeare?’. Sometimes open questions,
e.g. ‘Why do you smoke?’ are distinguished from closed questions,
e.g. ‘What is your name?’ (J. Giedymin (1966), p.16). Open ques-
tions do not determine the structure of the answer as is the case
with closed questions. The questions just enumerated will be
discussed in some detail below.

156
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2. In order to describe the justification of questions we
have to ponder a little about the language in which this could be
done. First, this language must be more inclusive than the
languages of most theories of questions. If so, we should be able
to tackle problems which are not describable in poorer languages.
But still there will remain some problems which in our language
are inexpressible.

The relatively simplest language in which questions can be
described is purely syntactical. The most important concept -
apart from the terminology which serves to formulate the grammar
(rules for constructing sentences) - is one referring to proof.
In such languages a question is taken to be justified when some
sentences have no proof. Theories which use this kind of langua-
ges can deal, at most, with questions which arise only in
deductive sciences where lack of empirical corroboration is inex-
pressible. But even in deductive sciences only very few questions
can be taken to be justified, namely only those arising from
sentences which are independent of the axioms of a given system.
In these syntactical languages there 1is no possibility to
introduce the notion of proof that is actually arrived at. In the
majority of questions posited with regard to analytical matters
there may exist a proof (in the abstract sense of existence used
in formal logic) of the sentences under discussion but either the
proof can not be discovered by questioning person or simply, it
may be unknown to him. And it is precisely in those cases that we
ask questions very often. Thus the justification of the majority
of questions cannot be described; A. Wisniewski ((1986), p.17)
claims that analytical sentences cannot generate any questions.
The great hypothesis of Fermat - provided it has a proof which
has not been discovered yet - cannot be claimed to generate any
questions. As we want to consider a much wider range of ques-
tions, clearly a purely syntactical language is too poor for our
purposes.

3. Similar problems are encountered in the case of a
semantic terminological basis. Here, the concepts of truth and
entailment are relevant to the explanation of generation of
questions. Thus Wisniewski defines generation of questions in the
following way:

A set of sentences X generates a question Q if and only if
(iff) the set X does not entail any direct answer to Q and
entails the presupposition of the question Q. The set of
sentences which are entailed by all consistent answers to
the question Q forms the presupposition of Q (Wisniewski (1986)).
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Now, it looks as if this definition did not allow for generation
of a number of questions which in fact are asked seriously. Let
us assume that X does not entail the presupposition of Q and that
we do not know the answers to Q. According to the definition of
generation cited above we cannot generate the question Q; but on
all probability we shall ask the questions. The lack of knowledge
of the answers, it seems, is decisive here. For instance, take an
open question Q and a set of consistent answers to it. What does
this set entail?, i.e. what is the presupposition? The answers
are not determined by the structure of Q nor can their structure
be derived from the meaning of the question. It appears,
therefore, that almost anything can be entailed by the answers
and it is very difficult to say whether the presupposition of Q
is sufficient for generating the question. As we shall see a
little later the answers to an open question are determined by
their relation to the sentence included in the question. This
relation, as a rule, is not the relation of entailment in either
direction.

Let us assume that X entails the presupposition of Q and
does not entail the answers, and that we know the answers. In
this case, although the question can be legitimately generated,
we shall not ask it. These examples show convincingly that there
is a gap between our habits of asking questions and generation of
questions as defined above. We also point to the fact that this
definition of generating questions does not allow forming ques-
tions on the basis of any set of tautological sentences or on the
basis of inconsistent set of sentences. This last thesis goes
counter to the rather widespread conviction = that contradictions
bring forth problems of various kinds.

The sentences 25 =32 and 2-16 = 32 are logically equi-
valent, and they entail each other. If we ask questions (a) ‘Is
25 =327 and (b) ‘Is 2-16 = 327" the positive answers to them
are equivalent, and so are the negative answers. A consistent set
of answers (let them be positive) to (a) is then Ilogically
equivalent to the set of similar answers to (b). Both sets then
entail the same presupposition which generates the same question
or two questions which are equivalent in some derivative sense.
But (a) may be asked by a boy who attends the second class of
a primary school while (b) will not be asked by him at all: he
knows the result of the multiplication. Our habits of asking
questions then are outside the domain of erotetic logic, or the
logical tools used in this kind of erotetic logic are too
clumsy.
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4. The definition of generation of questions establishes a
set of sentences X which generates a question by pointing to the
answers of the question which is to be generated by X. This kind
of definition is formally quite correct: all these things - sets
of sentences X, questions generated by them and their answers are
given by rules of formation without any reference to their
succession in time. But from a methodological point of view and
from the point of view of our practice this definition of gene-
ration is strange: to know the set of sentences which generates a
question (unknown so far) we have to consider the answers to the
question - and they are known at the very end of the whole
procedure of forming questions and solving the problem. The real
procedure starts with a set of sentences which generates the
question; we get to know the question later and still later we
find the answers. It seems - and we take it as a postulate - that
a theory of justification of questions which is to be methodo-
logically useful should provide us with rules describing the
actual procedure.

Terminological framework

1. The examples we cited above purported to show that ques-
tions are asked in case some information, namely that expressed
with the help of answers, is not known to us. However, this is
not always so; there are questions the answers to which are known
to us. Rhetorical questions are a case in point. What is impor-
tant is that to describe the examples we used the notion of know-
ledge, i.e. an epistemic concept. There are more epistemic
notions, which eventually can enter our discourse: belief,
assumption, doubt, certainty, etc. Possibly all these notions can
be wuseful in characterizing the conditions which justify asking
cognitive questions. The problem is that we have to choose the
notion(s) which suits best our ends. Thus far we have mentioned
knowledge. Very often knowledge is conceived of as a complex
notion - as a true belief well justified. Thus if one happens not
to know something then

he does not believe in it or
it is not true or
it is not sufficiently corroborated.

As already remarked it is not the proof or, generally - corrobo-
ration, which makes people ask questions. A sentence may be well
proved or corroborated and somebody who never encountered the
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proof may ask the question. He may even have seen the proof and
asked the question if he doubted the correctness of the proof. As
to the truth, people ask questions regarding both true and false
propositions if only they do not exhibit any cognitive relation
to the values of the propositions taken into account. Thus only
lack of belief is a constant factor present in the case of
serious cognitive questions. As we shall see later even in the
case of non-cognitive questions this notion plays some role.

2. We do not ask questions concerning things we have not
heard about. We do not ask them although we have no belief about
those things. In this case we do not feel any lack of knowledge.
As a rule, we ask a question when some answer is expected,
required, necessary, ordered or requested. We also ask questions
if we want to get the answer. These attitudes are reactions to
our awareness of lack of knowledge or belief. We have to choose
that of the cited attitudes which is always present when we ask
questions.

Let us begin with the concept of necessity which was used by
Aqvist (1965). If we took this notion into the description of
justification we would have to introduce something like this: a
question is justified int. al. when it is necessary to believe
that.... This condition is a very strong one and given the
principle: ab necesse ad posse valat illation, it precludes to
ask questions which have no believable answers. The principle
implies: it is possible to believe that... But we never know in
advance whether a question has believable answers at all. If the
opinion prevailed at the very beginning of the XIX century that
there were no meteors, one could not ask what the chemical com-
positions of the meteors are, as no believable answer could be
offered from the point of view of the accepted theory. If we were
to ask only questions which have believable answers it is quite
probable that no accepted false theory would be rejected. There-
fore we rather have to exclude from considerations the concept of
necessity and such like which imply that only questions with
believable answers can be asked in a justified way. As far as the
notion of ordering is concerned, we are confronted with a concept
which refers to two persons: to the speaker and to the addressee.
A question does not exhibit any person in its meaning. But more
importantly, an order presupposes that the action which is
ordered can be performed, i.e. an answer, and especially a true
answer can be given. Once more we face the same problem as
before: seemingly, when we ask questions we have to assume that
answers can be given. It is this assumption that is taken by
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Ajdukiewicz (1938) as a condition of correctness of questions.
The views of Positivists in this respect are also well known: no
value, they claimed, could be given to questions to which no
answer (empirically meaningful) could be given. Such questions -
they declared - are pseudo-questions. If we took this assumption
as a rule of justification of questions not only would we encoun-
ter the difficulties already mentioned but we would be forced to
reject all deliberative questions which very often do not presup-
pose any answers - just as many philosophical questions do. Thus
the notion of order put forward by R.M. Hare (1949) as a general
requirement on all questions is of no use to us.

Very similar objections can be raised in the case of the
notion of expectation, of requirement and request. Thus only the
notion of wish survives our objections. It is this notion which
was propounded by B. Bolzano (1929). Nowadays it is wused by
B. Bogusiawski (1977). As N. Rescher (1968) has shown a kind of
logic called optative logic is possible where the notion of wish
is considered. Thus the foundation of the theory of justification
of questions is, as for now, not outside logic: it includes the
two specific primitive concepts considered so far - belief and wish.

3. The introduction of the concept of wish necessarily
implies the following: what one hopes to get by putting forward a
question. People who ask questions want to achieve very different
things and information. Not all of these things are of interest
to us. We are interested only in those pieces of information
which from the point of view of the meaning of the question are
to be treated as desirable. We may e.g. wonder whether by asking
questions we want to know the truth of the answer, or at least to
grasp some possibilities or verisimilitudes. We may also strive
to believe the answer. It is possible that it is not truth and
the like, but certainty that we are trying to establish. To make
the choice between these possible objects of our wishes let us
begin with certainty. Sometimes we get the answer: possibly....
It is quite a good answer, though perhaps not always fully
satisfying. Sometimes we do not arrive at certainty as perhaps
sometimes certainty is not necessary. If somebody does not do
something in case of risk an answer which begins with “possibly”
is good enough to restrain him from the action he planned. Thus
it appears that not always we are looking for certainty.

Also, when questions are asked, not always truth is wanted.
In the case of examination questions, for example, we already
know the true answer and we want not so much the true answer;
rather we want to know whether the person questioned knows the
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true answer. It happens many times that we ask questions without
any wish to get a true answer. We ask to know something else, to
know the opinion of the questioned person. We, ourselves may not
know the true answer. But after questioning many people we can
find out what the popular belief is.

It can also be doubted whether we want to hear an answer at
all. For example in the case of rhetorical questions nobody is
requested to answer. Sometimes we do answer, though we do not
utter a word. When one is asked: ‘Where is Hotel Eden?’ he can
simply point to the nearby building.

The latest example gives us a hint where to look for a solu-
tion to our problem: what do we always want when we do ask
questions. In all these examples the person asked is at least to
present a piece of information. In the case of rhetorical
questions and deliberative questions everyone has to present the
information himself - not to the person who asks, in the case of
rhetorical questions; in the case of deliberative questions the
speaker and the addressee are identical. In the case of pointing
the addressee presents the information by pointing to the source
of information. In the case we utter the answer we present the
information indirectly with the help of an expression which, in
turn, refers to the information. Sometimes pointing to an object,
showing a picture or drawing is a better means of answering then
uttering an expression. This fact is sometimes forgotten. The
notion of presenting is necessary, it seems, to describe some
components of the overall concept of justification. But there s
a difficulty here: it seems there are no logical considerations
so far which tackle the notion of presenting information. To some
degree this notion is similar to the notion of perceiving.
Unfortunately, the analogy is rather superficial.

4. Besides these three primitive concepts of our attempted
theory of justification of questions we shall use wusual logical,
syntactical and semantical terminology without going into any
explanation. We want to concentrate on the problems which can be
solved with the notions of belief, wish and presentation. It is
obvious that a still more inclusive theory of questions has to
include additional methodological terminology, at least making
possible the definition of corroboration, testing etc.

So far the term “justification” has been left unexplained
and undefined. For the time being let us assume that it is a very
complex notion including admissibility of questions, motivation
of questions and their well-foundedness.
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Admissibility of cognitive questions

1. Most of us do not know who discovered Grenada. Let us
then ask the following question:

(1) Who discovered Grenada?

as a model example. We ask this question because we do not know
the discoverer. This means that there is nobody we know that
discovered Grenada. This lack of knowledge is part of the
admissibility (and therefore also of the justification) of (1).
Let the variables z, z',z'" range over the set of people. "K”
may be used as the symbol for "knows”. "K” is therefore a functor
with one individual category and one propositional category
argument. The sentences built with the help of “K" are of the
form K(z,p). Now, the situation in which we ask (1) can be
described as (2) or, equivalently, as (3)

2) /’\ ~K(z, z' discovered Grenada)
3) ~¥ K(z, z' discovered Grenada)

It has already been mentioned many times that the notion of
knowledge is inapplicable. This notion must be weakened and
adjusted to suit those cases in which the notion of knowledge is
not an adequate one. We have to pass therefore to the notion of
belief. In (4) and (5) "B" stands for "believes" and replaces
"knows".

(4) /'\ ~B(z, z' discovered Grenada)

(5) ~¥ B(z, z' discovered Grenada)

This precondition of asking questions is a very weak one.
Sometimes it is satisfied when a person does not ask any
question. Suppose that person z has never heard anything about
Grenada and simply does not know about its existence or that it
has been ever discovered. To ask a question, z has to assume at
least that Grenada is something that is discoverable and that it
has been discovered by someone. Thus the second condition of
asking questions is:

(6) B(z, \! (2" discovered Grenada))

Stipulation (6) seems to be similar to the postulates that every
question has at least one true answer (Ajdukiewicz (1938)). In
fact, the stipulation made by Ajdukiewicz and expressed in
metalanguage is much stronger than (6). From the existence of an
object that has been discovered does not follow that we know
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anything concerning the discovery and can formulate an answer to
question (1). We are far from claiming that we can always know
about all things that exist or existed.

Let us compare (4) and (6) with respect of the place of "B”
relative to the quantifier. In (4) "B" is in the scope of the
quantifier "A". In (6) the quantifier "V" is in the scope of "B".
The meaning of (4) is that there is nobody about whom person z
thinks with conviction that he discovered Grenada or, simply, 2z
does not know who discovered Grenada. The difference between a
belief functor appearing within the scope of quantifier and
quantifier put in the scope of belief functor is made more clear
if we compare two formulae containing the same quantifier:

(a) B(z, \,/ (z' discovered Grenada))
(p) \,/ B(z, z' discovered Grenada))

In (a) we say that z believes that somebody discovered Grenada.
In (p) we say there is somebody about whom 2z thinks with
conviction that he discovered Grenada. Plainly (p) is the
stronger formula: (a) follows from (p), but not vice versa
(Kutschera (1976), p.92, TG,). Prima facie it may look as if (5)
and (6) contradicted each other. In fact, contradiction could
arise only on the condition that (6) implied (5):

(7) Bz, \,/ (z' discovered Grenada)) = y B(z, z' discovered Grenada))

The consequent of (7) is a blatant contradiction of (5). Fortu-
nately - as already remarked - (7) is not true and so the
contradiction does not arise.

(7) and its negation points to the necessity of a good
characterization of the notion of belief. Outside logic it s
taken as a purely psychological concept which defies any logical
attempts at making it more precise. In logic this notion is given
an over-rational definition. According to R.M. Martin (1959) men
believe in all logical theses. If they believe in some sentence p
and if from p logically follows the sentence q, then they always
believe in q. Human being that do so are more logical then a
computer. We wish to assume a much weaker notion of belief (which
will make sense of our well-foundedness of question) which is
less rationalistic (Kutschera (1979), p.80). We assume that a
person z believes in some logical theses; if a person z believes
that p and q is a logical consequence of p (or p entails q) then
person z believes q on the additional provision that it had been
presented to him that q follows from p or p entails q. The
additional condition includes the notion of presenting. This
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notion implies, among others, the possibility that person z has
made the proof of q relative to p and thus has shown to himself
that q follows from p.

2. Conditions (5) and (6) must be refined a little. We
simply assumed that 2z' ranged over the set of people. This
stipulation is an unfortunate one because in different questions
we may ask about different kind of objects. To avoid new
variables each time we ask about new kind of entities, it is more
convenient to let the variables range over a very vast set of
objects and each time provide a short notice what kind of object
is under consideration. But let the letters z, z" etc. range over
the set of people. The more inclusive set may be represented by
the wvariables x, x', x''. More exactly, the last variables will
be typically ambiguous - more about it a little later. With this
convention in mind instead of (6)

(6) B(z, \,/ (z' discovered Grenada))
we introduce
(8) B[z,( Y (x discovered Grenada) A
A /'\ (x discovered Grenada # x is human))

What (8) says is that person z believes that an object discovered
Grenada and whatever did it is human. This last conviction Iis
expressed in (1) by the word "who".

We have to modify (5) in the same way:
(9) ~\x/ B(z,(x is human A x discovered Grenada))

There is no need to state explicitly that z is human, first of
all, because of the range of the variable "z" and because
"B" is understood as a two-place predicate (see above). Second-
ly, we take the formula below to be a thesis of our logic of
belief:

(10) /,\ (B(z,p) ® z is human)

To include questions asked in fairy tales by their non-human
heroes we can generalize (10) by the extension of the set z is
ranging over so that it could include all human-like objects.

3. Let us call the consequent of the second part of (8) the
confinement of the range of question. The antecedent of this part
may be called datum gquestionis. The convention is to be
understood as fairly general. Every time we have sentences of the
form:
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(11) B(z,( \! (fx) A /'\ (fx > gx)))
12) ~\! B(z,(gx A fx))

the sentence symbolized by gx is the confinement of the range of
a question and the sentence symbolized by fx is a datum questio-
nis. Now, we can formulate the rule which describes admissibility
of cognitive questions. First let us say something about the
question mark of a question. It will be put at the very beginning
of question - just as quantifiers are put. Similarly to quan-
tifiers, the question mark will be endowed with a variable which
will reappear inside the question. This variable is bound by the
question mark. According to the ideas of T. Kubinski (1971) - to
whom I owe very much - the question mark is conceived of as an
operator. We read the question operator "?," as “which all x's
are such that...". For the reasons for such treatment of the
question operator see (Koj (1971)). Questions are admissible for
person z if and only if (11) and (12) are true. We can express
this idea in:

(R) The question ‘2, () [fx]' is admissible for person z iff
(11) and (12).

The round parentheses and square brackets are signals that the
enclosed expressions are not interchangeable - their relative
succession is fixed by (11). On the basis of (11) and (12) the
confinement of the range is put to the right of the question
operator. The datum questionis is still farther to the right.

4. This rule - contrary to appearance - is very general and
applies in the «case of cognitive questions of all possible
structures. Since the structures of questions were considered in
another paper of mine (Koj (1972)), here | confine myself merely
to a brief presentation of the results of my considerations. Each
type of questions is presented here in its natural-language form,
then two paraphrases are given which bring us closer to the
logical form.

A a Did Columbus discover America? (the underlined word is
stressed).
Was it Columbus who discovered America?

b Did Columbus or somebody else discover America?

¢ Who of the two: Columbus or somebody else discover America?
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?: (x€{Columbus, Non-Columbus)}) [x discovered Americal

Non-Columbus is understood as indefinite description:
x =Non-y = V(x'fy A x =1x'). The same pertains to all
Non-y phrases; they differ only as to their syntactical
category.

Did Columbus discover America?

Did Columbus discover America or something else?

What did Columbus discover: America or Non-America?

?x (x€{America, Non-America}) [Columbus discovered x]

Did Godel get the Nobel Prize?

Did Gddel get or did he not get the Nobel Prize?
Did Godel get or non-get the Nobel Prize?

74 (xe{got, non-get)) [GOdel x the Nobel Prize]

Is the hat yellow, orange or violet?
What is the hat like: yellow, orange or violet?

Which out of ({yellow, orange, violet} is the property of
the hat?

?x (xe{yellow, orange, violet)) [hat ex]

Who discovered Grenada?
Which human being discovered Grenada?
Which object out of the set of humans discovered Grenada?

?¢ (x¢human) [X discovered Grenadal

Which two pupils from the fourth class threw stones at the
window?

Which all pupils of the fourth class, members of a two-
element set threw stones at the window?

Which all x-es of a two element set included in the fourth
class threw stones at the window?

e (xefourth class A Vixeu a G=2)) [X threw stones at the window]
u
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In F.d. we use the set-theoretic notion of cardinality of
sets. Thus the set u has the cardinality two. When we talked
about the language of our consideration it was assumed that
the whole logical terminology is included. Among others the
notions of elementhood and identity and all definitional
derivatives are at our disposal.

als {\q(q > (p > q)?
b Is it that '/’\q(q > (p ® q)) or the other way round?

a

Is it {"\q(q > (p=>q)or ~{}q(q > (p > g

-3

% (reqr.~p H (@ > (p 2 q)]

H a Why does he study mathematics?
What caused him to study mathematics?

¢ What is the non-analytic state of affairs that stands in
the causal relation to his studying mathematics?

d 7, (xeNon-anaiytie) [X C He studies mathematics]

In H.d. the letter C means the causal relation, whatever it
might be.

The adduced examples show that many questions fall under the
general schema '?, () [fx]' where x is typically ambiguous: one
time it is an individual variable, another time a predicate
variable, etc. The schema can be also applied in the case of
questions with more than one question operator. This kind of
questions is illustrated with the help of: ‘When and how did he
escape from prison?” After Conrad Rudi’s (1978) overview of
different theories concerning the structure of questions it seems
that the one expounded here is adequate.

5. To test whether our R-rule is applicable in all cases of
belief as described in (11) and (12) and whether we get the
questions we intuitively expect let us take new examples covering
all types of questions from A to H. We shall test the rule as
schematically as in the case of A and H. First a short story is
presented (a), then the respective counterparts of (11) and (12)
are given (b). The application of R to them yields a question (c)
which is then translated into normal natural language (d), to
find out whether it fits our intuitions aroused by (a). Point e
is the evaluation of this last question.
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Mary (as person z) believes that somebody has stolen her
necklace and she (i.e. z) suspects that it was Jane.

B|z, (\./ (x = Jane v x = somebody else) A
A /,\ (x stole the necklace # (x = Jane v x is someone else)))
"Y B(z, (x stole the necklace A (Jane = x v x = Non-Jane)))
7, (xe{lane, Non-Jane)) X Stole the necklace]
Did Jane steal the necklace?
Question d. was to be expected on the basis of a.
A simple-minded pupil has doubts as to whether Copernicus
invented the heliocentric system, discovered it or simply

described it, etc.; he cannot decide by himself which
possibility is true.

B[z, (V (Copernicus x heliocentric system or
\ »
or Copernicus X heliocentric system) A

A /'\ (Copernicus x heliocentric system

2 (x = invention v x = non—invention))]

~Y B(z, (Copernicus x heliocentric system A
A (x = invention v x = non-invention)))

?, (x€{invention, nen-invention)) [COPErnicus x heliocentric system]
Did Copernicus jnvent the heliocentric system?

In fact, the pupil who has these doubts may be justified to
ask d.

Barens was a famous discoverer and a southern European boy
knows it. But he has no opinion as to Barens’ discovery of
Spitzbergen. Perhaps Barens discovered Spitzbergen but it
may have been something else.

B|z, (\’{ (Barens discovered x) A
A /x\ (Barens discovered x =
% (x = Spitzbergen v x = Non—Spitzbergen)))]

~Y B(z, (Barens discovered x A
A (x = Spitzbergen v x = Non-Spitzbergen)))

?: (x€{Spitzbergen, Non-Spitzbergen}) [Barens discovered x]
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Did Barens discover Spitzbergen?

This question is also natural enough when we take into
account the boy’s doubts.

John does not remember the type of Timothy’s car; he
remembers only that it is Japanese and he can remember only
three Japanese types: Honda, Mazda and Toyota.

B[z, ( \! (Timothy’s car is an x) A
A /'\ (Timothy’s car is an x =
> (x=Honda v x =Mazda v x = Toyota)))]

~\'/ B(z, (Timothy’s car is an x A
A (x = Honda v x = Mazda v x = Toyota))

7% (x€{Honda, Mazda, Toyota)) LTimothy’s car is an xI]
Is Timothy’s car a Honda, a Mazda or a Toyota?
d. is the question we can expect in view of all what John
(he is the person z) knows and remembers.
Somebody took Peter’s hat. He believes it was one of his
friends who came to a meeting with him.
B[z, ( Y (x took Peter’s hat) A

A (x took Peter’s hat » x was Peter’s friend))]
~\./ B(z, (x took Peter’s hat A x was Peter’s friend))
7% (x Peter's friend) [X toOk Peter’s hat]
Who from among Peter’s friends took Peter’s hat?
The R-rule once more generated the expected question.
The policeman was told that three persons had beaten
Richard on the train. The policeman had no choice but to

assume that they were travelling on the train. Of course he
did not know the culprits.

B[z, ( Y (Richard had been beaten by x) A
A /'\ (Richard had been beaten by x
*> Vixeu A U=3 A uc setof travellers)))]
~Y B(z, (Richard had been beaten by x A

A Y (xeu A U =3 A u c set of travellers)))
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?x {(Vix€u A i=3 A u ¢ set of travellers)) [Richard had been beaten by x}
u
Which three travellers had beaten Richard?
e Indeed this is the question the policeman had to ask.

G' a Some students cannot agree as to whether the following
Y (fy > gy) » (\{ (fy) > \y/ (gy)) is true or false.

b B[z, \'/ [x (Y (fy = gy) > (Y (ty) > Y (gy)))] A
A /} [x (Y (y » gy) » (\{ (y) » Y (gy) » xe(l-,~)]]
~Y B[z, X (\y/ (fy = gy) = (¥ (fty) = \y/ (gy)) A xe{k,~}]

C % weron [X Y Uy > gy) > (Y dy) >V (gy)]
d Is [\y/ (fy > gy) > (\‘{ (fy) > (gy))]?

e Just as A, B, C so G is a general question. But here we do
not ask about the subject or the predicate; rather we ask
about the assertion or negation of the whole sentence.

H' a Philosopher A thought that every action has a causa finalis
and treated life as a kind of activity. Unfortunately, he
did not know the causa finalis of his life. (Take F as "is
causa finalis of").

b Bz, (\./ (x F A’s life) A /x\ (x F A’s life  x non-analytical)))
~Y B(z, (x F A’s life A x non-analytical))

€ 7 (xenon-analytican [X F A’s life]

d What is A living for? What is the causa finalis of A’s life?

e The philosopher may ask himself what is he living for,
especially when he is tired and unhappy.

The adduced examples seem to show that the R-rule generates
the expected questions. We can take it as a partial solution to
the problem of justification of questions and turn to another
part of the problem: to the motivation of questions. Obviously,
the R-rule may be tested in the case of still new kinds of
questions. The reader is asked to do it himself, e.g. he may try
to find out whether the R-rule is adequate in the case of
questions with two or more question operators.
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Motivation of questions

It is obvious that some admissible questions are not asked.
This happens when the person who believes in all that (11) and
(12) say is not interested in finding out what in fact is true.
The person is not motivated to ask questions. Worse, non-cogniti-
ve questions which are not admissible in the way described above
are, in fact, asked. The questioner is strongly motivated and
this is enough to ask questions. Motivation is therefore the
second part of the problem of the justification of questions,
admissibility was the first. Usually, when one wants to know
something, one asks a serious cognitive question. In this case
the questioner’s eagerness to know 1is the motivation which
triggers the uttering of the question. Very often, however,
somebody’s wish to know the answer is not enough to be taken for
motivation. It is sufficlent that the answer or rather the
information carried by the answer is simply presented. Knowledge
as true information, or reliable information or believable infor-
mation is not aimed at. Generally, it is the presentation of
information which is a necessary object of one’s wish. All that
exceeds presentation of information is characteristic only of
some questions. As will be shown later the desire for a presen-
tation of information is present in all possible questions. Thus
to describe motivation we have to introduce two additional
predicates (mentioned above): wants and presents. Let "W" be the
symbol for "wants” and "P" for "presents”.

Let us assume that a question of the form '?, o [fxI' is
admissible for person z. Person z is then cognitively motivated
to ask this question when he wants the information carried by the
answer to be presented to him by someone z'. These remarks give

way to:
"% (gu) [fX]" is cognitively motivated for z iff
"2 gu [x]" is admissible for z A Wiz,V P(z',z,{x)]

(13)

The signs " " are quasi-quotation marks (Quine (1955), §66)

The motivation of an examination question is different. The
examiner believes that the question '?, () [fx]' may be admis-
sible for the questioned person. The examiner simply assumes that
the questioned person may not know the answer or he may be in
doubt of it. The examiner wants the questioned person to present
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to him the answer. This wish is caused by another wish, which may
not interest us here: to know the knowledge of the questioned
person. To avoid further extension of our language, the word
"may” will be substituted by an existential quantifier (the
affinity of possibility to the existential quantifier is well
known). Instead of saying: the question is possibly admissible
for the person z, we shall say: there exists some z' for whom the
question is admissible. This substitution alters a little the
original formulation and its meaning. But from our point of view
the change is permissible. The motivation of an examination
question is as follows:

(16) B[z, v [( " (gn Ux]" is admissible for z') A W(z,P(z',z,fx))]]
iff "2, (gu [X]" is for z a motivated examination question.

(14) is an equivalence and its parts may be reversed. A stronger
form of (14) is (14') where there is a particular addressee of
the question. The parts of the equivalence are given now in the
reverse order:

"¢ (gny (X1 is for z an addressed motivated examination question

(14")
iff \! B[z, ("7 (gm [X]" is admissible for z') A W(z,P(z',z,fx))]

Similar motivations hold in the case of rhetorical and deli-
berative questions. The person z who asks the question takes it
as possibly admissible. This person wants the answer to be pre-
sented to somebody. While in the case of the rhetorical questions
person z wants everybody to present to himself the answer (or
rather the respective information), in deliberative questions
person z wants that somebody (it may be himself) presents the
answer to z. The assumption of admissibility seems to be doubt-
full at first inspection. In fact, the doubts can be dispersed
rather easily. When somebody asks the rhetorical question: ‘Is it
possible to deny that 2 =2?" he assumes that all normal people
will not deny that 2 = 2; only an idiot, he thinks, can deny it.
Thus idiots are those people for whom the question is admissible.
People who have no doubts in regard to 2 = 2 are normal. Every-
body who understands the questions and sees the admissibility
assumption can treat himself as normal only when he has no doubts
in regard to 2 =2 Thus asking this question helps people to see
their extraordinary mental abilities. Many times this is aimed at
by asking rhetorical questions.
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The motivation of a rhetorical question is then as follows:
", (gx) [fx]’ is for z a motivated rhetorical question iff

(15)
B[z, y ("% (g XI" is admissible for z') A W(z, {\ P(z',z',fx))]

The clause W(z,QP(z',z',fx)) is to the effect that z wants z'

to present to himself the preposition (information) fx.

" (g [IX]" is for z a motivated deliberative question iff

(16)
B[z, \,/ ("? (gu [X]" is admissible for z') A W(z, y P(z',z,fx))]

In this case z wants someone to present to him the information
fx. Person z is not sure that someone will do it in fact.

While considering general questions we cannot fail to notice
that the clauses (11) and (12) include statements of the form
*x=a v x=non-a. In this alternative the parts can be
interchanged. We get then 'x = non-a v x =a'. When we apply the
R-rule to (1) and (12) with the changed alternative we get
questions of another form, e.g.:

A" Did Non-Jane steal the necklace?
B* Did Copernicus non-discover the heliocentric system?
C" Did Barens discover Non-Spitzbergen?
All these questions sound very unnatural and, bacause of the
symmetry of alternative, we cannot help such a change. This

problem can be solved only when some new condition is added to
the R-rule, namely:

" tgn [IX]' is admissible for z iff (11) and (12) and
Wiz, y P(z',z,fx)) and fx is the shortest form of the
information.

The obstacle is that our language is too poor to formulate the
clause: fx is the shortest form of information. Thus at least one
problem remains unsolved.

Well-foundedness of questions

1. Even when questions are admissible and motivated they may
be in some sense very stupid. We may, for example, be astonished
when somebody seriously (not rhetorically) asks if 2+ 2 =4,
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Most often when the problem of generating questions is raised,
only its scientific status is considered: do questions only
express subjective lack of knowledge or - and this is important -
is there a scientific reason for asking them. Let us call this
issue the problem of well-foundedness of questions.

The basis of all questions is their admissibility which in
the case of questions of the form '?, () [fx]' reduces to (11
and (12). As we know, these two clauses, in turn, state that the
person z who asks the question: 1) believes that fx and that the
objects which are f are also g; 2) the person z does not know the
exact objects which are f. The problem of well-foundedness is
reduced to the question whether these beliefs are reasonable. In
the framework of our poor language it is not possible to describe
reasonableness of corroboration of hypotheses, etc. There, in
order to point to ways of arriving at a solution, we have to
resort to the notion of proof. This notion (notions) is well
defined and well known. But we ought to bear in mind that a more
realistic solution will be possible only if instead of the notion
of proof the more general notion of corroboration or argument is
introduced.

2. In order to find out whether the questions posited by
person z are well-founded we must examine the beliefs of this
person in regard to their reasonableness. In the case of
questions of the form "?, ) [{x]" person z believes that

X. Y (fx) A /x\ (fx = gx)

and cannot tell what object a,b,c,.. satisfies fx. There Iis
uncertainty as to

Y. fa, fb, fc, fd,...

The question asked by z is well-founded if X has some proof (cor-
roboration) and no member of the series Y has a proof. Unfortu-
nately, this general ascertainment has many ramifications. First
of all, we have to settle the problem of the bases of the proofs
for X. Secondly, so far we have deliberately not explained what
is meant by "X has a proof”. Is it to be understood in the sense
it is used in methodological proof-theory? Or does it mean that
person z knows such a proof and X has proof from the standpoint
and knowledge of person z? Or can this phrase be taken to mean
that the proof of X has actually been performed by somebody? Or,
finally, does it point to the fact that the proof is actually
performed and generally known?
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Similarly, different views are connected with well-founded-
ness of Y. As was already mentioned, lack of belief in Y Iis
well-founded if Y has no proof. Once more, we can ask what was
taken into account here. It is possible that on the basis of one
set of sentences (and one set of rules of inference) Y cannot be
proved, while it can be proved on the basis of another set of
sentences? The set of sentences which is the basis of the lack of
proof is to be fixed and it is to be identical with the set which
makes the proof of X possible. Possibly, there is no proof of Y
(in the sense of proof theory) on the basis of the whole set of
true sentences, which are expressible in the language of the
question. But there may be such a proof but it has not been
performed by anybody, including z who asks the question. It may
be that the proof has been performed but it has not been
presented to person 2z; it is also possible that the proof has
been performed but it has not been presented to a group of people
including z who is a member of this group. Perhaps z knows the
proof but his scientific environment does not know it.

It is obvious that we get a whole range of well-foundedness
concepts if we consider all these possibilities. Only some of
them can be presented here.

3. 1. Let us assume that

1. The question (&) "2, 4 (fXI' is  cognitively
motivated for z. Automatically, the question |is
admissible for z and it so, then (11) and (12) are
true. This being the case the question is
well-founded in the sense I if:

2. T is the set of true sentences which are expres-
sible in the language which is couched.

3. There is a proof of V (fx) A A (Ix  gx) on the
basis of T.

4. For all a: there is no proof of fa on the basis of T.

5. For all a: fa is couched in the language of sen-
tences T.

The sentences fa are independent from the set of true sentences.
The sentences fa are obviously false and are possible answers to
(a). Thus questions without possible true answers are not well-
founded in sense I.
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II. Once more let us assume that

1.

"% gu [fXI' is cognitively motivated for z. Then
the question is well-founded in the sense II if:

S is the set of principles of an empirical theory
which is believed in the community C.

There is a proof of \./ (fx) A /'\ (fx » gx) on the
basis of S.

For all a: there is no proof of fa on the basis of S.

The sentences fa are worded in the language of the
set S.

It seems that sentences fa, which possibly can be true, are
falsifying instances of the theory.

. In

case 1. is true the question is well-founded in the

sense III if:

2.

5.

Possibly the
sense.
IV. In

4.

5,

S is a set of principles of a theory (not neces-
sarily an empirical one)

There is a proof of V (fx) A A (fx » gx) on the
basis of S.

For all a: there is a proof of fa on the basis of S
but the proof is not presented to anybody.

The sentences of a are worded in the language of S.

great problem of Fermat is well-founded in this

case 1. is true and similarly 2. and 3. of Ill and

For some a there is a proof of fa on the basis of S
but the proof is not presented to anybody with the
exception of the person who discovered the proof.

The sentences fa are worded in the language of S.

If Fermat had succeeded in finding the proof of his great
hypothesis, it in sense IV in which his problem is well-founded.

From among the variety of further senses of well-foundedness
let us cite only two without any comments.
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V. 1. Question (a) is motivated for z.

2. S is the set of principles of a theory accepted in
the community C (the members of the community
believe in S).

3. There is a proof of V (fx) A /\ (fx * gx) on the
basis of S and nobody is presented with this proof
- it is not discovered.

4. For some a there is a proof of fa on the basis of S
but the proof is not presented to anybody - it is
unknown.

5. As above in I - IV.

VI 1. Question (a) is motivated for z.
2. As above in V.

3. There is a proof of V Ix) A /\ (fx * gx) on the
basis of S and this proof is presented by members
of community C to person z.

4. For some a: there is a proof of fa on the basis of
S but the proof is not presented to anybody of the
community C.

The adduced examples show the way how to construct
successive concepts of well-foundedness. The basic sentences may
be given logically, presented or not presented, believed or not
by z or by a community. The proof of V (fx) /\ (fx = gx) may be
given logically and presented or not"to z of to a community.
Similarly with the fourth clause. A new numerous set of notions
of well-foundedness comes into existence when the notion(s) of
proof is substituted by different concepts of corroboration or
argument. So far we have considered only well-foundedness of
cognitive questions. Well-foundedness of rhetorical, examination
and deliberative questions reduces to the problem of the founda-
tion of the belief that they are or can be admissible. In the
case of the rhetorical question: ‘Is it possible to deny that
2+2=47" all arguments show that for some people ‘Is 2+2=4?" is
admissible.

4. The considerations put forward are rather sketchy. 1
would like to call attention to three important points which call
for further study. The variable x 1is typically ambiguous - it
ranges over sets of different syntactical categories. In this
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paper the problem of the grammar of the language in which the
questions are worded was carefully omitted. As a consequence
nothing was said about how many and what kinds of syntactical
categories are possible in language of the questions. In fact, we
had the natural language in mind and its categories and grammar
are not well discerned.

The notion of presentation is very important in these
consideration. It deserves a thorough analysis. The notion of
belief - the weaker one which was introduced here - depends
heavily on the notion of presentation and is also worth a
detailed study, as only the stronger concepts of belief were in
the focus of interest.



WOICIECH BUSZKOWSKI

THE LOGIC OF TYPES

0. INTRODUCTION AND PRELIMINARIES

By the logic of types (TL) we mean systems of type
transformation. The formulae of these systems are simply types or
type transformation rules. For example, the system introduced by
Ajdukiewicz (1935) (under the influence of Lesniewski’s doctrine
of semantic categories) employs the schema:

(A.1) (abla=* b,

which can be interpreted as a law or rule of type reduction. The
much stronger system of Lambek (1958) also admits the schemata:

(1 (ab)(ca)= (cb) (rediscovered by Geach 1968),
(2) (ab)=> ((ca)(cb)),

and many others. The system of van Benthem (1983a, 1985) affixes
to the latter:

3) a-r ((ab)b) (implicit in Montague 1973).

Notice that, according to (2), each functor of type (ss) is
also of type ((nsXns)). For instance, negation is a sentence-
forming functor, but it can be regarded as a predicate-forming
functor as well. The basic type of a quantifier is ((ns)s) (as in
VxP(x)). By (2), it expands to ((n(ns))}(ns)) (as In VxP(x,y)), to
((n(n(ns)))n(ns))) (as in VxP(x,y,z)), and so on (see Levin 1982
who uses (1) instead of (2)). Due to (3), each individual name
{type n) can be lifted up to the type of nominal phrases ((ns)s).

Systems of TL play a fundamental role in theory of catego-
rial grammars, a logically oriented branch of mathematical lin-
guistics. From the linguistical point of view, a natural seman-
tics for them is an algebraic semantics, based on residuated
semigroups (Buszkowski 1982, 1985, 1985a). A long proof-theoretic
tradition suggests another semantics, involving typed lambda
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calculus. For example, van Benthem (1983a} proves that the type
transformations derivable in his system are precisely those which
can be defined by means of a limited class of typed lambda terms.
In fact, the very idea of this correspondence was implicit in
Cresswell (1973). As is well known, typed lambda calculus is
naturally modelled by Cartesian closed categories (Scott 1980);
in a sense, systems of typed lambda calculus are simply
equivalent to Cartesian closed categories (Lambek, Scott 1984).
Accordingly, TL may also be viewed as a logic of these
categories, which deals with some universal arrows and
transformations.

Beyond doubt, the subject-matters of TL are of great signi-
ficance for the foundations of logic and linguistics. Their
significance follows from the obvious role of types in logical
syntax and semantics. On the other hand, not many studies of ge-
nuine logical character have been devoted to the matters in
question. Furthermore, they mainly focus on the linguistics side
of TL (categorial grammars), Jjust ignoring finer logical aspects.
In the author’s opinion, TL deserves a profound research from the
stand-point of logic (for its position in logic see also van
Benthem 1983, 1984, Buszkowski 1986a). Methodologically, it s
rather close to abstract propositional logics (cf. Rasiowa,
Stkorski 1963, Wojcicki 1984), but it calls for some special
methods, for instance, of linguistic flavour.

In this paper we consider several systems of TL, all related
to that of Lambek (1958). The Lambek calculus will be denoted by
L. We distinguish some interesting supersystems and subsystems of
L, among them the commutative L (CL), which amounts to the
calculus of van Benthem (1983a). The paper penetrates into the
correspondences between TL and typed lambda calculus, different
axiomatizations of systems of TL, and matrix semantics for TL.

In section 1 we establish a number of correspondences
between systems of TL and classes of typed lambda terms. There
are regarded non-directional, unidirectional, as well as bidirec-
tional systems. However, we confine ourselves to product-free
systems of TL, which correspond to the traditional versions of
types and typed lambda calculus.

Section 2 provides different axiomatizations of the systems
distinguished in section 1. We consider Gentzen-style axio-
matizations (which  yield decidability results), Hilbert~style
ones, and linear ones. In particular, we show that CL admits no
finite Hilbert-style axiomatization, though such an axiomatiza-
tion exists for the closely related system Cl,. These results



182 Wojciech Buszkowski

possess a nice connection with lambda calculus. For instance, the
class of terms corresponding to CL cannot be generated by any
finite family of term schemata (with application as the only
operation).

In section 3 we examine matrix semantics for TL. Precisely,
the so-called e-free systems (as L, CL, etc.) require modified
matrices, where instead of a distinguished subset one uses a
distinguished binary relation. We prove a number of repre-
sentation, completeness, and adequacy theorems. For example, such
systems, as L, L,, CL, CL, are shown to admit no finite adequate
matrix, though L and CL possess the finite model property.

Many results of this paper are less or more akin to earlier
ones. Those from section 1 generalize the afore-mentioned theorem
of van Benthem (1983a). Section 2 refers to the Gentzen-style
axiomatization of L given by Lambek (1958) and the axiomatization
of L by “cancellation schemata” considered by Cohen (1967), and
Zielonka (1981). In section 3 we widely employ the author’s
earlier results on algebraic semantics for L.

Below we recapitulate some basic notions of TL. Our mathe-
matical terminology and notation is rather standard and need not
be explained.

We fix a denumerable set Pr, of primitive types. The set Tp,
of types, is defined by the inductive clauses:

(i) Pr ¢ Tp,
(ii) if a,beTp then (ab)eTp.

The letters a,b,c (p,q, 1) are to denote (primitive) types,
and X, Y,Z finite strings of types (e stands for the empty
string). Expressions of the form X—a are called arrows. An arrow
of the form a—*b is said to be simple. By the complexity of aeTp
(c(@)) or an arrow X=+a (c(X-a)) we mean the total number of
primitive types occuring in it. The order of ae€Tp (ofa)) is a
non-negative integer, defined by the following induction on c(a):

(0.1 olp) = 0, for pePr,
(0.2) o((ab)) = max(o(b),o(a)+1),
and we set:
oe) = -1,
(4) ola,...a,) =‘xg§§no(a,),

o(X=a) = max(o(X),o(a)).
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For all a and X, type (X,a) is defined by induction on the
length of X as follows:
(e,a) = 8,

5 (Xb,a) = (X,(ba)).

Notice that for each type a there are unique pePr and X,
such that a = (X,p) (p is called the head of a). Also observe
that:

(6) ol(X,p)) = o(X)+1.

The Ajdukiewicz calculus admits (A.1) and:
(A.0) a=ra,
as its axioms, and:
(CUT) XaZ=rb and Y=+a yield XYZ=b,

as its only inference rule. We denote this system by A" (the
reason for the superscript r will be provided later on). We write
Faor X=>a if X->a is derivable in A", and similarly for other
systems. By affixing to A" the rule:

(R.1) Xa=b yields X=(ab) (X = e),

we obtain the right-directional fragment of L (L7). Verify that
(1) and (2) (but not (3)) are derivable in L. CL equals L*+
(3). CL is commutative, which means that it admits the rule:

(COM) XabY— c yields XbaY=rc,

and, consequently, a8, ..a,=*b F a, .. a, =+ b, for every
permutation i,, ..., i, of 1,..,n. (Given a calculus C and a
set of arrows R, R +. X—a means, as usual, that X-ra is
derivable from R in C.) The commutativity of CL has been shown by
van Benthem (1983a), but his axiomatization of CL is richer than
ours; so, we give new proof.

First, we show that:

7) (a(bc))= (blac)),

is derivable in CL. Both L" and CL admit the rules:
(EXP.1) a=b yields (ca)=r(cb),
(EXP.2) a=b yields (bc)=»(ac).

Using these rules together with (2) and (3), we can get in CL:
8 (a(bc))=» (((a(bc))ac))(ac)) =+ (((be)e)(ac)) = (blac)),
hence +, (7), by (CUT).
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To derive (COM) assume XabY-+c. By (R.1), we get Xab=+(Y,c)=
= c'. Suppose X # e. Then, (R.1) yields X=-r(ab,c'), hence we ob-
tain X=(ba,c'), by (7) and (CUT). Using (A.1) and (CUT) we come
to Xba=c', and finally, to XbaY=rc. Suppose X = e. Then, ab=c'
yields a=* (bc'). By (3), (A.1), and (CUT), the schema:

(A.1Y) a(ab)=»b,

is derivable in CL, hence we get b(bc')=c’, which yields ba=rc’,
by (CUT). Finally, using (A.1) and (CUT), we come to baY=»c.

Notice that CL also amounts to (A.0) + (A.1") + (CUT) +
(R.1). For, (R.1) transforms (A.1') -into (3), and (3), (A.1") and
(CUT) yield (A.1).

By (R.1,) we denote the rule (R.1) with the constraint X # e
dropped. Systems LI and CL, result from substituting (R.1,) for
(R.1) in L and CL, respectively. Both L] and CL, but neither LT
nor CL produce derivable arrows of the form e-+x, which we write
=»x. Furthermore, L (CL,) is a non-conservative extension of Lf
(CL), since, for instance, ((qq)p)=>p is derivable in L] but not
CL. (If we claim underivability, we employ decision methods for
these systems, which will be considered in section 2.)

The systems described above are restricted to non-directio-
nal types. The set Tp*, of bidirectional types, is defined as Tp
with (ii) replaced by:

(ii*) if a,beTp* then (ab),(ab)*eTp*.

All the technical notions defined above preserve their sense for
bidirectional types. Only (5) must be supplemented by:

(e,a)* = a,

(Xb,a)* = (b(X,a)*)*,

(5%)

The bidirectional version of A" (A) uses bidirectional types
and the additional schema:

(A.1%) a(ab)*=b.

Actually, this version of A" is due to Bar-Hillel (1953),
Bar-Hillel et.al. (1960). Similarly, by affixing to A (R.1) and:

(R.1%) aX-+b yields X=»(ab)* (X # e),

we get the lambek calculus (L) (L amounts to the product-free
fragment of the system of Lambek 1958). L, arises from L in the
same way as L] from L'. For aeTp*, a° denotes the non-directional
type which results from dropping all stars in a, and we set:
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0 =

e e,

@ (a,..a,)° = af..a3, for a,eTp*, 1< j<n

L (L,) can be treated as a system intermediate between L
(L)) and CL (CL,), since the following conditional holds true:

(10)  if by, X=a (k, X=a) then k¢, X°=a® (g, X°=a®).

If should be noticed that A" and L' coincide in the scope of
arrows of the form X-+p, where o(X) € 1 and pePr, and similarly A
and L (Buszkowski 1982). In this scope, CL vyields precisely the
arrows Y=>p such that, for some string X, +,r X»p and Y is a
permutation of X. Consequently, the generative capacity of CL
reaches all commutative closures of context-free languages, hence
it allows some non-context-free languages (Buszkowski 1984, wvan
Benthem 1985).

Types can be translated into purely implicational proposi-
tional formulae. Precisely, for aeTp, we define a formula F(a) by
the inductive clauses:

(i) F(p) = p, for pePr,
(ii) F((ab)) = (F(a)=» F(b))..

We also set: F(a) = F(a®), for ae¢Tp*. One easily verifies that
all the systems distinguished above are in fact subsystems of
positive intuitionistic logic. Precisely, if +. X=-ra, where C s
any of those systems of TL, then F(X) + F(a), where F(X) stands
for the set of all F(a), for a appearing in X, becomes a valid
inference pattern of this logic. Clearly, (A.1), (A1), (A.1%)
correspond to Modus Ponens, (1) is the rule of transitivity,
(R.1) and (R.1*) (also (R.1,) and (R.1¥)) represent some forms of
the deduction theorem, and so on. So, {dentifying types with
formulae and arrows with rules, we see that systems of TL, as
presented above, are systems of rules rather than formulae. Such
an approach to TL appears to be much expedient for various

purposes.

1. TL VERSUS TYPED LAMBDA CALCULUS

To each type ae¢Tp we ascribe a denumerable set VAR,, of
variables of type a, to be denoted by x,, vy, z,, etc. The set
TER, of typed lambda terms (shortly: terms), is the union of
pairwise disjoint sets TER,, of terms of type a, being defined by
the following induction:
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(TER.1) VAR, § TER,,
(TER.2) if teTER,,,, and ueTER, then (tu)eTER,,
(TER.3) if x,¢VAR, and teTER, then Ax,teTER,,,

With each term t we associate a string var(t), containing
all the free occurences of variables in t in the order of their
appearance in t. We give an inductive definition:

(var.1) var(x,) = x,,
(var.2) var((tu)) = var(t)var(u),
(var.3) var(ix,.t) = the string that results from dropping x,

in var(t).

For teTER, by typ(t) we denote the string of types which
results from replacing in var(t) each variable by its type. The
only type a such that teTER, will be denoted by Typ(t). Finally,
Ar(t), teTER, stands for arrow typ(t)=»Typ(t). Given a set TSTER,
we set:

(1) Ar(T) = {Ar(t): teT).

Let C be a system of TL (whose formulae are arrows), and let
T ¢ TER. We say that C is complete with respect to T (T-complete)
or T corresponds to C if the arrows derivable in C are precisely
those from Ar(T). As observed as far back as Curry et. al.
(1958), the full <class TER corresponds to the purely
implicational  intuitionistic logic. Van Benthem (1983a) proves
that CL is complete with respect to the class TER; of all terms,
tulfilling the following constraints:

(C.1) each subterm contains a free variable,

(C.2) no subterm contains more then one free occurence of the
same variable,

(C.3) each occurence of the lambda abstractor binds some
variable within its scope.

We consider classes TER;, G € {1,2,3}, of all the terms ful-
filling the constraints (C.i), for {eG So, TERg = TER and
TER,,, = TER,, (we write 123 for {1,2,3), and similarly for other
cases). TER, is the typed version of Church’s first concept of
lambda terms (Church 1941).

Our goal is to find systems of TL, complete with respect to
these classes of terms. The most natural way seems to proceed as
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follows. First, we 1look for systems whose derivation trees
strictly harmonize with the structure of terms from the cor-
responding classes. We omit standard definitions of a derivation
tree of arrow X=+a in a system C and the tree of subterms of a
term. Now, a system C is said to be compatible with a class
T € TER if the following conditions hold true:

(1) for any teT, one obtains a derivation tree of Ar(t) in C,
after he has replaced in the tree of subterms of t each
node u by the arrow Ar(u),

(i) it +. X=-+a then there exists a derivation tree of X-+a in
C, such that, for some teT, fulfilling Ar(t) = X=+a, this
derivation tree results from the tree of subterms of t in
the way indicated in (i).

It immediately follows from this definition that:

1.1 Lemma.
If C is compatible with T, and T is closed under subterms,
then C is T-complete.

All the classes of terms we consider in this paper are
closed under subterms. So, to find a system complete with respect
to such a class T it suffices to formulate axioms and rules,
strictly mirroring the principles of construction for T, and
next, to look for some equivalent axiomatizations.

Consider the rules:
(R.0) X~»(ab) and Y~ra yield XY= b,
(R.1%) X,aX,a ... X, aX, ., =) yields XX, ... X,,,~ (ab).

The scope of (R.1°) will be limited by the constraints:
(c.1) XX, ...X # €
(c.2) n <1,
(c.3) n 2 1 (i.e. one excludes: X,=b yields X,= (ab)).
For each G ¢ {1,2,3), by (R.1°;)) we denote the rule (R.1')

restricted by all the constraints (c.i), for ieG. Thus, for in-
stance, (R.1'y) is simply (R.1'), (R.1",;,) amounts to:

(2) X,aX;=Db yields X,X,=(ab) (XX, * e),

and so on. We also define C; = (A.0) + (RO) + (R.1%), for all
G ¢ {1,2,3).
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1.2 Theoren.
For each G ¢ {1,2,3), the system C; is compatible with the
class TERg.

Proof. Fix G ¢ {1,2,3}). Let teTER;. If t is a wvariable, then
Ar(t) is an axiom (A.0). If t=(uu,), then Ar(t) results from
Ar(u,) and Ar(u;) by (RO). H t=2Ax,u, then Ar(t) results from
Ar(u), by (R1°%). This yields the clause (i) of the definition
of compatibility. To prove (ii) we proceed by induction on deri-
vations of X-+a in C;. For an axiom a-ra, we get a=ra = Ar(x,),
where x, is an arbitrary variable of type a. Assume that X=ra re-
sults from X;-»(ba) and X,-b by (R.0). By induction, we find
terms u,,u,eTER;, such that Ar(u,) = X,=>(ba), Ar(u,) = X,=b,
and the trees of subterms of u, and u, fulfil (ii). We can change
the free variables in u; and u, so to obtain (u,u;)eTER;. Conse-
quently, the term t = (uu,) {fulfils (if) with respect to X=ra.
Finally, assume that X=ra results from Y=c by (R.1'g). Then,
a=(bc) and Y =YpbY,b..YDbY ., ~c, where Y satisfies the
constraints imposed on (R.1';). Again, by induction, we find a
term ueTER; whose tree of subterms fulfils (i) with respect to
Y=+c. After identifying, if necessary, some free variables of ty-
pe b in u, we get t=Ax,ueTER;, typ(t) =Y,Y,...Y,,, =X, and
the tree of subterms of t yields a derivation of X=a in C;. The
proof is finished.

We wish to compare Cg's with the _Systems of TL introduced
in the preceding section. For aeTp, by a we dencte a string of
a’s, and by 1(@) the length of 3. Consider the rule:

(R.19) Xa=b yields X=(ab),
and the constraints:

(c.19 X # e,

(€.2° 1@ < 1,

(.39 @ > 1.

(R.1°%), where G¢{1,2,3), stands for the rule (R.1°)
restricted by all the constraints (c.i®), for ie¢G, and by ClL; we
denote the system A' + (3) + (R1%) ((3) refers to section O).
Clearly, CLy,, = CL and CL,; = CL,. We prove:

1.3 Lemma.
For all G¢{1,2,3), and for all arrows X-+a, ¢, X=a itt

Fc X=a.
G
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Proof. Fix G ¢ {1,2,3}. By induction on derivations, one
easily proves that C; is closed under (CUT). Using (R.0) and
(A.0), we derive (A.1) in Cg, hence also (3) (from section 0), by
(R.1'g). Since (R.1%;) is an instance of (R.1'G), we infer that
FCLG X-»a entails I--cG X-a. To show the converse observe, first,
that CL; admits (R.0) (use (A.1) and (CUT)). In the same way as
for CL one proves that Cl; also admits (COM) (in fact, if 1¢£G
then the proof goes more smoothly!), and consequently, it must
admit (R.1°;), which finishes the proof.

From 1.1 - 1.3 we infer:

1.4 Theorem.
For all G < {1,2,3}, CL; is TER;-complete.

In particular, we have given a new proof of van Benthem’s
result for CL. Notice, furthermore, that ClLgz; provides some
axiomatization of purely implicational intuitionistic logic.
Accordingly, the commutative systems of TL are certain subsystems
of this logic, corresponding to some natural constraints on the
structure of terms.

The extensions of CL we have described above may also find
some interesting applications in categorial grammar. Consider,
for Instance, a grammar which admits the following type

assignment:
(3) Joan=»n, runs-»(ns), springs=*(ns), and-*(ss,s).
If based on A" + (3) (from section 0), this grammar assigns
type s to the sentence:
(4) Joan runs and Joan springs,
but even CL does not allow to accept:
(5) Joan runs and springs.
The latter sentence is nonetheless accepted by a grammar,
based on CL,,. For, the arrow:
()] (aa,b)=r ((ca)(ca),(cb)),

is derivable in CL;; (use (R.1'3;) to the A'-derivable arrow
(aa,b)(ca)c(calc=b), hence (ss,s) can be expanded to
((ns)(ns),(ns)) (see also Cresswell 1973 who points out this fact
in the terminology of lambda terms).

For any G, the system Cl., though TER;-complete, is however
not compatible with TER;. Of course, derivations in CL; do not
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reflect trees of subterms. In particular, (CUT) corresponds to
the substitution of a term for a free variable in a term. It
would certainly be interesting to examine the operations on terms
corresponding to the rules of these systems in detail, but we
avoid this matter here.

We shall briefly discuss other systems of TL. Clearly, A" is
complete with respect to the class of lambda-free terms (show
that A" ylelds the same theorems as the system (A.0) + (R.O), and
the latter is compatible with this class). L* is complete with
respect to the class TER,, consisting of all the terms which
tultil (C.1), (C.2) and:

(C.3% each occurence of the lambda abstractor binds the
right-most occurence of a free variable within its
scope.

For, L' is (weakly) equivalent to the system (A.0) + (R.O)+
(R.1) and the latter is compatible with TER,. Similarly, L] Iis
complete with respect to the class TERL., of all the terms
tulfilling (C.2) and (C.3°).

To manage bidirectional systems we need a bidirectional
version of typed lambda terms. The set TER*, of directional
terms, is again the union of pairwise disjoint sets TERY, for
aeTp*, which are defined by the following induction:

(TER*.1) VAR, ¢ TER%,

(TER*.2) it teTERY,,, (teTERY) and ueTERY (ueTERY,,®) then
(tu) ¢ TER® ((tw)* e TERY),

(TER*.3) if x,€VAR, and teTERY¥ then Ax,.teTERY,,, and
A*.te TERY .0 *.

As a natural semantics for TER consists of Cartesian closed
categories, TER* can be interpreted by means of biclosed monoidal
categories (Lambek 1958). In particular, we can employ a standard
hierarchy of ontological categories (see e.g. Suszko 1958-60),
but distinguish between a function feCAT,,, and its “copy”
1*€CAT,,,,». Linguistically, that means that we relativize
possible designata to the actual syntactic roles of the
expressions which denote them.

All the notions introduced above for TER admit an obvious
extension for TER*. This also holds for  compatibility,
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T-completeness, and so on. let TERY ('IER{‘.) denote the class of
all the directional terms fulfilling (C.1), (C.2), and:

(C.3% each occurence of A (A¥) binds the right-most (left-
most) occurence of a free variable within its scope.
We prove:

1.5 Theoren.
L, is TER:.-complete (TER{“.-complete).

Proof. One shows that L is (weakly) equivalent to the system
(A.0) (for aeTp*) + (R.1) + (R.1%) + (R.O) + the rule:

(R.0%) X=ra and Y= (ab)¥* yleld XY=b,

which is compatible with TERY. The case of L, can be treated in a
similar way.

Clearly, A is complete with respect to the class of all
lambda-free bidirectional terms. As for non-directional systems,
we could consider extensions of L, corresponding to some wider
classes of bidirectional terms. Since they behave quite analo-
gously to the previous ones, we omit all details.

Till now we have considered the language of typed lambda
calculus, but not the very calculus (e.g. reducibility, equali-
ties, etc.). Of course, by regarding these matters we come to a
more advanced level of TL. In this paper we however neglect this
direction of research in TL except for some simple observations.
Notice that the commutativity of the systems corresponding to
such classes, as TERg’s, is a consequence of the fact these
classes contain terms which are not in normal form. For instance,
(A.1), which results from (A.1) by (COM), equals Ar(t), where t
is the term:

7 (AXap) (X(an)Ya ) Xiat))»

whose normal form is u = x.,Y., and Ar(u)=(A1). As in
semantics equal terms posses equal designata, we may suppose that
just terms in normal form provide a semantically relevant variety
of type transformations. Consequently, we should look for systems
of TL, being complete with respect to some classes of terms in
normal form.

Consider, for Instance, the class NTER., of all the terms
from TER., which are in the weak normal form. One easily shows
that the system NCL = (A.0) + (2) + the rule:

(NR.O) X,=a,, .., X,~a, vyield (a,...a,b),..X,~b,
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is compatible with NTER;,, hence it is NTER; -complete. NCL is
closed under neither (COM), nor (CUT), but, interestingly, it
completely determines CL, due to the equivalence:

(8) ey 8y..a,=b iff, for some permutation |i,, ..., 1,
of the sequence 1, ..., n, byc, .ail - 8 = b.

n

The proof of (8) uses the fact that each typed term has a
weak normal form. Since commutative systems seem rather strange
from the point of viev of linguistics, as they enforce us to
accept every permutation of an accepted string of words, we
suggest that systems like NCL, which lack that fajlure, may
deserve a serious attention.

2. AXIOMATIZABILITY PROBLEMS

In this section we consider various axiomatizations of
systems of TL. We begin fram the Gentzen-style ones, following
that given by Lambek (1958).

We introduce a new rule:

(R.2) XbZ=+c and Y=ra yleld X(ab)YZ=-rc.

Denote GL' = (A.0) + (R.1) + (R.2). We prove:

21 Lemma.
CL' is closed under (CUT).

Proof. We must show:
§)) it Fgr XaZ=+b and tgr Y=>a then kg r XYZ=b.

We use induction on c(a). Let aePr. Then, (1) holds by a
straightforward induction on GL'-derivations of XaZ-b. Let
a = (aa;). Again, we proceed by induction on GL'-derivations of
XaZ-+b. The only non-trivial case is if XaZ=-+b results from
Xa,Z,»b and Z,=a;, by (R2) (so, Z=2,Z;). We use induction on
GL"-derivations of Y=ra. Again, the only non-trivial case is if
Y-+a results from Ya,-a, by (R.1). Then, from Xa,Z,~b and
Ya,~»a, we obtain XYa,Z,-»b, hence with applying Z,~a, we come
to XYZZ,-b, as desired (the final steps employ the first
induction on c(a)).

Although the above lemma was essentially proved by Lambek
(1958), we have given another proof which can easily be adapted
for different systems to be considered in what follows.
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2.2 Corollary.
GL' is weakly equivalent to L'.

Proof. Clearly, L' admits (R.2) (use (A.1) and (CUT)), hence
it is supersystem of GL'. Since (A.1) follows from (A.0) and
(R.2), then - in the presence of 2.1 - we infer that kr X-ra
entails tgr X-+a. Consequently, L' and GL* yleld the same
theorems.

2.3 Theorem (essentially Lambek 1958).
L* is decidable.

Proof. Observe that in both (R.1) and (R.2) the conclusion
has a greater complexity than the premiss(es). Then, GL' admits a
standard “proof-search” decision method.

By L"(R), where R is a set of arrows, we denote the system
resulting from L after one has affixed to it all the arrows from
R as new axioms, and similarly for other systems. We shall
describe  Gentzen-style systems equivalent to L7(R)’s. First,
observe that due to the equivalence:

(2) ’-Lflk, x- (Y,a) iff ""Lf(k) XY» a,

every arrow is equivalent in L'(R) to an arrow of the form X=-»p,
pePr. Accordingly, with no loss of generality we may assume that
the arrows in R are in the latter form. To each arrow
a; ... a,~p we ascribe a new rule:

(3) X~ a,, ..., X,=+a, yield X, ... X,=p.

Then, by GL"(R) we denote the system arising from GL* after
one has affixed to it all rules ascribed to the arrows from R.
The argument given for 2.1 also ylelds:

2.4 Lemma.
GL'(R) is closed under (CUT).

As a result, GL"(R) and L'(R) are equivalent. For the case
of a finite set R, consisting of arrows of one of the forms:
(4) Py - Pn™P,

5) p/g-r,

GL(R), hence also L*(R), is decidable. Arrows (4) correspond to
production rules of phrase structure grammars. Consequently, L°
can be treated as a decidable transformation system over phrase
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structure grammars (Buszkowski 1987). On the other hand, (5) give
rise to the rules:

6) Xq-»p yields X-»r,

being some forms of deletion. Accordingly, sets R, containing
both (4) and (5), correspond to so called generalized phrase
structure grammars (Gazdar et. al. 1985). As proved in Buszkowski
(1982a), for such sets R, the system L"(R) is, in general, un-
decidable. Precisely, every recursively enumerable language can
be generated by some system of that form.

Quite similar results can be obtained for other systems of
TL. GCL (Gentzen-style form of CL) results from GL® by affixing
(COM) (Buszkowski 1984). GL] and GCL, are almost equal to GL" and
CGCL, respectively, except for dropping X#e in (R1). To get GL
and Gl, one has to expand GL" and GL;, respectively, on
bidirectional types and to atfix the rule:

(R.2%) XbZ-»c and Y-+ a yield XY(ab)*Z=+c.

For systems CL; from section 1, the corresponding Gentzen-
style systems result from GCL after one has replaced (R.1) by
(R.1%). Now, verify that 2.1 -23 hold for each of these
systems with essentially analogous proofs.

In section O systems of TL have been interpreted as
subsystems of positive intuitionistic logic. Following this line
we shall look for Hilbert-style axiomatizations of these systems.
Such axiomatizations will be exemplified for CL and Cl,.

We begin from CL,. Since X-+a k¢ = (X,a) and conversely,
we can identify in CL, the arrow X-ra with the type (X,a) (then,
several arrows are represented by the same type). By HCL, we
denote the following system:

(a.1) (aa),

(a.2) ((a(bc))(b(ac))),
(a.3) ((ab)((ca)(cb))),
(MP) (ab) and a yield b.

Each type derivable in HCL, is also derivable in CL,. For,
koo (a1), by (A0) and (R1) = (R1%,), +g (a2), by (7)
(from section 0) and (R.1,), o (a3), by (2 tfrom section 0)
and (R.1,), and finally, (MP) is’ an instance of (R.0). We show
the converse. First, kyc, (A.0), (A.1), by (a.1), and Fucu, 3)
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(from section 0), by (a.l), (a.2), and (MP). Obviously, HCL,
admits (R.1,) (both Xa-+b and X-+(ab) are represented by (Xa,b))
It suffices to prove that HCL, admits (CUT). By (a.2) and (MP),
we get:

(7) (ab,c) Fycy Sba,c).

Since HCL, admits (EXP.1) (use (a.3) and (MP)), (7) can be
generalized to:

)] (Xab,c) t—,,CL.(Xba,c),
which means the same as:
9) (XabY,c) "uc;., (XbaY,c).

Consequently, HCL, admits (COM). Now, assume that XaZ=rb,
and Y-,a hold true. By (COM), we get aXZ-+b, which amounts to
(a(XZ,b)). By (EXP.1), we infer ((Y,ad(YXZ,b)), which together
with (Y,a) vyields (YXZ,b), by (MP). Finally, (XYZb), which
amounts to XYZ=+b, holds by (COM). We have proved:

2.4 Theorem.
CL, and HCL, are strongly equivalent, that means, they
provide the same consequence relations.

In a similar way we find Hilbert-style forms of systems CL,,
CL;, and ClLg (notice that CL, = CL,;). Precisely, to obtain HCL,
one affixes to HCL, the axiom-schema:

(10) (b(ab)),
and HCL, employs:
(n ((aa,b)(ab));

finally, HCLg requires both (10) and (11). The corresponding
equivalence results can easily be obtained in the way sketched
above.

A different situation arises for systems which do not allow
derivable arrows of the form —a. Then, we cannot identify arrow
X-»a with type (X,a). Instead, we look for Hilbert-style systems,
employing arrows X-»a, that means, operating on inference sche-
mata rather than formulae. A system of this form will be provided
for CL.

By HCL we denote the system axiomatized by (A.0), (A.1) (now
standing for (MP)), (2) and (3) (from section 0), together with
rules (CUT), (EXP.1) and (EXP.3).
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25 Lemma.
HCL is closed under (R.1).

Proof. By induction on derivations in HCL we prove that:
(12) it tyc, Xa=>b then by, X=+(ab), provided X » e.

If Xa=»b amounts to (A.1) then X-+(ab) equals (A.0). For the
remaining axioms of HCL, we have X =e, and similarly for the
case if Xa=b arises by (EXP.1) or (EXP.2). Assume that Xa-+b
arises by (CUT). We consider three cases:

(D X=XX,X, and the premisses of (CUT) are X,cX,a=-b and
X,=c. Then, bky XcX;->(ab), by induction, hence ., X=+(ab),
by (CUT).

(ID X =XX, where X, #e, and the premisses are X,c-+b and
X,a~=c. Then, Fy, X;=(ac), by induction. If X, > e then also
Fyc X;=(cb), by induction, hence ., X,=»((ac)ab)), by the
axioms and (CUT), which yields F, X(ac)=(ab), by (A.1) and
(CUT). If X,=e, we also get k. X(ac)~(ab), by (EXP.1). From
Fuce Xj(ac)=»(ab) and b, X,=>(ac) we infer b, ., X=>(ab).

(II) The premisses of (CUT) are Xc-»b and a-tc. Since X v e,
we get kyq X-+(cb), by induction, and t,, (cb)=(ab), by
(EXP.2). Consequently, by, X~ (ab) holds by (CUT).

2.6 Corollary.
For all arrows X~ a, by, X-ra iff b X-+a

As a matter of fact, the role of (EXP.1) and (EXP.2) can be
reduced to that of axiom-forming rules. We define a sequence C,,
n 2 0, of sets of arrows, by the following recursion:

(i) C, consists of all arrows (2) and (3) (from section 0),

(i) C,,, consists of all arrows (ca)=(cb) and (bc)=(ac),
such that a=»beC,,

We also define C (resp. C,) as the union of all C, (resp. all C,,
such that m < n). Clearly, the arrows in C are derivable in CL.
By HCL (resp. HCL,) we denote the system resulting from affixing
to A" all the arrows from C (resp. C,), as new axioms. One easily
checks that HCL is closed under (EXP.1) and (EXP.2), hence it is
(weakly) equivalent to HCL. Accordingly, HCL is equivalent to an
axiomatic extension of A’. Since C contains infinitely many
axiom-schemata, HCL is an infinite extension of A’. We shall
prove that HCL is equivalent to no finite axiomatic extension of
A’, i.e. no extension of A" by a finite number of axiom-schemata
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(or: a finite number of axioms and the rule of substitution). Our
argument follows a similar one, given by Zielonka (1981) for L,
but involves some new details.

It suffices to show that each system HCL,, for n>0, is
properly weaker then HCL. For, assume that the above holds true
but HCL is finitely axiomatizable over A* by, say, the axiom-
schemata S;, ..., S,. Clearly, each of these schemata must be
derivable in HCL,, for some n 2 0, hence they all must be so.
Consequently, HCL is equivalent to HCL,, against our assumption.

Observe that a=rb is derivable in HCL, Hf there are types
a=a,a,.,8,=b (m>0), such that a_,~acC, for all
1<€i€m the sequence a, a,..,38, is called a linear
derivation of a=b in HCL,. For a=beC, the only n > 0 such that
a=beC, is called the rank of a=b, and by the rank of a linear
derivation we mean the sum of all ranks of the (occurences of)
axioms involved in this derivation.

2.7 Lemma.
Let a, a,,..,a, be a linear derivation of minimal rank
of as=»a, in HCL,, such that a_ = (ap), where pePr, and
a, 1> a,£C,. Then, this derivation uses no axiom from C, at
all.

Proof. We proceed by induction on m. For m =0 and m =1,
the thesis is obvious. Take m > 2. Since a,.,=»a,£C, and no axiom
in € has the form c-p (1), then a, = (bp) with a=beC,. We
show that a, _,~a, £C,. Assume the contrary. Then, b = (a,_,p)
and the latter arrow is an instance of (3) (from section 0). We
consider two cases:

() a=beC,. Then, a,., = (ap)=a,, against the assumption
of minimality.

(I a=*beC,. Then, a = (cp) with a,_,=ceC, hence we get:

(13) 8o, 8y, ..., 8y.2, C, ((CP)P) = &,

being a linear derivation of a,~a, in HCL, with a rank less than
that of the initial one, against the assumption of minimality.

Consequently, the sequence a,, a,, ..., a,., fulfils the as-
sumptions of our lemma, hence it employs no axiom from C,.
Evidently, the same must hold for a,, a,, ..., a,.

We define types a,, b,, n 2 0, by the following recursion:
(14) a, = p, by = ((pq)q), where p,qePr, p # q,



196 Wojciech Buszkowskl!

(15) 8pey = (byp), by, = (a,p), if n is even,
8py = (bq), byyy = (8,9), if n is odd.

We set ACL_, = A". There holds:

28 Lemma.
For all n 2 0, a,=b, is derivable in HCL, but not HCL,_,.

Proof. Obviously, a,-»b,¢C,, for all n 2 0. By induction on
n 20, we show that a,=b, is not derivable in HCL,, It is ob-
vious for n=0. Assume n >0, and suppose that a,-»b, Is
derivable in HCL,, Llet a,=coCy,...,Cqu=b, be a linear
derivation of a,-b, in HCL,,, having the minimal rank. By (14),
(15), b, cannot be the right type of any axiom from C,, hence
Co» Cys ---» G fulfils the assumptions of 2.7. Therefore, no
axiom of rank O appears in this derivation, and consequently,
ap-y=*b,, Is derivable in HCL,, against the inductive
hypothesis, which finishes the proof.

2.9 Theoren.
HCL cannot be axiomatized over A" by any finite collection
of axiom-schemata.

By a term-schema we mean the totality of all typed
lambda-terms that result from a single term from TER by means of
substitution of types for primitive types in this term. As a
consequence of 2.9, we obtain:

2.10 Theorem.
The type transformations definable by the terms from TER(
can be generated by application from no finite family of
term-schemata.

Proof. Assume the contrary. Then, the arrows derivable in CL
are provided by a system, based on (R.O) and a finite number of
CL-derivable axiom-schemata. Since HCL admits (R.0), it follows
that HCL allows an axiomatization by a finite collection of
axiom-schemata, which contradicts 2.9.

On the other hand, the axiom-schemata of HCL, are precisely
the principal type-schemata of combinators I, B, C and (Curry and
Feys 1958), hence TER,; is generated by these combinators (in
the above sense).

As concerns non-commutative systems, neither L' nor L admit
a finite Hilbert-style axiomatization (Zielonka 1981 and modi-
fication of the above argument). This problem remains unsolved
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for L, (recently W. Zielonka communicated a negative solution for
LY.

On the basis of (A.1), (CUT), and (R.1), the arrow aX-b is
equivalent to a=»(X,b). Consequently, all the contents of such
systems, as L, L, L, CL, CL,, etc. can be expressed by arrows
of the form a-b. By a linear system we mean a system which
operates on simple arrows and uses the only rule:

(CUT,) a=*b and b=c yleld a=c.

Clearly, a=b is derivable in a linear system C if and only
if there is a linear derivation in the sense introduced above
which employs the axioms of C. One easily checks that C + (CUTy
provides a linear system, equivalent to CL. A linear axiomati-
zation of L' consists of all the arrows arising from (2) (from
section 0) by means of (EXP.1) and (EXP.2). Linear systems, cor-
responding to L], CL,, etc.,, require additional arrows of the
form =-+a. For instance, to obtain a linear axiomatization of CL,
it suffices to add the schema =»(aa) to C. We leave to the reader
further exercises in this matter.

3. MATRIX SEMANTICS

A (logical) matrix is an algebra with a distinguished subset
(the set of designated elements). As is well known, matrices
form a fundamental semantics for sentential logics which has been
thoroughly investigated by Lukasiewicz and Tarski (1930), Los
(1949), Kalicki (1950), Suszko (1957), and others (especially in
the group conducted by Professor Ryszard Wojcicki, see Wojcicki
1984).

In this section we establish some basic properties of
matrices corresponding to various systems of TL. It is impossible
to regard all interesting systems and variants of semantics.
Therefore we shall merely illustrate the matters by typical
examples.

First of all, we observe that the above notion of matrix is
not adequate for such systems, as eg. L', L, CL, which employ
formulae of the form X=+a, but not =»a. These systems need a con-
cept of matrix which allows a direct interpretation of =, so,
instead of a set of designated elements one considers a distin-
guished binary relation on the underlying algebra. Matrices of
this form provide, in a sense, an Iinterpretation of entailment
rather than validity. On the other hand, systems L], L,, CL,,
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etc. can be referred to the usual matrices. To avoid confusions
we use the term relational matrices (R-matrices) for the modified
matrices.

We focus on R-matrices M = (U,,/,€), such that U, (the
universe of M) is a nonempty set, / is a binary operation, and
€ is a binary relation on Uy, Given an assignment f: Pr — U,
the value of f for type a (f(a)) is defined according to the
inductive clause: f({ab)) = f(b) / f(a). We say that an arrow
a=b is satisfied by an assignment f if f(a) < f(b). Given a
class K of R-matrices, a set R of arrows, and an arrow <-b, we
say that R K-entails a-»b if, for every MeK, and all assignments
f: r — U,, a-b is satisfied by f whenever all the arrows from
R are so (sometimes, we use more general notion, where K is a
class of assignments: if @ K-entails a=b then a-*b is said to be
K-valid).

We shall describe a class of R-matrices which is strongly
adequate for L*, that means, the entailment with respect to this
class coincides with the consequence relation for L. It s
expedient to identify arrows aX-b and a-+(X,b). By K, we denote
the class of all R-matrices M= (Uy/,f), such that < is a
partial ordering on Uy, and, for all x,y,zeU,, the following
conditions hold true:

(1) x/y € (x/z)/(y/z),
(2) if x £ y then x/z € y/z and z/y € z/x.
3.1 Theorem.

R b r X=+a iff R Ky-entails X->a.

Proof. To prove the “only if* direction observe that (A.0),
(A.1) are Ky-valid, and K, admits (R.1) (due to the above
convention). We show that K, admits (CUT). Let f satisfy XaZ-»b
and Y-»a. We consider several cases:

() X=e, Y=c Then, f(c) < f(a) and f(a) € t((Z,b)) vyield
what desired, by the transitivity of <.

(D X=e, Y=cY with Y »e Then, )< f((Y',a)) and
f(a) € f((Z,b)) by the assumption, hence f((Y',a)) € f((Y'Z,b)),
by (2), and consequently, f(c) € f((Y'Z,b)).

(Il X=aX', Y=c Then, from f(a') < f((X'aZ,b)) and f(c)€
€ f(a) it follows that f(a‘) € f((X'cZ,b)), by (2).

(IV) X=a'X’, Y=cY' with Y #e Then, f(a') ¢ f((X'aZb))
and f(c) € f((Y’,a)), by the assumption. Observe that (X'aZ,b) =
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= (X’,(a(Z,b))). Consequently, (1), (2), and the transitivity of
g yield f((X'az,b)) s £f((X"(Y',a)Y'Z,b)) € f((X'cY'Z,b)), hence
f(a') € f((X'cY'Z,b)), as desired.

The "if* direction is proved by the method of Lindenbaum
matrices. We write a g b if both a=»b and b-ra are derivable in
L7(R). Clearly, g is a congruence on the absclutely free algebra
of types. By (al, we denote the equivalence class of ¢ that con-
tains a. let U consist of all equivalence classes of ¢. For
a,beTp, we define:

(3 faly/[bly = [(ba)lg,
4 faly € [bly iff R b r a=rb.

The matrix M = (U,/,<) belongs to K,, and we consider the
assignment f: Pr — U given by: f(p) = [ply, for pePr. Clearly, f
satisties a=»b iff [aly <[bly iff R +,r a=sb, which finishes the
proof.

As an immediate consequence, we infer that the class K, of
all MeK, which validate (3) (from section 0) is strongly adequate
for CL.

The theory of categorial grammars is especlally interested
in R-matrices of the following kind. Let V denote a nonempty set,
which we refer to as a vocabulary. V* denotes the set of nonempty
strings over V. A string aeV* is called a (right-directional)
functor from a set B¢ V' into a set C € V* if, for every peB, we
have ape¢C, where ag stands for concatenation of a and g, by C/B
we denote the set of all functors from B into C. One easily
checks that the R-matrix M(V) = (P(V*),/,<) (P(W) symbolizes the
power-set of W) belongs to K,. R-matrices of the form M(V) will
be referred to as standard R-matrices. In Buszkowski (1982) it
has been proved that L" is strongly complete with respect to the
class of standard R-matrices. Actually, this claim follows from
3.1 and:

3.2 Theorem.
Each R-matrix from K, can be embedded into a standard R-matrix.

Proof. Fix an R-matrix MeK,. Take V = U,,. For aeV*, xeV, we
define x/a in the same way as (X,a) in section 0. We write a € x
it y € x/a', where ya' = a. Now, for, xeU,, by f(x) we dencte the
set of all aeV*, such that a € x. We show that f is monomorphism
of M into M(V). Clearly, x<€y iff f(x) < fly). As a result,
f(x) = f(y) entails x=y. We have to prove that f(x/y)=
= f(x)/f(y). Let aef(x/y) and pgef(y). Then, ayef(x), hence
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apef(x), which can be obtained in a way similar to that applied
in the "only if" part of 3.1. This vyields f(x/y) € f(x)/f(y). To
prove the converse inclusion take aef(x)/f(y). Since yef(y), then
aye€f(x), which yields aef(x/y). The proof is finished.

A pair M,f) such that M i{s an R-matrix and f: Pr — U, s
an assignment is called a model. A model (M,f) is said to be
standard if M is a standard R-matrix. A standard model (M,f) is
said to be commutative if, for all pePr, f(p) is closed under
arbitrary permutations of strings. Obviously, if (M,f) is commu-
tative then also f(a), for all ae¢Tp, is Invariant under permu-
tations. The class of all standard and commutative models will be
denoted by SC.

3.3 Theorem.
R ¢, X=+a iff R SC-entails X~ a.

Proof. We have already mentioned that the above equivalence
holds with K, in the place of SC. Now, the embedding
constructed in the proof of 3.2, if applied to an R-matrix MeK,
sends each xeU, into a permutation-closed set f(x) € Uy, which
immediately yields the thesis.

Structures (P(V*),-,/,€), where - stands for concatenation,
in the following sense:

(5) B.C = {ap: aeB, peC}, for B,C ¢ V*,

fulfil the axioms of so-called right-residuated semigroups (cf.
Fuchs 1963). Consequently, standard R-matrices result from right-
residuated semigroups by dropping concatenation. We can replace
V* by an arbitrary semigroup G, just getting the structure
(P(G),+,/,€) which is also a right-residuated semigroup. What we
have called standard and commutative models can equivzlently be
characterized by means of structures (P(G),,/,€), where G is a
free Abelian semigroup. The reader is referred to Buszkowski
(1982), (1985), (1986), where Lambek-style systems are modelled
by various classes of residuated semigroups. It should be noticed
that, due to affixing concatenation, one can define the relation
"X-ra is satisfled by f", where X =a,..a, by the simple for-
mula:

(6) f(a,) « ... « f(a,) & f(a).
Standard R-matrices are infinite structures. We shall define

a closely related class of R-matrices, which contains finite
structures. By a quasi-standard R-matrix we mean an R-matrix of
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the form (P(U),/,S), where @ » U € V*, for some nonempty set V, U
is closed under nonempty substrings, that means:

@) it apyeU, p # e, then pel,
and / is defined by setting:
) B/C = {aeU: for all geC, if apeU then ageB).

Again, quasi-standard R-matrices belong to K, and each
standard R-matrix is quasi-standard. Consequently, quasi-standard
R-matrices form a strongly adequate semantics for L*. By the
methods of Buszkowski (1982a) it can be proved that L7 s
complete with respect to the class of finite quasi-standard
R-matrices, that means, the arrows derivable in L* are precisely
those valid in this class. One does not obtain the strong
completeness, however. Accordingly, L" possesses the finite model
property. Below we establish an analogous result for CL.

By FSC we denote the class of finite quasi-standard com-
mutative models, i.e. models (M,f) such that M is a finite quasi-
standard R-matrix, and f(p) is permutation-invariant, for all
pePr. We aim to show that CL is complete with respect to FSC. The
proof uses some auxiliary notions, introduced in Buszkowski
(1982a).

Let T be a finite set of types, closed under subtypes. By a
norm on T we mean a pair (m;, m,) of functions from T into the
set of positive integers which satisfy following conditions:

9 m,((ab)) = max(1, m(b)-m,(a), m,(b)-m,(a)),
(10) m,((ab)) = m,(b)-my(a),
(11) m(a) < my(b), for all a,beT.

If R is a set of arrows, by Tp(R) we denote the set of all
types occuring in the arrows from R. For T ¢ Tp, sub(T) denotes
the set of all subtypes of the types from T. We consider sets R,
such that every arrow from R is of the form a=*b. R is said to be
normable if there exists a norm (m, m,) on sub(Tp(R)), which
tulfils:

(12) my(a) 2 m(b), my(a) 2 my(b), for all a=sheR.
Observe that the problem of whether a finite set R s

normable is effectively solvable. For, the sentence "R |is
normable® (for a fixed R) can be expressed in the language of
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Presburger arithmetic, and the latter is a decidable theory. We
have to prove:

3.4 Theorem.
If R is a finite and normable set of arrows then CL(R) is
complete with respect to FSC, that means, R b, X-ra iff R
FSC-entails X-ra.

Proof. Since the argument is similar to that given for
theorem 2 in Buszkowski (1982a), we only sketch the main lines.
Of course, FSC is contained in K, hence R FSC-entails X-ra
whenever R +., X-»a. To prove the converse fix a finite and
normable set R, and take an arbitrary finite set T < Tp, such
that Tp(R) €T and T is closed under subtypes. It suffices to
find a model (M,f) in FSC, fulfilling the equivalence:

(13) f(a) ¢ f(b) iff R -, a=*b, for all a,beT.

Choose a primitive type q£T. We set V =Tu{g}. It can be
shown that there exists a norm (m,m;) on V, satisfying (12) and
such that m(q) = 1. Let N denote the maximal integer m,(a), for
aeV. We define U< V', as the set of all strings XeV*, such that
I(X) € N. Consider the R-matrix M = (P(U),/,c). We define an
assignment f: Pr — P(U), by setting:

(14) f(p)
(15) f(p)

where m(X) = m(a;) + ... + m(a,) if X =a,..a, Clearly,
(M,f)eFSC. By the simultaneous induction on c(a) we can prove the
following claims: for all XeU, aeT,

(16) if m(X) < m(a) then Xef(a),
(17) if m(a) € m(X) € my(a) then, Xef(a) iff R I, X=a,
(18) it m(X) > my(a) then Xef(a).

U, if peT,
{XeU: m(X) > my(p) or R k¢, X=+p}, for peT,

We show (13)(<). It suffices to verify that f satisties each
arrow from R. Take a=tbeR. If Xef(a) then my(a) € m(X), by (16),
hence m(b) € m(X), by (12). I m(X) > m,(a) then also m(X)>
> m,(b), again by (12), hence Xef(b), by (18). Otherwise, from
Xef(a) we infer R kg X=+a, by (17), and consequently R kc, X=»b,
by (CUT), which yields Xef(b). To show (13)(>) assume that a-»b
is not derivable in CL(R), where a,beT. Since my(a) < my(b) then,
according to (16), (17), agf(b). On the other hand, aef(a), and
consequently, f(a) is not contained in f(b). The proof is
finished.
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Since the empty set is evidently normable, we get:

3.5 Corollary.
by X=va iff X-»a is FSC-valid.

Clearly, 3.5 provides a new proof of decidability of CL. The
set {(aa)=»a) is neither normable, nor FSC-complete (i.e. CL(R)
is not so), though it still remains decidable. It would be much
interesting to verify whether normability amounts to the finite
model property (our conjecture is: no).

We have shown that CL possesses the finite model property.
There arises the question of whether it admits a finite adequate
R-matrix, i.e. a finite R-matrix M, such that the arrows
derivable in CL are precisely those valid in M. The negative
answer to this question follows from some results concerning the
generative capacity of CL. Given a finite set T < Tp, and pePr,
by CL(T,p) we denote the set of all XeT*, such that k., X=p. It
follows from some results of Buszkowski (1984), van Benthem
(1985) (see also Buszkowski 1987) that CL(T,p) may be even
non-context-free. On the other hand, if CL admitted a finite
adequate R-matrix then CL(T,p) would be a regular language, for
all finite T and pePr. Consequently we obtain:

3.6 Theorem.
For some finite T € Tp and pePr, the equivalence:
(19) o X=»p iff X=p is valid in M, for all XeT",

holds for no finite R-matrix M.

All the theorems given in this section possess their analo-
gues for many others systems of TL. Without essential changes
they can be proved for L', L (in the case of bidirectional sys-
tems one must employ R-matrices with two operations: / and \),
Lr, L,, CL,, etc. For the latter systems, one needs R-matrices
with a distinguished element 1, fulfilling x/1=2x, for all
elements x. Instead we can consider matrices (Uy,/,1,D), where D
consists of all xeUy,, such that 1< x. Then, an assignment
t: Pr — U, satisties an arrow a-rb if f((ab))eD. Accordingly, we
come to this form of semantics which is well known from the
theory of propositional logics.

The matrix semantics for TL deserves a tfurther {ntensive
investigation. Besides {ts evident logical {mportance we should
emphasize its Intuitive foundations, anchored in the theory of
categorial grammars. As a matter of fact, a model (M,f), where M
i{s standard, corresponds to the (intuitive concept of the family



206 Wojciech Buszkowski

of syntactic categorfes in a language. That syntactic categories
constitute an algebra like a residuated semigroup was first ob-
served by Lambek (1958). Accordingly, the algebra of residuated
semigroups, and especially standard R-matrices and their
variants, may be identified with the syntactic theory of types,
as the semantic theory of types refers to Cartesian closed
categories, typed lambda calculus and so on.
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1. INTRODUCTORY REMARKS

1.1. Every device created by humans is intended either for
dealing with energy or for dealing with information. As for
energy, some devices save it through facilitating the work of
humans or animals, as do wheels, or through conserving it, as do
clothes, while others produce new work due to their abilities of
transforming energy (as do engines). As for information, it can
be either recorded, or transformed, or else increased. One
records a message, e.g. with pencil, one can transform it, e.g.
with the help of calculating device, moreover one can increase a
plece of knowledge, as when using a microscope, or measuring a
quantity. Those devices which are to be more advanced, more
sophisticated, need a theoretical science for their construction;
physics when dealing with energy, and informatics when dealing
with information (the latter is also dealt with by genetics, but
this is another story). Thus physics and informatics, both rooted
in mathematics, prove to be crucial for civilizational
development. The import of physics has been acknowledged at least
since the last century; the import of informatics is starting to
be recognized only recently, since only now, in our age, we have
created such advanced and involved information tools that they
need a theoretical science for their construction and development
(once upon a time also energetical devices, e.g. those for
producing fire, had managed without any resort to theoretical
physics). Let it be observed, by the way, that the recent
appearance of informatics as a new discipline, both theoretical
and applied, may raise a new and fundamental problem, viz. that
of mutual relationship between energy and {information; possibly,
however, before we face such an involved question, we should do
our best to develop information sciences, including the oldest,
logic, but seen in the most recent informational perspective.

This recalling of so general a law of civilization progress
is meant to give a perspective in which the import of this
essay’s subject might be appreciated. Reasoning, like calcu-
lating, is a fundamental human activity of processing (i.e.
transforming) information, hence any device that makes it either
more economical or more efficient (efficiency including reliabi~
lity) deserves our attention. One should expect that such devices
would involve computer programs checking logical and linguistic
correctness of human reasoning and to assist humans in their most
vital activity (as reasoning must be essential for what ex
definitione is a reasonable being). In fact, such programs, ap-
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propriately called CHECKERs, started to appear since the sixties.
The checker’s task consists in showing and describing errors, if
any, committed in reasoning, thus assisting a human in producing
a correct proof (i.e. a piece of deductive reasoning; note that
so-called inductive reasonings exceed the checker’s competence as
defined in this discussion).

1.2. Such a procedure can be adopted in at least four fields
of human activities:

(i) scientific research, at least in its more routine stages;

(ii) the teaching of logic, mathematics, philosophy, etc.,
inasmuch it includes a training in reasoning;

(iii) the evaluation of arguments before the text in question
gets approved for publication, which is the main task of editors
and reviewers;

(iv) the checking of correctness of computer programs (such
programs being similar to proofs of conditionals of the following
form: if such and such operations are performed, then so and so
is obtained).

It is the second of the above applications that was, in
fact, practised while the others remained rather in the realm of
projects and theoretical considerations. This may be explained by
the fact that didactic applications provide us with the most
convenient field for gathering experience.

A word is to be said about computer-aided reasoning in
scientific research. Obviously, a checking program cannot envisa-
ge all the methods of reasoning that may be intended by creative
human minds, since every computer program has to be based on the
methods already known. But, let us note that in every research
there are some routine components, and in this respect computer’s
services may be welcome.

On the other hand, the situation in teaching is quite the
reverse. clever students may have some creative insights, but
nobody can be taught such insights (at the most they may be
inspired by the teacher’s example and personality). Every-day
instruction consists mainly in imparting some routine procedures
of research, and this can be done better by a computer than by
human being.

The aim of the present paper is to discuss some steps
already made; they consist in producing software devices, based
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on classical logic alone, meant to assist logical and mathe-
matical instruction. In this context we are to consider certain
possibilities of extending the use of these devices to include
natural language reasonings, as those being performed in
every-day life as well as in philosophy and social sciences.

2. A COMMENT ON ALGORITHMIC PROCEDURES
FOR ARGUMENT CHECKING (APACs)

2.1. There are several places in the world where people
started to work on algorithmic procedures for argument check-
ing; for short, let us call them APACs. The most successful ones
have proved to be those produced in the following centers:
(a) Stanford University, where a number of APAC projects, related
to P. Suppes’ teaching activities, came into wuse; (b) Eindhoven
Institute of Technology in the Netherlands working on the system
called AUTOMATH (abbreviation for “automatized mathematics®);
(c) Warsaw University, where a family of systems called MIZAR was
created for use in teaching logic and mathematics.

Projects of this kind should be mentioned at the very begin-
ning of the present discussion to indicate that genuine results,
not just plans or intentions will be discussed. However, what is
said in this section is not an empirical generalization based on
the results of some concrete projects. A concrete exemplification
is to be given later, while in the present section we consider
some a priori possible approaches to the construction of APAC
systems. Owing to such a discussion, we shall be better equipped
to appreciate those approaches which have been adopted in such
projects as the above mentioned.

2.2. Each logician is familiar with certain algorithms for
checking the validity of proofs, namely those regarding formali-
zed proofs. Such an algorithm is a set of instructions which
makes possible for anybody to solve the subsequent task (in a
finite number of steps): to decide whether the final conclusion
does follow from the assumptions as listed at the start. The
phrase "for anybody” means all the people who are able to atten-
tively use their eyes to trace the transformations of the
physical shapes of symbol strings, according to the instructions
put at the proof margin. Each instruction involves an inference
rule and a reference to some former lines of the proof in
question. The set of such instructions forms the algorithm for
checking the given proof. Owing to the fact that the perceptual
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apparatus alone is sufficient to follow the algorithm, the
correctness of a formalized mathematical proof can be checked
even by a person without any mathematical competence, who do not
grasp the content of the proof. Even the understanding of logical
consequence is not required, the only thing necessary is to
follow the instructions which describe physical transformations.

Owing to these features, a formalized proof can be repro-
duced in a computer, with the only difference that the optical
mechanism of recognizing objects is replaced by another mechanism
that operates on computer states instead of graphical symbols.
Thus, the whole structure of a proof text is reproduced in the
isomorphic structure of the sequence of machine states.

2.3. Discussed above was a theoretically possible approach
to the construction of APACs, viz. the approach imitating the
technique of formalization elaborated by Hilbert, Tarski, etc.
for metamathematical investigations. One can imagine adopting
this technique for new purposes, that is for checking proofs by a
computer. However, it proves to be a theoretical option rather
than a practical and feasible solution. This mode of formali-
zation is too cumbersome for a human reasoner; at the same time
it is too complicated for an automatic checker. This checker
would be obliged to reproduce step by step the whole structure of
thus formalized proof, putting it in the sequence of machine
states.

let us imagine a different approach. Instead of reproducing
the whole structure, we adopt the method that can be called
source-and-target-reproduction. This means that only the assump-
tions and the final conclusion have to be reproduced in the
machine representation, while the rest, i.e. the way leading from
the assumptions to the conclusion may be entirely different from
the way chosen by a human reasoner. To illustrate this, let us
take the analogy with arithmetical operations. One who is adding,
say, 123 and 299 may obtain the result 422 either by successively
adding 3 to 9, 2 to 9, and 1 to 2; or using the trick of defining
299 as 300 minus 1, and then, by adding 300 to (123 minus 1), one
obtains the result in the easiest and quickest way. But whatever
way is chosen by the human, the computer will perform addition
always in the same way, namely that of successive additions step
by step.

This example can illustrate a new approach to the construc-
tion of APACs, which does not depend on the exact and total
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reproduction of human-made proof in the sequence of computer
states. In this new approach, instead of the total reproduction
just a partial reproduction takes place, comprising only the
assumptions (the source) and the {final inference (the target),
while the path leading from the source to the target in computer
behavior may be quite different from that in human behavior.
Thus, for a human reasoner a wide spectrum of options is left.
Among these options may appear arguments as readable and concise
as those appearing in the practice of scientific and every-day
reasoning.

For these reasons, the constructors of various APACs adopted
the source-and-target approach. Such a construction includes
three components:

(i) a logical system of natural deduction involving an appro-
priate syntax and inference rules, both addressed to human
reasoners;

(iiy a checker, i.e. a computer algorithm (a piece of soft-
ware) to check the syntactic and logical validity of human
reasoning;

(iif) a list of commands to set the algorithm in motion.

The last component can be constructed in either of two ways.
Such commands as “start checking”, “check the next line”, “stop
checking” etc. can either be added to the text of proof as
separate units, or built into the text as its integral parts,
serving both human communication and automatic text processing.
Obviously, the latter solution is more economical; we shall see
how it works in the system to be discussed below.

3. APAC AS REALIZED IN MIZAR SYSTEMS

3.1. There are three ways in which computers can assist
human activities. Either a human activity is wholly replaced by
computer operations (as in numerical computing, in automatic
theorem proving etc.), or a computer provides us with a half-
finished product to be evaluated and finished by a human (e.g.
half-automatic text translation), or else a human produces
something to be evaluated or checked by a computer. Computer-
aided reasoning, that is an APAC implemented on a computer, falls
in the last category.
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Do we really need computer aid in reasoning while there is a
stronger tool, namely full automatization of reasoning? It should
be answered that even if the complete automatization of reasoning
were a feasible solution, we would still need the procedure of
computer-aided reasoning. For it is a fundamental property of
human reason, closely related to the process of understanding; to
understand a proposition is somehow equivalent to being able to
prove it. Hence, we may need technical devices to make our
reasoning more efficient.

3.2. Before introducing the APAC system being the main
subject of this discussion, it is worth while to hint at some
other systems of the same kind; this should provide us with a
suitable comparative context.

The story of automatic proof checking goes back to
McCarthy’s (1961) work. Soon, first implementations appeared at
Stanford University, esp. at the Institute for Mathematical
Studies in Social Sciences, not without the influence and
collaboration of P. Suppes whose two books have been used in the
project: one on logic (1957), the other one on set theory (1972).
The inference rules of predicate logic were taken from the
former, while the latter provided the project with the basis for
the APAC system called QUIP, constructed for teaching set theory.
The system, containing both the prover and checker, has been used
since 1974; the program was written in LISP. A checker for
predicate logic was created in the same Institute ten vyears
earlier.

A project based on lambda calculus with types, called
AUTOMATH, started in the 1966 in the Eindhoven Institute of
Technology in the Netherlands. It was initiated by N. G. Bruijn
who explains the point as follows (see de Bruijn (1983), p.86).

“The idea was to develop a system of writing. entire
mathematical theories in such a precise fashion thatt veri-
fication of correctness can be carried out autbomtically,
yet keeping, step by step, contact with ordinaryy mathema-
tical presentation. A similar idea possibly extited in the
mind of Leibniz but not develop at that time.”

To support this important historical conjecture, let me add the
following quotation taken from Leibniz himself: “let the truth be
perceived like a picture printed out in a chart with the aid of a
machine” (ut veritas quasi picta, velut machinae ope in charta
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expressa deprehendatur; letter to Oldenburg of 28 Dec. 1675,
quoted in Couturat (1901), p.99).

Similar ideas were proposed in the Soviet Union by at least
two authors: L. A. Kaluznin (1964), and V.M. Glushkov (1972).
Since Kaluznin’s paper was published in Poland in a widely read
mathematical journal, his terminological suggestion to call the
languages in question “information languages® has been accepted
in Poland. It is worth noting that Kaluznin’s proposal coincides
in time with the start of Stanford and Eindhoven projects; this
may be seen as one more confirmation that when the time is ripe
the same ideas appear independently at different and distant
places.

3.3. The Polish project started in the middle 70ties,
initiated and led by A. Trybulec, at Warsaw University, Bialystok
Branch; the research is mainly carried on in the Section of
Computer Science in the Institute of Mathematics, while didactic
experiments are realized at the Department of Logic of the same
University. The name MIZAR denoting the Polish family of APAC
systems has been randomly chosen from among the collection of
star names. Its purpose and main idea are like those expressed in
de Bruijn’s comment quoted above.

MIZAR’s logical basis is a system of inferential predicate
logic (natural deduction) somehow similar to that of Stupecki and
Borkowski (1967) which, in turn, is an improved version of the
system of natural deduction created by S. Jaskowski (1934), si-
multaneously with, but independently of, the systems of G. Gentzen.

All the MIZAR systems have been programmed in PASCAL and
implemented on very many machines, recently on personal computers
Apple 2, IBM PC/XT, Amstrad PCW 8256. Students are trained in
MIZAR mainly with the help of SM-4. There are collaborators who
carry on either research or instruction in university centers
abroad, e.g. in Connecticut (USA), Alberta (Canada), Gent and
Louvain la Neuve (Belgium), Kopenhagen, Stockholm. There was an
exchange of visits and experiences between the Polish research
team and the Dutch Eindhoven group, there were also contacts with
a representative of the Stanford group.

MIZAR is meant to be universal language of mathematics;
however, it is applicable to non-mathematical discourses as well,
it the logical means required do not exceed the scope of
classical logic. Extended predicate logic, that 1is involving
identity and functions, is used at more advanced levels of
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teaching or research. An easier and simpler system called MIZAR
MSE, is used at more popular levels. In the sequel we shall
concentrate upon this simplified version.

3.4. The affix MSE means Multi-Sorted predicate logic with
Equality. The fact of being multi-sorted belongs to the main
syntactic features of the language in question. This feature is
fairly rare in the current logical systems. An instructive
example of its application is found in Hilbert’s axiomatization
of geometry as accomplished in "Grundlagen der Geometrie” (1899).
In this system there are three universes and three respective
sorts of individual variables: for points, lines, and planes.

Multi-sortedeness is a useful property from the viewpoint of
the economy of formalization. It makes formulas shorter and more
readable then those resulting from the use of respective predi-
cates. It should be noted that MIZAR multi-sortedness is not
quite like the multi-sortedness of Hilbert, as in the former the
declaration of sorts does not hold for ever, that is for the
whole theory in question; instead, it is given locally, that is
in the preface to a particular proof or a cluster of proofs. This
is somehow similar to restricted quantification, but the symbols
for sorts restricting the range of variable are not predicates;
rather they are names standing for sorts, like those referring to
types in programing languages (e.g. types “integer”, "boolean”).

Here is an example. The first Euclidean postulate in the
Hilbert formalization reads as follows. let R denote the rela-

tion ..may be drawn from..to.., let A, B be variable ranging
over points, and a, b ranging over lines. Then we have:

m (VA)VB)(3a) R(a,A,B).

Let us put the same proposition in a unisorted language which has
predicates P (for point), and L (for lines) and whose variables
range over the whole domain of geometric objects. Then we obtain
a less economical formulation, viz.:

(2) (Vx)Vy)(3z) (P(x) & Ply) & L(z)) - R(z,x,y).

Now, remaining in the same unisorted language we make use of the
restricted quantification:

(3 V(Px) V(Py) V(Lz) R(z,x,y).

Let us compare (3) with the corresponding MIZAR formulation,
where for is the universal quantifier, ex..st (satistying) is
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the existential quantifier, while POINT and LINE are sort names
(not predicates as are P and L, respectively, in (3)).

4) for x,y being POINT ex z being LINE st R(z,x,y).

3.5. Besides multisortedeness MIZAR MSE possesses other
means to increase conciseness and readability, and to approximate
mathematical practice. One of them consists in the suitable
selection of Inference rules, another one iIn the selection of
directives regarding the structure of .proof texts.

As for the rules of inference, the following solutions have
been adopted in MIZAR MSE. Otherwise than in some current sys-
tems, there are infinitely many rules of propositional logic,
viz. as many as the number of tautologies which provide us with
inference rules. Hence, it can be said that all the propositional
tautologies are obvious for the checker.

For both quantifiers hold the rules of introduction and of
elimination, like in the mentioned system of Slupecki and
Borkowski. However, an important novelty is introduced to the use
of elimination rules: each is applied in the context of a
construction characteristic for the rule in question.

To eliminate the universal quantifier from a formula like

for x being INTEGER holds F(x),

we make the assumption: let x' be INTEGER, where x' designates a
fixed but random object. Thus, in the context °“let..be..” the
letter x' appears as a constant, in the sense that it designates
a fixed object.

The existential quantifier can be also eliminated, provided
that previously the existence of the object in question has been
proven. In MIZAR this fact is recorded with the help of a con-
struction which has behind it, as its rationale, the choice rule.
This rule tells us following: if it is known that a certain
existential statement is satisfied, then it is possible to intro-
duce an named object, i.e. the object satisfying the conditions
listed in the construction proposing an object to be considered,
and thus allowing to drop the existential quantifier. We can
eliminate this quantifier from a sentence

ex x gt Alx)

provided that we know an object x' satisfying the condition A.
Then we can put down:

consider x' such that A(x').
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There are conceptual analogies (in spite of notational dif-
ferences) between these MIZAR constructions and Hilbert’s methods
of dealing with quantifiers. Hilbert and Bernays in their
"Grundlagen der Mathematik” introduce special symbols to replace
bounded variables in the procedure of quantifier elimination.
But, unlike more recent approaches, the symbols which replace
existentially bounded variables are different from those which
replace universally bounded variables. This distinction, though
usually disregarded, has a good . theoretical motivation, since in
the operation of eliminating the existential quantifier it |is
obligatory to reference an existential assertion, while the
analogous operation on the other quantifier is free of this
obligation. In MIZAR the same distinction is expressed not with
the help of different kinds of symbols, but with a different
context, which is closer to mathematical practice.

3.6. In MIZAR there is an original contribution to the
structuralization of proof texts. Let us discuss this in a
comparative context.

A traditional mathematical proof, as structured e.g. with
Euclid, starts from the proposition to be proven, then there is a
sequence of propositions being ordered by the relation of con-
sequence, possibly with references to previously accepted asser-
tions; at the very end we put the proven assertion, sometimes
distinguished through letters "q.e.d.”.

In a formalized proof the structure is more rigorously
defined. It is required that each step be justified by referen-
cing both the relevant previous lines and the rules of inference
being used. It is this requirement, as not admitting any short-
cuts, that makes the usual formalized proofs so long and cumber-
some.

MIZAR systems attempt to combine the flexibility and con-
ciseness of natural proofs, with the rigour and the algorithmic
style of formalized proofs; the latter feature is necessary for
automatic text processing, the former enables addressing MIZAR to
human reasoners. A detailed description of how this goal has been
achieved would exceed the limits of this essay, hence the
exposition has to be restricted to chosen examples.

A solution that must be mentioned consists in the mode of
justification by referencing only the premisses without any
reference to the deductive rules being used. This allows for
considerable shortcuts. E.g. if a reasoner makes use of five
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rules of propositional logic at once instead of doing it in five
steps, it is up to checker to decide whether the formula in
question does, or does not (semantically) follow from the
referenced premiss. If it does, the shortened text obtains the
checker’s O.K.

Another device is a schematic frame of proof construction
performing two duties: for human users it ylelds a readable proof
construction, for a computer it expresses commands corresponding
to the given stage of processing. For instance, the word
"environ® indicates that in the text section contained between it
and the word “begin” there are collected the syntactic
stipulations (e.g. symbols to stand for introduced types) as well
as the axioms to be referred to in the proof. The word “proof”
hints that the checking process should start, while "end” means
stopping this process. Within these two basic commands more
specific ones may appear, for instance "hence” meaning that the
formula following this word should be checked with respect to the
immediately preceding formula.

Note that such items are addressed both to human readers and
to the checking system; for the former they determine the proof
structure, for the latter they are commands concerning the text
processing. There is also the possibility of inserting comments
that are addressed to humans alone, while being disregarded by
the computer. Such devices built into the MIZAR systems provide
the desired economy and flexibility that can still grow, given
extra programming effort.

4. HOW TO EXPRESS INTENSIONALITY IN CLASSICAL LOGIC
esp. IN MIZAR SYSTEMS?

4.1. MIZAR MSE and other MIZAR systems are suited for
mathematical proofs. Obviously, the same predicate logic which
provides mathematicians with logical means for their reasoning is
valid also for natural languages; to this extent the classical
predicate logic as contained in the system MIZAR MSE, hence the
system itself, can be applied to natural language arguments.

However, in natura! language there are means of reasoning
that exceed the scope of classical logic possibilities; at least,
there is a widespread belief that this is the case. This belief
motivated the creation of so many and so various non-classical
logics, with the exception of intuitionistic logic that grew from
some genuine problems of mathematics itself. In the sequel |
shall concentrate on the first kind of non-classicality - that
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related to the natural language (it is also closely related to
philo- sophy, requiring natural language for its arguments, hence
the term “philosophical logic® is often applied to non-classical
logic, but these relations will not be discussed here).

There are two features of the real world, as described by
natural languages, which distinguish it from the abstract mathe-
matical world; temporality and intensionality. the latter means
that the products of human mind, such as concepts, propositions,
problems and theories, as well . as mind’s relations to these
products (believing, proving, doubting, etc.) can be dealt with
in the language in gquestion; we «call it intensional, for the
mentioned entities are characterized as having contents, i.e. (in
Latin) intensiones. Both features are logically relevant, in the
natural language there are corresponding rules of inference, even
if they are disguised in the form of rules of grammar, such as
consecutio temporum rules (giving rise to modern systems of
temporal logic). As for intensionality, the rules in question
are, e.g. those which govern reported speech, in which we speak
of somebody’s thoughts, beliefs, etc.

Both temporal and intensional reasonings have a common core,
namely the idea of modality. In the temporal discourse we somehow
feel a relation between, eg. future end possibility, or between
past and necessity (if one has, e.g. fatalistic feeling that what
had happened, had necessarily happened). In the intensional
discourse we distinguish, e.g. between knowledge and belief with
the help of the modal notions of necessity and possibility
respectively (cf. Hintikka (1962), Marciszewski (1972)). There-
fore, even if the modal notions do not suffice to render all the
varieties of temporal and intensional arguments, they provide us
with a typical example of logical peculiarities of natural langu-
ages. It is why 1 shall focus on them in the subsequent
discussion.

4.2. In natural languages there are at least three gram-
matical devices to express modal ideas. The same modal concept,
e.g. that of possibility, can be expressed either with an adverb
(modalitas de re, according to the ancient terminology), or with
a predicate, or else with a phrase prefixing a sentence
(modalitas de dicto). Here are examples.

John passibly agrees modality de re
It is possible that John agrees modality de dicto
That John agrees is possible predicative modality
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In the last case the sentence "John agrees” is prefixed by
"that” to transform the sentence into a nominal phrase which is
equivalent (roughly) with “John’s agreeing”, "John’s agreement” etc.

This role of words like “that” was clearly noticed by Frege
who even found a symbolic representation for it in his "Begrifs-
schrift”; it was a horizontal line without a stroke, as opposed
to the horizontal line with the vertical stroke (), the latter
expressing the assertion operation. Frege read this horizontal
line as “"der Umstand, daB®, or "der Satz, daf". Following Frege’s
terminological suggestion, we can call the horizontal line the
content operator, as it produces the mere content of a
proposition, devoid of acceptance (assertion). Of the content in
question it may be predicated that it is the case, is true,
possible, necessary, obligatory, permitted, expected, likely,
beautiful, etc. Obviously, that list includes modal predicates.

These observations are to show that there are content
operators in natural languages which can be used to eliminate
modality de re, likewise modality de dicto, in favour of modal
predicates. These are predicated of contents, in this way forming
sentences which fit into the scheme of classical logic: neither
do they contain non-classical constants, nor do they receive any
logical values apart from the true and the false.

4.3. It the state of affairs appearing in natural languages
is to be reproduced in formal logic, we should introduce a
symbolic content operator. This move was made by Frege, and
developed by A.Church in his logic of sense and denotation.
However, this line of developing logic did not receive a wider
acceptance. Possibly the reason lies in the fear of platonism, as
felt by many modern logicians who suspect contents (as obtained
with the content operator) to be too much like Platonian ideas. A
more convincing argument is that we did not succeed in finding
ways to deal with contents as efficient as those of dealing with
sets.

In any case, the predicative mode of treating modalities
gave way to the mode deriving from the idea of modality de dicto;
but the situation changed again with the appearance of computers
and programming languages. The philosophical objections such as
those concerning the existence of contents can be given up in the
case when we obtain technical tools to handle such entities
without any harm to argument preciseness.
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Such a tool is involved in the notion of a type (mode,
sort), that is a set of objects for which certain operations are
defined. In particular, we may introduce the type PROPOSITION for
which (among others) holds the operation of prediction, e.g. in
the context: PROPOSITION 2 +2 =4 is necessary. According to
MIZAR rules for proof structuration, the types to be used in the
proof in question should be introduced in the section called
"environ” by means of the following declaration:

let --- denote ... ;

where in blanks there first appears a variable or variables (---)
and then the name of a type (...), for instance:

let s denote PROPOSITION.

In the same section the declared type is implicitly defined
through suitable axioms, for instance:

Al for s holds falsels] iff not truefsl;

Now it is known that the type PROPOSITION includes objects of
which truth and falsity can be predicated. On the same footing
modal predicates can be applied to objects of the type
PROPOSITION, thus contributing to the further explanation of its
nature, e.g.

A2: truels] implies possible(s);
which renders the old maxim: de esse ad posse valet illatio.

If we need to deal with an individual object of type
PROPOSITION, we can introduce it as a constant by using the spe-
cial construction for this purpose, expressed with given, for
instance:

given it_rains being PROPOSITION;

Obviously predicates which are applicable to type variables (like
s in the above examples) can be applied to type constants (like
it_rains).

To put the suggested method to a rather demanding test, let
us apply it to the Barcan formula (cf. Marciszewski (1981)), viz.

P((Ix)A) = (Ix)P(A)

where P stands for the modal operator to be read °®it is possible
that” (the bold face to distinguish it from the modal predicate
P, read “is possible”, to be used in the proposed trans-
formation). Now we stipulate:
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given (3x)A being PROPOSITION;
given A being PROPOSITION;
Then the Barcan formula obtains the following form:
P((3x)A) - (Ix)P(A)

where the above stipulation is realized due to the context P (as
being an expression of syntactic category s/n) instead of the
previous P (category s/s).

Natural languages like English and German possess a suitable
syntactic device for such a transformation, namely the English
"that” and the German “daB”, both functioning either as a part of
a modal operator (e.g. "it is possible that”, “es is mbglich
daf®) or as a functor forming a name (of a proposition) out of a
proposition ("that A is possible”, "daB A ist mdglich®). When
transforming the Barcan formula with the help of these natural
language devices (from modality de dicto to predicative moda-
lity), we obtain something like the following:

from: if it is possible that there is x who is immortal,
then there is x such that it is possible (about him) that
he is immortal;

to: if THAT THERE IS x WHO IS IMMORTAL is possible, then
there is x which satisfies (the formula): THAT x IS
IMMORTAL is possible.

In this example capital letters indicate the object of the type
PROPOSITION of which property of being possible is predicated.

4.4. Let me summarize the foregoing discussion. The problem
of analysing reasonings in a natural language has been restricted
to checking logical correctness and this, in turn, has been
restricted to checking with the use of computer program (called a
checker).

When resorting to such technical devices, we got bound by
economy more than in other methods of analysis, since the lack of
economy brings about financial losses (e.g. computer time is
measured also in terms of money). From this view-point the
analysis of arguments carried out in terms of classical logic may
prove more convenient than that in terms of modal logic, if there
are ready and simple programs prepared on the classical basis.
Thus restricted, and disregarding more theoretical consi-
derations, when we analyse natural language reasonings that
involve modal logical constants, it is worth while to try to
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eliminate them in favour of modal extralogical predicates. After
such a translation a natural language argument can be expressed
in a standard logical computer communication language based on
classical logic, like the MIZAR language discussed above.

The strategy used in the suggested translation consists in
the nominalization of a sentence in order to apply a predicate to
the name thus obtained, instead of applying a corresponding
sentential operator to the sentence in question. There may be
philosophical objections against this strategy but they can be
answered with the following argument: any systematic procedure
that brings about success, like a correct decision concerning
argument validity, obtains the verdict of being right from the
high court of practice. There remains the problem how this
practical rightness is related to the genuine truth, as looked
for by philosophers; for instance, whether the utility of the
nominalization of a sentence does confirm the view of the
existence of sentential contents. This however, is a new and
different question. It cannot be disregarded in the totality of
our theoretical inquires, but it could have been disregarded
within the limited contentions of this essay.
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AN APPLICATION OF MIZAR MSE IN A COURSE IN LOGIC

I would like to present some educational experiences collec-
ted during computer-aided courses in logic with the assistance of
Mizar MSE'. | limit myself only to my own experiences and the ex-
periences of my colleagues, because 1 did not get any detailed
data about the courses delivered by others?.

The principal goal of logic training is to develop the skill
in deductive reasoning. Students achieve this skill, in general,
by exercises in a properly chosen domain; their self-reliance and
activity are critical.

Traditional teaching of logic comprises of two parts: first-
ly, the introduction of necessary information in a specific
domain; secondly, exercises both in class and at home. There are
no problems when we work with students of more or less equal abi-
lities, actively participating in classes, but it rarely happens.
The teaching usually concerns a group of learners who have
different capabilities and work at a different pace. The teacher
has no opportunity to adjust to individual needs. In order to
enable all student students to master a subject it is necessary
to present and explain the same matter repeatedly, boring the
more enterprising members of the class. The introduction of non-
trivial exercises and more sophisticated examples, interesting
for better students would be too difficult for the less capable
ones. It is also difficult for the teacher to encourage greater
activity of ordinary students and to encourage self-reliance and
independence.

let us then have a look at computer aided instruction of
logic with the aid of Mizar MSE. The teaching of logic based on
this system starts with a short introduction of the Mizar MSE lan-
guage. Students are given necessary information about how to
build sentences in this language, how to construct Mizar MSE
proofs, how to justify statements, and so on.

224
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After this preliminary presentation students begin to work
individuailly. Each of them receives a separate exercise.

The exercise can be prepared in two ways. The first one con-
sists in presenting the exercise in natural language. The
student’s task is to write correctly the theorem and its proof in
Mizar MSE language together with all the definitions, axioms and
remaining facts used in the proof. Since the FEnvironment s
verified by the system only syntactically, the teacher must watch
carefully the logical correctness of an Environment written by a
student.

Another way of preparing exercises is as follows. All stu-
dents receive the same exercises concerning the same domain (e.g.
the elementary theory of sets) together with a proper Environ-
ment. It is helpful to add several examples of correctly proved
theorems in the prepared Environment. The student’s task is to
write a correct proof of the given theorem in Mizar MSE language.
As far as the contents of the theorem is concerned it is some-
times better to present the students with the exercise in natural
language. In particular, when the exercise involves functions,
they should be replaced by predicates. If students do it themsel-
ves, the theorems become clearer for them. An example of such an
exercise is given in the appendix.

From the very beginning of the work with the Mizar MSE sys-
tem the student must be active. First of all, the system requires
the learner to possess his own conception of proof construction.
Mizar MSE only decides whether a given step of the presented
proof is correct, but does not help to construct this proof. The
proof text prepared by the student is checked by the system. If
this text is not accepted, the student must correct the indicated
mistakes and again verify his text with Mizar MSE. If he is not
able to fill the reasoning gaps correctly and to improve the text
in this manner, he can apply to the teacher for additional expla-
nations. Generally, after several attempts (4-5 if the proof is
not difficult, 8-9 if it is more complicated), the student can
get his proof accepted by Mizar MSE.

Some remarks about Mizar MSE as a tool of teaching logic

1. Mizar MSE, in comparison to the traditional methods, is
more attractive for students. The system is characterized by the
following features:
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- it decides at once whether the analysed text is correct, so
there is no loss of time;

- it marks individual errors and provides explanations;

- the language includes some of the typical natural language
constructions found {n mathematical proofs, e.g. “let...

be .. such that ...", "assume that ...", "thus .., thus
students can build proofs resembling genuine mathematical
practice;

- it defines a notion of obviousness consistent with our intu-
itions, so it is possible for students to construct proofs
without needless details.

2. Individual work with the Mizar MSE system allows the
student to work at his own pace, and the teacher to follow the
progress of each student separately. There is then a better oppo-
rtunity for intensive learning independent of wvariations in stu-
dent capability.

3. We learned that the difference between good students and
poorer ones is more apparent than usually. Weaker students need
much more time to correct their proofs.

4. When beginning a computer aided course in logic we ought
to have at our disposal several groups of exercises. At the very
beginning really simple exercises are often needed, especially
with students lacking mathematical training. In such cases it
might be necessary to acquaint students with inference rules as
the first step. With more experienced candidates non-trivial and
more interesting exercises can be offered.

5. A formalized language (also Mizar MSE), in contradistinc-
tion to a natural one, requires rather strict discipline. Most of
the students, who have never used such a language, experienced
some difficulty being used to informal reasonings, often not at
all precise. This leads to errors; students should be advised to
write their proof in the following way:

- first construct a skeleton of the proof;

- then fill in the reasoning gaps until the proof is detailed
enough to be accepted by the Mizar MSE checker.
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Appendix

MIZAR MSE AMSTRAD VERSION 3.02
WARSAW UNIVERSITY BIALYSTOK CAMPUS

Example.MSE

:: This Environment concerns binary relations

environ

reserve x,y,y',z for member;
reserve P,QR,RR for relation;

Extensionality: for P,Q holds
(for x,y holds Rellx,P,y] iff Rellx,Q,y) implies P = Q;

Inclusion: for P,Q holds
Incl(P,Q] iff for x,y st Rellx,P,y) holds Rellx,Q,y};

Union: for P,Q,R holds
Union [P,Q,R] iff (for x,y holds Rellx,R,y] iff
(Rellx,P,y] or Rellx,Q,yD);

Intersection: for P,Q,R holds
Inter(P,Q,R] iff (for x,y holds Rellx,R,y] iff
(Rellx,P,y] & Rellx,Q,y1));

Complement: for P,Q holds
CompIP,Q iff (for x,y holds Rellx,P,y] iff not Rellx,QyD);

Converse: for P,Q holds
ConviP,Ql iff (for x,y holds Rellx,P,y] iff Relly,Q,x]);

Composition: for P,Q,R holds
CompfP,Q,R] iff (for x,z holds Rellx,R,z] iff
(ex y st Relix,P,y]l & Rell{yQ,z]));

Transitivity: for R holds
Tr(R] iff for x,y,z st Rellx,R,yl] & Relly,R,z] holdss Reiix,R,z]);

Symmetry: for R holds Sym(R] iff (for x,y st Rellx,R,y] hobdssRelly,R,x]);
Reflexivity: for R holds Refl[R]} iff (for x holds Rel(x,Rjx});

given I being relation;

ldentity: for x,y holds Rellx,l,y] iff x = y;
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begin
:: Two examples of correctly solved theorems are given below:

Ex1: for P st Tr[(P] & SymiP] & (for x ex y st Rellx,P,yl) holds Refl(P]
proof let P be relation; .
assume Tr(P}; then 1: for x,y,z st Relix,P,y]l & Relly,P,z]
holds Rel(x,P,z] by Transitivity;
assume Sym(P]; then 2: for x,y st Rellx,P,y}
holds Relly,P,x] by Symmetry;
assume 3: for x ex y st Relix,P,y);
now let x be member;
consider z such that 4: Rellx,P,z] by 3;
Reliz,P,x] by 4,2;
hence Rellx,P,x] by 4,1;
end;
hence Refl[P] by Reflexivity;
end;

:: The contents of the second example is:
:: For any relation R holds that
R is transitive if and only if RoR ¢ R

Ex2: for R, RR st Comp(R,R,RR] holds Tr(R] iff Incl(RR,R]
proof let R, RR be relation such that 1: CompIR,R,RR];
2: for x,z holds Rellx,RR,z] ift
(ex y st Relix,R,y] & Relly,R,z] by 1,Composition;
Ni: now assume Tr[R}; then
3: for x,y,z st Rellx,R,y] & Relly,R,z] holds
Rellx,R,z] by Transitivity;
now let x,y be member such that 4: Rellx,RR,yl;
consider y' such that 5: Rel(x,R,y'] & Relly’,R,y] by 4,2;
thus Rel(x,R,y]l by 5,3;
end;
hence IncliRR,R] by Inclusion;
end;
now assume Incl{RR,R]; then
6: for x,y st Rellx,RR,y] holds Relix,R,y] by Inclusion;
now let x,y',z be member such that 7: Rellx,R,y'] & Relly',R,z);
ex y st Rellx,R,y] & Relly,R,2] by 7;
then Rel(x,RR,z] by 2;
hence Rellx,R,z] by 6;
end;
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hence Tr{R] by Transitivity;
end;

hence thesis by Ni;

end;

:: A theorem to prove is the following:
: For any relations R,S such that R is transitive and RoS = |
both R =1 and S = I are true.

THANKS OK

Notes
! Other publications on computer aided instruction using Mizar
MSE include:

(11 Cours avancé de Mizar MSE donné par A. Trybulec, solutionné
par St. Zukowski, Summer Mizar Workshop, Louvain-la-Neuve,
16.06 - 15.00.1985, Rapport Technique, Cahiers de Mathémati-
ques Appliquées aux Sciences Humaines, pp.53-72, 1985.

(2] M. Mostowski, Textbook of Logic based on Mizar MSE (manu-
script), 1985.

[3] M. Mostowski and A. Trybulec, A certain experimental compu-
ter alded course of logic in Poland, Proc. of World Confe-
rence on Computers in Education, Norfolk, Va, July - August
1985, North Holland.

{41 M. Mostowski and A. Zalewska, Logical exercises in the Mizar
MSE language (manuscript), 1986.

[5] K. Prazmowski and P. Rudnicki, Mizar MSE - a course in the
monthly DELTA, Nos 9-12/1983, 1-6/1984.

? Since the Mizar MSE system is in the public domain we don’t
exactly know how it is used and where. Up to now we have gathered
the following information:

1. Warsaw University, Poland:
- course in logic: the Department of Philosophy ( first year)
and Information and Library,

- course in foundations of geometry (fourth and fifth year):
the Department of Mathematics.
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Warsaw University - Bialystok Campus, Poland:

- course in logic: the Department of Mathematics (first
year), Pedagogics (first year) (cf. (2], [4] above) and
Technical Training (fourth year),

- course in methodology of physics (fifth year): The Depart-
ment of Physics,

- a correspondence course of logic taught with the aid of
Mizar MSE in the Polish monthly DELTA, completed two years
ago (cf. 5], [3]).

University of Connecticut, USA:
- course in discrete mathematics for computer science, (cf. [1]).

Washington State University, USA:
- course in discrete mathematics for computer science.

University of Alberta, Canada:
- course in formal systems in computer science.

University of Tokyo, Japan:
- course in logic.



LESEAW W. SZCZERBA

THE USE OF MIZAR MSE IN A COURSE
IN FOUNDATIONS OF GEOMETRY

Anna Zalewska (in this volume) has described some educa-
tional experiments in computer aided courses involving Mizar.
Among others, she mentioned a course in foundations of geometry
held at the Department of Mathematics of the University of Warsaw
in the spring semester of 1985.

I used Mizar MSE installed on the Riad 60 in the batch
system. The return time was, for technical reasons, quite subs-
tantial - sometimes as long as one week which proved to be
disastrous to the experiment. In fact it is one of the reasons
for which, in my opinion, it is pointless to give precise results
of the experiment, therefore I will restrict myself only to some
general remarks and observations.

The course was based upon the textbook (M. Kordos,
W. Szczerba 1976) containing the formal exposition of axiomatic
Euclidean geometry. Since Mizar MSE does not support function
symbols, the use of Mizar MSE during the course had to be limited
to the material contained in the first half of chapter 1, all of
chapter 2, half of chapter 3 of part I and first three sections
of chapter 1 of part II. Students attended a course during which
the main idea was developed, which consisted mainly in proving
simple geometrical theorems. Some theorems, together with the
proper environment, were assigned to students for proving. The
objective was to prepare the proof in Mizar language and obtain
the °‘OK’ from the computer. To get credit for the course the
students were required to get three such theorems ‘OK-ed’.

The class consisted of ten students in the senior year who
were majors in Education of Mathematics. They represented low to
average level. The main difficulty in the experiment was to get
students to learn how to use Mizar; at first there has been con-
siderable resistance on their part. One of the students restri-
cted his proof to the mere statement of the theorem, and to my
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surprise got it accepted. So later on | was more careful in
assigning problems. After the initial difficulties were overcome
the students started to like it. [ wunderstand that they were
treating the computer as a part of reality and therefore get-
ting an ’OK’ was an objective success in contrast with their
attitude to the teacher who is susceptible to all kinds of psy-
chological pressures. This gave them a feeling of accomplishment.

There occurred a substantial change in my role as a teacher.
Earlier, when assigning homework tests, 1 was treated as an enemy
who has to be forced to accept the solution, sometimes in not an
exactly honest way. Now the enemy to be defeated was the computer
and 1 was turned into an ally helping to fight this horrible
device. This small fact has seriously influenced my contacts with
the students. They were much more eager to approach me with their
problems, to report on their difficulties, and ask for help.

Using Mizar in such a course has, for a teacher, an addi-
tional advantage: it lifts off the burden of checking homeworks.
It has to be paid for by increased help required by the students
at the beginning. However, the change in the nature of contacts
between student and teacher is an obvious gain. Another gain was
visible during the final tests, namely the students understood
the notion of proof much better than their peers from other clas-
ses. Of course the size of the class rules out any use of statis-
tical methods, but for an experienced teacher such an outcome was
evident.

Thus Mizar seems to be very well suited to be a help in
teaching mathematics on any course where proving constitutes an
essential part. Mizar MSE, however, has several drawbacks when
applied to teaching of mathematics:

1. Lack of support for functional symbols. This limits
considerably the scope of applicability.

2. Lack of user defined characters, infix and postfix
notations and generalised notations, such as a<{b<c.

Of course, theoretically Mizar MSE is an universal language,
and anything expressible in mathematics is expressible in Mizar
MSE. Still, sometimes it turns out to be impractical. The reser-
vations mentfoned above are of unequal fmportance - the lack of
functional symbols is much more serfous. A version of Mizar
supporting functional symbols will lead to much more successful
experiments.
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