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EDITORIAL NOTE 

The present volume collects together accounts of some new 
departures in the area of logic. Each is, or was at its time a 
novelty, each required inventive initiative to come to fruition, 
each meant an advance in logic. The samples range over a wide 
span of time, from the Classical Greek period to modern computer 
technique. 

Together the selection illustrates the fact that not only 
developing logic as such, as distinct from merely utilizing alre
ady perfected logical techniques, Is an art, but that Is a 
typical art. By that we mean that It requires inventive Intelli
gence and ingenuity, qualities that cannot be taught, only per
fected and developed under guidance. This contrasts with skills 
that can in principle be taught to anybody of sufficient ability. 
A person who cannot be taught skills is dense, but a person who 
cannot be an artist is not dense, sometimes he could even be 
abler than the artistic, creative individual. Of course, logic is 
not the kind of art that can be practised by the less than able, 
ability is a prerequisite, as It is for every type of art, but 
that prerequisite is not enough. Like every other science, 
creative ingenuity is a conditio sine qua non for the work that 
really extends the domain of logic. 

To illustrate this is a modest aim of the present volume. It 
is of course impossible to present a history of creativity in 
logic at all thoroughly in a small collection of articles, yet 
the point is made without it, and It Is hoped that each and 
everyone of the contributions carries Its own direct Interest In 
a way that gives the whole a strong appeal. 

* * * 
The arrangement of contributions is organized as follows. 

The volume starts with two essays concerning the great ini
tiator in logic Leibniz. Wolfgang Lenzen's essay Leibniz'.s 
calculus 01 strict Implication shows how Lelbnlz anticipated 
Lewis' modal calculi; the comparison gets possible due to the 
suitable axlomatlzatlons proposed by the author. A formally al
ternative approach, that making use of algebraic means, is 

y 



Editorial note 

suggested by MacleJ luniewicz's paper Leibniz's modal calculus 01 
concepts. These historical reconstructions are followed by a neW 
approach to conditionals, obviously related to modal logics. as 
adopted by Ingemund Gullv~g in his paper entitled The logic 01 
conditions. 

The next group of papers is devoted to foundational studies. 
Among the pioneering thinkers In this field was Henri Poincare. 
His original views on the relations between logics and mathe
matics, esp. set theory. are analyzed in Gerhard Heinzmann's 
paper Philosophical pragmatism in Poincare. The following A note 
on Zeno 83 by Nicholas Denyer recalls the Greek troubles with 
infinity which lie at the beginning of historical chain ending in 
set theory. Should the reader be interested in further fate of 
GOdel's theorem up to early 1980's, he will find it in Roman 
Murawski's paper Generalization and strengthenings 01 GOdel's 
incompleteness theorem. 

Some of the papers deal with less known Polish logical ini
tiatives' both belonging to pure mathematical logic and to ap
plication of logic to philosophy. Some of Mordchaj Wajsberg's 
results in mathematical logic are presented by Stanislaw Surma in 
the context of Lvov-Warsaw School in the essay The logical work 
01 Mordchaj "ajsberg, while a specific Wajsberg result is criti
cally discussed by M. N. Bezhanishvili in his Notes on "ajsberg's 
prool 01 separation theorem. In the Polish climate of 1930's, 
favourable both to logic and philosophy there appeared attempts 
similar to those discussed by Edward Nleznamki in his Logical 
analysis 01 Thomism - the Polish programme that originated in 
1930' s; this covers also recent developments. In the same period 
Kazimierz Ajdukiewlcz Initiated a logical theory of questions; 
this field is the subject of Leon KoYs paper On justilication 01 
questions, where he suggests a pragmatic approach. 

The contributions closinCi this volume have in common what 
may be called an alogorithmic-oriented approach. Wojciech 
Buszkowski's article The logic 01 types belongs to the chain of 
inquiries Initiated by K. AJdukiewicz' algorithm for checking 
syntactic connexion, and developed essentially by Lambek's re
sults. Witold Marclszewski under the title System 01 computer
aided reasoning lor mathematics and natural language reports on 
recent research in this field, especially In Poland; this dis
cussion is complemented by two technical reports. by Leslaw 
W. Szczerba. and by Anna Zalewska, concerning the use of such a 
system in teaching logic and mathematics. 

J. S. - W. M. 
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WOLFGANG LENZEN 

lEIBNIZ'S CALCULUS OF STRICT IMPLICATION 

At first the title of this paper will provoke both logicians 
and Leibnitians to shake their heads: while talking about calculi 
of strict implication one rather associates it with the names of 
C. 1. Lewis, W. Ackermann, or some other contemporary logician, 
but hardly with the 17th century philosopher G. W. Leibnizt. Yet 
already some 30 years ago in an essay on "Leibniz's interpre
tation of his logical calculi" the well known Leibniz scholar, 
Nicholas Rescher (1954). had put forward the then bold thesis: in 
an interpretation that Leibniz himself had suggested, one of 
these calculi would become "a precursor of C. 1. Lewis' systems 
of strict implication" (p.1OJ. Unfortunately, Rescher did not 
give a factual justification of this prophetic view. Had it been 
done, it would have thrown some light on the real significance of 
Leibniz's logic. One reason for this omission consists, perhaps, 
in the fact that Rescher incorrectly interpreted the important 
logical constant 'est Ens', or, synonymously. 'est Res' or 'est 
Possibile' as logical necessity instead of logical possibility. 
Furthermore, he viewed his term 'Ens', taken in itself, as a con
ceptual constant, on a par with the "normal" terms A, B, C, "', 
such that it may enter into fundamental sentence-schema ' ... est 

as a sUbject- and a predicate-concept2 • This misin
terpretation of the Leibnitian intentions, however, leads to a 
series of inconsistencies that shall be discussed briefly below. 

The task of this paper will be 

to recunstruct and to axiomatise consistently (and 
completely) the concerned leibnitian logic calculus; 

ii to describe in some detail the relevant Leibnitian 
interpretation of this calculus as a sentential logic 

and 

iii to prove that this interpretation of the calculus does in 
fact yield a system of strict implication - to be exact, 
the so-called Lewis-modal system 52°. 

t 



2 Wolfgang Lenzen 

The Leibniti8ll logic-calculus L1 

In the domain of logic. Leibniz's main aim was to create a 
comprehensive calculus that would allow him. in particular. to 
prove the entire laws of the then "accepted" logic. i.e. the 
syllogism. The generally accepted view is that Leibniz failed to 
attain this goal. Thus. for example. W. &: M. Kneale (1962) assert 
•... although he worked on the subject in 1679. in 1689 [?J and 
in 1690. he never succeeded in producing a calculus which covered 
even the whole theory of the syllogism" (p.377). 

Of course it is undeniable that Leibniz never came to a 
definitive formulation or even publication of one such calculus. 
Also, it can hardly be disputed that in his manifold efforts to 
embed syllogism in his diverse drafts of a general calculus. 
Leibniz repeatedly failed to derive either certain concrete 
syllogisms or some such general syllogistic principle as the law 
of opposition. of conversion. or of subalternation. And it 
appears that the pessimistic dictum ·post tot logicas nondum 
logica qualem desidero scripta est"3 reflects the sincere OpIniOn 
of even the .Iater Leibniz. Yet it has to be noted that already in 
the Generales Inquisitiones (GI) of 1686 Leibniz developed a 
calculus which is substantially more powerful than he himself 
(and his 20th century critics) suspected. At any rate. it easily 
attains the above mentioned goal. That is. in the form of his 
basic calculus L1 (without "indefinite concepts")4 Leibniz had 
laid out a complete dxiomatization of Boole-Schroeder set-algebra 
which trivially includes the whole syllogistic logic. The 
·problems" that arose for Leibniz while attempting to prove the 
syllogism in L1 are mainly rooted in his somewhat uncertain and 
partly erroneous theory of negation. A discussion of these two 
topiCS transcends the framework of the present paper; the lacunae 
are compensated for by two other papers. "'Non est' non est 'est 
non,n and "Zur Einbettung der Syllogistic in Leibnizens 
allgemainen KalkUI"5. 

The calculus in question. L1. can be characterized syntac
tically as follows. Starting from a set of conceptual-constants 
A, B, C.... the general concepts or terms are generated by means 
of the operations of concept-negation and concept-conjunction. 
Leibniz expresses the latter through concatenation and jux
tapOSition of the terms involved (e.g. AB. BCD. . . .). while the 
former operation is expressed by means of "nann (with or without 
hyphenation) in the form of "non A". "non-B·.... where the scope 
of the negation operator is sometimes indicated by a bar placed 
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over the terms (to distinguish e.g. non-BC from non-BC. For the 
sake of simplicity we like to use what is customary in set-theory 
- the raised-bar itself as the negation symbol and thus take, for 
example, 'BC' as short for the negation of the conjunction 
'non-OC'. By contrast, the conjunction of the individual nega
tions, 'non-B non-C' is formalized as '6 C'. Leibniz's idea of 
how to construct the set of terms of L1 is captured by the fol
lowing inductive definition 

Def. t every conceptual-constant is a term of U, 
ii if T is a term of U, so too is T, 

iii if a and T are terms of Lt, so too is a T, 

iv only the expressions in accordance with 
terms of Lt. 

- iii are 

These terms are then connected into sentences especially by 
means of the relations 'est' (or 'continet') and '=' 
(coincidunt), whereby each of these operators can be defined 
according to one's choice. In what follows we take 'est' as the 
basic relation and symbolise it as Leibniz himself once 
suggested6 by 'e'; accordingly we adopt his definition of 
identity "A esse B et B esse A idem est quod A et B coincidere" 
(GI, §30l, formally, 

Def.2 A=B: =AeB"BeA 

Leibniz normally preferred to define conversely 'e' by means of 
'=': "Genera liter A esse B idem est quod A - AB" (Gl, §83). In 
our approach this becomes a provable theorem: 

K6 AeB E A = AB 

As both these formulae show, we represent the informal 
Leibnitian sentential-operators 'et' and 'idem est quod' by the 
modern symbols ',,' and '5' of conjunction and equivalence, 
respectively. Similarly, we will use in the following the symbol 
'.,' for the sentence negation 'non' and '1/' for diSjunction 
'vel'; finally, the jf-then relation, lsi tunc' (or, likewise 
'infert', 'si ... , sequitur shall be symbolized, for the 
time being, by the operator of implication, '::>'. This should not, 
however, prejudge the question whether or not in each individual 
case leibniz used his particles of propOSitional logic precisely 
in the modern truth-functional sense. Indeed, the main aim of 
this paper is to establish that for Leibniz 'si tunc' is 
primarily a strict implication and not merely a material 
implication. However, for a preliminary, provisional description 
of conceptual-logic, Lt, the use of the "critical" symbols '::>' 
and t =' is not problematic; moreover, when In the next section L1 
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is reinterpreted as a sentential-logic these symbols will be 
formally replaced by other ones. 

The construction of the set of sentences of L1 obtainable by 
the term operators 'e' or '.' and the propositional connectives 
is, of course, not complete. One decisive element is still 
missing: the operator 'est Ens' or, likewise, 'est Res' or 'est 
Possibile'. That the expression 'possibile' (in the leibnitian 
sense of being free from contradiction) is not itself an ordinary 
concept denoting a property of things, but rather a 2nd order 
concept denoting a property of concepts, is evident from the 
definition: • A non-A contradictorium est. Possibile est quod non 
est: Y non-V" (GI, line 330-1). 

Thus one could define in the framework of the stronger logic 
l2 with "indefinite concepts", that B is possible if and only if 
(iff) there is no Y such that BevY. Alternatively, one could 
postulate in Lt, that B be possible iff -'BeAA. In fact, however, 
this definition can be further simplified, for on the basis of 
some Leibnitian basic principles, the equivalence 

P3 peA) • AliA 

is valid, where 'peA)' stands for 'A is possible' and 'AgB' is 
shorthand for the negation -,(AeB). 

The decisive logical law needed here to establish a relation 
between a categorical proposition of the form AeB and a 
corresponding (im-)possibility assertion about the complex 
concept Ai3, is casually formulated in GI (cr. the 'seu'): 

"A non-B est imposslbilis seu A continet B" (§128). More 
explicitly, in the first sketch of Illatio, Veritas, Probatio 
Duplex (AV, 2, 403): "vera propositio est A continet B si A non-B 
infert contradictionem". I.e., the follOWing law holds: 

Pl AeB IE -,p(Aih 

In view of the trivial principle of double negation, 
"Non-non-A = A" (GI, §96), 

Nl 

and the equally trivial law 

K5 

A = A, 

AA = A 

(GI, §171l, P3 follows from Pt even though apparently Leibniz 
simplified definition of the himself didn't notice this 

possibility operator7 • 
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Now, there is abundant textual evidence to show that at 
least as applied to terms, Le. to concepts, Lelbnlz always uses 
'est Ens' as synonymous with 'est Possibile': the phrase 'Ens seu 
possibile' is almost a standard idiom in many of his fragments8 • 

Accordingly 'est non-Ens' means the same as 'non est Ens' or 'est 
impossibilis', as the following passage from C.261-4 shows: 
"Impossibile est terminus, vel Non Ens, qui sl ponltur esse, 
sequitur esse contradictorium". Therefore, in view of the 
conjunction principle K6 stated above, Leibniz can also express 
the fundamental law in GP VII, 212 alternatively as follows: 
"Universalis Affi rmati va: A est B, id est aequivalent AB et A seu 
A non B est non-Ens·. 

A third paraphrase of the possibility-condition is provided 
by the words 'est Res', where occasionally 'Res' is even dropped. 
Thus §151 of GI provides a reduction of the four categorical 
sentence-forms to the corresponding 'Res' propositions in line 
with Pl, especially "Omne A est B dat: A non-B non est res". And 
the final paragraphs 199, 200 contain the shortened versions, 
especially: "Universalis affirmativa A non-B non est" and "... si 
dicam A non-B non est, idem est ac si dicam A conti net ... B". 

Thus, on the whole, there is overwhelming evidence showing 
that Leibniz expresses the possibility-operator 'A est possibile' 
equally by means of 'A est Res', 'A est Ens' or even 'A est'. In 
one place of his writings, however. as a trial 'Ens' is assumed 
as a conceptual-constant, and correspondingly the proposition 'A 
est Ens' is interpreted as a predication of the form 'AeEns'. In 
the fragment on Difficultates quaedam Logicae (GP VII, 211-7) -
which otherwise contains very valuable ideas - Leibniz felt the 
temptation to combine both ways of reducing the categorical 
sentenc~-forms to identities a la K6 and to possibility propo
sitions a la PI: 

"Caeterum venit in mentem, etiam propositi ones, Universalem 
Negativam et ei oppositam particularem affirmativam, reduci posse 
ad aequipollentiam hoc modo: Nullum A est B, id est AB est non 
Ens, etiam sic exprimi poterit: non aequivalent AB et AB Ens. ... 
Ita omnes propositiones logicas categorica.s reduximus ad caJcuJum 
aequipollentiarum" (o.c. 213/4). 

Surely if it were legitimate to interpret 'Ens' as a 
predicate, Le. as a concept on B par with the ordinary concepts 
A, B, C, ... (and not otherwise as Lelbniz always presumes - as a 
concept of the second order, Le. as a conceptual operator), then 
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one could represent 'AB est Ens' qua 'ABeEns', and, in accordance 
with K6, transform this into the equation tAB = AB Ens'. But this 
attempt leads to inconsistencies and must therefore be considered 
as one of the very few impasses that leibniz reached in his 
search for a suitable ·calculus aequipollentiarum·. 

The ·predicative" interpretation of 'Ens' would allow us, 
for example, to derive 'ABeEns' immediately from the possibility 
of A - in the sense of 'AeEns' due to the trivial conjunction 
law, 

K2 ABeA 

(cf. C.263, #(15». I.e. for any self-compatible A, every conjun
ction AB would also automatically be free from contradiction, a 
fortiori even the conjunction M! Even larger absurdities result 
if the operator of concept-negation is applied to the "constant" 
'Ens' as Rescher has attempted to do. As Leibniz remarked, both a 
concept A and its negation, A, may simultaneously be self
compatible: "Etsi AB esset Ens, tamen etiam Non AB potest esse 
Ens"g. Now, if A is some concept such that P(A)IIP(A), then the 
representation of these premises as AeEnsllAens In conjunction 
with the law of contraposltion ("Generaliter A esse B, idem est 
quod non-B esse non-N, GI, §77), 

N2 AeB :; BeA, 

would allow us to derive 
EnseEns. This, however, as 
"absurd theorem"lo. 

EnseA and 
Dummett 

hence, by transitivity, 
rightly remarked, is an 

All these difficulties vanish if 'est Ens' is interpreted 
correctly as a possibility-operator which is anyway the inter
pretation that Leibniz elsewhere always had in mind. One gets a 
unified ·calculus of (non-)equations" for the four categorical 
sentence-forms either in line with K6: 

U.A. A - AB 
P.A. A ~ AS 
U.N. A = AS 
P.N. A ~ AB 

or in line with 1: 
U.A. "P(AB) 
P.A. P(AB) 
U.N. .,P(AB) 
P.N. P(AB) 

By contrast one has to reject the hybrid forms of combination of 
these "calculi" that are probed in the Difficultates quaedam 
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logicae. In order to round off the syntactic construction of Lt, 
one should not therefore accept 'Ens' as a new conceptual
constant, but merely po.stulate that for every concept B 8B est 
Ens·, i.e. PCB), be a sentence of Lt. This condition would be 
redundant if one were to introduce the po.ssibility-operator by 
definition ~ la P3. We are, however, presupposing It here as a 
primitive concept and hence have to define the set of sentences 
of Lt inductively as follows: 

Def.3 i if a and Tare terIns of Lt, then (aeT) is a sentence; 
ii if T is a term of U, then peT) is a sentence; 

iii if a is a sentence of 11, then so is "'a; 
iv if a and p are sentences of Lt. then so are (a 1\ p) 

and (a :> p); 
v only the expressions in accordance with i - iv are 

sentences of L2. 

The remaining two sentence-operators can be introduced 
according to Leibniz - by definition: 

Def.4 (a v p) : = "'(-.a 1\ "'p) 
(a .. p) : = (a :> p) 1\ (a ::) p)t1 

The extensional semantics of Lt. as intended by Leibniz. can be 
characterized as follows: the conceptual-constants shall be 
interpreted as the extensions of the corresponding concepts, i.e. 
as sets of Cpossible) objects that fall under the respective 
concepts; concept negation and conjunction are to be interpreted 
as set-theoretical complement and intersection, respectively; the 
basic operator 'e' accordingly represents the Inclusion among 
sets, and the possibility proposition PCB) has to be interpreted 
as true iff the extension of the concept B is not empty, l.e. if 
at least one possible object exists that has the property 
expressed by B. As shown by the work cited In reference 11. one 
can transform such an extensional semantics in line with 
Leibniz's ideas - equivalently Into an "intensional- one: in the 
intensional semantics, a conceptual constant B has to be 
interpreted as the set of those concepts which are contained in 
B; and (AeB) becomes true under an "intensional" interpretation 
if the "intension- of A, i.e. the set of concepts contained in A, 
comprises the "intension" of B. In what follows, however, 
semantic consideration do not play any role. We will first 
present an axiomatisation of 11 (as a conceptual-logic) the 
adequacy - i.e. consistency and completeness - of which follows 
pureJy syntactically from proving Lt to be deductively equivalent 
to the Boolean set-algebra. 
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Regarding the relevant laws of logic put forward by Leibniz 
mainly in the GI one may mention the principle of transitivity 
and reflexivity of the 'e'-relation: • ... sl A sit B et B sit C, A 
erit C· (§19); i.e. 

EI AeB A Bee J AeC; 

or (§37) ·6 est 6~, i.e. 

E2 AeA. 

The fundamental principle of concept-conjunction says: ·A 
continere 6 et A continere C idem est quod A continere Be" (§35), 
formally: 

Kl AeBC ~ AeB A AeC. 

From this, one can easily derive the already cited conjunction 
principle K2 and its symmetric counterpart (cf. §38): 

K3 ABeB; 

furthermore one easily obtains the previously mentioned K6 and 
K5; the law of symmetry (cf. C.235): 

K4 AB = BA 

and finally the ·praeclarum theorema" 

K7 AeB ACeD J ACeBD 

from the earlier 'Ad specimen calculi universalis addenda' (cf. 
GP VII, 223). 

The most important negation principles Nt 
already been stated above together with their 
Lelbniz. The last operator P can be axlomatlzed 
trivial law ~ A non-A non est Res" (GI §171l, 

P4 .,PCAA), 

and N2 have 
formulation by 

by P1, P3, the 

which follows from E2 with PI plus the following principle: 

P2 AeB A peA) J PCB). 

Leibniz rather incidentally formulated it in the remarkable §55 
of GI: ·Si A continet B, et A est vera, etiam B est vera. er 
falsam lIteram intelligo vel terminum falsum (seu impossihilem. 
seu qui est non Ens) vel propositionem fa!sam. Et per veram eodem 
modo intelligl passit terminus possibilis vel propositlo vera". 

That is, Leibniz envisages here the simultaneous inter
pretation of the terms both as concepts and as sentences which 
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will be analysed in detail in the next section. It allows him to 
formulate at the same time the law P2 and the inference rule of 
modus ponens. For, in the case of sentences, A, B, 'A continet B' 
or 'A est B' is taken to mean that A implies B: • ... cum dico A 
est B, et A et B sunt propositiones, intelligo ex A sequi B
(c. 26Q). For concepts A, B, in contrast, AeB asserts that from 
the ·truth", i.e., from the possibility of A the possibility of B 
always followsl2• 

To complete the axiomatic construction of Lt, let us 
consider briefly some prinCiples for the Identity relation 
(introduced in accordance with Def.2). The law of reflexivity, 

11 A = A, 

(HA et A sunt prima coincidentiaH
, GI, 284) follows trivially 

from E2; the law of transitivity, 

12 A=BI\B=C::lA=C 

(·si A coincidit 
coincidit ipsi C·, 
symmetry, 

ipsi 
GI, 

B etiam B coincldit 
8) follows analogously; 

ipsi 
and 

C, etiam A 
the law of 

13 A=B:>B=A 

(·si A coincidit ipsi B etiam B coincidit ipsi A-, GI, 269-70) is 
an elementary consequence of the symmetry of propositional 
conjunction. Further, one obtains a "weak" law of contraposition 
for the identity relation directly from the ·strong" contra
position law N2 for the e-relation: ·Si A coincidit ipsi Bi non-A 
cofneidit ipsi non-B" (GI, 9). Thus 

14 A=B::di=A. 

Since in view of the conjunction laws Kl - K6 ·Si A 

AC = BeH (GI, §171). i.e. 

15 A = B ::l AC = Be, 

also is valid, one can prove by induction that for any term T 

16 A = 6 t- TlA1 ... [6], 

and for the sentence a 

RI A - B t- alA] - alB] 

B erit 

16 and RI are formalized explications of the famous "Leibnlz law 
of identity": "Coincidunt A ipsi B, si alterum in alterius locum 
substitui patest salva verltate" (GI, 257-8), or succlnUy: 
"colncidentia slbi substitui possunt" (GI, §198). 
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As already mentioned, the conceptual-logic L1 as axiomatised 
by these principles Is deductively equivalent to the axiom system 
of Boole-Schroeder set-algebra, provided that in both systems the 
required laws of propositional logic are presupposed. In this 
sense, therefore, the well-known -Boolean- algebra was not 
invented only in 1847, but actually put forward already in 1686 
in the GI I3 as a Leibnitian algebra. In the following, however, 
it is not the conceptual-logic L1 itself that is under 
discussion, but just the (prima facie missing) propositional 
logical foundation for it. 

The interpretation of II as a propositional logic 

With the exception of the early investigations of legal 
logid\ Leibniz was generally little concerned with working out 
specific principles of propositional logic. He used to make the 
requisite propositional inferences and transformations rather 
implicitly. Inference rules such as the cited modus ponens or the 
related modus toll ens were mentioned by him only In passing. 
E.g., the latter was first put forward in §55 of GI in the form 
·Si A continet B et Best falsa, etiam A est falsaW but then it 
was dropped in favour of the former. Leibniz did not do so, how
ever, because he considered this rule as false; probably he just 
thought it to be redundant. Anyway, in a marginal note to De 
Formis Syllogismormn Mathematice Definiendis (C.410-6) he formu
lated the related inference of so called regression as follows: 
"In Regressu utimur hoc prinCIpia, quod conclusione existente 
falsa ... et una praemissarum existente vera, altera praemissarum 
necessaria debeat esse falsa w (o.c.,p.412)15. Significantly, even 
the important (Wde MorganW) laws concerning the reduction of 
(nonexclusive and exclusive) disjunction to negation and conjun
ction appear only In the margin of a text in the Analysis 
Didactica (o.c., ref.1Ll which is quite alien to propositional 
logic. In view of this peripheral treatment of the laws of pro
positional logic our thesis that Leibniz had access to a full 
blown calculus of strict implication may appear somewhat impla
usible. This prima facie implausibility disappears, however, when 
one considers that in the course of the development of his logi
cal calculus Lelbniz became more and more conscious that all the 
principles of sentential-logic are virtually contained in the 
laws of concept-logic that he had invented. Already in 1678, when 
his concept-logic existed only in a very rudimentary form, he 
called attention to the parallel between the "analysis· of 
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concepts on the one hand and the NanalysisN of sentences on the 
other. In Analysis Linguaram (C.351-4) he wrote: 

·Porro cum scientiae omnes, quae demonstrationibus constant, 
nihil aliud tradant, quam cogitationum aequipollentias seu 
sub.stitutiones, ostendunt enim in propositione aliqua necessaria 
tuto substitui praedicatum in locum subjecti posse, et inter 
demonstrandum in locum quarundum veritatum quas praemissas 
vacant, tuto substituti aJiam quae conclusio appelabatur; hinc 
manifestum est, illas ipsas veritates in charta ordine exhibitum 
iri sola characterum analysis, seu substitutione ordinata 
continuata" (o.c., p.352). 

This idea that the conclusion K of an inference from premi
ses PI"",PH may be substituted for the premiss(es) Pi (or the 
conjunction of Pj) in the same manner as one can substitute the 
predicate P for the subject S in a categorical proposition SeP, 
is, of course somewhat inaccurate. For, from the truth of SaP it 
follows that one may substitute P for S in those propositions 
where S takes a predicate position: if, e.g., S=PQ, it follows 
that SeP"SeQ, but one may not deduce therefrom that PeQ or that 
QeP. An analogous restriction applies to the substitutability of 
K for the premiss(es) Pi' 

In the Notationes Generales, which probably was written 
between 1683 and 168616, the parallel in question is expressed 
more clearly. Just as the Npropositio simplex: A est B" - in 
which A is called the 'subjectum", B the "praedicatum" - is true, 
"sl praedicatum in subJecto continetur", similarly a ·propositlo 
conditionalis: Si A est B, C est D", - in which now 'A est B' is 
deSignated as 'antecedens', 'C est D' as 'consequens' - is true, 
·si consequens continetur In antecedente" (c.f. o.c., p.184). In 
works obviously written later, Lelbniz compressed this idea Into 
formulations such as "vera autem propositio est cujus praedicatum 
continetur in subjecto, veJ generaJius cujus consequens 
continetur in antecedente" (C.401, emphasis is ours) and ·Semper 
igitur praedicatur seu consequens inest subjecto seu antecedentiN 
(Primae Veritates, C.518). 

On the basis of these parallels, the hunch dawned on Leibnlz 
that the logical laws for the "hypothetical propositionsN could 
be developed in complete analogy to the laws for the relation 
'est' (or 'continet'). In the GI, he expressed this hope 
prophetically as follows: "51 ut spero, possim concipere Drones 
propositiones instar terminorum et omnes Hypotheticas instar 
categoricarum, et universaliter tractare omnes, miram ea Res in 
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mea characteristica promittit facilitatem, eritque fnventum 
maximi momenti" (§75, emphasis ours). 

Even though this "invention of highest significance" was not 
systematically exploited by him in the sense that he did not 
explicitly transpose or translate the conceptual-logical 
principles such as El, E2, etc. into corresponding sentential
logical principles, yet he believed to be entitled to note in a 
midresumee (§137): "Multa ergo arcana deteximus magni momenti ad 
analysin omnium nostrarum cogitationum, invetlonemque et 
demonstrationem veritatum. Nempe quomodo veritates absolutae 
et hypothetlcae unas easdemque habeant leges, iisdemque 
generalibus theorematibus eontineantur, ita ut omnes syllogismi 
fiant categorici" (emphasis ours). And at the end of the GI he 
formulated as a general principle (§189, sexto): "quaencunque 
dicuntur de termino continente terminum, etiam dici passunt de 
propositione ex qua sequitur alia propositio·. 

The decisive step, that was only hinted at in the GI, viz., 
the step of formally identifying the propOSitional connective 
'si, tunc' with the conceptual connective 'est', was taken by 
Lelbnlz In a series of - apparently later - fragments. Thus he 
says in the draft of a calculus C.259-61, §16: 

"Si a sit propositio vel enuntiatio, per non-A Intelligo 
proposltionem A esse falsam. Et cum dlco A est B, et A et B sunt 
propositiones, intelligo ex A sequi B. Sed demonstrandus erit 
harum substltutionum successus. Utile etiam hoc ad compendiose 
demonstrandum, ut si pro L est A dixissemus C et pro Lest B 
dixissemus D pro ista si L est A sequitur quod Lest B, substitui 
potuisset C est D." 

Naturally, this substitution of 'est' for 'sl ... , sequitur 
should be valid not merely for the special case where 

antecedent and consequent of the if-then sequence have the same 
concept as its subject (L above), but quite generally: "Itaque 
cum dicimus Ex A est B sequitur E est F, idem est de sf diceremus 
A esse Best E esse F" (ibid., emphasis ours). In the same vein, 
only more briefly, Leibniz says In the thematically related 
fragment C.261-4: "Hypothetica nihil allud est quam categorica, 
vertendo antecedens in subjectum et consequens in praedlcatum. 
Ex.gf. ... A est B, ergo C est D. A esse B sit L, et C esse D sit 
M, dicemus est M." 

These passages clearly 
if-then relation between 

show that Leibnlz considered the 
sentences as logically absolute 
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equivalent with the 'est'-relation between concepts, and that he 
was therefore convinced that he could derive sentential-logic 
from conceptual-logic L1 through a plain identification of the 
sentence-operators with the corresponding concept-operators. In 
line with this, in the next passage, he transfers the important 
law Pl to the realm of propositions: 

·Vera propositio est A conti net B, si A non-B infert 
contradictionem. Comprehenduntur et categoricae et hypotheticae 
proposiHones, v.g. si A continet B, C conti net D, potest sic 
formari: A continere B conti net C continere D; itaque A continere 
B, et simul C non continere D infert contradictionem· (C.407; 
second emphasis is ours). 

To formalize such sentential-logical principles, let us 
replace both "implications" , ':>' and 'e' , uniformly by a new 
symbol '=?'. Also, the two conjunctions of concepts and of 
sentences - shall be formalized uniformly by''''. Finally, both 
negations - for which Leibniz anyway always used one and the same 
particle 'non' shall be represented uniformly by'.,'. In 
consequence, the sentential-logical counterpart of Pl, formulated 
above, takes the following shape: 

P1S (A :? B) ¢:? .,P(A " "B), 

where '~.' is to be understood (in analogy to the previous 
definitions 2 and 4) as a mutual '=?' relation: 

Def.5 (A ~ B) := (A =? B) " (8 :? A). 

Similarly, one gets the sentential-logical principle 

K6S (A =? B) ~ (A <=> A " B) 

formalizing Lelbniz's definition: 
primi gradus est si A est B, et 
quo A est B vocetur L, et status 
LM ita reducitur hypothetica 
emphasis is ours). 

"Vera propositio hypothetica 
Inde sequitur C est D ... Status 
quo C est D vocetur M. Erit L 00 

ad categoricam" (C.40B; second 

As already noted by N. Rescher, Leibniz's P1S represents a 
definition of strict implication or of "entailment in terms of 
negation, conjunction, and the notion of possibility· (o.c., 
p.10). C.1. Lewis's definition, formulated almost a quarter of a 
millenium after the GI: "Thus 'p strictly implies q' is to 
mean 'it is false that it is possible that p should be true and q 
false' or 'The statement 'p is true and q false" is not 
self-consistent"17, reads like a literal translation of Leibniz's 
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definition given in another fragment: Nltaque si dico si Lest 
vera sequitur quod M est vera, sensus est, non simul suponi 
potest quod L est vera, et quod M est faisa Nt8. 

The idea of reducing sentential-logic to conceptual-logic 
was already described by L. Cauturat rightly as a -idee capitale 

peut-@tre sa plus belle decouverte-III. Similarly, other 
authors such as Kauppi, Burkhardt and Schupp all have drawn 
attention to ieo. But, apparently, to date, the exact extent of 
this 'inventio maximi momenti' has not yet been explored in a 
systematic way, perhaps because Lelbniz himself exemplified it 
only in the case of the above cited principles, KG(S) and PHS). 
With that much at hand, however. it does not require much of a 
logical genius to derive further 'S'-principles from the above 
principles of the concept logic Lt. The Wtranslation scheme" 
clearly outlined by Leibniz yields, e.g., transitivity and 
reflexivity of strict implication: 

E1S 
E2S 

The different 
analogously into 

K1S 
K2S 
K3S 
K4S 
K5S 
K7S 

(A => B) II (B => C) => (A => C) 
A=> A. 

conjunction principles will 

(A => B II Cl <=> (A => B) II (A => C) 
AIIB=>A 
A"B=>B 

AIIB<=>BIIA 
AIIA<=>A 

be 

(A => B) II (C => 0) => (A II C => B II 0). 

transformed 

The sentential-logical counterparts of the negation-principles 
are as follows: 

N1S 
N2S 

.,.,A <=> A 
(A => 8) <=> (.,8 * .,A). 

And for the possibility operator, one obtains besides P1S: 

P2S 
P3S 
P4S 

(A => 8) II peA) => PCB) 
peA) <=> .,(A => .,A) 

.,P(A II .,A). 

We can forego an account of the sentential-logical counter
parts of 11 - 15 (which now express the properties of the rela
tion of strict equivalence); suffice it to mention that the ear
lier SUbstitution principles 16 and RI transform themselves into 
the rule of substitutability of strict equivalent expressions: 
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RIS A ¢:::> B t- alAl ¢:::> a[B]. 

Undoubtedly all these principles may be viewed as authentic 
Leibnitian principles of a logic of strict implication. 

In spite of his tendency to neglect propositional logic, 
Leibniz obtained the just now listed laws not only indirectly 
through the general transition from conceptual- to sentential
logic, but also put forward at least some of them independently 
and explicitly in scattered fragments. For instance, in De 
Conditionibus (o.c. ref.14) he characterizes the transitivity 
of the inference relation, E1S, as follows: ·Clonditilo 
C[onditio]nis est C[onditilo C[onditiona]ti. Si posito A positur 
B, et posito B positur C; etiam posito A positur C-:U • Concerning 
the reflexivity of <::?' , I.e. E2S, one may point to the fragment 
De Calculo Enutiationmn Absolutarmn et Conditionalimn (AV, 1, 123-7) 
where Leibniz adds to the law of concept logic "Veritas primitiva 
absoluta A est A" (i.e. E2) the sentential counterpart "Prima 
consequentia" • A est B ergo A est B" or the "axiom" "3) Si A est 
B, etiam est B· (o.c., p.126). Moreover, he puts forward the sen
tential conjunction principle K1S in De Veritatibus Enuntiationmn 
(AV, 1, 80-5) for the special case A = (a est b), B = (e est d) 
and C = (I est m) by asserting that the proposition "Si a est b 
sequitur quod e est d et I est m" is (equivalently) resolvable 
into conjunction of the propositions "Si a est b sequitur quod e 
est d" and "Si a est b sequitur quod I est m"22. Further senten
tial versions of the principle of double negation, N1S, are to be 
found in the form "Coincidunt L ... et L esse falsam est falsa" 
(GI, §4) or (in the special case where L = (A = B) or L = (AeB)) 
more formally: "Idem sunt AooB ... et A non non ooB" (C.235) or: "A 
non non est B, idem est quod A est B" (C.262). Finally, the 
Analysis Particularmn (o.c., ref, 18) contains along the with the 
sentential principle of contraposition N2S: ·Si ex propositi one L 

sequitur propositio M tunc contra ex falsi tate propo-
sitionis M sequitur falsitas propositionis L· (o.c., p.145), also 
the above cited paraphrase of P1S, according to which M follows 
from L, if it is impossible ("non supponi potest") that L Is true 
and at the same time M is false. 

On the basis of this textual evidence it may be taken for 
granted that the 'S'-prlnciples set out above were all viewed by 
Leibniz as valid laws of sentential logic. In the next section we 
want to axiomatise the corresponding logic US and compare it 
with the modern systems of strict implication. 
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L2S and the Lewis systems of strict implication 

In accordance with the informal explanations of the last 
section, we can give the following precise definition of the 
syntax of the sentential-logical system US, generated via the 
Leibnitian "translation rule" by the conceptual-logic U: 

Def.6 every constant (A,B,C, .. .) is a term of US; 
ii if T is a term of US, so is 'T; 

iii if 0' and T are terms of L1S, so are (O'I\T) and (0' => T); 
iv only the expressions in accordance with i-iii are 

terms of L 1S. 

In this we assume - which, however, is inessential - the possi
bility operator as a defined concept (in line with the previous 
principle P3)23: 

Def.? 

The "translation rule" in question thus has to be interpreted as 
mapping U into L1S: 

Def.8 The Lelbnitian "translation" function q> (from U in US) 
associates to every expression (I.e. every term and every 
sentence) of U a term of US in the following manner: 

rp(A) A for every conceptual constant A of (L1) 
ii q>(T) -'q>(T) } for arbitrary terms 0', T 

iii rp(O'T) q>(0') 1\ rp(T) 
(of L1) 

iv rp(O'eT) rp(O') => rp(T) 
v rp(-.a) -.rp(u) } for arbitrary sentences 

vi rp(al\p) rp(u) 1\ rp(p) 
a,p (of U) 

vii rp(U;)p) rp(u) => rp(p) 

Roughly speaking, the axioms of US shall be the rp-images of the 
axioms of the Leibnitian algebra L1. The necessary modifications 
of this idea will be discussed below. First, however, we want to 
deal with the rules of deduction of L 15, which have altogether 
been neglected so far. For the purpose of comparison we will 
refer to c.1. Lewis' (and H.G. Langford's) Symbolic Logic (1959). 
There it is postulated: "Either of two equivalent expressions may 
be substituted for the other" (p.125). But this is nothing else 
but our rule RIS that was obtained by applying the function rp to 
Leibniz's law of identity, Rl. 

Secondly, Lewis has a general substitution rule saying "Any 
proposition, or any expression .. , may be substituted for [Al, or 
[8], or [e], etc., in any assumption or established theorem" 
(ibid.). In the same sense, Leibniz explains in §26 of GI: 
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"Aclmonenda adhuc quaedam circa hunc calculum quae praemittere 
debueramus. Nenpe quod de qulbusllbet liter is usurpatis asseritur 
generaliter, vel concluditur non tanquam Hypothesis, id de 
quotlibet aliis liter is intelligi"24. 

Thirdly, Lewis needs the conjunction rule: "Any two 
expressions which have been separately asserted may be jointly 
asserted. That is, if [A] has been asserted, and [B] has been 
asserted, then [AnBl may be asserted" (p.126). Almost literally 
the same rule is formulated by Leibniz in the short fragment 
C.326-7 "Generalis transitus est, et positus A et B dicere Hceat 
AB". Since obviously a "transitus ab enuntiatione ad enun
tiationem seu consequentia" is envisaged here, the 'et' (like the 
corresponding 'and' of LewiS, too) has to be taken as a meta
linguistic expression, so that the deducibility of the proposi
tion 'AB' - i.e. in our standardized terminology. 'A II B' - from 
the two premises gets asserted. 

The last one of Lewis' deduction rules is (strict) modus 
ponens: "If [A] has been asserted, and [A ~ B] is asserted, then 
[8] may be asserted" (ibid.). While presenting the 
conceptual-logic U, we have already referred to §55 of GI where 
Leibniz writes analogously: "Si A conti net B et A est vera, etiam 
B est vera". Now, Lewis has drawn attention to the fact that from 
a proof-theoretical point of view the rule of deduction: 

MPS (A :::> B), A I- B 

has to be distinguished from the corresponding sentence (which in 
Symbolic logic carries the designation 11.7), 

11.7 (A~B)IIA~B. 

"Contentwise" both say obviously the same thing; yet whereas for 
an axiomatic calculus of strict implication the rule MPS is 
Indispensable, the principle 11.7 as an axiom can indeed be 
abandoned25. And since Leibniz's formulation speaks in favour of 
11.7 rather than MPS, one may suspect here a gap in the rule
network of the calculus US. 

A definite clarification of the question (often discussed in 
literature) to what extent did Leibniz know the modus ponens (in 
common or strict form), is rendered a bit difficult by the fact 
that Lelbniz often interprets the inferences quasi as propo
sltlons;26 at any rate he did not attach much importance to the 
distinction between the inference: 'Aw .. ,A", therefore B' and 
the corresponding proposition: 'if Al and and An' then B'. 
Only in the context of grammatical investigations and linguistic 
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analyses he refers explicitly to the distinction 'si, tunc' and 
(ergo'. Thus, for example. one finds in the Analysis Particularum 
the explanation: ·Cum dico Sapiens est Rex. ergo felix est civi
tas, non tantum dico si sapiens est rex, ergo felix est civitas, 
sed etiam affirmo sapientem regem et civitatem felicem esse, ae 
proinde totus syllogismus hypothetieus in his absolvltur • 
(o.c., p.147J. In the Notae Grammaticae (AY, 1, 102-6; C.243-4), 
this "syllogismus theoretlcus" Is described more precisely as 
follows: "Ergo, significat: Si A est B, tunc C est D. Atqui A est 
B. Ergo C est D. "27 ThiS, then, is an unmistakable version of 
(strict) modus ponens or the special case of this deduction-rule, 
in which the propositions a and {l are categorical propositions of 
the form AeB and CeO, and where from a plus a => {l the conclusion 
p is derived. 

Thus all the four relevant deduction rules may safely be 
regarded as genuine Lelbnitian principles, and we can now turn to 
an axiomatic comparison of U5 with the Lewis' systems of strict 
implication. In another place28 we have asserted, (somewhat 
hastily), that U5 coincides exactly with the Lewis' calculus 52. 
This assertion, however, is somewhat problematic, because "the" 
calculus US is, In a way, undetermined. No doubt the syntax of 
L1S has been determined once and for ever by Def.6; in view of 
the preceding discussion the set of deduction rules of L 15 may be 
taken to be determined once and for all; but It is not at all 
clear whether those and only those 'S'-principles that were 
listed in the previous paragraph - i.e. the tfJ-images of the for
mer axiomatization of U, axiomatise the sentential-logic US. 
More precisely, the problem consists in that there exist other 
(logically equivalent) axiomatizations of the Leibnitian algebra 
L1 which will generate by means of the translation-function tfJ 
variants of U5 which themselves are not necessarily equivalent 
to each other. For example there is no reason to doubt that 
Leibniz would have agreed to the following version of his law P2: 

P2** (AeB) :> (P(A) :J P(B». 

Its "translation" under tfJ is: 

P2S** (A => B) => (P(A) => PCB». 

On the other hand, In the framework of the conceptual-logic U, 
the principle P2 could also have been replaced equivalently by 
the special case 

P2* P(AB) :> PCB) 

that follows directly from P2** (or from P2), and which, 



Leibniz's calculus of strict implication 19 

conversely, implies P2 or P2**. For, according to K6, if AeB then 
A = AB is true, so that peA) entails P(AB), - hence P2* allows 
one to infer the desired PCB). The 'II-image of P2* takes the shape 

P2S* peA II B) * PCB). 

Whereas Leibniz surely would have accepted the conceptual laws 
P2, P2* and P2** as equivalent, the sentential counterparts P2S, 
P2S* and P2S** of L 15 are not equivalent at all (e.g. on the 
basis of Lewis' 51): while P2S is a theorem of S1, P2S* is the 
characteristic axiom of the new stronger system S2, and replacing 
by P2S** leads to the even stronger calculus 53! Therefore our 
provisional determination of the axiom of LtS as the set of the 
'II-images of the axioms of Lt has to be taken with a pinch of 
salt: this stipulation is not invariable with respect to equiva
lent transformations of the set of axioms of Lt. 

In order to arrive at statements precise to some degree at 
least, in spite of this tricky situation of the undetermined 
nature of Leibniz's sentential-logic, let us consider three 
axiomatic variants of LtS. The primary axiomatization should 
contain precisely those 'S'-principles put together in the 
previous section, i.e. {E1S, E2S, KtS-K7S, N1S, N2S, PtS-P4S} 
they are the 'II-images of those symbolizations of the laws of 
concept logic that do best conform to Leibniz's semi-formalized 
versions. The secondary axiomatlzation of US differs from the 
first only in that it contains P2S* instead of P2S; finally, the 
tertiary axiomatization contains analogously P2S**. Of course it 
is possible to imagine giving variants in the case of certain 
other conceptual-logical principles which might be proved as 
authentically Leibnitian by citing appropriate texts; and this 
should be taken care of for quartlary etc. axiomatizations of 
US. But such considerations would undermine the framework of 
this paper. With regard to the most important three 
axiomatizations of US, it may be now shown: 

Proposition 1 The primary axiomatization of US is deducti
vely equivalent with the Lewis-system 52°. 

In accordance with Zeman (p.96) by 52° we refer to the calculus 
52 minus the po.ssibility-axiom A * peA) or its equivalent 11.7. 
As axioms of 52° the following laws from ch.6 of Symbolic logic 
are available: 29 

11.1 
11.2 
11.3 
11.4 

AIIB*BIIA 
AIIB*A 
A~AIIA 

(A II B) II C ~ A II (B II C) 



11.5 
11.6 
19.6 
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A ~ "A 
(A ~ B) " (B ~ C) ~ (A => C) 

PCA " B) ~ peA). 

By the way, the first 6 principles axiomatize the weaker system 
S1°, and S1 is equal to SID plus 11.7. 

The proof of Proposition 1 is given in the Appendix. Suffice 
it to mention here that the wlackw of the law of a.s.sociatlvity 
like Lewis's 11.4, which has often been criticised by other com
mentators, is not a real defiCiency In the Leibnltlan system 
lHS), since 11.4 can be proved by means of the conjunction 
principle KIS. Furthermore it can easily be shown that the 
alternative axiomatizatlons of US diverge from S2° - if at all -
only slightlY'°. 

For one thing we have: 

Proposition 2 The substitution of P2S through P2S* does not 
alter the logical strength of US (i.e. the secondary axiomatiza
tlon of US also Is deductively equivalentwith S2°). 

Only when P2S** replaces P2S(*) does one ascend one level 
higher In the hierarchy of Lewis's system: 

Proposition 3 The tertiary axiomatizatlon of US (P2S**) is 
deductively equivalent with with the Lewis-system S3°. 

Again, proofs are supplied in the Appendix. The room for vague
ness surrounding the axlomatlzation of US is thus not very 
great. No matter whether S2° or S3° results, in the context of a 
discussion of the Leibnitian logic only the following is impor
tant: by way of his conceptual-logic U, Leibniz only provided a 
complete axiomatlzation of the Boolean algebra more than 150 
years before Boole, but by explaining In detail the "translation" 
of conceptual-logical into sentential-logical principles he also 
developed a complete calculus of strict implication that was to 
be "discoveredw only more than 230 years after the GI. Indeed 
Leibniz has even provided an answer - though, of course, only In 
directly - to the question that occupied C.I.Lewis throughout his 
life and for which he did not find a (definitive) answer, viz. 
the question which modal logical system corresponds in a natural 
manner to the Boolean algebra? The answer a la Leibnlz is: S2° or 
53°. 
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Leibniz's modal logic 

The outcome of Proposition 1 through Proposition 3, however, 
does not mean that 52° or 53° represent the modal logic favoured 
by Leibniz in the sense that these systems would exactly mirror 
his ideas about the logic of alethic modalities. 52° or, 
likewise, 53° is merely the faithful ;-image of his concept logic 
Lt. As we noted above in connection with the law of modus ponens, 
11. 7, he presumably accepted some further laws for the concept of 
logical possibility and necessity. Although, e.g., 11.7 is 
unquestionably valid for Leibniz, unlike the coresponding 
deduction rule this axiom does not appear in US, because, 
roughly speaking, its "original" with respect to the mapping ; 
has no place in U. More precisely: corresponding expressions 
like (AeBt.A)eB or (AeBt.A) :l B (which would be mapped by tp onto 
11. 7) are not well-formed formulae of U. 

As J.J. Zeman (1973) has shown (p.94), even in the framework 
of the weakest system of strict implication 11. 7 is equivalent 
with the more familiar principle (the designation which we borrow 
from Lewis/Langford): 

18.4 A * peA). 

This is also missing in LlS because its "original" is not a 
syntactically well-formed sentence of the concept logic U: 
AeP(A) is not well-formed, because according to 081.2 terms and 
not sentences must occur on both sides of <e'; similarly A :l peA) 
is not well-formed because, according to Def.3, sentences but not 
terms must stand on both sides of <:l'. But peA) is a sentence iff 
A is a term! 

On the other hand, it is certainly unquestionable that 
Leibniz accepted this principle as valid. Onto-logical versions 
appear, for example, in De Veritatis Realitate (AV, t, 65-6) in 
the form "Quicquid existit, est possibile" or in De Veri1a.tibus 
Primis (AV, 1, 115-5) as a marginal note: "Quod omne exi.Vefls est 
possibile, debet demonstrari ex definitione existentiW~. It is 
somewhat difficult to find unobjectionable logical vwiants of 
18.4, because it is often unclear whether Leibniz ~aks about 
concepts or about sentences. Thus his remark in IJe> llbertate et 
Necessitate CAV, 2, 272-8; Grua 287-91) "quod contradictionem 
implicat e.s.se falsum" (o.c. 275) may be well understood to say 
that an impossible, contradictory concept is designated as false; 
indeed Leibniz did this In the earlier cited §55 of G131. 
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However, the following passage from De principiis (C.183-4) 
speaks clearly for a sentential-logical interpretation: "Duo ilia 
prima princlpla: unum rationis: Identica sunt vera, et 
contradictionem implicantia sunt falsa, alterum expenentiae 
Since "identica" always have to be identical propositions, viz. 
propositions of the form 'A = A' , accordingly therefore, by 
"contradictionem implicantia" one has to understand contra
dictory propositions and not concepts. And if, as Leibniz 
asserts, every impossible proposition is a fortiori false, then 
by contraposltlon it follows that every true proposition must be 
possible, as claimed In 18.4. 

Thus Lelbniz's general theory of modal propositions goes 
beyond L1S since it contains either 18.4 or 11.7 and is hence at 
least as strong as the Lewis system 52 or 53, probably, however, 
still considerably stronger. First it should be pointed out that 
both the latter systems show two unpleasant characteristics that 
Leibniz certainly would not have accepted. First they are 
"unreasonable" (in the sense of Hallden), i.e. they contain 
certain theorems of the form avp although neither a nor p itself 
is provable and although a and f3 are contentwise independent of 
each other in the sense that they contain completely different 
terms32.. 5uch a presumption clearly contradicts the basic 
rationalist principle of leibniz, according to which there must 
be a sufficient reason for every true proposition and even more 
so for every provable proposition. But, if there is no sufficient 
ground either for a or p to be true, what reason could there be 
for the disjunction to be true if both constituents a and pare 
independent of each other? 

A second undesirable characteristic of 52 and 53 consists In 
the fact that in these systems the deduction rule - for every 
theorem a, the necessity proposition ,P'a also is provable 
holds only within limlts3l. But, as noted already by Hans Poser, 
for Leibniz the validity of this "rule of necessitation" results 
"as the direct conclusion from his definition of necessity of a 
proposition as the contradictoriness of the negation of the 
proposition"34, or somewhat more precisely: from his view 
formulated in many places, that every (finitarily) provable 
proposition is necessary. Unfortunately we could not discover in 
Lelbnlz's scripts a definitive version of this view In the 
sense of a logical inference rule35. If one adds it to the 
principles of 52 or 53 that are defended so far, then one obtains 
either the so called calculus T or the more familiar (and more 
attractive) system 54 a& the extended Leibnitian modal theory36. 
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That Leibniz would have favoured the latter is discernible, 
e.g. from the following fact. As is shown in Zeman ((1973),ch.11) 
S4 can be axiomatized alternatively by adding to S2 or to S3 or 
even to the weakest system S1° only one more axiom, viz., the 
iteration law (c!. Lewis/Langford (1959), p.497): 

C.l0.1 PP(A) => peA). 

S4 is no longer "Hallden unreasonable", and the "rule of necessi
tation" holds there without qualification. Poser has drawn 
attention to a passage from De Affectibus (Grua, p.512-37l, which 
can be interpreted as a formulation of this central modal-logical 
law: "Nam quod impossibile est esse actu, id imposslbile est esse 
possibile" (0.c.534). Provided that Leibniz here refers to the 
possibility and the possible possibility of propositions, and, 
furthermore, that he means that a proposition "actu est" only 
when it "est", i.e. when it is true, then this quote would really 
represent a formulation of (the contraposition) of C.l0.1. 

Unfortunately this assumption is not fully corroborated by 
the context. Besides, this (relatively early) fragment from 10 
April 1679 contains in the sequel a series of statements and 
definitions that are partly untenable and which do not quite fit 
together with Leibniz's later views on modalities. Thus, for 
example, the concept of possibility is defined rather in a 
confused manner: ·Possibile est quod esse ali quid et non-non esse 
aliquid est idem" and this definition is taken to entail the no 
less confused statement: "Possibile quod est, id non-non est. 
Possibile quod non-non est id est". Only the further conclusion 
"Unde sequitur impossibile est simul esse et non esse" 
corresponds to some extent with the ripe view which underlies the 
account given so far; and according to it a concept (or sentence) 
is possible, If it does not contain (or imply) any concept (or 
sentence) A and its negation at one and the same time. 

Even though we have no firm proof that Leibniz adopted 
C.I0.1 as a logical law, still a plausibility case can be made 
for the fact that he accepted it - at any rate as a meta-logical 
principle. In the §§132-5 of GI Leibniz unfolds his theory of 
necessary and contingent truths: 

"Propositio vera necessaria, probari potest reductione ad 
identicas, vel oppositae reductione ad contradictoriasi unde op
posita dicitur impossibilis. Propositio vera contingens non pa
test reduci ad identicas. probatur tamen. ostendendo continuata 
magis magisque resolutione, accedi quidem perpetuo ad identicas, 
nunquam tamen ad eas perveniri ... Hinc veritatum necessarium a 
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contingentibus idem discrimen est, quod Linearum occurentium, et 
Asymptotarum, vel Numerorum commensurabilium et incommensurabi
lium.* 

But now C.I0.l says per contraposition, that every necessary 
proposition is necessarily necessary. If one considers any neces
sary proposition A, it can be traced back, according to Leibniz, 
in finitely many steps to an "identity· (i.e. to an axiom). But, 
if this is the case, then a related and equally finite analysis 
of the concepts that occur in A and of concept of necessity shows 
that 'necessarily A' can also be traced back to an "identity*. 
That is, the proposition 'necessarily A' is not simply true, but 
itself necessary! 

Therefore, the "material* validity of C.lO.l as well as the 
"validity" of the related "rule of necessitation" result from 
Leibniz's view of necessity as finitary probability. But, of 
course, it does not follow from this that these principles would 
be derivable as logical laws or rules from the laws of 52 or 53 
that have been formulated explicitely by Leibniz. Even if one 
would add the definition of necessity as finitary provability to 
Leibniz's calculus of strict implication, still C.lO.l would 
become provable only if one were to have the "rule of necessita
tion" at one's disposal. If a is a theorem, I.e. finltarily 
provable, then Indeed ,P'a is true by "definition". But what has 
to be shown Is that this sentence is Itself a theorem, I.e. (fi

nitarily) provable, and this result is obtainable only by intro
ducing the corresponding inference-rule: 

To put it in 
logic results 
axiomatization, 
strong as 54. 

a nutshell: whereas Leibniz's explicitly given modal 
in 52° or 53° depending on the choice of the 

his meta-logical modal theory is at least as 

H. Poser (1969) has gone still a step further and has 
asserted that the characteristic axiom of S5, 

ClI PeA) :? ,P,P(Al, 

according to which every possible proposition is necessarily 
possible should also be valid in Leibniz's modal theory. 
However, unlike the case of C.1O.1 he did not even cite a single 
quote as evidence for CIl; and the following argumentation is 
neither conclusive nor does It really express Leibnltian thin
king: alles, was mt1glich 1st, besltzt die Eigenschaft, 
mtlglich zu seln, abaolut und 1m Bereich der Ideen. Die Annahme, 
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ein Element A dieses Bereiches, 
deshalb auf elnen Widerspruch; 
m!Sglich" (Poser (1969), p.59). 

ein Ens, sei nicht m!Sglich, ftihrt 
folglich ist A notwendigerweise 

Of course a plain contradiction would be involved if one 
would assume of *an Ens* A, i.e. of some A for which 'A est Ens', 
Le. peA) is true, that is A is not possible, .,P(A). But this 
interpretation of Poser's argument only proves the all too 
trivial law that the conjunction P(Al".,P(Al is impossible. If, in 
contrast, Poser's argument is understood in such a way that if A 
is an "Ens" then this very proposition, P(A), may not be assumed 
to be impossible, even then, granted for the time being that the 
latter, "PP(A), be incompatible with the former, P(Al, one would 
have proved too little - viz. only .,P(P(All".,PP(A). But this is 
just the converse of C.l0.t, which as a special case of 18.4 is 
at any rate valid for leibniz. In order to accomplish the 
intended justification of Cll, one would have to show instead 
that for an "Ens* A the assumption that it is possible that A is 
not an *Ens", P.,P(A), contradicts peA). 

But, according to Leibniz's view of necessity and contin
gency, the proposition P(A> says that A can never be refuted in 
finitely many steps, I.e. it cannot be led back to a 
contradiction. So in case ell would be valid, it would follow 
that the meta-proposition peA) - as a necessary proposition - is 
finitarily provable. But, how Is one to show in finitely many 
steps - through analysis of the concept of provabillty as well as 
of the constituent concepts that appear in A - that no finite 
analysis of A does lead to a contradiction? This itself appears 
to be a sheer Impossibility. 

In contrast to Poser, therefore, one ought not subsume Cll 
in the Leibnltian modal theory. Leibniz's conception of necessity 
as finitary provabUity (and consequently, of possibility as non
finitary refutability) not only does not speak in favor of Cll, 
but - as already noted by R. M. Adams37 - really against It. 
Leibniz's modal theory, then, certainly may be taken to be 
definitely weaker than 55 but at least as strong as 54. We have 
to forgo the attempt at a closer demarcation.. For one thing, the 
spectrum of the modal calculi between 54 and 55 contains an 
endless number of systems38• For the other, Leibniz's meta
logical (or meta-physical) writings on necessity and impossibi
lity are too imprecise to allow us to answer the question 
whether, e.g., the characteristic axiom of 54.2: What is possibly 
necessary, Is necessarily possible - or the 54.4 - axiom: Every 
proposition that is at the same time true and possibly necessary, 
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is necessary - whether these hold under leibniz's interpretation 
of the logical modalities» or not. To the best of our knowledge, 
even amongst the most competent contemporary logicians there is 
no agreement on the question, what is the precise structure of 
the concept 'logically possible'? This may be surprising, for the 
alethic modalities have been investigated in the philosophical 
and logical literature since Aristotle, thus essentially longer 
than, for example, the deontic or eplstemlc modalities the 
structure of which has been determined quite prec!sely40. It is 
presumptuous to expect an answer from a 17-th century philosopher 
to a question the solution of which today still causes one to 
rack one's brains. Anyway, it is surprising enough that lelbniz's 
Informal model theory fairly agrees with the results of modern 
logical research. That is, according to the views of A. R. Ander
son and N. D. Belnap, only the 54 laws hold for the notion of 
logical necessity, whereas diverse objections (independent of 
Leibniz's considerations) have been brought forward against the 
55 principle41 • 

Surely it is idle to speculate, what modern-logic would look 
like if Leibniz had lived 300 years later. It appears to make 
sense, however, to suggest to the contemporary logicians that 
they take account of the Leibnitian work in their own researches. 
Someone who - centuries ago - invented in one stroke both the 
Boolean algebra and, by means of an ingenuously simple 
translation, its sentential-logical derivate in the form of a 
calculus of strict implication has at any rate graded himself as 
an extremely competent dialogue-partner. He will have much to say 
to every logician, even though, unfortunately, he cannot speak to 
us anymore. 
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Appendix 

Proof of Proposition 1. 

As we have seen, both calculi have the same deduction rules; 
therefore it is sufficient to deduce all axioms of the primary 
axiomatization of L15 in 52°, and vice versa. 

(A) In one direction, we can make use of the work of Lewis 
and Langford; in ch.6 they have proved all the relevant 
Leibnitian principles within their system 52. It only has to be 
observed that the principle 11.7 or its equivalent 18.4 can 
wholly be dispensed with in these deductions, so that the proofs 
also hold in the weaker calculus 52°. First, Leibniz's E15 
coincides with Lewis's axiom 11.6; E2S is Lewis's theorem 12.1, 
an immediate consequence of 11.2 and 11.6 along with 11.3; K2S is 
an axiom for LewiS, namely 11.2; K45 which constitutes the stren
gthening of Lewis's axiom 11.1 into a strict equivalence, is 
proved as theorem 12.15; K5S, the analogous strengthening of 
11.3, appears as theorem 12.7; K3S is proved as a counterpart to 
11.2 in theorem 12.17; K6S arises relatively late as theorem 
16.3342 • And in contrast to the foregoing principles, all of 
which are also theorems of the weaker system 51°, K15, which is 
Lewis's theorem 19.63, is provable only in 52° with the help of 
19.01; equally, K75 may be obtained only In 52° as theorem 19.68. 
N15 is deduced by Lewis by means of 11.5 as theorem 12.3; N2S 
similarly as theorem 12.44; for Lewis P1S is simply the 
definition 11.02 of strict implication; P35 coincides with Lewis' 
theorem IB.l; similarly P4S is theorem 18.8; and finally P2S 
appears as theorem 18.5t. 

(B) Conversely, one obtains the definition 11.2 within the 
Leibnitian system US as principle PIS; further, the axiom 11.1 
is obtained from K45 with the help of K2S and the definition of 
strict equivalence; 11.2 is identical with 1<25; 11.3 follows 
readily from K5S; 11.5 Similarly from N1S; 11.6 coincides with 
E1Si thus only 19.01 - the characteristic axiom of 52° - as well 
as the law of associativity, 11.4, remain to be proved in US. 

The latter is obtained as follows: 

(M-B)AC => C 

Ii (AI\B)IIC => (AI\B) 

iii (AI\B) => A 

iv (AI\B) => B 

K3S 

K2S 

K2S 

K3S 
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from ii and iii by means of 
the rule of conjunction, E1S 
and MPS 

analogously from ii and iv 

vii ((Ah8)hC ~ Blh«AhBlhC ~ C) by the rule of conjunction 
from i and vi 

from vii with K1S 

ix «Ah8)hC ~ A)h«Ah8)hC :::> <BhC)) 
rule of conjunction applied 
to v and viii 

from ix with K1S 

Thus it is already proved that US contains at least the system 
51°. The proof of 19.01 that still remains to be given may be 
simplified by using Zeman's meta-theorem according to which for 
every truth-functional tautology a, the sentence ,P"a is provable 
in 51°, hence also in US,U. We will designate the applications 
of this meta-theorem in the commentary by 'MTZ' and thus we can 
show 

xi 8 :::> 8h.,(Ah,A) MTZ 

xii ..,PCB) :::> -.PCBh-.(Ah-.A)) RI5 (xi) 

xiii (8 :::> AfI-.A) :::> -.P<Bh-.(AfI-.A» P1S 

xiv <B :::> Af\-.A) :::> (8 :::> ,A) K1S, K35 

xv (B :::> ,A) :::> -.P(Bh .,-.A) P1S 

xvi (Bh-.-.A) $> (Ah8) MTZ 

xvii CB :::> -.A) :::> -.P(Ah8) RIS (xv, xvi) 

xviii ,P(8) :::> -.P(AA8) from xii, xiii, xiv and xvii 
by means of E15 

xix P(AflB) :::> PCB) from xviii with N2S 

With this proof of 19.01 in US, not only Proposition 1 but at 
the same time also Proposition 2 is verified. The remaining 

Proof of Proposition 3 

h~ever, is also a rather trivial consequence of the former proof 
of Proposition 1. For, according to Zeman (p.161l 51° extended by 
the axiom P2S** just yields the system S3°, i.e. the tertiary 
axiomatization of US contains S3°, and conversely, all the 
principles of US including P2S** are provable in S3°. 
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I We will use 
works on logic: 
Briefe. Ed. by 

Notes 

the following abbreviations for the Leibnitian 
A = G. W. Leibniz: ~Uiche Schriften und 
the Preufiische (Jater: Deutsche) Akadernie der 

Wissenschaften; cited by series, volume and pages; AV = Voraus
edition to the VI series of A, edited by the Leibniz Forschung
stelle der UniversitlH MUnster; cited by fascicle and pages; C = 
L Couturat: G. W. Leibniz Opuscules et fragments inedits, Paris 
1903, Reprint Hildesheim 19151; GI = Generales Inquisitiones de 
Analysi Notionmn et Veritatmn, ed. and translated by F. Schupp, 
Hamburg 1982, cited by § or by number of the line; GP = Die 
Philosophischen Schriften von G. W. leibniz, ed. by C. I. 
Gerhardt, Berlin 1875 1890 (reprint Hildesheim 1960-1), cited 
by vol. and pages; Grua = G. Grua: G. W. Leibniz Textes inedits, 
Paris 1948. 

2 Cf. Rescher (1954), where the author speaks of Hthe 'term'
constant Ens or Res· and where, especially in the formulae 21-24, 
he subsumes 'Ens' as conceptual-constant under the transformation 
rules of the calculus. A related approach - that, however, leads 
to even worse absurdities and misinterpretations of Leibniz's 
ideas - may be found in H.-N. Castaneda's paper -Leibniz's Syllo
gistico-Propositional Calculus·, Notre Dame JouTnal of Formal 
logic 17 (1976), 481-500. 

J This is the title of the fragment - unfortunately undated -
Nr. 56 in AV, 1, 176-79. A similar opinion was held by Leibniz at 
least at the age of 50. In a famous letter sent to Gabriel Wagner 
at the end of 1696, he defends the till then familiar logic with 
the confession .... so muss ich zwar bekennen, daP.. aile unsre 
bisherigen Logicken kaum ein schatten defien seyn, so ich wUnd
sche, und so ich gleichsam von ferne sehe" (GP, VII, 516); how 
big the gap between what was achieved till then and what was 
prophetically intuited as a hunch by leibniz becomes evident by 
the fact that for him the syllogistic Hdiese arbeit des Aristote
lis" represents "nur ein Angfang und gleichsam das A, B. CW (o.c. 
p.519), and that "aber diese Vernunfft Kunst noch unvergleichlich 
hi:iher zu bringen, halte ich vor gewifi, und gJaube es zu sehen, 
auch emlgen Vorschmack davon zu haben Was nun melnes 
ermefiens dar inn zu leisten mUglich, 1st von solchen begrlff. dafi 
ich mir nicht getraue ohne wirkliche Proben genungsamen glauben 
zu finden w (p.522). 
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4 The "indefinita" function as disguised conceptual-quanti
fiers for Leibniz; for a detailed account of the Leibnitian logic 
of the quantifiers, cf. our paper ·'Unbestinunte Begriffe bei 
Leibniz" Studia Leibnitiana, XVI (1984), 1-26. 

5 The first one 
1-37, the second 
symposium Leibniz: 
Neuve 1985. 

appeared in Studia Leibnitiana XVIII (1986), 
is forthcoming in the contributions to the 
Questions de logique, BrUssel, Louvain-Ia-

6 In the Definitiones from around 1679 (AV, 1, 146-7) one can 
find a marginal sketch of a characteristic in which especially 
'est' is abbreviated by 'e'. Leibniz did not use this symbol, 
however, in any of the known drafts of a calculus. 

7 At least one half of the eqUivalence P3, namely PCB) ~ (B.eB) 
was, however, recognised by Leibniz as valid. Cf. §43 GI: 

"B continere non-B est falsa ... Patet et ex aliter. B continet 
B (per [E2]). Ergo non conti net non-B alioqui foret impos
sibilis .• 

8 Cf. GI, line 168, §73, §146, §148, 
(2), C.261, Principles (3) and (4), C.27t, 
and (9); as well as Crua, pp.324 and 325. 

§190; C.259. Principle 
C.421, Principles (6) 

II C.262; the bar of course does not mean a second negation, 
but only serves Leibniz as a bracket. 

10 Compare M. Dummet, Review of Rescher (1954) in Journal of 
Symbolic Logic 21 (1956), p.198; also cf. Castaneda (1976), 
ref.3, p.484, where Leibniz is blamed for the following: •... ha
ving analyzed 'some A's are B's' as 'AB exists' [hel does not go 
on to interpret this as 'AB contains existence' which would be 
symbolized as 'AB '" AB (Existence)'. He takes this step [in GP 
VII, 213] but he leaves the concept existence or entity somewhat 
isolated." Fortunately Leibniz did not further pursue this 
mistaken approach otherwise, and the 'serious troubles" that 
Castaneda deduces later on (especially pp.489 ff) do not refute 
the system of Leibnitian logic but only the miscarried 
reconstruction of it by Castaneda. 

That 'Ens' should not be viewed as a conceptual-constant has 
first been noticed by L. Couturat: cf. his La Logique de Leibniz, 
Paris 1901 (Reprint Hildesheim 1966), p.353, ref.2. A very 
detailed discussion of this point may also be found in R. Kauppi, 
tiber die leibnizche logik, Helsinki 1960, especially pp.215-222. 

Finally, it should be pointed out that analogous interpre
tation of the truth concept as a 1st order conceptuai-constdnt as 
probed in §108 GI leads to the same difficulties. With 'V' abbre-
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viating 'verum' Leibniz attempts to interpret the proposition 'A 
est verum' - in which 'A' stands for a concept such as 'Homo' -
predicatively and thus obtains in accordance with KG the equation 
A = AV: "A = A verum seu A est verum". However, because of ABeA. 
this interpretation would entail that if A is true, then every 
conjunction AB is true as well. especially M would be true. But 
that is absurd. 

11 The definition of the disjunction is given (with a slip of 
the pen) in the Analysis Didactica (C.424-6); as to the question 
of the discovery of this "de Morganian" principle. cf. our 
earlier paper ·Zur extensional en und 'intensionalen' Inter
pretation der Leibnizchen Logik", Studia Leibnitiana 15 (1983). 
and the further literature mentioned there, especially the papers 
of H. Schepers and of Ph. Boehner. The definition of equivalence 
('idem est quod' or 'aequivalent') as mutual implication Is 
always presupposed by Leibniz but seldom formulated explicitly. 
Thus he defines the (strict) eqUivalence of sentences by means of 
the condition: "Coincidere dico enuntiationes, sl una alterl 
substitui pot est salva verltate", only to add just casually: ·seu 
quae se reciproce Inferunt" (GI, lines 311-312). 

12 Cf. also R. Kauppi's (1960) similar Interpretation of these 
principles; however, she expresses a qualification: "In dieser 
Form sind sie nicht ausdrUcklich von LEIBNIZ aufgestellt worden" 
(p.182, footnote 2). 

13 A proof of this assertion is given in Lenzen, "Leibniz und 
die Boolesche Algebra", Studia Leibnitiana XVI (1984), 187-203. 
L. Kruger hit this fact very nearly when he said in Rationalismus 
und Entwurf einer universalen Logik bei Leibniz, Frankfurt 1969, 
pp.17 -8, "da& Leibniz die Boolesche Algebra sozusagen um 
Haaresbreite verfehlt [hat)". 

14 Those are the two parts of the juristic disputation De 
Conditionibus (A VI, 1, 101-24 and 129-50) from 1665 and the 
Specimen Certitudinis seu DemonstratioD1.un in Jure (ibid. 169-430) 
from 1567. For the discussion of the laws of propositional logic 
developed here cf. H. Schepers: "Leibniz' Disputatlonen 'De Con
ditionibus' Ansatze zu einer juristischen Aussagenlogik-, in Ak
ten des II Internationalen Leibniz-Kongresses, vol.V (1975),1-17. 

I!> In De Vera et Falso. Affirmatione et Negatione. et de Cont
radictoriis (AV, 1, 86-8) it is said analogously -12) 51 p03lt1s 
enuntiationibus sequatur nova et haec sit falsa, etiam aliqua ex 
ill is erit falsa". By the way, Leibniz remarks: "Hoc est axloma" 
instead of "Hoc est regula"! 
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16 AV, 1, 184-90; the following quotation does not appear in 
the partial edition in Grua, 322-4, but is found in F. Schmidt 
(ed.), G. W. Leibniz - Fragmente zur Logik (Berlin-East 1960), 
474-8. Later references to this fragment refer to the Edition in 
AV. 

11 C. 1. Lewis 6: H. G. Langford, Symbolic Logic, New York2 

1959, 5.124. 

18 Analysis Particularmn, ed. by F. Schupp in Studia Leib
nitiana Sonderheft 8 (1979), 138-53; quotation p.145. 

IQ Couturat (190U, p.354; Couturat also paints out that this 
idea was rediscovered by Boole; naturally he could not know that 
it might be rediscovered by C. I. Lewis in this century for a 
second time. If Lewis had viewed the Leibnitian logic with some
what less scepticism, then perhaps he would have noticed that the 
question he left open: which calculus of strict implication 
corresponds to the Boolean Algebra? - has been answered by Leib
niz in an interesting and rather obvious way. 

20 Cf. Kauppi (1960), especially ch.lV, §3; also Kauppi, "Zur 
Analyse der hypothetischen Aussage bei Leibniz·, in A. Heinekamp 
6: F. Schupp (edJ, Die Inten.sionale Logik bei Leibniz und in der 
Gegenwart, Wiesbaden 1979, 1-9; H. Burkhardt, Logik und Semiotik 
in der Philo.sophie von Leibniz, MUnchen 1980, passim (cf. under 
the heading 'hypothetisch'); H. Ishiguro in M. Hooker (ed.), 
Leibniz: Critical and Interpretative Essays, Minneapolis 1982, 
90-102 is indeed concerned with the theme "Leibniz on 
hypothetical truth" but she ignores the reduction of hypothetical 
to categorical propositions that is advocated by Leibniz with 
verve; cf. finally F. Schupp's (1982) commentary to GI, o.c., 
especially 164-5, where further literature is given. 

21 D.c., p.llO; cf. similarly the versions in Specimen 
Certitudinis, o.c., p.372. 

22 D.c., p.82; Leibniz says that 
"resolvi potestl in hac duas" 
propositions. 

the former proposition 
i.e., into the latter 

23 As to the legitimacy of this definition cf. the passage of 
GI quoted in ref. 7. That one might take over P3 from the domaIn 
of concepts to that of sentences, is evidenced by the remark: 
"Falsum esse B continere non-B, intelligendum est et de 
propositione B, quae non conti net contradictionem" (§43). Thus, 
according to Lelbnlz, at least the implication PCB) => .,(B => .,B) 
is true. If one would yet want to reject Def.? as non-Leibnitian, 
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because the converse implication, .,PCB) => (8 => .,8), had not been 
put forward by him explicitly, then one might treat P as an unde
fined constant by adding the condition: q>CPT) = Pq>CT) to Def.8 of 
the "translation function". 

24 Cf. also the earlier version in Ad Specimen Calculi Univer
salis Addenda (GP, VII,22l ff): "P r Inc I pia C a I cui i. 
l) Qulcquid conclusum est In liter Is qulbusdam indefinltis, Idem 
Intelligi debet conclusum In aliis qulbusscunque easdem conditio
nes habentibus ... " (o.c., p.224). 

25 This need not mean that 11.7 were derivable from MPS and the 
other laws of strict implication. If one drops 11.7 without sub
stitution, weaker systems result that are designated as respec
tive ·'nought systems'· (51°, 52°, 53°, ... ) in the terminology 
of J. J. Zeman, Modal logic - The lewis Modal Systems (Oxford 
1973), 

26 Cf., e.g. the already quoted §137 of GI: .. ... Omnes syllo
gismi fiant Categoricae". Furthermore in Ad Specimen Calculi 
Universalis Addenda CAY, 1, 107 ff; cf. GP VII, 221-7 and C.249) 
axiom K1 is stated as the rule "8 est bcd, Ergo a est b, et a est 
c et a est d" Cp.ll1) and similarly El is described as a "con
sequentia per se vera": "8 est b et best c. Ergo a est c· 
(p.llOl. Finally, one can also find a rule-version of the "pra
eclarum theorema" K7: "Genera liter si sint quotcunque propositio
nes: a est b, c est d, e est I, inde fieri poterit una: ace est 
bdf, per additionem iIlinc subjectorum, hine praedicatorum" 
(p. to9). 

27 A further version of the modus ponens is provided e.g. In De 
Calculo Enuntiationwn CAY, o.c., p.125): ·Significatio particulae 
ergo tails a me accipitur: Esto: si A est B tunc C est D item: A 
est B tunc poni pater it: Ergo C est D.· Finally, d. also the 
Notationes Generales, o.c., where the "e 0 n seq u e n t i a 
p rim a H y pot h e t i a" is analogously formulated as fol
lows: WSi A est B, C est D. Jam A est B. Ergo C est D." Therefore 
the mlsglvmgs of Rescher (1954): "Leibniz cannot give a 
wholly adequate statement of this rule modus ponensw (p.3, ref.B) 
are without foundation. 

28 In our contribution to the IVth International Lelbniz 
Congress, Hannover, 1983: wLelbnlz und die Entwicklung der Moder
nen Loglk", p.423. 

29 For the sake of 
q, r, have been 

uniformity Lewis's 
replaced by A, B, 

sentential constants 
c, .... , similarly, 

p, 
his 
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different logical operators have been replaced by the symbols 
used in this paper. 

30 As to the "lack" of the law of associativity cf. K. Durr, 
Neue Beleuchtung einer Theorie von Leibniz (Darmstadt 1930l, 
pp.53 ff; Rescher (954) p.l1; Kauppi (1960), p.173; and H. Burk
hardt (1980), p.353 with suggestions to further readings 
(ref.399). 

31 Cf. also §194: "Terminus falsus est qui conti net oppositos A 
non-A. terminus verus est non-falsus." 

32 cr. Zeman (1973), pp.176-7. 

33 There the "rule of necessitation" is valid 
truth-functional tautologies and for the sentences 
,P'p :;> r; d. Zeman (1973), pp.l04 ff. and 164 ff. 

only for 
of the 

the 
form 

34 H. Poser, Zur Theorie der Modalbegriffe bei G. W. Leibniz, 
Wlesbaden 1969, p.60. 

35 Poser refers to a passage from Quod Ens Perfectissimwn 
existit (GP, VII, 261-2), where Leibniz attempts to Justify the 
compatibility of any ·perfections", I.e., simple, positive and 
absolute qualities. But the explanation "omnes autem propositio
nes necessario verae sunt aut demonstrablles, aut per se notae" 
(p.2611 shows at best that every (finitary) provable proposition 
a is ipso facto necessary. In order to obtain an informal version 
of the "rule of necessitation", however, one would have to have 
in addition that the neceSSity-statement ,P,a itself is 
finitarily provable or necessary. 

311 S4, unlike T, contains only finitely many non-equivalent 
·modalities"; cf. Zeman (1973), 179-81. 

37 Cf. his paper "Leibniz's Theories of Contingency". reprinted 
in M. Hooker (edJ, Leibniz: Critical and Interpretative Essays, 
243-83. On p.275 Adams remarks: .... the characteristic axiom of 
55 '" is not valid on the demonstrability conception of necessi
ty. For a proposition may be indemonstrable without being demon
strably indemonstrable: 

38 This follows from K. Fine's Investigation: "An ascending 
chain of S4 logics", Theoria 40 (974), 110-6. In a letter dated 
13.03.78 Steven Schmidt pointed out that there are even 
infinitely many systems between S4 and 55, that can be 
characterised by means of "one-variable axioms" alone, viz. 
through the axioms 'P'P(A)Aan+l :;> an with 01 = ,P,A; 02" = A :;> 

a Zn- l ; and a Zn+1 = ,A => a 2n• 
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39 Particularly in "Epistemologische Betrachtungen zu [54, 55]" 
Erkenntnis 14 (1979), 33-56, we have attempted to show, that 
whereas the 54.2 axiom, in epistemic Interpretation, should be 
viewed as valid of a general concept of knowledge, the characte
ristic axiom of 54.4 only holds of the specific concept of 
knowledge as true conviction. The characteristic axioms of other 
54-extensions (cf. ibid., p.35) are, as a rule, so complex that 
even a paraphrasing in ordinary language Is hardly possible, let 
alone a justified decision on its "intuitive" acceptability. 

40 For a short outline of deontic-loglcal systems ct., for 
instance, F. von Kutschera, EinfUhrung in die Logik der Normen. 
Werte und Entscheidungen (Freiburg 1973), ch.1. 5ystems of 
epistemic logic are described in detail in our Glauben. Wissen 
und Wahrscheinlichkeit (Wien 1980). 

4' Cf. A. R. Anderson &; N. D. Belnap, Entailment I (Princeton 
1975), 12 and 22.3. 

42 To be more precise, Lewis/Langford prove only the following 
weakened version of K6S: (A ~ B) ~ (A ~ AI\B), in which one may, 
however, strengthen the implication on the right side to an 
equivalence. 

43 Cf. Zeman (1973) p.86; as a corollary of this proposition 
one obtains the further meta-theorem, that 51 0 thus also 
Leibniz's U5 - covers the whole of propOSitional-logic. 
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LEI6NIZ'S MODAL CALCULUS OF CONCEPTS 

The lSim of this paper is to uncover Leibniz's modlSl ClIlculu& 
of concepts. Here we employ the word "uncover" quite seriously, 
because his idea.s of modal logic, however sketchy in charlScter 
lind obscured by the du&t of occasional mistakes, are developed to 
such an extent that bringing them to completion is almost 
automatic for a modern "underlabourer". 

Our point of departure is the observation that what we are 
after here is not a sentential modal logic (at least not primar!
ly), since for Leibniz a sentence to which modal operators are 
applied has quite a definite structure: in the simplest c:a.se it 
is of the form A est B or A = B, and therefore his system is a 
modal extension of hIs calculus of concepts - In other words, a 
theory of Boolean algebras with underlyIng modal logic. 

Leibniz does not provide explicitly any axiomatization of 
the modal calculus of concepts. In this situation we investigate 
the part of his thought dealing with strict correspondence 
between sentences and concepts, which enables us to notice in the 
theorem on the reduction of hypothetiCllI to ClItegorical sentences 
a whole series of modal formulas. These formula.s, connecting in
timately modal and Boolean structures, we admit as the most 
fundamental axioms. 

In the resulting system, necessity can be interpreted as de
rivability. For reasons of space, we are not able to discuss this 
interesting fact that reminds of Leibnlz's definition of 
necessity as reducibility to identity. Instead, we concentrate 
upon a group of formulas (which we would like to call "the calcu
ius of strokes·) never I to our knowledge, commented on in the 
literature of the subject in question. The acquired technique 
turns out to be a useful tool for explaining these strange at 
first sight expressions, confirming the correctness of our axio
matization of leibniz's calculus of concepts. 

36 
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leibniz's calculus of concepts. presented, e.g. in Generalea 
Inqulsltione.s de Analy,sj NOtiOlllDD et Verltatum (GU, can be 
described rather adequately as a formalized theory of Boolean al
gebras, using a quantifier-free language which has an Infinite 
.set of concept constants Ccf. the paper by Profeaaor Lenzen in 
this volume). More precisely, we assume that the language l of 
the calculus has an alphabet consisting of the following symbols: 
u, - (functional symbols), " = Cpredicate symbols), I, A, B, ... 
(concept constants forming an Infinite set Cn), Y, II, H, ~, +-+ 
(logical constants). The sets of terms and formulas, denoted 
respectively by T and F, are constructed in the standard way. We 
shall write t lnt2 instead of t I uta, tl 1f ta instead of N tl = t2 
(tl,t2 eD, and 0 instead of t. 

The leibnitian expressions AS (the composition of concepts A, 
B), non A. A est B, A est Ens Cequivalently: A est possibUe, A 
est res, A est verum, A est), A non est Ens (equivalently: A est 
impossibUe, A non est res, A est falaum, A non est) are 
rewritten In L as: AvB, A, B" A. A 1f 1. The fact that we read A 
est B as B" A, which accords with leibniz's generally synonymous 
use of -est- and -continet-, and that we denote the unique 
impossible concept by I shows that the intended interpretation of 
the language is the so-called intentional one. 

The calculus of concepts is now a theory Bo = CL,Ax,Cons), 
where Ax Is a set of axioms, Cons Is a consequence operation. Ax 
contains any .set of Boolean axioms, formed with respect to u, -, 
1 and closed under the substitution of terms for constants. The 
last property agrees with leibniz's statement that there are 
infinitely many axioms (-propositions identiques-), because there 
are infinitely many names for concepts (-termes- - C.l86). Fur
thermore, beside the substitutional Instances of axioms of 
sentential logic, to Ax belong all formulas of the type t.,t t, 
where teT C-Propositio per .se falsa est A colncidit ipsi non A- -
C.365). Bo is thus a theory of nondegenerated Boolean algebras -
an important fact in our subsequent constructions. Cons is based 
on modus ponens as a sole rule of Inference. t- a means that the 
formula a is a theorem of Bo. 

let C be the Boolean algebra of concepts. By an Interpreta
tion of the language l in C we shall mean any function v: en -+ C 
such that vel)" I. The interpretation v standardly assigns 
truth-values to every formula of l. We write C ... " a, if the for
mula a ia true in C under the interpretation v. 
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II 

Commenting in GI on theorems of his calculus, leibniz writes 
often; • A autem B significare pos;sunt terminos, vel propositiones 
alias" (C. 365). In the latter case, when, moreover, L, M, N are 
sentences, non B is interpreted as the negation of B, MN denotes 
the conjunction ot M and N ("SclUcet sit A esse B - l, et sit 
B = CD et A esse C = M, et A esse 0 = N, utique tlet; l = MN" -
C.372), and the expression A est B means that the sentence A 
contains, i.e. implicates, the sentence B: "Propositionem ex 
propositione sequi nihil aliud est quam consequens in 
antecendenti continerl ut terminum In termino· (C.396). 

Throughout the rest of the present paper we shall meditate 
upon this idea of leibniz's, showing that what he has in mind is 
surprisingly far more complicated than the "ordinary· Lindenbaum 
algebra of the theory Bo- The point is that leibniz maintains not 
only that the algebraic structure in the set of sentences is sim
ply analogous to that In the set of concepts, but claims, more
over, that the former originates from (Is isomorphic to) the 
latter via some operators associating terms with sentences 
(concepts with Interpreted sentences). 

The leibnitian reduction of "propositiones 
(categorical sentences) to "propositlones secundl 
set of the following tour equivalences (C.393): 

(Rt) Quoddam A est B dat: AB est res; 

tertii 
adJectl" 

(R2) Quoddam A non est B dat: A non B est res; 
(R3) Omne A est dat: A non B non est res; 
(R4) Nullum A est B dat: AB non est res. 

adjectf" 
Is the 

The form of sentences on the right-hand side suggests that the 
reduction can be pushed on still further to objects "prlmi 
adjecti". In this way there arise two operators which are more or 
less explicitly present in Leibnlz' s texts: 

1. V: T - F, Vet) is the formula t " 1; 

2. Z; T - F. Z(t) Is the formula t = 0 (or t est necessarium 
In lelbniz's notation - C 259). 

Let us Introduce at one stroke two remaining analogous ope
rators: 

3. V: T - F, vet) is the formula t = 1; 

4. Z: T - F, Z(t) is the formula t " O. 
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In ~igning term to formulas, Leibniz employs, first of 
all, the operator V-I. The following pa.s.sage illustrates the pro
ceclure in question: ·Ipsa propositio concipi patest in.star termi
ni, sic quo A esse B, seu AB esse terminum verum, est terminus, 
nempe AB verum· (C.397). AB verum means here just AB: ·verum 
faeit hoc loco officium quod unitas in Arithmetica t .. ) A = 
A verum· (C.36t, 362). 

Let us now see how Leibniz fares with sentences which have 
reduction of the form t = 1 or t = 0: ·Sic omne A esse B, seu A 
non Besse falsum, seu A non B falsum est terminus verus" 
CC.397). The sentence A non Best falsum can be transformed into 
the term A non B by means of V-I. However, if the initial sen
tence is true, then the term denotes an impos.sible concept, which 
is for Leibniz a perplexing situation. For this reason he chooses 
the expression A non B falsum. If we interpret It as nonCAnonB), 
we obtain the transformation: 

Orone A est B 1-+ nonCAnonB), 

which consisu in applying the operator Z-I, because I- B E; A +-+ 
AuB .. O. Perhaps our seeing in C.397 Leibniz's allusion to Z is a 
little simple-minded, but it should be stressed that the theory 
under consideration just calls for the operator Z, which can 
therefore be introduced in our model a priori. 

On the whole, Leibniz is convincecl that one can associate a 
term with any sentence by means of the operator V-I. This is, of 
course, not so, but the very idea remairus clear, and his formu
lations can easily be corrected. He says, for instance: IrEt reve
ra omnis propositio seu omne complexum patest vicissim reduci ad 
incomplexum per est primi adject! ut vocant. Et si loco proposi
tionis homo est rationalis, d!cam T6 hominem esse rational em, 
est" CGP II, 472). Unfortunately, the sentence homo est rationa
lis cannot be written in the form t .. 1, where tET. Let us para
phrase the above statement, substituting the sentence qUidam homo 
est rlltionaIis for the original one. The new sentence is 
equivalent, on account of CRO, to: homo rationalis est (res), 
and therefore we obtain 

T6 quendam hominem esse rationalem = homo rationalis. 

If we want to retain Leibniz's original example, we should, 
of course, use the operator Z-I with the result: 

T6 hominem esse ratlonalem = nonChomo non rationalis). 
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One ob.$erves thet the term Lelbnlz ~Igns to a sentence a 
is, as a rule, denoted by T6 a, or solely by the ace. cum inf.
form of a. 

The converse transformation of terms into sentences can also 
take place: ·ProposlUo ipsa fit terminus si termino ipsi adji
ciatur verum aut falsum; ut sit A terminus, et A e:st vel A verum 
e:st, sit propositio, A verum, seu A verum e:s:se, seu A e:s:se erlt 
terminus novus, de quo rursus fieri potest propositio· (C.398), 
or V V-I 

A 1--+ A est verum 1--+ A verum, 

where, as we noted earller, A verum - A. 

III 

The discovery of strict correspondence between terms and 
sentences enables Leibniz to elucidate the nature of implication, 
and, In particular, to • reduce· hypothetical sentences to 
categorical ones. Now we pass on to a detailed analysis of an 
example of such a reduction (C.260): 

(1) Ex A est B seqUitur E est F, idem est ac si diceremus A esse 
Best E esse F. 

We begin by establishing the sense of the implication on the 
left-hand side. In leibniz's texts ·ex a sequitur p. expresses 
not material implication, but a much stronger connection between 
the sentences a and p, which consists In a's ·contalning· p, and 
which Leibnlz describes aLso In a way which amounts to saying 
that p Is a logical consequence of a and of a set of the defInI
tions of concepts (C.408). ·Ex a sequitur p. Is therefore a kind 
of strict implication: N(a -+ p), where N is a· sign of necessity. 

Let us now consider alternative readings of the expressions 
A esse B, E esse F in m, which Leibniz might as well have writ
ten T6 A esse B, T6 E esse F (C.389). According to what was said 
earlier, A esse B, E esse F are just terms KCA est B), KCE est F) 
where K is potentially one of the following operators: V-I, Z-I, 
V-I, Z-I. 

A!S we have remarked, Leibniz ~umes In the first place, 
thet K· V-I. But in this case the operator K is erroneously app
lied to sentences which cannot be written in the form t" 1, and 
therefore we paraphrase (1) as follows: 
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(2) Ex quoddam A est B sequitur quoddam E est F, idem est ae si 
diceremus quoddam A ea.se B est quoddam E esse F. 

In view of (R1>, the sentences A quoddam A eat B, quoddam E est F 
lead to the following formulas of the language L: AvB;tI I, 
EuF "1, and consequently KCq. A est B), K(q. E est F) are, res
pectively, the terms AuB, EuF. We thus obtain 

(3) N(AuB ;tI t -+ EuF ;tI 1) ........ EuF , Aue. 

(4) 

Assume next that K = Z-· in (t). Then, analogously, we get 

NCB , A -+ F , E) - EnF , AnB. 

Finally, when K .. V-I or K· Z-·, we obtain, respectively 
(In the latter case we conaider (2) instead of (1)) 

(5) N(B' A -+ F , E) - EuF, Aun', 

(6) N(AuB;tI 1 -+ EuF " 1) - ~nJ! , AnI§'. 

To sum up, we see that the operators V and Z cannot be used 
for associating terms with sentences in leibnlz's sense (at least 
as long as est "'contlnet), because from (5) (or from (6)) by put
ting A· 0, B = E • F - I, even under very general syntactic 
assumptions, one deduces the formula 0 = I, which contradicts the 
axiom t" t. On the other hand, Leibniz's idea of reducing 
hypothetical to categorical sentences, realized by means of the 
operators V and Z, leads immediately to formulas (3) and (4), 
which are particular Instances of 

(7) 

where t.,tafT. 

We Intend to regard formulas of the type (7) as structural 
axioms of leibnlz's modal calculus of concepts. It Is easy to 
perceive their Boolean sense. To thia aim, denote the formula 
tl=1 -+ ta=1 by a. Firstly, we obviously have ~ t. " t2 -+ a. 
Secondly, it Is not difficult to prove that If ~ p ... a, where p 
is any conjunction of equalities (of the form p. q, p,qfT), then 
~ p -+ tt "t2• The formula t .... ta can thus be called the wea
kest, with respect to conjunction of equalities, condition 
implying the truth of c. If in place of t.=I-. ta=l we conaider 
the more general formula: t - 1 -+ (\1-1 V ... V t .. -1) (denoted also 
by a), we see that the role of t.' ta i& now played by the set 
{t .: t., .... t , tn}. because ... t , tt -. c. and if t- P ~ c, where 
p 1& a conJunctlon of equalitl .. , than ... p -. t 'It for sema 
i = t .... n. 
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IV 

The above investigations suggest that all formulas of the 
type 

(8) N(t = 1 ~ (t,=1 v ... v tn=1)) - t' t, v ... v t , tn. 

where t.tIET. n is a natural number. should be candidates for 
axioms of Leibniz's modal calculus of concepts. 

We shall now extend the language L by adding to its alphabet 
the symbol for necessity N. The set F, of formulas of the new 
language L, is thus clo.sed under the operation a 1-+ Na, where 
aEF,. Ma wfll be an abbreviation for ,.,.N .... a. Lefbniz's modal calcu
lus of concepts is a formal system BI = (L"Ax"Cons,). The set 
Ax, of axioms of the theory B, contains all axioms of the theory 
B and all formulas of the type (8). Furthermore, Ax, contains 
formulas of the form Na ~ a, N(a ~ p) ~ (Na ~ Np), Na ~ NNa, 
where a E F 11 and substitutional Instances of axioms of sentential 
logic. The consequence operation Cons, is based on modus ponens 
and on the following rule of inference: if 1-1 a then 1-, Na (for 
aEF" 1-, a means that a is a theorem of B,). 

For reasons of space, we are not able to explain in this 
place why exactly 54 should be chosen as the logic of Lelbniz's 
modal theory. For the argument, based on his definition of neces
sity as provability, we refer the reader to Juniewlcz (1986) or 
to Professor Lenzen's paper in this volume. 

We shall now present the main metatheoretical properties of 
B, (for proofs see Juniewlcz (1986). These wlll not be of use in 
the sequel, but should enable the reader to get a feeling of what 
our formalization of Lelbnlz's modal calculus Is. 

Propo31tlon I. B, is a consistent nonessential extension of 
the theory of Boolean algebras 80 (i.e. If 1-, a then I- a, for a e F). 

Propo31tlon 2. The underlying logic of B, is In fact McKin
sey's system 54.1. I.e. 1-1 NMa ~ MNa for aEFI• 

Let Id denote the family of all proper ideaL! in C (the Boo
lean algebra of concepts). Let R be the relation on Id defined as 
follows: I, R 12 iff the Ideal II Is contained In the Ideal 12, 
We shall treat the partially ordered set of quotient algebras 
({Cll}ICld.R) as a structure of po.s.sible worlds In the sense of 
Kripke. Given an Interpretation v: Cn -+ C of the language L In 
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C, a formula (1 is false or true in each possible world ClI, 
namely, under the interpretation VI: Cn - ClI, VI = klov, where 
kl: C - CIt is the canoniC4l epimorphism. Thus we obtain a 
Kripke semantics for the modal language LI. Cli I=y P means that 
the formula p Is true in the possible world Cll within this 
semantics. 

Proposition 3. (Comptetenass theorem). Let (1 be any formula 
of the modal language LI. Then r-I (1 iff Cll I=y (1 for every ideal 
Ie ld, and every interpretation v: en - c. 

Let Ar stand for the set of the atomic formulas (of U which 
are true in CIt under the Interpretation v. 

Proposition 4. For any aeFI we have CII I=y Na Iff Ar r-I a. 

Thus, unsurprisingly, BI belongs to the family of those for
mal theories with modal logic in which necessity C4n be interpre
ted as derivability. 5. Kripke (1963) describes semantically a 
similar system which is a modal extension of arithmetic. Kripke 
does not provide any complete axiomatisation, but observes that 
the logic is in fact 54.1. 

The above-mentioned fundamental property of BI accords neat
ly with Lelbniz's explanation of necessity in terms of provabili
ty. This suggests that it is possible to arrive at the theory BI 
in a completely different way, namely, starting from his famous 
definition stating that a sentence is necessarily true if it is 
"reducible" to identity. For this we again refer the reader to 
Juniewicz (1986), where it is also shown how Leibnitian possible 
worlds can be naturally described as the algebras Cli. 

v 

Leibnlz's constructions using the operators which set up the 
correspondence between terms and sentences point to the fact that 
he regards the algebra of sentences not only as analogous but, 
more strongly, as "Isomorphic" to the algebra of concepts. Let us 
return once again to the statement (1). which we Interpreted ear
lier as a formula of the modal language ll. Now we C4n look at 
(1) from a slightly different point of view. Let v: Cn - C be an 
interpretation. The equivalence (1) may be written as 

(9) C I=y N(a"" p) iff C I=y K(p) , K(a), 

where K = V-lor K = Z-I. But the fact that the sentence (1 
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implie& the sentence p mean&. according to leibniz, that a 
contain& p. We thus obtain 

(to) [aly , [ply iff C "'y K(p) , K(a), 

where [a]w [ply are equivalence classes of a and p, i.e. ele
ments of some Boolean algebra of sentences. (1) state& therefore 
that the operator K preserves (at least) the ordering in that 
algebra and in the algebra of concepts. 

The technique of the theory B, enables us to formulate more 
precisely the above observations. 

Proposition 5. Let t,tl,taET. Formulas of the following form 
are theorems of B,: 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Proof. 

M,..,t 1l I ~ 1 7f. I; 

MN(t, " t " ta " t) +-+ tl uta " Ii 

(tl 7f. t /I. ta 7f. 1) +-+ t,nta 1l Ii 

N .... t = 0 +-+ t = 0; 

NM(tl = 0 v ta = 0) +-+ t,nta = 0; 

(tl = 0 /I. ta = 0) +-+ tluta = O. 

(a) and (d). Substituting in (8) (where n= t) the constant 0 

for t, we obtain 1-1 Nt 7f. I ~ t = 0, and dually 1-, Mt = I ~ 1 1l I. 

(b) and (e). The following formulas are equivalent within B, 
MN(t, " I " t2 " 1), M(Nt, " t " Nta " 1), M(t, = t " 1a = 1), Mt,n ta = t, 
tl uta Jl t. Finally we have (b). We obtain (e) by duality. 

(c) and (f) are theorems of Bo and thereby theorems of B,. 

Let [a] be the equivalence class of a formula a e F I with res
pect to the equivalence relation: a J:I p iff 1-, a+-+p. Denote by 51 
the set of all elements of the form [t pt tl, where teT. From 
Proposition .5 it follows that 51 is a Boolean algebra with 
operations: 

(l) [~] = [MNa]; 

(Ii) [aJ u * [pJ = £MN(a /I. p)]; 

(im [aJ n * [p] = [a v pl. 

The class U 7f. 11 is the greate.st element, the class [0" 11 is 
the least (S, is In fact the Boolean algebra of regularly closed 
elements in the topological Boolean algebra F,tJ:l). 
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Let [t] be the equivalence clMS of a term tET with rapect 
to the equivalence relation: tl fI$ t2 iff I- tl - t 2• From Proposi
tion 5 and from the fact that if I- tl " 1 - t2 "1 then 
I- tl - t2• it follows that the function V: T/fII -+ 51. defined by 
the formula V([tJ)" [t "11 is an isomorphism of Boolean 
algebras. 

Analogously. let Sa be the Boolean algebra of sentences 
which is the set of elements of the form [t .. 0]. where tET, en
dowed with the following operations: 

• (lv) [al = [N .... al; 

(v) [al u* [p] = [a 1\ .01; 

(vi) [aJ n* [pl ... [NM(a v p)]. 

The class [1 = OJ Is the greatest element. the class [0 = OJ is 
the least element (Sa is in fact the Boolean algebra of 
regularly open elements in the topological Boolean algebra F/fII). 
Proposition 5 and the fact that if I- tl = 0 - ta = 0 then 
I- tl = ta show that the function Z: T/fII -+ Sa. defined by the 
formula Z([t]) - [t ... OJ is an isomorphism of Boolean algebras. 

It is now clear how to obtain the genuine Leibnitian alge
bras of sentences. namely those which are Isomorphic to the 
algebra of concepts (and not of terms). To this aim, it suffices 
to modify the above constructions, considering in Fl the 
equivalence relation: a fl$y p iff C "'y N(a -.0) instead of the 
formerly used one : a fI$ p iff 1-1 a - p. Here we omit the de
tails, because the simpler algebras 51 and 52 equally well 
explain the thought of Leibniz. We only point out that In these 
algebras indeed [pJy " [aly iff C I=y N(a ~ p), in accordance with 
Leibnlz's Interpretation of implication as a relation of con
taining (the proof in Juniewicz (1986). 

We conclude that Lelbniz's ideas concerning the nature of 
the algebra of sentences are quite reasonable, although we have 
had to correct him at several points. Firstly, Leibnlz seems to 
be convinced that the algebra of all sentences is Isomorphic to 
the algebra of terms, whereas In reality this property is po.s.ses
sed by the algebras 51 and 52, which are proper subsets of F/RI. 
Secondly, Leibnlz proposes the classical negation as the opera
tion on sentences. parallel to the operation non on concepts. We 
take instead the strict negation N..... (in the case of Sa). ·Compo
sltion· of sentences in Sa agrees with the Leibnitian operation 
(which is conjunction). but in S. the situation is not so neat in 
view of the defining formula (ill. 
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These divergencies could raise objections to our interpreta
tion' were It not for the pleasant fact that the apparatus can be 
employed to illuminate some of Leibniz's ideas which are hardly 
accessible within any other framework. 

VI 

Our analysis of leibniz's "calculus of strokes· from §107-
108 of GI is based on the following obvious consequence of Propo
sition 5: 

Proposition 6. (Leibniz's principle of the duality sentence
concept). let t(A" ... ,A,,) be a term. Then: 

(a) 

(b) 

1-, UA" ... ,A,,) ~ 1 ~ t*(A,~1, ... ,A,,~1) 

1-, UA" ... ,A,,) = 0 ~ t*(A,=O, ... ,A,,=O), 

where t*(a" ... ,an ) (resp. t*(a" ... ,an» denotes the modal ope
rator that arises from the term t by indexing with the lower 
(resp. upper) asterisk each symbol of Boolean operation on t. 

In the above-mentioned fragment of GI Leibniz introduces a 
very interesting method of notation of formulas of the calculus 
of concepts. In this notation the meaning of an expression de
pends on the context in which it occurs. 

, 2 3 
1. An expression of the type -- is in principle a sentence 

A II 

in which A is the subject, B is the predicate. The numbers mark 
empty places in which some symbols should be written, indicating 
the kind of the judgement (in this role we shall use just the 
sequences of natural numbers): "locus 1 designabit quantitatem 
vel qualitatem, etc. secundum quam hic adhibetur terminus A (...) 
et locus 2 naturam propositionis AB, locus 3 modum termini B" 

(C.381l. In this case we shall write ~ as t(A,B) ~ 1 or as 
A II 

teA,B) = 0, where t is a term. 
• '2 3 

2. The same expressIon AB can appear in a context like 

4 5 e 
, 2 3 

A II C 

Our previous considerations suggest that if C Is a name of a con
cept' and the .sequence (4,5,6) codes the kind 01 Judgement then 

~ denotes not a sentence (this would be nonsensical), but the 
A IS 

corresponding (with respect to the operators V or Z) term, i.e. 
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t(A,B). Lelbniz writes about it, using in a characteristic way 
the Greek article: MLocus 4 (designes) modum adhibendi T6 AB seu 
l M(ibid.). 

123 
3. Although, a:I we have said, -- Is In the first place a 

A !S 

sentence with the subject A and the predicate B, it is syntacti
cally also possible to substitute for A and B expressions which 
are clearly sentences. In this case we shall interpret 0,2,3) as 
the modal operator in two arguments t*(a,p) or t*(a,p) according-

ly, as the original 

t(A,B) - O. For instance 

interpretation of 

28 29 30 

7 8 9 10 \I 12 

B V C 0 

123 

A D 
is t(A,B) Jl 1 or 

(C.3B2; a subformula of Leibniz's formula) is a modal formula of 
this type, whose subformulas are the sentences Best verum and 
10 II 12 

c o· 
For the sake of illustration we shall now concentrate on a 

formula of leibniz's Mcalculus of strokesM, showing at the .same 
time what modal machinery is involved in his synonymous treatment 
of Mex ... .sequiturM and McontinetN or NestM. 

Let 0,2,3) denote the Boolean relation est. The expression 
123 AS In the position -categorical sentence" means thus: A est B. 

Let us define A estl B = AnB. Since I- AnB = 0 ~ B EO A, the ex
pression under consideration in the position :termM is just A 
estl B. One verifies easlly that 1-1 N(ex -i> ,0) ~ Cin*p, when ex and 
,0 are formulas equivalent to tl = 0 and ta = 0, respectively 

I 2 3 
(tl,tz e n. ---- is therefore the formula N(A = 0 -i> B = 0), or. 

10-0 D-O 

Introducing a new symbol esta• the formula (A = 0) esta (B = 0). 

Consider now the expression 
4 5 eo 

123 

" !S C 

(C.3B1>. Let us assume that also (4,5,6) deSignates initially the 
relation est. If C is the name of a concept, then we obtain 

(11) (A est l B) est C. 

According to the Leibnitian Idea of as.soclating terms with 
sentences by means of an appropriate operator, or even of Identl-
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fying terms with sentences, C may be regarded as the sentence 
C :: O. Leaving without change the status of A and B we get 

(12) (A est B) est2 (C = 0). 

Finally, treating A, B, C as sentences via the operator Z we 
have 

(13) «A" 0) estz (B = 0» estz (C .. 0). 

The sense of this procedure consists In the fact that the 
formulas (11) - (13) are equivalent within the modal calculus of 
concepts by virtue of Leibniz's duality principle. 

Now we pass on to investigate Leibniz's original example of 
a transformation in which he makes use of the operator V. In the 
fragment of GI under consideration we find the following formula 
(C.381l: 

\3 14 15 

10 It tz 

(14) 7 II 

123 45e 

ABC 0 I!! p 

It is more or less clear that the letters are here the names of 
concepts. This means that 

7 II II 

123 
and 

123 

C 0 8 C 0 

are in the same semantic category. For definiteness, we assume 
" 5 II that and the expression under 00,11,12) are sentences 
I!! P 

(these may be treated as terms as well). Consequently. the sequ
ence (13.14.15) codes a modal operator In two variables. In our 
notation the formula (14) takes on the form: 

(5) 

where p.q,r,s,tET. (We choose the variant that Is most convenient 
for applying the operator V). 

After recalling that -Omnls terminus etiam Incamplexus pa
test haberi pro propositlone-, Lelbnlz forms a new expression, 
which is to be equivalent to the first (C.382): 

43 .. 45 

37 311 J. 40 41 42 

(16) 
Z5 26 27 za 2. 30 31 32 33 J. 35 3e 

I 2 3 • a e 7 II II 10 \I 1213 14 U 111 17 10 111 20 21 22 23 24 ------
A V V V • V C o 2 V V V P V Y Y. 
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The point of the transformation is clear. The letter B appears as 
10 II 12 

the .sentence B est verum, which aut0JD4tically makas a 
C D 

sentence. The symbol A (and similarly E and F) has been replaced 
by a more complicated sentence, containing three occurrences of 
V. If Leibniz was not intent on obtaining the symmetry of the 
graph, he could as well have written: 

25 20 27 

22 23 24 

(17) HI 17 III 19 20 21 

I 2 3 4 5 0 7 II 9 10 I I 12 13 14 15 

A V 11 V C D I! V " V 

or. in our notation: 

(tB) p*Cq*CA '1t 1,r*(5 '1t 1,sCe,D) '1t 1»,t*{E '1t 1,F '1t 1)). 

The equivalence of (14) and (17) is thw again an application of 
leibniz's duality principle. 

There remains to explain the meaning of the formulas under 
(25,26,27), (31,32,33), (34,35,36) in (t6). The transformation of 
(14) into (17) consists in applying several times the equivalence 
t(A,B) '1t t +-9> t*(A " I,B "t), where t is any term. But we ob-

I 2 3 
viowly do not have to stop at AV becawe the operation of 

transferring ""t" to the inside of an expression can be carried 
out once more jwt with respect to that .seemingly closing 
formula. If t is the term Aua, we have: 

t-, Au~ " 1 +-9> (A" 1) u* (B pi 1), 

and putting 1 in the place of B: 

t-I A pi 1 +-+ (A " t) u * (1 " 1). 

Instead of ~ we can therefore write 
A v 

25 20 27 

123450 -- --
A V I V 

(and analogowly for E, F), where (25,26,27) denotes the modal 
"To 

operator au*p, or, equivalently MN(a" M",p). lelbnlz's mistake, 
i.e. writing the letter V Instead of t under the place.s 4, t6, 22 
In (16) originates from the fact that he treats sentences of the 
type A est verum as formally analogow to those of the type A est 
B, where B is a concept constant. 
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VII 

We conclude our exposition with several remarks. 

Let tET. Each of the following expression-forming operators 
in two variables: t(A,B),. I, t(A,B), t*(a,p) will be called 
parallel to any of the remaining ones. We shall also say that the 
expression A is parallel to the expression A,. 1 (and vice versa; 
this can be regarded as a particular instance of the first 
parallelism). Let in an expression of the type (14) or (17) every 
sequence of natural numbers designate an expression-forming ope
rator of the form P{A,B) J4 I, q<A,B), r*(a,p), where p,q,ft:T (the 
assumption does not concern the sequences occurring in an expres-

123 
sion of the form -- which is always interpreted as A" 1). An 

A V 
expression obtained in this way is a well formed formula of "the 
calculus of strokes", while it is not, in general, a well formed 
formula of the language L1• However, by substituting, if neces
sary, expression-forming operators or expression for parallel 
ones, we can get a well formed formula of Lv and Leibniz's dua
lity principle guarantees that the resulting formulas are equi
valent to each other. 

Analogous remarks can be made with respect to the context of 
the operator Z. In that case, as noticed earlier, for example A 
est a, A est! a, a es~ p (a, A, Ana, NCa ~ p», are parallel 
expression-forming operators. 

Let us now return to Leibniz's synonymous use of "antece
dens" and "subjectum", "ex ... sequitur" and "est", "consequens" 
and "praedicatum", as formulated e.g. in C.518: "Semper igitur 
praedicatum seu consequens inest subjecto seu antecendenti et in 
hoc ipso consistit natura veritatis in universum". According to 
what has just been said, the strange expressions (A = 0) est 
(a = Q) or A est2 B are well formed formulas of "the calculus of 
strokes", the corresponding equivalent formulas of Ll being 
(A = Q) est2 (a = 0) and A est a. In brief: Leibniz's synonymy is 
a particular case of the phenomenon of parallelism (as to the ex
plicit use of an expression of the form A est2 B, where A. Bare 
concept constants, cf. C.259: "Sequitur (vel infertur) A ex a 
(.. J. Per A (aut a) hie intelligo vel terminum vel enuntiatio
nem"). In view of the fact that t-I N(A l' t ~ B l' t) .-. a ~ A, the 
synonymy can also be explained in terms of the operator V, but we 
shall not dwell on this point. 

As remarked earlier, in GI leibniz emphasizes that "A autem 
a significare passunt terminos, vel propositi ones alias" (C.365). 
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By virtue of the considerations developed in the preceding sec
tions. it is clear that the sentences which can be substituted 
for the concept constants A, B, ... , occurring in the formulas of 
the calculus of concepts. are by no means arbitrary, but they are 
exactly A 'If. 1. B 'If. 1, (or A = 0, B = 0, ... ). We also know 
that, as a result of such a substitution, the symbol est acqUires 
the meaning of strict implication. In this way there arise many 
functions from the set F to the set Fl' We shall precisely des
cribe one of them, based on the operator V. 

To begin With, we define an auxiliary function fo: T --+- F. 
as follows: let t(A., ...• }.,.) be any term. Then fo(t) is the for
mula t*(A, ~ 1, ... ,}.,. ~ 1). The leibnitian transformation of 
Boolean formulas into modal formulas is the function f: F --+- F, 
given by the following rules (for simplicity we assume that all 
atomic formulas of L are of the form t, EO t2, t"t2 E n: 

1. If a Is of the form t, EO ta. then f(a) is the formula 

N(fo(tz) -+ foCt,». 

2. If a is of the form "'(3. then f(a) is the formula ,.,f(p), and 
similarly for the rest of logical constants. 

For example, in Leibniz' notation, f assigns to A est B the 
formula ex A est verum sequitur B est verum. 

From leibnlz's duality principle and from the fact that 

1-, N(A Jl 1 -+ B Jl 1) 1-+ B EO A, 

it follows that 1-, a 1-+ f(a) for any a e F. In particular, theorems 
of the calculus of concepts are mapped Into theorems of the modal 
calculus of concepts. 
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THE LOGIC OF CONDITIONS 

1. Introduction 

The logic of necessary or sufficient conditions has been 
investigated by a number of authors, including C.D. Broad, G.H. 
von Wright, K.E. Transy and A. Pasch. The first systematic dis
cussion of it was Broad's -The Principles of Demonstrative 
Induction-, I, Mind (1930). 

In A Treatise on Induction and Probability (1952), von 
Wright gives the following definitions: 

That (the property denoted by) A is a Sufficient Condition of 
(the property denoted by) B means that whenever A is present, 
then B is also present .... 

and 

That (the property denoted by) A is a Necessary Condition of 
(the property denoted by) B means that whenever B is present, 
then A is also present .... 

let -ASS- mean that (the property denoted by) A is a sufficient 
condition of (the property denoted by) B; and correspondingly for 
-ANB-, mutatis mutandis. We may render von Wright's definitions 
formally as follows: 

(01) ASB =0 (x) (Ax :J Bx) 

and 

(02) ANB =0 (x) (Bx :J Ax). 

These definitions have the result that denials of statements 
about sufficient or necessary conditions involve existential 
commitment!. Let wASBw (-ANBW) mean that (the property denoted 
by) A is not a sufficient (necessary) condition of (the property 
denoted by) B. 

52 
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From (Ot> we get 

ASe = -(x) (Ax :J ex) = (3x) (Ax &. ex) 

and from (02) 

ANB - -(x) (ex ::) Ax) - (3x) (Bx &. Ax). 
In Logic and the Engli.sb Language. Alan Pasch takes the 

notions of nece.ssary and ,sufficient conditions as basic. Let P, 
Q, R, ... stand for nominalizetions such as "being a mane, "being 
a mammal-, "being mortal-. -PSQ" (-PNQ'") may be read as -being a 
P is a sufficient (necessary) condition for being a c:t'. Pasch 
.says that negations of these expreaaiona, -PSc:t' and -PNQ-, 
Involve no existential commitments. But he doea not analyze the 
nation.s of nacas:sary and sufficient conditions further. An 
obvimm way of avoiding exiat.entlal commitments here would be to 
regard PSQ and PNQ as modal .statements. 

2. Condition.s and JaOdalities: a first attempt 

The first and most obvious attempt to relate the notions of 
necessary and sufficient condition.s to modal logic is .sImply to 
put an L in front of von Wright's definitions: 

PSQ =D Ux) (Px ;:) Qx) 

PNQ -D Ux) (Qx :> Px). 

This gives us InterdefinabiUty of 5 and N: 

PSQ -~. 

And it makes 5 and N reflexive, as von Wright requires, since, in 
standard modal .systems, 

Ux) (Px ;:) Px) 

is a thesis, and this is equivalent with PSP as well as PNP. & 
here defined, 5 and N are also transitive, as von Wright hu 
them; for, in standard modal .systems the following aJ.guments are 
vaUd: 

PSQ: Lex) (Px ;:) Qx) 
Q5R: Lex) (Qx ;:) Rx) 

PSR: Lex) (Px ::) Rx) 

PNQ: Lex) (Qlf ;:) Px) 
QNR: Ux) (Rx ;:) Qx) 

PNR: Lex) (Rx ;) Px) 
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These definitions of S and N also avoid exi&tential commitments 
of negative condition-statements: 

PSQ = -l(x) (Px :;) Qx) 

= M(3x) (Px &: -Qx). 

This merely says that it is po.ssible for something to be a P 
without being a Q. Analogously for N: 

PNQ = -Lex) (Qx :;) Px) 

= M(3x) (Qx &: - Px) 

says that it is pos.sible for something to be a Q without 
being a P. 

If we assume that the definitions of Sand N are grafted on 
to a modal system at least as strong as T. we get other theses: 

PSQ = (x) (Px ::> Qx) 

PSQ = Q'sp 

PNQ = Q-lP. 

(from A5 in T). 

The inference-rules called (by Pasch) -S-denial- and -N-denlal
become valid: 

Proof: 
m 
{2} 

U,2} 
{t,2} 

S-denlal: 

PSQ: -Lex) (Px ::> Qx) "" M(3x) (Px &: -Qx) 
QNR: Ux) (Rx ::> Qx) = Lex) (-Qx ::> - Rx) 

PSR: -Lex) (Px ::> Rx) = M(3x) (Px &:: -Rx) 

1. M(3x) (Px &:: -Qx) 
2. Lex) (-Qx ::> -Rx) 
3. M((3x) (Px &:: -Qx) &: (x) (-Qx ::> 

4. M((3x) (Px &:: -Rx» 

N-denlal: 

P 
P 

-Rx» t,2 by T 
3, by PC and T 

q.e.d. 

PNQ: -l(x) (-Px ::> -Qx) = M(3x) (-Px &:: Qx) 

QSR: Ux) (Qx ::> Rx) = Lex) (Qx ::> Rx) 

00: -Ux) (-Px ::> -Rx) = M(3x) (-Px &:: Rx) 

This is proved in the same way as S-denial. 
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Further, the rules called (by Pasch) ·Sufficient -Condition 
Satisfied" (SCS) and "Necessary Condition Not Satisfied" (NCN) 
become valid: 

sc,s: 
PSQ; Ux) (Px ::> Qx) 

Pa: Pa 

Qa: Qa 

tQi: 

PNQ: L(x) (Px :J Qx) 
-Pa: -Pa 

-Qa: -Qa 

But we do not get the rules that Pasch calls "Premiss Introduced 
and Eliminated" (PIE). This rule is 

(PIE) (P &, Q)SR f- If P is the case, QSR. 

If we reconstruct this in terms of propositions, we get 

L«p &, q) :J r) f- (p :J Uq :J r» 

which is not valid in T. And if we analyze it in terms of 
modal predicate logic, we get 

which is not valid 
attempt at a modal 
sufficient conditions 
adequate. 

Lex) «Px &, Qx) :J Rx) 
Pa 

Lex) (Px :J Qx) 

either. Hence our first and most obvious 
analysis 01 the theory of necessary and 
in Pasch's version begins to seem in-

And we encounter other problems when we look at Pasch's 
"Principles of Non - Triviality". let us see what these principles 
amount to in our reconstruction: 

PSQ I- PSQ 

Lex) (Px ::> Qx) f- -Lex) (Px :J -Qx), 

This is to say that something is a sufficient condition of 



Ingemund Gullvdg 

something only if it i& coMi&tent or .sati&fiable, for what thi& 
principle rules out i& 

i.e., 

or 

or 

Lex) (Px :) Qx) & Lex) (Px :) -Qx), 

Lex) (Px :) (Qx & -Qx» 

Lex) -Px 

-M(3x) Px. 

PSQ I- PSQ 

Lex) (Px :) Qx) I- - Lex) (-Px ::> Qx). 

This i& to &ay that something has a sufficient condition only if 
it is not a condition that is necessarily sati&fied by 
everything; for this principle rules out 

Lex) (Px ::> Qx) & Lex) (-Px ::> Qx), 

i.e., 
Lex) Qx. 

These requirements restrict the conditioM or properties denoted 
by P, Q etc. in 5- and N-contexta, to contingent conditioM or 
properties: neither tautologous nor contradictory. Hence proper
ties necessarily satisfied by everything, as well as properties 
neces.sarily .sati&fied by nothing, are excluded from such con
texts, for they would violate the requirements of non-triviality. 

and 
PNQ I- PNQ 

PNQ I- PNQ 

are easily seen to be equivalent each with one of the previous 
principles of non-triviallty. 

These principles, then, amount to requirements of contin
gency for the conditioM or properties which may occur in 5- and 
N-contexts. Assuming that expres.sioM like -Pa-, -Qb- etc. are 
substituted for variables in theses in T, the principle.s of non
triviality amount to a restriction on the rule lR 1, of &ubstitu
tion for variable&, in T. And we cannot u.se the rule of Nece.s
sitation, lR 3, without restriction. For we have, for example, 
(x) (Px :) (Qx v -Qx» as a truth in predicate logic, and from 
this we get by lR 3 

Lex) (Px :) (Qx Y -Qx» 
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i.e., 
PS(Q v Ql. 

But we also have (x) (-Px ;) (Qx v -Qx)) tIS a logical truth; hence 
by TR 3 we get 

Lex) (-Px ;) (Qx v -Qx)), 

i.e., 
PS(Q v Q). 

But these two theses conflict with one of the principles of non
triviality. 

So our attempted reconstruction breaks down. We shall make 
another attempt which will give us a rule corresponding to (PIE), 
but the principles of non-triviality only in weakened versions. 

3. Conditiom and modalities; a .second attempt 

A. Introduction 

In the following, I shall first develop a system where the 
conditions considered are states of affairs or propositions. 

Let "N,.p. mean "(the state of affairs) p is a necessary con
dition for (the state of affairs) q., or the ·necessary condi
t�ons of q require that p". "N.-p· will mean that the necessary 
conditions of q exclude p, or: not-p is a necessary condition for 
q. ·-N.-p· will mean that the necessary conditions of q do not 
exclude p, or, in other words, p is compatible with the necessary 
conditions of q. Of course, p Is compatible with all the neces
sary conditions of q if and only if p Is compatible with q. let 
"M.p. mean that p Is compatible with the n~ry conditions of 
q, or, briefly, p is compatible with q. We have 

(Def M) Mqp =D -N,.-p. 

Assuming substitution for variables in theses, and that logically 
equivalent expressions can be exchanged in N- and M-contexts, we 
have 

(1) N.p = -M.-p, 

that is, P is a necessary condition of q if and only if not-p is 
incompatible with the necessary conditions of q. 

"N, - p. will mean that not - p is a necessary condition for p, 
hence in order for p to be the case, not-p must be the case; 
hence the necessary conditions of p are inconsistent: p is 
necessarily false. 
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"Kpp" will mean that p is a necessary condition for not - Pi 
hence in order for not-p to be the case, p must be the caae. 
Hence the necessary conditions of not - p are inconsistent: p is 
necessarily true. 

"M,.p. or, equivalently, • -~ - p., means that p is not 
necessarily false, i.e., p is consistent. 

It seems reasonable to assume 

(2) M.,p = M,.q, 

that is, P is compatible with the necessary conditions of q if 
and only if q is compatible with the necessary conditions of p; 
or, briefly, p is compatible with q if and only if q is 
compatible with p. 

By (Def M), substitution and PC, we get from (2), 

(3) 

that is, P is a necessary condition of q if and only if not -q is 
a necessary condition of not-po 

p is a sufficient condition of q If and only if q is a 
necessary condition of p: 

(Der s) 

The following seem plausible u theses for Nand M: 

(4) ~(q :l r) :l (~q :l ~r) 

(5) ~q :;) (M,r :;) M,(q & r» 

(6) ~(q & r) = (~q & ~r) 

(7) M,(q v r) = (M,.q v M,.r) 

(8) (~q v ~r) :l ~(q v r) 

(9) M,.(q & r) :;) (M,.q & M,r). 

From (2) and (7) we get 

(10) 

Whatever is compatible with something is compatible with its 
necessary conditions: 

(11) M,q :l (~r ::> M,.q). 

From (11) we get, by substitution, 

(12) 
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i.e., the necessary conditions of a consistent proposition are 
compatible with it, that is, consl.stent. From (12) follows 

(13) 

From (13) we get, by (3) and substitution, 

(14) M_q-q :;) (~q :;) -N_.,q), 

and, by PC and (Def M), 

(15) 

i.e., a proposition is a necessary condition of contradictory 
propositions only if it is necessarily true. (13) and (14) give 
us the following rules. reminiscent of the Principles of Non
Triviality in Pasch's system: 

(Mqq cSr Nqp) I- -Nq-p 

(M_q -q cSr N,.q) I- -N..pq. 

By (Def S) we get from these 

From (11) we get 

(16) 

(Mqq cSr Spq) I- -S_pq 

(M_q-q & Sqp) I- -S_qp. 

that is, N is transitive. From (16) we get 

(17) 

i.e., S is transitive. (16) and (t7) give us transitivity rules 
for 5 and N. 

Nand S are also reflexive: 

(t8) 

(19) 

The necessary conditions of a state of affairs are satisfied 
if that state of affairs is realized: 

(20) ~q :;) (p :;) q). 

From (20) we get, by (Def S) and PC, 

(21) S,q :;) (q ::) pl. 

From (20) we get, by PC, 

(22) ~q :l (-q :l -pl. 
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From (21) and (22) we get 
Sufficient Condition Satbfied 
Satisfied: 

rules corresponding to Pasch's 
and Necessary Condition Not 

N.,q 
-q 

-p 

5.,q 
q 

p 

If P is the case and r is compatible with (the necessary 
conditions of) q, then (p & r) Is compatible with q: 

(23) (p & M,.r) :::> M,.(p & r). 

(23) is equivalent with 

(24) N,a."r :) (p ;:) N..r ) 
and 

(25) 

(25) gives us a derived rule of Inference corresponding to 
Pasch's Premiss Introduced and Eliminated: 

(PIE) S,(q & r) I- (q :) 5.,r). 

In this system, we do not need to avoid a Rule of Necessita
tion (corresponding to 1R 3 of n. We have, for any p, 

(N) I- a -+ I- N.,a. 

i.e., a logical truth is a necessary condition of anything. This 
is consistent with (13) and (14) and hence with the weakened 
versions of Pasch's Principles of Non-Triviality. By (N) we get 

I- a -+ I- (N.,a & K,a) 
and by (15) 

I- a -to I- N_ua, 

which simply says that if it is a thesis then it is also a thesis 
that Is necessarily true. 

From (N) and (4) we get a derived rule, 

(RN) I- (a :) fJ) -to ... (N.,a ;:) N.,fJ). 

i.e., whatever is entailed by a necessary condition of something, 
is itself a necessary condition of it. From (RN) we get, by <Def 
M) and PC, another derived rule, 

(RM) I- (a :::> fJ) -+ I- (M.,a :> M,p). 
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Further. by (2) we get 

(RM') t- (a ::> p) -+ t- (MaP ::> MjOp), 

that is. whatever is compatible with (the necessary conditions 
of) some state of affairs, is compatible with (the necessary 
conditions of) its logical consequences. 

By (Def S). we get from (RN), 

(RS) t- (a ::> p) -+ t- (SaP :l SlOP). 

i.e.. d sufficient condition of some state of affairs Is a suffi
cient condition of its logical consequences as well. 

Another possible candidate for a thesis Is 

(26) 

i.e.. it is a necessary condition of any state of affairs p that 
its necessary conditions be satisfied (true). 

A state of affairs q is compatible with the necessary 
conditions of a state of affairs p if and only if (p &: q) Is con
sistent: 

(27) 

If P is necessary and q is consistent. then (p &: q) is con
sistent: 

(28) 

From this follows 

(29) 

i.e., if necessarily P implies q, then if P is necessary, so is q. 

If P is necessary, then it is necessarily necessary: 

(30) N_,p :l KN_"K,p. 

If P is consistent, then it is necessarily consistent: 

(31) M,p :l N_M~' 

Finally. it is compatible with a state of affairs q that a 
state of affairs p Is compatible with a state of affairs r, if 
and only if p Is compatible with (q &: r); 

(32) M~rP : ~ .. rP. 
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B. Basis 

A sufficient basis for this set of theses and rules is PC 
and the following: 

(Def M) M,.q =0 -N,.-q 

(Def S) ~q = D N"p 

(N) I- a -+ I- N,.a 

~: 

At N,.p 

A2 N_pp :l P 

A3 M,.q • M,.a...p &: q 

A4 N,.(q :l r) :l (N,.q :l N,.r) 

A5 (N,.q &: N'Ir) :J N,.r 

A6 N,.q :J (p :J q) 

A7 (N_pp &: ~) :J M"a."p &: q 

AS M,.q ~ M.P 

A9 N,.(N,.q :J q) 

A10 N_,p :::I N_ .. ,-~_,P 

All M,.p :J N_M~P 

At2 S,(q &: r) :J (q :J S,r) 

A13 M~p !! M'IA"p 

c. Semantics 

We interpret Nand M in terms of a possible wor Id semantics. 
let 0 be a set of possible worlds. and let A. ,.,.. \I be variables 
ranging over O. Let "(p)A" be short for "the state of affairs re
presented by p is present in the possible world A" (or: "the pro
position p is true in A"). Let H be a triadic relation between a 
proposition and a pair of possible worlds. "H,A,.,." may be under
stood as "the necessary conditions of the proposition p in the 
possible world A are satisfied in the possible world ,.,.". or. in 
other words. ",.,. is compatible with the necessary conditions of p 
in A". We interpret (N,.q)A as truth of q in every world compati
ble with the necessary conditions of p in A: (V,.,.> (H,A.,.,. :J (q),.,.>. 
and (M,.q)A as truth of q in some world compatible with the neces
sary conditions of p in A: (3,.,.) (H,A,.,. &. (q),.,.>. (S,q)A is inter-
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preted as truth of p in every world compatible with the necessary 
conditions of q in A: (VIl) (H.AIl :l (P)Il). We a.s.sume the following 
conditions on the relation H: 

I. (Tertium non datur). For 
affairs) p and worlds A, Il, 
the nece.s.sary conditions of p 
conditions of -P In A; 

any proposition (state of 
Il is compatible either with 
in A or with the nece.s.sary 

(VA'> (VIl) (H,AIl v K pAJ1). 

11. (Satisfaction). A possible world Il is compatible with the 
necessary conditions of a state of affairs p In a world A 
only if p is present (p is true) in Il: 

(VA.) (VJ1) (H,A.J1 :J (P)Il). 

By substitution we get 

(VAJ (V J1) (RpAJ1 :l (-p)J1); 

and from this and I we get 

(VA) Nil) «p)1l ::> H,AIl)· 

Hence from I and 11 follows 

(VA) Nil) (H,AIl !II (P)Il). 

I and II also entail a principle of limited Reflexivity: 

(VA) <VIl) <H,AIl :J H,lJ.J1). 

111. (Compatibility with 
world is compatible 
conditions only if 
the conditions: 

subset of conditions). A possible 
with a set (conjunction) of necessary 
it Is compatible with each subset of 

(VA) (VIl) (H,....AIl :l H,AIl)' 

IV. (H-Transitivity). If a world v Is compatible with the 
necessary conditions of a state of affairs q in a world J1 
compatible with the necessary conditions of a state of 
affairs p in a world A, then v is compatible with the 
necessary conditions of (p & q) in A: 

(VA) (VjJ) (VV) (H,AIl & H.J1v) :l H,..Av). 

A4 is made valid by the interpretation of N. Principle II 
(Satisfaction) make.s Al, A3, A5, A6 and A7 valid. I (Tertium non 
datur) Bnd II make A2, AB, A9, A10 and Al1 valid. 11 and IV (H
Tran.sitivity) make At2 valid. And I, II, III (Compatibility with 
subset of conditions) and IV make A13 valid. 
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4. Comtraints 

A. Introduction 

Let us consider BarwLse 4: Perry's notion of constraint (in 
Situations and Attitudes (1983». Con.strainta are Mid to be 
systematic relations of a special sort between different types of 
situations; e.g., every woman Ls a hUJJI8D (there is a constraint 
to the effect that anything that is a woman is a hUJJI8D); no smoke 
without fire (there is a constraint to the effect that if there 
is smoke, there is fire); when the bell ringa, the class ends 
(there is a constraint to the effect that the class ends if the 
bell ringa). 

Constraints can be analyzed by means of the notions of 
necessary and sufficient conditions. Let "Con p,q" mean that 
there Is a constraint relating the state of affairs p to the 
state of affairs q. We may construe this as meaning that p must 
be a sufficient condition of q, in some sense of "must". But we 
may distinguish between various senses of "must" here, and 
between corresponding kinds of constraints. We may take "p must 
be the case" to mean that p is logically or conceptually 
necessary, or that p is causally necessary or a natural law. or 
that there is a convention or rule to the effect that p. 
Following Barwise and Perry, we may distinguish between 
(logically or conceptually) necessary oonstralnta, nomic 
constraints, and conventional constraints without necesaarily 
regarding this as an exhaustive cluaification of constraints. 

Let "CooDP,q" mean that there is a necessary constraint 
relating the state of affaira P to the state of affairs q; let 
"ConLP,q" mean that there ia a nomic constraint L relating p to 
q; and let "CoDcP,q" mean that there ia a conventional constraint 
C relating p to q. In the following sections, we shall consider 
how these concepts may be analyzed by means of the notions of 
necessary and sufficient conditions. 

B. Necessary constraints 

Let "Dp· mean that p is necessary, and "Op" that P is 
possible. 

We uaUJDe the system of §3 as a basis, with the following 
additions: 
(Def D) Dp "D K,p. 

(Def 0) Op -D -D-p. 



From (Def C) follows 

(33) 

From (Def <» follows 

(34) 

and 

(35) 

lR 3 of T, 

The logic of conditions 

C-p = N,-p. 

<>P - -N,-p 

<>p = M,p. 

I- a ~ I- Ca, 

may be derived from (N) by (Def C). Hence aU tautologies and all 
the theses of §3, In necessitated form, are theses. Theorems 
include 

(36) 

(37) 

(38) 

(39) 

Cp :> P" 

C(p :> q) :> (Cp :> cq), 

cp :> cCp, 

<>p :> c<>p. 

Hence this system includes 55 as a part. 

are: 

and 

Due to the definitions of c and <>, their interpretations 

(Cp).\ iff ("11-/) (Kp.\1-/ :> (p)l-/) 

(<>p)A iff (31-/) (H,AI-/ « (p)I-/). 

But due to the principles I and II, these are equivalent with 

(Dp)'\ iff ('VI-/) H,AI-/ 
and 

(<>p).\ iff (31-/) H,AI-/, 

and these are equivalent, respectively, with 

(Cp).\ iff ('VI-/) (p)1-/ 
and 

(<>p).\ iff (31-/) (p)l-/. 

Due to the definition 

and principle I, we have the interpretation 

(ConaP,q)A iff ('VIl) ('Vv) (H,I-Iv :> (q)v), 
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i.e., there is a n~ry constraint relating a state of affairs 
p to a state of affairs q in some possible world if and only if q 
is preunt in any world compatible with the necessary conditions 
of p in any world. 

C. NOIIIic constraints 

We assume the system of §4B as a basis (including the one of 
§3), with the addition of the letter "l" as a subacript to "N", 
"M" and "5", to denote any set of nomic constraints, or natural 
laws. "Na.p" will mean that the state of affairs represented by p 
is required by (Is a necessary condition of) the actual nomic 
constraints (natural laws) l; or. briefly, there is an actual 
nomic constraint to the effect that p. "N., _pot will mean that the 
state of affairs p is excluded by the actual natural laws l, 
i.e., the occurrence of p would be "against nature·. or a 
miracle. "MLP" will mean that the state of affairs represented by 
p is compatible with the actual nomic constraints (natural laws) 
l, hence the occurrence of p would not be miraculous. 

The definitions, rules and axioms of §3 apply to Na.IML• 

Hence we have 

(40) Ma.P = -N.,-p 

and 

(41) -Ma. -p 

as theorems. 

As suggested, the occurrence of a state of affairs excluded 
by a set of actual nomic constraints l, I.e., the truth of 
'N., -p &: p', would be a miracle. If we assume, as we shall, that 
genuine miracles do not occur, we reject 'NL -p &: p', or 
'N.,p &: -p', as possibilities. This amounts to accepting a further 
axiom in addition to those of §3: 

A14 

i.e., actual nomic constraints are inviolable. this does not 
preclude that what is at a certain time regarded as a miracle 
may occur, or that what are believed or postulated to be 
natural laws may be violated. The actual occurrence of some 
state of affairs p believed to be ruled out by a set of nomic 
constraints l will simply show that N., -p is false. Either 
the constraints in l are not actual, or they do not really 
exclude p. 
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We assume that actual nomic constraints do not violate 
necessary constrains, hence that 

(42) 

holds for any set L of actual nomic constraints. We shall adopt 
an equivalent formula as a further axiom: 

A15 

The converse of A15 obviously does not hold: lawlikeness is a 
weaker notion than logical necessity. 0 as well as ~ constitute 
square.s of opposition, but the one of N .. is "Inside" the one of D. 

From A15 and the rule lR 3 of §4B, we derive a rule 

(U 

i.e., necessary states of affairs are required by any set L of 
nomic constraints. 

54, applied to ~~. is a part of this system. '~p ::) p' is 
an axiom; 'N .. (p:Jq) :J (~p ::) ~q)', 'N .. (p&q) !!! (~p &: ~q)', 

'M..(pvq) !! (M..P v M..q)' etc. are theorems; and so is 'NLP :J N..N..P'. 

Another theorem is 

(43) 

i.e., if a set L of actual nomic constraints in conjunction with 
a state of affairs I (the "initial condition"), require that the 
state of affairs E be the case, then if I is the case, the nomic 
constraints L require that E occur. 

In the semantics, HLA#l will mean that the possible world #l 
respects (is compatible with) the nomic constraints L actual In 
A, hence that #l is a causally possible world from the point of 
view of the natural laws l actual in A. We as:sume a principle in 
addition to the ones of §3C: 

V. (L-Reflexivity). Any possible world respects the nomic 
constraints actual in it: 

(VA) HLAA. 

We may now define the notion that a nomic constraint L 
relates two states of affairs p and q. as meaning that P is a 
sufficient causal condition of q, or: there is an actual nomic 
constraint l to the effect that p a is sufficient condition for q: 

(Def Con .. ) ConLP,q -D NL5.p. 
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D. Conventional comtraint.s 

We assume the system of §3B as a basis, with the addition of 
the letter "C" as a subscript to "N", "M", and "5", to denote any 
set of rules or tacit expectetlons of some group. "Ncp" will mean 
that there is a (set of) actual conventional constraint(s) 
requiring or presuming that p be the case. "McP" will mean that 
the occurrence of p does not (would not) violate the actual nomic 
constraints C. 

The definitions, axioms and rules of §3 apply to NcIMe. The 
axioms of §4C, A14 and A15, do not epply. Conventional cons
traints are not necessarily consistent, and not Inviolable. Nor 
do they necessarily respect nomic constraints. Conventional pre
sumptions may be (probably often are) in confllct with actual 
nomic constraints Ccf. e.g. beliefs In magic or supernatural phe
nomena). 

Theorems for NcIMe include 'Nc(Ncp :> p)' (i.e. there is an 
actual conventional constraint requiring or presuming that actual 
conventional constraints be respected), 'NcCp:>q) :J (Ncp :J Ncq)', 
'Nc<(J&q) !!! CNcp & Ncq)', 'McCpvq) !!! CMcp v Mcq)', 'Ncp :J NcNcp', 

In the semantics, "HcAJl" will mean that the possible world Jl 
respects Cis compatible with) the conventional constraints C 
actual in the possible world A; or, in other words, Jl is an Ideal 
world with respect to the conventional presumptiOns C actual in 
A. No principles beyond those of §3C are required. 

We may define a conventional constraint relating a state of 
affairs p to another one q, as consisting of conventional re
quirement or presumption that p be a sufficient condition for q: 

(Def Cone) 

5. Universal.s and Involvement 

As noted, in the previous systems the conditions considered 
are states of affairs or propositions. But the notions of 
nece.uary and sufficient conditions are commonly applied to 
properties, or universals more generally, E.g., Pasch's "P" and 
"Q" In "PNQ", "PSQ", stand for nomlnallzations denoting possesion 
of properties, such as being tl man, being mortal, being old. 
-PNQ" may be read, "being Ca) P is a necessary condition for 
being (a) Q", or "having the property P is tl nece.uary condition 
for baving the property Q". 



The logic ot conditions 

We may be tempted to render "PNQ", as here understood, as 
{x)~Px, l.e., for any x, it is a necessary condition for its 
being (a) Q that it is (a) P; and correspondingly for "PSQ". But 
this will lead to existential commitments for denials of PNQ and 
PSQ, which we want to avoid. We appeal to the notions of 
necessary, nomic and conventional constraints and define as 
follows: 

ConaP,Q =0 C(x)Na.Px 

ConLP,Q =0 NL(x)Nq.Px 

ConcP,Q -0 Nc(x)Nq.Px. 

Obviously, denials of these do not involve existential commit
ments. 

If we let the variables x, y, ... range over situations or 
events, we may take "P" and "Q" as denoting types of events or 
situations. We may then introduce another notion, the one of in
volvement. Barwise &. Perry construe involvement as a relationship 
between types of events (situations), e.g., kissing involves 
touching. One type of event P involves another type of event Q if 
every actual event x of type P is part of an actual event 
(situation) y of type Q. This requires the notion of one event's 
or situation's being part of, or extending, another event or 
situation. let "Ext x,y" mean that y is an extension of x, or x 
is part of y. Let "Inv P,Q" mean that (the type of event) P 
involves (the type of event) Q. We may distinguish between 
necessary, nomic and conventional involvement, and define these 
as follows: 

InvaP,Q =0 C(x) S 13.lIe.t _.y" Qyl Px 

C(x) N Pa (3x)(Ext x,y &. Qy), 

i.e., that the type of event P necessarily involves the type Q 
means that, necessarily, it is a necessary condition for an 
event's being of the type P that it is part of an event of the 
type Q. Analogous definitions apply to InvL and Inve> mutatis 
mutandis. 
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PHILOSOPHICAL PRACltIATISM IN POINCARE* 

At the beginning Poincare Is using the terms 'Intuition' and 
'analysis' In order to describe two psychological attitudes 
involved in the logic of invention: Riemann and Klein represent 
the attitude of Intuition, Hermite and Weierstrass the attitude 
of analysis. Later on, but usually without explicit indication, 
these two terms stand likewise for two theories about the nature 
of mathematical activity: on the one hand you concentrate on 
investigations into the conditions governing the construction 
(intuition) of mathematical objects, on the other hand you try to 
describe (analyze) domains of already existing objects. 

In arithmetic and in foundational studies - in this paper 1 
exclude his approach to geometry - Poincare is almo&t always an 
intuitionist. Yet, even though the philosophy of Poincare remains 
on the whole an intultloni.stic one, he displays analytical fea
tures, too. Hence, you find a solution of the problem of predlca
tlvity not only by providing limitations to the domains under 
discussion (these are procedures on the level of construction) 
but also by providing restrictive clauses with rmpect to the 
rules of quantification (these are procedures on the level of 
description), i.e. prima facie without limiting the domains of 
quantification. Certainly. here, these two levels correspond and 
you even arrive at logically equivalent presentations, if you 
translate the underlying Ideas into a formal language. In the 
first case you end up with an 'exclusive' theory of types, In the 
second case with a cumulative one. 

* This paper, written originally In French, was delivered as a 
lecture at the University of Alx-en-Provence in October 1985; It 
derives from an attempt to Improve on chapter II of my book: 
Entre intuition et analyse. Poincare et Ie concept de predica
Uvite, Paris 1985. 

10 
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However, ) want to argue for the claim that the modern Idea 
of a unification of the approach on the level of construction and 
of the approach on the level of description, these levels being 
two inseparable aspects of the common ground of actions, can find 
one of Its roots In the phUosophlcal pragmat1.!Jn of Poincare. 
Neverthele.s.s, an attempt of reducing Poincare's pragmatism to Its 
role as a forerunner of a philosophy conducted in a pragmatist 
framework, would be a biased approach. Poincare was first of all 
an anti-logicist (and antl-formal1st), afterwards, as a reaction, 
he became an intuitionist, and only by retrospection he is found 
as being placed between 'the methodological fronts'. 

In two consecutive papers under the common title 'Les mathe
matiques et Ie logique·. published in 1905 and 19061, Poincare 
argued against the logicIst claim of being able to -demontrer 
toutes les verltes mathi!mattques ... une fols admis les prlnclpes 
de Ia logique-2 • For this would mean to give up either the 
analytical nature of logic3 or the synthetical nattire of mathe
matics. i.e. to advocate a solution to the problem of defining 
the relation between logic and mathematics which rests basically 
on a Leibnitian tradition. Poincare suspects that during the cen
tennials in honour of Kant's death an equivocation of the term 
'logic' is Introduced such that 'logiC' does not exclusively 
refer to traditional logic but to a 'new logic' which comprises 
both synthetic prinCiples of demonstration and the formation of 
non -logical concepts. 

Poincare sees very clearly here. Predicate logic is not only 
richer than traditional logic which Kant referred to but in order 
to deal with reductionism one should also take into account that 
in the 'new logic' more freedom with respect to certain (set the
oretic) existence postulates prevails. For example, is it really 
an analytical procedure (of the second order) to turn predicates 
into names and afterwards affirm their existence, i.e. the 
existence of entities signified? It is obvious that the 'condi
tional' solution of Russell would not satisfy the constructivist, 
nor had Poincare been satisfied. 

1 Cf. Poincare (1905/t906) and Poincare (1906). 

2 Poincare (1905/1906) p.817. 

3 Poincare follows Kant In calHng propoaltlons analytic when 
the subJect - concept is contained in the predicate - concept. 
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But Poincare's criticism of logicism extends even further. 
If logicism pretends to derive all of mathematics from IndefI
nab�e 'logic' by means of deduction rules and direct definitions, 
"U faudrait que l'on eOt Ie moyen de demontrer qu'lls n'lmpll
quent pas contradiction"·. And such a proof would have to make 
use of a principle of induction which is not yet available. And 
if it were, you would be In a vicious circle. According to Poin
care this difficulty of using complete induction in a justified 
manner connects Russell's logicism with Hilbert's formalism. 
Hence, Poincare's reservation towards dealing in this way can be 
understood as an anticipation of the constructivist attitude of 
the intuitionists and of the descriptive attitude of the ana
lysts: on the one hand he Is In accord with Brouwer's refusal to 
distinguish mathematics from metamathematics, on the other hand 
he acts In foresight taken in a very large sense of 
difficulties articulated precisely and confirmed by GOdel in the 
thirties. 

Of course, it is not neces.sary to look at his criticism on 
the methodological level only. For, the reductionist programme of 
logicism seema to waver already by the antinomies occurring in 
the new logic. If, Poincare says, "la logistique n'est plus 
sterile, elle engendre l'antlnomle,,5, this has become possible 
because you have tacitly relted on a false intuition. A 'true' 
intuition can be distinguished from simple evidence by the fact 
that it refers to what can be done Instead of merely do something 
that is. So, the certainty with respect to complete induction 
taken as a synthetic judgement a priori, derives from the fact 
that It is the affirmation of a direct intuition into the capaci
ty of the mind to comprehend the indefInIte repetition of one and 
the same act. 

We would say today that such an intuition obtains with res
pect to a schema (of an action) which is 'pure' (or a 'forme'), 
because it is not generated but only represented by Indefinite 
repetition, and that It is called 'Intuitive' because It cannot 
be determined conceptually, but only by singular actualization. 
It Is possible to trace a platonist feature within this Inter
pretation of Poincare's Inasmuch as the Intuitive schema of 
construction counts as a 'forma InteJUglbflls' which, llke the 
corresponding 'forma sensiblUs' in Kant, precedes its actua-

.. Poincare (1905/1906) p.829. 

5 Poincare (1906) p.316. 
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llzatlon rather than having been derived from them by 
'pur1t1catlon' . 

But, disregarding this aspect of pure Intuition, Poincare Is 
antl-platonist from about 1909 onwards. The antinomies are for 
him in the last resort a necessary consequence of the erroneous 
method of conceptual realism to invoke intuition with respect to 
abstract entitles. For expllcatlon 1 want to examine Poincare's 
conceptual interpretation of explicit definition of a set. The 
existence conditions contained In It allow according to 
Poincare conclusions concerning the formation of classes, or 
pseudo-definitions, which are impredicative and, therefore, res
ponsible for antinomies. 

According to Poincare expllclt definitions of a set follow 
two procedures: ·solt par genus proximum et different/am speclfi
cam solt par construction·e. These two methods mirror the dispute 
between realists and nominalists taken up again by Poincare with 
the terms 'cantorians' and 'pragmatists', the former actlng from 
the point of view of Intension, the latter from the point of view 
of extension: 

·SI on .se place au point de vue de l'extenslon, une collection 
.se constitue par l'adlonctlon successive de nouveaux membres; 
nous pouvons en combinant les objets anciens construire les 
objets nouveaux, puis avec ceux-ci des objets encore plus nou
veaux ... Au point de vue de la comprehension au contralre, 
noUB partons de la collection ou se trouvent les objets prHxl
stants, qui nous apparalssent d' abord comme Indlstlnct:s, mals 
nous flnl880ns par reconnaTtre quelques-una d'entre eux parce 
que nous y collons des etiquettes et que nous les rangeons dans 
les tlrolrs; mals les objets sont anterieurs aux etiquettes, et 
la collection existeralt quand meme II n'y auralt pas Ie con
servateur pour les classer.-" 

Poincare places the logicists - they are In his eyes followers of 
Peano or Russell - together with the adherents of Cantor and 
treats himself as belonging to the pragmatists. 

Though the term 'pragmatist' seems to have been chosen by 
Poincare rather accidentally - he Introduces It with the words 

e Poincare (1912) p.5 . 

., Ibid., p.4. 
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-11 faut bien ... donner un nom-a - It does characterize the 
Interpretation of nominalism by Poincare very lucldly; In refu
sing to start with an analysis of domains considered to be 
already existing, he Is not any more content with merely a 
synthesis of element.! to be constructed. To have useful construc
tions one should rather follow them with a descriptive analysis 
of the constructions themselves. In this sense we have here a 
reconciliation of the two methods: they follow one another as 
aspects of an ordered sequence and thus characterize the 
pragmatic spirit as started by Poincare: 

·On a attache, et it Juste titre, une grande Importance 8 ce 
procl!de de la • construction' et on a voulu y voir la condition 
nece&'Salre et sufflssante de progres des sciences exactes. 
Neces.salre, sans doute, mala suffis.sante, non. Pour qU'une 
construction puls.se etre utile, 11 faut d'abord qU'elle 
po&'Sede une sorte d'unlte, qui permette d'y voir autre chose 
que la Juxtaposition de sea element.!. Ou plus exactement, 11 
faut qu'on trouve quelque avantage it conslderer la const
ruction plutot que ses elements eux-memes.-G 

Only a statement expres.sing an 'analogy' among constructions will 
lead to a level of abstraction afterwards where the analogous 
objects can be Identified: 

·Une construction ne devlent donc interessante que quand on 
peut la ranger it cOte d'autres constructions analogues formant 
les especes d'un meme genre: IO 

The • analytic' feature here pertains to the means of 
construction. Hence, analysis Is not any more the traditional 
Inverse of syntheSiS or ·une marche du general au particulier", 
because the constructions are obviously not regarded as something 
more special than their elements. In this sense -Ia matbemaUque 
est I' art de donner Ie meme nom it des cho.ses dlfferentes-, II and 
not by their form but by their content. Yet, Poincare did not 

a Ibid, p.2. 

o Poincare (1902), p.44. 

10 Loc. cit., Ibid. 

II Poincare (1908), p.29. 
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know how to use the means now at his disposal In order to formu
late a principle of abstraction for the genus. By "gravlssant un 
ou plusieurs echelons" he proceeds directly to propositions which 
expre.s.s a property of the genus: the statement of analogy is now 
complete Induction which .serves to "demontrer las proprletes du 
genre sans etre force de las etablir successivement pour chacune 
des esp8ces" 12. 

Pragmatists, let us repeat, are not realists. They forbid, 
so to speak, to read the arbor porphyriana from top to bottom, 
l.e. to consider the "genre ... anterleur a l'espece"13 and to 
.stop at an abstract level. Hence, a definition which does not 
define an Individual but a whole genus Is Incomplete, 14 because 
Individuation cannot be derived logically from the abstract unit 
(of a genus): 

"La connalssance du genre ne ... falt pas connaTtre taus ses 
Indlvldus, elle donne seulement la pcwlbUlte de leIS 
construlre taus, ou plutot d'en construlre autant que vous 
voudrez. Us n'exlsteront qu'apreM qu'lls auront ete 
conatrults, c'est-a-dlre apres qu'Us auront ete deflnls."!S 

Even though the terms used by Poincare are traditional, he Is 
giving them a non-traditional meaning: extension and intenalon, 
e.g., appear only as metapredicate.s (on predicates). For, to 
define a genus by meana of a predicate Is eo Ipso an Intenalonal 
procedure, whereas extenaion Is not connected with a predicate 
but with a way of conatruction. 

If you restrict definition of a set to Its being an abstract 
entity, you are deprived of the constructive aspect of 
definition, which - In the eyes of the followers of Cantor 
counts as an artificial restriction. Following this way the 
guaranty of individual existence of the elements of a set is 
substituted by a proof of consistency. For the pragmatist, on the 
other hand, a direct deflnltlon which you get by following the 
inverse method of the Cantorians, can be • corrected': you 
supplement it by a second part which replaces the postulation of 

12 Poincare (1902), p.44/45. 

13 Poincare (1906), p.317. 

14 Ct. Poincare (1912), p.5. 

15 Poincare (1912), p.7. 
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an abstract entity as the reference of the genus. You have to 
wsous-entendre l'ensemble des Indlvldus qUI saUsfont a la 
deflnitlonwle. Since generaUty Is - from the point of view of 
extension - Individual or numerical universality, In that second 
part of the definition the differentia speclflca has to lead 
directly to elements of first level; without such a supplement a 
proposition about all elements of a set "n'auralt aucun sens" and 
the object of the proposition would be unthinkablel? In a paper 
of 1912 the expression <aucun sens' acquires even a philosophical 
value. A pragmatist uses <having a sense' with respect to a 
definition, and that means existence of veridical instantiations, 
together with consistency as a criterion for the admissiblltty of 
a definition. He uses, so to speak, a restriction <from below' to 
the effect that the means employed for the transition from finite 
to Int1nlte do not go beyond the < legal' one: the complete 
(non - tr ansflnlte) induction. 

Only against the background of such Ideas It Is possible to 
understand PoIncare's refusal of Impredicative defInitions whIch 
Is a logical consequence already within his system; for, It 
classes were considered to be real objects existing independently 
the definition of their members, an Impredicative definition 
would not be circular. But It Is exactly this atUtude of 
Platonism which Poincare attacks, and which he considers to be 
responsible for the antinomies; here he reacts already like 
Herman Weyl who wrote some twenty years later: 

"Als Wurzel der Antlnomien vermag man aber nur die schon von 
Anfang an In der Mathematik begangene Ktihnhelt auf:zudecken: 
dass eln Feld konstruktlver Mog!1chkelten als geschlossener 
Inbegriff an sleh selender Gegenstlinde behandeldt werde. wl8 

This is the essential difference between the pragmatists and 
the followers of Cantor. The axiom-schema of comprehension 
CZermelo's < Aussonderungsaxlom') 

Vy /\x (x E Y +-+ X E a " q1(x» 

is not always representable, and, hence, not admitted by POin
care, even though It might be consistent. In assuming a set a 

18 Ibid., p.5. 

17 Cf. Poincare (l909b), p.479. 

18 Weyl (1976), p.71. 
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beforehand, Poincare says, Zermelo -a eleva un mur de cl6ture qui 
arrete les geneurs qui pourraient venir du dehors. Mais 11 ne se 
demande pas s'll ne peut pas y avoir des geneurs du dedans qu'll 
a enfermes avec lui dans son mur-ua• Whenever Poincare's 
pragmatism has been associated with an utilitarian philosophy or 
with a pragmatic philosophy in the sense that a technician uses 
results provided their consistency wlll eventually be proved, it 
finally developed by using the formulation of 1912, into an 
intuitionism of principle. Considerations of con.sistency, be they 
conducted logically (analytically) or not, are not any more 
sufficient unless they are supplemented by processes of verifi -
cation, i.e. by a concrete model. hence, in this context, the 
verification is, using Kantian terminology, a con.struction of 
concepts through instantiation in senuous intention. 

Adopting the pragmatic reinterpretation of the Cantorian way 
of definition the terms 'analysis' and 'construction' are not 
only related to the strictly Cantorian way of definition on the 
one hand and its pragmatic complement on the other hand, but must 
be understood as referring to two aspects even within the level 
of determining the individuals. Poincare's identification of 
'construction' with <deflnltion,2o Signifies that the reduction of 
the definiens to a definJendum Is not effected by means of 
language alone. In constructing the individuals of a genus, lan
guage is in the beginning only an aspect of an action governed by 
pragmatic norms. Language is its symbolic (analytic) aspect which 
alone permits to understand an actual construction of individuals 
as actualizations of an (intuitive) schema of construction, i.e. 
of a rule. In this semiotic sense language and construction are 
two Inseparable features for the pragmatist. We suddenly find 
ourselves in the tradition of the philosophy of the later 
Wittgenstein, where language has lost its role of being something 
available on the metalevel with respect to the level of objects. 

Of course, to look at Poincare In this manner tran.scends the 
given texts, but it confirms and explains two further aspects in 
Poincare's writings. 

At first a remark about the theory of types of Bertrand 
Russell, which refers to the hypothetical adlnlsslbUlty of tran.s
finite ordinals as indices of types In order to distinguish them. 

Ie Poincare (1909b), p.477. 

20 Cf. quotation above at footnote 15. 
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Such a theory of types, Poincare says, remains incomprehensible 
as long as as the theory of ordinals is not yet set Up21. Poincare 
Is demanding a simultaneous reflection both about the constructed 
objects and about the linguistic tools used. Much later, the 
logicians G. Kreisel and S. Feferman tried to fulfil this demand 
by proceeding from predicative well-orderings - those which are 
of order type < WI to orderings predlcatlvely well-ordered, 
i.e. orderings of order-type < fo which can predlcat1vely be 
ascertained as being a well- orderlng22. 

A second corroboration of the proposed Interpretation can be 
found in the linguistic turn given by Poincare to the pragmatic 
identification of ontology with epistemology: to a pragmatist an 
IndiVidual "n'exlste que quand II est pense d'un suJet 
pensant" and only when It can be defined by "un nombre finl de 
mots". An a concept which cannot be defined In such a flntte way 
Is Inadml.s.slble because It cannot be concelved2:J. It, therefore, 
seems to be adequate to say with A. Heyting that deflnabUlty 
with finitely many words signifies (in the linguistic sense: tis 
a sign for') finite constructlblllty24. All elements of a genus 
have to participate in this finite constructlbility. This point 
of view finds another confirmation when Poincare takes l.s.sue with 
a claim by Schoenflles that finite definability and construc
tlblllty should be made Independent from each other. The set of 
constant functions .serves as a neat example: 

"Quand on dit tune fonctlon constante', on a une formule d'un 
nombre flnl de mots et qui s' appUque a une InfinUe de 
fonctlons; mals qUI ne les detlnlt pas 11 n'est donc pas 
exact de dire que cette formule detlnlt en un nambre flnl de 
mots un ensemble de fonctions. "25 

Since definition of a set enforces 'knowledge' of all Its mem
bers, the definition of an infinite set infinite not in the 
.sense of potentially infinite but as actually infinite - by one 

21 Cf. Poincare (lgogb), p.469. 

22 Cf. Kreisel (1960) and Feferman (1964). 

2:J Cf. PoIncare Ugogb), p.482 and PoIncare (1912), p. 9/10. 

24 Cf. Heyting (1934), p.4. 

25 Poincare U9Q9a), p.195/196. 
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and the same formula containing only finitely many words is 
impo.s.sible: 

-Et en effet ce qui caracterise precisement une definition, 
c'est qu'elle permet de d!stinguer I'objet defin! de tous les 
autres objets; si elle s'applique it une infinite d'obJects, 
elle ne permet pas de les discerner les uns des autres; elle 
n'en definlt aucun; elle n'est plus une dellnltion."26 

From the point of view of extension, the infinite Is 
something in development and never a closed totality. It was 
Borel who made the first precisiflcation of Poincare's vague 
notion • one could enumerate by distinguishing between a 
denumerable set and Its effectively enumerable subsets': Borel 
takes a set to be admissible only when it is effectively 
enumerable, i.e. when it is possible to indicate -au moyen d'un 
nombre flnl de mots, un procede sOr pour attrlbuer sans ambigulte 
un rang determine a chacun de ses elements-27. Today we know that 
relying alone on the concept of general recursiveness - a concept 
doubtlessly envisaged by Borel - unfortunately does not lead very 
far: a predicate defined on the natural numbers using 
unrestricted quantification will not, In general, even belong to 
the class of recursive predicates. This and the other fact that a 
constructive interpretation of elementary classical arithmetic is 
available, suggest a broadening of what Poincare understood by 
the term 'pragmatism': it seems desirable to admit the totallty 
of natural numbers and to distinguish the recursively undecidable 
predicates on that domain by measuring the complexity of their 
undecidability. The demands of pragmatism wlll then appear as a 
predicativlsm of second order to be applied to the denumerable 
infinite. 

Whatever one decides, the pragmatic Idea of Poincare always 
satisfies what Vuillemln has called the principle of 
Intuitionism. It refuses -8 la disjonction de I'infini et du fini 
une validite universelle, c'est -8 -dire independante des 
conditions de I'intuition et de ia construction-28. Thus, Poincare 
belongs to the great intuitlonistlc stream which has started in 
antiquity and passed through Descartes and Kant. 

26 Poincare (1909a), p.195. 

27 Borel (1908), p.446/447. 

28 Vuillemln (1981), p.27. 
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Yet, with respect to Brouwer and his difference to Poincare, 
one could equally well extend the term 'seml-intuftlonism' to 
cover also the philosophy of Poincare. The addition of '.semi' 
then marks - not taking into account the problem of Justifying 
the principle of excluded middle - the special manner In which he 
conceives of the relation between intuition and analysis (or 
language), i.e. between construction and description; an object 
does not exist without being designated. Brouwer has never 
assigned to language such an essential function of control; for 
him a language remained a mere auxiliary means. 



NICHOLAS DENVER 

A NOTE ON ZENO 83 

Ef nOAAa !aT lV, dvayxl1 TOO'aUTa dV<ll lSaa t.aTlxal 
oi:STe. nAelova a6TWV oi:STe t.AaTTOYa. Ef 6t TOO'aUTd 
taTlY lSaa t.aTl, nenepaaJJtYa &V e.!.". 

If there are many things, it is necessary that 
they are Just as many as they are, neither more 
nor less. And if they are just as many they are, 
they would be finite in number. 

let V be the set of things that there 
contains infinitely many members. We will 
premiss: 

are. Suppose that V 
now introduce the 

V contains Just as many members as V, neither 
more nor less. 

This is the only premiss to be deployed in my reconstruction that 
represents something expUclt In Zeno's Greek. But It has at 
least the advantage of representing Zeno's words quite literally. 
Contrast the interpretation whereby Zeno contends in these cru
cial words that t any plurality of things must consist of a 
definite number of things and so be finite in number". The only 
sense in which it follows from V's infinity that it contains no 
definite number of members would be that for no natural number n 
does V contain only n members. But this is not a thought happily 
framed as a denial that the members of V 'are as many as they 
are'; and In any case to Infer this thought Is merely to restate 
V's Infinity, not to draw from It an evidently absurd conclusion. 
A similar contrast may be drawn also with the paraphrase of 

1 H.D.P.lee, Zeno of Elea (Cambridge, 1936) p.31. Lee's inter
pretation seems to be shared by practically all other com
mentators. 
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Barnes, whereby Zeno reasoned thus: 'If there are many As, then 
there Is some true proposition of the form: -There are as many As 
as BS8>2. If Zeno's thought was that any pluraHty must contain 
just as many members as anotherpluraUty, then he was quite 
inept in framing It as a thought that any plurality contains just 
as many members as Itself. Furthermore, so to reconstruct Zeno's 
argument is to leave him with what is. as Barnes himself puts it. 
'an uninstructive sophism'. My more literal interpretation of 
these words will in the end also produce a sophism: for how could 
a 'proof' of falsehood be otherwise? Nevertheless I trust that It 
will not be entirely uninstructive. 

Our premiss (1) is not of 
absurdity our supposition that 
members. My reconstruction must 
further premisses to give Zeno the 
Let me therefore supply: 

itself enough to reduce to 
V contains infinitely many 
therefore, like others, supply 
semblance of a sound argument. 

(2) An Infinite set is one that contains the same 
number of members as some proper subset of itself. 

(2) may seem to have a suspiciously anachronistic air. After all, 
It first achieved a fully clear articulation and proof In the 
nineteenth century. Nevertheless, Intimations of It can be found 
closer to Zeno's time. Some Stoics held that 'The man Is not 
composed of more parts then the finger, nor the universe than the 
man; for division produces bodies to infinity, and of infinities 
none Is greater or lesser". And It is not altogether Implausible 
to see such Ideas as present in Zeno himself. For, as the .second 
horn of the B3 dilemma Indicates, It was points on a line that 
above all Zeno has in mind here. And, however hard it may be to 
grasp (2) as a general definition of Infinities, its particular 
application to infinities of points on a Une Is evident enough. 
For it takes but little reflection to see that if a Hne can be 
divided at an Infinite number of points then the same holds of 
any part Into which it is divided. 

2 Jonathan Barnes, The PreaocraUc PhUoaophers (London, 1979) 
Vol.t. p.252. 

3 Plutarch De communibus noUtUs adversus Stoicos 1079a (-SVF 
2.484). 
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There Is a third premiss we will use In our reconstruction. 

Each set contains more members than any proper 
subset of itself. 

(3) is undeniably true if we restrict its application to sets of 
finite size, and it takes some sophistication to see that it Is 
false when appUed to Infinities. If I am to spend every day from 
now for ever onwards in the Isles of the Blessed, and you are to 
spend only every other day there, then you have evident cause to 
envy me; and it would be only too natural for you to give the 
reason that I am to have more days In the Isles of the Blessed 
than you are. Again, it is only too natural to suppose that the 
line ABC can be divided at more points than can its segment AB; 
for the line ABC can be divided at all those points at which the 
segment AB can, and also at those further points at which the 
segment BC can be divided. The sophistication required to see the 
error here was in all likelihood not possessed by Zeno's 
contemporaries. For it seems to have been lacked by Aristotle, 
who in his argument against the view that Infinity is a substance 
treats as evidently absurd Its alleged consequence that the 
Infinite has a part which Is Itself Infinite4 • Nor indeed is it 
entirely stupid to suppose that (3) is In general true. For the 
chief reason that we have to doubt (3) is simply that (1) and (2) 

are . true, that V is infinite, and that (3) in conjunction with 
(1) and (2) entails that all sets are finite in size. 

How then does It entail this? How did Zeno's argument from 
(1), (2) and (3) proceed? V, we are supposing, contains 
Infinitely many members. Hence there Is, by (2), a proper subset 
of V, containing just as many members as V Itself. Call such a 
subset S. The number 01 members of V Is now the same as the 
number of members of S. But by (3) the number of members of 5 is 
less than the number of members of V. So the number of members of 
V Is less than Itself. Simllarly, the number of members of V Is, 
by (3), greater than nle number of members of S. But this Is, by 
(2), the same as the number of members of V. So the number of 
members of V is greater than itself. But all this contradicts 
(1). We have thus reduced to absurdity our assumption that V 
contains Infinitely many members; and 11 there are many things 
they are in consequence only finite In number. 

4 Physics 204a2011 (- Metaphysics 1066btUf'). 



ROMAN MURAWSKI 

GENERALIZA noNS AND STRENGTHENINGS OF OODEL'S 
INCOMPLETENESS THEOREM 

1. Historical background 

In t93t in the journal Monatshefte ftir MatbeJnatik und Physik 
a short paper (a bit more than 20 pages) of an Austrian mathe
matician and logician Kurt GOdel was published - paper which has 
turned out to be one of the greatest and most important papers in 
mathematical logic and foundations of mathematiea. Its title was 
-tiber formal unentscheidbare 5atze der • Principia Mathematica' 
und verwandter Systeme. 1-. In It GOdel proved that arithmetic of 
natural nmnbers and all systems containing it are essentially in
complete provided they are consistent. It means that there are 
sentences which are undecidable in them, i.e. sentences . 'P such 
that neither 'P, nor "''P are theorema. What's more, we know which 
sentence of the pair 'P,"''P is true in the basic model of the 
theory, i.e. in the model to the description of which the theory 
was formulated. Thi.s incompleteness is essential, i.e. It cannot 
be removed by adding t\le undecidable sentences as a new axioms 
because new undecidable sentences will appear (undecidable In the 
new, richer theory). This theorem (so called tat GOdel theorem) 
indicates the cognitive limitations of the deductive method. It 
shows that one cannot include whole mathematiea in a consistent 
formalized system based on the first order predicate calculus -
what's more in such a system one cannot even Include all truths 
about natural numbersl There will always be undecidable sentences 
of the form "Ix 'P(x) such that all substitutions of 'P. I.e. 
sentences 'P(O), 'P(1), 'P(2), ... are theorems. 

GOdel's re.sults struck 
Namely, Hilbert proposed 
mathematiea. His proposal 
(1925) wrote as follows: 

the program of Hilbert's formaliam. 
a program of Justifying classical 
was Kantian in character. Hilbert 
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Kant taught and It Is an Integral part of his 
doctrine - that mathematics treats a subject matter which Is 
given independently of logic. Mathematics, therefore, can 
never be grounded solely on logic. Consequently, Frege's and 
Dedekind's attempts to so ground it were doomed to failure. 

As a further precondition for using logical deduction 
and carrying out logical operations, something must be given 
in conception, viz., certain extra logical concrete objects 
which are intuited as directly experienced prior to all 
thinking. For logical deduction to be certain, we must be 
able to see every aspect of these objects, and their 
properties, differences, sequences, and contiguities must be 
given, together with the objects themselves, as something 
which cannot be reduced to something else and which requires 
no reduction. This is the basic philosophy which I find 
necessary not just for mathematics, but for all scientific 
thinking, understanding and communicating. The subject 
matter of mathematics is, in accordance with this theory, 
the concrete symbols themselves whose structure is 
immediately clear and recognizable-

Such concrete objects are just natural numbers considered as 
numerals (certain .systems of symbols): t, 11, ttt,... One can 
exactly describe them and relations between them. The part of 
mathematics talking about those objects is certainly consistent 
(because facts cannot contradict themselves). But in mathematics, 
beside such finitistic, real theorems describing concrete 
objects, we have also Infinitistic, ideal ones talking about the 
actual infinity (to which no real objects correspond). And 
therefore mathematics needs a justification and foundations. The 
convincing proof of the consistency of mathematical theory ought 
to be a finitistic one (i.e. a proof using no Ideal assumptions). 
Hilbert thought that such a proof was possible and proposed a 
program of providing it. It consisted of two steps. ThiJe first 
step was just the formalization of mathematics (Hilbert" lfiat of 
all, thought here about arlthmetics, analysis and .set. tlilary). It 
ought to be carried out by fixing an artifical symboMk: language 
and rules of building in it well-formed formulas. FiDther axioms 
and rules of inference ought to be fixed (the rWie." could refer 
only to the form, to the shape of formulas and not to their .sense 
or meaning). In such a way theorems of mathematics become those 
formulas of our formal language which have a formal proof based 
on a given set of axioms and given rules of Inference. There was 
one condition put on the set of axioms: they ought to be chosen 
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in such a way that they suffice to solve any problem formulated 
in the language of considered theory, i.e. they ought to form a 
complete set of axioms. The second step In Hilbert's program waa 
now to give a proof of the consistency of mathematics. Such a 
proof could be carried out by finitlstic methods because it waa 
enough to consider formal proofs, i.e. sequences of symbols, and 
to verify if there were two sequences such that one of them 
finishes with formula rp and the other with formula 'rp. If there 
were such proofs then mathematics would be Inconsistent, If not, 
then it would be consistent. But the study of formal proofs deals 
with finite, concrete objects (namely sequences of symbols formed 
according to some rules) and hence is finltistic. 

Godel's theorem showed that It Is Impossible to build a 
consistent and complete system of mathematics. In particular It 
showed that no formal system for arithmetic of natural numbers is 
adequate with respect to the set of all arithmetical truths 
(provided It is consistent). Such systems and their methods of 
proving theorems are not (and cannot be) adequate with respect to 
the usual mathematical practice. In other words: provability It 
Is not the same as truth - every theorem of formalized arithmetic 
is true but there are true sentences which are not theorems, i.e. 
there are sentences which are undecidable. 

Godel had shown even more In the paper mentioned above. He 
had announced (but not proved, promising to give the proof in the 
second part of the paper which was never written) a theorem sta
ting that there cannot exist a proof of the consistency of a for
malized system of arithemetlc which uses only the methods of that 
system. This showed the unreallzabillty of the second step of 
Hilbert's program namely of flnltistic proof of the con
sistency. 

Both COdel's theorems were obtained with the help of a new 
sophisticated method of arithmetizatlon (or godellzatlon, as we 
often call it today) of syntax. COdel observed, namely, that one 
can fix a one-one correspondence between formulas of a given 
formalized theory (such formulas are simply sequences of basic 
symbols) and natural numbers. In such a way to a formula rp of the 
language of the arithmetic of natural numbers corresponds a 
natural number which we denote by r rp'. Moreover, the correspon
dence can be defined In such a way that to natural syntactic 
relations between formulas rp, '" etc. (e.g. to the relation of 
being a subformula or being a consequence) correspond some natu
ral arithmetical relations between numbers r rp" r ",' etc. Hence 
instead of talking about formulas we can talk about numbers. In 
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this way, if a language of a considered theory contains the 
language of arithmetic then one can talk In It about itselfl 

The method of arlthmetizatlon together with some ideas known 
from old self - referential paradoxes (e.g. the ancient paradox of 
a liar) enabled Gadel to construct a sentence which, as he 
proved, is true In the standard model of arithmetic (I.e. in the 
structure No = <N,O,S, +,. > where N is the set of natural numbers 
0, 1, 2, ... , S is the natural succesor function, + Is the usual 
addition, and Is the usual multiplication) but Is undecidable 
in the formal system of arithmetic he considered. This sentence, 
though talking about natural numbers, had in fact a metamathema
tical contents. It was stating: • I am not a theorem' - hence It 
stated Its own unprovabilityl. 

This metamathematical and not mathematical contents of 
COdel's sentence belittled the philosophical significance of his 
results. It was known that arithmetic is incomplete but all known 
examples of undecidable sentences were artifical from the 
mathematical point of view (after Gadel's results some other 
undecidable sentences were obtained; cf. sentences of Rosser, 
Kreisel and Levy, Kent, Mostowski, Shepherdson - see Smoryflski 
(1981) because they all had metamathematical contents. Hence 
there was an open problem (interesting also from the point of 
view of the philosophy of mathematics): is it possible to indi
cate examples of undecidable sentences of mathematical contents, 
in particular of number-theoretical contents? The question was 
even more interesting because after Gadel's results it was still 
possible to cherish hopes that all sentences which are 
interesting and reasonable from the mathematical point of view 
are decidable. 

On the other hand there was a methodological problem connec
ted with Gadel's results. It was asked if, instead of using the 
arithmetization of syntax, it was possible to indicate a sentence 
'P and two models of arithmetic MI, Mz such that MI 1= 'P, Mz 1= "''P 
(cf. Mostowski (1955) where among problems to be solved he men
tioned the following one: 'To prove the incompleteness of the 
axiomatic arithmetic without applying the method of arithmetiza
tion by giving suitable models showing the consistency and inde
pendence of an appropriately chosen number-theoretical axioms!). 
Observe that such a method was succesfuUy applied in the 
foundations of set theory (result of Gadel from 1938, showing the 
consistency of the axiom of choice and of the continuum hypo
thesis, and results of Cohen from 1963, showing their indepen
dence). 
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From now on we shall fix one particular formal system of 
arithmetic, namely the so called Peano arithmetic PA (Its axioms 
are based on axioms for natural numbers given in 1889 by 
G. Peano). This system is a standard system used in studies of 
the foundations of arithmetic. It is formalized in the first 
order predicate calculus and based on the following nonlogical 
axioms: 

Sx = Sy ... x = y, 

Sx ~ 0, 

x + o = x, 

x + Sy = sex + y), 

x . o = 0, 

x • Sy = x • y + x, 

,,(0) &: "Ix (,,(x) -+ ,,(Sx» ... "Ix q>(x). 

The problem mentioned above was solved only in 1977 (I.e. 46 
years after GOdel's results). It was done by J. Paris (1978). 
Working on nonstandard models2 of PA he had invented a new method 
of constructing sentences which are Independent of PA, but true 
in the standard model. The sentences of Paris were simplified by 
L. Harrington and at the end a new elegant undecidable sentence 
of a combinatorial contents was obtained (cf. Paris, Harrington 
(1977». Soon a lot of new such sentences were found (by McAloon, 
Clote. Pudlak. Friedman. Mills. Murawski. RataJczyk. Kirby. 
Simpson. Tverskoj). But the solution was still not completely 
satisfying. There was still no number-theoretical sentence. Only 
in 1982 J. Paris and L. Kirby found such a sentence (cf. 
Paris. Kirby (1982» (it is interesting that the construction of 
their sentence uses some ideas of R. L Goodstein (1944). Hence, 
only 51 years after COdel's results there was found an 
arithmetical sentence proving (by its existence) the 
Incompleteness of arithmetic. 

2. New undecidable sentences 

Let us now describe the Paris-Harrington and Goodstein
Kirby- Paris sentences. We need some notation. If X is a set of 
natural numbers then [x]n denotes the family of all n-element 
subsets of X. A function C: [x]n -+ c (c being a natural number 
which we identify with the set of its predecessors. i.e. 
c = {O.1 ..... c-1}) Is said to be a colouring function. It may be 
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interpreted as a colouring of n-element subsets of X by colours 
O. t, 2, ... , c- t. The EngUsh mathematician F. P. Ramsey (1929) 
proved that if C is a function colouring [x]n and X is big with 
respect to c and n then there exiata a big set '! such that all 
Its n-element subsets are coloured by one colour. Such a set 
Y i; X we call homogenous with respect to C. In fact Ramsey proved 
the following two theorems: 

THEOREM 1 (Infinite Ramsey Theorem). Let n, c be positive 
natural numbers. For any colouring function C: [N)n - c there is 
an Infinite set Y I; N such that Y Is homogenous with respect to 
C, I.e. o[y]n Is constant. 

THEOREM 2 (FinlteRamaey Theorem). Let s, n, c be positive 
natural numbers such that s) n + 1. Then there Is a number 
R(s,n,c) such that for every r) R(s,n,c), for any set X having r 
elements and any colouring function C: [x]n - c there exists a 
set homogenous with respect to C having s elements. 

These theorems are not Intuitively obvious and need proofs. 
They can· be treated as generalizations of Dirichlet's Scubfach
prinzip. For n = 1 Theorem 1 says that If one divides an Infinite 
set into a finite number of disjoint parts then one of these 
parts must be Infinite. Theorem 2 for n = 1, s = 2 and R(2, t,c) = 
= c+ 1 is exactly the Dirichlet's principle: if one divides a set 
containing c + 1 elements (or more) into c parts. then one of 
them must contain at least 2 elements. 

It turns out that Finite Ramsey Theorem can be proved in 
PA3• Harrington observed that modifying it a bit we obtain a 
sentence independent of PA. Call a set X I; N relatively large iff 
card(X) ) min(X). Then for example the set {2,3,aO,02) is rela
vely large but the set {to,13,7,O) is not relatively large. The 
Paris-Harrington sentence flo says now: 

for any natural numbers a, n, c there exists a natural 
number H(a,n,c) auch that for any h) H(a,n,c), any set X of 
cardinality h, any C: [x]n - c there is a set Y homogenous 
with respect to the function C and such that card(Y») s and 
Y Is relatively large. 

It can be proved- that No I- flo (In fact flo is a consequence of 
Infinite Ramsey Theorem) but PA non I- flo. Hence flo is an undeci
dab�e sentence of a combinatorial contents. 

Now to describe the Goodstein-Klrby-Parla sentence let m, n 
be natural numbera and define a representation of m by the basis 
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n: we write m as a sum of powers of n (e.g. If m = 266, n = 2 
then 266 = 28 + 23 + 2'). We do the same with all exponents and 
at the end we get: 

We define now a number G,.(m) as follows: 

If m = 0 then G,.(m) = 0, 
If m pi 0 then G,.(m) Is a number obtained by replacing every

where In the representation of m (by the basis n) 
the number n by n+ 1 and subtracting 1. 

For example: Gz(266) = 3r+' + 33+' + 2 ", to». 
Goodstein's sequence for m Is now defined In the following way: 

IDo = m, 

m, = Gz(IDo), 

IIlz = ~(m,), 

For example: 

IDo = 2660 = 222+1 + 22+' + 2, 

m, = 2661 = Gz(mo) = 333+1 + 33+1 + 2 ", 1038, 
4+1 IIlz = 2662 = ~(m.) = 44 + 44+' + 1 ", too,e, 
5+1 

m3 2663 = G4(1Ilz) = 55 + 55+1 ", t010000 etc. 

Observe that this procedure of constructing the sequence m.c can 
be described In the language of PA. Consider now the following 
sentence 'PI of l(PA): Vm3k (IDJ. = 0). It can be proved that 
No ~ 'PI but PA non I- 'PI' The unprovability of 'P, has Ita source 
roughly speaking, in the fact that IDJ. = 0 only for very big k, 
e.g. if m = 4, mk = 0 for k = 3_24OH53211 - 3 ", 10'21000000. 

Observe that the whole number of atoma in the Universe is 
estimated as 10-0. 

There was also found (cf. Paris, Kirby (1982) an inte
resting example of an undecidable sentence of a ... mythological 
contentsl As we know Hercules after killing his wife and children 
in a fit of madness went, regaining consciousness, to the oracle 
to ask her how he could now expiate his crime. Pythia told him to 
go to Mycenae and to enlist into the service with the king 
Euryatheus. There he ought to follow his commands until he does 
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12 works. One of Eurystheus' commands was to kill the hydra of 
Lerna. What did that monster look like? Mathematics helps us to 
describe it. We can imagine it as something reminding by Its 
shape what we call in mathematics a finite tree. Schematically we 
can represent It as follows: 

} 

.. TOP 

HBAD 

.. SBCMBNT 

.. NODB 

The battle between Hercules and hydra proceeds as follows: at 
stage n (n ~ 1) Hercules chops off one head from the hydra. The 
hydra then grows n -new heads- in the following manner: from the 
node that used to be attached to the head which was just chopped 
off, traverse one segment towards the root until the next node is 
reached. From this node sprout n replicas of that part of the 
hydra (after decapitation) which is -above- the segment just tra
versed, I.e. those nodes and segments from which, in order to 
reach the root, this segment would have to be traversed. If the 
head just chopped off had the root as one of its nodes, no new 
head is grown. For example (an arrow marks always the head which 
Hercules decides to chop off): 

after stage 1 
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after stage 2 after stage 3 

Hercules will win if after a finite number of stages nothing is 
left of the hydra but its root. Of course he may chop off the 
heads in any order. By a strategy we mean a function which deter
mines for Hercules which head to chop off at each stage of the 
battle and by a winning strategy we mean a strategy which enables 
Hercules to win a battle with any hydra. It turns out that every 
strategy is a winning strategy, i.e. by chopping off the heads of 
any hydra In any order he always win! 

Now consider the battle in a slightly different way. A hydra 
can be coded by a single natural number (hence a mathematician Is 
more powerful than Hercules - he can reduce a hydra to a single 
not dangerous number!). This enables us to talk about the battle 
with a hydra In the language of Peano arithmetic. We cannot speak 
in this language about arbitrary strategies but we can speak 
about recursive (effective) ones. Consider now a sentence: 'Any 
recursive strategy Is a winning strategy'. It is of course weaker 
than the sentence stating that every strategy is a winning 
strategy, therefore it Is also true. But in turns oui that even 
such a weak statement is not provable in PA. Peano arithmetic is 
to weak to prove some true sentences about the battle between 
Hercules and a hydra. 

The methods and ideas of Paris. Kirby and Harrington were 
applied also to find sentences undecidable in sub- and 
supertheories of arithmetic. Let us mention here only the results 
of A. A. Tverskoj (1980) and H. Friedman (cf. Smoryflskl (1982». 
With any recursive function f Tverskoj associates a formula 
KTPCf) of UPA) (below we describe its sense) and proves that 
there is a sequence of recursive functions '-1' fo• fl' f2 •..• 
such that for any n ~ 0: 
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PA I- KTPCfn) -+ KTP(fn-1), 

PA non I- KTP(fn- 1) -+ KTPCfn). 

13 

Hence we have a sequence of stronger and stronger sentences 
KTP(fn) such that KTP(fn) Is Independent of PA +KTP(fn_1). More
over, by (2), KTP (fn) Is independent of PA + (KTP(f .. ): k < n}. 
The function C. may be chosen In such a way that the sentence 
KTP(L1) is equivalent to the Paris-Harrington sentence flo' 

Friedman has found sentences of combinatorial contents which 
are independent of some Interesting (from the point of view of 
not only foundations of mathematics but also of the mathematical 
practice) fragments of the second order arithmetic called AlRo 
and nl-CA. (Second order arithmetic is a theory formalized in a 
two sorted language - individual variables representing natural 
numbers and set variables representing sets of natural numbers -
which extends Peano arithmetic and Is already so powerful that a 
big part of classical mathematics can be formalized within It.) 
Friedman's sentences talk about embeddabillty of finite trees. 
The precise description of those sentences needs the introduction 
of a lot of technical notions and details and we shall not give 
them here. 

3. ScHne words about proofs 

In general, there are two types of proofs of undecidability 
of those new sentences - call them syntactical and semantical. 
Semantical proof (e.g. Paris' (1977» are based on the so called 
indicator theory founded by Paris and Kirby studying Initial 
segments of nonstandard models of PA. To explain this method 
consider a countable nonstandard model M of PA and a certain 
property Q of initial segments of M (e.g. Q = being a model of 
PA). The Indicator for Q is definable function which informs us 
if between any two elements a,bEM there exists an initial segment 
I 1;. M such that QeD. 

Let M 1= PA be countable and assume that there is an indica
tor V(x,y) for the family of initial segments I of M such that 
I 1= PA. It is proved that there Is an Initial segment 10 '. M 
such that 10 1= PA and 10 non I- \/z\/x3y V(x,y) ;. Z. On the other 
hand No 1= \/z\/x3y V(x,y) ;. z. Hence the sentence \/z\/x3y V(x,y) ;. z 
is undecidable in PA. 

This Is a general scheme. The whole problem Is now to find a 
-good- (i.e. giving a sentence \/z\/x3y V(x,y) ;. z interesting from 
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the mathematical point of view) indicator Y. The Indicator found 
by Paris and Harrington and giving tpo was based on Ramsey 
theorem. (In the appendix we give a detailed, semantical type 
proof for another undecidable .sentence, namely for Pudlak's 
sentence.) 

The syntactical method does not use any models or other 
semantical notions. It was applied in the paper of Paris and 
Harrington (1977). They considered 'Po, constructed a theory 
(extending PAl and proved that 

PA f- Con(T) -+ Con(PA), 

PA f- tpo -+ Con(T), 

where Con(PA) (resp. Con(T» is a sentence of UPA) expressing 
the fact that PA (resp. T) is consistent. Hence, by GOdel's 
second theorem, we get that PA non f- 'Po' On the other hand 
No F 'Po and hence 'Po is undecidable in PA. 

4. Philosophical remarks 

Consider now the new undecidable sentences from the philoso
phical point of view. First observe that they tell us more about 
the incompleteness of Peano arithmetic PA than GOdel's results, 
since they show some undecidable sentences of combinatorial and 
number-theoretical contents, i.e. sentences interesting from the 
usual mathematical point of view. Secondly, despite their mathe
matical contents they are strongly connected with some 
metamathematical sentences. McAloon (1979) has namely shown (and 
the same can be proved about almost all new sentences) that 

PA f- 'Po. RfnEl(PA), 

where RfnEl(PA) Is metamathematical sentence: for every sentence tp 
from UPA) which contains only existential quantifiers appearing 
at the beginning, if 'P is provable then tp is true. (By using the 
technique of arithmetization RfnEl(PA) can be written as a 
.sentence of UPA)') Hence new sentences have in fact also some 
metamathematical contents. In the third place the new sentences 
are stronger then GOdel's sentence. Namely 

PA f- COdel's sentence Ii Con(PA) 
but 

PA + Con(PA) non f- RfnEl(PA). 

Hence 'Po is undecidable in PA + Con(PA). 
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To give some ideas how strong Paris-Harrington and Friedman 
sentences really are consider the following hierarchy of theories 
(a is here an ordinal): 

To = PA, Ta+1 = Ta + Con(Ta). T~ = U Ta (). limit). 
a<~ 

It can be shown that: 

to PA + rpo has the same proof-theoretic power as Te where o 
Eo is the first ordinal p such that wi' = P. i.e. Eo Is the limit 
of the following sequence of ordinal numbers w. wI.>. IJJ"I.> •••• 
(Recall on this occasion that £0 is very well known in the proof 
theory - G. Gentzen showed that with the help of induction up to 
Eo we can prove the consistency of Peano arithmetic PA') 

2° PA + F. where F is Frledman's sentence undecidable In 
ATRo is stronger than any of the theories T£. Te ..... Te .... 

I 2 "'0 
where Ea is the a th ordinal p such that wi' = p. In fact PA + F 
has the same proof-theoretical power as TT where r is a countable 
ordinal which is strongly impredicative. i.e. such that it cannot 
be described without any reference to the first uncountable 
ordinal. The sentence F implies over a reasonable weak theory the 
consistency of predicatlve analysis. i.e. of the fragment of the 
second order arithmetic with comprehension scheme restricted to 
formulas having quantifiers over natural numbers and no set 
quantifiers. 

What are in fact the reasons for the unprovabllity in PA of 
true arithmetical sentences considered above. i.e. sentences of 
GOdel. Paris-Harrington. Goodstein-Kirby-Paris. Friedman etc.? 
Recall that GodeI's sentence was of the form \Ix rp(x) where rp(x) 
was a formula containing only bounded quantifiers5 and such that 
PA ~ rp(Q). PA ~ rp(t). PA ~ rp(2). .... PA ~ rp(n). for any na
tural number n. The source of the unprovability of \Ix rp(x) is the 
fact that proofs (in PAl of rp(O). rp(1). rp(2).... are not uni
form, i.e. there is no general method of proving rp(n) for any 
given n. In other words for every n E N the proof of rp(n) is 
different from a proof rp(m). m ;t n. 

What about the Paris-Harrington sentence rpo? One can see 
that rpo may be written in the form \lx3y ~(x.y) where ~ contains 
only bounded quantifiers. If now a formula of such type were 
provable In PA then there would be a provably recursive function 
f(x) such that PA would prove \Ix ~(x.f(x». i.e. a provably 
recursive function f giving examples of y's for given x's fulfil
ling the formula ~ - we call such a function a witness. Recall on 
this occasion that a function f: N -+ N is said to be provably 
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recursive Iff f Is recursive and there is a term F of language of 
Peano arithmetic PA such that F represents f In PA and 

PA I- 'v'x3ly [F(x) = yJ, 

where 31y means that there exists exactly one y. Observe that If 
the term F represents a recursive function f In PA then for any 
natural number n E N: PA I- 31y [F(n) = yJ but it may happen that 
PA non I- 'v'x3ly [F(x) = yl. On the other hand any recursive 
function can be represented by a term of PA and vice versa, any 
term of PA represents a recursive function (which may be but need 
not be provably recursive). 

Coming back to our considerations, If PA non I- 'v'x3y ~(x,y) 
then the source of this unprovabllity lies in the fact that for 
any provably recursive function f, if F is a term representing f, 
then PA non I- 'Ix ~(x,F(x», i.e. no provably recursive function 
is a witness for ~. 

To explain this phenomenon better let us Introduce the fol
lOWing hierarchy of functions of natural numbers. Let fo(x) = 
= x + 1, fn+l(x) = f~+I(X), where f~+I(X) = fn(fn( ... (fn(x» .. .» 
(x + l)-times. Hence, e.g. fl(x) = 2x + 1, f2(x) is similar to 2· 
and fleX) is similar to 

22 
2/} x times 

We say that the function hi is something like the function ~ Iff 
1'(hl) = 1'(h2 ) where 1'(h) is the smallest class of functions 
containing h, S, + , • and closed under composition. It can be now 
shown that for any n E N, fn+1 is not something like fn and that 
fn+1 majorizes all functions from 1'(fn). We can extend the 
hierarchy of functions fn to ordinal numbers a (e.g. if a is a 
successor, I.e. a = p + 1 then we put fa(x) = f~l(x) = frl(x) 
and if a is a limit ordinal then we diagonalize, e.g. 
f ... (x) = f.(x». Let now ~ be the smallest ordinal a such that 
w· = a. The following fact now holds. 

THEOREM 3. Functions belonging to the set Y 1'(fa) are preci-
sely those provably recursive in PA. • .., 

After that necessary (but maybe a bit tedious) explanation 
let us return back to the Paris-Harrington sentence tpo' If tpo 

were provable in PA, i.e. if PA I- 'v'x3y ~(x,y) then there would be 
(by Theorem 3) an a<~ such that PA I- 'v'x3y<fa(x) ~(x,y). But 
PA I- 'v'x3y I/I(x.y). Hence for any a<~ PA non I- 'v'x3y<fa(x) ~(x.Y). 
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Consequently, the function f which Is the witness of '0 grows 
more rapidly than any fa for a<£o. And In fact it can be proved 
that the function H(x+ 1,x,x) (H Is the function from the Parls
Harrington sentence lPo) Is something like fe' I.e. the function 
witnessing lPo majorizes all provably recur~ive functions and 
therefore PA is not able to handle it. 

Observe that Paris-Harrington sentence lPo has a similar pro
perty as. COdel's sentence. Namely for any given neN, PA I- 3y .,(n,y). 

A similar situation to the one described above we have in 
the case of Friedman's sentences and reasons for their unpro
vability are also similar (recall that those sentences are also 
of the form Vx3y X(x,y) where X contains only bounded quan
tifiers). But here the function witnessing the formula X grows 
even more rapidly than it was in the case of Paris-Harrington 
sentence l{Jo' And as before, for any given nEN, PA I- 3y x(n,y). 
How long are proofs of those sentences? The answer is: they are 
very long. For example, in the case of Friedman's sentence 
Vx3y X(x,y) undecidable in ATRo. the proof of the sentence 
3y xCto.y) has at least 

2/ } 1000 times symbols! 
22 

Do the new results fully satisfy logicians and "normal" 
mathematicians? Is this part of the foundations of mathematics 
already closed? We must answer these two questions negatively. 
The new results are not completely satisfying because the 
undecidability of new sentences is shown by proving that there 
exists 10 such that 10 does not satisfy the particular sentence. 
And this proof Is not constructive. It Is not convincing for a 
usual number-theorist. He does not study nonstandard numbers and 
the fact that some nonstandard model 10 does not satisfy the 
considered sentence gives him no information. On the other hand 
he is not interested in the fact that in some system some 
sentence cannot be proved. He asks if these sentences are true 
among natural numbers. In practice he does not work in any formal 
system but uses any "proper" methods. We can assume, to fix our 
attention. that any of his proofs can be reconstructed in set 
theory (say in Zermelo- Fraenkel set theory with the axiom of 
choice ZFC). Hence there arises a problem of finding mathematical 
(number-theoretical> sentences undecidable by any "proper" 
method, I.e. Independent of ZFC. The problem Is still open (only 
metamathematical sentences about natural numbers which are 
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independent of ZFC are known). Maybe Fermat's theorem or 
Goldbach's conjecture are examples of such sentences? 

5. Appendix 

To give the reader an idea of what could indicators 
generating undecidable sentences (cf. part 3) look like, we shall 
present in this appendix a detailed proof of unprovability of 
Pudlak's sentence. It was described in an unpublished paper 
'Another combinatorial sentence independent of Peano's axioms'. 
We have chosen just this sentence because it has a clear and 
easily understandable contents and one can provide clear and 
readable proof of its independece. Describing Pudlak's sentence 
and Its properties we shall follow SmoryflSld (1980). 

DEFINITION 1. Let f: N -- N. We say that a finite set A I; N. 
A = {ao• a, •...• an} where ao < a, < a2 < •.. < an is an appro-
ximation to f iff for any i < n: 

"Ix lit a l [x E dom(f) -to f(x) lit al+ l v f(x) > an]' 

where dom{f) is the domain of f. 

It can be seen that A = {to.12.13.14} is an approximation of 
the function f(x) = x2 • Observe that any set having 2 elements Is 
an approximation to every function. 

DEFINITION 2. Let X be a finite set of natural numbers. We 
say that X is O-dense iff card(X) ~ 3. We say that X is 
(n + 1)-dense Iff for any function f: N -- N there is an n-dense 
set Y such that Y I; X and Y is an approximation to f. 

The set {O.1.2} is t-dense. It is not easy to give other 
examples of t -dense sets. But the following theorem holds. 

THEOREM 4. For any a.nEN there is a.bEN such that a < band 
the interval [a. b] is n - dense. 

This theorem cannot be proved in PA because its proof is 
not effective and uses facts and methods which cannot be 
formalized in PA. Therefore it is really difficult to give 
concrete. effective examples of n-dense sets though we know they 
do exist. 



Godel's Incompleteness Theorem 99 

Consider the following sentence 'P: 

'VVO,vl 3V2 (v2 > Vo & [va' v21 is vI-dense). 

It turns out that 'P is independent of PA. By Theorem 4 the 
sentence is true in the standard model No. Hence it Is 
undecidable In PA. 

To prove that PA non r 'P It is enough to find a model Mo of 
PA such that Mo non F 'P. We shall do it now. 

Let M be a nonstandard model of PA such that M is an elemen
tary extension of No, i.e. the sentences of the language of Peano 
arithmetic which are true in M are exactly those sentences true 
in No. Hence by Theorem 4, M F 'P. Let a and c be any nonstan
dard elements of M. There is a bEM such that a < band M F 
-[a, bl is c-dense-. The model M is model of PA, hence the scheme 
of induction, and consequently the principle of minimum hold in 
it. So let bo be the smallest element b from M such that a < b 
and M ... -[a, bJ is c- dense-. 

The most important (and most difficult) part of the proof is 
to show that the function 

Y(x,y) = max(c: [x, yJ is c-dense) 

is the indicator for the family of initial segments of M being 
models of PA (cf. part 3). We omit this proof of course. 

Now if Mo is an initial segment of the model M such that 
a,cEMo and bo~Mo then in Mo there is no b such that a < band 
[a, bJ is c-dense. Hence Mo is the needed model of "'P. Observe 
that here we have used the fact that the sentence -[a, bl Is 
c-dense- for a,b,cEMo holds In Mo iff It holds in M. 

Hence we have shown that No F 'P but there Is a model Mo F PA 
such that Mo F ''P. Consequently PA non r 'P and PA non r "'P. Hence 
'P is the sentence of mathematical contents undecidable in PA. 
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Notes 

I Readers interested in details of COdel's results may consult 
e.g. Nagel, Newman (1959) or Smoryflski (1977). It is in order 
here to mention two contributions concerning the independent 
arithmetical propositions expected to appear: 

R. Murawski, Appendix to paper 'On the incompleteness of 
arithmetic once more', in Essays on Logic and Philosophy, Proc. 
of the XXX International Conference on the History of logic, ed. 
J. Perzanowskl. 

S. G. Simpson, Nlchtbewelsbarkeit von gewissen komblnato-
rischen Eigenschaften endlicher Baume, Archiv f. Math. Logik und 
Grundlagenforschung. 

2 One of the consequences of the compactness theorem is the 
existence of models of arithmetic of natural numbers different 
from (i.e. nonisomorphic to) the basic model No = <N,O,S, +,. >. 
This basic model is called standard, models which are not 
isomorphic to It are called nonstandard. Nonstandard models 
contain so called nonstandard natural numbers, i.e. objects a 
such that they have properties described by axioms of the 
arithmetic of natural numbers but are bigger than all standard 
numbers (a > 0, a > 1, a > 2 etc.). Any nonstandard model of 
arithmetic is ordered (by the natural order relation a ~ b iff 
3c (b = a + c» in the type w + (w* + w) p, where p is a dense 
order type, w is the order type of the set of natural numbers and 
w* + w is the order type. of the set of integers. In the case of 
countable models p is the order type of rationals. Hence any 
nonstandard model contains an initial segment isomorphic to N. 

3 Observe that In PA we can talk about finite sets of natural 
numbers. We can simply code them by single natural numbers. If we 
have a set X = {ai, a2 , ... , an} where a l < a2 < ... < an then it 
can be coded by the number p11 .. p~n where PI is the i-th prime. 

4 Talking about provability of some semantlcal facts we mean 
always the provability In the metatheory which is e.g. Zermelo
Fraenkel set theory with the axiom of choice ZFC. 

5 Bounded quantifiers are quantifiers of the form "I x<t and 
3 x<t where t is a term of l(PA) and we define 

"I x<t fP(x) • "Ix (x < t -+ fP(x», 

3 x<t fP(x) • 3x (x < t &: fP(x». 
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i. Introductory Remarks 

In this paper Mordchaj Wajsberg's life and research work in 
logic are described, and an attempt is made to situate the latter 
among the accomplishments of the rest of the Polish school of 
logic. 

ii. Wapberg and the Polish School of l.ogic 

Wajsberg belonged to a research formation called in the 
course of time the Polish school of logic. The undisputed leaders 
of the school were S. Le~niewski, J. lukasiewicz, and at a later 
stage, A. Tarski who since 1923 became responsible for many 
outstanding contributions and systematic studies in logic, 
metalogic and semantics. 

Although the school members centered on modern logic and its 
applications where they promoted a number of new trends and 
opened many fresh fields of research, they also showed a lively 
interest in methodology of deductive and empirical sciences as 
they took up in modern logical form many of the traditional major 
philosophical questions at the same time putting outside the 
scope of philosophy some such philosophical problems which could 
be either clearly stated or investigated by the methods of 
science. In these efforts the school members were supported by 
the prominent philosophers T. Kotarbiflski and K. Ajduklewicz. 

It is this school which emerged as the most dominant force 
in academic logic and philosophy of Poland a.5 well a.5 the. Polish 
intellectual life between the two world wars. And it is this 
school which should be seen responsible for the spectacular rise 
to prominence of formal and philosophical logic. 

The leaders of the school soon became surrounded by a large 
number of talented students, young assistants and followers. 
Among those who essentially contributed to the school's suc
cess there were A. Lindenbaum, B. Sobociflski, S. Ja~kowski, 
J. Slupecki, and of course, M. Wajsberg. 

A distinctive feature of the school and one of the secrets 
of its success was the spirit of teamwork. The mutual colla
boration among the members was so close and intimate that it is 
often hard to decide who should be credited with which particular 
results. Another its feature is that its members seemed to care 
more about making research progress than about making the results 
actually published or otherwise documented. Consequently, many 
findings appeared in print only in the form of abstract with 
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proofs and other essentials missing. Moreover, some important 
findings were never published during their authors' lifetime. 
They became more and more dependent on oral communication thus 
contributing to the growth of the school's toral tradition'. For 
a general school's background see KUZAWA 1968 and MOSTOWSKI 1957. 

Many useful findings were summarized and systematized by 
Lukasiewicz and Tarski in their joint paper WKASIEWICZ-TARSKI 
1930. A great number of references to the school's results can be 
found in TARSKI 1956. See also JORDAN 1945, 1963, and 1967. 

Wajsberg emerges as a prominent representative of the 
school. Many of his research results have profoundly influenced 
further studies in the field. Among other things, he became a 
pioneer in the axiomatization of many-valued logic. He was the 
first to provide an adequate semantics for one of Lewis's modal 
systems. He also worked out an original method for the separable 
axiomatization of intuitionistic propositional logic. Wajsberg 
made an impression on many things which he touched, perfected 
many results by others, particularly by lukasiewicz, Lesniewski, 
Tarski, Lewis and Hilbert. His research work gave a new impetus 
to further studies. And, although, unlike his teachers, Wajsberg 
said directly nothing on philosophical subjects, his research 
work has borne unquestionable philosophical implications. 

Wajsberg published twelve papers. For the availability of 
their English translations see SURMA 1977. See also McCALL 1967 
which contains English translations of three of his papers, 
WAJSBERG 1931, 1937, and 1938b. 

iii. Childhood 

Mordchaj Wajsberg was born on May 10, 1902 at loma, 
Bialystok district. The years of 1909 to 1912 he spent In a local 
primary school. Then he moved to an intermediary school but the 
school was closed two years later when the first world war had 
broken out. In 1920 a year of military service in the revived 
Polish army followed thus Interrupting his preparations for final 
school certificate. After completion of the .service he passed 
successfully his entrance examination to the last but one form of 
the local secondary school from which he graduated in June 1923. 

iv. University Study 

Wajsberg spent his formative years In Warsaw. In October, 
1923 he enrolled as a mathematics student at the Philosophy 
Department of the Warsaw University. He specialized in 
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mathematical logic which he studied under Lukasiewicz. Apart from 
those by l:.ukaslew1cz he also attended lecture3 on logic given at 
that time by Le~niewski and Kotarbiflski. 

As a second year student he read two papers to the 
Philosophy of Mathematics Section of the ~ociatlon of 
Philosophy Students, one on -Russell's Theory of Functions of 
Apparent Varlable-, the other one on -Invariants of Logistic 
Transformation-. 

v. Early Findings. Pure Implication 

Already as a third-year student Wajsberg obtained some 
original results. He described a number of alternative axiomatic 
systems for various fragments of classical proposltional logic. 
In particular, he found new axioms for the logic of pure 
implication and for that of pure equivalence. Among them there is 
his 25-letter single axiom for pure implication: 

CCCpqCCrstCCuCCrstCCpuCst 

(Explanation of the symbolism: the above formula is rendered 
using the so called Polish notation, due to I:.ukasiewicz (see 
I:.uKASIEWICZ 1929), where 'C' denotes the connective of 
implication, and where 'Cab' reads as 'If a, then b'). This axiom 
is organic In the sense that none of its proper subformulae Is a 
tautology; the notion of organic formula was also introduced by 
Wajsberg (see f:.UKASIEWICZ-TARSKI 1930). 

Unlike the above axiom, the 25-letter single axiom: 

CCCpCqpCCCCCrstuCC.!uCruvv 

found by I:.ukasiewicz and also referred to in lUKASIEWICZ-TARSKI 
1930, contains tautology CpCqp as a subformula, and so It is not 
organic. 

It has been shown by Lukasiewicz later that the following 
13 -letter formula: 

CCCpqrCCrpCsp 

Is the shortest single axiom for pure Implication (see 
I:.UKASIEWICZ 1948). Still later Ivo Thomas, using the work of 
R. Tursman (see TI.JRSMAN 1968), has finally shown that there are 
no more shortest single axioms for pure implication (see 1HOMAS 
1970). 
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vi. Pure Equivalence 

Investigations into the logic of pure equivalence were 
initiated in Poland by le~niewski to whom we owe what is now 
called le.$niewski's decidability criterion to the effect that 
each purely equivalential formula is a tautology if and only if 
each propositional variable occurs in it an even number of times. 
Lesniewski was also the first to prove that all pure 
equivalential tautologies can be axiomatized with the help of 
substitution and ordinary detachment for equivalence: 

Eab, a I- b 

together with the following axioms: 

EEEprEqpErq, EEpEqrEEpqr. 

For reference see LESNIEWSKI 1929. (Explanation of the symbolism: 
the above formulae are rendered using the Polish notation, where 
'E' stands for the connective of equivalence, and where 'Eab' 
reads as 'a if and only If b'). 

The subject of pure equivalence attracted many members of 
the school. Among them was Wajsberg. To Wajsberg belongs the 
credit of showing that the logic of pure equivalence can be 
axiomatized with the help of single axiom. In 1925, still as a 
third -year student, he found the following two 15-letter single 
axioms (see WAJSBERG 1937, footnote 1): 

EEEEpqrsEsEpEqr 
and 

EE:EpEqrEErssEpq. 

In 1930 five more 15-letter single axioms for pure 
equivalence were found by lukasiewicz, Sobocinski, and J. Bryman 
(see SOBOCINsKI 1932). Later all these results were sharpened by 
I:.ukaslewlcz who In 1933 found the following three l1-letter 
single axioms for pure equivalence: 

EEpqEErqEpr, EEpqEEprErq, and EEpqEErpEqr. 

l:.ukasJewlcz proved that each ot these axioms Is the shortest 
possible single axiom for pure equivalence, thus solving the 
problem of the length of single axioms for this logic (see 
WKASIEWICZ 1939). 

In 1963 C.A.Meredith found seven more shortest single axioms 
for pure equivalence (see MEREDITH 1963 and PETERSON 1976). One 
more such single axiom was added by J.A. Kalman in 1978 (see 
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KALMAN 1978). Continuing eorlier efforts by Kalman and Peterson, 
l. Wos and S. Winker finally established that the number of all 
single axioms for pure equivalence is thirteen (WOS-WINKER 1980). 
More historical information concerning investigations into the 
logic of pure equivalence may be found in SURMA 1973b. 

vii. Sheffer's Connective 

As a fourth-year student Wajsberg made a contribution to the 
study of the Sheffer connective D (read as 'Not both'). He found 
the following axiom for D: 

DDpDqrDDD.srDDpsDpsDpDpq 

and he deduced from this axiom the following axiom: 

DDpDqrDDtDttDDsqDDpsDpDps 

which was found by J. Nicod as early as in 1917, and which became 
the first single axiom for propositional logic ever known (see 
NlCOD 1917). 

Wajsberg's axiom improves Nicod's one. First, it contains 
one less propositional variable. Besides, it is organic while 
Nicod's is not as it contains the tautology DtDtt as a subformula. 

Wajsberg's own results on single axioms contributed to 
similar studies, already in their full swing, advanced 
considerably by I:.ukasiewlcz, Tarski, and Soboclti.ski, who found 
many single axioms for various fragments of propositional logiC. 
For reference see I:.UKASIEWICZ-TARSKI 1930 and SOBOCltI5KI 1932. 
All his early results were included into Wajsberg's master's 
thesis, entitled 8Contribution to the Research on Mathematical 
Logic·, which was written under lukasiewicz's supervision. It is 
on the basis of this thesis that he was awarded his M.A. degree 
on October 2, 1928. 

viii. Early Observation on Modal logic 

Still as a student Wajsberg became involved into the study 
of modal logic, the ancient subject which was reVived by modern 
logiCians, especially, by C.1. Lewis. He was the first to prove 
that none of Lewis's modal systems is equivalent to classical 
propositional logic. Following WAJSBERG 1937, footnote 7, his 
separating four-valued truth tables, used in the proof, were 
found by him as early as in 1926. He observed that formula 'La' 
(read as 'It is necessary that a') is already a theorem In 
Lewis's system SI, whenever 'a' itself is a classical tautology, 
an important fact pertaining to the so called Goedel-Lemmon-style 
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formalization of modal logics. And for the first time in the 
history of modern modal logic he outlined an adequate semantic 
characterization of Lewis's system 55. A detailed description of 
the semantics was presented in his later paper WAJ5BERG 1933a. 

All these observations were communicated by Wajsberg to 
C.I. Lewis at least as early as in 1927, as it is acknowledged in 
Appendix ii of LEWIS-LANGFORD 1932. See also PARRY 1968. 

ix. Waj,sberg's Work on Many-Valued Logic 

From August, 1929 to September, 1930 Wajsberg served in the 
army, first as a student in the cadet training unit, and then in 
the 4th Regiment of the Tatra Highland Gunners. In September, 
1930 he qualified for Ph.D. studies at the Warsaw University. As 
a Ph.D. student he worked under i:.ukasiewicz's supervision. His 
research project centered on the three-valued logic of 
i:.ukasiewicz. 

The three-valued logic of I:.ukasiewicz was discovered by 
I:.ukasiewicz in 1920, that is already a decade earlier (see 
I:.UKASIEWICZ 1919-1920 and 1921), and was described semantically 
with the help of his well-known three-valued truth tables, at 
that time referred to as the method of logical matrices (see 
I:.UKASIEWICZ 1930), In 1922 the three-valued logic was generalized 
by I:.ukasiewicz to n-valued logics, where n may be an arbitrary 
finite or even infinite number. Researches on I:.ukasiewicz's 
logics were carried out by a growing team of talented and devoted 
students and collaborators, which included not only Wajsberg but 
also Tarski, Lindenbaum, Sobociflski, and, later, Siupecki and 
Ja~kow.ski. 

Wajsberg accomplished 
entitled his manuscript 
propositional logic", and 
University in fulfilment 
Doctor of Philosophy. 

his Ph.D. project in less than a year, 
.. Axiomatization of the three- valued 

submitted it oficially to the Warsaw 
of the requirement for the degree of 

In his thesis Waj,sberg found the following 
independent axioms for the three-valued logic of 
based on implication and negation as primitive connectives: 

system of 
I:.ukasiewicz 

CpCqp, CCpqCCqrCpr, CCNpNqCqp, CCCpNppp 

(Explanation of the symbolism: <Cab' reads as <If a, then b', as 
before; while <Na' reads as <It is not the case that a' so that 
<N' stands for the connective of negation). He proved that each 
three-valued tautology and only such tautology can be deduced 
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from the above axioms using the 
substitution as the only rules of 
solution to the completeness problem 
of I:.ukasiewicz, which was the first 
history of many-valued logic. 

rules of detachment and 
inference. This provided a 
for the three-valued logic 
result of the kind in the 

In his thesis Wajsberg also proved that no subsystems of 
classical propositional logic can be axiomatlzed with the help of 
axioms built up of at most two propositional variables. An 
algebraic proof of this fact was given by A.H. Diamond and J.C.C. 
McKinsey In 1947 (see DIAMOND-McKINSEY 1947). 

A paper based on the results contained in Wajsberg's thesis 
was presented by I:.ukaslewlcz to the Warsaw Scientific Society for 
publication as early as January 19, 1931. It appeared in the 
Proceedings of the Society in the same year (see WAJSBERG 1931). 

Formal defence of Wajsberg's Ph.D. thesis 
I:.ukasiewlcz and S. Mazurkiewicz as referees, and 
Doctor of Philosophy was conferred upon him at 
ceremony on May 29, 1931. 

followed, with 
the degree of 
the promotion 

Wajsberg's Ph.D. thesis did not contain all of his findings 
concerning I:.ukasiewicz's many-valued logics. At about the same 
time he proved axiomatizability of all those n-valued I:.uka
siewicz's logics, for which (n -1) is a prime number. This result 
was later extended by Lindenbaum to all natural n (see 
I:.UKASIEWICZ-TARSKI 1930>. 

Wajsberg also confirmed lukasiewicz's conjecture on the 
axiomatizability of the Infinite-valued lukasiewicz's logics, 
namely, that the logic can be axiomatized by the detachments and 
substitution rules together with the following axioms: 

CpCqp, CCpqCCqrCpr, CCCpqqCCqpp, CCCpqCqpCqp, CCNpNqCqp. 

He announced in WAJSBERG 1936, p.240, that he had found proof for 
the conjecture but his proof has never been published (see 
I:.UKASIEWICZ-TARSKI 1930). The proof that the above axioms suffice 
for lukasiewicz's infinite-valued logic was shown in print by 
A. Rose and J.B. Rosser only in 1956 (see ROSE-ROSSER 1956). 
C.A. Meredith and C.C. Chang then showed, independently, that 
axiom CCCpqeqpCqp is redundant and so can be omitted from above 
list (see MEREDITH 1956 and CHANG 1956). 

Wajsberg also found a relatively simple axiomatization of 
the so called extended three-valued logic of I:.ukasiewicz. An 
extended propositional logic was defined In the school as a 
propositional logic admitting quantification over propositional 
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variabl~ (see l:.UKASIEWICZ-TARSKI 1930). As. such it can be viewed 
as a particular case of Le.miewski's protothetic (see ~IEWSKI 
1929) In which also quantification over variable connectives is 
admissible. 

x. Axiomatizability of Negation 

In the year of 1931, apart from the paper containing his 
Ph.D. thesis, Wajsberg also prepared for publication his papers 
WAJSBERG 1932a and 1932b, which were published in the next year. 
In WAJ5BERG 1932a he presented an axiomatlzabillty criterion for 
the classical propositional logic based on Implication and 
negation. According to this criterion, a set X of formulae built 
up of implication and negation in such a way that negation may 
only be followed by propositional variables, when added to the 
axioms for pure implication, axiomatlzes the logic based on 
implication and negation if and only if each unary connective 
different from negation does not satisfy at least one formula 
from X. For reference see also ZARNECKA-BIAl:.Y 1973. 

In the paper WAJ5BERG 1932b we find Wajsberg's organic axiom 
for the 5heffer connective along with his findings involving pure 
implication and pure equivalence which he found already as an 
undergraduate student. 

xi. Wajsberg's Semantics for Lewis's Modal System S5 

The year of 1932 Wajsberg also spent in Warsaw. In February 
and March he presented two papers to the Section of Logic of the 
Warsaw Philosophical Society, entitled "From the Research on the 
Theory of Deduction·, and "Axlomatization of Predicate Logic·, 
respectively. The precise contents of the papers is unknown. One 
may only guess that they were related to his papers WAJSBERG 
1933a and 1933b which he prepared for publication at around that 
time. 

In the paper WAJ5BffiG 1933a the author constructed an 
adequate semantic characterization of Lewis's system 55, the 
first example of an adequate semantics in the history of modal 
logic. As. we mentioned in Section viii, this semantics was known 
to Wajsberg long before 1933 (see LEWIS-LANGFORD 1932, Appendix 
iD. 

Using modern terminology and notation Wajsberg's semantics 
may be described as follows. Let A be a non-empty set, and let 
peA) denote the set of all subsets of A. Let -II denote the set
complementation operation within A, I.e., if X is a subset of A, 
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then -,,(X) denotes the set of all those elements in A which are 
not members of X. let nand u denote, as usual, the set
intersection and the set-union, respectively. Let '" be a unary 
operation in peA) defined, for every X s; A, as shown below: 

if X = A 

if X /It A 

where, of course, 0 denotes the empty set. Let f{Al denote the 
sequence: 

(P(A), -A> n, u, IA ) 

Thus f!Al. is a Boolean algebra of subsets of A with the 
additional unary operation I. A formula is defined as true in 
f!Al. if and only if it takes on value A under every assignment of 
members of f1Al to its propositional variables, where the valu
ation function Is defined in such a way that propositional 
connectives: ., (negation), II (conjunction), v (disjunction), and 
L (necessity) correspond to the oper ations: -AI n, u, and 1,\7 

respectively. Now, the main result of Wajsberg may be expressed 
as follows: 

An arbitrary formula is provable as a theorem of Lewis's 
system 55 if and only if the formula is true in the system 
fW, for every non-empty set A. 

For reference see also ZAO-iOROWSKI 1973. 

To prove this theorem WaJsberg introduced a kind of normal 
form procedure. More specifically, he showed that every pro
positional formula of the form 'La' (read as 'It is necessary 
that a') is reducible In 55 to a kind of conjunctive normal form 
where each disjunct consist of 'L' or '.,L' followed by a 
disjunction of variables (negated or un-negated), It should be 
noted, however, that this form cannot be used as a general 
normalization procedure for 55 because only formulae of the form 
'La' and not all formulae are so reducible. G.F. Schumm has 
observed (see SCHUMM 1975) that a slight modification of 
Wejsberg's original form could do the normallzation job. Namely. 
each formula is reducible in 55 to another conjunctive normal 
form where each disjunct consist of either 'L' or < ., L' followed 
by a disjunction of variable or a negated variable. 

Notice that Wajsberg's sequence M. as constructed above, 
appears to be a kind of the 50 called nowadays McKinsey-Tarskl 
topological Boolean algebras (see McKINSEY-TARSKl 1944) which are 
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widely used to construct algebraic-type semantics for modal 
logics. 

An inspection of Wajsberg's proof also reveals that a for
mula containing precisely n propo.sitional variables is a theorem 
of Lewis's system 55 if and only if it becomes true in Wajsberg's 
sequence f!Al. for every set A consisting of 2ft elements. It 
follows here from that Implicit in Wajsberg's proof is a 
decidability procedure for 55. 

At the end of the paper WAJSBERG 1933a the author observed 
that the replacement of propo.sitional variables: PI' Pal P3, ... 
by monadic formulae of predicate logic of one and the same 
variable x: PIX, Pax, P3x, ... and the replacement of the 
connective 'l' by the universal quantifier 'V' binding 'x' we can 
get the (non-modal) monadic predicate logic in one individual 
variable 'x'. It should be added that similar relation between a 
modal system and a system of predicate logic has since been found 
also in respect to some other modal systems (see, for instance 
lHOMAS 1962). 

xii. Papers on Predicate Logic 

Unlike previous papers, the paper WAJSBERG 1933b concerns 
the first order predicate logic. Let us call formula of predicate 
logic k-true if and only if it is true in any of its k-element 
models, and let us define a k-true formula, which is not 
(k'd)-true, as exactly k-true. In WAJSBERG 1933b the author 
constructed an exactly k-true formula from which every k-true 
formula is deducible, 

where the expression 'Vl .. lcB(xt)' abbreviates the disjunction 
'B(xl ) v B(xa) v ... v Bexlc)', and where '::I' stands for the 
connective of implication. To see better the syntactic structure 
of (Axlc ) we give below three particular cases, for k = 1, k = 2, 
and k = 3, respectively 

(Ax.) F.xI::I F.xa, 

(Axa) (F.x.::1 F.x2 v Flx3 ) V (Fzxa ::I Fax3 ), 

(Ax;!) (Flx.::1 F.xz V Flx3 v F.x4 ) v (Faxa :J Fax3 v FaX.) v (F3x3 :J F3x4 ) 

For reference see also WOLENsKI 1973. 

The paper WAJSBERG 1933-1934 also deals with predicate 
logic. Applying Tarski's notion of the degree of completeness of 
a deductive system (see TARSKI 1930) Wajsberg provided in the 
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paper a detailed proof that the degree of completeness, Le., the 
number of all maximal consistent extensions of the first order 
logic is equal to the number of the continuum. 

xiii. Waj,sberg's Criterion ofAxiomatizability 
of Finite Matrices 

From Warsaw Wajsberg moved to Kowl in Volhynia where he 
worked as a teacher to the end of June, 1933. Then he returned to 
his native lama where he continued his teaching career and where 
the rest of his works were written. 

The paper WAJSBERG 1935 included author's well-known result 
concerning the conditions ofaxiomatizability of finite logical 
matrices, including lukasiewicz's matrices and the so called 
finite intermediate logics among others. According to his theorem 
If the formulae below: 

a:pqCCqrCpr, a:qra:pqCpr, a:pqCNqNp, CNqa:pqNp, a:qqCpp 

are all satisfied in a finite logical matrix, then the matrix 
must be axiomatlzable. The theorem, with formula a:qrCpp repla
c�ng formula a:qqCpp, was stated as Wajsberg's theorem without 
proof in I:.UKASIEWICZ-TARSKI 1930, i.e., as early as in 1930. 
WaJsberg's own proof of this theorem, included in his paper, is 
lengthy and rather difficult to comprehend. A detailed exposition 
of his proof, with only small changes in notation, can be found 
in ACKERMANN 1971. See also SZCZJ;CH 1973. 

xiv. General Approach to logical Matrices 

The general notion of logical matrix was introduced by 
Tarski (see WKASIEWICZ-TARSKI 1930). The paper WAJSBERG 1936, 
written in 1934 and published two years later, was conceived as a 
contribution to the study of logical matrices. In this rather 
technical paper Wajsberg made an effort to classify logical 
matrices Into types (distinguished In the paper are various 
special types of matrices such as congruence matrices; linear 
congruence matrices and sum-matrices as their special case; 
infinite linear matrices; and conditional matrices along with 
interval matrices as a special case of the latter). He also 
described some systematic methods for deciding which formulae 
built up of implication and negation are satisfied In which 
matrices of a given type. For reference see also SUCHOril 1973. It 
is rather striking that the discussed WaJsberg's paper has 
attracted almost no attention from the subsequent researches In 
the field. In particular, in tOS's monograph tOS 1946 WaJsberg's 
paper is not even mentioned. Neither is it referred to in 
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J. Kalicki's works on logical matrices (see, for instance, 
Z'fQIfUNT 1981). 

xv. Separability Property of Intultionistic Connectives 

In WAJSBERG 1938a the separability theorem for a system of 
Intultionlstlc propositional logic of axiomatic type was esta
bUshed to the effect that no intuftionistic theorem, from which 
anyone of the four connectives: 

(*) ., (negation), :) (implication), 1\ (conjunction), v (disjunction) 

is absent, requires for its proof any axiom in which the con
nective is present. 

Wajsberg also added a number of interesting results 
cerning definability of propositional connectives to the 
that none of the mentioned In (*) can be expressed In 
itionistic logic in terms of the remaining three, the 
which was also arrived at, independently, in a paper by 
McKinsey published one year later (see McKINSEY 1939). 

con
effect 
intu
result 
J.C.C. 

In connection with the separability problem it may be 
worthwhile recalling that on A. Church's suspiCion (see his 
errata to a-ruRCH 1956, footnote 211) Wajsberg's proof were to 
contain an error difficult to correct. Without further discussion 
of the nature of the alleged error Church seemed to suggest that 
the result should be, therefore, credited to H.B.Curry whose 
paper aJRRY 1939, solving independently, the separability problem 
by a Gentzen's sequents' technique, appeared one year later. In 
his monograph aJRRY 1963 the author confessed that though he had 
never examined Wajsberg's proof, he trusted others in considering 
it erroneous. The suspicion of error has since been repeated by 
many, among others, by A. Horn who provided the first 
modern-style algebraic proof of separability property of 
intuitionistic logic (see HORN 1962). Of the papers which have 
attempted a detailed reconstruction of Wajsberg's argument two 
are in order, KABZINsKI-PORe3SKA 1975, and BEZHANISHVlll 1981. In 
the first paper it is shown that some of Wajsberg's preparatory 
lemmas admit, in fact slight strengthening which then implies the 
separability property without complications. In the second paper 
Wajsberg's Definition 2, -8 of an n -order thesis, claimed to be 
the source of the alleged error, was changed and so was the proof 
of Wajsberg's Theorem 14, #8. For reference see also KABZINsKI 
1973b. 

The formulation and the solution of the separability problem 
for intuitionistic logic did not come as a surprise. It was well 
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motivated by the parallel investigations into the axiomatization 
of various fragments of the expressively complete ordinary, 
two-valued propositional logic. The latter can be viewed an 
investigations into the separation of properties of various 
classical connectives. 

xvi. Miscellany on Propositional Logic 

In WAJSBERG 1937 and 1936b the author included a rich crop 
of various 'incidental' results and remarks on different axiom 
systems of classical propositional logic and its fragments. Some 
of them come from his unpublished master's thesis. Various axiom 
systems for pure implication are listed in WAJSBERG 1937, #1 and 
#6, and in WAJSBERG 1938b, #1; axiom systems for implication and 
falsum are discussed in WAJSBERG 1937, #9, and in WAJSBERG 1938b, 
#2; paper WAJSBERG 1938, #2 also contains various axioms for 
implication and negation; paper WAJSBERG 1937, #7 is devoted to 
axiom systems for equivalence. The completeness property of each 
of the systems referred to above was established by syntactic 
means, i.e., by deducing from each of them another axiom system, 
already known to be complete. Paragraph 2 of WAJSBERG 1937 
discussed the independence property of various axiom systems. For 
reference see also STI;PlEN 1973. 

Paragraph 4 of paper WAJSBERG 1937, entitled "General Scheme 
of a Completeness Proof for the C-Pure", contains a schematic 
description of Wajsberg's method of proof of the completeness 
property for the propositional logic based on implication as the 
only primitive connective. To solve the completeness problem for 
the three-valued logic of I:.ukasiewicz as well as for some other 
many-valued logics, Wajsberg had to work out an original 
completeness argument. Later he adjusted the argument to provide 
a new proof of the completeness theorem for the two-valued logic 
of pure implication (see WAJSBERG 1937). It should be mentioned 
that the first proof of the completeness theorem for pure 
implication was found by Tarski but it was not published by the 
author (see I:.UKASIEWICZ-TARSKI 1930, and TARSKI 1934-1935). 

Wajsberg's method can be characterized briefly as follows: 

i. first one must prove that all tautologies built up of one 
propositional variable are formally deductible by the 
axioms and rules of an axiomatic system under consideration 
(a most laborious part of the completeness proof);oof); 

ii. then, assuming that all tautologies built up of n different 
variables each are formally deducible, one must prove that 
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all tautologies built up of (n + 1) different variables each 
are also formally deducible in the axiomatic system (a 
comparatively easy part of the completeness proof). 

Waj.sberg's completeness argument has since been in frequent 
use. In 1938 W.V. Quine followed the plan sketched in WAJSBERG 
1937 to solve the completeness problem for the logic based on 
implication and falsum as the only primitive connectives (see 
QUINE 1938). In 1943 K. Schroeter provided a Wajsberg-type 
completeness argument for the full classical logic based on all 
usual connectives as primitives (see SCHROETER 1943). Wajsberg's 
method has often been used in Poland (see, for instance, SADOWSKI 
1961, and SURMA 1973a). A detailed discussion of Wajsberg's 
method is also contained in the monograph ASSER 1959. 

xvi. Closing Remark 

Since the outbreak of the second world war there has been no 
reliable information concerning Wajsberg's fate. The only fact 
known for certain is that he has perished prematurely and so all 
his unpublished manuscripts have been lost. 
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NOTES ON WAJS8ERG'S PROOF OF THE SEPARATION THEOREM 

In his well-known paper M. Wajsberg (1938) stated some im
portant results on the Intuitionistic propositional logic. But in 
connection with Wajsberg's proof of the Separation Theorem (which 
was first formulated and proved by him), A. Church (1956) indica
tes that this paper of Wajsberg's contains an error which is dif
ficult to correct (see the correction of footnote 211). Further 
Church notes that the correct Gentzen-style proof of this theorem 
for intuitionistic predicate logic was given by H. B. Curry 
(1939) which was in print when Wajsberg's paper appeared. After
wards this proof was reproduced by S. C. Kleene (1952). Church 
writes also that for Curry's proof essential is the Gentzen's Cut 
Theorem but not the use of sequents which can be eliminated. 
Therefore the Cut Theorem can be applied in a suitable form to 
Hilbert type formulations (see H. B. Curry (1939) and K. SchUtte 
(1950». Concerning Wajsberg's proof of the Separation Theorem 
Curry (1963) writes that he has never examined this proof, but 
judging by Bernays and an errata sheet to the book of Church 
(1956) (see footnote 211), the proof contains an error (p.250). 
In early reviews (e.g., Heyting (1939), Rosser (1938» the error 
of Wajsberg (1938) is not mentioned and in the preface to 
Wajsberg (1977) St. Surma refers to the same important informa
t�on of Church. Repeating the same indication A. Horn (1962) 
gives the algebraic proof of the Separation Theorem for the intu
itionistic propositional calculus. J. Kabziflski and M. PorQbska 
(1974) give its proof by the Wajsberg's method without indicating 
the error in Wajsberg's initial proof. They write that this error 
is not indicated In the literature and they think that all the 
objections to the Wajsberg's proof of separability are caused by 
his oversights rather than error and that the arguments presented 
by Wajsberg for establishing some preliminary results prove in 
fact slightly strengthened formulations of these results allowing 
to obtain the separability without any complications (see p.3l). 
A. Tsitkin (1979) tried to find and correct all the errors. He 
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thought that when stating the fact of separability Wajsberg 
(1938) erred in case 3 of the proof of Theorem 2 (§1t). He also 
indicated an error in Wajaberg's proof of identity of the sets of 
all theses and all consequences of conjunction-free axioms, 
namely, In the proof of Theorem 14 (§8). Although Wajsberg's 
proof of the separability Is independent of this theorem, some 
other Interesting results of his depend on It. Tsitkln proposed 
the correction of the proof of Theorem t 4 by Introducing an 
additional parameter of induction and by strengthening the for
mulations of Wajsberg's Theorems to and 11 (§8). 

The aim of the present paper, which mainly gives an account 
of the author's former results (see Literature), is also a cor
rection of the same Wajsberg's work. 

For his investigations Wajsberg chooses the formulation W of 
the MUnster School axiom system of the intuitionistic pro
positional calculus modified by him. Formulae of Ware called 
propositions and are presented in the symbolic notation of 
lukasiewicz. We will use the usual notation. 

Formulae are constructed from propositional variables P. q, 
r, s (with or without indices) and a propositional constant 0 
(which means ·false·) by means of the connectives ;), &', v (impli
cation, conjunction and disjunction). Propositional variables and 
the constant are called propositional signs. As metavarlables for 
them are used a, b, c, d and for formulae - a, p, y, 6, £ (with 
or without indices). Capital Latin letters denote sets of formu
lae and I, j, k, 1. m, n. u - natural numbers (including zero). 

(ap .. a.. ;) p) Is the abbreviation for formula 

(al ;) (az ;) ..• ;) (a.. ;) p) ••• ». 
When k = 0, this expression means the same as p. Each formula a 
can be uniquely presented In the form (al ... a..;) pl. k) 0, where 
;) Is not a principal sign of p. at> ... , a.. are called thee parts 
of a. and p Is called the end of a. The length of a formWia a Is 
equal to the number of occurrences of the propositlonall si!ns in 
a (every propositional sign of a is counted as many tlDts as it 
actually occurs in a). 

The consequences of the set of formulae. }Of are called 
X-consequences or X-derivable formulae. a and' p are called 
X-equivalent if «a::) p) &, (p ::) a» is X-derivable. Two formulae 
should be called deductively X-equivalent if after adding one of 
them to X. the other is X-derivable. 
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For each logical sign (connective and the constant) the 
calculus W contains corresponding groups of axioms: 

:>: 1. (p :> (q :> p». 

2. «p :> (q :> r» :> «p :> q) :> (p :> r). 

&: 1. «p & q) :J p). 

2. «p & q) :> q), 

3. «p :> q) :J «p 

v: 1. (p :> (p v q», 

2. (q :> (p v q», 

3. «p :> r) :J «q 

0: t. eo :J pl. 

:> r) :> (p :J (q & r)))). 

:J r) :> «p v q) :> r))). 

Rules of inference are: the rule of substitution for 
propositional variables and the rule of modus ponens. 

P, V and U wlll denote the systems of O-free, &-free and 
v-free axioms respectively. 

SEPARATION THEOREM (Theorem 6, Wajsberg (1938), §tt). 
Each consequence a of W is derivable from the group of 

axioms for implication together with only those groups of axioms 
which contain logical signs actually appearing in a other than 
implication. 

The plan of Wajsberg's proof is the following: for every J 
(J = & or v or 0), Wajsberg gives the method by means of which to 
each formula a a formula P can be assigned (when J = &. then 
P = & PI' where all PI are &-free) in such a way that if a is 

1"'\ 
J-free, then a '" P and, a is W-consequence iff P (accordingly 
each PI) is derivable from the J-free axioms of W. 

When J = 0, P is given according to the following: 

DEFINITION OF O-REDUCT (Definition 1, Wajsberg (1938), §7). 
Let b1 .... , bn be all different variables of a and a' 

results from replacing every occurence of the constant 0 in a by 
a variable a. We say that P is the reduct of a with respect to a 
(p = R~(a» iff P has the form «a:> b,) ... (a :J bn ) :> a') when 
o occurs in a, or P = a otherwise. <The examples t - 3 of §7 
confirm that this definition coincides with that of Wajsberg). 
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Proving the fact If ~ Is a W-consequence, then each reduct 
of a with respect to any variable Is P-derlvable (Theorem 2, §7 
in WaJsberg (1938)), WaJsberg errs In one point: in case 3, when 
R~(p ;:, y) and R~(p) are P-derlvable, It can be proved that 
((a ;:, bl) ... (a ;:, bn ) ;:, yO) Is also P-derlvable, where bl rep
resents all different variables of (p;:, y) and a Is a fixed one 
which does not occur In y. But when p contains 0, y is O-free and 
more than one variable occurs In It, from the formula 
((a ;:, bl) ... (a ;:, bn ) ;:, y') It is impossible to obtain y = R~(y) 
by the Wajsberg,s substitution (a Instead of those bl which 
do not occur in y). However, we can obtain It by the substitu
tion (1 bl instead of a) used for this case In Kabziflski, 
P0f4tbs~;1 (1974), lemma 0, possibility (Iii) (cr. Wajsberg's note 
2, §7>. The same authors require associating with each 
W-consequence the first (with respect to any well-ordering) 
W-derivatlon and replacing each occurence of the constant 0 in 
every reduct of W-consequence by a fixed variable not occurring 
In that W-derivation. But the requirement is not necessary, as 
WaJsberg's Theorem 2 of §7 holds for each O-reduct of a formula 
with respect to any variable. In fact If y and (6;:, £) are 
P-consequence, where y Is a variant of 6 (in Church's (1956) 
sense, p.86), then 6 and therefore £ are P-consequences too. 

Tsitkin (1979) proposed also a certain reformulation of 
Theorem 2 of §1t without changing Wajsberg's initial proof of 
Theorem 2 of §7. But actually the correction of the first Is 
superfluous when the latter holds. WaJsberg proves Theorem 2 of 
§11 by induction on modus ponens rule. Substitutions are done in 
axioms only, and the modus ponens rule is used for formulae 
(911 ;:, 912) and 911 which satisfy the following condition: If 912 Is 
O-free, the same holds for 911' This requirement does not limit 
the generality of reasoning since if 0 occurs in 911' but does not 
occur in 912' we can eliminate It from 911 according to Theorem 2 
of §7. Thus each y -reduct of W-consequence Is U-derivable and so 
forth. 

WaJsberg's (1938) proof of the Separation Theorem gives the 
original method by means of which every given W-derlvation of a, 
having no separation property, can be transformed Into the 
derivation of a, having this property. But It Implicitly contains 
also the method of searching for W-derlvations with separation 
property, founded on Fundamental Theorem of §8 and Theorem 3 of 
§6. This searching method involves idea of another, Gentzen-style 
proof of separabllity for the Intultlonlstic propositional logic, 
at least so far as the Idea of Curry's proof of separability, by 
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his own evidence, was involved in Gentzen's (1934) Main Theorem. 
However, Wajsberg did not realize that idea when chose his plan 
of proving separability without the use of Fundamental Theorem 
of §8. 

From above mentioned Theorem 3 of §6 follows that to each 
formula a can be assigned in standard way a finite set of &-free 
formulae, such that a is W-consequence iff the elements of this 
set are V-consequences. Therefore, In Wajsberg (1938) the 
decision problem is solved for calculus V (see Theorem 1, §9, by 
proving which Wajsberg describes a decision procedure which is 
different from that one of Gentzen (1934). 

A formula of the form (a, ... a" :J a), where a Is a propo
sitional sign (k ~ 0), is called modified if each of Its part a l 

(1 , I 'k) is either v -free, or has the form (p, ... PI :J P v y) 
where I ~ 0 and all PJ (1' j' 1) are v -free, or has the form 
(p v y :J 6) where P, y and 6 are v -free. The parts of the last 
kind can be omitted, as by means of V-equivalent transformations 
such a part can be replaced by two new parts (p :J 6) and (r :J 6). 

It should be noted that using the methods of the proof of 
Wajsberg's (1938) Theorem 1 (§4) we can easily state that each 
formula (In particular, each &-free formula) is V-deductively 
equivalent to a certain modified formula. 

One of the main Wajsberg's (1938) concepts is the notion of 
a thesis Introduced as follows. 

DEFINITION 1 (Wajsberg (1938), §8). 
a is a thesis of the first order 

(a, ... a" :J (b :J (PI,,,PI :J a))) where b = a 
The part b is called the proof part of a. 

DEFINITION 2 (Wajsberg (1938), §8l. 

iff a has 
or b = 0 

the form 
(k, I ~ 0). 

a Is a thesis of the order n (n > 1) iff n is the smallest 
natural number such that at least one of the cases I - III holds: 

I. a has the form (a, ... all :J p), k > 0 and the following 
three conditions are satisfied: 

(a) P is a propositional sign or disjunction of formulae; 

(b) for certain m (1" m "k) a... has the form (PI,,,PI:> r), 
I > 0, where 1° If P is propositional sign then r = P or r = 0, 
and 2° if P is a disjunction of formulae, then r is alao a 
disjunction; 
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(c) for every i (1 , i , 1) formulae 

(11) (a, ... ex..-, :;) «p, ... PI :;) y) :;) (a ... , ... a k :;) PI») 

and the formula 

(2) 

are theses of order lower than n. 

II. a has the form (al ... a k :;) y v 6) where k ~ 0 and one of 
the formulae 

(3) 

or 

(4) 

is a thesis of order (n - 1). 

III. a has the form 
and both the formulae 

(5) 

and 

(6) (a, ... a J-, j (6 :;) (aj+, ..• a k j p»). 

are theses of order lower than n 

DEFINITION 3 (Wajsberg (1938), §8). 

a) If for a and a certain n holds the case I of Definition 
2, then the part ex.. is called a proof part of a and the formulae 
(11) and (2) are called proof theses of a. 

b) If for a and a certain n holds the case III of Definition 
2, then that one of the formulae (3) and (4) which is a thesis of 
the order (n - 1), is called a proof thesis of a. 

c) If for a and a certain n holds the case III of Definition 
2, then the part (y v 6) is called the proof part of a and the 
formulae (5) and (6) are called proof theses of a. 

DEFINITION 4 (Wajsberg (1938), §8). 
a is a thesis iff for certain positive natural number n a Is 

a thesis of the order n. 

A formula a Is said to be T - decidable if for a we can decide 
In a finite number of steps whether a Is or is not a thesis. 
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FUNDAMENTAL THEOREM (Wa}sberg (1938), §8). 
The set of all theses is identical with the set of all 

V-derivable formulae. 

Wajsberg first proves that each thesis is V-derivable (Theo
rem 1, §8). To prove the converse statement, that each V-deri
vable formula is a thesis, he states that the result of any 
substitution in every axiom of V is a thesis (Theorem 8 of §8), 
and then shows that if (a ;) p) and a are theses, then p is also a 
thesis (Theorem 15 of §8). WaJsberg uses this Fundamental Theorem 
also for providing the decidability of calculus V. In §9 namely, 
he shows that each modified formula is T -derivable and, as every 
&-free formula is V-deductively equivalent to a certain modified 
formula, from the Fundamental Theorem follows the decidability 
of V. 

But the counter example below shows that in fact the set of 
theses which satisfy the above definition of Wajsberg is smaller 
than the set of V-derivable formulae. The cause of this is an 
error, which was committed by WaJsberg while formulating the item 
(b) in case I of the above Definition 2. Actually, as is easily 
seen, the formula 

(7) «p ;) (q ;) r)) ;) (p ;) ((q ;) s) ;) ((r ;) s) ;) s»))) 

is V-derivable, but with regard to the definition of WaJsberg it 
is not a thesis (note that (7) is a modified formula). In fact, 
(7) cannot be a thesis of the first order. Then if (7) is a 
thesis, its order is greater than 1. Therefore, (7) must satisfy 
one of the cases of Definition 2. (7) does not satisfy case II 
because it ends with a propositional sign, neither does it 
satisfy case III because no part of it has the form (y v 6). 
Therefore, if the formula (7) is a thesis, it must satisfy 
case 1. The condition (a) is fulfilled, as the end of (7) is 
the propositional sign s. Further, (7) has four parts. According 
to the item 10 of condition (b) the end of a proof part of (7) 

must be identical with the propositional variable s or the 
constant O. Therefore, a proof part of (7) can be only its 
third or fourth part: (q;) s) or (r;) s). In the first case, 
according to condition (c), proof theses of (7) must be the 
formulae: 

(8) «p ::> (q v r)) ::> (p ::> «q ::> s) ::> «r ;) s) ;) q)))) 

and «p ;) (q v r» ;) (p ;) (s ::> «r ;) s) ::> s»))). The latter actu-
ally is a thesis of the first order. But (8) is not a thesis, 
according to the item 10 of the condition (b), because all the 
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ends of the implicational parts of (8) are distinct from q and O. 
Thus, (q:;) s) cannot be a proof part of (7). Similarly, we are 
convinced that (r:;) s) also cannot be a proof part of (7). But 
the end of the first part of (7) is a disjunction of the 
propositional variables q and r, and again according to the item 
1° of the condition (b) (p:;) (q v r» cannot be a proof part of 
(7). 

It is not difficult to point to many 
more simple examples. The V-derivable 
:;) (p :;) q», for example, is not a thesis 
does not satisfy the item 1°. 

other similar and even 
formula «p:;) (q v q» :;) 
as its first part also 

The fact that the course of Wajsberg's reasoning has not 
been misrepresented above can be seen when considering the 
correspondingly erroneous pa.ssage in his proof of Theorem 1 
of §9 and his example 3 of §9. • As a modified proposition, a 
should end in a propositional sign, and, therefore, Is of the 
type (al ... a k :;) a) (k = 1,2, .. .>. The proof part of a should end 
in zero or a (cf. Def. 2). If no part of a ends in such a way, 
then a is not a thesis· (p.86 - 87; cf. Wajsberg (1977), p.160). 
This is confirmed also by the example 3 of §9 in which, to state 
that the modified formula 

(9) «r:;) p) :;) s) :;) «(r :;) q) :;) s) :;) «r :;) (p v q» :;) s)))) 

is not a thesis, Wajsberg verifies only its first two parts 
(which end with a propositional sign). 

In the formulation of the condition (b) in case of 
Definition 2, Wajsberg does not take into account that the end 
of implicational proof part can be a disjunction of formulae 
even when the given formula is ended with a propositional 
sign. 

The Fundamental Theorem of §8 will be valid, when instead of 
Wajsberg's Definition 2, we accept the Definition 2' in which 
the item 1° of the condition (b) of case I is transformed as 
follows: 

1° if P is a propositional sign, then r = p or r = 0 or r is 
a disjunction of formulae. 

Actually, in WaJsberg's proof of the statement that each 
thesis is V-derivable, the items to and 2° of the condition (b) 
are not used. Therefore, this statement holds also for theses in 
the sense of Definition 2'. As to the converse statement, its 
proof requires the following 
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CUT THEOREM (Theorem 14, Wajsberg (1938), §8; Fundamental 
Lemma, Tsitkin (1979). 

If a thesis a has the form 

(al ... a J- 1 ~ (6 ~ (aj+I'" a k ~ .0»), j = 1, 2, ... , k 

and the formula 

(10) 

is also a thesis, then the formula 

(11) 

is a thesis. 

Wajsberg proves this statement by induction on the order n 
and the length I of a. But formulating explicitly the induction 
hypothesis, Tsitkin (1979) indicates that It is not sufficient to 
prove the Cut Theorem. He reconstructs Wajsberg's proof of 
Theorem 14 introducing the third additional parameter of 
induction on the length of the cut part 6 of a. Tsltkin modifies 
Wajsberg's notion of a thesis, but he repeats Wajsberg's error 
(see, the conditions of rule RI , p.244). This leads to the error 
In case III.a.l) of the reconstructed proof of Theorem 14 (as 
well as in corresponding case of the Wajsberg's initial proof). 

In fact, in that case a has the form 

(al ... a J- 1 ~ (6 ~ (aj+I'" ak ~ .0») 

and is a thesis according to case III of Definition 2. 6 is its 
proof part and, therefore, it is a disjunction of formulae. Thus, 
(10) is a thesis of order higher than 1 and one of the cases 
I - III of Definition 2 occurs. 

Suppose that (10) is a thesis according to the case I. 
Without limiting the generality of reasoning we can assume that 
al is its proof part. Then a l has the form (.01 ... .0.. ~ y). 
According to item 2° of the case I (b) of Definition 2, y must be 
a disjunction as 6 is a disjunction. But the end .0 of a may be a 
propositional sign. 

The proof theses of (10) have the form 

(121) «PI'" Pm ~ y) ~ (a2'" aJ-1 ~ (aj+1 ••• ak ~ PI»)' i = l, ... ,m 

and 

(13) 
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Now through the m-tuple application of strengthened Theorem 
10 (ct. WaJsberg's §a and Tsitldn's Lemma 2'. If in a thesis a we 
replace the part of the form (6;) e:) bye:, we again obtain a 
thesis the order of which is not greater than the order of a) we 
obtain from a the thesis 

(14) (y ;) (a2 ••• a J- 1 :;) (6 :;) (aj+1 ••• ak ;) p») 

which is shorter than a. Therefore, by induction hypothesis from 
(14) and (13) follows that the formula 

(15) (y ;) (a2 ••• a J- 1 ;) (aj+1 ••• ak ;) p») 

is a thesis. But In order to state that (11) is also a thesis in 
a general case we have no right to apply Definition 2 to (121) 
and (15) because of item 1° of the case I, (b) (as y is a dis
junction of formulae and P may be a propositional sign). However, 
if we accept Definition 2' instead of Definition 2, the proof of 
this case will be obtained directly from the transformed item 1°. 

REMARK 1. 
In the reconstructed proof of Theorem 14 the case I(a) must 

be considered according to Wajaberg's plan. Because in this case 
the induction hypothesis (for uniqueness of presentation of 
formulae in the form (al ••• ak;) p) where ;) is not a principal 
sign of p) must be applied not to the pair of theses 

(al •.• a J- 1 :;) (aj+1 .•• a k ;) (PI :;) (P2 ••• P. ;) y)))) 

and 

(16) (al ••• a J- 1 ;) (aj+1 .•. a k ;) PI»' 

as it is done in Tsitkin (1979), but to the first of these 
formulae and to the formula 

(al ••• a J- 1 ;) (aj+1 ••• ak ;) (P2 ••• P. :;) PI)))' 

as it is done In WaJsberg, where the last formula Is obtained 
from (16) according to the strengthened Theorem 12 (cf. WaJsberg 
(1938). sa). If a Is a thesis, then (YI ... Yu;) a), u > 1. is also 
a thesis the order of which is not greater then the order of a). 

As it was shown above, by Definition 2' a proof part of the 
formula (7) may also be its firat part (p:;) (q y r». In this 
case the proof theses of (7) must be the formulae 

«p :;) (q y r» ;) (p :;) «q ;) a) :;) «r ;) a) ;) p»», 

which Indeed is a thesia of the order 1. and 
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(16) «q v r) :> (p :> «q :> s) :> «r :> s) :> s»» 
which by case III of Definition 2' is a thesis If both formulae 

(q :> (p :> «q :> s) :> «r :> s) :> s)))) 

and 
(r :> (p :> «q :> s) :> «r :> s) :> s»» 

are theses of the lower order. But they Indeed are theses of the 
order 2. (q:> s) Is the proof part of the first formula and 
(r :> s) is the proof part of the second one. Therefore, the 
formula (17) Is a thesis of the order 3 and (7) is a thesis of 
the order 4. 

REMARK 2. 
In Bezhanishvili (1981) there are proposed also other alter

native corrections of Definition 2 and proofs of theorems 
dependent on it. For example, the Fundamental Theorem of §8 will 
be also valid, if we accept Definition 2" which is obtained from 
the initial one by the omission of the items 1° and 2° of the 
case I(b). 

It must be emphasized that at the end of §8 of Wajsberg 
(1938) gives another (this time correct) definition of a thesis 
of the order n (see Definitions 1** and 2**), but when formula
ting theorems and proving them he bases only on the above 
mentioned incorrect Definition 2. Further, if we omit from 
Definition 2 the conditions concerning the formulae containing 
the disjunction sign, we obtain a correct definition of a thesis 
of the order n for v - free formulae (see Definition 2*, §8). If we 
omit the phrase ·or O· from the latter, we obtain also correct 
definition for theses which contain only an implication sign. 

Now consider the following 

DECISION THEOREM (Theorem 1, Wajsberg (1938), §9). 
Each modified formula Is T -decidable. 

Incorrectness in the proof of this theorem, as it was 
indicated above, is connected with the use of the item 1° of 
Definition 2 (case I, condition (b» and it can be removed quite 
simply. In particular, when a Is a thesis according to the case I 
of Definition 2', it ends with a propositional sign as a modified 
formula. Therefore, the end of its proof part must coincide with 
the end of a or must be the constant 0 or a disjunction of 
formulae. In the third case, which Wajsberg does not take into 
account, the proof thesis of the form (2), as a shorter formula 
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than a, is T -decidable according to the induction hypothesis: 
Wajsberg proves this theorem by Induction on increasing length of 
a and (In case of equal length) on decreasing number of the parts 
of a. All the other cases in Wajsberg's proof of this theorem 
remain valid. 

In accordance with this, in his example 3 (§9) Wajsberg 
(1938) does not bring to the end the solution of the question, 
that the formula (9) Is not a thesis, because the proof part of 
(9) would have been its third part which ends with a disjunction. 

REMARK 3. 
Depending on acceptance of one of the alternative defi

nitions of a thesis, we must correspondingly transform Wajsberg's 
decision procedure. Bezhanishvili (1983) considered the method 
which corresponds to Definition 2" (see Remark 2). 

Wajsberg (1938) also gives the first proof of the indepen
dence of logical signs of the lntultlonistlc propositional logic 
(see Theorems 1 - 6 of §to), In the proof of Theorem 2 of §10 
Wajsberg states that in a certain case a certain rp cannot be a 
propositional sign because (p:) q) :) rp cannot be a thesis. This 
assertion requires an additional explanation if we recall that 
Wajsberg's decision method is erroneous: the assertion holds 
because (p :) q) :) rp does not contain a disjunction sign. 

In connection with this result of WaJsberg McKinsey noticed 
that since writing his work of 1939 he has discovered that the 
same problem was solved by M. Wajsberg in 1938. Wajsberg's method 
of proving this result, writes further McKinsey, is quite unlike 
his. as it involves application of a decision method for the 
Heyting calculus (see McKinsey (1939). p. 158). Kabzinski (1973) 
does not mention either this peculiarity of Wajsberg's proof. or 
the fact that WaJsberg's decision method needs a correction. 
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LOGICAL ANALYSIS OF THOMISM 
The Polish Progr8lllJlle that Originated in 1930's 

1. Introduction 

In the thirties Poland was dominated by a style in philo
sophy related In some respects to the Vienna Circle, and called 
by Kazimierz Ajdukiewicz the Polish Antiirrationalism. This was 
distinguished by three main characteristics: 1° antiirra
tionalism, i.e. the decision to accept only fully verifiable 
theses which can be demonstrated and verified; 2° the postulate 
of linguistic precision and exactness; 3° inclusion of logistical 
conceptual system, together with marked influence of symbolic 
logic. While, however, the Vienna Circle opted for the death of 
metaphysics and theology, the Polish philosophers were opposed to 
that, and postulated the revival of these disciplines by the 
means of improvement of linguistic clarity together with the 
application of formal logic. 

This new way of philosophical thinking originated in three 
places: Lvov, Warsaw and Cracow. The precursors of this philo
sophy, later linked with the tradition of symbolic logic, were: 
Kazimierz Twardowski (1666 - 1936) in Lvov, Ii pupil of Franz 
Brentano, Wladyslaw Weryho (1666 - 1916) in Warsaw, and Wladyslaw 
Heinrich (1669 - 1957) in Cracow, a pupil of Richard Avenarius. 
The centres produced such illustrious philosophers as: Jan 
I:.ukasiewicz (1676 - 1956), Leon Chwistek (1664 - 1944), Stanislaw 
Le~niewski (1686 - 1939), Alfred Tarski (1902 - 1963), Kazimierz 
Ajdukiewicz (1690 - 1963), and Tadeusz Kotarbitiski (1666 - 1981). 
Rev. Jan Salamucha (1903 - 1944) was a pupil of Jan I:.ukasiewicz, 
father Jozef Bochetiskl (b. 1902), graduate of the universities of 
Lvov and Poznan, and Jan Franciszek Drewnowski (1896 - 1978), who 
was taught by Tadeusz Kotarbitiski, were the main figures who 
applied the new symbolic logic also to Thomism. 

128 
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2. A Programme of the Improvement of Thomism by Means 
of Symbolic Logic 

129 

In the climate of interest in the precise language of 
science and under the pressure of great discoveries in mathe
matical logic, a new programme was developing in Poland. It was 
the first to make use of symbolic logic in order to attain 
maximum preCision in Thomist philosophy and theology. As far back 
as 1934, Jan Franciszek Drewnowski advocated in the paper An 
Outline of a Philosophical Programme (1934) , an improvement of 
the language of classical philosophy and theology by means of 
formal logic. He sketched this idea in definite form. However, 
the programme wasn't given it's final form till the Third Polish 
Conference of Philosophy (Cracow, 24 - 27 Sept. 1936). It was 
then presented in the book Catholic Mind in Relation to Modern 
logic (A 1937)1. 

Members of the Conference first decided unanimously that na 
follower of Christian philosophy cannot shut his eyes to the 
development of formal logic· (Michalski (1937), p.1O), and that 
·the development of science can neither be reversed nor is it 
allowed to reverse it, since the new intellectual tools cannot be 
denied. The thrust of the logistic criticism cannot be avoided by 
simply turning one's back on it" (Salamucha (1937), p.152). 
Although the utilization of new logic "for the creation of a 
general world view exceeds the capacity of one generation" 
CDrewnowski (1937), p.50), it has to be remembered that "the 
followers of a world view have at least three tasks to perform: 
to formulate that view, to defend it against objections, and to 
promote it. It is clear that we are far from accomplishing the 
first, the accomplishment of the other two is, in consequence, 
badly lacking" CDrewnowski (1937), p.52). Therefore, the 
programme of the improvement of Thomism should start with the 
improvement of formulation and with the improvement of precision. 
J. Bochetiski «(1937), p.30) reminded the members of the 
Conference of the fact that "the Catholic thought has from the 
very beginning been characterized by a tendency to attempt 
maximum precision". He explained ·what we mean exactly by 
"precision": as far as words are concerned, they must be unequi
vocal signs of simple things, features, experiences, etc.; they 
are to be clearly defined in relation to those simple signs, and 
in accordance with preCisely stated rules. Where propositions are 
concerned, they cannot be accepted till we know exactly what they 
mean and why we assent to them. Sometimes we accept them as 
evident. Sometimes on the basis of faith or proof. A proof should 
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be based on clearly formulated and verified logical rulesw 

«A 1937), p.28). Thus conceived precision implies deduction, 
·but in the field of scholastic philosophy there exist vast, 
strictly deductive domains. Those, if they are to represent a 
scientific value, must be transformed right away and developed by 
means of new tools· (Salamucha (1937), p.48). Mathematical logic 
doesn't remove the Intuition, to which a philosopher often 
appeals, but as J. I:.ukasiewicz points out ((1937), p.18) it 
is necessary to enter philosophy with a logistic apparatus ·in 
order to verify, regulate and rationalize the achievements of 
easily fallible intuition. Logistics strengthens our critical 
faculty and reveals an overabundance of error in philosophical 
speculation-. In such circumstances Rev. Piotr Chojnacki (0937), 
p.(8) suggests: nFirst of all, it would be necessary to specify 
ontology as the essential philosophical discipline. I would con
sider it advisable to proceed with its axiomatization, according 
to the reqUirements of epistemology and modern logic·. 

Maximum precision is to be obtained only by the means of 
formalization. As far back as the Eighth International Conference 
of Philosophy (Prague, 2 - 7 Sept. 1934), Kazimierz Ajdukiewicz 
(1934) distinguished two general conceptions of formalization: 
the first was descriptive in relation to the natural language and 
followed the phenomenological method, the second was arbitrary 
and placed propositions among postulates. He claimed also that 
·one might well expect more from the second procedure than from 
the phenomenological method which should, however, be attempted 
just in case" (p.137). The members of the Cracow Conference, who 
opted for the formalization of deductive areas of both Thomist 
philosophy and theology, obviously intended only the phenome
nological method. Ajdukiewicz's distinction evolved in time into 
two different formalization practices. For those who stuck to the 
phenomenological method formalization remained a sort of trans
lation of a natural language into a symbolic one, and care was 
used to preserve the meaning of the translated texts. For the 
others, the formalization was an arbitrary procedure consisting 
in creating formalized theories for the use of given concepts or 
models, where the solution of the problems posed in the first 
place was the only desideratum. The texts or opinions cons
tituted, In that case, nothing but inspiration, while, if there 
was translation, it was precisely reverse, from the symbolic 
language of a formalized theory into the natural one. 

Jan 
philosophy 
tions can 

Salamucha wrote: ·Scholastics generally admit that 
is mostly a deductive science. Various simple deduc
be actually expressed in the syllogistic form. But in 
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CMe of more complicated proofs, if one wants to forJlldlize them 
precisely in accordance with the schemes taken from a textbook, 
it is necessary to do violence to the arguments, or to alter the 
schemes to such an extent that the incommensurability of the 
logical apparatus with the substantive material becomes obvious" 
«A 1937), p.39). Therefore Salamucha maintains that it is neces
sary not only "to opt for the application of logistics to philo
sophy in order to preserve the traditional po:stulate of maximal 
preciSion of tools" «A 1937), p.47), but "perhaps it will be 
necessary to develop the logic even more for the use of 
philosophy" ((A 1937), p.47). Rev. Konstanty Michalski claimed: 
"I, for my part, think that from the three parts of mathematical 
logic, the third, that is to say, the theory of relations, provi
des the most incentive for philosophic work" «A 1937), p.l0). He 
shared here the earlier view of Rev. Stanislaw Kobylecki (1934). 
The latter suggested that "all knowledge, and, in the first 
place, all scientific and philosophical knowledge of the world, 
depends in fact on two conditions: on relating the things that 
constitute the world to each other and on ordering these 
connections" (p.348), where "the idea of relation is the most 
elementary, the most general and the most essential for both 
philosophy and mathematical logic" (p.353). 

It is of interest that the creators of the programme of the 
improvement of Thomism by the means of symbolic logic, in the 
heat of passionate and fervent diSCUSSions, faced with numerous 
apparent problems advanced by their adversaries, were still aware 
of some difficulties presented by their own programme. Rev. 
P. Chojnacki warned: "Before the precise use of formal signs is 
introduced, it is necessary to determine exactly what is to be 
precisely stated, that is, it is necessary to determine exactly 
the meaning and sense. logistics will be helpful here, though it 
won't do everything, as it cannot replace semantics" «A 1931), 
p.6?). Further, Michalski and Salamucha foresaw the inevitable 
contact of formalization with the area of analogy. They thought 
that "only the most precise formalization could protect us from 
the deformation of Thomism by involuntary sliding into other 
areas" (Salamucha (1937), p.147) and "block the way to a slide 
into arbitrariness" (Michalski (1937), p.l1). 

As far back as the thirties there occurred the formaliza
tion of two basic Thomist proofs, i.e. the proof of the existence 
of God (1934) and the proof of the immortality of the soul 
(1938). 
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3. Formalization of the Thomist proof 
of the immortality of the .soul 

J6zef Bocheflski's formalization of the proof of the iImnor
tality of the soul, i.e. the formalization of St. Thomas Aquinas' 
Summa Theologiea I, 75, 6, is the only one so far attempted. It 
appeared in the second appendix to the book Nove lezioni di 
logica simboliea (Roma 1938, pp.147-155). 

The essential part of Aquinas' argument is in the form: 
·every divisible being disintegrates per se or per accidens·. But 
the human soul does not diSintegrate per se or per accidens. 
Therefore the human soul is an indivisible, that is to say, an 
immortal being. Bocheflski says that the argument has its logical 
form: 

(p -.,. (q v r» &: "'q &: "'f -.,. "'p. 

Its detailed expansion, accompanied by reasoning the premises, 
required formalisation in terms of predicate logic. 

The formalisation begins with the introduction of t t symbols 
of extra-logical constants. There are 3 individual constants: 

a =: the human soul, in suppositione simpJici2, 

s =: per se, 

c =. per accidens; 

and 8 extra -logical predicates (I.e. derived from outside logic): 

Sx =: x is a substantial being (a substance), 

Exy =: x exists in the way y does, where yE {s,c~, 

Ox =: x is a being subject to dissolution, 

Bxy =: x disintegrates in the way y does, where yE {s,c~, 

Pxy =: y belongs to x per se, 

Mxy =: x may exist apart from y, 

Fx =: x is a pure form, 

lxy -. x is the existence of y. 

Three kinds of numbering formulas are adopted: Roman 
numerals indicate logical axioms, Arabic numerals indicate extra
logical axioms and double Arabic numerals (e.g. 1. t, 1.2, .. J 
indicate the main theorem and all the lemmata. 
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The principal theorem states: 

(t.3) .... 06. The human soul is not a divisible being (it is 
immortal). 

The thesis is proved from an extra -logical axiom (1) and two 
lemmata (1.1 and 1.2). 

(1) I\x (Ox ~ (Bxs v Bxc». Dupliciter enim aJiqulr corrum
pitur. Uno modo per se, alio modo per accidens. 

(1.1) .... Bas. 

(1.2) .... Bac. 

1 ~ (1.1 ~ (1.2 ~ 1.3», logical axiom. 

One obtains theorem (1.3) from I, 1, 1.1, and 1.2 by means of the 
rule of detachment. 

At the beginning of the text Aquinas reasons in lemma 1.2 
that the human soul is a substantial being, therefore, as such, 
it is not a divisible being per accidens. Here is the 
formalization of the argument: 

(2) I\x (Sx ~ Exs), 

(3) I\x I\y (Exy ~ (Ox ...,. Bxy», 

(4) I\x (Bxs ...,.. ",Bxe), 

(5) I\x «Sx ~ (Ox ~ .... Bxe» ~ (Sx ...,. .... Bxc». 

(6) Sa. 

(2.1) I\x (Sx ~ (Ox ...,. Bxs», 

(2.2) I\x (Sx ~ (Ox ~ .... Bxc», 

(2.3) I\x (Sx ~ .... Bxe). 

II 2 ...,. (3 ...,.. 2.1), 

III 4 ...,. (2.1 ~ 2.2), 

IV 2.2 ~ (5 ...,. 2.3), 

V 2.3 ...,.. (6 ~ t.2). 

Lemma (t.2) derives from logical axioms II - IV by means of deta
ching extra-logical axioms (2) - (6) and lemmata (2.1) - (2.3) 
derived on the way. 

The main idea of Aquinas' proof of lemma (1.1), that the 
human soul does not disintegrate per se 1s as follows: no pure 
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form is a divisible being, for existence is proper to the form 
per se. But the human soul is such a form, therefore it does not 
disintegrate per se. Here is the formalization of the proof: 

(7) /\x /\y (Pxy -? ",Mxy), 

(8) /\x /\y (Fx -? (Iyx -? Pxy», 

(9) /\x (/\y (Iyx -? ",Myx) -? ",Bxs), 

(10) Fa. 

(3.1) /\x /\y (Fx -? (Iyx -? ",Myx» 

(3.2) /\x (Fx -? ",Bxs) 

VI 7 -? (8 -? 3.1> 

VII 3.1 -? (9 -? 3.2), 

VIII 3.2 -? (to -? 1.1>. 

If repeated detachment is used with respect to logical axioms 
VI - VIII, extra -logical axioms 7 - 10 and lemmata 3. t, 3.2, 
derived on the way, lemma 1. t is obtained as a conclusion. 

Since logical axioms are valid a priori, the proof of the 
immortality of the human soul, formalized by J. Bocheflski, can be 
seen as based on ten metaphysical propositions assumed without 
proof, that is to say, axiomatically. 

4. Formalized Thomist proofs of the existence of God 

Where the formalized Thomist proofs of the existence of God 
are concerned, we have to take Into consideration the five ·ways· 
of St. Thomas AqUinas, presented In his SlDIIJIIa Theologica 0, q.2) 
and Smnma contra Gentiles (I, 13). The following relations are 
taken into account: 

(1) xR1y =: x moves y, 

(2) xR2y =: x Is an e1f1clent cause of y, 

(3) xR3y =: x is a reason for the existence of y, 

(4) xR.y =: x is no more perfect than y; or, x is less 
perfect than y or equal to y. 

(5) xR5y x provides principles for intentional transfor-
mations of y. 
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To express ourselves in a formalized language of the first 
order, we assume that in its metalanguage there is a non-empty 
universum U, as a range of variability of individual variables. 
Set B of all real individual beings differs from the universum U. 
Then for any relation R we have: 

(6) DR t{ {x: Vy xRy} , domain of relation R, 

(7) D'R t{ {y: Vx xRy}, counter-domain of R, 

(6) FR t{ DR u D'R, field of relation R. 

Now it is possible to show that in all formalizations of 
Aquinas' ·waysH presented below, it is assumed implicitly that: 

(9) B Jf. 0 (where 0 is the empty seO, 

(10) B c U and B c FRI , i= 1,2, ... , 5, i.e. the transcen
dentality of the universe and of the field of relation 
in question, 

(11) RIB c B, i = 1, 2, .... 5, i.e. the image of B with 
respect to the converse of R, is included in the set B; 
or, B is closed with respect to RI; or, RI is real; or, 
the reality of the relation in question the inhe
ritance of real existence - is due to the converse of 
the relation R/. 

All the formalized Thomist proofs of the existence of God 
deal with the problem of extreme elements in the respective 
relations4 • We are concerned with: 

(a) the set of first elements of initial relation R (denoted as IR): 

IR !M {XEFR: /\y (yEFR & x Jf. Y ~ xRyl), 

or the set of last elements of R (marked by LR): 

LR ~ IR; 

(b) or at most a one-element set of Initial elements of R (sym
bolized by llR): 

lIR ~ {xeIR: /\y (yelR ....,. x = y)}, 

or at most a one-element set of last elements of R (denoted 
by lLR); 

lLR S! lIR; 
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(cl or the set of minimal elements of R (marked by MlnR): 

MinR ~ {x E FR: I\y (yRx -+ x - y)}. 

or the set of maximal elements of R (symbolized by MaxR): 

MaxR ~ MinR; 

(d) or the set of relatively initial elements of R (denoted as IR/y): 

IR/y ~ {x E MinR: x - y v xRpoY}. where 

xRpoY A /\X (XEX &: RX c X -+ YERX), and 

yeRX A Vx (xeX &: xRy), 

or the set of relatively last elements of R (marked ty LR/y): 

LR/y ~ IR/y. 

The problems raised for the use of formalized theodicy can 
be put together into the following groups of questions: 

10 for i = 1, 2, 3, 5: 

a: Is IRI ;l IZI or IRIPo ;l IZI or LR j ;l 121 or LR tpo ;l 121 ? 

b: Is llRt ~ 121 or 1lRlpo ~ 121 or tLRI ;l IZI or 1LRtpo ,t IZI ? 

c: Is MinRl ;l IZI or MaxR I ;l IZI ? 

d: Is IR/y ;l 121 or LRly ;l IZI for any yeB? 

20 fgr i '" 4: 

a: Is LRt ;l 121 or LRtpo ,t 121 or IR, ~ IZI or IR tpo ,. IZI ? 

b: Is 1LRI ;l IZI or 1LRtpo ,. IZI or 1lRt ;l IZI or llR IPo ,. IZI ? 

c: Is MaxR, ,. IZI or MinR! ;l 121 ? 

All the formalized Thomist proofs of the existence of God 
will be presented here in a metalanguage, that Is to say. within 
a kind of "applied" set theory. Let's assume further the follo
wing indispensable set - theoretic notions: 

(12) Reirr A I\x I\y (xRy -+ x ;r! v), 
where irr =: the set of irreflexive relations, 

(13) RErefl A I\x (XEFR -+ xRx), 
where refl "': the set of reflexive relations, 

(14) R E as A I\x I\y (xRy -+ .... yRx), 
where as =: the set of asymmetrical relations, 
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(15) R E ants A I\x I\y (xRy &: yRx ~ x = v), 
where ants =: the set of antysymmetrical relations, 

(16) REtrans A Ax I\y I\z (xRy &: yRz ~ xRz), 
where trans =: the set of transitive relations, 

(17) REcon A I\x I\y (X,yEFR ~ (x = y v xRy v yRx», 
where con the set of connected relations, 

(18) ords ~ irr n trans, 
where ords the set of strongly orderIng relations, 

(19) ordw ~ refl n ants n trans, 

(20) 

where ordw =: the set of weakly ordering relations, 

where chains 
ordering relations), 

chains ~ ords n con, 
the set of strong chains (strongly 

(21) chainw ~ ordw n con, 
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linear 

where chainw =: the set of weak chains (weakly linear orde
ring relations), 

(22) ReMQ A 
Ax Ay (x,yeFR ~ (x = y v xRy v yRx v Vz (zRx &: zRy))), 

where MQ =: the set of multiplicative quasi-half-lattices. 

4.1 Formalized versions of the argwnent ex motu 

[A) Rev. Jan Salamucha was the first to formalize in 1934 
Aquinas' argument ex motu of the existence of God, inserted in 
Summa contra Gentiles (I, 13). J6zef Bocheflski reviewed Salamu
cha's paper in 1935 and proposed some important modifications of 
his formalization. William Bryar «(1951), pp.211-219) presented 
his views on Salamucha's formalization and Bochen.ski's comments. 
Salamucha's paper was translated into English in 1958. A biogra
phical note to this translation was written by Boleslaw Sobocinski. 

Salamucha wrote in a tortuous style. Of his (numerous) as
sumptions only the 9 following are significant in the proof: 

(Al) 

(A2) 

Rl Etrans; 

R1 E con; 

(A3) Ax (x E O'RI ...,. Va Vb (aPx &: bPx». 
where aPx =: a Is a proper part of x. (A3) indicates that if 
something is in motion, it consists of proper parts); 
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(M) /\x (Va Vb (aPx &; bPx) -+ ~xRlx). 

If an object x comprises of two proper parts, a and b, it is 
not true that object x makes itself moves; 

(A5) D'RI c C, 
where XEC =: x is a body. If an object x is in motion, that 
very object x is a body; 

(A6) C n D'R, c D'H, 
where tHx =: t is the measure of the continuity of the move
ment of x. lf a material object Is In motion, a certain 
segment of time is the measure of the continuity of that 
movement; 

(A7) /\x I\t (x e C &; tHx ...,. t E Fin), 
where t e Fin =: t is a finite segment of time. According to 
(A7), if a material object Is in motion, the measure of the 
continuity of the movement of that object is a finite seg
ment of time; 

(AB) I\x I\y I\tl I\t2 (xR,y &; t,Hx &; t~Hy ...,. t, = t 2). 

The measure of the continuity of the movement of a mover Is 
equal to the continuity of the movement of the object moved; 

(A9) An infinite body, or even an infinite class of bodies which 
seem to form a single body per continuationem or per conti
guationem cannot be In motion in a finite segment of time. 
Salamucha didn't formalize the quoted assumption (A9). 

In accordance with the assumptions, Salamucha first proves a 
few lemmata: 

Lt. R, E chain. &; JR, pi 0 ...,. JR1- D'RI pi 0. 

This lemma can be considered as a particular Instance of the 
law of the calculus of relations: 

M (RE chain. &; JR pi 0 ...,. IR-D'R pi 0). 

In Smmna contra Gentiles Aquinas provides three proofs of 
the thesis omne quod movetur ab alia movetur, i.e. 

I\y (yeD'R, ...,. Vx (xR,y &; x pi V»~. 

Salamucha formalized the first proof basing on assumptions (A3) 
and (A4). The second proof omitted, he formalized the third one. 
But the thesis in question turns out to be insignificant to the 
proof of the main theorem referring to the existence of the first 
mover. 
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Therefore, Salamucha demonstrates the following lemma separately: 

Here is the proof of that lemma: 

1. xR,y, supp. (supposition of the proof) 

2. YEO'R" from the definition of O'R, and 1 

3. Va Vb (aPy 6; bPy), from (A3) and 2 

4. "'yR,y, from (A4) and 3 

5. x ~ y, since 1 and 4. 

From assumptions (At) and (A2), and from lemma L2 follows the 
lemma: 

L3. R, E chain •. 

The proof of the lemma referring to the non -occurrence of 
the so-called regress into Infinity in relation R, occupies a ma
jor part of the argument: 

L4. DR,-O'RI ~ 0. 

Apagogical suppositional proof of L4: 

1. DR,-O'R1 = 0, s.a.p. (the supposition of the apagogical proof) 

2. IR, = DR1-O'R" from M (Rechaln • ..,. IR = DR-O'R) and L3 

3. IRI - 0, from 1 and 2 

4. FR;) .. o .... since M (Rechain. 6; FR < "0 ..,. lR ~ 0), L3, 3, 
where X =: the cardinal number of the set X 

5. FRI = O'R" since M (DR-O'R = 0 ..,. FR = O'R) and 1 

6. FR, c C, from (A5) and 5 

7. FR, c O'H, from 5, 6 and (A6) 

8. FR, c H(Fin), from (A7), 6, 7, R(X) ~ {V: Vx (XEX 6; xRy)} 

9. I\x I\y (x,yeFR, ..,. I\t,l\tz (x ~ y 6; t,Hx 6; tzHy ..,. t, = ta», 
from (AB), (A2) 

10. k ~ the object being the mereologlc sum of all elements of 
the set O'R, 

11. /\a /\x (aP+x A (aPx v a = X», 
where aP+x =: a Is a non-proper part of X 
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12. /\a (aP+x +-+ aEO'R.), from 11, to 

13. kEO'R., since kFK (from 11, k = k) and 12. 

14. kEe, from (M), 13 

15. x ~ {a: aP+x}, where x =: the mereologic power of x 

16. k {a: aP"k} = O'R. = FR., from 15, 12, 5 

17. k ~ '-0, from 16 and 4 

t8. kEH(Fin), from 8, 13, 5 

t9. /\x /\t (x ~ '-0 & tHx ~ Nt\! Fin), I.e. (A9) 

20. VxVt (x ~ '-0 & tHx & tEFin), from 17,18 

contradiction: t9, 20. 

line to is undoubtedly the weakest item of the proof, where the 
mereologic sum of all real beings is assumed as an individual 
real being. 

The last lemma and Salamucha's main theorems follow simply 
from the lemmata: 

l5. IR. ~ 0, since /\R (REchain" ~ IR=DR-O'R), L3, L4. 

Tho1. IR.-O'R. ~ 0, from Lt, L2, L5. 

Th.2. URI-O'RI "Il 0, since Th.l, /\R (REchain" ~ IR = tlR), L3. 

Salamucha's formalization of the argument ex motu was rather 
a loose translation of Aquinas' text into symbolic language. Sa
lamucha, as an author of the formalization, thought that he had 
managed to demonstrate the formal correctness of Aquinas' deduc
tion or, in other words, its exemption from non sequitur errors. 
But still, he correctly doubted whether the proof was convincing. 
He was also wrong when he falsely assumed that the relations of 
moving R. were connected and that they ordered their own field in 
a linear fashion. He also misread Aquinas, attributing to him the 
view that the relation was a chain. 

[BJ Father J. Bocheflski in his review (1935) opts for an 
interpretation of Aquinas' text, according to which the argument 
ex motu does not prove exactly the existence of a primum mavens 
immobile but only the existence of mavens immobile, Le. the the
sis: MinRI"Il 0. Bocheflski, however, assumes also RIEchain •. Hence 
by the law /\R (R E as n con ~ IR = MinR), we obtain IRI = MinRI .. 
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Bochenski suggested also several Important 
modifications of Salamucha's ~ymbolic language. 
introduced the notion of the triadic relation of motion: 

Mxyz =: x moves y towards z. 

t4t 

terminological 
Notably, he 

The connection of notions Rt and M is expressed by the definition: 

(23) xR,y A Vz Mxyz 

Bochenski presented the Thomist doctrine concerning relation 
M, included in the thesis nihil enim movetur nisi secundum quod 
est in potentia ad illud ad quod movetur, by the means of four 
axioms: 

(B1) I\y (yEO'Rt -+ Vx Vz Mxyz); 

(82) I\x I\y I\z (Mxyz -+ xAz), 
where xAz =: x Is in act with respect to z; 

(B3) I\x I\y I\z (Mxyz -+ yPz), 
where yPz =: x Is in potency In respect to z; 

(B4) /\x I\z (xPz -+ ~xAz). 

(C) A German philosopher, Johannes Bendiek (1956) was the 
immediate continuator of Salamucha's work. He didn't so much for
malize Aquinas, but rather presented three formalized proofs of 
the existence of the first unmoved mover. 

Bendiek accepts 7 assumptions in system 
R\ E chain.), but for the proof he uses only: 

(Cl) R, E irr n con, 

(among others 

together with the assumption of the absence of an regressus ad 
infinitum: 

(C2) 

In accordance with the metalanguage compact: FR, = U, as
sumption (C2) means that MlnR, ~ 0. Since M (R E con -+ MlnR c IR), 
thus MinR, c lR., i.e. lR, n MlnR, = MlnR" Since MinR, ~ 0, thus 
also JR, n MinRt ~ 0, which is the final theorem of system 1. 

It is assumed In system II that R\ E as and IR\ ~ 0, hence by 
the law M (R E as -+ IR c llR) the theorem lIR Jl 0 Is obtained. 

Bendiek assumes in system 1II that 10 RtEchain., 20 R, ~ 0, 
30 O'R, c D'S, where S =: causa sufficiens, and 40 O'R, n OS = 0. 
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Here is the proof of the theorem of that system: II 

1. S >l 0, from 3D and 2D 

2. /\x /\y /\z (xSz ~ ""yR\x), from 4° 

3. Ax /\y /\z (xSz ~ (xR\y V X = y», from 2, ID, FR\ = U 

4. Vx Vz xSz ~ Vx /\y (x >l Y ~ xR\y), from 3 

5. IR\ -,< 0, from df.lR. 4, 1, FR\ = U. 

[D) The Italian Francesca Rivett! Barbo did a lot towards 
the formalization of Aquinas' text from Smnma Theologica 0, 
q.2,a.3) inclusive of the argument ex motu. She investigated the 
problem in the papers (1960), (1962), (1966) and (1967). While in 
the (1960> paper BarbO formalizes the whole of the ·first way·, 
in subsequent ones she limits formalization to the thesis omne 
quod movetur ab alio movetur. With respect to the remaining proof 
of the existence of an unmoved mover, she maintains that it can 
be done only intuitively. Barbo's parallel development of each of 
the conceptual contents of the propositions, In relation to their 
sense in the premises of everyone of Aquinas' ·ways·, makes for
malization all but impossible in F. Rivetti's opinion. 

Barbo introduced many innovations with respect to the forma
lization of the argument ex motu (1960). First of all she reje
cted Salamucha's, Bochel"lskl's and Bendlek's Idea that R\Echaln., 
opposing especially the assumption that R\ E con. Adopting Bochefl.
ski's symbolic notation she yet formulated the problem of Thomist 
deduction In a completely different way. She attempted to demon
strate that Vx ORlx ,. 0). 

In order to prove the thesis omne quod movetur ab allo 
movetur Barbo assumes four axioms (where the meaning of the 
symbols • A", "M •• 'p. is the same as for Bocheflski): 

(01) /\x /\z (xGz ~ xPz), 
where xGz =: x is in motion to z; 

(D2) /\x /\z (Vy Mxyz ~ xAz); 

(03) /\x/\z (xPz ~ -xpz); 

(04) /\x /\z (xGz ~ Vy Myxz). 

It follows from the definition (23) and from the above axioms 
that RI E irr. If it is assumed that for an x: xR\x, then by (01), 
(02) and (03) it would be valid that Vz (xAz c5: xPz), which con
tradicts (03). 
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In order to prove the theorem of the existence of a relati
vely first mover, BarbO uses three additional assumptions: 

(05) 

([)6) 

(07) 

RI Etrans; 

/\x (xEO'RI -+ N/\y (yRlpox -+ YEO'RI); 

O'RI l' 0. 

Here is the proof of the theorem Vx (lRlx ,. 0): 

1. RI ~ or d., since RI E irr and (05) 

2. RIP<! e in, since /\R (R e tr ans ....,. R,o = R) and 1 

3. /\y (lRl/y = {xEMinR.: xRIPoy}), from df.lR/y and 2 

4. /\x (xeD'R. -+ Vy (yR.pox &; NyeD'R1)) from ([)6) 

5. /\x (xEO'R. -+ Vy (yeFR.-O'RI &; yR1pox)), from 4 

6. /\x (xeO'R. -+ Vy (yeMinRI &. yR.pox», 
from 5, 2 and /\R (R E irr -+ MinR = FR - O'R) 

7. /\x (xeO'R I -+ rRlx ,. 0), from 6, 3 

8. Vx (lRlx ,. 0), from 7 and (07). 

The above deduction is nothing but a simple transition "from 
the general to the particular". For axiom (06) is strong enough 
to assume that there exists a relatively first mover for each 
moved object. While the conclusion only that there exists a rela
tively first mover. But what the axiom assumes is evident neither 
a priori nor a posteriori. 

IE] Ivo Thomas (1960) points out that assumption (05) and 
lines 1 - 3 are idle in BarbO's formalized proof. Assumption (04) 
is a mere definition of an extra-logical constant "G", and since 
/\R (R c Rpo) It is possible to r~uce the assumption (06) to the 
following form: /\x (XeO'RI -+ R1{x}-O'R," 0). The proof should 
stop at line 7 and, in consequence, assumption (07) should be 
eliminated. 

However, it should be said in BarbO's defence, that her for
malization was constructed with a different purpose than Thomas'. 
While BarbO formalized Aquinas' specific text in order to demon
strate its final correctness, Thomas tried to create a clear 
formalized proof of the existence of a relatively first mover. 

[F) In 1975 Fr. Korneliusz Policki (Academy of Catholic 
Theology in Warsaw), also constructed a formalized proof of the 
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existence of the unique primum movens immobile, without 
formalizing any Thomist text. If one disregards Bowman L. Clar
ke,s remark (in his book (1966», vis a vis the applicability of 
Zorn's lemma to the first ·way·, Policki was the first to present 
a formalized argument ex motu, using the mentioned lemma. To 
begin with, he supposes that 

(Ft) 

(F2) 

Then he proves that relation R, u If!ordw , where xly =: x = y. 
Finally he assumes 

(F3) for every two weak chains included in the relation R, u I 
there exists a common upper bound. 

Hence Zorn-Kuratowski's lemma yields the following theorem: 
- -(TF) lL(R, u I) n Max(R, u 1) ~ 0. 

Assumption (F3) and conclusion (TF) are equivalent inferentially 
in Polickl's formalization, while the whole argument cannot be 
written down in elementary language; 

lG] Edward NieznafLski suggests ((1980), p.lO?) the weakening 
of assumption (F3) by reduction to two assumptions: 

(F3.1) 

(F3.2) 

MinR. ;4 0, and 

R,EMQ. 

It will be possible to write them both down in elementary langu
age: 

(F3.1 ') 

(F3.2') 

N/\x Vy yR,x; 

/\x I\y (x = y V xR.y V yR,x v Vz (zR.x & zR.y». 

From those assumptions follows the thesis lIR, ~ 0, since 
I\R (MlnR ~ 0 & REMQ -io lIR ;4 0). 

[H] The argument ex motu for the existence of God, presented 
by Leibniz In Demonstratio Existentiae Dei ad Mathematicam Certi
tudinem Exacta is worth attention as compared to Aquinas' text 
Summa contra Gentiles (I, 13). This argument was formalized by 
Krystyna Blachowlcz (1982). 

The formalized argument of the existence of a pr imum mavens 
immobile is based on three primary theorems: 
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(H1) Vy Ay (xPy +-+ ¢lex»~. 

This is Leibniz's postulate, where xPy -; x is a non-proper part 
of y, while ¢>(x) is a metalanguage variable for propositional 
formulas comprising free variable x (and not comprising free 
variable y); 

PE refl; (H2) 

(H3) Ax Ay (xR1y ~ X JI. Y & NXPy)7. 

Here is the proof of the main theorem: IRla JI. 0, where a is any 
individual constant and aEB: 

1. lRla = 0, s.a.p. (the supposition of the apagogical proof) 

2. Vy Ax (xPy +-+ x EO'Rl & xR1*a), 
from (HI) and xR*y A (x~y v x = y) 

3. Ax (xPk ~ x e O'R1 & xR1*a), from 2, k Is a constant 

4. k e O'R1, from 3, (H2) 

5. kR.*a, from 3, (H2) 

6. Ax (xR1*a ~ NX EMinR1), from 1 and df.lR/y 

7. ",k e MlnR1, from 6, 5 

8. Vx (x JI. k & xRtk), from 7, 4, df.MinR 

9. b 7f. k & bR1k, from 8, b is a constant 

10. bRt*a, from 9, 5 

11. ",bPk, from (H3) and 9 

12. ",b EO'R1, from 3, 11, 10 

13. bEMlnRl> from 12, 9, df.MlnR 

14. bEIR1/a, from df.lR/y, 13, to 

15. IRla 7f. 0, from 14 

contradiction: 1, 15. 

[I] Lastly let's mention some contributions to the formali
zation of the Thomist theory of motion, movement and change, that 
is to say, two papers by Witold Marciszewski (1959) and (1960), a 
review of L Larouche's dissertation (1964) by Rev. Stanislaw 
KamlflSki (1967) and a book by Stanislaw Kiczuk (1984). 
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4.2. Formalized versions of the argument ex ratione causae 
eificientis 

[Al The first formalized argument ex causae efficientis, 
which in its keynote refers to Aquinas' second ·way· (Stmuna Theo
logica I, q.2,a.3), derives from an Austrian professor Wilhelm 
K. Essler (1969). 

(AI) 

(A2) 

(A3) 

eA4) 

It is assumed 

Rz 'fI. 0, 

D'Ra c Ra(MinRa). 

Rz E irr 

and (implicit/y) U = FRz. Proof of two theorems is provided: 

(ATt) MinRz 'fI. 0, from (At) and (A2), and 

(AT2) lIRz 'fI. 0 
from the law M (REMQ &0 MinR .,. 0 ~ lIR 'fI. 0), (A4) and (ATD. 

With respect to the argument it should be pointed out that 
an equivalence occurs in it: (A2) -.,. (ATt). Here is the proof of 
the implication (ATt) ~ (A2): 

1. y E D'Rz' supp. 

2. ~yERz(MinR2)' s.a.p. 

3. I\x (xEMinRz ~ ""xRzY), from df.RX and 2 

4. aeMinRz, from (ATt), a is a constant 

5. aelRa. since I\R (ReMQ ~ MinR c IR), 4, (A4) 

6. ",aRzY, from 3, 4 

7. a = y v aRzy, from df.lR, 1, 5 

B. a::: y, from 7, 6 

9. a E D'Rz, from 1, 8 

10. bR2a, from 9, df.D'R, b is a constant 

11. b'" a, from (A3), to 

12. b = a, from 4, to, df.MinR 

contradiction: 11, 12. 
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[B) Nieznanskl develops two formalizations (1982) and 
(1983/84), the first for Aquinas' ·second way" and the other for 
the modern argument ex ratione causae efficient is. The latter 
comes about under Kazimlerz KI6sak's, a distinguished Polish 
Thomist, who wrote «(1973), p.205): "the thesis about the impos
sibility of the regress into infinity within the efficient causes 
should be replaced by the principle of sufficient reason". 

Here are the assumptions of the formalized argument: 

(Bl) 

(B2) R2 c T, 
where xTy -. x outpaces y in existence; 

(B3) TEirr; 

~) ~c~ 

(85) U = 0'53, 

where xSJy =: x is a sufficient reason for the existence of 
y and SJ !H (MlnRJ)/RJ (where x(X)/Ry A xRy &: xeX); 

(86) U '"' B ;t 0. 

From assumptions (82) and (B3) by 

MAS (S c R &: REirr -+ SEirr) 

we obtain the lemma 

(b7) RzEirr. 

From (B6) and (B5) follows the next lemma 

(bB) O'SJ ;t 0. 

The proof of the main theorem 

(b9) MinR2 ;t 0 

is as follows: 

1. 0'53 = O'R3' from df.S3 

2. D'RJ = U, from (B5) and 

3. DRJ C D'R3 , since DRJ C U = D'RJ, 2 

4. FRJ = U, since 3, D'R3 = DR,:! U D'RJ = FRJ, 2 

5. FRz = FRJ , from 4, (Bl) 

6. MinRz;t 0, since M AS (S C R &: FR = FS -+ MinR C MinS), 
(B4), 5, (bBl, df.53 • 
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4.3 Formalized versions of the argument ex contingenUa 

Kl6sak sees (1957) that modern Thomist proofs of the exis
tence of a necessary being as having their origin not in Aquinas' 
but in Leibniz. 

[Al Nieznaflski (1977) attempted the logical analysis of the 
notion of ~the essence, to which existence belongs·. He supposes 
two separate universes: B (the set of beings) and T (the set of 
all intervals of time). He then assumes that B 1" 0, T 1" 0 and 
B n T = 0. The set of all beings present at moment t is 

~ IV {x: xAt}, 
where A\ =: x is a present being at moment t. 

Hence A c BxT, and B = U~. The definitions of various notions 
of essence are obtained ihe Tformalized elementary language. Here 
are their denotations: 

(1) 

(2) 

(3) 

(4) 

for the present essence: F\(x) ~ {x} n ~; 

for the real essence: F(x) IV U F.(x), hence F(x) = {x} n B = {x}; 
teT 

for the essence of the species: G(X) = Y A X = Y, and 

for the universal essence: H(x} ~ n F\(x), 
t£T 

hence H(x) = n ({x) n ~) = {x} n n~. 
t'€T t€T 

With the help of the notion of H, there were also defined some 
closely related notions of necessary existence. Here are their 
denotations: 

(5) 

(6) 

17) 

N ~ {x: H(x) 1" 0}, hence N = {x: XE n A\}; 
t C T 

N' it {X c B: 1\ (X n ~ 1" 0)}, and 
t ~ T 

Nil ~ {X c B: 1\ V (X n A\ = {z})}. 
tCTzCII 

The main question of the theodicy, whether N 1" 0, i.e. n A\ 11 0 ,,'1 
is regarded as an open problem. It wants non-arbitrary solutions. 

[8] Nieznaflski gives several versions of the formalized 
proofs of the existence of a necessary existence (1979), (1981) 
and U982b). The simplest system gets the following form: 

1) assumptions: 

(Bl) U = B ~ 0; (B2) R3 c BxB; and (B3) B c D'53, where 53 ~ (MlnR3)/R3; 
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2) conclusions: 

(bt> OS3" 0. from (Bl). (B3) by M (D'R pi 0 -+- DR ,. 0); 

(b2) I\x (X E OS3 -+- xS3x), since: 

1. x E OS3. supp. 

2. xE MinR3• from df.53• df.(X)/R. 1 

3. /\z (zR3x -+- X = z). from df.MinR. 2 

4. xeB. from 1, df .S3' (B2) 

5. x eO'53• from (B3). 4 

6. aR3x. from df.O'R. 5. a is a constant 

7. a = x. from 3, 6 

8. xR3X. from 6. 7 

9. xS3x. from df.53• df.(X)/R. 2. 8. 

(b3) N" 0. since N !I {x: xS~}. (bU. (b2). 
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The formalism in question is developed further on by means 
of some defined secondary notions: 

I I {x: B c 5J{x}}. 

where I =: the set of first beings, 

11 ~ {xel: I c {x}}, 
where 11 =: at most a one-element set of necessary first existences. 

The supplementary assumption is as follows: 

(B4) 

We obtain the following conclusions: 

(M) N = MinR3• since M (MinR cDR). df.N, (b2), df.53; 

(b5) MinRJ " 0, from (b4) and (b3); 

(b6) FRJ = F53• since: 

1. FR3 c B, from (B2) 

2. B C O'S3 = O'RJ C FRJ, from (B3), df.53, df.FR 

3. FR3 = B, from 1 and 2 

4. B C F53, from (B3), df.FR 

5. 53 C R3 c BxB, from df.5J , (B2) 
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6. F53 C B, from 5 

7. F53 = B, from 4 and 6 

B. FR3 = F53, from 3 and 7. 

(b7) MinS3 'I' 0, since M N5 (5 c R &: FR = FS -+ MinR c MlnS), 
df.53 , (b6), (b5); 

(bB) 11 'I' 0, since M (REMQ &: MlnR 'I' 0 -+ tIR 'I' 0), (B4), (b7); 

(b9) tNI 'I' 0, since M (UR ~ 0 &: MinR ~ 0 -+ lIR n MinR ~ 0), 
(b7), (bB), dUNI. 

[C] Nieznaflski U983b) and (1984) presented the logical 
analysis of three concepts of neceMary beings. They are: 

t) substantial necessary beings: N ~ {x f MinR3: xRJx); 

2) distributive necessary totality of beings: 
N' II {X c FR3: R;JC c X ~ 0); 

3) collective necessary totality Ef beln~: 
W II {x: R3{x) c P{x}), 

where P denotes the relation of non-proper parts. 

The theorems: N Jl 0, N' Jl 0 and W 'I' 0 are obtained In the three 
simple formalized systems, based on leibnlz's principle of a 
sufficient reason of existence. 

[D] We have a kind of combination of Aquinas' third and 
fourth ·ways· in Charles Hartshorne's (1961, 1962) formalization 
of St. Anselm's ontological proof as found in Proslogion 3. 

Let's assume a few definitional abbreviations: E!X A X ~ 0 
(where E!X =: X exists), C1X A E!X &: <>",E!X, <;X A <>E!X &: O .... E!X& 
(where CjX =: X is contingent in the sense i, for i = 1,2). Hart
shorne (1962) and A.G. Nasser (971) confirm that In terms of 
modal logic 55 there is the equipollence: AX (C1X +-+ <;X). let us 
assume two more abbreviations: G, ~ MaxR. (according to St. 
Anselm) and Gz I LR. (according to St. Thomas AqUinas), where 
XE~ =: x is God In the sense i, for i = t,2. 

Hartshorne's proof of the thesis E!G1 is based on the two 
assumptions (Dt) ",C,G1 and (02) OE!G,. The conclusions are as 
follows: 

(dt) ",CaG" from (Dt) and AX (C1X +-+ CaX); 

(d2) ... OE!G1 v ... O ... ElG" from (dt) and df.Ca; 
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(d3) .... ¢ .... E!GI , from (d2) and (02); 

(d4) E!GI , since (d3) and "'¢"'p ~ p. 
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It is possible to obtain a reduction of the proof done by 
C.G. Vaught (1972), who assumed initially that .... CZGI • If GI is 
replaced by ~ in the proof, the proofs of Aquinas' thesis are 
obtained automatically. Theodor G. Bucher (1984), however, was 
right saying that the arguments were of questionable value, since 
it was enough to replace assumption (02) with (02') ¢ ",E!GI In 
order to obtain the unexpected conclusion: (d4') ",E!GI . 

The formalization of the ontological arguments for the 
existence of God wasn't popular among Poles. Only Nieznanski men
tions them. 

4.4 Formalizations of generalized arguments and a general 
logical theory of extreme elements of relations for 
the use of theodicy 

Bendiek (1956) regards his formalized arguments to be cal
culi suitable for various interpretations. Nieznanski U98O> 
created a formalized system for the relations RI , Ra and R3 taken 
together. He undertook the problems of Thomist theodicy within 
that system. The generalizations of the above mentioned arguments 
refer to some particular relations and are based on extra -logical 
assumptions. However, it is also possible and necessary to 
develop a purely logical theory or relations for the use of 
theodicy. Anthony Kenny (1969) noted that numerous proofs of the 
existence of the absolute are based on the following law of logic 

M (R -;; 0 &: Reord. &: FR < Mo ~ MlnR -;; 0). 

Dozens of other logical theorems, useful for the theodlcy, were 
proved by Nieznanski (1980>, who constructed a general logical 
theory of the extreme elements of relations. 

5. Logical analysis of some Thomist notions 

Several important Thomist notions, viz. "existence" (4.1>, 
"analogy" (4.2), "the omnipotence and omniscience of God" (4.3), 
"authority and faith" (4.4) went through logical analyses in 
Poland. 

S.1. An extensive review of the symbolic demonstration of 
the concepts referring to the notions of existence is given by 
Nleznanskl «(1980>, pp.1t8-125). The same author also suggests 
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(1983) some kind of semantics of the scholastic theory de modis 
essendi. The definition of an arithmetical scheme for 2k -element 
Boolean algebras, the universes of which are Cartesian products 
{O, Uk, is followed by the denotations of sixteen mod essendi and 
by the description of the system establishing logical connections 
among the mod. 

5.2. The traditional knowledge of the analogy of notions and 
beings derives mainly from Aquinas', and particularly from his 
question utrum Deus nominari passU. Bocheruki (1948) was the 
first in the hIstory of that field of research. who carried out a 
thorough logical analysis of the notion of analogy. 

To begin with, Bocheruki states that -the meaning of the 
name- (denoted by symbol S) is a four-argument relation: 
S(a,l,f,x) =: in the language I the name a means the property f 
of the thing x. Bocheruki states further on that the analogy is a 
relation of two, possibly even isomorphic names and it is a form 
of ambiguity. Thus, he defines first the relation of the ambigui
ty of names Am(a,b,l,f,g,x,y) =: names. a and b are ambiguous in 
language I referring to properties f and g, and things x and y. 

Here is the definition: 

Am(a,b,l,f,g,x,y) A S(a,l,f,x) &. S(b,I,g,y) &. I(a,b) &. f 11- g &. x 11- y, 
where J(a,b) =: names a and b are of the same shape. 

The analogy of attribution (denoted At) has the following 
definition: 

At(a,b,l,f,g,x,y) A Am(a,b,l,f,g,x,y) &. (Ox,y) v C(y,x», 
where C(x,y) =: x Is a cause of y. 

The notion of the analogy of proportionality (ApI) is defi -
ned by Bochel'\skl by means of the theory of relational isomorphism 

Apl(a,b,l,f,g,x,y) A Am(a,b,l,f,g,x,y) &. VP VQ (fPx &. gQy P smor Q)D, 
where P smor Q =: relatiol18 P and Q are Isomorphic. 

5.3. The Viennese professor Curt Christian presented (1957) 
a . logical analysis of the notions: omnipotence (AM). omniscience 
(AW) and God (G). He defined them as follows: '0 

(1) AM,x A I\p (Wlxp -'> pl. 
where AM,x =: x Is omnipotent in the sel18e 1; and WLxp =: x 
wants p to; 

(2) AWx A I\p (p -'> WSxp), 
where AWx =: x is omniscient; and WSxp =: x knows that p; 
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(3) G1x A AM,x &. AWx, 

(4) 

(5) 

where ~x .. : x is God in the meaning i. 

Nieznaflski (1976) assumes that: 

AMax A AM,x &. Vp WLxp and 

~x A AMax &. AWx. 
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The Salzburger professor Paul Weingartner (1974) defined the 
notions -onmlpotence- and -omniscience- in another way: 

(6) 
where Kpx 

AM3X A I\p (p ~ Kpx), 
x can do that p, and 

AWax A I\p (p ~ WSxp). 

Rev. Czeslaw Oleksy (Academy of Catholic Theology In Warsaw) 
holds (1984) that Weingartner's definition 7) determines both 
omniscience (AW) and infallibility (IN): 

(8) INx A I\p (WSxp ~ p), 
where INx =: x is infallible. 

In that case he obtains a new definition of God: 

(9) 

(10) 

G3x A AM,x &. AWx &. INx, and 

G.x A AMax &. AWx &. INx. 

Oleksy suggests still other specifications of the notions ·omni
potence- and -God-: 

(11) AM.x A I\pl\t~ (-A,pt &. WL'xtp & t '" s ~ AlPS), 
where Alpt =: occurrence p Is actual at the time t; and 
WL'xtp =: at time t x desires p; 

(12) AM5X A I\a I\t ~ (-Azat &. WL+xta &. t '" s ~ ~as), 
where Azat =: the being a is present at the time t; and 
WL+xta =: at time t x wants object a to become an actual 
being; 

(13) G,x A AMllx &. AWx &. INx, for 4 ~ i < 9 and 1 ~ k < 5. 

Several formalized theorems referring to the notions of 
omnipotence, omniscience and God were proved by Christian (1957) 
and by Nieznal'lski (1976). Weingartner (974) refuted the thesis 
of the so-called religious fatalism: 

(14) I\p (p ~ WLgpl, 
where 9 -: God; and 9 !! Ox) (AM3x & AWzx), 
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while Oleksy (1984) rejected the thesis of negative predestina
tion (reprobatio). 

5.4. The notion of authority is essential for the definition 
of the theological concept of faith. Bocheflski (1965) and (1974) 
was the first to carry out a logical analysis of that notion. He 
distinguished and determined the notions of epistemic and deontic 
authority. Nieznaflski (1985) unfolded the concept of authority 
and faith on the basis of the logical theory of belief. Bochefl
ski's book (1965) Is the first to be concerned entirely with the 
problems of faith and religion considered from the logical point 
of view. 

6. Final remarks 

The Polish programme of the logical analysis of Thomism was 
accomplished to a considerable extent, and especially with 
respect to the study of the formal correctness of the Thomist 
deductions. Formalized proofs of the existence of God acquired a 
desired standard of precision. However, the objection that the 
proofs in question were too formal was not, so far, either 
overcome or refuted. Even if the conclusions follow from the 
assumptions without non sequitur errors, the assumptions remain 
empirically undecidable. Proofs of that kind used to be seen in 
traditional logic as subject to the error ignoratio elenchi, i.e. 
they didn't demonstrate what needed demonstration, since they 
proved demonstratively nothing, being limited to implications 
from the conjunction of premises to the conclusions. And, e.g., 
H. Scholz (1969), who maintained that -Ein &weis ist verbindlich 
fUr jedermann, oder e& ist Uberhaupt kein &weis- (p.64), is a 
contemporary logician who shares this opinion. It would seem that 
the future of the application of logic to Thomlsm lies more in 
the area of semantics of the language of this philosophy. Thomism 
is a doctrine with a future, as long as it accepts the postulate 
of maximum precision of proof and method. II 
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Notes 

I Cf. the bibliographical list at the end of this book. 

2 Here (and everywhere below) the symbol =: is a sign of ab
breviating. 

3 The definition of the converse of relation R: 

Ii ~ {<y,x): xRy}. 

The definition of R-image of set X: 

RX !II {y: Vx (XEX & xRy} 

4 Cf. E. Nieznan.ski (t98tb). 

5 It is possible to reduce Salamucha's axioms (AJ) and (A4) 
replacing the expression: Va Vb (aPx & bPx) by the expression: Va aPx. 

6 Assumption 1° was used in the proof only as RI E con. 

1 Segment ·x ~ y. is superfluous in axiom (H3), since it fol
lows from segment • ",xPy· and axiom (H2), already assumed. 

8 Contingeas est quod potest esse et non esse (Summa Theologi
eft I, q.86,a.3). 

9 Smor =: simili ordine. 

10 All indices below denote the succeeding meanings of the 
extra -logical constants and .p. is a propositional variable. 

\I Translated by Stefania Szczurkowska. 



LEON KOJ 

ON JUSTIFICATION OF QUESTIONS 

Introduction 

1. It is not unnatural to suppose, in view of the existence 
of several kinds of questions, that different questions are 
justified In different ways, and If so, then the theory of 
justification of questions must depend heavily on the type of 
questions considered. But one is tempted to formulate general 
conditions under which asking questions can, in the majority or 
in all cases, be justified. Thus we have to enumerate the types 
of questions which will be taken into account in this paper and 
have to see whether general rules of justification of questions 
can be found. 

The most interesting category of questions are cognitive 
questions posited to obtain the information which the question 
concerns. On the whole, the majority of theories of justifica
tion, or theories of arising of questions or their evocation, are 
concerned with cognitive questions or. to be exact, with their 
subset. This paper departs from this body of practice, taking 
into account a wider class of questions. It includes: examination 
questions, asked about things very well known to the questioner 
who is interested In whether the questioned person can give the 
right answer; deliberative questions we ask ourselves without 
expecting an answer; rhetorical questions which presuppose common 
knowledge on the part of the questioner and the questioned person 
alike: they both know the answer and know that they know it. 
Sometimes a distinction Is made between questions which are con
cerned with analytical matter, as In: 'Is 2 = 2?' or empirical 
matter as In: 'Who was Shakespeare?'. Sometimes open questions, 
e.g. 'Why do you smoke?' are distinguished from closed questions, 
e.g. 'What is your name?' (J. Giedymln (1966), p.16). Open ques
tions do not determine the structure of the answer as Is the case 
with closed questions. The questions just enumerated will be 
discussed in some detail below. 

156 
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2. In order to describe the justification of questions we 
have to ponder a little about the language in which this could be 
done. First, this language must be more inclusive than the 
languages of most theories of questions. If so, we should be able 
to tackle problems which are not describable in poorer languages. 
But still there will remain some problems which in our language 
are inexpressible. 

The relatively simplest language in which questions can be 
described is purely syntactical. The most important concept 
apart from the terminology which serves to formulate the grammar 
(rules for constructing sentences) is one referring to proof. 
In such languages a question is taken to be justified when some 
sentences have no proof. Theories which use this kind of langua
ges can deal, at most, with questions which arise only in 
deductive sciences where lack of empirical corroboration is inex
pressible. But even in deductive sciences only very few questions 
can be taken to be justified, namely only those arising from 
sentences which are independent of the axioms of a given system. 
In these syntactical languages there is no possibility to 
introduce the notion of proof that is actually arrived at. In the 
majority of questions posited with regard to analytical matters 
there may exist a proof (in the abstract sense of existence used 
in formal logic) of the sentences under discussion but either the 
proof can not be discovered by questioning person or simply, it 
may be unknown to him. And it is precisely in those cases that we 
ask questions very often. Thus the justification of the majority 
of questions cannot be described; A. Wi.4niewski «(1986), p.t?) 
claims that analytical sentences cannot generate any questions. 
The great hypothesis of Fermat - provided it has a proof which 
has not been discovered yet - cannot be claimed to generate any 
questions. As we want to consider a much wider range of ques
tions, clearly a purely syntactical language is too poor for our 
purposes. 

3. Similar problems are encountered in the case of a 
semantic terminological basis. Here, the concepts of truth and 
entailment are relevant to the explanation of generation of 
questions. Thus Wi.§niewski defines generation of questions in the 
following way: 

A set of sentences X generates a question Q if and only if 
(iff) the set X does not entail any direct answer to Q and 
entails the presupposition of the question Q. The set of 
sentences which are entailed by all consistent answers to 
the question Q forms the presupposition of Q (Wi.tniewski (1986). 
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Now, it looks as if this definition did not allow for generation 
of a number of questions which in fact are asked seriously. Let 
us assume that X does not entail the presupposition of Q and that 
we do not know the answers to Q. According to the definition of 
generation cited above we cannot generate the question Q; but on 
all probability we shall ask the questions. The lack of knowledge 
of the answers, it seems, is decisive here. For instance, take an 
open question Q and a set of consistent answers to it. What does 
this set entail?, i.e. what is the presupposition? The answers 
are not determined by the structure of Q nor can their structure 
be derived from the meaning of the question. It appears, 
therefore, that almost anything can be entailed by the answers 
and it is very difficult to say whether the presupposition of Q 
is sufficient for generating the question. As we shall see a 
little later the answers to an open question are determined by 
their relation to the sentence included in the question. This 
relation, as a rule, is not the relation of entailment in either 
direction. 

Let us assume that X entails the presupposition of Q and 
does not entail the answers, and that we know the answers. In 
this case, although the question can be legitimately generated, 
we shall not ask It. These examples show convincingly that there 
is a gap between our habits of asking questions and generation of 
questions as defined above. We also point to the fact that this 
definition of generating questions does not allow forming ques
tions on the basis of any set of tautological sentences or on the 
basis of inconsistent set of sentences. This last thesis goes 
counter to the rather widespread conviction· that contradictions 
bring forth problems of various kinds. 

The sentences 2~ = 32 and 2·16 = 32 are logically equi
valent, and they entail each other. If we ask questions (a) 'Is 
25 = 32?' and (b) 'is 2·16 = 32?' the positive answers to them 
are equivalent, and so are the negative answers. A consistent set 
of answers (let them be positive) to (a) is then logically 
equivalent to the set of similar answers to (b). Both sets then 
entail the same presupposition which generates the same question 
or two questions which are equivalent in some derivative sense. 
But (a) may be asked by a boy who attends the second class of 
a primary school while (b) will not be asked by him at all: he 
knows the result of the multiplication. Our habits of asking 
questions then are outside the domain of erotetic logic, or the 
logical tools used in this kind of erotetic logic are too 
clumsy. 
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4. The definition of generation of questions establishes a 
set of sentences X which generates a question by pointing to the 
answers of the question which is to be generated by X. This kind 
of definition is formally quite correct: all these things sets 
of sentences X, questions generated by them and their answers are 
given by rules of formation without any reference to their 
succession In time. But from a methodological point of view and 
from the point of view of our practice this definition of gene
ration Is strange: to know the set of sentences which generates a 
question (unknown so far) we have to consider the answers to the 
question - and they are known at the very end of the whole 
procedure of forming questions and solving the problem. The real 
procedure starts with a set of sentences which generates the 
question; we get to know the question later and still later we 
find the answers. It seems - and we take it as a postulate - that 
a theory of justification of questions which is to be methodo
logically useful should provide us with rules describing the 
actual procedure. 

Terminological framework 

1. The examples we cited above purported to show that ques
tions are asked in case some Information, namely that expressed 
with the help of answers, is not known to us. However, this is 
not always so; there are questions the answers to which are known 
to us. Rhetorical questions are a case In point. What is impor
tant is that to describe the examples we used the notion of know
ledge, i.e. an epistemic concept. There are more epistemic 
notions, which eventually can enter our discourse: belief, 
assumption, doubt, certainty, etc. Possibly all these notions can 
be useful in characterizing the conditions which justify asking 
cognitive questions. The problem is that we have to choose the 
notion(s) which suits best our ends. Thus far we have mentioned 
knowledge. Very often knowledge is conceived of as a complex 
notion - as a true belief well justified. Thus if one happens not 
to know something then 

he does not believe in it or 

it is not true or 

it is not sufficiently corroborated. 

As already remarked it is not the proof or, generally - corrobo
ration, which makes people ask questions. A sentence may be well 
proved or corroborated and somebody who never encountered the 
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proof may ask the question. He may even have seen the proof and 
asked the question if he doubted the correctness of the proof. :.As 
to the truth, people ask questions regarding both true and fame 
propositions If only they do not exhibit any cognitive relation 
to the values of the propositions taken into account. Thus only 
lack of belief is a constant factor present in the case of 
serious cognitive questions. A3 we shall see later even In the 
case of non-cognitive questions this notion plays some role. 

2. We do not ask questions concerning things we have not 
heard about. We do not ask them although we have no belief about 
those things. In this case we do not feel any lack of knowledge. 
A3 a rule, we ask a question when some answer is expected, 
required, necessary, ordered or requested. We also ask questions 
If we want to get the answer. These attitudes are reactions to 
our awareness of lack of knowledge or belief. We have to choose 
that of the cited attitudes which Is always present when we ask 
questions. 

Let us begin with the concept of necessity which was used by 
Aqvist (1965). If we took this notion into the description of 
justification we would have to introduce something like this: a 
question is justified into a!. when It is necessary to believe 
that.... This condition is a very strong one and given the 
principle: ab necesse ad posse valat illation, it precludes to 
ask questions which have no believable answers. The principle 
implies: it is possible to believe that.... But we never know in 
advance whether a question has believable answers at all. If the 
opinion prevailed at the very beginning of the XIX century that 
there were no meteors, one could not ask what the chemical com
positions of the meteors are, as no believable answer could be 
offered from the point of view of the accepted theory. If we were 
to ask only questions which have believable answers it is quite 
probable that. no accepted false theory would be rejected. There
fore we rather have to exclude from considerations the concept of 
necessity and such like which imply that only questions with 
believable answers can be asked in a justified way. A3 far as the 
notion of ordering is concerned, we are confronted with a concept 
which refers to two persons: to the speaker and to the addressee. 
A question does not exhibit any person in its meaning. But more 
importantly, an order presupposes that the action which is 
ordered can be performed, I.e. an answer, and especially a true 
answer can be given. Once more we face the same problem as 
before: seemingly, when we ask questions we have to assume that 
answers can be giv~m. It is this assumption that is taken by 
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Ajdukiewicz (1938) as a condition of correctness of questions. 
The views of Positivists in this respect are also well known: no 
value, they claimed, could be given to questions to which no 
answer (empirically meaningful) could be given. Such questions -
they declared - are pseudo-questions. If we took this assumption 
as a rule of justification of questions not only would we encoun
ter the difficulties already mentioned but we would be forced to 
reject all deliberative questions which very often do not presup
pose any answers - just as many philosophical questions do. Thus 
the notion of order put forward by R. M. Hare (1949) as a general 
requirement on all questions is of no use to us. 

Very similar objections can be raised in the case of the 
notion of expectation, of requirement and request. Thus only the 
notion of wish survives our objections. It is this notion which 
was propounded by B. Bolzano (1929). Nowadays it is used by 
B. Boguslawski (1977). As N. Rescher (1968) has shown a kind of 
logic called optative logic is possible where the notion of wish 
is considered. Thus the foundation of the. theory of justification 
of questions is, as for now, not outside logic: it includes the 
two specific primitive concepts considered so far - belief and wish. 

3. The introduction of the concept of wish necessarily 
implies the following: what one hopes to get by putting forward a 
question. People who ask questions want to achieve very different 
things and information. Not all of these things are of interest 
to us. We are interested only in those pieces of information 
which from the point of view of the meaning of the question are 
to be treated as desirable. We may e.g. wonder whether by asking 
questions we want to know the truth of the answer, or at least to 
grasp some possibilities or verisimilitudes. We may also strive 
to believe the answer. It is possible that it is not truth and 
the like, but certainty that we are trying to establish. To make 
the choice between these possible objects of our wishes let us 
begin with certainty. Sometimes we get the answer: possibly .... 
It is quite a good answer, though perhaps not always fully 
satisfying. Sometimes we do not arrive at certainty as perhaps 
sometimes certainty is not necessary. If somebody does not do 
something in case of risk an answer which begins with ·possibly· 
is good enough to restrain him from the action he planned. Thus 
it appears that not always we are looking for certainty. 

Also, when questions are asked, not always truth is wanted. 
In the case of examination questions, for example, we already 
know the true answer and we want not so much the true answer; 
rather we want to know whether the person questioned knows the 
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true answer. It happens many times that we ask questions without 
any wish to get a true answer. We ask to know something else, to 
know the opinion of the questioned person. We, ourselves may not 
know the true answer. But after questioning many people we can 
find out what the popular belief is. 

It can also be doubted whether we want to hear an answer at 
all. For example in the case of rhetorical questions nobody is 
requested to answer. Sometimes we do answer, though we do not 
utter a word. When one is asked: 'Where Is Hotel Eden?' he can 
simply point to the nearby building. 

The latest example gives us a hint where to look for a solu
tion to our problem: what do we always want when we do ask 
questions. In all these examples the person asked is at least to 
present a piece of information. In the case of rhetorical 
questions and deliberative questions everyone has to present the 
information himself - not to the person who asks, in the case of 
rhetorical questions; In the case of dellberatlve questions the 
speaker and the addressee are identical. In the case of pointing 
the addressee presents the information by pointing to the source 
of information. In the case we utter the answer we present the 
information indirectly with the help of an expression which, in 
turn, refers to the information. Sometimes pointing to an object, 
showing a picture or drawing is a better means of answering then 
uttering an expression. This fact is sometimes forgotten. The 
notion of presenting is necessary, It seems, to describe some 
components of the overall concept of justification. But there Is 
a difficulty here: it seems there are no logical considerations 
so far which tackle the notion of presenting information. To some 
degree this notion Is similar to the notion of perceiving. 
Unfortunately, the analogy is rather superficial. 

4. Besides these three primitive concepts of our attempted 
theory of justification of questions we shall use usual logical, 
syntactical and semantical terminology without going into any 
explanation. We want to concentrate on the problems which can be 
solved with the notions of belief, wish and presentation. It Is 
obvious that a still more Inclusive theory of questions has to 
include additional methodological terminology, at least making 
possible the definition of corroboration, testing etc. 

So far the term -justification- has been left unexplained 
and undefined. For the time being let us assume that It is a very 
complex notion Including admissibility of questions, motivation 
of questions and their well- foundedness. 
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Admissibility of cognitive questions 

1. Most of us do not know who discovered Grenada. Let us 
then ask the following question: 

Who discovered Grenada? 

as a model example. We ask this question because we do not know 
the discoverer. This means that there is nobody we know that 
discovered Grenada. This lack of knowledge is part of the 
admissibility (and therefore also of the justification) of (1). 

Let the variables z, z', z.. range over the set of people. "K" 
may be used as the symbol for "knows". "K" is therefore a functor 
with one individual category and one propositional category 
argument. The sentences built with the help of "K" are of the 
form K(z,p). Now, the situation In which we ask (1) can be 
described as (2) or, equivalently, as (3) 

(2) 

(3) 

A ... K(z, z· discovered Grenada) 
a' 

... V K(z, z· discovered Grenada) ,,' 
It has already been mentioned many times that the notion of 
knowledge is inapplicable. This notion must be weakened and 
adjusted to suit those cases in which the notion of knowledge is 
not an adequate one. We have to pass therefore to the notion of 
belief. In (4) and (5) "B" stands for "believes" and replaces 
"knows". 

(4) A ... B(z, z' discovered Grenada) 
s' 

(5) ""V B(z, z' discovered Grenada) .' 
This precondition of asking questions is a very weak one. 
Sometimes it is satisfied when a person does not ask any 
question. Suppose that person z has never heard anything about 
Grenada and simply does not know about its existence or that it 
has been ever discovered. To ask a question, z has to assume at 
least that Grenada is something that is discoverable and that it 
has been discovered by someone. Thus the second condition of 
asking questions is: 

(6) B(z, V (z' discovered Grenada» 
z' 

Stipulation (6) seems to be similar to the postulates that every 
question has at least one true answer (Ajdukiewicz (1938). In 
fact, the stipulation made by Ajdukiewicz and expressed in 
metalanguage is much stronger than (6). From the existence of an 
object that has been discovered does not follow that we know 
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anything concerning the discovery and can formulate an answer to 
question (1). We are far from claiming that we can always know 
about all things that exist or existed. 

let us compare (4) and (6) with respect of the place of "B" 
relative to the quantifier. In (4) "a" is in the scope of the 
quantifier "I\". In (6) the quantifier "V" is in the scope of "a". 
The meaning of (4) is that there is nobody about whom person z 
thinks with conviction that he discovered Grenada or, simply, z 
does not know who discovered Grenada. The difference between a 
belief functor appearing within the scope of quantifier and 
quantifier put in the scope of belief functor is made more clear 
if we compare two formulae containing the same quantifier: 

(a) B(z, V (z' discovered Grenada» 
s· 

(p) Va(z, z· discovered Grenada» 
z· 

In (a) we say that z believes that somebody discovered Grenada. 
In (p) we say there i,o; somebody about whom z thinks with 
conviction that he discovered Grenada. Plainly (p) is the 
stronger formula: (a) follows from (p). but not vice versa 
(Kutschera (1976). p.92, TG1b). Prima facie it may look as if (5) 
and (6) contradicted each other. In fact, contradiction could 
arise only on the condition that (6) Implied (5): 

(7) B(z, V (z' discovered Grenada» ~ V B(z, z· discovered Grenada» 
~ ~ 

The consequent of (7) is a blatant contradiction of (5). Fortu
nately - as already remarked (7) Is not true and so the 
contradiction does not arise. 

(7) and its negation points to the necessity of a good 
characterization of the notion of belief. Outside logic it is 
taken as a purely psychological concept which defies any logical 
attempts at making it more precise. In logic this notion is given 
an over-rational definition. According to R. M. Martin (1959) men 
believe in all logical theses. If they believe in some sentence p 
and if from p logically follows the sentence q, then they always 
believe In q. Human being that do so are more logical then a 
computer. We wish to assume a much weaker notion of belief (which 
will make sense of our well-foundedness of question) which is 
less rationalistic (Kutschera (1979), p.80). We assume that a 
person z believes in some logical theses; if a person z believes 
that p and q is a logical consequence of p (or p entails q) then 
person z believes q on the additional provision that it had been 
presented to him that q follows from p or p entails q. The 
additional condition includes the notion of presenting. This 
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notion implies, among others, the possibility that person z has 
made the proof of q relative to p and thus has shown to himself 
that q follows from p. 

2. Conditions (5) and (6) must be refined a little. We 
simply assumed that z' ranged over the set of people. This 
stipulation is an unfortunate one because in different questions 
we may ask about different kind of objects. To avoid new 
variables each time we ask about new kind of entities, it is more 
convenient to let the variables range over a very vast set of 
objects and each time provide a short notice what kind of object 
is under consideration. But let the letters z, z· etc. range over 
the set of people. The more inclusive set may be represented by 
the variables x, x', x". More exactly, the last variables will 
be typically ambiguous - more about it a little later. With this 
convention in mind instead of (6) 

(6) B(z, V (z' discovered Grenada» 
z· 

we introduce 

(8) B (z,( Y (x discovered Grenada) " 

" ~ (x discovered Grenada ~ x is human») 

What (8) says is that person z believes that an object discovered 
Grenada and whatever did it is human. This last conviction is 
expressed in (1) by the word "who". 

We have to modify (5) in the same way: 

(9) ~V B(z,(x is human " x discovered Grenada» 
• 

There is no need to state explicitly that z is human, 
all, because of the range of the variable "z" and 
"B" is understood as a two-place predicate (see above). 
ly, we take the formula below to be a thesis of our 
belief: 

(to) /\ CBCz,p) ~ z is human) 
" 

first of 
because 

Second
logic of 

To include questions asked in fairy tales by their non-human 
heroes we can generalize (to) by the extension of the set z is 
ranging over so that it could include all human -like objects. 

3. Let us call the consequent of the second part of (8) the 
confinement of the range of question. The antecedent of this part 
may be called datum questionis. The convention is to be 
understood as fairly general. Every time we have sentences of the 
form: 
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(11) B(z,( V (fx) " A (fx ~ gx») 
.. a 

(12) ... V B(z,(gx " fx» .. 
the sentence symbolized by gx is the confinement of the range of 
a question and the sentence symbolized by Ix is a datum questio
nis. Now, we can formulate the rule which describes admissibility 
of cognitive questions. First let us say something about the 
question mark of a question. It will be put at the very beginning 
of question just as quantifiers are put. Similarly to quan
tifiers, the question mark will be endowed with a variable which 
will reappear inside the question. This variable is bound by the 
question mark. According to the ideas of T. Kubiflskl (1971) - to 
whom lowe very much - the question mark is conceived of as an 
operator. We read the question operator -?; as ·which all XiS 

are such that... • . For the reasons for such treatment of the 
question operator see (Koj (1971). Questions are admissible for 
person z if and only if (11) and (12) are true. We can express 
this idea in: 

(R) The question r?a (gal [fxf is admissible for person z iff 
(11) and (12). 

The round parentheses and square brackets are signals that the 
enclosed expressions are not interchangeable their relative 
succession is fixed by (11). On the basis of (11) and (12) the 
confinement of the range is put to the right of the question 
operator. The datum questlonls Is still farther to the right. 

4. This rule - contrary to appearance - Is very general and 
applies in the case of cognitive questions of all possible 
structures. Since the structures of questions were considered in 
another paper of mine (Koj (1972», here I confine myself merely 
to a brief presentation of the results of my considerations. Each 
type of questions Is presented here In Its natural - language form, 
then two paraphrases are given which bring us closer to the 
logical form. 

A a Did Columbus discover America? (the underlined word Is 
stressed). 
Was it Columbus who discovered America? 

b Did Columbus or somebody else discover America? 

c Who of the two: Columbus or somebody else discover America? 
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d ? (.c(Columbu., Non-Columbu.» [x discovered America] 

Non-Columbus is understood as Indefinite description: 
x = Non-y • V (x'_y A X = x'), The same pertains to all ... 
Non-y phrases; they differ only as to their syntactical 
category. 

8 a Did Columbus discover America? 

b Did Columbus discover America or something else? 

c What did Columbus discover: America or Non-America? 

d ? (.C(A_rlc .. , Non-America» [Columbus discovered x] 

C a Did G1)del _ the Nobel Prize? 

b Did G1)del get or did he not get the Nobel Prize? 

c Did G1)del get or non-get the Nobel Prize? 

d ? ( •• (,e\, non-,e\}) [Godel x the Nobel Prize] 

D a Is the hat yellow, orange or violet? 

b What Is the hat like: yellow, orange or violet? 

c Which out of {yellow, orange, violet} is the property of 
the hat? 

d ? (.c{yel1ow, or .. np, violet}) [hatEx] 

E a Who discovered Grenada? 

b Which human being discovered Grenada? 

c Which object out of the set of hUinans discovered Grenada? 

d ? (.€hum .. n) [x discovered Grenada] 

F a Which two pupils from the fourth class threw stones at the 
window? 

b Which all pupils of the fourth class, members of a two
element set threw stones at the window? 

c Which all x-es of a two element set included in the fourth 
class threw stones at the window? 

d ? (.Uourth cl .... A V(.cu A 11-2)) [x threw stones at the window] 
u 
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In F.d. we use the set-theoretic notion of cardinality of 
sets. Thus the set u has the cardinality two. When we talked 
about the language of our consideration it was assumed that 
the whole logical terminology is included. Among others the 
notions of elementhood and identity and all definitional 
derivatives are at our disposal. 

G a Is A (q * (p * q»? 
P.q 

b Is it that A (q * (p * q» or the other way round? 
P.q 

c Is it A (q * (p * q» or ... A (q * (p * q))? 
~q ~q 

d ?f (fc{ .... -}I (f (q * (p * q»] 

H a Why does he study mathematics? 

b What caused him to study mathematics? 

c What is the non - analytic state of affairs that stands in 
the causal relation to his studying mathematics? 

d ?" (",Non-analytic) [X C He studies mathematics] 

In H.d. the letter C means the causal relation, whatever it 
might be. 

The adduced examples show that many questions fall under the 
general schema r?" (S") [fx]' where x is typically ambiguous: one 
time it is an individual variable, another time a predicate 
variable, etc. The schema can be also applied in the case of 
questions with more than one question operator. This kind of 
questions is Illustrated with the help of: 'When and how did he 
escape from prison?' After Conrad RudPs (1978) overview of 
different theories concerning the structure of questions it seems 
that the one expounded here Is adequate. 

5. To test whether our R-rule is applicable in all cases of 
belief as described in (11) and (12) and whether we get the 
questions we intuitively expect let us take new examples covering 
all types of questions from A to H. We shall test the rule as 
schematically as in the case of A and H. First a short story is 
presented (a), then the respective counterparts of (11) and (12) 
are given (b). The application of R to them yields a question (c) 
which is then translated into normal natural language (d), to 
find out whether it fits our intuitions aroused by (a). Point e 
is the evaluation of this last question. 
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A' a Mary (as person z) believes that somebody has stolen her 
necklace and she (i.e. z) suspects that it was Jane. 

b B(Z, ( " (x = Jane v x = somebody else) 1\ 

1\ ~ (x stole the necklace ~ (x = Jane v x is someone elSe)))) 

-V B(z, (x stole the necklace 1\ (Jane = x v x = Non-Jane))) 
" 

C ?" ("E{Jane. Non-Jane}) [X stole the necklace] 

d Did ~ steal the necklace? 

e Question d. was to be expected on the basis of a. 

8' a A simple-minded pupil has doubts as to whether Copernicus 
invented the heliocentric system, discovered It or simply 
described It, etc.; he cannot decide by himself which 
possibility is true. 

b B r z, ( V (Copernicus x heliocentric system or 
\. " 

or Copernicus x heliocentric system) 1\ 

1\ A (Copernicus x heliocentric system ~ 
" ~ (x = invention v x = non-inVentiOn») 

~V B(z, (Copernicus x heliocentric system 1\ 

" 1\ (x = invention v x = non-invention») 

c ?" ("E{lnvention. non-Invention}) [Copernicus x heliocentric system] 

d Did Copernicus inYmll the heliocentric system? 

e In fact, the pupil who has these doubts may be justified to 
ask d. 

C' a Barens was a famous discoverer and a southern European boy 
knows it. But he has no opinion as to Barens' discovery of 
Spitzbergen. Perhaps Barens discovered Spitzbergen but it 
may have been something else. 

b B (z, ( " (Barens discovered x) 1\ 

1\ A (Barens discovered x ~ 
" ~ (x = Spitzbergen v x = Non-SPitZbergen)))) 

-V B(z, (Barens discovered x 1\ 

" 1\ (x = Spitzbergen v x = Non-Spitzbergen») 

C ?" ("C{Splbbe.pn. Non-Spitzbergen}) [Barens discovered xl 
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d Did Barens discover Spitzbergen? 

e This question is also natural enough when we take into 
account the boy's doubts. 

0' a John does not remember the type of Timothy's car; he 
remembers only that It Is Japanese and he can remember only 
three Japanese types: Honda, Mazda and Toyota. 

b B(Z' ( Y (Timothy's car is an x) " 

" A (Timothy's car Is an x => 
• 

=> (x = Honda v x = Mazda v x = TOyota)))) 

~V B(z, (Timothy's car is an x " 
• " (x = Honda v x = Mazda v x = Toyota» 

C ?" (,,«{Honda, Mazela, Toyota») [Timothy's car is an xl 

d Is Timothy's car a Honda, a Mazda or a Toyota? 

e d. is the question we can expect in view of all what John 
(he Is the person z) knows and remembers. 

E' a Somebody took Peter's hat. He believes it was one of his 
friends who came to a meeting with him. 

b B(Z, ( V (x took Peter's hat> " 

It A~ (x took Peter's hat => x was Peter's friend») 

~V B(z, (x took Peter's hat A x was Peter's friend» 
It 

c ? (. Peter'. Irlenel) [x took Peter's hatl 

d Who from among Peter's friends took Peter's hat? 

eTheR-rule once more generated the expected question. 

F' a The policeman was told that three persons had beaten 
Richard on the train. The policeman had no choice but to 
assume that they were travelling on the train. Of course he 
did not know the culprits. 

b B( z, ( Y (Richard had been beaten by x) A 

" A (Richard had been beaten by x => 

• => Y (x E U A U = 3 " u c set of travellerS)))) 

~V B(z, (Richard had been beaten by x A 

" 
A V (x E U A U = 3 " U c set of travellers») 

u 
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c ?" IVI".u .. rI-3 A u C _t of traveller.)) [Richard had been beaten by x] 
u 

d Which three travellers had beaten Richard? 

e Indeed this is the question the policeman had to ask. 

C' a Some students cannot agree as to whether the following 
V (fy ::;. gy) ::;. (V (fy) ::;. V (gy» is true or false. 
y y y 

b B(Z. V (x <V (fy ::;. gy) ::;. (V (fy) ::;. V (gym) " 

" : 1\ (x (V(fy "/gy)::;. (V(fy)::;' V(gy))) => XE{I-, .... })) 

( 
"Y v y ) 

.... V B z. x (V (fy => gy) ::;. (V (fy) ::;. V (gy))) " XE il-..... ) 
"Y ., Y 

C ? (xe{~.~)l [ X <V (fy => gy) => (V (fy) ::;. V (gy») ] ., y., 
d Is (¥ (fy ::;. gy) ::;. (¥ (fy) => (gy)))? 

e Just as A, B, C so G is a general question. But here we do 
not ask about the subject or the predicate; rather we ask 
about the assertion or negation of the whole sentence. 

H' a Philosopher A thought that every action has a causa finalis 
and treated life as a kind of activity. Unfortunately, he 
did not know the causa finalls of his life. (Take F as -is 
causa finalis or>. 

b BCz, (V (x F A's life) " 1\ (x F A's life ::;. x non-analyticall» 
" " 

.... V B(z, (x F A's life " x non-analytical)) 
K 

C ?" (xenon-analytical) [x FA's lifel 

d What is A living for? What is the causa finalis of A's life? 

e The philosopher may ask himself what is he living for. 
especially when he is tired and unhappy. 

The adduced examples seem to show that the R-rule generates 
the expected questions. We can take it as a partial solution to 
the problem of justification of questions and turn to another 
part of the problem: to the motivation of questions. Obviously. 
the R-rule may be tested in the case of still new kinds of 
questions. The reader is asked to do it himself. e.g. he may try 
to find out whether the R- rule is adequate In the case of 
questions with two or more question operators. 
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Motivation of questions 

It Is obvious that some admissible questions are not asked. 
This happens when the person who believes in all that (t 1) and 
(12) say is not interested in finding out what In fact is true. 
The person is not motivated to ask questions. Worse, non-cogniti
ve questions which are not admissible In the way described above 
are, in fact. asked. The questioner Is strongly motivated and 
this is enough to ask questions. Motivation is therefore the 
second part of the problem of the justification of questions, 
admissibility was the first. Usually, when one wants to know 
something, one asks a serious cognitive question. In this case 
the questioner's eagerness to know Is the motivation which 
triggers the uttering of the question. Very often. however, 
somebody's wish to know the answer is not enough to be taken for 
motivation. It is sufficient that the answer or rather the 
information carried by the answer Is simply presented. Knowledge 
as true information, or reliable Information or believable infor
mation is not aimed at. Generally. it is the presentation of 
Information which is a necessary object of one's wish. All that 
exceeds presentation of information Is characteristic only of 
some questions. As will be shown later the desire for a presen
tation of information Is present in all possible questions. Thus 
to describe motivation we have to Introduce two additional 
predicates (mentioned above); wants and presents. Let "W. be the 
symbol for ·wants· and .p. for ·presents·. 

Let us assume that a question of the form r?" (gxl [fx]' Is 
admissible for person z. Person z is then cognltlvely motivated 
to ask this question when he wants the Information carried by the 
answer to be presented to him by someone z'. These remarks give 
way to: 

(13) r? x (gxl [fx]' Is cognltlvely motivated for z iff 

r?" (g,,1 [fx]' is admissible for z A W[z.y, P(z',z,fx)] 

The signs r, are quasi-quotation marks (Quine (1955), §66) 

The motivation of an examination question Is different. The 
examiner believes that the question r?" (gxl [fxf may be admis
sible for the questioned person. The examiner simply assumes that 
the questioned person may not know the answer or he may be In 
doubt of it. The examiner wants the questioned person to present 
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to him the answer. This wish is caused by another wish, which may 
not interest us here: to know the knowledge of the questioned 
person. To avoid further extension of our language, the word 
·may· will be substituted by an existential quantifier (the 
affinity of possibility to the existential quantifier is well 
known). Instead of saying: the question is possibly admissible 
for the person z, we shall say: there exists some z· for whom the 
question is admissible. This substitution alters a little the 
original formulation and its meaning. But from our point of view 
the change is permissible. The motivation of an examination 
question is as follows: 

(14) B(Z, Y. ( r1x IlIx) [fx]' is admissible for Z') A W(Z,P(Z',Z,fX»)) 

iff r 1 x IlIx) [fxf is for z a motivated examination question. 

(14) is an equivalence and its parts may be reversed. A stronger 
form of (14) is (14') where there is a particular addressee of 
the question. The parts of the equivalence are given now in the 
reverse order: 

(14') r 1 x IlIx) [fx]' is for z an addressed motivated examination question 

iff y. B(Z, ( r1x IlIx) [fxf is admissible for z') A W(Z,P(Z',Z,fX») 

Similar motivations hold in the case of rhetorical and deli
berat�ve questions. The person Z who asks the question takes it 
as possibly admissible. This person wants the answer to be pre
sented to somebody. While in the case of the rhetorical questions 
person Z wants everybody to present to himself the answer (or 
rather the respective Information), in deliberative questions 
person z wants that somebody <It may be himself) presents the 
answer to z. The assumption of admissibility seems to be doubt
full at first inspection. In fact, the doubts can be dispersed 
rather easily. When somebody asks the rhetorical question: <Is it 
possible to deny that 2 = 21' he assumes that all normal people 
will not deny that 2 = 2; only an idiot, he thinks, can deny it. 
Thus idiots are those people for whom the question is admissible. 
People who have no doubts in regard to 2:: 2 are normal. Every
body who understands the questions and sees the admissibility 
assumption can treat himself as normal only when he has no doubts 
in regard to 2 = 2. Thus asking this question helps people to see 
their extraordinary mental abilities. Many times this is aimed at 
by asking rhetorical questions. 



114 

(15) 
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The motivation of a rhetorical question is then as follows: 

'? (,., [fxf is for z a motivated rhetorical question iff 

B(Z' Y. ( '? (,., (fxf is admissible for z') " W(z, ¢- P(z' ,Z',fX») 

The clause W(z, A P(z' ,z' ,fx» is to the effect that z wants z· 
z· 

to present to himself the preposition (Information) Ix. 

(16) '? ('x, [fxf is for z a motivated deliberative question iff 

B(Z' Y. ( '? (,., [fx]' is admissible for z') " W(z, Y. P(z' ,Z,fX») 

In this case z wants someone to present to him the information 
Ix. Person z is not sure that someone will do it in fact. 

While considering general questions we cannot fail to notice 
that the clauses (tt) and (12) include statements of the form 
x = a v x = non-a'. In this alternative the parts can be 

interchanged. We get then r x = non - a v x = a'. When we apply the 
R-rule to (11) and (t2) with the changed alternative we get 
questions of another form, e.g.: 

A II Did Non - Jane steal the necklace? 

B" Old Copernicus non-discover the heliocentric system? 

C" Did Barens discover Non-Spitzbergen? 

All these questions sound very unnatural and, bacause of the 
symmetry of alternative, we cannot help such a change. This 
problem can be solved only when some new condition is added to 
the R-rule, namely: 

'? (,., [fx]' is admissible for Z iff (tt) and (12) and 

W(z, V P(z',z,fx» and Ix is the shortest form of the ,.' 
Information. 

The obstacle is that our language is too poor to formulate the 
clause: Ix is the shortest form of information. Thus at least one 
problem remains unsolved. 

WeH-foundedness of questions 

1. Even when questions are admissible and motivated they may 
be in some sense very stupid. We may, for example, be astonished 
when somebody seriously (not rhetorically) asks if 2 + 2 = 4. 
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Most often when the problem of generating questions is raisedt 

only its scientific status is considered: do questions only 
express subjective lack of knowledge or - and this is important -
is there a scientific reason for asking them. Let us call this 
issue the problem of well- foundedness of questions. 

The basis of all questions is their admissibility which In 
the case of questions of the form r? I,.) [fxf reduces to (t 1) 

and (12). As we knowt these two clausest in turnt atate that the 
person z who asks the question: 1) believes that Ix and that the 
objects which are f are also g. 2) the person z does not know the 
exact objects which are I. The problem of well-foundedness Is 
reduced to the question whether these beliefs are reasonable. In 
the framework of our poor language It Is not possible to describe 
reasonableness of corroboration of hypothesest etc. Theret In 
order to point to ways of arriving at a solution, we have to 
resort to the notion of proof. This notion (notions) is well 
defined and well known. But we ought to bear in mind that a more 
realistic solution will be possible only if instead of the notion 
of proof the more general notion of corroboration or argument is 
introduced. 

2. In order to find out whether the questions posited by 
person z are well- founded we must examine the beliefs of this 
person in regard to their reasonableness. In the case of 
questions of the form r? I,.) [fxf person z believes that 

X. V (fx) " A (fx => gx) • • 
and cannot tell what object a. b. c.... satisfies Ix. There is 
uncertainty as to 

Y. fa. lb. fc, fd .... 

The question asked by z is well-founded if X has some proof (cor
roboration) and no member of the series Y has a proof. Unfortu
nately. this general ascertainment has many ramifications. First 
of all. we have to settle the problem of the bases of the proofs 
for X. Secondly. so far we have deliberately not explained what 
Is meant by ·X has a proof·. Is It to be understood in the sense 
it is used in methodological proof-theory? Or does It mean that 
person z knows such a proof and X has proof from the standpoint 
and knowledge of person z? Or can this phrase be taken to mean 
that the proof of X has actually been performed by somebody? Or, 
finally. does it point to the fact that the proof Is actually 
performed and generally known? 
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Similarly, different views are connected with well-founded
ness of Y. As was already mentioned, lack of belief in Y is 
well-founded if Y has no proof. Once more, we can ask what was 
taken into account here. It is possible that on the basis of one 
set of sentences (and one set of rules of Inference) Y cannot be 
proved, while It can be proved on the basis of another set of 
sentences? The set of sentences which Is the basis of the lack of 
proof is to be fixed and it Is to be identical with the set which 
makes the proof of X possible. Possibly, there is no proof of Y 
(in the sense of proof theory) on the basis of the whole set of 
true sentences, which are expressible In the language of the 
question. But there may be such a proof but It has not been 
performed by anybody, Including z who asks the question. It may 
be that the proof has been performed but it has not been 
presented to person z; it is also possible that the proof has 
been performed but it has not been presented to a group of people 
including z who is a member of this group. Perhaps z knows the 
proof but his scientific environment does not know it. 

It is obvious that we get a whole range of well-foundedness 
concepts if we consider all these possibilities. Only some of 
them can be presented here. 

3. I. Let us assume that 

t. The question (a) r? (g'" [fxf is cognitively 
motivated for z. Automatically, the question Is 
admissible for z and if so, then (11) and (2) are 
true. This being the case the question Is 
weJl- founded In the sense I If: 

2. T is the set of true sentences which are expres
sible in the language which Is couched. 

3. There Is a proof of V (fx) " A (fx ~ gx) on the 
basis of T. • • 

4. For all a: there is no proof of fa on the basis of T. 

5. For all a: fa is couched in the language of sen-
tences T. 

The sentences fa are Independent from the set 01 true sentences. 
The sentences fa are obviously false and are possible answers to 
(a). Thus questions without possible true answers are not well
founded In sense I. 
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II. Once more let us assume that 

1. r?" (II") [fx]' Is cognltively motivated for z. Then 
the question Is well- founded in the sense II if: 

2. S is the set of principles of an empirical theory 
which is believed in the community C. 

3. There is a proof of V (fx) " /\ (fx => gx) on the 
basis of S. • • 

4. For all a: there is no proof of fa on the basis of S. 

5. The sentences fa are worded In the language of the 
set S. 

It seems that sentences fa, which possibly can be true, are 
falsifying instances of the theory. 

III. In case 1. is true the question is well-founded in the 
sense III if: 

2. S is a set of principles of a theory (not neces
sarily an empirical one) 

3. There is a proof of V (fx) " /\ (fx => gx) on the 
basis of S. " " 

4. For all a: there is a proof of fa on the basis of S 
but the proof is not presented to anybody. 

5. The sentences of a are worded in the language of S. 

Possibly the great problem of Fermat Is well- founded In this 
sense. 

IV. In case 1. Is true and similarly 2. and 3. of III and 

4. For some a there is a proof of fa on the basis of S 
but the proof is not presented to anybody with the 
exception of the person who discovered the proof. 

5. The sentences fa are worded In the language of S. 

If Fermat had succeeded In finding the proof of his great 
hypothesis, It In sense IV in which his problem is well- founded. 

From among the variety of further senses of well-foundedness 
let us cite only two without any comments. 
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V. 1. Question (ot) is motivated for z. 

2. S is the set of principles of a theory accepted in 
the community C (the members of the community 
believe In S). 

3. There Is a proof of V (fx) " 1\ (fx => gx) on the 
basis of S and nobody is presented with this proof 
- it is not discovered. 

4. For some a there is a proof of fa on the basis of S 
but the proof is not presented to anybody - It is 
unknown. 

5. As above in I - IV. 

VI 1. Question (ot) is motivated for z. 

2. As above in V. 

3. There is a proof of V (fx) " 1\ (fx => gx) on the 
basis of S and this proof is p~esented by members 
of community C to person z. 

4. For some a: there Is a proof of fa on the basis of 
S but the proof Is not presented to anybody of the 
community C. 

The adduced examples show the way how to construct 
successive concepts of well-foundedness. The basic sentences may 
be given logically, presented or not presented, believed or not 
by z or by a community. The proof of V (fx) " 1\ (fx => gx) may be 
given logically and presented or not· to z 0; to a community. 
Similarly with the fourth clause. A new numerous set of notions 
of well- foundedness comes into existence when the notion(s) of 
proof is substituted by different concepts of corroboration or 
argument. So far we have considered only well-foundedness of 
cognitive questions. Well-foundedness of rhetorical, examination 
and deliberative questions reduces to the problem of the founda
tion of the belief that they are or can be admissible. In the 
case of the rhetorical question: <Is It possible to deny that 
2+2=4?' all arguments show that for some people <Is 2+2=4?' is 
admissible. 

4. The considerations put forward are rather sketchy. 
would like to call attention to three Important points which call 
for further study. The variable x is typically ambiguous it 
ranges over sets of different syntactical categories. In this 
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paper the problem of the grammar of the language in which the 
questions are worded was carefully omitted. As a consequence 
nothing was said about how many and what kinds of syntactical 
categories are possible In language of the questions. In fact, we 
had the natural language In mind and its categories and grammar 
are not well discerned. 

The notion of presentation is very important in these 
consideration. It deserves a thorough analysis. The notion of 
belief - the weaker one which was introduced here - depends 
heavily on the notion of presentation and is also worth a 
detailed study, as only the stronger concepts of belief were in 
the focus of interest. 
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THE LOGIC OF TYPES 

O. INTRODUCTION AND PRELIMINARIES 

By the logic of types (Tl) we mean systems of type 
transformation. The formulae of these systems are simply types or 
type transformation rules. For example, the system introduced by 
Ajdukiewicz (1935) (under the influence of Lesniewski's doctrine 
of semantic categories) employs the schema: 

(A.]) (abla ... b, 

which can be interpreted as a law or rule of type reduction. The 
much stronger system of Lambek (1958) also admits the schemata: 

(1) 

(2) 

(ab)(ca)'" (cb) (rediscovered by Geach 1968), 

(ab)'" «c;a)(cb», 

and many others. The system of van Benthem (l98la, 1985) affixes 
to the latter: 

(3) a .... «ab)b) (Implicit in Montague 1973). 

Notice that, according to (2), each functor of type (ss) Is 
also of type «ns)(ns)). For instance, negation is a sentence
forming functor, but It can be regarded as a predlcate- forming 
functor as well. The basic type of a quantifier is ((ns)s) (as in 
VxP(x». By (2), 1t expands to «n(ns»(ns» (as In VxP(x,y)), to 
«n(n(ns)))(n(ns))) (as In VxP(x,y,z», and so on (see Levin 1982 
who uses (1) Instead of (2». Due to (3), each Individual name 
(type n) can be lifted up to the type of nominal phrases ((ns)s). 

Systems of n play a fundamental role in theory of catego
rial grammars, a logically oriented branch of mathematical lin
gu�stics. From the lIngulstlcal point of view, a natural seman
tics for them is an algebraic semantics, based on residuated 
semigroups (Buszkowski 1982, 1985, 1985a). A long proof-theoretic 
tradition suggests another semantics, involving typed lambda 
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calculus. For example, van Benthem (198la) proves that the tYJ>e 
transformations derivable in his system are precisely those which 
can be defined by means of a limited class of typed lambda terms. 
In fact, the very idea of this correspondence was implicit in 
Cresswell (1973). As is well known, typed lambda calculus is 
naturally modelled by Cartesian closed categories (Scott 1980); 
in a sense, systems of typed lambda calculus are simply 
equivalent to Cartesian closed categories (Lambek, Scott 1984). 
Accordingly, TL may also be viewed as a logic of these 
categories, which deals with some universal arrows and 
transfo.rmations. 

Beyond doubt, the subject-matters of TL are of great signi
ficance for the foundations of logic and linguistics. Their 
significance follows from the obvious role of types in logical 
syntax and semantics. On the other hand, not many studies of ge
nuine logical character have been devoted to the matters in 
question. Furthermore, they mainly focus on the linguistics side 
of TL (categorial grammars), just ignoring finer logical aspects. 
In the author's opinion, TL deserves a profound research from the 
stand-point of logic (for its position in logic see also van 
Benthem 1983. 1984. Buszkowski 1986a). Methodologically, It is 
rather close to abstract propositional logics (cf. Rasiowa, 
Sikorski 1963, Wojcicki 1984), but it calls for some special 
methods, for instance, of linguistic flavour. 

In this paper we consider several systems of 'fL, all related 
to that of Lambek (1958). The Lambek calculus will be denoted by 
L We distinguish some interesting supersystems and subsystems of 
L, among them the commutative L (CU, which amounts to the 
calculus of van Benthem (l98la)' The paper penetrates into the 
correspondences between TL and typed lambda calculus, different 
axiomatizations of systems of TL, and matrix semantics for TL. 

In section we establish a number of correspondences 
between systems of TL and classes of typed lambda terms. There 
are regarded non-directional, unidirectional, as well as bidirec
tional systems. However, w,e confine ourselves to product-free 
systems of TL, which correspond to the traditional versions of 
types and typed lambda calculus. 

Section 2 provides different axiomatizations of the systems 
distinguished in section 1. We consider Gentzen-style axio
matlzations (which yield decidability results), Hilbert -style 
ones, and linear ones. In particular, we show that CL admits no 
finite Hilbert-style axlomatization, though such an Bxiomatiza
tion exists for the closely related system CL.. These re.sults 
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possess a nice connection with lambda calculus. For instance, the 
class of terms corresponding to Cl cannot be generated by any 
finite family of term schemata (with application as the only 
operation). 

In section 3 we examine matrix semantiC-' for n. Precisely, 
the so-called e-free systems (as l, CL, etc.) require modified 
matrices, where instead of a distinguished subset one uses a 
distinguished binary relation. We prove a number of repre
sentation, completeness, and adequacy theorems. For example, such 
systems, as L, L., Cl, CL. are shown to admit no finite adequate 
matrix, though Land CL possess the finite model property. 

Many results of this paper are less or more akin to earlier 
ones. Those from section 1 generalize the afore-mentioned theorem 
of van Benthem (1983a). Section 2 refers to the Gentzen-style 
axiomatization of L given by Lambek (1958) and the axiomatization 
of L by -cancellation schemata- considered by Cohen (967), and 
Zielonka (1981). In section 3 we widely employ the author's 
earlier results on algebraic semantics for L. 

Below we recapitulate some basic notions of TL. Our mathe
matical terminology and notation Is rather standard and need not 
be explained. 

We fix a denumerable set Pr, of primitive types. The set Tp, 
of types, is defined by the inductive clauses: 

(i) Pr S; Tp, 

(m if a,beTp then (ab)eTp. 

The letters a, b, c (p, q, r) are to denote (primitive) types, 
and X, Y, Z finite strings of types (e stands for the empty 
string). Expressions of the form X~a are called arrows. An arrow 
of the form a-+ b is said to be simple. By the complexity of a E Tp 
(c(a» or an arrow X~a (c(X-+a» we mean the total number of 
primitive types occuring in it. The order of aeTp (o(a» is a 
non - negative integer, defined by the following Induction on c(a): 

(0.1) o(p) .. 0, for pePr, 

(0.2) 

and we set: 

(4) 

o«ab» .. max(o(b),o(a)·t-\), 

o(e) = -1, 

o(al ... an ) = max o(aJ), "J'n 
o(X-+ a) = max(o(X).o(a». 
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For all a and X. type (X.a) is defined by induction on the 
length of X as follows: 

(e.a) = a. 
(5) 

(Xb.a) ~ (X.(ba». 

Notice that for each type a there are unique p E Pr and X. 
such that a = (X.p) (p is called the head of a). Also observe 
that: 

(6) o«X.p)) = o(X)·t-1. 

The Ajdukiewicz. calculus admits (A.1) and: 

(A.OJ a .... a. 

as its axioms, and: 

(CUT) XaZ .... b and y .... a yield XyZ .... b. 

as its only inference rule. We denote this system by Ar (the 
reason for the superscript r will be provided later onl. We write 
I-"r X .... a if X .... a is derivable in Ar. and similarly for other 
systems. By affixing to N the rule: 

(R.l) Xa .... b yields X .... (ab) (X"# e). 

we obtain the right -directional fragment of L (P). Verify that 
(1) and (2) (but not (3)) are derivable in Lr. CL equals Lr + 

(3). CL is commutative. which means that it admits the rule: 

(COM) Xaby .... c yields Xbay .... e. 

and. consequently. a 1 ••• an .... b I-CL all ... a ln .... b. for every 
permutation i1 ••••• in of 1 •...• n. (Given a calculus C and a 
set of arrows R, R I-c X .... a means. as usual. that X .... a is 
derivable from R in C.) The commutativity of CL has been shown by 
van Benthem (1983a) , but his axiomatlzation of CL Is richer than 
ours; so, we give new proof. 

First. we show that: 
(aCbe)) .... (b(ae». 

is derivable in CL. Both V and CL admit the rules: 

(EXP.1) 

(EXP.2) 

a .... b yields (ca)'" (eb). 

a .... b yields (be)'" (ae). 

Using these rules together with (2) and (3). we can get in CL: 

(8) (a(be»'" «(a(be»(ae»(ae»-+ «(be)e)(ae»-+ (b(ae». 

hence I-CL (7). by (CUTl. 
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To derive (COM) assume XabY ... c. By (R.1), we get Xab"'(Y,c)= 
= c'. Suppose X .. e. Then, (R.]) yields X ... (ab,c'), hence we ob-
tain X ... (ba,c'), by (7) and (CUT). Using (A.t) and (CUT) we come 
to Xba ... c', and finally, to XbaY ... c. Suppose X = e. Then, ab ... c' 
yields a-+(bc'). By (3), (A.]), and (CUT), the schema: 

(A.l' ) a(ab)-+ b, 

is derivable in CL, hence we get b(bc')-+c', which yields ba-+c', 
by (CUT). Finally, using (A.t) and (CUT>, we come to baY-+c. 

Notice that Cl also amounts to (A.O) T (A.t') T (CUT) T 

(R.D. For, (R.]) transforms (A.t') into (3), and (3), (A.t') and 
(CUT) yield (A.D. 

By (R.t.) we denote the rule (R.t) with the constraint X .. e 
dropped. Systems L~ and CL. result from substituting (R.t.i for 
(R.t) In Land CL, respectively. Both L~ and CL. but neither P 
nor CL produce derivable arrows of the form e ... x, which we write 
-+ x. Furthermore, L~ (CL.) is a non -conservative extension of P 
(CLl, since, for instance, «qq)p)-+ p is derivable in L~ but not 
CL. (If we claim underivability, we employ decision methods for 
these systems, which will be considered in section 2.) 

The systems described above are restricted to non-directio
nal types. The set Tp*, of bidirectional types, Is defined as Tp 
with (ii) replaced by: 

(ii*) If a,b E Tp* then (ab),(ab)* E Tp*. 

All the technical notions defined above preserve their sense for 
bidirectional types. Only (5) must be supplemented by: 

(5*) 
(e,a)* = a, 

(Xb,a)* = (b(X,a)*)*. 

The bidirectional version of N (A) uses bidirectional types 
and the additional schema: 

(A.t*) a(ab)*-+b. 

Actually, this version of N is due to Bar-Hillel (1953), 
Bar - Hillel et .ill. (1960). Similarly, by affixing to A (R.1) and: 

(R. t*) aX ... b yields X-+ (ab)* (X" e), 

we get the Lambek calculus (Ll (L amounts to the product - free 
fragment of the system of Lambek 1958). L. arises from L in the 
same way as l~ from P. For aeTp*, aO denotes the non-directional 
type which results from dropping all stars in a, and we set: 
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(9) 

L (L.) can be treated as a system intermediate between Lr 
(L~) and CL (CL.), since the following conditional holds true: 

(10) if '-L X~ a ('-L X-. a) then '-CL Xo~ aO ('-CL X°-. aO). 
• • 

If should be noticed that Nand Lr coincide in the scope of 
arrows of the form X -. p, where o(X) t;; land p E Pr, and similarly A 
and L (Buszkowski 1982). In this scope, CL yields precisely the 
arrows y-. p such that, for some string X, '-AT X-. P and Y is a 
permutation of X. Consequently, the generative capacity of CL 
reaches all commutative closures of context-free languages, hence 
it allows some non-context-free languages (Buszkowski 1984, van 
Benthem 1985). 

Types can be translated into purely implicational proposi
tiona I formulae. Precisely, for aETp, we define a formula Fea) by 
the inductive clauses: 

(i) Fep) = p, for pE Pr, 

(ii) Fe(ab)) = (Fea)-' Feb)) .. 

We also set: Fea) = Feao), for a E Tp*. One easily verifies that 
all the systems distinguished above are in fact subsystems of 
positive Intuitionistic logic. Precisely, if f-c X-. a, where C Is 
any of those systems of TI, then FeX) .- Fea), where FeX) stands 
for the set of all F(,!l), for El appearing in X, becomes a valid 
inference pattern of this logic. Clearly, (A.l), (A.t'), (A.t*) 
correspond to Modus Ponens, (1) is the rule of transitivity, 
(R.t) and (R.t*) (also (R.t.) and (R.t!» represent some forms of 
the deduction theorem, and so on. So, identifying types with 
formulae and arrows with rules, we see that systems of TI, as 
presented above, are systems of rules rather than formulae. Such 
an approach to TI appears to be much expedient for various 
purposes. 

1. Tl VERSUS TYPED LAMBDA CALCULUS 

To each type aeTp we ascribe a denumerable set VAR., of 
variables of type a, to be denoted by x., y,., z,., etc. The set 
lER, of typed lambda terms (shortly: terms), is the union of 
pairwise disjoint sets lER,., of terms of type a, being defined by 
the follOWing induction: 
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VAR. Si TER., 

if teTERc •• , and ueTER. then (tu)eTER., 

if x. e VAR. and t E TER. then Ax •. t e TERc •• ,. 

With each term t we USCIClate a .string var(t), containing 
all the free occurencu of varlabla in t in the order of their 
appearance in t. We give an Inductive definition: 

(var.n 

(var.2) 

(var.3) 

var(x.) • x., 

var«tu)) = var(t)var(u), 

var(Ax •. t)· the .string that raults from dropping x. 
In var(t). 

For teTER, by typ(t) we denote the .string of types which 
raults frem replacing In var(t) each variable by its type. 1be 
only type a such that teTER. will be denoted by TypCt). Finally, 
AIet), teTER, stands for arrow typCt) .... TypCt). Given a set T'TER, 
we set: 

Ar(T) = (Ar(t): ten. 

Let C be a system of TL (whose formulae are arrowa), and let 
T, TER. We say that C fa complete with respect to T (T-complete) 
or T correaponds to C if the arrows derivable In C are precisely 
those from Ar(T). A& observed as far back as Curry "t. al. 
(1958), the full claaa TER correaponds to the purely 
implfcational intultioniatlc logic. Van Benthem (l983Il) provu 
that Cl fa complete with reaped to the claaa lERcL of all terma, 
fulfilling the following constraints: 

(C.t) each subterm contains a free variable, 

(C.2) no subterm contains more then one free occurenee of the 
.same variable, 

(C.3) each occurenee of the lambda abstractor binds .some 
variable within Its .scope. 

We consider claaaea ~, Ci Si {t,2,3}, of all the terms ful
filling the constraints (C. I), for ieCi. So, TER.· TER and 
TER'I3 = lERc:L (we write 123 for {t,2,3}, and similarly for other 
cases). TER3 Is the typed version of Clurch's firat concept of 
lambda terms (Church 1941). 

Our goal fa to find systems of TL, complete with reapect to 
theae classes of terms. The most natural way seams to proceed as 
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followa. First, we look for systems whose derivation treea 
strictly harmonize with the structure of terms from the cor
responding classes. We omit standard definitions of a derivation 
tree of arrow X ... a In a system C and the tree of subterms of a 
term. Now, a system C is said to be compatible with a class 
T s; TER if the following conditions hold true: 

(l) for any teT, one obtains a derivation tree of Ar(t) in C, 
after he has replaced in the tree of subterms at teach 
node u by the arrow Ar(u), 

(li) if t-c X ... a then there exists a derivation tree of X ... a In 
C, such that, for some UT, fulfilling ArCt) .. X ... a, this 
derivation tree results from the tree of subterms of t In 
the way Indicated in (I). 

It Immediateiy follows from this definition that: 

1.1 Le ...... 
If C is compatible with T, and T Is closed under subterms, 
then C is T -complete. 

All the cla.sse.s at terms we consider In this paper are 
closed under subterms. So, to find a system complete with respect 
to such a class T It suffices to formulate axioms and rules, 
strictly mirroring the principles of construction for T, and 
next, to look for .some equivalent axlomatizatlons. 

Consider the rules: 

(R.o) X-+(ab) and Y"'a yield XV ... b, 

(R.t') XlaX2a ... XnaX...l ... b yields XIX2 ••• Xn+I"'(ab). 

The scope of (R.t') will be limited by the constraints: 

(c.t) XIX2 ••• Xn+1 ~ e, 

(c.2) n '" t, 

(c.3) n ~ (I.e. one excludes: XI'" b yields XI'" (ab». 

For each G s; (t,2,3), by (R.t'G) we denote the rule (R.t') 
restricted by all the constraints (c.O, for i eG. Thus, for in
stance, (R.t' ,,) is simply (R. t '), (R. t '123) amounts to: 

(2) 

and .so on. We also define Cc = (A.O) 1- (R.O) 1- (R. t'G)' for all 
G s; {t,2,3). 
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1.2 Theorem. 
For each G!; {1,2,3}, the .system Ceo is compatible with the 
class 1'ERc;. 

Proof. Fix G!; {t,2,3). Let tel'ERG• If t is a variable, then 
Ar(t) Is an axiom (A.C). If t = (u,uz), then Ar(t) results from 
Ar(u,) and Ar(ua) by (R.O). If t .. Ax •. u, then Ar(t) results frOOl 
Ar(u), by (R.t' G)' This yields the clause (i) of the definition 
of compatibility. To prove (II) we proceed by induction on deri
vat�ons of X .. a In Ceo. For an axiom a .. a, we get a .. a - Ar(x.), 
where x. is an arbitrary variable of type a. Assume that X ... a re
sults from XI" (ha) and Xa" b by (R.O). By induction, we find 
terms UI,uael'ERG, such that Ar(u,) = X, .. (ha), Ar(ua) = Xz ... b, 
and the trees of subterms of u, and ua fulfil (U). We can change 
the free variables In u, and ua so to obtain (u1ua)eTERc.. Conse
quently, the term t .. (ulua) fulfils (li) with respect to X"'a. 
Finally, assume that X ... a results from Y"'c by (R.t'G)' Then, 
a = (be) and Y .. Y,bYab ... YnbYn+l ... c, where Y satlsfle.t the 
constraints Imposed on (R.t' G)' Again, by induction, we find a 
term ueTERG whose tree at subterms fulfils (li) with respect to 
Y ... c. After Identifying, If necessary, some tree variables of ty-
pe b In u, we get t .. UlI.ueTERc., typ(t) .. YIYa ... Yn+1 .. X, and 
the tree at subterms of t yields a derivation ot X ... a in Ceo. The 
proof is finished. 

We wish to compare CG's with the systems of TL Introduced .. 
in the preceding section. For a f Tp, by a we denote a string of 
a's, and by l(a) the length of a. Consider the rule: .. 
(R.to) Xa .. b yields X .. (ab), 

and the constraints: 

(c. to) 

(c.2°) 

(c.30) 

X " e, .. 
ICa) " t, 
lea) ) 1. 

(R.tO 0)' where G!; {t,2,3}, stands tor the rule (R.tO) 
restricted by all the constraints (c.l°), for Ie G, and by CLG we 
denote the system Ar + (3) + (R.tO 0) «3) refers to section 0). 
Clearly, CL'a3 .. CL and CL23 .. CL •. We prove: 

1.3 Lemma. 
For all G!; {t,2,3), and for all arrows X .. a, I-CL X .. a itt 

G 
I-c X"a. 

G 
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Prool. Fix G s; U,2,3). By induction on derivations, one 
easlJy proves that Cc Is closed under (afT). Using (R.O) and 
(A.O), we derive (A.t) in Cc, hence also (3) (from section 0), by 
(R.t'c)' Since (R.toG) Is an instance of (R.t'c), we infer that 
"'CL X~ a entalls ... c X~ a. To show the converse observe, first, c G 
that CLc admits (R.O) (use (A.t) and (aTf)). In the same way as 
for e. one proves that CLc ai.so admits (COM) (In fact, if t tG 
then the proof goes more smoothly!), and consequently, It must 
admit (R.l'c), which finishes the proof. 

From 1.1 - 1.3 we infer: 

1.4 Theorem. 
For all G s; {1,2,3}, Cleo Is TERc-complete. 

In particular, we have given a new proof of van Benthem's 
result for CL. Notice, furthermore, that CL" provides some 
axiomatization of purely impllcational intuitionistic logic. 
Accordingly, the commutative systems of TL are certain subsystems 
of this logic, corresponding to .some natural constraints on the 
structure of terms. 

The extensions of CL we have described 
some Interesting applications in categorlal 
for Instance, a grammar which admits 
assignment: 

above may also find 
grammar. Consider, 

the following type 

(3) Joan~ n, runs~ (ns), sprlngs~ (ns), and~ (ss,s). 

It based on N + (3) (from .sectIon 0), this grammar assigns 
type s to the sentence: 

(4) Joan runs and Joan springs. 

but even CL does not allow to accept: 

(5) Joan runs and springs. 

The latter sentence l.s nonetheless accepted by a grammar. 
based on CLI ,. For. the arrow: 

(6) (aa.b)~ «ca)(ca).(cb». 

Is derivable In Cll3 (use (R.t'13) to the AI'-derivable arrow 
(aa,b)(ca)c(ca)c~ b). hence (ss.s) can be expanded to 
«ns)(ns).(ns)) (see also Cre.sswell 1973 who points out this fact 
in the terminology of lambda terms). 

For any G. the .system e.G' though TERc-complete. is however 
not compatible with TERc. Of course. derivations In c:I..c do not 
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reflect trees of subterma. In particular. (arn corresponds to 
the substitution of a term for a free variable in a term. It 
would certainly be Interesting to examine the operations on terms 
corresponding to the rules of these syatema in detail, but we 
avoid this matter here. 

We shall briefly dlscu.s.s other systems of 11.. Clearly, Ar is 
complete with respect to the class of lambda -free terms (show 
that Ar yields the .same theorems as the .system (A.O) + (R.O), and 
the latter is compatible with this class). P Is complete with 
respect to the class TERL> consisting of all the terms which 
fulfil (C. n, (C.2) and: 

(C.3') each occurence ot the lambda abstractor binds the 
right -most occurence of a free variable withIn Its 
.scope. 

For, lr Is (weakly) equivalent to the system (A.O) + (R.O)+ 

(R.n and the latter Is compatible with TERL• Similarly, l! Is 
complete with respect to the class TERL • of all the terms 
fulfilling (C.2) and (C.3'). • 

To manage bidirectional systems we need a bidirectional 
version of typed lambda terms. The set TER*, of directional 
terms, is again the union of pairwise disjoint sets TER!. for 
a e Tp*. which are defined by the following Induction: 

(TER*,n 

(TER*.2) 

(TER*.3) 

VAR. S; TER!. 

If t E 1ER'1.It) (t e1ER!) and ueTER: (u e TER'1 ... ,*) then 
(tu) E TER: «tu)* E 1ER:). 

if x. E V AR. and t E TER: then Ax.,t E TER'1.", and 
A*.t eTER1.ltl*· 

As a natural semantics for TER consists ot Cartesian closed 
categories. TER* can be interpreted by means of biclosed monoldal 
categories (lambek 1958). In particular, we can employ a standard 
hierarchy of ontological categories (see e.g. Suszko 1958-60), 
but distinguish between a function tECAT,.It) and Its ·copy· 
f*ECAT,.It)*. linguistically. that means that we relativlze 
po&Sible designata to the actual syntactic roies of the 
expressions which denote them. 

All the notions Introduced above for TER admit an obvious 
extension tor TER* . This also holds for com.patlblllty, 
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T-completene&'l, and so on. let TERtt (TERtt) denote the clau of 
• all the directional terms fulfilling (C. 1), (C.2), and: 

(C.3*) each occurence of A (A*) binds the right-moat (left
most) occurence of a free variable within its scope. 

We prove: 

1.5 Theore •. 
l (l.) is TERtt -complete (TERr -complete). 

• • 
Proof. One shows that l Is (weakly) equivalent to the aystem 

(A.O) (for aeTp*) ... (R.ll ... (R.t*) ... (R.O) ... the rule: 

(R.O*) X ... a and Y"'(ab)* yield XV ... b. 

which is compatible with TERr. The e&e of L. can be treated in a 
similar way. 

Clearly. A ls complete with respect to the class of all 
lambda-free bidirectional terms. As for non-directional systems, 
we could consider extensions of l, corresponding to some wider 
classes of bidirectional terms. Since they behave quite analo
gously to the previous ones, we omit all details. 

rill now we have considered the language of typed lambda 
calculus. but not the very calculus (e.g. reducibility, equaU
ties, etc.). Of course, by regarding these matters we come to a 
more advanced level of n. In this paper we however neglect this 
direction of research in n except for some simple observations. 
Notice that the commutativity of the systems corresponding to 
such classes, as 1'ERc ' 05, is a consequence of the fact these 
classes contain terms which are not in normal form. For instance, 
(A.t'), which results from (A.n by (COM), equals Arm, where t 
Is the term: 

(7) 

whose normal form ls u - xc•ltJY.. and Ar(u) = (A.t>. As in 
semantics equal terms posses equal designata, we may suppose that 
just terms In normal form provide a semantically relevant variety 
of type transformations. Consequently, we should look for .systems 
of n, being complete with respect to some classes of terms In 
normal form. 

Consider, for instance, the cla.u N'TERc .. , of all the terms 
from JEReL which are in the weak normal form. One easily shows 
that the system N:l = (A.O) ... (2) ... the rule: 

(NR.O) XI'" a" "'J x.. ... a.. yield (al .. · Bn,blX, ... x.. ... b, 
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Ls compatible with Nt'ERCL• hence It Ls NTERcL - complete. NCl Ls 
closed. under neither (COM). nor (arl'), but, Interestingly, ..It 
completely determines CL, due to the equivalence: 

(8) "'CL a, ... an" b Iff. for some permutation I, •...• In 
of the sequence t .... , n. "'NCL a .... ai .. b. 

I, n 

The proof of (8) uses the fact that each typed term has a 
weak normal form. Since commutative systems seem rather strange 
from the point of v1ev of linguLstics. as they enforce us to 
accept every permutation of an accepted string of words, we 
suggest that systems like NCL, which lack that faflure, may 
deaerve a serious attention. 

2. AXIOMATlZABllITY PROBLEMS 

In thIs section we consider various axlomatlzatlons of 
systems of 11.. We begin frem the Gentzen-style ones. follOWing 
that given by Lambek (1958). 

We introduce a new rule: 

(R.2) XbZ"'c and Y .. a yield X(ab)YZ"'c. 

Denote GP = (A.D) + (R.t) + (R.2). We prove: 

2. t Lel8lDa. 
GP Is closed under (arT>. 
Prool. We must show: 

(1) if "'GL" XaZ ... b and "'GLr Y"'a then "'GLr XVZ ... b. 

We use induction on c(a). Let aePr. Then, (1) holds by a 
straightforward Induction on Glr -derivations of xaZ .. b. Let 
a .. (a,~). Again. we proceed by Induction on Glr-derlvatlons of 
XaZ ... b. The only non-trivial case Ls if XaZ ... b results from 
X~Z2" band Z,'" a, by (R.2) (so, z .. Z,Zz). We use Induction on 
GP -derivations of y .. a. Again, the only non-trivial case Ls If 
Y"a result.! from Ya\"'az by (R.t). Then. from XazZz"b and 
Ya\ .. ~ we obtain XYa,Zz"'b, hence with applying Z\ ... a, we come 
to XVZ\Zz" b. as desired (the final steps employ the first 
Induction on aa». 

Although the above lemma was essentially proved by Lambek 
(1958). we have given another proof which can easily be adapted 
for different systems to be considered in what follows. 
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2.2 Corollary. 
GP is weakly equivalent to P. 

Prool. Clearly, P admits (R.2) (use (A.1) and Carr», hence 
it Is supersystem of G[.r. Since (A.1) follows from (A.O) and 
(R.2). then - in the presence of 2.1 - we Infer that ~V X- a 
entails t-CLf X-a. Consequently. Lr and G[.r yield the same 
theorems. 

2.3 Theorem (essentially lambek 1958). 
P is decidable. 

Proot. Observe that in both (R.1) and (R.2) the conclusion 
has a greater complexity than the premIss(es). Then, G[.1' admits a 
standard ·proof-search- decision method. 

By Lr(R), where R Is a set of arrows, we denote the system 
resulting from P after one has affIxed to it all the arrows from 
R as new axioms, and similarly for other systems. We .shall 
describe Cientzen-style sy.stems equivalent to Lr(R)'s. First, 
observe that due to the equivalence: 

(2) 

every arrow is eqUivalent in peR) to an arrow of the form X .. P, 
pEPr. Accordingly, with no loss of generality we may assume that 
the arrow.s in R are in the latter form. To each arrow 
a, ... a.. ... p we ascribe a new rule: 

(3) 

Then, by G[.1'(R) we denote the system arising from G[.r after 
one has affixed to it all rules ascribed to the arrow.s from R. 
The argument given for 2.1 also yields: 

2.4 Le ... 
Gl. rCR) Is closed under (arr). 

As a re.sult, G[.r(R) and peR) are eqUivalent. For the case 
of a finite set R, consisting of arrows of one of the forms: 

(4) 

(5) 

G[.1'(R), hence also Lr(R), ls decidable. Arraw.s (4) correspond to 
production rules of phrue structure grammars. ConHquently, Lr 
can be treated as a decidable transformation sy.stem over phrase 
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structure grammars (Buszkowski 1987). On the other hand, (5) give 
rise to the rules: 

(6) Xq-+p yield.! X-+r, 

being some forms of deletion. Accordingly, sets R, containing 
both (4) and (5), correspond to so called generalized phrase 
structure grammars CGazdar et. al. 1985). As proved In Buszkowski 
(19818), for such sets R, the system Lr(R) is, in general, un
decidable. Precisely, every recursively enumerable language can 
be generated by some system at that torm. 

Quite similar results can be obtained for other systems of 
n. CI:l CGentzen-styJe form of CL) results from GP by affixing 
(COM) (Buszkowskl 1984). GL~ and CI:l. are almoat equal to GLr and 
CI:l, respectively, except for dropping X ~ e In CR. 1). To get Gl. 
and Gl. one has to expand Glr and Gl~, respectively, on 
bidirectional types and to affix the rule: 

CR.2*) XbZ-+c and Y-+a yield XYCab)*Z-+c. 

For systems Cla from section t. 
style systems result from <Xl. after 
(R.tOa ). Now, verity that 2.t - 2.3 
systems with essentially analogous proots. 

the corresponding Gentzen
one has replaced (R.t) by 
hold tor each of these 

In section 0 systems of n have been interpreted as 
subsystems at positive intuitionistic logic. Following this line 
we shall look tor HUbert-style axiomatizations of these systems. 
Such axiomatizations will be exemplified for Cl and CI •. 

We begin from Cl •. Since X-+a ~CL -+(X,a) and conversely. 
we can identity in CL. the arrow X-+a ':-ith the type (X,a) (then, 
several arrows are represented by the same type). By HCI... we 
denote the following system: 

(a. 1) (aa), 

(a.2) 

(a.3) 

(MP) 

((a(bc»(b(ac))), 

((ab)((ca)(cb))), 

(ab) and a yield b. 

Each type derivable In HCI... Is also derivable In CL.. For. 
~CL (a.n, by (A.O) and (R.t.) • (R.tO 23)' I-CL (a.2), by (7) 
(fro1n section 0) and (R.t.), ~CL (a.3). by (2) 'from section 0) 

• and (R.t.), and finally, (MP) is an Instance of (R.O). We show 
the converse. First, I-HCL (A.O), (A.t), by (a.t), and I-HCL (3) • • 
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(from .section 0), by (a.1), (a.2), and (MP). Obviously, HCl.. 
admits (R.t.) (both Xa~b and X~(ab) are represented by (Xa,b». 
It suffices to prove that HCL. admits (a.rn. By (a.2) and (MP), 

we get: 

(7) (ab,c) I-HCL (ba,c). 
• 

Since HCL. admits (EKP.1) (use (a.3) and (MP», (1) can be 
generalized to: 
(8) (Xab,c) I-HCL (Xba,e), 

• 
which means the same as: 

(9) (XabY,c) I-HCL (XbaY,c) . 
• 

Consequently, HCL. admits (COM). Now, assume that xaZ~ b, 
and Y~a hold true. By (COM), we get aXZ~b, which amounts to 
(a(XZ,b». By (EXP.1), we infer «Y,a)(YXZ,b», which together 
with (Y,a) yields (YXZ,b), by (MP). Finally, (XYZ,b), which 
amounts to XYZ~ b, holds by (COM). We have proved: 

2.4 Theorem. 
0.. and HCL. are strongly equivalent, that means, they 
provide the same consequence relations. 

In a similar way we find HUbert-style forms of systems Cla, 
CL3, and CL. (notice that 0.. = Cl.a3). Precisely, to obtain HCLa 
one affixes to HCL. the axiom-schema: 

(to) 

and HCL3 employs: 

(11) 

(b(ab», 

«aa,b)(ab»; 

finally, HCL" requires both (to> and (11). The corresponding 
equivalence results can easily be obtained in the way sketched 
above. 

A different situation arises for systems which do not allow 
derivable arrows of the form .... a. Then, we cannot identify arrow 
X .... a with tYP8 (X,a). Instead, we look for Hilbert - style systems, 
employing arrows X~ a, that means, operating on inference sche
mata rather than formulae. A system of this form wlll be provided 
for CL-

By HCL we denote the system axlomatized by (A.O), (A.n (now 
standing for (MP», (2) and (3) (from .sectIon 0), together with 
rules (arr), (EXP.n and (EXP.3). 
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2.5 Le..a. 
HCl is closed under (R.t). 

Prool. By Induction on derivations in HCl we prove that: 

(12) If I-HCL Xa .. b then I-HCL X .. (ab), provided X ~ e. 

If Xa .. b amounts to (A.t) then X .. (ab) equals (A.O). For the 
remaining axioms of HCl, we have X = e, and similarly for the 
case If Xa .. b arises by (EXP.I) or (EXP.2). Assume that Xa .. b 
arises by (arr). We consider three cases: 

(I) X· XIXaX3 and the premis.ses of (arr) are XlcX~" b and 
Xa .. c. Then, I-HCL XlcX3 .. (ab), by induction, hence I-HCL X .. (ab), 
by (OIT). 

(II) X = XIKa, where Xa ~ e, and the premisses are Xlc .... band 
Xaa .. c. Then, I-HCL Xa .. (ac). by induction. If XI" e then also 
I-HCL XI" (cb), by Induction, hence I-HCL XI" «ac)(ab)), by the 
axioms and (arr), which yields I-HCL XI(ac}" (ab), by (A.t) and 
(arr>. If XI = e, we also get I-HCL XI(ac) .. (ab), by (EXP. t). From 
I-HCL XI(ac) .. (ao) and I-HCL Xa" (ac) we infer I-HCL X .. (ab). 

(III) The premis.ses of (arr) are Xc .. b and a .. c. Since X" e, 
we get I-HCL X .. (eb), by induction, and I-HCL (eb)" (ab), by 
(EXP.2). Consequently, t-HCL X .. (ab) holds by (arr). 

2.6 Corollary. 
For all arrows X .. a, t-HCL X .. a iff I-CL X .. a 

As a matter of fact, the role of (EXP.1) and (EXP.2) can be 
reduced to that of axiom-forming rules. We define a sequence Cn , 

n ) 0, of sets of arrows, by the following recursion: 

(f) Co consists of all arrows (2) and (3) (from section 0), 

(11) Cn+1 consists 01 all arrows (ca)" (eb) and (be) .. (ac), 
such that a .. beCn• 

We also define e (resp. c;) as the union ~ all C. (resp. all c., 
such that m' n). Clearly, the arrows in C are derivable in a.. 
By HCL (resp. HCLn ) we denote the system resulting from affixing 
to Ar all the arrows from e (resp. en), as new axioms. One easily 
checks that HCL is closed under (EXP.I) and (EXP.2), hence it la 
(weakly) equivalent to HCL. Accordingly, HCL is equivalent to an 
axiomatic extension of Ar. Since e contains Infinitely many 
axiom-schemata, I-CL ia an Infinite extension 01 AF. We .!hall 
prove that HCl Is equivalent to no finite axiomatic extension of 
Ar, i.e. no extension of Ar by a finite number of axiom-schemata 
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(or: a finite number of axioms and the rule of subatltution). Our 
argument follows a similar one. given by Zieionka (1981) for L. 
but involves some new details. 

It suffices to show that each system H::Ln~ for n > O. la 
properly weaker then HCl. For. assume that the above holds true 
but HCl la finitely axlomatlzable over Ar by. say. the axiom
schemata 51 •••.• ~. Clearly. each of the.le schemata must be 
derivable In HCln, for some n) 0, hence they all must be so. 
Consequently, HCl la equivalent to HCLn• against our a.ssumptlon. 

Observe that a-b Is derivable In H::Ln Iff there are types 
a = 80, a., ... , a. .. b (m ~ 0), such that a.-t-a.eCn. for all 
1 , I , Ill; the sequ~ 80. a., ...• ~ Is called a linear 
derivation of a- b in HCLn. For a- beC. the only n ) 0 such that 
a-beCn Is called the rank of a-b. and by the rank of a linear 
derivation we mean the sum of all ranks of the (occurence.s of) 
axioms involved in this derivation. 

2.7 I.e ... 
Let 80, a., ... , ~ be a linear derivation of minimal rank 
of ao-a. in HCLn • such that a." (ap), where pePr. and 
a.-I-a.tCo. Then. this derivation uses no axiom from Co at 
all. 

Prool. We proceed by Induction on m. For m" 0 and m - 1~ 

the thesla Is obvious. Take mill 2. Since a.-I-a.-Co and no axiom 
In C has the form c-p (I). then a.-I" (bp) with a-beCn' We 
show that a.-a-a.-ltCo. Assume the contrary. Then. b = (a.-aP) 
and the latter arrow Is an Instance of (3) (from .section 0). We 
consider two cases: 

(J) a ... be Co. Then. a.-a = (ap) .. a.. against the assumption 
of minimallty. 

(II) a-btCo. Then. a • (cp) with a._a-ceC. hence we get: 

(13) 80. a ••...• a.-a, c, (Ccp)p) .. a,.. 

being a linear derivation of 80-a. in HCLn with a rank less than 
that of the Initial one. against the assumption of mlnimaUty. 

Consequently. the sequence 80. at •...• a.-I fulfils the as
sumptions of our lemma. hence it employs no axiom from Co. 
Evidently. the same must hold for 80. a ••... , a.. 

We define types a", bn• n ) O. by the following recursion: 

(14) ao = p, bo = «pq)q), where p.qePr. p " q. 



198 

(15) 
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a_I • (bnP), b_1 - (BnP), If n Is even, 

S-I - (bnq), b_1 - (anq), If n Is odd. 

We set HCL_ t = Ar. 1bere holds: 

2.8 Le1l8B. 
For all n f) 0, an .... bn is derivable In HCLn but not HCLn_,. 

Prool. Obviously, Bn .... bn'i!c,., for all n ~ O. By Induction on 
n ~ 0, we show that an .... bn is not derivable In HCLn-,. It Is ob
vious for n = o. Assume n > 0, and suppose that an .... bn is 
derivable in HCLn_,. Let an = Co, Ct, ... , c., • bn be a linear 
derivation of Bn"~ in HCLn_" having the minimal rank. By (14), 
(15), bn cannot be the right type of any axiom from Co, hence 
Co, CI, ••• , c., fulfils the assumptions of 2.7. Therefore, no 
axiom of rank 0 appears in this derivation, and consequently, 
an-I .... bn- t Is derivable in HCLn-a, against the inductive 
hypothesis, which finishes the proof. 

2.9 Tbeore •. 
HCL cannot be axiomatized over Ar by any finite collection 
of axiom -schemata. 

By a term-schema we mean the totality of all typed 
lambda -terms that result from a single term from TER by means of 
substitution of types for primitive types in this term. As a 
consequence of 2.9, we obtain: 

2.10 Tbeore •. 
The type transformations definable by the terms from TERcL 
can be generated by application from no finite famUy of 
term-schemata. 

Prool. Assume the contrary. 1ben, the arrows derivable In Cl. 
are provided by a system, based on (R.O) and a finite number of 
Cl. -derivable axiom-schemata. Since HCL admits (R.O), It follows 
that HCL allows an axiomatlzatlon by a finite collection of 
axiom-schemata, which contradicts 2.9. 

On the other hand, the axiom-schemata of HCL. are precisely 
the principal type-schemata of combinators I, B, C and (Curry and 
Feys 1958), hence TER2,3 Is generated by these comblnators (In 
the above sense). 

A& concerns non-commutative systems, neither P nor L admit 
a finite Hilbert-style axiomatizatlon (Zlelonka 1981 and modi
fication of the above argument). Thia problem remaina unaolved 
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for l. (recently W. Zieionka communicated a negative solution for 
l!). 

On the basfa of (A. 1), (arT), and (R.1), the arrow aX ... b Is 
equivalent to a ... (X,b). Consequently, all the contents of such 
systems, as P, l, l., 0., 0.., etc. can be expressed by arrows 
of the form a ... b. By a linear system we mean a system which 
operates on simple arrows and uses the only rule: 

a ... b and b ... c yield a ... c. 

Clearly, a ... b Is derivable In a linear system C if and only 
If there fa a linear derivation In the sense Introduced above 
which employs the axioms of C. One easily checks that C ~ (arro) 
provides a linear system, equivalent to Cl. A linear axiomati
zatlon of P consists of all the arrows arising from (2) (from 
section 0) by means of (EXP.1) and (EXP.2). linear systems, cor
responding to l!, 0.., etc., require additionai arrows of the 
form ... a. For Instance, to obtain a linear axiomatization of Cl. 
It suffices to add the schema ... (ea) to C. We leave to the reader 
further exercises In this matter. 

l. MATRIX SEMANTICS 

A (logical) matrix fa an algebra with a dfatfngulshed subset 
(the set of designated elements). As is well known, matrices 
form a fundamental semantics for sentential logics which has been 
thoroughly Investigated by I:.ukaslewlcz and Tarsld (1930), 1:.0& 
(1949), Kallcld (1950), Suszko (1957), and others (especially in 
the group conducted by Professor Ryszard WOjcicki, see WOjcicki 
1984). 

In this section we establish some basic properties of 
matrices corresponding to various systems of U. It Is impossible 
to regard all interesting systems and variants of semantics. 
Therefore we shall merely illustrate the matters by typical 
examples. 

First of all, we observe that the above notion ot matrix Is 
not adequate for such systems, as e.g. P, l, Cl, which employ 
formulae at the torm X ... a, but not ... a. Thue systems need a con
cept of matrix which allows a direct interpretation ot ... , so, 
Instead of a set of designated elements one considers a distin
guished binary relation on the underlying algebra. Matrices of 
this form provide, In a sense, an Interpretation of entailment 
rather than validity. On the other hand, systems l!, l., Cl., 
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etc. can be referred to the lJ.!ual matrices. To avoid conflJ.!ions 
we use the term relational matrices (R-matrices) for the modified 
matrices. 

We foclJ.! on R-matrices M = (UN,I,'), such that u" (the 
universe of M) is a nonempty set, I is a binary operation, and 
, is a binary relation on UN' Given an assignment f: Pr - u", 
the value of f for type a (f(a» is defined according to the 
inductive clalJ.!e: f«ab» = feb) I f(a). We say that an arrow 
a~ b is satisfied by an assignment f if f(a) , feb). Given a 
class K of R-matrices, a set R of arrows, and an arrow ~ b, we 
say that R K-entaiis a~b if, for every MeK, and all asslgnments 
f: Pr - UN' a ... b is satisfied by f whenever all the arrows from 
R are so (sometimes, we lJ.!e more general notion, where K is a 
class of assignments: if 0 K - entails a ~ b then a .... b is said to be 
K-valld). 

We shall describe a class of R-matrices which Is strongly 
adequate for Lr, that means, the entailment with respect to this 
class coincides with the consequence relation for Lr. It Is 
expedient to identify arrows aX .... b and a ... (X,b). By Ko we denote 
the class of all R-matrices M = (tJ",I,:(), such that :( ls a 
partial ordering on UN' and, for all x,y,zeu", the following 
conditions hold true: 

(1) 

(2) 

x/y , (x/z)/(y/z), 

if x 15; y then x/z , y/z and z/y , z/x. 

3.t Tbeore •. 
R I-Lr X .... a iff R Ko-entalls X"'a. 

Proof. To prove the ·only if· direction observe that (A.O), 

(A.t) are Ko - valid, and Ko admits CR.t) (due to the above 
convention). We show that Ko admits (arn. Let f satisfy XaZ ... b 
and Y .... a. We consider several cases: 

(I) X - e, y .. c. Then, f(c) , f(a) and f(a) , f«Z,b» yield 
what desired, by the transitivity of ,. 

(II) X .. e, Y - cY' with y'" e. Then, f(c) , f«Y' ,a» and 
f(a) 'f«Z,b» by the assumption, hence fHY' ,a» , fCCY'Z,b», 
by (2), and consequently, fCc) ( f((Y'Z,b». 

Cm) X = a'X', Y = c. Then, from fCa') , fCCX'aZ,b» and fCcl' 
~ f(a) It follows that f(a') ~ f«X'cZ,b», by (2). 

(IV) X - a'X', Y - cY' with Y'" e. Then, f(a') , f«X'aZ.b» 
and f(c) , f«Y' ,a)), by the a.ssumptlon. Observe that (X'aZ.b)-
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= (X' ,(a(Z,b»). Consequently, (1), (2), and the tran.sitivity of 
, yield f«X'aZ,b)) , f«X'(y' ,a)y'Z,b)) , f«X'cY'Z,b)), hence 
f(a') , f«X'cY'Z,b)), as desired. 

TIle ·W direction Is proved by the method of Lindenbaum 
matrices. We write a W b if both a ... b and b ... a are derivable in 
peR). Clearly, W Is a congruence on the abaclutely free algebra 
of types. By [alit we denote the equivalence class of W that con
tains a. Let U consist of all equivalence classes of W. For 
a,beTp, we define: 

(3) 

(4) 

[alR/[blR = [(ba))R' 

[alR ~ [blR iff R I-Lr a ... b. 

TIle matrix M = m,I,') belongs to Ko, and we con.sider the 
assignment f: Pr -- U given by: f(p)'" [plR' for pePr. Clearly, f 
satisfies a .. b iff [alR ' (blR Iff R I-Lr a .. b, which finishes the 
proof. 

As an immediate consequence, we infer that the class K, of 
all MeKo which validate (3) (from section 0) is strongly adequate 
for CL. 

The theory of categorial grammars is especially interested 
In R-matrices of the following kind. Let V denote a nonem.pty set, 
which we refer to as a vocabulary. y+ denotes the set of nonem.pty 
strings over V. A string aey+ is called a (right-directional) 
functor from a set B s; y+ into a set C s; y+ if, for every peB, we 
have ap e C, where ap stands for concatenation of a and p, by CIB 
we denote the set of all functors from B into C. One easily 
checb that the R-matrix M(V) -= (P(Y+),I, s;) (P(W) symbolizes the 
power-set of W) belongs to Ko. R-matrlces of the form M(V) will 
be referred to as standard R-matrices. In Buszkowskl (1982) It 
has been proved that Lr Is strongly complete with respect to the 
class of standard R-matrices. Actually, this claim follows from 
3.1 and: 

3.2 Theorem. 
Each R-matrlx from Ko can be embedded into a standardR-matrix. 

Proof. Fix an R-matrix MeKo. Take V - u...,. For aey+, xeV, we 
define x/a in the .same way as (X,a) in section O. We write a .. x 
if y' x/a', where ya' ... a. Now, for, xeu..." by f(x) we denote the 
.set of all a e Y+, such that a 1\ x. We show that f is monomorphl.!m 
of Minto M(V). Clearly, x 1\ y iff f(x) S; fey). As a rsault, 
f(x) ... fey) entails x = y. We have to prove that f(x/y) = 
= f(x)/f(y). Let a e f(x/y) and p e fey). Then, aye f(x), hence 
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ape f(x), which can be obtained in a way similar to that applied 
in the ·only U- part of 3.1. This ylelds f(xly) , f(x)/f(y). To 
prove the converse inclusion take aef(x)/f(y). Since yef(y), then 
ayef(x), which yields aef(x/y). The proof is finished. 

A pair (M,n such that M Is an R-matrlx and f: Pr - ~ Is 
an assignment is called a model. A model (M,n Is aald to be 
standard if M is a standard R-matrix. A standard model (M,f) is 
aald to be commutative If, for all pePr, f(p) Is closed under 
arbitrary permutations of stringa. Obviously, if (M,f) is commu
tative then also f(a), for aU aeTp, Is Invariant under permu
tations. The class of all standard and commutative modeis will be 
denoted by SC. 

3.3 Theorem. 
R .... CL X .. a Iff R SC-entails X"a. 

Proof. We have already mentioned that the above equivalence 
holds with KI in the place of SC. Now, the embeddIng f 
constructed in the proof of 3.2, if applied to an R-matrix MeKI • 

sends each x E ~ into a permutation - closed set f(x) , UN. which 
Immediately yields the thesis. 

Structures (P(Y+),· ,1.'), where stands for concatenation, 
in the following sense: 

(5) B-C .. {ap: aeB, peO, for B,C S; Y·, 

fulfil the axioms of so-called right-residuated semigroups (cf. 
Fuchs 1963). Consequently, standard R-matrices result from right
residuated semi groups by dropping concatenation. We can replace 
y+ by an arbitrary semigroup G, Just getting the structure 
(PCG),-,I,S;) which is also a right-residuated semigroup. What we 
have called standard and commutative models can equlv:llently be 
characterized by means of structures (PCG),· ,I,!i;). where G is a 
free Abelian semigroup. The reader is referred to Buszkowskl 
(1982), (1985), (1986), where Lambek-style systems are modelled 
by various classes of residuated semigroups. It should be noticed 
that, due to affixing concatenation, one can define the relation 
·X" a Is satisfied by f· • where X = a l ••• an. by the simple for
mula: 

(6) 

Standard R-matrices are Infinite structures. We shall define 
a closely related class of R-matrlcea, which contains finite 
structures. By a quasi-standard R-matrlx we mean an R-matrlx of 
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the form (PCU),I,~), where (2)" U ~ y+, for some nonempty set V, U 
Is closed under non empty substrings, that means: 

(7) if apyeU, p " e, then peU, 

and I is defined by setting: 

(8) B/C .. {aeU: for all peC, if apeU then apeB}. 

Again, quasi-standard R-matrice.s belong to Ko, and each 
standard R-matrlx is quasi-standard. Consequently, quasi-standard 
R-matrices form a strongly adequate semantics for Lr. By the 
methods of Buszkowski (19828) it can be proved that P is 
complete with respect to the clau of fInIte quasI-standard 
R-matrices, that means, the arrows derivable In Lr are precisely 
those valtd In this class. One does not obtain the strong 
completeness, however. Accordingly, P po.s.se.s.ses the finite model 
property. Below we establtsh an analogous result for CL. 

By FSC we denote the class of finIte quasi-standard com
mutative models, I.e. models (M,t) such that M Is a finite quasl
standard R-matrlx, and f(p) Is permutation-Invariant, for all 
p e Pr. We aim to show that CL Is complete with respect to FSC. The 
proof uses some auxiliary notions, introduced in Buszkowskl 
(19828). 

Let T be a finite set of types, closed under subtypes. By a 
norm on T we mean a pair (m,,~) of functions from T into the 
set of positive Integers which satisfy following conditions: 

(9) ml«ab)) - max(1, ml(b)-m,(a), lIlz(b)-IIlz(a)), 

(to) ~«ab)) ... ma(b)-m,(a), 

(11) ml(a) < ma(b), for all a,beT. 

If R is a set of arrows, by Tp(R) we denote the set of all 
types occuring In the arrows from R. For T, Tp, sub(T) denotes 
the set of all subtypes of the types from T. We consider sets R, 
such that every arrow from R ls of the form a .... b. R Is saId to be 
normable If there exists a norm (m" Ina) on sub(TpCR», which 
fulfila: 

(12) mICa) ) ml(b), lIlz(a) ) ma(b), for all a .... be R. 

Observe that the problem of whether a finite set R Is 
normable Is effectively solvable. For, the sentence -R Is 
normable- (for a fixed R) can be expreased in the language of 
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Presburger arithmetic, and the latter is a decidable theory. We 
have to prove: 

3.4 Theorem. 
If R is a finite and normable set of arrows then Cl(R) is 
complete with respect to FSC, that means, R I-CL X .. a itf R 
FSC-entails X .. a. 

Proof. Since the argument is similar to that given for 
theorem 2 in Buszltowski (19828), we only sketch the main lines. 
Of course, FSC is contained in K" hence R FSC-entails X .. a 
whenever R I-CL X"a. To prove the converse fix a finite and 
normable set R, and take an arbitrary finite set T ~ Tp, such 
that TpCR) s; T and T is closed under subtypes. It suffices to 
find a model (M,n in FSC, fulfilling the eqUivalence: 

(13) f(a) ~ feb) iff R I-CL a .. b, for all a,beT. 

Choose a primitive type q_T. We set V = Tu{q}. It can be 
shown that there exists a norm Cm"IDz) on V, satisfying (2) and 
such that ml(q) = 1. Let N denote the maximal Integer IDzCa). for 
aEV. We define U!; V+, as the set of all strings Xev+, such that 
UX) ~ N. Consider the R-matrix M = CP(u).I,!;). We define an 
assignment f: Pr -+ PCu), by setting: 

(14) f(p) = U, if p_T, 

(15) f(p) = {XeU: mCX) > IDzCp) or R I-CL X"P}, for peT, 

where mCX) = mlCal) 't' ••• 't' ~Can) if X = al ... Cln. Clearly, 
CM,f) e FSC. By the simultaneous induction on eCa) we can prove the 
foliowing claims: for all XeU, aeT, 

(16) If m(X) < ml(a) then XI!fCa). 

(17) if miCa) ~ mCX) , IDzCa) then, Xef(a) iff R I-CL X"a. 

(tB) If m(X) > maCa) then X e f(a). 

We show (13)C<=). It suffices to verify that f satisfies each 
arrow from R. Take a .. b e R. If X dCa) then miCa)' mCX). by (16), 
hence ml(b) , m(X). by C 12). If m(X) > IDz(a) then also m(X) > 
> IDzCb), again by (12). hence Xef(b), by (tB). Otherwise, from 
XefCa) we infer R I-CL X"a, by (17), and consequently R I-CL X .. b. 
by (CUn, which yields XefCb). To show (13)(::» as.sume that a .. b 

is not derivable In CUR), where a,beT. Since ml(a) < IDzCb) then, 
according to (16). (17), al!f(b). On the other hand, aef(a), and 
consequently, f(a) is not contained in feb). The proof Is 
finished. 
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Since the empty set la evidently normable, we get: 

3.5 Corollary. 
I-CL X .... a iff X .... a la FSC-valid. 

Clearly, 3.5 provides a new proof of dec1dabllity of Cl. The 
set {(aa) .... a) la neither normable, nor FSC-complete (i.e. Cl(R) 
la not so), though it still remains decidable. It would be much 
interesting to verify whether normabillty amounts to the finite 
model property (our conjecture la: no). 

We have shown that CL posseases the finite model property. 
There arise.s the question of whether it admits a finite adequate 
R-matrix, i.e. a finite R-matrix M, such that the arrows 
derivable in CL are precisely those valid in M. The negative 
answer to this question follows from .some results concerning the 
generative capacity of CL. Given a finite .set T S; Tp, and pe Pr, 
by CL(T,p) we denote the set of all XEr, such that t-CL X .... p. It 
follows from some results of Buszkowski (1984), van Benthem 
(1985) (see also Buszkowski 1987) that CL(T,p) may be even 
non-context-free. On the other hand, if CL admitted a finite 
adequate R-matrix then Q(T,p) would be a regular language, for 
all finite T and P e Pr. Consequently we obtain: 

3.6 Theorem. 
For some finite T I; Tp and pePr, the eqUivalence: 

(19) I-CL X .... P Iff X .... P is valid In M, for all Xer, 

holds for no finite R-matrix M. 

All the theorems given In this section pos.seas their analo
gues for many others systems of TL. Without ea.sentJal changes 
they can be proved for P, L (In the case of bidirectional sys
tems one must employ R-matrices with two operations: ! and \), 
L!, L., CL., etc. For the latter systems, one needs R-matrlces 
with a dlatlngulshed element 1, fulfilling xii - x, for all 
elements x. Instead we can consider matrices (tJ,.,! ,I,D), where D 
consists of all x e u", such that l' x. Then, an assignment 
f: Pr --- tJ,. satlaf!es an arrow a .... b If f«ab» eO. Accordingly, we 
come to thla form of semantica which Is well known from the 
theory of propositional logica. 

The matrix &emantlcs tor 11. deaerve& a further Intenalve 
Inveat1gatlon. Beaide& ita evident logical Importance we should 
emphasize Its Intuitive foundatlona, anchored In the theory ot 
categorlal gr8JDlD8rs. A& a matter of fact, a model (M,n, where M 
Is standard, corresponds to the intuitive concept of the famUy 
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of syntactic categories In a language. lbat syntactic categories 
constitute an algebra like a residuated semlgroup wou first ob
served by Lambek (1958). Accordingly, the algebra of residuated 
.semlgroups, and especially standard R-matrlcea and their 
variants, may be identified with the syntactic theory of types, 
as the semantic theory of types refers to Cartesian closed 
categories, typed lambda calculus and so on. 



WITOLD MARCISZEWSKI 

SYSTEMS OF COMPUTER-AIDED REASONING FOR MATHEMATICS 
AND NATURAL LANGUAGE 

t. INTRODlX:TORY REMARKS 

1.1. A civilizational perspective 

1.2. On the fields of application of computer-aided reaaoning 

2. A COMMENT ON ALOORIlliMIC PROCEDlJRES FOR ARaJMENT 0iECK1NG 
(APACs) 

2.1. An overview of APAC projects 

2.2. On the nature of formalized proofs 

2.3. Two approaches to formallzation 

3. APAC AS REALIZED IN MIZAR SYSTEM'5 

3.1. On the ways of human-computer interaction in rea&Oning 

3.2. American, Dutch and other APAC projects 

3.3. A story of Polish project MIZAR 

3.4. On multi-sortedness 

3.5. MIZAR inference rules and related constructions 

3.6. MIZAR approach to the structure of proof texts 

4. HOW TO EXPRESS INTENSIONALITY IN CLASSICAL LOGIC, esp. IN 
MIZAR SYSTEMS? 

4.1. The problem of adjusting MIZAR to intensional arguments 

4.2. Nominalization of sentences In natural languages 

4.3. Nominalization through introducing the type PROPOSITION 
4.4. On a practical approach to the formalization of Inten-

sionality 

207 



Witold Marciszewski 

t. INTRODUCTORY REMARKS 

t.1. Every device created by humans is intended either for 
dealing with energy or for dealing with Information. ~ for 
energy, some devices .save it through facflltating the work of 
humans or animals, as do wheels, or through con.servlng it, u do 
clothes, while others produce new work due to their abllltles of 
transforming energy (u do engines). ~ for information, it can 
be either recorded, or transformed, or else increa.sed. One 
records a message, e.g. with pencil, one can transform it, e.g. 
with the help of calculating device, IDOreover one can Increase a 
piece of knowledge, as when using a microscope, or measuring a 
quantity. Those devices which are to be more advanced, more 
sophisticated, need a theoretical science for their c:omtruction; 
physlc.s when dealing with energy, and informatic.s when dealing 
with information (the latter ls also dealt with by genetlc.s, but 
this Is another story). Thus physic.s and Informatic.s, both rooted 
in mathematlc.s, prove to be crucial for civilizational 
development. The Import of physlc.s ha.s been acknowledged at least 
since the last century; the import of Informatics la atartlng to 
be recognized only recently, since only now, In our age, we have 
created auch advanced and Involved Information tools that they 
need a theoretical science for their construction and development 
(once upon a time also energetlcal devices, e.g. those for 
producing fire, had managed without any resort to theoretical 
physics). let It be observed, by the way, that the recent 
appearance of Informatics as a new discipline, both theoretical 
and applied, may ralse a new and fundamental problem, viz. that 
of mutual relatlon.shlp between energy and Information; po.sslbly, 
however, before we face such an Involved question, we should do 
our best to develop information sciences, including the oldest, 
logiC, but seen In the most recent Informational perspective. 

ThIs recalling of so general a law of civilization progress 
Is meant to give a perspective in which the Import of this 
essay's subject might be appreciated. Reasoning, Uke calcu
lating, ia a fundamental human activity of proce.s.sing (i.e. 
tranaforming) information, hence any device that makes it either 
more economical or more efficient (efficiency including reUabl
lity) deserves our attention. One should expect that auch devices 
would Involve computer programs checking logical and llngul.stlc 
correctness of human reasoning and to a.sslst humans In their most 
vital activity (as reasoning must be essential for what ex 
definitione ia a reasonable being). In fact, such programs, ap-
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propriately called OiECKERs, started to appear since the Sixties. 
The checker's task con&ists in showing and describing errors, if 
any, committed in reasoning, thus assisting a human In producing 
a correct proof (I.e. a piece of deductive reasoning; note that 
so-called Inductive reasonings exceed the checker's competence as 
defined In this discussion). 

1.2. Such a procedure can be adopted In at least four fields 
of human activities: 

en :scientific rS5sarch, at leut in its more routine stages; 

(if) the teaching of logic, mathematics, philosophy, etc., 
inasmuch it includes a training in reasoning; 

(iii) the evaluation of arguments before the text in question 
gets approved for publication, which is the main task of editors 
and reviewers; 

(Iv) the checking of correctness of computer programs (such 
programs being similar to proofs of conditionals of the following 
form: if such and such operations are performed, then so and so 
is obtained). 

It is the second of the above applicatiOns that was, in 
fact, practised while the others remained rather in the realm of 
projects and theoretical considerations. This may be explained by 
the fact that didactic applications provide us with the most 
convenient field for gathering experience. 

A word is to be said about computer-aided reasoning in 
scientific research. Obviously, a checking program cannot envisa
ge all the methods of reasoning that may be intended by creative 
human minds, since every computer program has to be based on the 
methods already known. But, let us note that in every research 
there are some routine components, and In this respect computer's 
services may be welcome. 

On the other hand, the situation in teachIng is quite the 
reverse: clever students may have some creative insights, but 
nobody can be taught .such Insighta (at the moat they may be 
Inspired by the teacher's example Ilnd personality). Every-day 
inatruction consi.st.s mainly In imparting some routine procedurea 
of research, and thi.s can be done better by Il computer than by 
hUJD8n being. 

The aim of the present paper Is to di:scus.s .some steps 
already made; they consist In producing software devlcea. based 
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on clMSical logic alone, meant to a.ssLst logical and mathe
matical instruction. In thl& context we are to corusider certain 
possibilities of extending the use of these devices to include 
natural language reasonings, as those being performed in 
every-day life as well as in philosophy and .socIal .scIences. 

2. A COMMENT ON ALGORITHMIC PROCEDURf'S 
FOR ARGUMENT CHECKING (APACs) 

2.1. There are several places in the world where people 
started to work on algorithmic procedure.s for argument check
ing; for short, let us call them APA.c.s. The mo.st successful one.s 
have proved to be those produced in the following centers: 
(a) Stanford University, where a number of APAC projects, related 
to P. Suppes' teaching activitie.s, came into use; (b) Bndhoven 
Institute of Technology in the Netherlands working on the system 
called AUTOMATH (abbreviation for "automatized mathematics"); 
(c) Warsaw University, where a family of systems called MIZAR was 
created for use in teaching logic and mathematics. 

Projects of thl& kind should be mentioned at the very begin
ning of the pre.sent dl&cussion to indicate that genuine re.sults, 
not just plans or Intentiorus wlll be dl&cussed. However. what l& 
said in thl& section is not an empirical· generalization based on 
the results of some concrete projects. A concrete exemplification 
l& to be given later, while in the pre.sent section we corusider 
some a priori possible approaches to the corustruction of APAC 
systems. Owing to such a discussion, we shall be better equipped 
to appreciate those approache.s which have been adopted in such 
projects as the above mentioned. 

2.2. Each logician l& familiar with certain algorithms for 
checking the validity of proofs, namely those regarding formali
zed proofs. Such an algorithm l& a set of Instructiorus which 
make.s possible for anybody to solve the subsequent task (In a 
finite number of steps); to decide whether the final conclusion 
does follow from the assumptiorus as Il&ted at the start. The 
phrase "for anybody" means all the people who are able to atten
tively use their eyes to trace the trarusformatiorus of the 
physical shapes of symbol strings, according to the irustructiorus 
put at the proof margin. Each irustruction involves an inference 
rule and a reference to some former lines of the proof in 
question. The set of such instructlorus forms the algorithm for 
checking the given proof. Owing to the fact that the perceptual 
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apparatus alone Is sufficient to follow the algorithm, the 
c::orrec:tne&S of a formalized mathematical proof can be c::hecked 
even by a person without any mathematical competence. who do not 
grasp the content of the proof. Even the understanding of logical 
c:onaequence Ls not required. the only thing nec::uaary Is to 
follow the Instructions which desc::rlbe phyaical transtormatiorus. 

Owing to these features. a formalized. proof can be repro
duced In a amputer. with the only difference that the optical 
mechanism of rec:ognizlng obJec::t.s Is replaced by another IIIIIChanIsm 
that operatu on computer states instead of graphical .symbols. 
Thus. the whole structure of a proof text Is reproduced In the 
immorphic atructure of the sequence of machine statu. 

2.3. DIscussed above was a theoretically possible approach 
to the construction of APACs. viz. the approach imitating the 
technique of formalization elaborated by Hilbert. Tarakl, etc::. 
for metamathematical investigations. One can imagine adopting 
this technique for new purposes, that Ls for chec::lcing proofs by a 
computer. However, It proves to be a theoretical option rather 
than a practical and feasible solution. Thla made of formali
zation is too cumbersome for a human reasoner; at the .same time 
It Is too complicated for an automatic checker. ThIs c::hecker 
would be obliged to reproduce step by .step the whole structure of 
thus formalized proof, putting it in the sequence of machine 
states. 

let us imagine a different approach. Instead of reproducing 
the whole .structure. we adopt the method that can be called 
source-and-target-cepcoduction. ThIs means that only the a&SUIIIp
tlons and the final c:onclusion have to be reproduced in the 
machine representation. while the reat, i.e. the way leading from 
the uaumptions to the conclusion may be entirely different from 
the way chosen by a human reasoner. To Illustrate this, let us 
take the analogy with arithmetical operations. One who Ls adding. 
say, 123 and 299 may obtain the result 422 either by succe.ulvely 
adding 3 to 9, 2 to 9. and 1 to 2; or using the trick of defining 
299 as 300 minus I, and then, by adding 300 to (123 minua n. one 
obtains the result In the easiest and qUickest way. But whatever 
way Ls cho.len by the human, the computer will perform addition 
always in the same way, namely that of succa.salve additions step 
by step. 

ThIs example can flluatrate a new approach to the construc
tion of APACa, which does not depend on the exact and total 
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reproduction of human-made proof In the sequence of computer 
stat.. In thi" new approach, Instead of the total reproduction 
Just a partial reproduction takes place, comprising only the 
assumptions (the source) and the final inference (the target), 
while the path leading from the source to the target In computer 
behavior may be quite different from that In human behavior. 
Thus, for a human reasoner a wide spectrum of options i" left. 
Among these options may appear arguments as readable and concl.se 
as those appearing in the practice of scientific and every-day 
reasoning. 

For these reasons, the constructors of various APAQs adopted 
the source-end-target approach. Such a construction includ. 
three components: 

(l) a logical system of natural deduction involving an appro
priate syntax and Inference rules, both addressed to human 
reasoners; 

(Ii) a checker, i.e. a computer algorithm (a piece of soft
ware) to check the syntactic and logical validity of human 
reasoning; 

(Ul) a list of commands to set the algorithm In motion. 

The last component can be constructed in either of two ways. 
Such commands as "start checltlng", "check the next line", "stop 
checking" etc. can either be added to the text of proof as 
separate units, or built into the text as its integral parts, 
serving both human communication and automatic text processing. 
Obviously, the latter solution is more economical; we shall see 
how it works In the system to be d~ below. 

l. APAC AS REALIZED IN MIZAR SYSTEMS 

l.t. There are three ways In which computers can aaaist 
human activities. Either a human activity i" wholly replaced by 
computer operations (as in numerical computing, in automatic 
theorem proving etc.>, or a computer provide.! us with a half
flni"hed product to be evaluated and finished by a human (e.g. 
half-automatic text translation), or ebe a human produces 
something to be evaluated or checked by a computer. Computer
aided reasoning, that i" an APAC implemented on a computer, falls 
in the last category. 
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Do we really need computer aid In reaaonlng while there Is a 
stronger tool, namely full automatization of reaaonlng? It should 
be answered that even If the complete automatization of reaaonlng 
were a feaalble solution, we would st1ll need the procedure of 
computer-aided reaaonlng. For It Is a fundamental property of 
human reason, closely related to the proce.u of understanding; to 
understand a proposition Is somehow equivalent to being able to 
prove It. Hence, we may need technical devices to make our 
reasoning more efficient. 

3.2. Before Introduclng the APAC system being the main 
SUbject of this di.scu.ulon, It Is worth while to hint at some 
other systems of the same kind; this should provide us with a 
suitable comparative context. 

The story of automatic proof checking goes back to 
McCarthy's (1961) work. Soon, first implementations appeared at 
Stanford University, esp. at the Institute for Mathematical 
Studies in Social Sciences, not without the influence and 
collaboration of P. Suppe.s whose two boob have been used in the 
project: one on logic (1957), the other one on set theory (1972). 

The Inference rules of predicate logic were taken from the 
former, while the latter provided the project with the basis for 
the APAC system called QUIP, constructed for teaching set theory. 
The system, containing both the prover and checker, baa been used 
since 1974; the program was written in LISP. A checker for 
predicate logic was created in the same Institute ten years 
earlier. 

A project based on lambda calculus with types, called 
AUTOMATIi. started in the 1966 in the Eindhoven Institute of 
Technology in the Netherlands. It was Initiated by N. Go BruiJn 
who explains the point as follows (see de Bruljn (1983). p.86). 

"The idea was to develop a system of wrltin~ entire 
mathematical theories In such a precise fashion tbiIlt verl
flcatlon of correctness can be carried out a ...... lcally. 
yet keeping. step by step, contact with ordlnuw matbema
tical presentation. A slmllar Idea possibly ext.tMd In the 
mind of Lelbniz but not develop at that time." 

To support this important historical conjecture. let me add the 
following quotation taken from Leibnlz himself: "let the truth be 
perceived like a picture printed out In a chart with the aid of a 
machine" (ut ver/tas quaSI picta, velut machinae ope In chlJl'ta 
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expressa deprehendatur; letter to Oldenburg of 26~ Dec. 1675, 
quoted in Couturat (1900, p.99). 

Similar idea" were proposed in the Soviet Union by at leMt 
two authors: L. A Kaluznin (1964), and V. M. Glu.shlcov (1972). 
Since Kaluznin's paper wa" published in Poland In a widely read 
mathematical journal, his terminological suggestion to call the 
languages In question -information languagu· hM been accepted 
in Poland. It is worth noting that Kaluznin's proposal coincidu 
in time with the start of Stanford and Eindhoven projects; thl.s 
may be seen a" one more confirmation that when the time l.s ripe 
the same idea" appear independently at different and dl.stant 
placu. 

3.3. The Poll.sh project started in the middle 70ties, 
initiated and led by A. Trybulec, at Warsaw University, Bialystok 
Branch; the research is mainly carried on in the Section of 
Computer Science In the Institute of Mathematics, while didactic 
experiments are realized at the . Department of logic of the .same 
University. The name MIZAR denoting the Polish family of APAC 
.systems w been randomly chosen from among the collection of 
star names. Its purpose and main idea are like those expre.s.sed in 
de Bruijn's comment quoted above. 

MIZAR's logical basl.s is a system of inferential predicate 
logic (natural deduction) somehow similar to that of Slupecki and 
Borkowski (1967) which, In turn. l.s an Improved version of the 
system of natural deduction created by S. Jdkowskl (1934). si
multaneously with, but independently of, the systems of G. Gentzen. 

All the MIZAR systems have been programmed In PASCAl and 
implemented on very many machines. recently on personal computers 
Apple 2. IBM PC/XT, Amstrad PCW 8256. Students are trained in 
MIZAR mainly with the help of SM-4. There are collaborators who 
carryon either research or instruction in university centers 
abroad, e.g. in Connecticut (USA), Alberta (Canada), Gent and 
Louvain la Neuve (Belgium), Kopenhagen, Stockholm. There wa" an 
exchange of visits and experiences between the Polish ruearch 
team and the Dutch Eindhoven group. there were also contacts with 
a representative of the Stanford group. 

MIZAR Is meant to be universal language of mathematics; 
however, it is applicable to non -mathematical discourses a" well, 
if the logical means required do not exceed the .scope of 
classical logic. Extended predicate logic, that is involving 
identity and functions, l.s used at more advanced levels of 
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teachlng or research. An easier and simpler system called MIZAR 
MSE, is used at more popular levels. In the sequel we shall 
concentrate upon this simplified version. 

3.4. The affix MSE means Multi-Sorted predicate logic with 
Equality. The fact of being multi-sorted belongs to the main 
syntactic features of the language In question. This feature is 
fairly rare In the current logical systems. An instructive 
example of Its application is found In Hilbert's axlomatizatlon 
of geometry as accomplished in "Grundlagen der Ceometrle" (1899). 
In this system there are three universes and three respective 
sorts of Individual variables: for points, lines, and planes. 

Multi-sortedeness is a u.seful property from the viewpoint of 
the economy of formalization. It makes formulas shorter and more 
readable then tho$e resulting from the u.se of respective predi
cates. It should be noted that MIZAR multi - .sortedness is not 
quite like the multi - .sortedness of Hilbert, as in the former the 
declaration of .sorts does not hold for ever, that is for the 
whole theory In question; instead, it is given locally, .that Is 
in the preface to a particular proof or a cluster of proofs. This 
is somehow similar to restricted quantification, but the .symbols 
for sorts restricting the range of variable are not predicates; 
rather they are names standing for .sorts, like those referring to 
types in programing languages (e.g. types "integer", "boolean"). 

Here is an example. The first Euclidean postulate in the 
Hilbert formalization reads as follows. Let R denote the rela
tion ... may be drawn from ... to.... let A, B be variable ranging 
over points, and a, b ranging over lines. Then we have: 

(1) (V'A)(VB)(3a) R(a,A,B). 

Let us put the same prop03ltlon In a unisorted language which has 
predicates P (for point), and L (for lines) and whose variables 
range over the whole domain of geometric objects. Then we obtain 
a less economical formulation, viz.: 

(2) (V'x)(V'y)(3z) (P{x) & P(y) & l(z» -+ R(z,x,y». 

Now, remaining in the same unisorted language we make u.se of the 
restricted quantification: 

(3) V'(Px) V(Py) V(Lz) R(z,x,y). 

Let us compare (3) with the corresponding MIZAR formulation, 
where 1m Is the universal quantifier. IX ... 11 (satistying) is 
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the exiatential quantifier, while POINI' and LINE are sort names 
(not predicates as are P and l, respectively, in (3». 

(4) Im: x,y lHt1ng POINT u z lHt1ng LINE aU RCz,x,y). 

l.5. Besides multfsortedeness MIZAR M5E possesses other 
meana to increase conciaene.ss and readabillty, and to approximate 
mathematical practice. One of them conslst.s in the suitable 
selection of Inference rules, another one In the .selection of 
directives regarding the structure of. proof texts. 

ks for the rules of inference, the follawing solutions have 
been adopted in MIZAR MSE. OtherwLse than in _ current sys
tems, there are Infinitely many rules of propositional logic, 
viz. as many as the number of tautologies which provide u.s with 
inference rules. Hence, it can be .saId that aU tha propositional 
tautologies are obvious for the chacker. 

For both quantifiers hold the rules of introduction and of 
elimination, like in the mentioned .system of SJupecki and 
Borkowski. However, an Important novelty fa Introduced to the use 
of elimination rules: each fa applied In the context of a 
construction cbaracterl.stlc for the rule In question. 

To eliminate the universal quantifier from a formula like 

m x bI1ng. INTEGER bgld.t F(x), 

we make the assumption: .la1 x' lIII INTEGER, where x' designates a 
fixed but rmdom object. Thus, in the context "let .. be .. " tha 
letter x' appears as a constmt, In the sense that it designates 
a fixed object. 

The existential quantifier can be also eliminated, provided 
that previously the exfatence of the object in queatlon has been 
proven. In MIZAR this fact ls recorded with the help of a con
struction which has behind It, as ita rationale, the choice rule. 
This rule tells us following: if it Is known that a certain 
existential .statement is satlsfled, then It is po.uible to intro
duce an named object, l.e. the object satisfying the conditions 
listed in the construction proposing an object to be considered, 
and thus allowing to drop the existential quantifier. We can 
eliminate this quantifier from a sentence 

U x At A(x) 

provided that we know an obJac:t x' .satisfying tha condition A. 
Then we can put down: 

conslder x' mm lba1 A(x'). 
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There are conceptual analogies (in spite of notational dif
ferences) between theae MIZAR constructions and Hilbert's methods 
of dealing with quantifiers. Hilbert and Bernaya in their 
-Cirundlagen der Mathematik- introduce special aymbol.s to replace 
bounded variables in the procedure of quantifier elimination. 
But, unlike IDOre recent approachea, the symbola which replace 
existentially bounded variables are different from tho.se which 
replace unlver.sally bounded variables. This distinction. though 
usually di.sregarded, baa a good. theoretical motivation. since In 
the operation of eliminating the existential quantffler it Is 
obllgatory to reference an existential a.saertion. while the 
analogous operation on the other quantifier Is free of thi.s 
obl1gation. In MIZAR the .same distinction Is expre.s.sed not with 
the help of different kinds of symbols, but with a different 
context, which is clo.ser to mathematical practice. 

l.6. In MIZAR there 
structuralization of proof 
comparative context. 

Is an original 
texts. Let us 

contribution to the 
discus.s thi.s in a 

A traditional mathematical proof, lIS structured e.g. with 
Euclid, starts from the proposition to be proven, then there Is a 
sequence of propositions being ordered by the relation of con
sequence, possibly with references to previously accepted a.saer
tiona; at the very end we put the proven assertion, sometimes 
distinguished through letters -q.e.d.-. 

In a formalized proof the structure Is IDOre rigorously 
defined. It is required that each step be Justtfled by referen
cing both the relevant previous lines and the rules of inference 
being used. It Is this requirement, as not admitting any short
cuts, that makes the usual formalized proofs so long and cumber-
some. 

MIZAR systems attempt to combine the flexibility and con
ciseness of natural proofs, with the rlgour and the algorithmic 
style of formalized proofs; the latter feature i.s necessary for 
automatic text processing, the former enables addressing MIZAR to 
human reasoners. A detailed description of how this goal has been 
achieved would exceed the limits of this essay, hence the 
exposition has to be restricted to chosen examples. 

A solution that must be mentioned consi.sts In the mode of 
justification by referencing only the premisses without any 
reference to the deductive rules being used. Thi.s allows for 
considerable shortcuts. E.g. if a reasoner makes use of five 
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rules of propositional logic at once instead of doing it in five 
steps, it is up to checker to decide whether the formula In 
question does, or does not (semantically) follow from the 
referenced premiss. If it does, the shortened text obtains the 
checker's O.K. 

Another device is a schematic frame of proof construction 
performing two duties: tor human users it yields a readable proof 
construction, for a computer it expresses commands corresponding 
to the given stage of processing. For instance, the word 
-environ- indicates that in the text section contained between It 
and the word ~n- there are collected the syntactic 
stipulations (e.g. symbols to stand for introduced types) as well 
as the axioms to be referred to in the proof. The word -proof
hints that the checking process should start, while -end- means 
stopping this process. Within these two basic commands more 
specific ones may appear, for Instance -hence- meaning that the 
formula following this word should be checked with respect to the 
immediately preceding formula. 

Note that such items are addressed both to human readers and 
to the checking system; for the former they determine the proof 
structure, for the latter they are commands concerning the text 
processing. There is also the possibility of inserting comments 
that are addressed to humans alone, while being disregarded by 
the computer. Such devices built into the MIZAR systems provide 
the desired economy and flexibility that can stfll grow, given 
extra programming effort. 

4. HOW TO EXPRESS INTENSIONALITY IN CLASSICAL LOGIC 
up. IN MIZAR SYSTEMS? 

4. t. MIZAR MSE and other MIZAR systems are suited for 
mathematical proofs. Obviously, the AIDe predicate logic which 
provides mathematicians with logical means for their reasoning Is 
valid also for natural languages; to thl.s extent the classical 
predicate logic as contaIned In the system MIZAR MSE, hence the 
system itself, can be applied to natural language arguments. 

However, in natural language there are means of reasoning 
that exceed the scope of classical logic possibilities; at least, 
there is a widespread belief that this is the cue. This belief 
motivated the creation of .so many and so varlou.s non-classical 
logics, with the exception at Intultioni&tlc logic that grew from 
some genuine problems of mathematics Itself. In the sequel I 
shall concentrate on the first kind of non-classicality - that 
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related to the natural language (it Ls abo closely related to 
philo- .sophy, requiring natural language for Its arguments, hence 
the term ·philosophical logic· Ls often applied to non-cleaalcal 
logic, but thea relatiorus will not be di.scu.ssed here). 

There are two features of the real world, ss described by 
natural languages. which dlstinguLsh It from the abstract mathe
matical world; temporality and interusionality. the latter mearus 
that the products of human mind, such ss concepts, proposltiorus. 
problems and theories, ss well. ss mlnd's relatlorus to these 
products (believing, proving, doubting. etc.) can be dealt with 
In the language in question; we call It intensional, for the 
mentioned entities are characterized ss having contents, I.e. (In 
Latin) intensiones. Both features are logically relevant. In the 
natural language there are corresponding rules of inference, even 
if they are disgui.sed in the form of rules of grammar, such as 
consecutio temporum rules (giving rise to modern systems of 
temporal logic). A& for interuslonality, the rules in question 
are, e.g. those which govern reported speech, in which we speak 
of .somebody's thoughts, beliefs, etc. 

Both temporal and interusional reasonings have a cammon core, 
namely the idea of .udaUty. In the temporal di.scourse we .somehow 
feel a relation between, ego future end possibility, or between 
pest and necessity (If one has, e.g. fatalLstlc feeling that what 
had happened, had necessarily happened). In the Interusional 
discourse we dLstinguish, e.g. between knowledge and belief with 
the help of the modal notiorus of necessity and possibility 
respectively (cf. Hintikka (1962), Marciszewski (1972». There
fore, even if the modal notlorus do not suffice to render all the 
varieties of temporal and interusional arguments. they provide us 
with a typical example of logical peculiarities of natural langu
ages. It is why I shall focus on them in the subsequent 
di.scussion. 

4.2. In natural languages there are at lesst three gram
matical devices to express modal ideas. The same modal concept, 
e.g. that of po&Slblllty, can be expressed either with an adverb 
(modalJtas de re, according to the ancient terminology), or with 
a predicate, or else with a phrase prefixing a sentence 
<modalltas de dicto). Here are examples. 

John possibly agrees 

It is possible that John agrees 

That John agrees is possible 

modality de re 

modallty de dicto 

predlcative modality 
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In the laat cue the .sentence -John agrees- Ls prefixed by 
-that- to transform the .sentence Into a nominal phrase which Ls 
equivalent (roughly) with -John's agreeing", • John's agreement- etc. 

ThIs role of warda like -that- wu clearly noticed by Frege 
who even found a symbolic representation for It In hLs -Begrlfs
schritt-; It wu a horizontal line without a stroke, u opposed 
to the horizontal line with the vertical stroke (H, the latter 
expressing the assertion operation. Frege read thLs horizontal 
line sa -der Umstand, daB-, or -der Satz, daB-. Following Frege's 
terminological .suggestion, we can call the horizontal line the 
content operator, sa It produces the mere content of a 
propoaltion, devoid of acceptance (auertion). Of the content In 
question It may be predicated that it Ls the case, is true, 
possible, necessary, obligatory, permitted, expected, likely, 
beautiful, etc. Obvioualy, that ILst includes modal predicates. 

These obaervations are to .show that there are content 
operators in natural languages which can be uaed to eliminate 
modality de re, likewise modality de dicta, in favour of modal 
predicates. These are predicated of contents, In thLs way forming 
sentences which fit into the scheme of claalcal logic: neither 
do they contain non-clauical constanta, nor do they receive any 
logical values apart from the true and the false. 

4.3. If the state of affairs appearing In natural languages 
Is to be reproduced in formal logic, we ahould Introduce a 
symbolic content operator. ThIs move was made by Frege, and 
developed by A. Church in hLs logic of sense and denotation. 
However, this line of developing logic did not receive a wider 
acceptance. Possibly the reuon lies in the fear of platonism, a.s 
felt by many modern logicians who suapect contents (u obtained 
with the content operator) to be too much like Platonian Ideas. A 
more convincing argument Is that we did not succeed in finding 
ways to deal with contents u efficient u those of dealing with 
.seta. 

In any case, the predlcative mode of treating modalities 
gave way to the mode deriving from the Idea of modality de dicta; 
but the situation changed again with the appearance of CDDputers 
and progr8.lDll11ng languages. The phllosophlcal objections such sa 
those concerning the exLstence of contents can be given up In the 
case when we obtain technical tooLs to handle such entities 
without any harm to argument precLseness. 
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Such a tool is involved in the notion of a type (mode, 
sort), that is a set of objects for which certain operations are 
defined. In particular, we may introduce the type PROPOSITION for 
which (among others) holds the operation of prediction, e.g. in 
the context: PROPOSITION 2.,. 2 = 4 is necessary. According to 
MIZAR rule.s for proof structuration, the type.s to be used In the 
proof in question should be introduced in the section called 
"environ" by means of the following declaration: 

.1§1 ---~ ••• ; 

where in blanks there first appears a variable or variable.s (- - - ) 
and then the name of a type 1..,), for instance; 

.1§1 s ~ PROPOSITION. 

In the same .section the declared type is implicitly defined 
through suitable axioms, for instance: 

At: fgr s bQlda fal.se[s) ill DQ1 true[s); 

Now it is known that the type PROPOSITION includes objects of 
which truth and falsity can be predicated. On the same footing 
modal predicate.s can be applied to objects of the type 
PROPOSITION, thus contributing to the further explanation of its 
nature, e.g. 

A2: true[s) .imJillu possible[s]; 

which renders the old maxim: de esse ad posse valet illatIo. 

If we need to deal with an Individual object of type 
PROPOSITION, we can introduce it as a constant by using the spe
cial construction for this purpose, expressed with giDn, for 
instance: 

~ iCralns lImng PROPOSITION; 

Obviously predicates which are applicable to type variables (like 

s in the above examples) can be applied to type constants (like 
iCrains>. 

To put the suggested method to a rather demanding test, let 
us apply it to the Barcan formula (cf. MarciszewsJci (1981), viz. 

P«3x)A) ..,. (3x)P<A) 

where P stands for the modal operator 
that" (the bold face to distinguish it 
P, read "is possible", to be used 
formation). Now we stipulate: 

to be read "it is passible 
from the modal predicate 
in the proposed trans-
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g1xe.n (3x)A Zing PROPOSITION; 

g1xe.n A Zing PROPOSITION; 

Then the Barcan formula obtaiM the following form: 

PCC3x)A) -+ (3x)P(A) 

where the above stipulation is realized due to the context P (as 
being an expression of syntactic category $/n) IMtead of the 
previous P (category 3/3). 

Natural languages like English and German posses.s a suitable 
syntactic device for such a traMformation, namely the English 
-tllat- and the German -da&-, both functioning either as a part of 
a modal operator (e.g. -it is possible tllat-, -u is magUch 
da&-) or as a functor forming a name (of a proposition) out of a 
proposition (-that A is possible-, -da& A 1st maglich-). When 
traMforming the Barcan formula with the help of these natural 
language devices (from modality de dicta to predicative moda
lity), we obtain something like the following: 

!mm: if It is possible that there is x who is. Immortal, 
then there is x such that it is possible (about him) that 
he is immortal; 

19: if 1HA T 1HERE IS x WHO IS lMMORT At is possible, then 
there is x which satisfies (the formula): lHAT x IS 
IttMlRTAl is possible. 

In this example capital letters Indicate the object of the type 
PROPOSITION of which property of being possible is predicated. 

4.4. Let me summarize the foregoing discus.slon. The problem 
of analysing reasonings in a natural language has been restricted 
to checking logical correctneas and this, In turn, has been 
rutricted to checking with the use of computer program (called a 
checker). 

When resorting to such technical devicea, we got bound by 
economy more than in other method& of analysis, since the lack of 
economy brings about financial loue.s (e.g. computer time is 
meuured aLso in terms of money). From this view-point the 
analysis of arguments carried out in terms of classical logic may 
prove more convenient than that in terms of modal logic, if there 
are ready and simple programs prepared on the classical baais. 
Thus restricted, and disregarding more theoretical coMi
deratfoM, when we analyse natural language reasonings that 
involve modal logical COMtants, it is worth while to try to 
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eliminate them in favour of modal extraiogical predicatN. After 
such a translation a natural language argument can be expressed 
in a standard logical computer communication language ba.!ed on 
classical logic, like the MIZAR language di.scussed above. 

The strategy used in the suggested translation consists in 
the nominalization of a sentence in order to apply a predicate to 
the name thus obtained, instead of applying a corresponding 
sentential operator to the sentence in qUNtion. There may be 
philosophical objections against this strategy but they can be 
answered with the following argument: any systematic procedure 
that brings about success, Uke a correct decision concerning 
argument validity, obtains the verdict of being right from the 
high court of practice. There remains the problem how this 
practical rightness is related to the genuine truth, as looked 
for by philosophers; for instance, whether the utility of the 
nominalization of a sentence does confirm the view of the 
existence of sentential contents. This however, is a new and 
different question. It cannot be disregarded in the totality of 
our theoretical inquirN, but it could have been disregarded 
within the limited contentions of this essay. 
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AN APPLICATION OF MIZAR MSE IN A COURSE IN LOGIC 

I would 11ke to pre.sent some educational experiences collec
ted during computer - aided courses in logic with the a.ulatance of 
Mizar MSEI. I limit myself only to my own experiences and the ex
periences of my colleagues, because I did not get any detailed 
data about the courses delivered by otherr. 

The principal goal of logic training is to develop the skill 
in deductive reasoning. Students achieve thb .skill, in general, 
by exercises in a properly chasen domain; their self-reliance and 
activity are critical. 

Traditional teaching of logic compriaea of two parts: first
ly, the introduction of necessary information in a specific 
domain; secondly, exercises both in cla.u and at home. There are 
no problems when we work with students of IDOre or le.s.s equal abi
IItias, actively participating in classe.s, but it rarely happens. 
The teaching uauaUy concerns a group of learners who have 
different capabillties and work at a different pace. The teacher 
baa no opportunity to adjust to individual needs. In order to 
enable all student students to muter a subject it is necessary 
to pre.sent and explain the same matter repeatedly, boring the 
more enterprising members of the cla.u. The Introduction of non
trivial exerclsea and IDOre aoph1&ticated examples, Interesting 
for better students would be too difficult for the le.s.s capable 
ones. It is al50 difficult for the teacher to encourage greater 
activity of ordinary students and to encourage self- reliance and 
independence. 

Let u.s then have a look at computer aided instruction of 
logic with the aid of Mizar MSE. The teaching of logic baaed on 
this system starts with a short introduction of the Mizar MSE lan
guage. Students are given necessary information about how to 
build sentences in this language, how to construct Mizar MSE 
proofs, how to justify statements, and 50 on. 

224 
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After th15 preliminary pre:sentatlon student. begin to work 
individually. Each of them receive:s a Hperate exerelae. 

The exerctH can be prepared in two ways. The first one con ~ 
si.st.s in presenting the exercl5e in natural language. 1be 
student's task ia to write correctly the theorem and its proof in 
Mizar MSE language together with all the definitions, axioms and 
remaining facts uaed in the proof. Since the Environment ia 
verified by the aystem only syntactically, the teacher mu.st watch 
carefully the logical correctne.sa oT an Environment written by a 
student. 

Another way of preparing exerci.ses ia as follows. All stu
dents receive the .same exercl5es concerning the .same domain (e.g. 
the elementary theory of sets) together with a proper Environ
ment. It i.s helpful to add .several examples of correctly proved 
theorems in the prepared Environment. The student's task t.s to 
write a correct proof of the given theorem in Mizar MSE language. 
As far as the contents of the theorem is concerned It ia same
time.s better to present the student. with the exercl5e in natural 
language. In particular, when the exercl5e Involves functions, 
they should be replaced by predicates. If students do it themsel
ves, the theorems becDDe clearer for them. An example of such an 
exerelae ia given in the appendix. 

From the very beginning of the work with the Mizar MSE sys
tem the student must be active. First of aU, the system requires 
the learner to possess his own conception of proof construction. 
Mizar MSE only decides whether a given step of the presented 
proof Is correct, but does not help to construct this proof. The 
proof text prepared by the student Is checked by the syatem. If 
this text is not aa:epted, the student must correct the indicated 
mistakes and again verify hIs text with Mizar MSE. If he ia not 
able to fill the reasoning gaps correctly and to Improve the text 
in this manner, he can apply to the teacher for additlonal expla
nations. Generally, after several attempts (4-5 if the proof is 
not difficult, 8-9 if it Is more complicated), the student can 
get h15 proof accepted by Mizar MSE. 

Scae remarks about Mizar MSE as a tool of teacbing logic 

1. Mizar MSE, in compariaon to the traditional methods, ia 
more attractive for studenta. The syatem is characterized by the 
follOWing features: 
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it decides at once whether the analysed text Ls correct, .so 
there Ls no lou of time; 

it markos individual errors and provides explanations; 

the language includes some of the typical natural language 
constructions found In mathematical proofs, e.g. -let ... 
be ... such that '" -, -aa.sume that ... -, -thus ... , thus 
students can build proofs resembling genuine mathematical 
practice; 

It defines a notion of obviousne.s.s consistent with our intu
itions, .so it Ls possible for students to construct proofs 
without needle.s.s details. 

2. Individual work with the Mizar MSE system allows the 
student to work at his own pace, and the teacher to follow the 
progress of each student separately. There Ls then a better oppo
rtunity for intensive learning independent of variations in stu
dent capability. 

l. We learned that the difference between good students and 
poorer ones is more apparent than usually_ Weaker students need 
much more time to correct their proofs. 

4. When beginning a computer aided course in logic we ought 
to have at our disposal several groups of exerci.se.s. At the very 
beginning really simple exercLse.s are often needed, especially 
with students lacking mathematical training. In such 2.Se.s it 
might be necessary to acquaint students with Inference rules as 
the first step. With more experienced candidates non-trivial and 
more interesting exercLses can be offered. 

5. A formalized language (aLso Mizar MSE), in contradistinc
tion to a natural one, requires rather strict dLscipline. Most of 
the students, who have never used such a language, experienced 
some difficulty being used to informal reasonings, often not at 
all precise. ThLs leads to errors; students should be advised to 
write their proof in the following way: 

first construct a skeleton of the proof; 

then fill in the reasoning gaps until the proof Ls detailed 
enough to be accepted by the Mizar MSE checker. 
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Appendix 

MIZAR.MSE AMS1RAD VERSION 3.02 
WARSAW UNIVERSITY BiAlYSTOK CAMPUS 

Example.MSE 

:: This Environment concerns binary rellftions 

environ 

reserve x,y,y',z for member; 
reserve P,Q,R,RR for relation; 

Extensionality: for P,Q hold.! 
(for x,y hold.! ReUx,P,y] iff ReUx,Q,y] implies P = Q; 

Inclusion: for P,Q holds 
IncUP,Ql iff for x,y st ReUx,P,y] hold.! ReUx,Q,y]; 

Union: for P,Q.R holds 
Union [P,Q.R] Iff (for x,y holds ReUx,R,y] iff 

(ReUx,P,y] or ReUx,Q,y])); 

Intersection: for P ,Q,R holds 
Inter[P,Q,R] iff (for x,y holds ReUx,R,y] iff 

(ReUx,P,y] &: ReUx,Q.y])); 

Complement: for P,Q holds 
Comp(P,Q] iff (for x,y hold.! ReUx,P,y] iff not ReHx,Q,y]); 

Converse: for P,Q hold.! 
ConvIP,Ql Iff (for x,y hold.! ReUx,P,y] iff ReUy,Q,x]); 

Composition: for P ,Q,R holds 
Comp£P,Q,Rl iff (for x,z hold.! ReUx,R,z] iff 

(ex y .st ReUx,P,y] &: Rel['WQ,z])); 

Transitivity: for R hold.! 
Tr[R] iff for x,y,z .st ReUx,R,y] &: ReUy,R,z) holdas 1&1(x,R.z)); 

Symmetry: for R hold.! Sym[R] Iff (for x,y .st ReUx,R,y] hold.t.sReUy,R,x)); 

Reflexivity: for R hold.! Refl(R) iff (for x hold.! ReUx,~~n; 

given I being relation; 

Identity: for x,y holds ReUx,I,y) iff x • Yi 
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begin 

:: Two examples of correctly solved theorems are gIven below: 

Ext: for P st Tr[P) &: SymlP) &: (for x ex y .5t ReUx,P,y]) hold& Refl[P) 
proof let P be relation; 
assume Tr(P]; then t: for x,y,z .5t ReUx,P,y] &: Rel(y,P,z] 

holds Rel(x,P,z) by Tranaitivity; 
assume SymlP]; then 2: for x,y st Rel[x,P,yl 

holds Relly,P,x) by Symmetry; 
assume 3: for x ex y st Rellx,P,y]; 
now let x be member; 
consider z such that 4: Rel[x,P,z] by 3; 
Rellz,P,x] by 4,2; 
hence ReUx,P,x] by 4,1; 

end; 
hence Refl[P] by Reflexivity; 
end; 

.. The contents of the second example is: 

.. For any relation R holds that 

.. R is transitive if and only if RoR c R 

Ex2: for R, RR st CamplR,R,RRJ holds Tr[Rl iff IncllRR,Rl 
proof let R, RR be relation such that t: Camp[R,R,RR]; 

2: for x,z holds ReUx,RR,zl iff 
(ex y .5t ReUx,R,y] &: ReUy,R,z] by I,Composition; 

Nt: now assume Tr[R); then 
3: for x,y,z st RaUx,R,y] &: Relly,R,zl holds 

ReUx,R,z] by Transitivity; 
now let x,y be member such that 4: Rel[x,RR,yl; 
consider y' such that 5: ReUx,R,y'] &: Rel[y' ,R,y] by 4,2; 
thus ReUx,R,y] by 5,3; 

end; 
hence Incl£RR,R] by Inclusion; 

end; 
now assume IncllRR,Rl; then 

6: for x,y st ReUx,RR,y] holds ReUx,R,y) by Inclusion; 
now let x,y',z be member such that 7: ReUx,R,y'] &: ReUy',R,zJ; 
ex y st Rel[x,R,y} &: ReUy,R,z] by 7; 
then Rel[x,RR,z} by 2; 
hence Rellx,R,zl by 6; 

end; 
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hence TrlRJ by Transitivity; 
end; 
hence the.sLa by Nl; 
end; 

;; A theorem to prove Is the following: 
;; For any relations R,S such that R is transitive and RoS - I 
;; both R = I and S = I are true. 

1HANKS OK 

Other publications on canputer aided ilLStructlon using Mizar 
MSE include: 

(t) Cours avance de Mizar MSE donne par A. Trybulec, .solutionne 
par St. :2:ukowsld, Summer Mizar Workshop, Louvain-la-Neuve, 
16.06 - 15.09.1985, Rapport Technique, Cahier.s de Mathi!matl
quea Appliqu8e.s awe Science.s Humalnea, pp.53-72, 1985. 

(2] M. Mostowsld, Textbook of Logic based on Mizar MSE (manu
script), 1985. 

(3) M. Mostowski and A. Trybulec, A certain experimental campu
ter aided course of logic In Poland, Proc. of World Confe
rence on Computers In Education, Norfolk, Va, July - August 
1985, North Holland. 

[4) M. Moatowskl and A. Zslewaka, Logical exerci.se.s In the Mizar 
MSE language (manuscript), 1966. 

[5) K. Pratmowskl and P. Rudnicki, Mizar MSE - a course In the 
monthly IELTA, Nos 9-12/1983, 1-6/t984. 

2 Since the Mizar MSE .system is In the public domain we don't 
exactly know how it La used and where. Up to now we have gathered 
the following Information; 

1. Warsaw Univeraity. Poland: 
- course in logic: the Department of Phlloaophy ( fir.st year) 

and Information and Library, 
- course In foundatlona of geometry (fourth and fifth year); 

the Department of Mathematics. 
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2. Warsaw University - Bialystok CalDpus, Poland: 
- courae in logic: the Department of Mathematics Uir.st 

year). Pedagogics (fir.st year) (cf. [2]. [4) above) and 
Technical Training (fourth year). 

- course in methodology of physiCS (fifth year): The Depart
ment of Physics. 

- a corre.spondence course of logic taught with the aid of 
Mizar tof)E in the Polf.sh monthly lEI.. TA. completed two years 
ago (cf. [5]. [3)). 

3. University of Connecticut. USA: 
- course in discrete mathematics for computer science, (cf. [1]). 

4. Wa.sbington State University. USA: 
- course in discrete mathematics for computer science. 

5. University of Alberta, Canada: 
- course In formal systems in computer science. 

6. University of Tokyo, Japan: 
- course in logic. 
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THE USE Of MIZAR MS£ IN A COURSE 
IN fOUNDATIONS Of GEOMETRY 

Anna Zalewska (in this volume) has described some educa
tional experiments in computer aided courses involving Mizar. 
Among others, she mentioned a course in foundations of geometry 
held at the Department of Mathematics of the University of Warsaw 
in the spring semester of 1985. 

u.sed Mizar MSE installed on the Riad 60 in the batch 
system. The return time was, for technical reasons, quite suba
tantial - sometimes as long as one week which proved to be 
disa.strou.s to the experiment. In fact it is one of the reasons 
for which, in my opinion, it is pointless to give precise results 
of the experiment, therefore I will restrict myself only to some 
general remarks and observations. 

The course was based upon the textbook eM. Kordos, 
W. Szczerba 1976) containing the formal exposition of axiomatic 
Euclidean geometry. Since Mizar MSE does not support function 
symbols, the u.se of Mizar MSE during the course had to be limited 
to the material contained in the first half of chapter 1, all of 
chapter 2, half of chapter 3 of part I and first three sections 
of chapter 1 of part II. Students attended a course during which 
the main idea was developed, which consisted mainly in proving 
simple geometrical theorems. Some theorems, together with the 
proper environment, were assigned to students for proving. The 
objective was to prepare the proof in Mizar language and obtain 
the 'OK' from the computer. To get credit for the course the 
students were required to get three such theorems ·OK-ed'. 

The class consisted of ten students in the senior year who 
were majors in Education of Mathematics. They represented low to 
average level. The main difficulty in the experiment waa to get 
students to learn how to u.se Mizar; at first there has been con
siderable resistance on their part. One of the students restri
cted his proof to the mere statement of the theorem, and to my 
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surprl.!e got it accepted. So later on I W80S more careful in 
a.s.signing problems. After the initial difficultie.s were overcome 
the .students .started to like it. I understand that they were 
treating the computer 80S a part of reallty and therefore get
ting an 'OK' wa.s an objective succe.s.s In contrast with their 
attitude to the teacher who l.s susceptible to all kinds of psy
chological pressures. Thl.s gave them a feeling of accompll.shment. 

There occurred a sub.stantial change in my role 80S a teacher. 
Earlier, when assigning homework tests, I W80S treated 80S an enemy 
who has to be forced to accept the .solution, sometimes in not an 
exactly hone.st way. Now the enemy to be defeated wa.s the computer 
and I wa.s turned into an ally helping to fight thl.s horrible 
device. This small fact has seriously influenced my contacts with 
the .students. They were much more eager to approach me with their 
problems, to report on their difficulties, and 80Sk for help. 

Using Mizar in such a course has, for a teacher, an addi -
tional advantage: it lifts off the burden of checking homeworks. 
It has to be paid for by increased help required by the .students 
at the beginning. However, the change in the nature of contacts 
between student and teacher is an obvious gain. Another gain W80S 
visible during the final te.st.s, namely the students understood 
the notion of proof much better than their peers from other clas
ses. Of course the size of the c1a.ss rules out any use of .statl.s
tical methods, but for an experienced teacher such an outcome W80S 
evident. 

Thus Mizar seems to be very well suited to be a help in 
teaching mathematics on any course where proving constitute.s an 
essential part. Mizar MSE, however, has several drawbacks when 
applied to teaching of mathematics: 

t. Lack of support for functional symbols. Thl.s limits 
considerably the .scope of applicability. 

2. Lack of user defined characters, infix and postfix 
notations and generalised notations, such 80S II < b < c. 

Of course, theoretically Mizar MSE l.s an universal language, 
and anything expressible in mathematics l.s expressible in Mizar 
MSE. Still, sometimes it turns out to be impractical. The reser
vations mentioned above are of unequal importance - the lack of 
functional symbols l.s much more serious. A veraion of Mizar 
supporting functional symbol.s will lead to much more succes.sful 
experiments. 
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